$\frac{\text{UNCLASSIFIED}}{\text{AD}} \frac{411780}{11780}$

DEFENSE DOCUMENTATION CENTER

FOR

SCIENTIFIC AND TECHNICAL INFORMATION

CAMERON STATION, ALEXANDRIA, VIRGINIA

UNCLASSIFIED

NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.

U. S. A R M Y TRANSPORTATION RESEARCH COMMAND FORT EUSTIS, VIRGINIA

63-4-4

prepared by:

VERTOL DIVISION The Boeing Company Morton, Pennsylvania

.323 1 IFV TISIA D

DISCLAIMER NOTICE

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission, to manufacture, use, or sell any patented invention that may in any way be related thereto.

* * *

ASTIA AVAILABILITY NOTICE

Qualified requesters may obtain copies of this report from

Armed Services Technical Information Agency Arlington Hall Station Arlington 12, Virginia

* * *

This report has been released to the Office of Technical Services, U. S. Department of Commerce, Washington 25, D. C., for sale to the general public.

* * *

The information contained herein will not be used for advertising purposes.

* * *

The findings and recommendations contained in this report are those of the contractor and do not necessarily reflect the views of the U. S. Army Mobility Command, the U. S. Army Materiel Command, or the Department of the Army.

HEADQUARTERS U. S. ARMY TRANSPORTATION RESEARCH COMMAND Fort Eustis, Virginia

In this report the Vertol Division, The Boeing Company, has conducted a literature search and laboratory test to select a suitable material to protect helicopter rotor blades from erosion. The Transportation Research Command concurs in the conclusions and "Present" recommendations contained in the report.

A follow-on program (flight test using polyurethane film as a protective strip on the leading edges of helicopter rotor blades) will be conducted in the near future and the final results published.

FOR THE COMMANDER:

KENNETH B. ABEL

KENNETH B. ABEL Captain TC Adjutant

APPROVED:

E. ROUZEE GIVENS

E. ROUZEE GIVENS Project Engineer

Task 1D121401A14169 (Formerly Task 9R38-01-017-69) Contract DA 44-177-TC-836 TCREC Technical Report 62-111 December 1962

HELICOPTER ROTOR BLADE EROSION PROTECTIVE MATERIALS

PHASE I REPORT NO. R-296

PREPARED BY VERTOL DIVISION THE BOEING COMPANY MORTON, PENNSYLVANIA

for U. S. ARMY TRANSPORTATION RESEARCH COMMAND FORT EUSTIS, VIRGINIA

PREFACE

This report was prepared by Vertol Division, The Boeing Company, Engineering Materials and Processes Department under the U. S. Army Transportation Research Command Contract Number DA 44-177-TC-836. The contract was administered by Mr. E. Rouzee Givens, Project Engineer of USATRECOM Systems and Equipment Division, Fort Eustis, Virginia, and Major E. S. Wilkinson, Contract Administrator, USATRECOM Contracting Office, Fort Eustis, Virginia.

This document contains the test results, conclusions and recommendations of Phase I, Helicopter Rotor Blade Erosion Protective Material Development Program conducted during the period July 1, 1962, to October 15, 1962.

Acknowledgement is herewith made to Mr. E. Rouzee Givens, USATRECOM Project Engineer, and Mr. Jake Fortner and Captain Doug Haller, U. S. Army Aviation Board, for their technical advice and assistance.

ACKNOWLEDGEMENTS

Vertol Division, The Boeing Company gratefully acknowledges the help in technical advice, specimen preparation and donation of materials supplied by the following companies:

Armstrong Cork Company, Industrial Division, Lancaster, Pennsylvania.

Bart Manufacturing Corporation, Newark, New Jersey.

Better Finishes and Coatings Company, Clifton, New Jersey.

Bloomingdale Rubber Company, Aberdeen, Maryland.

Climax Molybdenum Company of Michigan, Detroit, Michigan.

Coast Metals Inc., Little Ferry, New Jersey.

Coast Pro Seal and Manufacturing Company, Mullington, New Jersey.

E. F. Houghton and Company, Olean, New York.

E. I. DuPont de Nemours and Company, Wilmington, Delaware.

Electrolyzing Company, Division of Advance Industries, Providence, Rhode Island.

Gates Engineering Company, Wilmington, Delaware.

General American Transportation Corporation. Chicago, Illinois.

Kawecki Chemical Company, New York, New York.

Lord Manufacturing Company, Hughson Chemical Division, Erie, Pennsylvania.

Metco Inc., Long Island, New York.

Minnesota Mining and Manufacturing Company, St. Paul, Minnesota.

Narmco Resins and Coatings Company, Costa Mesa, California.

Philadelphia Rust Proof Company, Inc., Philadelphia, Pennsylvania.

R. M. Hollingshead Corporation, Camden, New Jersey.

Sierracin Corporation, Spraymat Division, Culver City, California.

Shell Chemical Company, Flushing, New York.

SIFCO Metachemical Inc., Cleveland, Ohio.

Texas Instruments Inc., Dallas, Texas.

The Beryllium Corporation, Reading, Pennsylvania.

The International Nickel Company, Inc., New York, New York.

Thermionic Products Company, Aero Division, Plainfield, New Jersey.

Thiokol Chemical Corporation, Reaction Motors Division, Bristol, Pennsylvania.

Titanium Metals Corporation of America, New York, New York.

Union Carbide Metals Company, Niagara Falls, New York.

Union Carbide Corporation, Linde Company Division, Indianapolis, Indiana.

Universal Cyclops Steel Corporation, Bridgeville, Pennsylvania.

U. S. Rubber Company, Naugatuck Chemical Division, Naugatuck, Connecticut.

U. S. Rubber Company, Tire Division, Detroit, Michigan.

CONTENTS

2

PREFACE	iii
ACKNOWLEDGEMENT	v
ILLUSTRATIONS	viii
TABLES	xiv
SUMMARY	1
CONCLUSIONS	3
RECOMMENDATIONS	5
INTRODUCTION	7
LITERATURE SURVEY AND MATERIAL SELECTION	9
EROSION TESTING	13
SAND IMPINGEMENT CABINET MODIFICATIONS	13 13 17 28 30 32 36 36
BIBLIOGRAPHY	51
APPENDICES	53
I WHIRLING-ARM SAND EROSION TEST SPECIMENS	53
II WHIRLING-ARM RAIN EROSION TEST SPECIMENS	67
III SPECIMEN BONDING PROCEDURES	85
IV DYNAMIC AND AERODYNAMIC CONSIDERATIONS FOR ROTOR BLADE PROTECTIVE SYSTEMS	89
DISTRIBUTION	90A

Page

vii

ILLUSTRATIONS

Figure

Page

SAND IMPINGEMENT TEST

Blast Cabinet

1.	Exterior View of Blast Cabinet	14
2.	Interior View Exhibiting Method of Calibrating Sand Delivery	14
3.	Interior View Exhibiting Method of Testing Flat Panels	14

TEST PANEL EROSION PATTERNS

Metallic Specimens

4.	"Star	Effect"	Typica	lofl	Bonded	Meta	ls.	•••	•	•	•	•	•	•	16
5.	"Worn	Hole Ef	fect" T	vpica	lofF	lated	Met	als							16

Normetallic Specimens

6.	"Burning" Produced by Static Electricity Discharge	16
7.	"Pin Hole Effect" Typical of Brushed Liquids with Bubbles	16
8.	"Worn Hole Effect" Similar to Worn Hole Effect in Metallic Specimens	16

WHIRLING-ARM SAND EROSION TEST

Test Rig Assembly and Instrumentation

9.	Test Rig Assembly and In	strumentation	29
10.	Top View of Test Rig		29

11.	Test Rig Hydraulic Power Supply	29
12.	Instrumentation	29
13.	Test Rig Lubrication System	29
14.	Whirling-Arm Blade	29
15.	Sand Hopper - Eight in Operation Simultaneously	29
16.	Test in Operation - Titanium	29
17.	Wear on Whirling-Arm Blade Evident After Extensive Testing	29

WHIRLING-ARM SAND EROSION TEST RESULTS OF 301SS

18.	BV 121-2. Full Hard. Thickness, .009 Inch. Duration of One-Quarter Run, 3-1/4 Minutes. Bonded	33
19.	BV 110-2. Full Hard. Thickness, .009 Inch. Duration of One-Half Run, 6-1/2 Minutes. Bonded	33
20.	BV 97-2. Full Hard. Thickness, .009 Inch. Duration of One Run, 13 Minutes. Bonded	33
21.	BV 135-5. One-Quarter Hard. Thickness, 010 Inch. Duration of One Run, 12-1/2 Minutes. Bonded	33
22.	BV 138-5. One-Quarter Hard. Thickness, .020 Inch. Duration of Two Runs, 24-3/4 Minutes. Bonded	34
23.	BV 139-5. One-Quarter Hard. Thickness, .032 Inch. Duration of Three Runs, 37-1/2 Minutes. Bonded	34
24.	BV 140-6. Annealed. Thickness, .020 Inch.Duration of Two Runs, 24-1/2 Minutes. Bonded	34

<u>Figure</u>

Page

Figure

Do	~~
ra	ge.

25.	BV 141-6. Annealed. Thickness, .034 Inch. Duration of Three Runs, 37-1/4 Minutes. Bonded	34
26.	BV 164-5. Bell. One Quarter Hard. Thickness, .020 Inch. Duration of One Run, 12-1/4 Minutes. Bonded	34
27.	BV 164-5. Bell. One-Quarter Hard. Thickness, .020 Inch. Duration of One and One-Half Runs, 17-3/4 Minutes. Bonded.	34

WHIRLING-ARM SAND EROSION TEST RESULTS TYPICAL SAND EROSION PATTERNS

<u>Metal</u>

28.	BV 43.	Electroformed Nickel. Duration of One Run	35
29.	BV 43.	Electroformed Nickel. Duration of Two Runs	35

Non-Metals

30.	BV 197.	Liquid Neoprene. Duration of One Run	35
31.	BV 197.	Liquid Neoprene. Duration of Five Runs	35
32.	BV 123.	Polyurethane Film. Duration of One Run	35
33.	BV 123.	Polyurethane Film. Duration of Eight Runs	35

х

<u>Figure</u>			Page
34.	BV 221.	Polyvinyl Chloride Pressure Sensitive Tape. Duration of One-Quarter Run	35
35.	BV 221.	Polyvinyl Chloride Pressure Sensitive Tape. Duration of One-Half Run	35

APPENDIX

WHIRLING-ARM SAND EROSION TESTS

36.	BV 26-2.	Full Hard 301SS. Thickness, .009 Inch. Duration of One Run	53
37.	BV 124.	Electroformed Nickel. Thickness, .009 Inch. Duration of One Run	54
38.	BV 151.	Chrome Plate on Copper. Thickness, .009 Inch. Duration of One Run.	55
39.	BV 15-10.	13V11Cr3A1 Titanium. Thickness, .012 Inch. Duration of One Run.	56
40.	BV 21-18.	Annealed Beryllium Nickel. Thickness, .010 Inch. Duration of One Run	57
41.	BV 189-26.	Molybdenum. Thickness, .009 Inch. Duration of One Run	58
42.	BV 40-126.	Nitrile-Phenolic. Thickness, .045 Inch. Duration of Two Runs	59
43.	BV 67-222.	Polyvinyl Chloride Pressure Sensitive Tape. Thickness, OlO Inch. Duration of One-Quarter Run	60
		•	00

xi

.

