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ABSTRACT 

The partial differential equation vu + u = 0 is solved in X y y 

a vertical strip. The method is first to solve the equation in the upper 

and lower halves of the strip. By matching u and uy across the 

x-axis a singular integral equation for ux(x, 0) is obtained. Th.t 

is converted into an equation with Cauchy kernel whose solutions 

are known explicit'y. 



A PROBLEM OF RANDOM ACCELERATIONS 

Wendell H. Fleming 

1. In this report we consider the linear partial differential 

equation 

(1.1) yux+uyy = 0 

in a vertical strip 0<x<l, <y <<”, together with the boundary data 

(1.2) u(0,y) ■ U0(y) if y <0, 

u(l1y)=U1(y) if y>0. 

Tbit problem arises in the sutdy of a randomly accelerated particle moving 

in the interval (0,1). Let 4( t) be the position of the particle at time 

t, and tj the first time when 4(t) ■ 0 or 1. The velocity v(t) is given 

by a Brownian motion process, 

E{A>}«0, E{( AV) 2} » <rAt, 

2 
where E{ } denotes expected value and we normalize by taking <r =2. 

Sponsored by the Mathematics Resaarch Center, U. S. Army, Madison, 
Wisconsin, under Contract No. : DA-11-022-ORD-2059. 
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Equation (1.1) is the steady state form of the backward equation for the 

vector Markov process (£(t) > v(t)) . The probabilistic interpretation 

of u(x, y) is as a conditional expected value: 

(1.3) u(x, y) » EUyvitj)]! i(0) = X, v(0) ay}, 

where U2(y) = UQ(y) if y<0,U2(y)» U^y) if y>0. 

Gur object is to give a fairly explicit formula for u(x, y). The 

method is first to solve (1.1) separately In the upper and lower halves of 

the strip. This is done in §‘s 2 and 3 using Fourier transforms and constructing 

Greeks functions. By matching u and uy across the x-axis a singular 

integral equation for ux(x, 0) is obtained in §4. This is converted into 

an incectral equation of the second kind with Cauchy kernel whose solutions 

are known explicitly. In §5 a uniqueness theorem is proved. By probabilistic 

methods it can be shown that the solution u of (1.1) -(1.2) which we get 

actually is given by ( 1.3). However, this is not done here. 

This report was initiated by a conversation at the Mathematics 

Research Center between S. Agmon and the author. Agmon later made 

several more helpful suggestions, and in particular pointed out that the 

integral equation ( 4. 3) can be reduced to an equation of the second kind 

with Cauchy kernel. 
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2. In this section we shall consider the equation 

(2.1) .yvxtvyy>0 

in the upper half-plane y > 0, with the boundary data 

(2.2) v(x, 0) a 4*(x) , -°o<x<oo. 

It is assumed that i|) is continuous with compact support, that ^(x) a 0 

for X < 0, and that iti* is continuous except at 0 and 1. 

Let V be the Fourier transform in the variable x : 

00 

^ 1 z' Atx 
v(t, y) « jj- J v(x, y)e dx, y > 0. 

Moo 

This changes (2.1) into the ordinary differential equation 

(2.3) ;yytlTyî.0, 

whose solutions are given in terms of Bessel functions of orders ±1/3 as 

1^ 
2 ,. 3 2 

Z = 3 (iTy ) . 

follows. Let 
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Occasionally we must consider not merely real t but complex 

T — T + ir in the upper half-plane. Let us agree that 
1 2 

— <arg It <4-j arg(iTa)V =\argiTa 
2 — 2 

for any a>0 and In particular, z belongs to the quadrant Q: 

tt/4 < arg z < 3w/4 . The general solution of ( 2. 3) is 

l 

V = (iT y)2[A(T)j j(z) + B(T) Ij(z) J 

'3 1 

We want a solution v of ( 2.1) which is 0 for x < 0 and tends rapidly 

to 0 as x-*00. Therefore, we choose the coefficients A(t), B(t) so that 

(2.4) v(t, y) = Î(t) H(z) , 

where the function H is defined as follows. For z e Q 

j„( a = —I 1°°"«o, „<2121 * 8'C*‘W0, n( -2U| > > 

( 2ttz) 2 

where c = -(n + and W- = W is Whittaker's function, which 
2 2 n Uj -n 

has the asymptotic expansion as z -♦ 00 in Q 
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m 

