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ABSTRACT

The temperature fields are deduced for an infinite metal slab of
finite thickness produced by a heat flux input which depends on the radial
coordinate, The formal solution is obtained by means of transform
techniques, and several alternative approaches to their evaluation are
presented, Two heat flux inputs are considered in detail. They are
the Gaussian input defined in Eq. (E-1), and the uniform input over a
circular area of the front surface, Such inputs might be used, for
example, as models for a study of the thermal-elastic effects of a laser
beam focused on a metal slab,

Several asymptotic expansion are presented for the small-time
response of the temperature fields under various assumptions on the
heat flux input,

An extension of the results of Oosterkamp® has been derived as

well as a verification of the validity of the approximations through the
derivation of an upper bound on the error,
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Page 1 of 39

THE THERMAL RESPONSE OF A METAL
SLAB TO A CLASS OF RADIALLY
DEPENDENT HEAT INPUTS

A. Introduction

The temperature fields produced by a heat flux input dependent
on the radial coordinate only are deduced for an infinite metal slab of
finite thickness.

The formal solution is obtained by the use of transform techniques,
and several alternative approaches to their evaluation are presented.

Attention is focused on a class of input flux densities which are
concentrated at the origin, such as would occur if a laser beam were
focused to a small spot on one surface of the slab, Two examples of
this type which have been considered in detail are the Gaussian and
uniform inputs defined in Eqs. (E-1) and (F-1), respectively. Unfortu-
nately, extensive numerical information can be obtained only at the cen~
ter of the front surface. In terms of the geometry described in Fig. 1,
this is at p = £ = 0. This is, however, a very interesting point since
the temperature maximum for the class of concentrated inputs occurs
here. The temperatures at this point also illustrate some of the dis-
tinctive features of the problem.

One of the basic results shows that for time sufficiently small,
the response is essentially a local phenomenon. Specifically, this mcans
that if q{p) is a sufficiently smooth function of p, the primary diffusion
is into the slab while the effect of radial diffusion is secondary for time
small. This in turn means that the temperature response under these
conditions should be given to a good approximation by the product of the
local input multiplied by the temperature response for the flat plate with
a uniform input on the front surface. In this paper several results of
this type will be given, each with a different type of '""'smoothness''
requirement. Remainders will indicate their validity.

The paper can be divided into two parts., The first part deals
with the general solution to the problem, and its various formulations.
The second part deals with two specific inputs for which more explicit
results can be obtained. These results are presented in analytical and
graphical form when possible,
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Fig. 1. This figure illustrates the geometry of the problem.,
The heat flux input occurs on the front surface
(Z = 0) and depends on the radial coordinate only,
The rear surface (Z = £) is insulated.

This problem has, of course, been studied by others, but the
main results of the cther authors have been for the semi-infinite body
with a uniform input over a portion of the surface and for final temper-
atures in the cases where a linear radiation law is included.

Carslaw and Jaeger! give several references to this type of
problem, and other than these references it has not been possible to
find any others, Lowan? considers the semi-infinite body with a more
general time dependence than that considered here. In the present
report the input flux has a step dependence with respect to time and is
a basis, through Duhamel's theorem, for the study of the more general
time dependence problem.,

1107-14 2



Oosterkamp3 considers a uniform spot inpuf on the front surface of
a semi-~infirite body. He reasoned correctly that the temperature re-
sponse for the semi-infinite bcdy would furnish first-order approximation
for the finite slab for time small, This is because for time small the
presence of the rear wall is nct significant, nor is the effect of radial
diffusion. He did rot present, however, an evaluation of this approxi-
martion, This paper extends his result and verifies his reasoning by
giving a rigorcus estimate of the error. While the approximation itself
does not depend on the thickress of the slab, the errcr estimate
appropriately does,
Thomas? considers the semi-infinite body and the very thin slab.
His results for the semi-irfinite body include a linear radiation loss.
The input to his thin-slab problem is not a surface flux but a constant
volume input restricted to a right-circular cylinder domain normal to
the slab surface,