guie			
44.	BV 65-221.	Polyvinyl Chloride Pressure Sensitive Tape. Thickness, .020 Inch. Dur- ation of One-Half Run	61
45.	BV 45-124.	Polyurethane. Thickness, .031 Inch. Duration of Six Runs	62
46.	BV 46-123.	Polyurethane. Thickness, .031 Inch. Duration of Eight Runs	63
47.	BV 43-109.	Neoprene. Thickness, .031 Inch. Duration of Two Runs	64
48.	BV 42-108.	Neoprene. Thickness, .054 Inch. Duration of Two Runs	65
49.	BV 51-114.	Polyvinyl Chloride. Thickness, .015 Inch. Duration of One Run	66
50.	BV 137-128.	Nitrile-Phenolic. Thickness, .027 Inch. Duration of One Run	67
51.	BV 143-221-2	Polyvinyl Chloride Over Full Hard 301SS. Thickness, .020 + .009 Inch. Duration of One and One-Half Runs	68
52.	BV 41-204.	Neoprene. Thickness, .015 Inch. Duration of Four Runs	69
53.	BV 44-197.	White Neoprene. Thickness, .021 Inch. Duration of Five Runs	70
54.	BV 149-148.	Polysulfide. Thickness, .012 Inch. Duration of One Run	71
55.	BV 162-170.	Polyurethane. Thickness, .020 Inch. Duration of One Run	72
56.	BV 161-172.	Polyurethane. Thickness, .020 Inch. Duration of One Run	73

Figure

Page

xii

Figure

Page

57.	BV 160-173.	Polyurethane. Thickness, .020 Inch. Duration of One Run	74 .
58.	BV 172-165.	Polyurethane. Thickness, .008 Inch. Duration of One Run	75
59.	BV 140-168.	Polyurethane. Thickness, .020 Inch. Duration of One Run.	76

APPENDIX II

WHIRLING-ARM RAIN EROSION TEST RESULTS

60.	BV 309-222.	Polyvinyl Chloride Pressure Sensi- tive Tape. Thickness, .020 Inch. Duration of Run, 15 Minutes	77
61.	BV 312-221.	Polyvinyl Chloride Pressure Sensitive Tape. Thickness, .020 Inch. Dur- ation of Run, 15 Minutes	78
62.	BV 194-123.	Polyurethane Film. Thickness, .031 Inch. Duration of Run, 60 Minutes	79
63.	BV 213-124.	Polyurethane Film. Thickness, .031 Inch. Duration of Run, 65 Minutes	80
64.	BV 215-204.	Liquid Neoprene. Thickness, .015 Inch. Duration of Run, 65 Minutes	81
65.	BV 206-2.	301 FH Stainless Steel. Thickness, .009 Inch. Duration of Run, 60 Minutes	82
66.	BV 316-110.	E077 Phenolic Rubber and Asbestos. Thickness, .250 Inch. Duration of Run, 37 Minutes. Convair-TRECOM	83

xiii

TABLES

.

<u>Table</u>	Page
1.	Flat Panel Sand Impingement Test Results - Metals 19
2.	Flat Panel Sand Impingement Test Results - Non- metals
3.	Whirling-Arm Sand Erosion Test Results - Metals 37
4.	Whirling-Arm Sand Erosion Test Results - Non- metals
5.	Whirling-Arm Rain Erosion Test Results
6.	Correlation of Test Results and Service Experience

xiv

SUMMARY

The object of this program was to obtain an erosion resistant system capable of protecting helicopter rotor blades for 800 hours of desert operation. To determine their relative sand erosion resistance, 184 systems were tested.

Initial testing of all materials was accomplished in a modified blast cabinet with number 70 washed and dried silica sand. The flat specimens were located 6 inches from the nozzle and blasted at a 90 degree impingement angle. The elapsed time to erode through the specimen was recorded in minutes.

Materials with the better erosion resistances were fabricated and bonded to airfoil leading edge sections 10 inches long for sand erosion resistance testing on a $2\frac{1}{2}$ foot radius whirling arm. Time limitations of the program did not permit development of an airfoil configuration of some materials, such as silicon carbide and nitrile and ethylene propylene rubbers, which had excellent flat panel impingement test.results.

A standard whirling-arm test run consisted of 25 pounds of sand dropped from 8 bins in 13 minutes onto the specimens rotating at a tip speed of 600 feet per second. Control Specimens of .010 and .009 inch thick, full hard, 301 stainless steel sheet were used to measure the consistency of the impingement and whirling-arm tests, respectively.

On each of the four categories, the following specimens exhibited the most resistance to sand erosion:

Materials	Number of Runs <u>To Failure</u>
Polyurethane film BV 123*	8
Polyurethane film BV 124	6
Neoprene Liquid BV 197	5
Neoprene Liquid BV 204	4
Electroformed Nickel BV 43	2
Molybdenum Arc-Cast BV 27	11/2
Polyvinyl Chloride Pressure Sensitive Tape BV 221	12
Polyvinyl Chloride Pressure Sensitive Tape BV 222	z
(Full Hard 301 Stainless Steel Control BV 2)	(½)

*Refers to materials coded in Tables 1 and 2.

Rain erosion tests were conducted on some of the most sand erosion resistant materials. These tests were made on the whirling arm at a tip speed of 600 feet per second and a simulated rainfall equivalent to approximately $3\frac{1}{2}$ inches per hour. All materials tested, except the pressure sensitive tapes, showed adequate resistance to rain erosion.

Time limitations did not permit an extensive evaluation of the effects of high and low temperatures, high humidity and solar radiation on these materials. However, a general literature review indicated that these environmental conditions do not have significantly adverse effects on polyurethanes, neoprenes and structural metals.

Based on erosion test performance, dimensional uniformity, aerodynamic contour control, system simplicity, ease of application and availability, the polyurethane film (BV 123) is considered to be the most promising material tested (Appendix IV).

CONCLUSIONS

Based on the results of this program to obtain an erosion resistant system capable of protecting helicopter rotor blades for 800 hours in a <u>normal mission profile</u> in desert operation, the following conclusions were reached:

- At the present time a shelf material, Polyurethane film-BV 123*, is available which may be applied to blades in the field and can withstand approximately 250 hours of <u>intensive desert testing</u>. Erosion life under <u>normal mission profile</u> conditions would depend upon the severity of these missions (percentage of operating time spent on or near ground in a sand cloud, rotor blade tip speed, type of sand and weather conditions). Greater erosion protectors could probably be obtained with modification of shelf materials or with more exotic systems.
- 2. The most erosion resistant materials in each of the four categories studied were: electroformed nickel - BV 43 (metal), polyurethane BV 123 (nonmetal film), neoprene BV 197 (nonmetal liquid), and polyvinyl chloride BV 221 (nonmetal pressure sensitive tape). All of these except the polyvinyl chloride showed adequate resistance to rain erosion. Based on erosion test performance, dimensional uniformity, aerodynamic contour control, system simplicity, ease of application and availability, the polyurethane film (BV 123) is considered to be the most promising material tested (Appendix IV).
- 3. In general, the best nonmetals were more sand erosion resistant than the best metals.
- 4. The complexity of the mechanism of flat panel sand erosion was indicated by the success attained with resilient materials (polyurethanes and neoprenes) and very hard materials (silicon carbide deposited on graphite). This is further supported by the different erosion patterns at the nose and flank of whirling-arm specimens of different materials.
- 5. Slight modifications in any one basic material may produce significantly different erosion results.
- 6. A material that has good sand erosion resistance does not necessarily have adequate rain erosion resistance.

*Refers to materials coded in Tables 1 and 2.

RECOMMENDATIONS

At the inception of this program, it was planned to conduct full scale field tests only after an 800 hour erosion protection material was fully developed. The critical need to protect helicopter rotor blades now in service and the desirability of affording maximum protection for future helicopters were considered in the following recommendations:

Present

Immediately apply the polyurethane film found to be the most resistant to sand erosion in this program to rotor blades in the field and subject them to performance tests under various environments.

Implement immediate structural integrity testing of this polyurethane film and bonding system to determine the effects of extreme temperatures, aging, blade flexing and solar exposure.

<u>Future</u>

Exercise the option under this contract to develop and evaluate:

- 1. A simple field system for bonding of polyurethane film to eliminate the vacuum bagging required in the present system. Exploratory tests of several adhesive systems indicate this is feasible.
- 2. An improved polyurethane film with extended erosion life. Sand erosion testing and literature studies showed promising results with various additives, catalysts, chemical modifications, and radiation treatments.
- 3. A method for field spraying polyurethane. Spraying is currently practiced but only under controlled manufacturing conditions.
- 4. A pressure sensitive polyurethane tape. Technically, the production of this tape appears feasible and desirable.
- 5. Material combinations to afford optimum erosion properties of the system. Whirling-arm tests of polyvinyl chloride tape over stainless steel showed a 50 percent increase in erosion life over the combined individual lives.

- 6. The applicability of more exotic materials to provide lifetime erosion protection for future helicopter rotor blades. Impingement testing of silicon carbide produced no measurable wear after one hour.
- 7. Tapered systems to provide increased protection in maximum erosion areas.
- 8. Modification of other promising materials, such as neoprene.

INTRODUCTION

Military and company service discrepancy reports of helicopters operating in various climatic environments have frequently disclosed significant erosion of the rotor blade leading edges. In many cases, costly corrective maintenance has been required. Aircraft operating in a desert environment have been particularly hampered by sand erosion; e.g. during recent desert testing, a .020-inch 1/4 hard 301 stainless steel leading edge eroded completely through after 38 hours of operation (Reference 15).

The object of this program was to develop an erosion resistant system capable of protecting helicopter rotor blades for 800 hours in a normal mission profile in desert operations. Other desired capabilities of this system were:

- 1. Resistance to rain, snow, hail and dust erosion
- 2. Ability to withstand temperature extremes of -65 $^{\rm O}$ and +165 $^{\rm O}{\rm F}$
- 3. Ability to withstand high humidity and solar effects
- 4. Ability to withstand the centrifugal force produced
 - by the rotation of the blades without causing unbalance in the rotor blade system (Appendix IV).

This report contains the test procedures and results of Phase I of this program. The purpose of this phase was to evaluate materials that have been developed and are available at the present time in suitable quantities and forms for helicopter blade protection.

Consideration was given to field and manufacturing applications. For this reason all materials were considered in one of the following categories (listed in descending order of ease of application):

- 1. Pressure sensitive tapes
- 2. Liquid nonmetals
- 3. Film nonmetals
- 4. Metals

To accomplish the objectives of the program, activities were divided into the following areas: literature search and material selection; sand blast impingement tests; whirling-arm sand erosion tests; whirling-arm rain erosion tests; and evaluation of test results.

LITERATURE SURVEY AND MATERIAL SELECTION

An extensive literature survey was made to determine the extent of high velocity sand and rain erosion testing to date. Results of this work at the Franklin Institute and Philadelphia Free Library indicated that no systematic study of high velocity sand erosion of various materials has been conducted to date. In contrast to the lack of sand erosion test data, high velocity rain erosion information is readily available from reports such as those referenced in the bibliography.

Reports from ASTIA evaluating helicopter operations in a desert environment were reviewed. Information on the erosion protection of propeller blades from aircraft manufacturers was also obtained and studied.

As a result of this review and of contact with numerous material manufacturing companies, a total of 184 materials (53 metallic and 131 nonmetallic) were obtained for initial flat panel sand impingement tests. A general outline of these materials is as follows:

- 1. Metals
 - A. Bonded Metal Components
 - (1) Work Hardened Stainless Steels
 - (2) Titanium
 - (3) Beryllium Nickel
 - (4) Refractory Metals
 - (5) High-Nickel Alloy Steel
 - B. Plated Metals
 - (1) Zinc
 - (2) Chrome
 - (3) Electrolytic Nickel
 - (4) Electroless Nickel
 - C. Sprayed Deposits
 - (1) Refractory Carbides
 - (2) Nickel Base Alloys

- Special Surface Treatments D.
 - (1)Thermalized Refractory Metals
 - Anodized Aluminum (2)
- Metalloids Ε.
 - (1) Silicon Carbide
- 2. Nonmetals
 - A. Elastomers

 - (1) (2)

 - (3) (4) (5)

 - Neoprene Hypalon Polyurethane Polyvinyls Polyvinyl Fluorides Polyvinyl Chlorides Polyvinyl Acetates Polysulfides CR Pubbers (6) (7)
 - (8)
 - (9) GR Rubbers
 - (10) Silicone Rubbers
 - в. Structural Resins
 - Epoxies (1)
 - Polyamides (2)
 - Pressure Sensitive Tapes C.
 - D. Ceramics
 - Silicates (1)
 - Borides (2)
 - Silicides (3)

Reinforced Systems Ε.