(2.5) W (2iz) a e"1Z{l ^az"m + 0(z m)} 
0. n 

j=l 

, J o 2 
j! (8i) a. a n {4n - ( 2i - 1) } . 

i=l 

See [ WW, p. 3621 . Writing W = WQ> 1 for short, 

3 

in -in 

W( -2iz) 

^ 3 (2nz)2 

Let 

(2.6) H(2) a 6 W(-2iz) , 

where the constant Ci is chosen so that H( 0) a 1. Then H( z) tends 

exponentially to 0 as 2-00 in Q, and since H is analytic the same 

is true of each derivative Hik)(2). The function H has the convergent 

expansion about 0 

H( 2) a 1 + power series in z +C z (power series in 22) 

Since V is a product in ( 2.4) , v is the convolution ( in x) of 

^ and the function G whose transforni & a H. By the inversion formula. 
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(2.7) G(x,y) » J Hízje^dr, y>0. 

00 

The function G is of class C and satisfies (2.1). 

II M Z 
Since Ih(z)I < C e“ z for every zc Q, / IhI dr^ is bounded 

independent of T¿1° (the bound depends on y). Therefore [PW,p. 8] 

G(x, y) » 0 for x < 0. Using the formula (2ir) ¿ Yz* 

1 x 
(2.8) v(x.y) a tt—/+(1)0(x - l»y)d£f y>0. 

0 

The integral is from 0 to x since both y ancJ O vanish for x < 0. The 

function V is of class C*, satisfies (2.1), and v(x,y) »0 for x<0. 

It remains to verify ( 2. 2) and to find a formula for the normal derivative 

V (x, 0+) . Let 
y 

(2.9) g(x) 83 G(x, 1) . 

3 
The substitution vary in (2,7) shows that 

y”3g(y”3x) » ^ G(x, y). 

If we set g (x) = a ^g(a ^x) , then 
â 

3 
v(x, y) « + a a y • ( 2, 8’) 
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The function g is bounded. Setting y “ 1 in (2.7) and integrating 

by parts, 

0° 

xg(x) / HTe iTXdT . 

2 

[Unless otherwise indicated t is real. ] Since Ht a 0(r 3 ) as t-0 

and H tends rapidly to 0 as M Ht belongs to L^-00 , 00) 

for 1 < p < 3/2. Therefore xg(x) is bounded and belongs to L ( 00) 

for q > 3 [Z,12.41] . By Holder’s inequality g « L*( -00, 00)» and from the 

inversion formula 

00 

1 a H(0) a / g(x) dx. 
«00 

Thus the functions g= form an approximate identity as a-0+. 
a 

Lemma. Let f be an integrable function with compact support and 

A an open interval on which f is continuous. Then 

f(x) a )im+(f *g^(x) 
a -"O 

for every x « A. The convergence is uniform on closed subintervals of A 

and at 00 . 

This result is well known. Applying the lemma with f a , 

v(x,y) - 4¿(x) uniformly as y-0+. [Actually g>0. Since v is 0 at 
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infinity the maximum principle for parabolic equations shows that v > 0 for any 

> 0 , and this implies g > 0 . ] 

Applying the lemma with f =, vx(x, y) -*• 4>'(x) as V 0+> 

uniformly on any closed interval not containing 0 or 1. In view of ( 2.1), 

v -*■ 0 uniformly on such closed intervals, and hence v (x, y) also 
yy + Y 

tends uniformly on such intervals to a limit v^Jx, 0 ) . 