The motivation for the present problem is similar to Oosterkamp's.
He was interested in the thermal effects of electron bombardment of the
anode of an X-ray tube, and how to prolong the life of the tube. In the
present problem the interest is in determirning the effect of the focusing
of a laser® output on a metal slab, The laser is a device which radiates
an almost coherent electromagnetic energy at optical frequencies. This
energy from the laser can be focused to a very small spot. A typical
diameter is one millimeter. The resulting ircident power densities are
about 10 watts/meter? . The coupling of electromagnetic energy to
metals is quite efficient at optical frequencies, especially when compared
to the coupling at microwave frequencies. In some cases the laser beam
will punch a small hole in a thin metal slab, It is felt that the first step
in a study to determire the cause of this punching is an analysis of the
temperature fields. From this study, then, the study of the thermally
induced siress ficlds can be initiated.®
Two recent papersz‘c ! indicate that the solution to this problem can
also be of value in improving the accuracy of the determination of the
thermal parameters. First, the effect of the shape of the beam can be
taken into account and secondly the plate size can be made such that
the edges of the plate don't effect the determination.
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B. Formal Sclution

In this section the formal solution to the problem will be presented
in two alternate forms: a Green's function form, and a transformed
Green's function form. Both are obtained by transformation techniques
which are quite natural for the problem. The Laplace transform is used
because of the time dependence of the input flux density; it is zero for
time negative. The Hankel transform of zero order on the radial
dependence is used because of the cylindrical symmetry of the input flux
dersity. These two transformations reduce the problem to that of finding
the solution for the plare slab problem with a uniform input over the
entire surface and performing two inverse transforms. The use of one
or the other of the two forms of the solution depends on the input flux
density q{p} and its Hankel transform, Q(\). The geometry of this
problem is shown in Fig. 1 and the differential equations and boundary
cenditions are given in Eq. (B-1):

0 < < o
92 92AU 9AU ~P
(B-1) Ty (p BAU> 57 T By josisd
P p T Oi-r
_B_A_U&)_'O’_T_)_Z"Q(P)$ 0 <p< o, T>0
<13
=0 ; T <0
B8aU(p,LT) = 0<p,T <
R13 -
O<'p < o
AU(p,§0) =0
0<g<

where AU(p,§ ) = T{r,2,t) » Toand £= 2/, p =r/f; £ = slab thickness;
v = Kt/2% ; K is thermal diffusivity, t s time; q(p) = G(r)L/k; k is thermal
conductivity,

The normalized heat flux input density q(p) will be called the heat
flux input dersity or heat flux input. The units of the normalized heat
flux input density qi{p) in the MKS system are in degrees Kelvin. Later
in the paper the symbol Q with no argument will be used to denote the
total heat input. In this case it will be given by
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and measured in watts; that is, Q is the actual total heat input.

The formal solution using the Laplace transform and Hankel
transform techniques is given by the expression

o++ioo

(B-2) AU(p, & 7) = —— 5 g QM )
X

2mwi
s=oy - 100

cosh (NNZ +s (1=}

\I)\Z + s sinh VA% #s

. eST T (e

where Q(\) is the Hankel transform of the input flux density, q(p), and

[ee]

(B-3) QM) = g a(p') J,(hp") p!
p'=0

From this point there are indeed many paths to follow. As can be seen,
there are three integrations to perform and thus there are a multitude

of possible approximations which can be made. It is impossible to
discuss them all. Therefore, the remainder of this report discusses the
methods most advantageous to the needs of the laser problem mentioned
earlier.

First, the integration with respect to s will be carried out, There
seems to be no alternative other than this. Notice that if A\ were zero the
bracketed term given below (from the integrand in Eq. (B=2)),

1 cosh{\lkz +s5 (1-8)