- (1) (2) (3) Resin-elastomer Blends Metal-elastomer Blends
- Ceramic Elastomer Blends

EROSION TESTING

SAND IMPINGEMENT CABINET MODIFICATIONS

Accurate control of equipment and sand blasting technique were considered essential to the proper culling of candidate materials. Equipment for this work was obtained by modifying a standard Clemco Dry Blast Cabinet (Model AC 3636) as shown in Figure 1. A right angle steel fixture was located inside the cabinet to clamp the blast nozzle in a fixed position at any preselected height from the flat test specimens (Figure 2). An air gauge was piped to the front of the cabinet to facilitate close control of air pressure during the test period. The specimens were held in place by a magnet embedded in a rubber covered, plywood platform (Figure 3). The blast nozzle consisted of a 3/8-inch-diameter tungsten carbide orifice and a 3/16inch-diameter air jet. Washed and dried Number 70 silica sand was used in all blast cabinet and whirling-arm tests. Sand placed in the cabinet was continuously recycled via a suction hose from the base of the sand hopper. Calibration of sand flow was made by adjusting the air to 30 psig and weighing the sand which was collected in a cloth bag. Maximum deviation of delivered weight of sand (3-1/3 lb/min) was ± 2.5 percent. New sand additions were based on performance against standard stainless steel control specimens and on sieve analyses made at regular intervals.

FLAT PANEL SAND IMPINGEMENT TEST RESULTS

Consistent results were obtained on a standard control specimen of .010-inch full hard 301 stainless steel bonded to an 0.070-inch 4130 steel backup panel. Parameters of the test were as follows:

- 1. 30 psig air line pressure
- 2. 90 degree impingement angle
- 3. 6 inch nozzle distance

Under these test conditions, a hole was blasted through the control specimen in $6\frac{1}{2} \pm 1$ minutes. The rate of sand delivery was 3.3 ± 0.1 pounds per minute. The initial culling of all candidate materials was performed on this basis. Results of these tests are shown in Tables 1 and 2 which contain a total of 53 metallic and 131 nonmetallic specimens. This total includes various conditions of the same basic materials; e.g. 301 stainless steel sheet with various levels of hardness and thiokol with various metallic and nonmetallic fillers. Sheet

SAND IMPINGEMENT TEST

BLAST CABINET

Figure 1. Exterior View of Blast Cabinet.

Figure 2. Interior View Exhibiting Method of Calibrating Sand Delivery.

Figure 3. Interior View Exhibiting Method of Testing Flat Panels.

metals and nonmetal films were bonded to steel back-up panels. Metal platings and liquid elastomers were applied directly onto the steel backup panels. (Appendix III).

The failure time (time to blast a hole through the test specimen) varied from a minimum of 5 seconds to over 60 minutes. If a material withstood 60 minutes of blasting without failure, the test was terminated.

The typical star erosion pattern on a bonded metal specimen is shown in Figure 4. In this case the metal was reduced in section thickness before it blistered (separated from the bonding material) and a hole was formed at the center of the pattern.

Plated metal specimens eroded through evenly without any blistering (Figure 5). Titanium was the only metal that sparked during testing (Figure 16).

Typical nonmetallic erosion patterns included evenly worn holes (approximately 80 percent of the specimens), pin holes (typical of brushed liquids containing air bubbles), and burning by static electricity (approximately six specimens) (Figures 6, 7, and 8).

The addition of filler materials, aluminum oxide (Grit FFF, 36, 100), white sand (Grit 60-100) and metallic powders (200-300 M X D), to liquid thickols, epoxies, polyurethanes, neoprenes and heat cured adhesive films did not significantly improve the sand erosion resistance of these materials. Two types of failures were noted: either the fillers were easily removed by the sand leaving small pits which deteriorated rapidly producing pin hole failures; or the matrix resin would erode from between the filler, due to its own weak resistance to erosion.

Materials which showed sand erosion resistance superior to the stainless steel control specimens under direct impingement were:

Metals

- 1. Electroformed nickel
- 2. Electrolytic hard chrome plate
- 3. Silicon carbide deposited on graphite
- 4. 13V-11Cr-3A1 titanium
- 5. Refractory metal sheets 3 types
- 6. Two percent beryllium nickel alloy sheet

TEST PANEL EROSION PATTERNS

METALLIC SPECIMENS

Figure 4. "Star Effect" Typical Figure 5. "Worn Hole Effect" Typical of Bonded Metals. of Plated Metals.

NONMETALLIC SPECIMENS

Figure 6. "Burning" Produced by Static Electricity Discharge.

Figure 7. "Pin Hole Effect" Typical of Brushed Liquids with Bubbles.

Figure 8. "Worn Hole Effect" Similar to Worn Hole Effect in Metallic Specimens.

Nonmetals

1. Films

a. Polyurethanes - 3 typesb. Neoprenes - 2 types

- c. Polyvinyl chloride 1 type
- d. Modified epoxies 3 types
 e. Nitrile phenolics 3 types
- e. Mitilie phenolics 5 types

2. Liquids

- a. Polyurethanes 11 types
- b. Neoprenes 2 types
- c. Polysulfide (thiokol) 1 type
- 3. Pressure Sensitive Tapes
 - a. Polyvinyl chlorides 2 types

CANDIDATE MATERIALS FOR WHIRLING-ARM TESTING

Candidate materials for whirling-arm sand erosion evaluation were selected from those which showed erosion resistance superior to stainless steel in the flat panel sand impingement tests. Where several conditions or compositions of one basic material exhibited similar test results, only one was selected as being representative of this material. Since many nonmetals showed good direct impingement erosion resistance, only the superior ones were chosen for whirling-arm testing. Time limitations of the program did not permit development of an airfoil configuration of some materials, such as silicon carbide, which displayed excellent impingement test results. The candidate materials for whirling-arm sand erosion testing were:

<u>Metals</u>

- 1. Nickel electroformed and bonded (BV 42 and 43)*
- 2. Hard chrome plate direct electrolytic plate (BV 35)
- 3. 13V-11Cr-3A1 titanium annealed, bonded sheet (BV 10)
- 4. Unalloyed molybdenum annealed, bonded sheet (BV 26 and 27)
- 5. Two per cent beryllium-nickel annealed, bonded sheet (BV 18)

Nonmetals

1. Films

- a. Polyurethanes (BV 123 and BV 124)
- b. Neoprenes (BV 197 and BV 204)
- c. Polyvinyl chloride (BV 114)
- d. Modified epoxy (BV 134)
- e. Phenolics-nitrile (BV 126 and BV 128)
- 2. Liquids
 - a. Polyurethanes (BV 164, 165, 167, 168, 170, 172, and 173)
 - b. Neoprenes (BV 41 and 44)
 - c. Polysulfide (thiokol) (BV 148)
- 3. Pressure Sensitive Tapes
 - a. Polyvinyl chloride 2 types (BV 221 and 222)

The whirling-arm specimens consisted of the various test materials attached to 10-inch steel leading edge sections of a helicopter rotor blade spar. The nonmetal liquids and tapes and chrome plate were applied directly to the leading edge sections. All metals (except the chrome plate) and the nonmetal films were bonded to the leading edge sections.

All metal specimens were approximately .010-inch thick. Stainless steel and electroformed nickel in this gage are presently being used for nose caps of production helicopter blades.

* Refers to materials coded in Tables 1 and 2.

		TABLE 1		
	σι ότι το αντρί ς άντο τω	DINGEMENT T	FST RESITION	- METALS
	FLAI PANEL SAND IM		ESI KESULIS) - PETRIS
BV No.	Material	Thickness (in.)	Failure Time (min.)	Erosion Rate (min./.001 in.)
	BOND	ED SHEET ME	TALS	
_				A (1)
1.	301 SS Extra Hard	.010	6.4	0.64
2.	301 SS Full Hard	010		0 6 0 7
2	(Control)	.010	6.0-7.0	0.62
3.	301 SS 3/4 Hard	.010	0.2	0.62
4.	301 SS 1/2 Hard	.010	0.2	0.02
5.	301 SS 1/4 Hard	.010	4.5	0.45
6.	301 SS Annealed	.005	1.5	0.30
7.	17-7PH Condition C	.010	6.5	0.65
8.	Titanium 6Al-4V			0.47
	Annealed	.009	4.2	0.47
9.	Titanium 6A1-4V			
	Solution Treated			
	and Aged	.009	4.1	0.45
10.	Titanium 13V-11Cr-3A1			
	Annealed	.010	6.6	0.66
11.	Titanium 13V-11Cr-3A1			
	Cold Rolled and Aged	.010	5.8	0.58
12.	Titanium 13V-11Cr-3A1			
	Solution Treated and			
	Aged	.010	5.5	0.55
13.	Aluminum 2024-T3	.012	4.1	0.34
14.	Aluminum 2024-T3	.019	6.5	0.34
15.	Aluminum 2024-T3	.062	23	0.37
16.	Beryllium Nickel 1/4			
	Hard	.010	6.0	0.60
17.	Beryllium Nickel Heat			
	Treated	.010	4.8	0.48
18.	Beryllium Nickel			
	Annealed	.010	6.8	0.68
19.	Beryllium Nickel			
	Annealed and Tempered	.010	6.1	0.61

TABLE 1 (Continued)				
BV No.	Material	Thickness (in.)	Failure Time (min.)	Erosion Rate (min./.001 in.)
20.	Molybdenum (Arc-Cast)	.010	10.5	1.10
21.	Molybdenum + 1/2% Ti	.010	11.0	1.10
22.	Molybdenum + 1/2% Ti	.010	13.0	1.30
23.	Tungsten	.007	2.1	0.30
24.	Tantalum	.010	8.9	0.89
25.	Columbium	.009	6.6	0.73
26.	Molybdenum (Powder			
	Metal)	.012	14.4	1.20
27.	Molybdenum (Arc-Cast)	.012	13.2	1.10
28.	Molybdenum + Zirconiu	n		
	+ Titanium	.011	10.7	0.98
29.	Tantalum Not Annealed	.010	10.0	1.00
30.	Tantalum Annealed	.010	8.5	0.85
31.	4340 Hardened and			
	Tempered	.050	10.0**	1.00
32.	18% Nickel Steel	.080	10.0**	1.00
	<u>P</u>]	LATED METALS	3	
33.	Zinc Plate	.0013	0.33	0.25
34.	Chrome Plate	.0005	0.50	1.00
35.	Chrome Plate	.003	3.00	1.00
36.	Chrome Plate	.004	3.20	0.80
37.	Chrome Plate	.0015	.83	0.55
38.	Hard Nickel Plate	.002	1.40	0.70
39.	Sulfuric Nickel Plate	.002	2.00	1.00
40.	Electroless Nickel as			
	Plated	.005	.50	0.10
41.	Electroless Nickel Heat Treated 1150 ⁰ F			
	One Hour	.005	1.00	0.20
42.	Electroformed Nickel			
	(on SS Mandrel)	.013	10.40	0.80
43.	Electroformed Nickel			
	(on Plastic Mandrel)	.013	12.50	0.96
44.	Electrolyzed Chrome	.0002	.81	0.41

TABLE 1 (Continued)						
BV No.	Material	Thickness (in.)	Failure Time (min.)	Erosion Rate (min./.001 in.)		
	PROPRIETARY SPECIAL S	SURFACE TR	EATMENTS O	F METALS		
45.	Molybdenum + 1/2% Ti with Hardened Surface	.021	21.0	1.00		
46. 47	2024 Aluminum with hard Anodic Surface Treatmen 2024 Aluminum with hard	1 nt .0025	.15	0.006		
47.	Anodic Surface Treatmen	nt .003	.05	0.002		
	SPRAYED	METAL COA	TINGS			
48. 49. 50.	Tungsten Carbide Nickel-Chrome Alloy Cobalt Base Alloy	.011 .010 .010	4.2 2.0 1.66	0.38 0.20 0.13		
52.	Nickel Base Alloy Nickel Base Alloy	.004	2.5	0.40		
	N	1ETALLOID				
53.	Silicon Carbide	.015	60.0*	No Wear		
* No F	* No Failure					
** .01	** .010 in. eroded.					