Let us now show that 

1 

Now v « í ft from 
y y 

( 2.4) , and hence 

-I I I 
vy(t, y) «(j) 3Í(t)(ít)3 z3 H‘(z) , y > 0. 

From the expansion of H( z) about 0, 

2 I 

(2.11) Um v (T, y) « (|)3 C2Î (t)(ít) 3 

y-0+ y 

1 

for every r. But z3 H'(z) is bounded; and from the assumptions about 
oo 

, í is bounded and 4'(T) a 0(t as |t| -►«. Hence lvyl dT Is 

bounded and the convergence in (2.11) is also in L -norm. By Parseval’s 

+ 2 .+ 
formula, vy(x,y) tends to vy(x, 0 ) in L -norm as y-»0 . 

Let x^ = xa if x > 0, and xa a 0 if x < 0. For a < - 1, x® Is 

to be interpreted as a generalized junction or Schwartz distribution. Its 
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Fourier transform is 

x^ruu-iT)-3“1 . 

In our case a = 1/3. Using a theorem about Fourier transforms of distributions 

of class «0* [ S, p. 57, 126], we obtain from ( 2.11) 
Lp 

4 

Vy(x, 0+) =C5+*x+3 

4 .i 

But x+ 3 is the derivative of - 3x+ 3 , and since the derivative can be 

applied to either factor in a convolution, 

4 ml 
" 3 "* 3 

+ *x+ ■ - ’ ^x^^ . 

If 0 < X < 1 the right side is given by the ordinary convolution integral and 

we have the desired formula (2.10) . 

3. Let us next find a solution V of (2.1) in the quarter-plane 

X > 0, y > 0 with the boundary data 

(3.1) V(0, y) ■ U(y) , y > 0, 

V(x, 0) *0, X > 0. 
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The method is to construct a Greeks function F(x-4, y, ri) for the operator 

L( V) a -vV + V and the upper half-plane. It must satisfy the equation 
' ' ' X yy 

L(F) a 6(x - 4, y-ri) in the variables (x, y) and the adjoint equation 

M(F) a 6(X - 4, y - q) in (4,q) where 6 is Dirac*s delta function. 

Moreover, F(x, y, q) » 0 for x < 0 and all y, q > 0, and for y a 0,» 

and all x, q > 0. From the formula 

VM(F) - FL(V) « q(VF) 4 + VF^ - FV^ 

and integrations by parts, one gets formally 

00 

(3.2) V(x, y) » / qF(x, y, q) U(q) dq, y>0. 
0 

Let us proceed to find F and conditions on U such fhat ( 3. 2) 

in fact gives a solution to (3.1) • Since the method is well known certain 

details will be merely indicated. The Fourier transform F (t, y, q) must 

satisfy the transformed equation 

F + iTyF a 6(y - q) . 
yy 

?■ must be continuous at y a q and 

Fy(T ,ii+, q) - Fy(T, q", q) a 1. 
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For each t the iunction H( z) is a solution of ( 2.3) vanishiny 

at y - 00 » and 

l 

K{ Z) » Z3 ^ ( Z) 

I 

is a solution vanishing at y « 0. Let us take 

f » a(T) K(z) H(t) , if 0 < y <ti, 

F « a(T) H(z) K(4) , if0<n<y» 

_1 

where £, = y ( i t ri3) 2. By a short calculation, using the identity 

z( ji j i . j jJ^1) = - VTA » the two conditions at y = tj give for suitable 

3‘3 ‘3 3 

constant c^ 

(3.2) 

1 

F = Cjt if ) 3 K( z) H( (,) , ifO<y<Ti, 

and F(t, ri, y) = F(t, y, ri) . Equation ( 3.2) can be rewritten 

2 1 

(3.2') F= (f)3ciyz 3J1(z)K(í), 0 < y < q. 

3 

From ( 3. 2*) and the asymptotic expansion ( 2. 5) , 
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I Fl < c2y exp( Izl - Ul ) , 0<y<n. 