		TABLE 2		
	FLAT PANEL SAND IMPI	NGEMENT TEST	RESULTS -	NONMETALS
BV No.	Material	Thickness (in.)	Failure Time (min.)	Erosion Rate (min./.001 in.)
		FILMS		
100. 101. 102.	Buna N-Nylon Cloth Neoprene Silicone Rubber on	.013 .012	14.0 2.2	1.1 0.2
103.	Glass Cloth Silicone Foam Rubber	.033 .093	1.1 3.3	0.3 0.3
104. 105.	Black Gr Foam Rubber Gr Type 1 Black	.064	5.0	0.1
106.	Rubber Neoprene on Airplane Cloth	.094	33.0	0.4
107.	Neoprene on Nylon Cloth	.013	2.7	1.2
108. 109.	Neoprene Sheet Neoprene Sheet Rubber & Phenolic	.031 .031	60.0* 60.0*	No Wear No Wear
111.	(Asbestos Filler) Rubber & Cork Filler	.250 .020	5.0* 4.0	1.0 0.1
112.	Silicone Rubber (Asbestos Filler) Pubber & Phenolic	.250	1.3	0.0
114.	(Asbestos Filler) Polyvinyl Chloride	.250 .015	5.0* 70.0	0.6 4.0
115. 116.	Polyvinyl Acetate Polyvinyl Fluoride	.003	4.1	1.6 0.3
117. 118. 119.	Polyvinyl Fluoride Polyvinyl Polyvinyl	.015 .035	15.0 12.0	1.0 0.4
120. 121.	Polyvinyl Polyvinyl	.015 .020	11.2 12.5	0.7 0.6
122. 123. 124.	Polyvinyl Polyurethane Polyurethane	.020 .031 .031	40.7 60.0* 60.0*	2.0 No Wear No Wear

ſ

TABLE 2 (Continued)				
BV No.	Material	Thickness (in.)	Failure Time (min.)	Erosion Rate (min./.001 in.)
125.	Polyurethane	.106	60.0*	No Wear
126.	Phenolic and Nitrile	.016	37.0	2.3
127.	Phenolic and Nitrile	.012	36.0	3.0
128.	Phenolic and Nitrile	.017	55.0	3.5
129.	Phenolic and Nitrile	.009	8.0	0.8
130.	Phenolic and Nitrile	.023	45.0*	No Wear
131.	Modified Epoxy	.016	64.0*	4.0+
132.	Modified Epoxy	.012	4.1	0.4
133.	BV No. 132 and Alumi-			
	num Oxide	.035	3.0	0.1
134.	Modified Epoxy	.017	60.0*	3.5+
135.	BV No. 134 and Alumi-			
	num Oxide	.035	15.0	0.4
136.	Modified Epoxy	.017	68.0*	4.0+
137.	BV No. 136 and Alumi-			
	num Oxide	.037	11.2	0.3
138.	Teflon	.010	34.2	3.4
139.	Teflon	.010	4.3	0.4
140.	Teflon	.010	4.5	0.4
141.	Epoxy-Glass Laminate	.077	1.2	0.0
142.	Epoxy-Glass Laminate	.028	2.1	0.0
		LIQUIDS		
143.	Nitrile Rubber	.032	60.0*	10.0
T 4 4 *	Rubber	024	72 1*	18.0
145	Polyurethene	030	63 7*	2 1+
145.	Polyurethane	.030	37 7	1 0
140.	Polyurethane	025	45 0	1 9
148	Polyeulfide	020	27 3	1 35
140.	RV No 1/8 with the	.020	21.5	1.55
	following metal filler	re		
	at a one to one retio	-		
	$matale (200 \pm 300M)$	_		
	added after catalyzing			
	and mixing	5		
	and mrying.			
		•	•	
--------	------------------------	--------------------	---------------------------	---------------------------------
BV No.	Material	Thickness (in.)	Failure Time (min.)	Erosion Rate (min./.001 in.)
149.	BV No. 148 & Alumi-			
	num Oxide FFF	.027	20.2	0.74
150.	BV No. 148 & Alumi-			
	num Oxide 36G	.037	10.0	0.27
151.	BV No. 148 & Alumi-	010	• •	
1.50	num Oxide 100G	.013	3.0	0.23
152.	BV No. 148 & Colum-	0.0 5	o /	
150	Dium Carbide Powder	.025	2.4	0.9
122.	by No. 148 & Colum-	020	2 1	0 7
15/	Dium Melai Powder	.030	2.1	0.7
1)4.	by NO. 148 & Molybae	021	20 1	0.07
155	RV No. 1/8 & Vapadium	.031	50.1	0.97
177.	Carbido Poudor	020	30 5	1 02
156	BV No 1/8 & Tungsten	.029	30.5	1.05
150.	Metal Powder	026	36 /	1 /
157	BV No 148 & Tungsten	.020	50.4	1.4
10/.	Carbide Powder	026	44.2	17
158.	BV No. 148 & Tantalum	.020		**/
	Carbide Powder	.012	16.6	1.33
159.	BV No. 148 & Chromium	••==		
	Carbide Powder	.026	28.1	1.10
160.	BV No. 148 & Chrome			
	Metal Powder	.033	25.7	0.75
161.	BV No. 148 & Silicon			
	Nitride Powder	.019	7.1	0.35
162.	Chlorosulfonated			
	Polyethylene	.070	65.0	0.9
163.	BV No. 138 and Alumi-			
	num Oxide	.042	6.0	0.1
164.	Polyurethane and Moca	.021	60.0	PH.**
165.	Polyurethane and Vinyl	.022	90.0	PH.
166.	Polyurethane and Poly-			
	vinyl	.050	17.0	PH.
167.	Polyurethane and Moca	.021	60.0	PH.
168.	Polyurethane and Vinyl	025	/1.0	PH.
109.	rolyurethane and Poly-	070	27 5	DU
	vinyl	.070	21.5	PH.

TABLE 2 (Continued)								
BV No.	Material	Thickness (in.)	Failure Time (min.)	Erosion Rate (min./.001 in.)				
170.	Polyurethane	.023	60.0	PH.				
171.	Polyurethane	.013	60.0	PH.				
172.	Polyurethane	.025	45.0	1.9				
173.	Polyurethane	.014	60.0	PH.				
174.	Polyurethane	.040	35.0	PH.				
	BV No. 174 and the							
	following metal filler	s						
	added after catalyzing	- !						
	and mixing at one-to-	,						
	one ratio.							
175.	BV No. 174 & Columbium	1						
	Carbide Powder	.040	32.7	0.81				
176.	BV No. 174 & Columbium	1						
	Metal Powder	. 026	9.2	0.36				
177.	BV No. 174 & Molvbdenu	m						
	Disilicide Powder	.023	10.0	0.35				
178.	BV No. 174 & Tantalum							
	Carbide Powder	.028	23.00	0.8				
179.	BV No. 174 & Silicon							
	Nitride Powder	.019	7.1	0.35				
180.	BV No. 174 & Vanadium	••						
2001	Carbide Powder	.022	13.0	0.6				
181.	BV No. 174 & Tungsten	••==						
1011	Metal Powder	.025	22.9	0.9				
182.	BV No. 174 & Tungsten							
	Carbide Powder	.032	25.1	0.8				
183.	Polvurethane	.020	9.1	0.43				
184.	BV No. 183 & A1202							
	(100/100 Pts.)	.030	10.1	0.33				
185.	Epoxy	.020	1.2	0.0				
186.	Modified Epoxy	.025	12.5	0.5				
1001	BV No. 186 with follow	- -						
	ing fillers added afte	r						
	catalyzing and mixing							
l	at one-to-one ratio							
187.	BV No. 186 & Aluminum							
	Oxide (FFF)	.038	11.0	0.3				
		-						

TABLE 2 (Continued)								
BV No.	Material	Thickness (in.)	Failure Time (min.)	Erosion Rate (min./.001 in.)				
188.	BV No. 186 & Alumi-	037	25 1	0.7				
189	BV No $186 \& Alumi =$.037	23.1	0.7				
107.	num Oxide (100G)	.035	0.9	0.0				
190.	BV No. 186 & 5 Pts.							
	Liquid Nylon	.029	11.3	0.38				
191.	BV No. 186 & 10 Pts.							
	White Sand	.047	12.5	0.26				
192.	Epoxy & Polyamide							
	(50:50)	.095	3.1	0.0				
193.	BV No. 192 Aluminum	0.07						
10/	Uxide (FFF)	.027	1.1	0.0				
194.	BV No. 192 & Alumi $-$	0.25	0 1	0.0				
105	num Oxide (100G)	•035	2.1	0.0				
195.	$BV NO. 192 \propto Atum1 =$	037	2 2	0.0				
196	Liquid Neoprene (6	.057	2.2	0.0				
170.	coats)	.010	8.0	0.8				
197.	BV No. 196 (12		010					
	Coats)	.021	70.0*	3.3+				
198.	BV No. 196 (18							
	Coats)	.036	60.0*	1.7+				
199.	BV No. 196 (6 coats)							
	& A1 ₂ O ₃ (FFF)	.042	4.5	0.1				
200.	Liquid Neoprene (6							
	coats)	.025	20.0	0.8				
201.	BV No. 200 (9							
	coats)	.035	42.0	1.2				
202.	Liquid Neoprene	.210	25.3	1.2				
203.	Liquid Neoprene	.025	19.0	1.3				
204.	Liquid Neoprene	0017	50.0	2.8				
205.	Liquid Neoprene	.030	21.1	0.8				
206.	Epoxy-Amide	.020	2.2	0.0				
207.	BV No. 206 & Al203	0.05	0 0	0.2				
200		.025	8.J 0 1	0.3				
208.	Massio Constants	.012	0.1	0.0				
209.	Ma25103 Ceramic	.010	0.1	0.0				

BV No.	Material	Thickness (in.)	Failure Time (min.)	Erosion Rate (min./.001 in.)
210	Al-SiQ Comenia	00%	2.0	0.2
210.	R125103 Ceramic	.000	2.0	0.2
211.	Pb_2S10_3 Ceramic	.016	0.1	0.0
212.	Na ₂ Si0 ₃ Ceramic	.014	0.1	0.0
213.	Na25103 Ceramic	.010	0.1	0.0
214.	Nylon	.004	4.1	1.0
215.	Na2SiO3 Ceramic Neoprene Coated	.014	25.0	1.6
210.	Neoprene Coated	.019	20.0	1.0
217.	Neoprene Coated	.020	6.0	0.7
218.	Na ₂ Si0 ₃ Ceramic-	0.00	00 0	1.0
	Neoprene Coated	.020	20.0	1.0
219.	Polyvinyl Chloride	.010	13.3	1.3
220.	Polyvinyl Chloride	.010	13.1	1.3
221.	Polyvinyl Chloride	.020	34.0	1./
222.	Polyvinyl Chloride	.010	22.0	2.2
£2J.	loryvinyr ontoride	.005	1.0	0.2
* No fa	ailure.	····		

Nonmetal films and tapes were tested in the thickness available in production quantities. These ranged from .010 inch (polyvinyl chloride pressure sensitive tape) to .031 inch (polyurethane film).

Liquid polyurethanes and polysulfides were mixed and then applied to the leading edge sections in a viscous state in one coat. Target thickness was .015/.020 inch and actual thicknesses varied from .008 inch to .030 inch.

Liquid neoprene specimens were prepared by applying ten successive brush coats to the leading edge sections (approximately .015 inch total). This thickness had provided optimum results in flat panel impingement tests and Sahara Desert tests (Reference 11, Bibliography). Thicker brush coatings were also considered impractical because of prolonged application and cure times (Appendix III).

WHIRLING-ARM EQUIPMENT AND STANDARDIZATION - SAND EROSION

The whirling-arm rig with accessory power and control units is shown in Figures 9 through 17. Power was supplied by a 40 horsepower electric motor to a 2,500 psi hydraulic pump. A hydraulic motor applied torque to the rotor shaft which rotated the 5-foot arm (center-mounted). Shaft rpm and unbalance were monitored by electronic units.

Test materials were bonded to replaceable steel leading edge sections, which comprised the outboard 10-1/8 inches of each end of the arm. One of these replaceable leading edge sections is shown in Figure 14.

The test sand was the same as the Number 70 washed and dried silica sand used in the sand impingement tests. The sand was placed in 8 bins, equally spaced around the perimeter of the rig (Figure 16). Each contained 3-1/8 pounds of sand which emptied by gravity through a 5/32-inch bottom orifice in approximately 13 minutes. These orifices were plugged with wooden pins which were removed when the arm reached the desired speed. Calibration runs were made with .009-inch full hard 301 stainless steel leading edge specimens on either end of the arm.

WHIRLING-ARM SAND EROSION TEST TEST RIG ASSEMBLY AND INSTRUMENTATION

Figure 9. Test Rig Assembly and Instrumentation.

Figure 10. Top View of Test Rig.

Figure 11. Test Rig Hydraulic Power Supply.

Figure 12. Instrumentation.

Figure 13. Test Rig Lubrication System.

Figure 14. Whirling-Arm Blade.

Figure 15. Sand Hopper - Eight in Operation Simultaneously.

Figure 16. Test in Operation - Titanium.

Figure 17. Wear on Whirling-Arm Blade Evident After Extensive Testing.

Consistent results were obtained with the following parameters:

- a. Arm tip speed, 600 feet per second (approximately blade tip speed of hovering helicopters)
- b. Sand bin orifices, 6 inches above arm
- c. Sand bin orifices, 4 inches in from the outboard ends of the arm

For the purpose of this report one <u>run</u> is defined as a test cycle in which 25 ± 0.1 pounds of sand were dropped from 8 bins in 13 ± 1 minutes on the test specimens, while the arm was rotating at a tip speed of 600 feet per second (Figure 20). <u>Half runs</u> consisted of 12.5 pounds of sand dropped from 8 bins in $6\frac{1}{2}$ minutes on the test specimens whirling at the same tip speed (Figure 19). <u>Quarter</u> <u>runs</u> consisted of $6\frac{1}{4}$ pounds of sand dropped from 8 bins in $3\frac{1}{4}$ minutes on the test specimens whirling at the same tip speed (Figure 18).

<u>Half runs</u> and <u>quarter runs</u> were used to determine the initial failures of test specimens when necessary. On each test <u>run</u>, a <u>control</u> specimen of .009-inch thick bonded full hard 301 stainless steel sheet was mounted on the arm opposite the test specimen (Figure 14).

<u>Control</u> specimens tested for one run, consistently produced a triangular erosion pattern through the stainless steel, through the bonding material, and into the steel leading edge backup. Reproduction of this erosion pattern throughout the test program indicated that the test was <u>under control</u>.

Several <u>control</u> specimens were also tested under <u>half run</u> conditions. Results indicated that initial erosion failure occurred in this time.

WHIRLING-ARM SAND EROSION TEST RESULTS

Each candidate material was tested for one <u>run</u>. Specimens which survived one <u>run</u> were exposed to successive <u>runs</u> until the materials were eroded through. Results are tabulated in Tables 3 and 4, (Pages 37 - 47).

The materials exhibiting the most resistance to sand erosion under these conditions are listed below by categories:

MATERIAL	THICKNESS (in.)	NUMBER OF RUNS
METALS		
Electroformed Nickel BV 43	.011	2
Molybdenum - Arc-Cast BV 27	.010	11/2
NONMETALS	3	
Tapes		
Polyvinyl chloride BV 221	.020	1/2
Polyvinyl chloride BV 222	.010	1/4
Liquids		
Neoprene BV 197	.021	5
Neoprene BV 204	.015	4
<u>Films</u>		
Polyurethane BV 123	.031	8
Polyurethane BV 124	.031	6
CONTROL*		

Full Hard 301 Stainless Steel .009 1/2

Test results on 301 stainless steel indicated that the erosion resistance is not dependent upon hardness and that erosion rate is constant for the range of section thickness tested. Erosion resistance of full hard, 1/4 hard, and annealed 301 of equal thicknesses was identical.

* For comparison

Failure patterns of .032-inch 301 after three runs, .020-inch 301 after two runs, and .009-inch 301 after one run were all similar in appearance (Figures 23, 24, and 20 respectively).

Whirling-arm sand erosion failure patterns occurred at different locations on the test specimens. The electroformed nickel and arc-cast molybdenum specimens eroded on the nose or apex of the air foil configuration (Figure 29). The nonmetal films and tapes exhibited a wear pattern on the flank of the specimen approximately one inch from the nose as measured along the chord line (Figures 33 and 35). Liquid neoprene specimens failed by pitting erosion on the nose. (Figure 31).

Since the best polyvinyl chloride tape resisted erosion on the nose and the 301 full hard stainless steel showed light erosion on the flanks of the specimens after testing, a combination specimen of these two materials was tested. Separately, each material had a wear life of 1/2 run; however, the combination specimen, with tape over the stainless, exhibited a wear life of 1-1/2 runs - Appendix I, Figures 50 and 51).

Both the sand impingement and whirling-arm tests revealed that the application procedures for liquid coatings significantly affected the sand erosion resistance of the specimens. Small air bubbles entrapped in the liquid and pin holes allowed premature erosion of the base plate in these areas. This was particularly true of the liquid neoprenes and polyurethanes (Figure 7).

WHIRLING-ARM RAIN EROSION TESTING

Rain erosion tests were conducted on the whirling-arm sand test rig with the 8 sand bins removed and a single water spray nozzle mounted 5 feet above the center of the blade. Spraying System Company, Bellwood, Illinois, designed the 1/4 gg-10 nozzle which delivered a water spray equivalent to $7\frac{1}{2} \pm \frac{1}{2}$ inches of average rainfall over the entire blade area (5-foot-diameter circle). Flat petri dishes placed at the outboard ends of the stationary arm measured an equivalent of $3\frac{1}{2}$ inches per hour of rainfall.

WHIRLING-ARM SAND EROSION TEST RESULTS OF 301SS*

Full Hard. Thickness, .009 In. Duration of 1/4 Run, 3-1/4 Min. Bonded.

Figure 18. BV 121-2

Figure 19. BV 110-2

Full Hard. Thickness, .009 In. Duration of 1/2 Run, 6-1/2 Min. Bonded.

Full Hard. Thickness, .009 In. Duration of 1 Run, 13 Min. Bonded.

Figure 20. BV 97-2

1/4 Hard.
Thickness, .010 In.
Duration of 1 Run, 12-1/2 Min.
Bonded.

Figure 21 BV 135-5

1/4 Hard. Thickness, .020 In. Duration of 2 Runs, 24-3/4 Min. Bonded.

1/4 Hard.
Thickness, .032 In.
Duration of 3 Runs, 37-1/2 Min.
Bonded.

Figure 23 BV 139-5

Annealed. Thickness, .020 In. Duration of 2 Runs, 24-1/2 Min. Bonded.

Figure 24 BV 140-6

Annealed. Thickness, .034 In. Duration of 3 Runs, 37-1/4 Min. Bonded.

Figure 25 BV 141-6

Bell. 1/4 Hard. Thickness, .020 In. Duration of 1 Run, 12-1/4 Min. Bonded.

Figure 26 BV 164-5

Bell. 1/4 Hard. Thickness, .020 In. Duration of 1-1/2 Runs, 17-3/4 Min. Bonded.

Figure 27 BV 164-5

Water was pumped from a shallow well at approximately $57^{\circ}F$ and 54 psig. Blade tip speed was maintained at 600 feet per second during all tests.

WHIRLING-ARM RAIN EROSION TEST RESULTS

Several materials which indicated high resistance to sand erosion on the whirling-arm rig were tested under the water spray to evaluate their relative resistance to rain erosion. Based on the tests performed, polyurethane films were rated good to excellent; neoprene and stainless steel were rated excellent; and pressure sensitive tapes were rated poor.

Data and photographic documentation of test results have been compiled in Table 5 and Appendix II, respectively.

In general, the test data obtained correlated well with rain erosion results published in WADC Technical Report 53-185. (Reference 3, Bibliography).

CORRELATION OF TEST RESULTS AND SERVICE EXPERIENCE

Records of past service experience with various materials were reviewed. A comparison of this data and the test results obtained in this program for various materials are shown in **Ta**ble 6.

During recent <u>intensive desert testing</u> at Yuma, Arizona, stainless steel rotor blades (.020-inch 1/4 Hard 301) were eroded through in approximately 40 hours (Reference 15, Bibliography). The whirlingarm sand erosion test life of this material (BV 5) was approximately 1/6 that of the most erosion resistant polyurethane film (BV 123). Projection of these test results indicates that this polyurethane film would withstand approximately 250 hours of <u>intensive desert testing</u>. Erosion life under <u>normal mission profile</u> conditions would depend upon the severity of these missions (percentage of operating time spent on or near ground in sand cloud, rotor blade tip speed, type of sand, and weather conditions).

TABLE 3										
WHIRLING-ARM SAND EROSION TEST RESULTS - METALS										
BV No.	Materials	Thickness (in.)	Wei (g	ght .)	Test Run (qt.)	Comments				
12-42* Control*	Electroformed Nickel *	.009 .009	420.0 423.5	415.5 418.5	1	Wrinkled Skin				
11 - 42	Electroformed	.009	419.5	415.0	1	Slightly Eroded				
Control	Nickel	.009	522.0	517.0	1					
23-	Electroformed	.014	437.5	433.0	1	No Apparent Damage				
Control	Nickel	.009	509.5	505.0	1					
23-	Electroformed	_	433.0	428.0	2	Eroded Through				
Control	Nickel	. 009	422.0	416.5	1					
14-43	Electroformed	.011	418.0	413.5	1	No Apparent Damage				
Control	Nickel	.009	439.0	434.5	1					
14-43	Electroformed	_	413.0	408.5	2	Eroded Through				
Control	Nickel	. 009	421.0	417.0	1					
24-	Electroformed	.009	404.5	399.5	1	Eroded Through				
Control	Nickel	.009	413.5	408.0	1					
13-43	Electroformed	.010	418.5	413.0	1	No Apparent Damage				
Control	Nickel	.009	423.5	418.0	1					

.

TABLE 3 (Continued)								
BV No.	Materials	Thickness (in.)	Wei (g	Weight (g.)		Comments		
13-43 Control	Electroformed Nickel	.009	Before 413.0 419.5	After 408.0 414.5	2	Eroded Through		
127-42 Control	Electroformed Nickel	.009 .009	431.0 425.0	426.0 418.5	1 1	Eroded Through		
124- Control	Electroformed Nickel	.009 .009	412.5 419.0	406.5 413.0	1 1	Eroded Through		
128-42 Control	Electroformed Nickel	.011 .009	426.5 421.5	421.0 416.0	1	No Apparent Damage		
128-42 Control	Electroformed Nickel	. 009	421.0 421.0	418.5 418.0	1½ 1½	No Apparent Damage		
135-5 Control	301 ż Hard Stainless Steel	.010 .009	408.5 423.5	403.0 418.0	1 1	Eroded Through		
141-6 Control	301 Annealed Stainless Steel	. 034 . 009	562.0 435.5	556.5 430.5	1 1	No Apparent Damage		
141-6 Control	301 Annealed Stainless Steel	. 009	556.5 437.0	551.0 432.5	2 1	No Apparent Damage		
141-6 Control	301 Annealed Stainless Steel	.009	551.0 432.0	545.5 427.5	3 1	Eroded Through		