The inverse transform F is of class C in (xj yj ri) so long as y ^ r) 

( also for y « rij x ^ 0 from (3.3) below) j and F satisfies (2.1) in 

(x, y) . It vanishes for x < 0, and F(x, n, y) =» F(X| y, ti) . Moreover, 

(xF) s i T f from which together with (3.21) and the formulas 
' X T 

ÍT 
3Z 

3T J 

we get the estimate 

(xF)x < c3y exp(! zl - I (,1) * 0<y<T). 

If |y-nl is bounded away from 0, then F and (xF)x are bounded. 

Hence so is xF » (xF) - F. X X 

Let n be the fundamental solution of the heat equation: 

2 
-X- 

y) * e , x > o 

a 0 f X <0 j 

whose Fourier transform (in x) is 

ö(T» y) 

_1 

1 i(iT)2 |y| 

1 
2í(ítÍ2 

a 
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Let 

3 3 j_ 

Y»}(n2-y2), (ít)2y»í-z. 

A short calculatior. taking account of (2.5) and (2.6) shows that 

_1 __1 

F(t, y, ti) a y 4 ti 4[Ô(ti Y) + «'(t, y, ri)] 

where î and ixïî = iT ^ are integrable in t, uniformly with respect 
X T 

to (y, n) so long as y and n are bounded away from 0. Then 

-I -I 
(3.3) F(x, y, h) ■ y 4il 4[n(xí Y) t^tx, y, ri)]. 

where 'i' and x't are bounded so long as y and r, are bounded away 
3 

from 0. Moreover given y, * and its partial derivatives are 0[exp{-n)] 

as ri'*“» uniformly with respect to x. 

Now let U be a continuous function such that, for some t > 0, 

U(ti)«0[exp( h3"*)] as ti-». If nU(t)) is integrable on any finite 

interval [0, a], then (3.2) defines for x > 0, y > 0 a solution of 

equation ( 2.1). Using ( 3.3) standard reasoning shows that if q0 > 0 

U(ti ) « lint V(x, y) . 
(:>»y)-(0,ti0) 
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It remains tu examine the behavior of V and its derivatives as y -*■ 0‘ . 
00 

If U( n) «0 in some neighborhood of 0, then V is of class C across 

the x-axis and V(x, 0 ) =0. Therefore it suffices to consider the 

case when U(x) - 0 for all x outside some finite interval [0, a] . 

2 + 
Let us assume that 11(^) * 0(r| ) as ri -* 0 , The substitution 

3 
<r = T i| shows that 

F(x, y, o) 3 0 2F(ti 3x, ri ^y, 1) , 

a , , , 
V(x, y) » / rtn"* x, T)” y, 1)ti U(tj) dii. 

0 

Outside the interval - <ri y<2 the integrand tends uniformly to 0 as 
2 

y -► 0+. From ( 3. 3) 

, 3 1 2y , -j j 
IV(x, y)l<c4 / fi(ri X, T) Y) n dn + 0(1) , 

1 
2 

3 3 1 
“2 a 2 2 2 

and since Í2(n x,ii Y)»'i ntXjYîjdYari dri, 

3 — oo 

IV(x, y)l < c (2y)2 / fi(x, Y) dY + 0(1) . 
"" ^ m00 

Since the last integral is 1, V(x, y) tends uniformly to 0 as y - 0 . 

Since V» U is bounded on any interval r >b>0, 
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V = / n’V, l)'l’4U(r)) dr) 
“0 

is continuous for x > 0 , y > 0. Since V satisfies ( 2.1) , and 

are continuous on the x-axis for x > 0, and 

a , 
V (x, 0+) = / F (ri' x, 0, l)ti' U(t|) dii . 

y 0 y 

From (3. 2*) F(x,0, t) is a constant times H( U • Therefore, 

a -3 -2 
(3.4) V (x, 0+) = c / g(ii" x)t)‘ U(ri)dii . 