TABLE 3 (Continued)								
BV No.	Materials	Thickness (in.)	Weight (g.)		Test Run (qt.)	Comment		
			Before	After				
140-6	301 Annealed Stainless Steel	.020	489.5	483.5	1	Wrinkled		
Control		.009	420.5	425.0	L			
140-6	301 Annealed Stainless Steel	-	483.5	478.5	2	Eroded Through		
Control		.009	516.5	511.5	1			
139-5	301초 Hard Stainless Steel	. 032	552.0	546.5	1	No Apparent Damage		
Control		.009	423.5	417.5	1			
139-5	301눛 Hard Stainless Steel	-	546.5	541.0	2	No Apparent Damage		
Control		.009	419.5	414.5	1			
139-5	301눛 Hard Stainless Steel	-	541.0	535.5	3	Eroded Through		
Control		.009	431.5	426.5	1			
138-5	301초 Hard Stainless Steel	.020	483.5	478.0	1	Slightly Wrinkled		
138-5	301½ Hard		1.78 0	172 5	2	Freded Through		
Control	Statilless Steel	. 009	428.5	472.5	1	Lioded Infough		
164-5	301支 Hard Stainloss Staal	020	467 0	462 0		No Apparent Damage		
Control	Stainless Steel	.009	407.0	402.0	1	no Apparent Damage		
164-5 Control	301눛 Hard Stainless Steel	.020 .009	462.0 416.0	459.5 413.5	1½ 1½	Eroded Through		

	TABLE 3 (Continued)							
BV No.	Materials	Thickness (in.)	Wei (g	ght .)	Test Run (qt.)	Comments		
			Before	After				
163-5	301ż Hard	.020	470.0	465.5	1	No Apparent Damage		
Control	Stainless Steel	.009	430.0	425.0	1			
144-2	301 Full Hard	.009	438.5	433	1	Eroded Through		
Control	Stainless Steel	.009	431.0	425.5	1			
16-10	113V11Cr3A1	.012	420.0	418.0	1	Wrinkled		
Control	Titanium	.009	424.5	421.5	1			
16-10	13VllCr3Al	.012	417.5	414.5	2	Eroded Through		
Control	Titanium	.009	422.5	417.5	1			
15-10	13V11Cr3A1	.012	406.5	402.5	1	Eroded Through		
Control	Titanium	.009	411.0	406.5	1			
125-10	13V11Cr3A1	.012	421.0	418.0	1	Eroded Through		
Control	Titanium	.009	426.0	420.5	1			
151 -	Chrome Plate on	Cr).009	402.0	395.5	1	Eroded Through		
Control	Copper (.009	425.0	420.0	1			
126-18 Contro1	Beryllium Nickel	.010 .009	444.5 432.0	439.0 426.5	1 1	Eroded Through		
21-18 Control	Beryllium Nickel	.010 .009	446.5 417.0	441.5 412.5	1 1	Eroded Through		

.

TABLE 3 (Continued)									
BV No.	Materials	Thickness (in.)	Weight (g.)		Test Run (qt.)	Comments			
			Before	After					
187-27	Molybdenum				2				
Control	Arc Cast	.001 :009	455.5	452.0 416.0	1 1	Slightly Damaged (1 pit)			
189-26	Molybdenum	· · · · · · · · · · · · · · · · · · ·							
Control	Powder Metal	.009 .009	447.5 419.5	443.0 414.5	1 1	Eroded Through			
106-2	301 F.H. SS Etcl	hed							
Control	Before Bonding	.009 .009	433.0 436.0	428.0 431.0	1 1	Eroded Through			
9-35 Control	Chrome Plate	.009 .009	378.0 423.5	373.0 418.0	1 1	Eroded Through			

* Number preceding dash refers to whirling-arm specimen; number following dash refers to materials coded in Tables 1 and 2.

** All controls were full hard 301 stainless steel.

TABLE 4									
WHIRLING-ARM SAND EROSION TEST RESULTS - NONMETALS									
BV No.	Materials	Thickness (in.)	ness Weight Ru .) (g.) (d			Comments			
40-126* Control*	Nitrile- Phenolic *	.045 .009	Before 420.5 422.5	After 418.5 417.5	1	No Apparent Damage			
40-126 Control	Nitrile- Phenolic	- . 009	418.5 434.0	416.5 428.5	2 1	Eroded Through			
41-204 Control	Neoprene	.015 .009	388.5 422.5	388.4 417.5	1 1	Light Erosion			
41-204	Neoprene	-	388.4	387.5	2	Light Erosion & Edge Damage			
41-204	Neoprene	-	387.5	387.5	3	Mild Erosion & Edge Damage			
Control		.009	425.5	420.5	1				
41-204	Neoprene	-	387.5	386.5	4	Heavy Erosion (Not Through) & Edge Damage			
Control		.009	423.5	418.5	1				
47-222	Polyvinyl Chloride	.010	381.5	380.0	1	Eroded Through			
48 221	D-11		441.0	437.5					
40-221 Control	Chloride	.020 .009	372.5 440.5	369.2 436.0	1	Eroded Through			
45-124	Polyurethane	.031	400.5	400.1	1	No Apparent			
Control		.009	439.0	435.0	1	Damage			

TABLE 4 (Continued)									
BV No.	Materials	Thickness (in.)	Wei (g	Weight		Comments			
			Before	After					
45-124	Polyurethane	-	400.0	399.0	2	No Apparent Damage			
Control		.009	481.5	414.0	1				
45-124	Polyurethane	-	399.0	399.0	. 3	No Apparent			
Control		.009	434.0	429.0	1	Damage			
45-124	Polyurethane	-	398.0	397.5	4	Mild Edge			
Control		.009	424.5	419.5	1	HIOSION			
45-124	Polyurethane	-	398.0	397.5	5	Mild Edge			
Control	Ì	.009	424.5	419.5	1	21031011			
45-124	Polyurethane	-	397.5	396.5	6	Mild Erosion, Edge Abraded			
Control		.009	518.0	513.0	1	Through			
43-109	Neoprene	.031	392.5	390.0	1	Slight Edge Erosion			
Control		.009	419.5	415.0	1				
43-109 Control	Neoprene	.009	390.0 420.0	386.0 414.5	2 1	Eroded Through			
46 - 123	Polyurethane	.031	398.5	398.5	1	No Apparent			
Control		.009	426.5	422.5	1	Damage			
46-123	Polyurethane	-	398.0	398.0	2	No Apparent			
Control		.009	431.0	427.0	1	Jamage			

		TABLE 4 (Continued)			
BV No.	Materials	Thickness (in.)	Wei (g	ght .)	Test Run (qt.)	Comments
			Before	Atter		
46-123	Polyurethane	-	398.0	397.5	3	No Apparent Damage
Control		.009	420.5	416.0	1	
46-123	Polyurethane	-	397.5	397.0	4	No Apparent
Control		.009	427.5	422.5	1	2 and ge
46-123	Polyurethane	-	395.5	396.5	5	No Apparent Damage
Control		.009	439.5	435.0	1	Jound Be
46-123	Polyurethane	-	396.5	396.0	6	No Apparent Damage
Control		.009	433.0	428.0	1	Dumage
46-123	Polyurethane	-	396.0	395.5	7	Light Edge Erosion
Control		.009	437.0	432.0	1	
46-123	Polyurethane	-	395.5	394.5	8	Light Erosion, Edge Abraded
Control		.009	427.0	421.5	1	Through
41-114	Polyvinyl					
Control	Chloride	.015	390.0	387.5	1	Eroded Through
		.009	420.0	410.5	L	
42-108	Neoprene	.054	416.5	414.5	1	Slight Edge Erosion
Control		.009	422.0	417.0	1	
42-108 Control	Neoprene	- .009	414.0 425.0	411.0 421.5	2 1	Eroded Through
				Į		

		TABLE 4 (Continued)			
BV No.	Materials	Thickness (in.)	Wei (g	ght .)	Test Run (qt.)	Comments
			Before	After		
44-197	Neoprene	.021	397.5	397.5	1	No Apparent Damage
Control		.009	424.0	419.5	1	
44-197 Control	Neoprene	- .009	397.5 419.0	397.0 414.0	2 1	Light Erosion
44-197	Neoprene	-	396.0	396.0	3	Light Erosion
Control		.009	438.0	433.5	1	a Eage Damage
44-197	Neoprene	-	396.0	396.0	4	Mild Erosion
Control		.009	421.5	417.0	1	а ruge namage
44-197	Neoprene	-	395.0	395.0	5	Heavy Erosion (Not Through)
Control		.009	418.0	413.5	1	a rage namage
56-221	Polyvinyl Chloride	.020	370.0	368.5	łz	Edge Abraded
Control		.009	410.0	407.5	12	Intougn I in.
55-222	Polyvinyl Chloride	.010	381.0	380.0	122	Abraded Through
Control		.009	508.0	505.0	12	
54-126	Phenolic & Nitrile	.015	383.5	380.0	1	Abraded Through 3 in.
Control		.009	429.5	524.5	1	

		TABLE 4 (cc	ontinued)		
BV No.	Material	Thickness (in.)	Wei; (;	ght g)	Test Run (qt.)	Comments
66-221 Control	Polyvinyl Chloride Repair on SS	.020 .009	Before 420.5 432.0	After 419.5 432.0	14 14	Light Abrasion (Not Through)
66-221 Control	Polyvinyl Chloride Repair on SS	.020 .009	419.5 409.5	418.5 408.0	12 12	Edge Abraded Through 1 in.
67-222 Control	Polyvinyl Chloride	.010 .009	373.0 437.0	372.0 435.5	14 14	Edge Abraded Through 1 in.
65-221 Control	Polyvinyl Chloride	.020 .009	374.0 416.5	372.5 415.0	14 14 14	Light Abrasion (Not Through)
65-221 Control	Polyvinyl Chloride	.020 .090	372.5 415.0	372.0 414.0	12 12	Edge Abraded Through 2 in.
149-148 Control	Polysulfide	.012 .009	399.0 421.5	397.5 417.0	1 1	Eroded Through
162-170 Control	Polyurethane	.020 .009	365.0 408.5	363.5 404.0	1 1	Eroded Through
143-221 Control	Polyvinyl Chloride over .009 in.SS	.009 .009	454.5 421.0	450.5 416.0	1	Eroded Through PVC - Not Through SS

		TABLE 4 (C	Continued)			
BV No.	Material	Thickness (in.)	Wei (g	ght	Test Run (gt.)	Comments
			Before	After	<u></u>	
143-221	Polyvinyl Chloride gyer .009 in.	.020	450.5	448.5	12	Eroded Through SS
Control		.009	432.5	430.5	2	
137-128 Control	Phenolic & Nitrile Adhesive	.027 .009	388.5 425.0	394.5 419.5	1 1	Eroded Through
172-165	Polyurethane	.008	371.0	370.5	1	Mild Edge Erosion
Control		.009	421.5	417.0	1	LIGSION
171-167	Polyurethane	.030	404.0	403.0	1	Mild Edge
Control		.009	418.0	413.0	1	LIUSION
150-168	Polyurethane	.020	393.0	393.0	1	Mild Erosion & Edge Damage
Control		.009	515.0	510.5	1	
161-172 Control	Polyurethane	.020 .009	369.5 427.0	367.5 422.0	1 1	Eroded Through
170-164	Polyurethane	.021	388.5	388.0	1	Mild Erosion & Edge Damage
Control		.009	429.0	424.0	1	
160-173 Control	Polyurethane	.020 .009	364.0 421.5	363.0 417.0	1 1	Eroded Through
* Number number **All co	preceding das following das ontrols were fu	sh refers to sh refers to 111 hard 301	whirling material stainles	-arm sp s coded s steel	ecimen; in Tab	bles 1 and 2.

		TABLE 5		
	WHIRLING-ARM RA	IN EROSION T	EST RESU	ILTS
BV No.		Thickness (in.)	Test Time (min.)	Results
306-222*	Polyvinyl Chloride			
309-222	Pressure Sensitive Tape Polyvinyl Chloride	.010	15	Top Side Tape Removed
	Pressure Sensitive Tape (2 ply)	.020	15	Eroded Through at L.E. 2nd Layer Intact
307-221	Polyvinyl Chloride Pressure Sensitive			
312-221	Tape Polyvinyl Chloride Proscure Sensitive	.020	15	Small Pits Through Tape
	Tane	020	15	Small Pits Through Tane
194-123	Polyurethane Film	.020	60	No Signs of Erosion
213-124	Polyurethane Film	.031	65	Scattered Pits Not Through
215-204	Liquid Neoprene	.015	65	Light Pitting Not Through
206-2	301 FH Stainless	000	60	No Signa of Erosion
316-110	Rubber & Phenolic	.009	00	NO SIGNS OF EIGSION
	(Asbestos Filler)	.250	37	Erosion Across Face
* Number	proceeding dash ref	ers to whirl	ing-arm	specimen:

* Number preceding dash refers to whirling-arm specimen; number following dash refers to materials coded in Tables 1 and 2.

			Τ	ABLE 6			
		CORRELAT	ION OF TEST RESU	JLTS AND SERVICE	EXPERIENCE		
MATERIALS (Listed in descending order of sand erosion resistance)	BV No.1	Flat Panel Sand Impinge- ment ²	Whirling-Arm Sand Erosion ³	Whirling-Arm Rain Erosion ⁴	Sahara Desert Sand Erosion ⁵	New York City ⁶	Remarks
Polyurethane Film Polyurethane Film Liquid Neoprene Liquid Neoprene	123 124 197 204	Excellent Excellent Very Good Very Good	Excellent Excellent Very Good Very Good	Excellent Good Good Good		- - Fair to Good	No service experience No service experience No service experience Mixed results probably due to
Nickel - Electroformed Molvhdenum - Sheet	43 27	Good Good	Good	, ,	r s		No sand erosion service exper- ience – excellent in rain No service experience
Stainless Steel - Sheet	2	Good	Fair	Excellent	Good	Excellent	Wide usage as rotor blade material
Polyvinyl Chloride - Pressure Sensitive Tape Polyvinyl Chloride -	221	Good	Fair	Poor	·	r	No service experience
Pressure Sensitive Tape	222 25	Good	Poor	Poor	Good	ı	Good for sand erosion field fix - poor in rain
Chrome riate Zinc Flate	9 E	Poor			ratt -	- Fair	roor for sand Poor for sand
 Refers to mate Tables 1 and 2 Tables 3 and 4 Tables 3 and 4 A Table 5 Reference 11, 7 6 References 12 a 	rials co Page 52 (and 14, 1	ded in Tables 1 é (French Military Page 52 (New Yo	and 2 H-21) srk Airways Comm	ercial V-44)			

BIBLIOGRAPHY

- Methven, T. J., and B. Fairhead, <u>A Correlation Between Rain</u> <u>Erosion of Perspex Specimens In Flight and On A Ground Rig</u>, <u>Technical Note No. M. E. 278 Ministry of Supply, London</u>, November 1958.
- King, R. B., <u>An Assessment of Various Materials</u>, Rain Erosion Part IV, Report No. C521, Ministry of Aviation, London, September 1960.
- Lapp, R. R., D. H. Thorpe, R. H. Strutzman, and N. E. Wahl, <u>The Study of Erosion of Aircraft Materials At High Speeds In</u> <u>Rain</u>, WADC Technical Report 53-185 Part 4, ASTIA Document No. 155501, Cornell Aeronautical Laboratory, Wright-Patterson Air Force Base, May 1958.
- 4. <u>Desert Test of the YHC-2HU Helicopter</u>, Report of Test Project NR AVN 258/59D, U. S. Army Aviation Board, Fort Rucker, Alabama, November 1959.
- 5. <u>Desert Test of H-23D Helicopter</u>, Report of Test Project NR AVN-358D, U. S. Army Aviation Board, Fort Rucker, Alabama, December 1958.
- Logan, R. F., <u>The Central Namib Desert</u>, Report No. 9, Department of Geography, University of California, National Academy of Sciences, Berkeley, California, 1960.
- Clements, T., <u>A Study of Desert Surface Conditions</u>, Technical Report EP53, Headquarters Quartermaster Research and Development Command, Natick, Massachusetts, April 1957.
- <u>H-23B Helicopter Under Desert Conditions</u>, Report of Test of Project No. A. C. 1852, Headquarters Army Field Forces Board No. 1, Fort Bragg, North Carolina, November 1960.
- H-25H Helicopter Under Desert Conditions, Project No. AA553, Army Field Forces Report of Board No. 1 OCAFF, Fort Bragg, North Carolina, December 1953.

- 10. Weisman, S., <u>Protective Surfaces for Aluminum and Titanium Pro-</u> <u>peller Blades</u>, Propeller Laboratory, Contract No. AF33(616)2754, Curtiss Wright Corporation, Caldwell, New Jersey, June 1957.
- 11. Shapiro, I., <u>Saharian Desert Sand Erosion Evaluation of H-21</u> <u>Rotor Blades in Algeria</u>, Report PMR-32, Vertol Aircraft Corporation, Morton, Pennsylvania, August 1959.
- 12. <u>Anticipated Performance of Heavy Zinc Plating on Metal Rotor</u> <u>Blade Leading Edges</u>, Report PEM 2293, Vertol Division, The Boeing Company, Morton, Pennsylvania, January 1961.
- Hoffstedt, D., <u>Rotor Blade Development, Test and Service Eperi-</u> ence Summary, Vertol Aircraft Corporation, Morton, Pennsylvania, June 1959.
- 14. Report of Trip to New York Airways to Inspect Neoprene Coated <u>Metal Rotor Blades</u>, Report PEM 2034, Vertol Aircraft Corporation, Morton, Pennsylvania, November 1958.
- 15. <u>Confirmatory Test of the HU-1A Helicopter</u>, Final Report of Test Project NR AVN 3159, U. S. Army Aviation Board, Fort Rucker, Alabama, December, 1959.

APPENDIX I

WHIRLING-ARM SAND EROSION TEST SPECIMENS*

Figure 36. BV 26-2. Full Hard 301SS. Duration of 1 Run. Thickness, .009 In.

*See Tables 3 and 4

Figure 37. BV 124. Electroformed Nickel. Thickness, .009 In. Duration of 1 Run.

Figure 38. BV 151. Chrome Plate on Copper. Thickness, .009 In. Duration of 1 Run.

Figure 39. BV 15-10. 13V11Cr3Al Titanium. Thickness, .012 In. Duration of 1 Run.

Figure 40. BV 21-18. Annealed Beryllium Nickel. Duration of 1 Run. Thickness, .010 In.

Figure 43. BV 67-222. Polyvinyl Chloride Pressure Sensitive Tape. Thickness, .010 In. Duration of 1/4 Run.

Figure 44. BV 65-221. Polyvinyl Chloride Pressure Sensitive Tape. Thickness, .020 In. Duration of 1/2 Run.

Figure 45. BV 45-124. Polyurethane. Thickness, .031 In. Duration of 6 Runs.

Figure 47. BV 43-109. Neoprene. Thickness, .031 In. Duration of 2 Runs.

Figure 48. BV 42-108. Neoprene. Thickness, .054 In. Duration of 2 Runs.

Figure 49. BV 51-114. Polyvinyl Chloride. Thickness, .015 In. Duration of 1 Run.

APPENDIX I

WHIRLING-ARM SAND EROSION TEST SPECIMENS

Figure 50. BV 137-128. Nitrile-Phenolic. Thickness, .027 In. Duration of 1 Run.

Figure 51. BV 143-221-2. Polyvinyl Chloride Over Full Hard 301SS. Thickness, .020 + .009 In. Duration of 1-1/2 Runs.

Figure 52. BV 41~204. Neoprene. Thickness, .015 In. Duration of 4 Runs.

Figure 54. BV 149-148. Polysulfide. Thickness, .012 In. Duration of 1 Run.

Figure 55. BV 162-170. Polyurethane. Thickness, .020 In. Duration of 1 Run.

Figure 58. BV 172-165. Polyurethane. Thickness, .008 In. Duration of 1 Run.

Figure 59. BV 140-168. Polyurethane. Thickness, .020 In. Duration of 1 Run.

APPENDIX II

WHIRLING-ARM RAIN EROSION TEST SPECIMENS*

Figure 60. BV 309-222. Polyvinyl Chloride Pressure Sensitive Tape. Thickness, .020 In. Duration of Run, 15 Min.

*See Table 5

Figure 61. BV 312-221. Polyvinyl Chloride Pressure Sensitive Tape. Thickness, .020 In. Duration of Run, 15 Min.

Figure 62. BV 194-123. Polyurethane Film. Thickness, .031 In. Duration of Run, 60 Min.

Figure 63. BV 213-124. Polyurethane Film. Thickness, .031 In. Duration of Run, 65 Min.

Figure 65. BV 206-2 301 FH Stainless Steel. Thickness, .009 In. Duration of Run, 60 Min.

Figure 66. BV 316-110. E077 Phenolic Rubber and Asbestos Thickness, .250 In. Duration of Run, 37 Min. Convair-TRECOM.

APPENDIX III

SPECIMEN BONDING PROCEDURES

- 1. Flat Panel Specimens
 - A. General Cleaning
 - All backup test panels of 4130 9 x ll x .064 inches were vapor degreased or solvent washed prior to vacuum blasting to remove scale and oxides.
 - (2) All elastomer film and sheet stock were acetone cleaned and abraded with No. 80 grit emery cloth to remove shiny surfaces, where necessary.
 - (3) All metal specimens were acetone wiped and soaked 7-15 minutes in a hot solution of alkaline cleaner $(160^{\circ}-190^{\circ})$; this procedure was followed by a 3-5 minute rinse in tap water.
 - B. General Preparations
 - (1) The materials were weighed to the nearest 0.01 gram.
 - (2) The mixing and application of material were per the various manufacturers' instructions.
 - (3) All liquid elastomers were cured at $150^{\circ} \pm 5^{\circ}$ F for 7 hours to promote a complete cure after 4 to 7 days room temperature aging.

The materials in this test were bonded to satisfy the conditions of sand erosion at room temperature only - no effort or testing was expended to qualify the bonding processes for other conditions or environments.

All metal specimens were bonded with phenolic-nitrile unsupported film adhesive in conjunction with a phenolic primer. The primer was brush applied to both surfaces and allowed one hour air dry before assembly. Cure conditions

85

were 150-250 psi bondline, $350^{\circ} \pm 5^{\circ}F$ for one hour in a press.

The elastomer film and sheet stock were primed and bonded to the steel backup plate using a neoprene-phenolic primer with one hour air dry before applying an epoxyamide adhesive and curing at room temperature. One exception was the silicone rubber stock which was bonded with a silicone primer and adhesive.

The liquid elastomers and tapes were applied directly to the vacuum blasted backup plates, except when vendor recommendations required special primer.

2. Whirling-Arm Specimens

The whirling-arm test specimens consisted of a steel leading edge section of a "D" spar with various metals, nonmetals and coatings bonded to this section.

The steel leading edge section was vacuum blasted prior to application of a primer for bonding. An epoxy was used on all metals, and a neoprene-phenolic primer was used for all nonmetal films and sheet stock.

The metal test caps were cleaned by solvent degreasing and by a 7-15 minute soak in a hot solution of alkaline cleaner; this procedure was followed by a cold water rinse. All metal specimens were bonded with an epoxy film adhesive, cured by the vacuum bag process at 350° F for 45-60 minutes under maximum vacuum.

The nonmetal films were acetone washed, sanded lightly to remove glaze and re-washed with acetone prior to application of a neoprene-phenolic primer. A liquid epoxy adhesive was the bonding agent for the nonmetal films and sheet stock. Pressure was applied by bagging and applying 6 inches of vacuum at room temperature.

An epoxy urethane primer was applied to the vacuum blasted leading edge sections before applying the liquid urethanes which were cured three days at room temperature and aged at $250^{\circ}F$ for three hours.

The liquid thickols and epoxies were applied to the vacuum blasted leading edge sections, cured three days at room temperature and aged four hours at 150° F to promote a complete cure.

The liquid neoprenes were applied to the primed leading edge sections, cured three days at room temperature and aged three hours at 150° F.

The epoxy film adhesive system resulted in several bondlines having small voids. To test the effects on the erosion characteristics of stainless steel during the whirling arm sand test, specimens were bonded with a liquid epoxy adhesive, which produced a nonporous bondline. No difference in erosion life was noted.