y 3 0 

where g was defined in §2. Since the integrand is boumied and g(0) = 0, 

by Lebesgue’s convergence theorem Vy(x, 0+) tends to 0 as x0 . For 

x > 0 we have 

+ /*a - 3 - 5 
V (x, o ) = c J g'(n x)n TT(n)dri . 

yx 3 0 

-3 2 Making the substitution r = n x and using the estimate U(n) =0(ti ) 

2 1 
- — 00 - 

|V (x, 0+) I < c, x 3 / lg'(r) |r 3dr . 
yx 0 n 

Since 



-16- #403 

from estimates in xg' is integrable; and consequently , g*x Is 
2 

integrable. Therefore x3V ix, 0+) is bounded. yx 

4. Let us return to the problem in Section 1. We seek a solution u 

of (1.1) in the open strip which is continuous in the closed strip and satisfies 

the boundary data (1.2). Let us assume that U0> Uj are continuouf, and 

that the second derivatives UJj(O), uytO) exist. Moreover, for some *>0 

U0(y) = 0[exp lyl3'* ] as y-* -°o , 

Ujiy) = 0[expy3"‘ ] as y . 

Let <|>(x) be continuous on [0,1] with ¢(0) =Uq(0), ¢(1) =1^(0), 

and ^ continuous on (0,1). Using §'s 2 and 3 let us find solutions 

u+, u" of (1.1) in the upper and lower halves of the strip, suchthat 

u+(l, y) ^jty) , u*(0, y) =U0(y) , 

u+(x. 0) = u'(x, 0) = ^x) . 

The linear function w+(y) =Uj(0) +Uj(C)y satisfies (2.1). By §3 there 

is a solution of (2.1) V*(x,y) with 
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V+(0,y) = U^y) - w+(y) , y > 0 

V+(x, 0) = 0 , x ?. 0 • 

Let 4>+(x) = ({.(1-X) -Uj(O) for 0<x<l , and define i|j+ arbitrarily 

outside [0,1] subject to the conditions in §2. Let v+(x,y) be the solution 

of (2.1) constructed there with i)j = 4*+ , and 

u+(x,y) = v+( 1 - X, y) + V+(l-x,y) + w+(y) , 

0 < X < i, y > 0 . 

In the same way we find v , V , w , solutions of (2.1) in the quadrant 

X > 0, y > 0 , and set 

u’(x,y) = v'(x,-y) + V (x,-y)+w(-y) , 

0 < X < 1 , y < 0 . 

Let u = u+ for y > 0 and u = u" for y < 0 . The function u is continuous 

in the closed strip and satisfies (1.1) exceptât (0,0), (1,0) . Note that for 

y - 0 each term in ( 1.1) is 0 . 

It remains to choose <j> so that u^( x, 0+) = u^( x, 0 ). Therefore we 

must have 

Vy(l-x, 0+) = -vÿ(x, 0+) + |i(x) , 

where 
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(i(x) = -[Vy(l-x, 0+) + Vÿ(x,0+, + Uj( 0) - UJjt 0) ] . 

According to ( ¿. 10) 

i-x -j 
v+(l-x, 0+) = C f 4- '(l-x-4) d| , 

y 0 

and since 4+,(l) 

1 -T 
v+(l-x, 0+) =-c4 f <t.'(4)(4-x) d| . 

y X 

Similarly 

X i 
v'(x,0+) =C. / <m)(x-4) 3 dl . 

y 0 

Therefore, ^ must satisfy the integral equation 

X -T 1 -T , 
/ 4>'(4)(x-e) 3 de = / «f'( 4)(4-X) d4 + C4ii(x), 0 < X < 1 . 

Ö X 

Let us treat (4. 2) as a particular case of the eauation 

(4.3) /Xf(4)(x-4)°'1d4 = /f(4)(4-x)0"1 d4 + / p(4)U-X)“"1 d£, o<x<i, 
C X 0 

where 0 < a < 1 . Let us assume that xm(l-x)mp(x) is Hôlder continuous on 
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[ 0, 1] , where 

o + l 
m = ~2~ 

Notice that except for a factor r(o) ^ the first and last integrals are Riemann- 

Liouville fractional integrals of order o . Consider the equation with Cauchy 

kernel 

(4.4) F( t 

where P(x) =x°p(x) and the constants k, c will be chosen later. Let F be 

a solution of (4.4) suchthat xY'°'(l-x) vF(x) is Holder continuous on [0,1] 

for some y < 1 . Let us show that f(x) =x"aF(x) solves (4.3). 

Multiplying by ^“(x-l)“’1 and integrating, 

X . 

/ (x-e)“'1f(4)d4 - 
0 

X , 

c f (x-4)“‘ p(4)d4 . 
o 

Near 0 the inner integral defines a function of the form a4aV + b4 *x(4)> 

where V > y and x Is Holder continuous [Mu, p. 75]. Let us write the inner 

integral on the left as the sum of integrals from 0 to x and from x to 1 , 

and interchange the order of integration. The second of these iterated integrals 
x x 

is absolutely convergent. The interchange of order f ... d£ f ... dq = 
0 0 

XX 

/ ... dt! / ... d| is easily justified if F is Holder continuous on [0,x] , 
0 0 

a 
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and then by a passage to the limit argument for F sati^ying the present 

assumptions. 

Making the substitutions 

1 1 1 
x_l+t’ ^l+s’^l+r ’ 

fxL!(xd)!l d4 = _L±i_ /00Llalli ds 
J g- 4 5 .. . ,.o-l r s - r 

(t + 1) * t 

If X < t| < 1 (i. e. r < t) , the substitution s-t=(t-r)q shows that 

00 0-1 

T.f 0 < n < x > t^e substitution s-t = (r-t)q shows that 

/°(s-n_ ds = (r-t)“-1 / ^ = -(r-t)“-1. cot ,o . 
s - r a ^ 

oo 0-1 , 00 0-1 
0-1 

ds = (r-t) 
t - - 0 

The value -ncot iro for the last integral may be found by contour integration. 

But 

. a-l 
( r + 1)( r -1) 

(t + 1) 
0-1 

a-1 -O' 
(x-n) t. 

and hence 
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X X 0-1 . - í> X . 

/ $(n)dn / ^ = -tt cotTTú / (x-n)a’ + f(n)dTi, 
o o 11 ' 1 0 

1 X . ¿.“-li--“ 

/ «(oídn / (y'^4 d| 
X 0 11 s 

TT 

Sin na f (ri-x)"'1 f(n)dn , 
X 

«-i,,,.,, 14 —+ c/(x-e)0f'1pu)d4 ( 1 + k COt na) f (x- i)“ f(4)d4 = 
0 

sin ir a 

lí we take 

k = 
Sin na 

1 - COS ira 
= - tan ir m , 

and c"1 = 1 - cos na , then f is a solution of (4. 3). 

It is known [M, p. 130] that 

F(x) = 
1 + k" (i + k")n 0 2 P(X) + T-! 

kc m. 
X 

, m-1.. ,-m 
+ bx (1-x) 

is a solution of (4. 4) , where b is an arbitrary constant. Since a - m = m - 1 , 

c . . kc -m., ,-m r* §m(l-4)mp(ê)d4 
+ --—X (1-x) J - (4.5) f(x) --5 P(x) . 

1 + k (1 + k ,n e - X 

. -m,. . -m + bx (lx) 
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is a solution of (4. 3). The assumption made about F above is satisfied 

for any y > m . 
,, , , -m., . -m 

P. M. Anselone pointed out that the soiution f(x) = bx (1-x) 

of the homogeneous form of (4. 3) can be verified directly. Let A(x) denote 

the left side of (4.3). When f(x) =f(l-x) and p(x) =0, (4.3) becomes 

A(x) = A(l-x). Let us suppose that f has this special form. By writing A(x) 

as an integral in s on (0,«>) as before and making the substitution a =(s-t)/t, 

, , m-1., ,m-l 
A(x) sbB(m-o, o)x (1-x) , 

which is symmetric in x and 1-x . 