APPENDIX IV

DYNAMIC AND AERODYNAMIC CONSIDERATIONS FOR ROTOR BLADE PROTECTIVE SYSTEMS

Selection of the type and thickness of material for an erosion protective system and the means of application must be carefully adapted to each rotor blade and hub design. Among the factors which must be considered are:

- 1. Changes in Blade Dynamic Balance Flying qualities and helicopter vibration level may be affected by the forward shift in the dynamic balance axis. This can occur when weight is added to the leading edge of the blade by application of erosion materials.
- 2. Changes in Aerodynamic Contour High speed wind tunnel tests, conducted by Vertol Division, show significant differences in airfoil performance coefficients and in drag divergence Mach number which resulted directly from the method of fairing external leading edge caps and boots into the basic contour. Camber effects can also be introduced if leading edge coverings are not applied with great care.
- 3. Changes in Blade Section Balance Addition of material near the nose of the rotor blade moves the section balance forward and changes control system loads. On torsionally flexible blades, this may also have an adverse effect on flying qualities.
- 4. Changes in Centrifugal Force Rotor blade retention component strength must be reviewed before adding weight and hence increasing the centrifugal force acting on the rotor system. Roller bearing life varies inversely as the 10/3 power of the load and, therefore, is critically affected. On fully articulated blades, the lag angle will change with the centrifugal force which changes distribution of loading between horizontal pin bearings.
- 5. Nonuniformity of Application Differences in weight, weight distribution and contours from blade to blade can produce performance variations and unbalance in the rotor plane which will result in vibration problems. Application tolerances therefore, must be critically evaluated for each blade design.

All of the above factors emphasize the importance of caution and advise against indiscriminate application of protective systems to rotor blades in the field.

90

APPENDIX V

MASTER CODE LIST FOR ALL METALS AND NONMETALS SUBJECTED TO FLAT PANEL SAND IMPINGEMENT TESTS

APPENDIX V

IS

BOUND

SEPARATELY

DISTRIBUTION

United States Continental Army Command	3
First U. S. Army	3
Second U. S. Army	2
Third U. S. Army	2
Fourth U. S. Army	1
Sixth U. S. Army	1
United States Army Infantry Center	2
USA Command & General Staff College	1
Army War College	1
U. S. Army Arctic Test Board	1
United States Army Armor Board	1
U.S. Army Aviation Test Board	2
Aviation Test Office Edwards AFB Calif	1
II S Army Polar Research and Development Center	1
Deputy Chief of Staff for Logistics DA	2
The Research Analysis Corporation	1
Army Research Office Durham N C	2
Office of Chief of Ph.D. DA	2
U.S. Arman TMC Nerve Coordinating Office	1
Nousl Air Test Center	1
Naval Alf Test Center	2
Denute Chief of Staff for Military Organitiens DA	2
Deputy Chief of Staff for Military Operations, DA	1
U. S. Army Engineer Research and Development	,
Laboratories	1
Plastics Technical Evaluation Center	2
The Ordnance Board	1
U. S. Army Quartermaster Combat Developments Agency	1
QM Field Support Agency, U. S. Army	1
Communications-Electronics Combat Developments	
Agency	1
US Army Transportation Board	1
U. S. Army Aviation and Surface Materiel Command	20
U. S. Army Transportation Center & Fort Eustis	4
U. S. Army Transportation School	3
U. S. Army Transportation Research Command	86
U. S. Army Tri-Service Project Officer (MCLATS)	1
US Army Airborne, Electronics and Special Warfare	
Board	1
Office of the US Army Attaché, UK	1
U.S. Army Research & Development Group (EUR)	1
U. S. Army Engineer Waterways Experiment Station	1

ŝų

USATDS	5			
United States Army, Pacific				
Eighth United States Army				
U. S. Army, Ryukyu Islands/IX Corps	2			
U. S. Army Transportation Agency, Japan	6			
U. S. Army, Hawaii	3			
Allied Land Forces Southeastern Europe	2			
U. S. Army, Communication Zone Europe	3			
U. S. Army, Caribbean	4			
Air Force Systems Command (SCS-3)	1			
Army Planning Group (PGAPI), Eglin AFB, Fla.	1			
Air University Library	1			
Aeronautical Systems Division, Wright-Patterson AFB	3			
Chief of Naval Operations	1			
Office of Naval Research	3			
Bureau of Naval Weapons, DN	5			
Bureau of Supplies and Accounts, DN	1			
Bureau of Yards & Docks, DN	1			
U. S. Naval Postgraduate School	1			
Hq, U. S. Marine Corps	1			
Marine Corps Landing Force Development Center	1			
Marine Corps Liaison Officer, USATSCH	1			
U. S. Coast Guard	1			
U. S. Army Standardization Group, Canada	1			
Canadian Army Liaison Officer, USATSCH	3			
British Army Staff, DAQMG (Mov & Tn)	4			
U. S. Army Standardization Group, U. K.	1			
National Aviation Facilities Experimental Center				
Langley Research Center, NASA	2			
George C. Marshall Space Flight Center, NASA	1			
Manned Spacecraft Center, NASA	1			
Ames Research Center, NASA	2			
Lewis Research Center, NASA	1			
Scientific and Technical Information Facility	1			
Armed Services Technical Information Agency	10			
George Washington University Human Resources				
Research Office	2			
U. S. Patent Office	1			
Flight Control Laboratory, Wright-Patterson AFB	1			
U. S. Army Materials Research Agency	1			
Materials Advisory Board, Nat Academy of Sciences	2			
U. S. Strike Command	1			
U. S. Army Mobility Command	1			

90B

, . ,

U.	s.	Army	Materiel Command	5
Lin	nite	ed War	fare Laboratoy, APG	1
U.	s.	Army	Aviation Maintenance Center	1
U.	s.	Army	Transportation Combat Developments	
Agency				1

90C

2524-63

.

Hribar, and Donald West, TCKEC Tech-nical Rept. 62-111, October 1962, 102 pp. (Contract DA 44-177-TC-836) Vertol Division, The Boeing Co., Morton, Pa., HELICOPTER ROTOR BLADE EROSION PROTECTIVE MATERIALS ~ Robert Gilbert, Bruce Zelus, Victor USATRECOM Task 9R38-01-017-69.

Unclassified Report

for desert operations is presented Development of a system capable of protecting helicopter rotor blades 184 systems were laboratory tested (over)

Hribar, and Donald West, TCREC Tech-Morton, Pa., HELICOPTER ROTOR BLADE EROSION PROTECTIVE MATERIALS -Robert Gilbert, Bruce Zelus, Victor nical Rept. 62-111, October 1962, 102 pp. (Contract DA 44-177-TC-836) Vertol Division, The Boeing Co., USATRECOM Task 9R38-01-017-69.

Unclassified Report

for desert operations is presented. Development of a system capable of protecting helicopter rotor blades 184 systems were laboratory tested (over)

Rotor Blade Helicopter Erosion -

. ---1

DA-44-177-TC-Contract 836

å

Hribar, and Donald West, TCREC Tech-Morton, Pa., HELICOPTER ROTOR BLADE Robert Gilbert, Bruce Zelus, Victor Vertol Division, The Boeing Co., 102 pp. (Contract DA 44-177-TC-836) USATRECOM Task 9R38-01-017-69. nical Rept. 62-111, October 1962, EROSION PROTECTIVE MATERIALS

DA-44-177-TC-

836

Contract

ŝ

Rotor Blade

Helicopter

Erosion -

Unclassified Report

for desert operations is presented. Development of a system capable of protecting helicopter rotor blades 184 systems were laboratory tested (over)

Morton, Pa., HELICOPTER ROTOR BLADE Vertol Division, The Boeing Co.,

Hribar, and Donald West, TCREC Tech-Robert Gilbert, Bruce Zelus, Victor 102 pp. (Contract DA 44-177-TC-836) USATRECOM Task 9R38-014-017-69. nical Rept. 62-111, October 1962, EROSION PROTECTIVE MATERIALS

DA-44-177-TC-

836

Contract

5

Rotor Blade

Helicopter

Erosion -

۔ ابہ

836 ŝ

DA-44-177-TC-Contract

Rotor Blade

Helícopter

Erosion

Ļ

Unclassified Report

for desert operations is presented protecting helicopter rotor blades 184 systems were laboratory tested Development of a system capable of (over)

with a modified sand blast cabinet. The more erosion resistant materials were sand and rain erosion tested on a whirling-arm rig with a tip speed of 600 feet per second. A material capable of 250 hours of desert testing was obtained.

with a modified sand blast cabinet. The more erosion resistant materials were sand and rain erosion tested on a whirling-arm rig with a tip speed of 600 feet per second. A material capable of 250 hours of desert testing was obtained.

with a modified sand blast cabinet. The more erosion resistant materials were sand and rain erosion tested on a whirling-arm rig with a tip speed of 600 feet per second. A material capable of 250 hours of desert testing was obtained.

with a modified sand blast cabinet. The more erosion resistant materials were sand and rain erosion tested on a whirling-arm rig with a tip speed of 600 feet per second. A material capable of 250 hours of desert testing was obtained.

Hribar, and Donald West, TCREC Tech-Robert Gilbert, Bruce Zelus, Victor Morton, Pa., HELICOPTER ROTOR BLADE Vertol Division, The Boeing Co., 102 pp. (Contract DA 44-177-TC-836) nical Rept. 62-111, October 1962, EROSION PROTECTIVE MATERIALS -USATRECOM Task 9R38-01-017-69.

Unclassified Report

for desert operations is presented. Development of a system capable of protecting helicopter rotor blades 184 systems were laboratory tested (over)

Hribar, and Donald West, TCREC Tech-nical Rept. 62-111, Oct**ober** 1962, Morton, Pa., HELICOPTER ROTOR BLADE EROSION PROTECTIVE MATERIALS -Robert Gilbert, Bruce Zelus, Victor 102 pp. (Contract DA 44-177-TC-836) Vertol Division, The Boeing Co., USATRECOM Task 9R38-01-017-69.

Unclassified Report

for desert operations is presented. 184 systems were laboratory tested Development of a system capable of protecting helicopter rotor blades (over)

Rotor Blade Helicopter Erosion -

DA-44-177-TC-Contract 836

2°

Hribar, and Donald West, TCREC Tech-Robert Gilbert, Bruce Zelus, Victor Morton, Pa., HELICOPTER ROTOR BLADE EROSION PROTECTIVE MATERIALS nical Rept 62-111, October 1962,

Vertol Division, The Boeing Co.,

102 pp. (Contract DA 44-177-TC-836) USATRECOM Task 9R38-01-017-69.

DA-44-177-TC-

836

Contract

2°

Rotor Blade

Helicopter Erosion -

Unclassified Report

Development of a system capable of protecting helicopter rotor blades for desert operations is presented 184 systems were laboratory tested (over)

Hribar, and Donald West, TCREC Tech-Robert Gilbert, Bruce Zelus, Victor Morton, Pa., HELICOPTER ROTOR BLADE EROSION PROTECTIVE MATERIALS -Vertol Division, The Boeing Co.,

Rotor Blade

Helicopter

Erosion -

Rotor Blade Helicopter

Erosion -

, --i

102 pp. (Contract DA 44-177-TC-836) nical Rept. 62-111, October 1962,

DA-44-177-TC-Contract 836 5 N USATRECOM Task 9R38-01-017-69.

DA-44-177-TC-

836

Contract

2.

Unclassified Report

for desert operations is presented. Development of a system capable of protecting helicopter rotor blades 184 systems were laboratory tested

(Javo)

with a modified sand blast cabinet. The more erosion resistant materials were sand and rain erosion tested on a whirling-arm rig with a tip speed of 600 feet per second. A material capable of 250 hours of desert testing was obtained.

with a modified sand blast cabinet. The more erosion resistant materials were sand and rain erosion tested on a whirling-arm rig with a tip speed of 600 feet per second. A material capable of 250 hours of desert testing was obtained.

with a modified sand blast cabinet. The more erosion resistant materials were sand and rain erosion tested on a whirling-arm rig with a tip speed of 600 feet per second. A material capable of 250 hours of desert testing was obtained.

with a modified sand blast cabinet. The more erosion resistant materials were sand and rain erosion tested on a whirling-arm rig with a tip speed of 600 feet per second. A material capable of 250 hours of desert testing was obtained.
UNCLASSIFIED UNCLASSIFIED