In the present problem a = 2/3 , m = 5/6, f(x) = $*(x) and p(x) 

is [C4r (a)]"1 times the fractional derivative of order 2/3 of jx(x) . 

Then 

p(x) = [C4r(a)J 1I1 ^‘(X) , 

3 

where I is the integral of order 1-a. From the estimate for V (x, 0 ) 
1-a ' 

at tlie end of §3, 2 2 

|p*(x) I < Cx 3 (1-x) 3 , 

and from this it is not difficult to show that xm(l-x)mp(x) is Holder 

continuous. The constant b in (4.5) is determined from the condition 

1 
Ujt 0) - U0(0) = / <t>*(x) d’t . 
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In particular let Ujtx) =1, U0(0) = 0. Then u(x,y) represents 

the probability of reaching 1 before 0 starting at x with velocity y. In 

this case x) = 0 and 

_ 5 _5 

4)' ( x) = bx 6 ( 1 - X) 6 , b 1 = B( I, I ) • 

5. Let us now prove a uniqueness theorem. Let u^(x, y) and 

u2( x, y) be two solutions of ( 1.1) with the same boundary data ( 1. 2), 

and let w = u - u . Let us assume that w is bounded and continuous 
1 2 

in the closed strip and that wy is square integrable over the strip. Then 

for any rectangle R:0<x<l, lyl^a» 

0-// w(ywx + wyy)dxdy = -// wydxdy + / ( yw2dy - wwydx) , 

and since wy is integrable there exist an> n = 1, 2, ... tending to » such 

that f ww dx tends to 0. Moreover / ^ yw2dy < 0 since w(l,y) =0 for 

9R y 3Rn 
n n 

y > 0 and w(0,y) =0 for y<0. From this 

/ / w2dxdy = 0 , 
R y 
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and then w 2 0 . Then -yw = w 2 0 , and since every horizontal line has 
y yy 

a po int where w = 0 , w s 0 . 

6. Let us mention a more general problem in which the random process 

i satisfies (formally) the linear constant-coefficient stochastic differential 

equation 

(6.1) é + ai+bi = p,a>0,b>0, 

where p(t) is a Brownian motion process normalized in the same way as §1. 

In engineering language p(t) is a "white noise" . The steady state form of 

the backward equation for the vector Markov process (4(t), 4(t)) is now 

(6.2) yux+ uyy- (ay+bx)uy = 0 . 

V/e have considered the case a = b = 0. When a>0, b = 0, (6.1) describes 

the Ornstein-Uhlenbeck process, which is a more refined model for Brownian 

motion. When a = 0, b > 0, (6.1) describes a randomly accelerated harmonic 

oscillator. See the articles in [W] by Chandrasekhar, Uhlenbeck-Omstein, 

and Wang-Uhlenbeck. 

The equation -yv +v =f(x,y) has under suitable assumptions on 
X yy 

f, the particular solution in the quarter-plane x > 0, y > 0 
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X '■* 

V ( X, y) = / / F(x - I, y, t|)f( , 
p oo 

which is 0 when y=0 or x = 0. Suppose that u satisfies (6.2) ln 

the strip and take t(x,y) = [ ay + b(l - x) ]uy( 1 - x, y). Then if <i>(x) =u(x,0) , 

u(l-x, /) = >(l-x)>i‘ga + V+(x,y) + w+(y) +vp(x,y) . 

Integrating by parts (fornaily) we obtain for 0 < x < 1, y > 0 

x 00 
u'l - x, y) - <(>(1 - x)* g + V+(x, y) + w+(y) - J / [ an + b(J - |)F] u(I - ti)dridf, 

a oo 

with a similar expression for u(x. -y). From these two integral equations for u, 

together with the equation obtained by matching uy(x, 0+) and t'y(x, 0 ) one 

should be abla to get some information about solutions of ( 6. 2) at least for 

small values of a and b . 
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