(B=4) H{{, N ,8) = —

s \]X2+s sirh (A% +s
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would be the Laplace transform of the slab problem for a uniform heat
flux input over the entire front surface.’ In terms of the present
problem the irnput flux qfp) would be a constant for all p and although
Qx ) would not exis*t in the ordinary sense, it would be a functional,
namely, § (). When this is substituted in Eq, (B-2) the result is the
cor.stant flux solution. This is simply a statement of Hankel's integral
fermula,® For i\ # 0 there is an interesting relationship between this
problem and the thin-wire problem with linear radiation from the lateral
surface as discussed by Sommerfeld,? Basically, the two problems are
quite similar. This fact is apparent when one notes that the differential
equation satisfied-by the inverse Laplace transform of H(§, A, s) is the
same as the thin-wire problem heated uniformly at one end. The
variable A corresponds to the radiation loss parameter of Sommerfeld's
problem. The solution to the present problem is then seen as an
integraticn over all possible radiation loss parameters multiplied by an
appropriate weight factor., The main difference is that in the present
problem the radial diffusior is caused by the unequal heat flux input on
the front surface rather than a radiation loss from the lateral surface,
Also when no radiation less is present (A = 0) one expects to obtain the
flat-plate solution with no radiation loss, This is what is obtained, as
mentioned earlier,

Performing the inverse Laplace transform one arrives at the

following expression for the temperature field; this will be called the
transformed Green's function representations.

(B~-5) AU(p,E T) = § Q) F(p, &7 X)) N
M =0
T
where F(o, &1 \) = JO(,\p)g 9, (%—, iw-r) e")\z T!
T '=0

and 03(£/2, irT") is a theta function,!® The two representations of

the theta function are given in Eqs. (Boa) and (B«6b),

’ K4 m. 2 Z
(B~6a) 03 (%, ing a2\ cos(nrwgle”™™ T T
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¢ .
£ i ) 1 - 4T £ 1
- = = = 0 ,
(B-6b) 03 (Z ! 1'n'-r’ T C P 2imT T

Again it is seen that for A = 0 the 7' integration yields the temperature
fields for the constant heat flux input over the entire front surface.

For A # 0 the integration with respect to 7' can be performed, but
it is not particularly advantageous to do so at present. If the integration
is carried out, one of the resulting series is independent of . It can be
summed, !! but because of its complexity it is not particularly useful,

Notice that in Eq. (Be=5) there are still three integrations to
perform, The improvement of Eq, (B-5) over Eq. (B=2) is that the
theta function has two representations. One of these converges well
for v small, Eq. (B-6b), and the other for v large, Eq. (B-6a).

Equation (B-5) can be rewritten in a form calling direct attention
to the fact that there are three integrations to perform. This form
displays the Green's function for the problem, and for some purposes
it is more useful than that given in Eq. (B-5). This form is given by

[ee)

(B-7) AU(p, &) = g ap) Glp, p' ) &7) p'
p=0

where the Green's function is given by

T )
(B-8) Glp,p's &7) = S g Tohp) Jolhp ) 93@-, in-r> AN
T'=0 X\ =0

Thus Eqs.{(B-5) and (B-7) give two alternate representations of the
solution, The use of one or the other depends on whether the input
flux density q(p) or its transform Q(\ ) is more convenient to use.

There are several ways to deal with G(p,p ', & 7), and apparently
only one way to deal with F(p,§, 7; A ) without explicit information about
Q(\) or q(p). Unfortunately not all of the results obtained for the Green's
function G(p, p', £, 1) and its transform F(p,{,7;\) are useful on the
special cases. This is because most of the significant results for the
Gaussian and uniform inputs depend explicitly and strongly on the
particular form of the input flux density or its transform. For each form
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F(p,& v:h) and G(p,p',£ 7) it is desirable to have both an expansion
which converges well for time small and one which converges well for
time large These results are given for F(p,§ t;\) in Section C and
for G(p,p', & 7) in Section D,

C. The Transformed Green's Function

Two general results based on Eq. (B-5) are deduced in this section,
One is an expansion of F(p,§ 1 ;\) for T large which is the basis for
approximations to AU(p, § 7) for time large, The second is an asymptotic
expansion for time small, with some restrictions on the input flux density,
a(p).

The large~time approximation will be deduced first, The first step
is to perform the v ' integration. This yields the following:

[s¢]

(C-1) AU(p, & 7) g | = i cos nmé )
- P> T = -4 J )\p)\
\ =0 M ERRE °

- am f2) —SEBEE g L4 nt ) o0e
AN +n° w
n=1

The first observation is that there are three integrations left, These
are as follows:

§ QM) [—li——l} I (o
A2 °
\ =0

(ii) \g QM\) __&_‘i)\_z_
A =0 N

(iii) S o P I, 00) N .
=0 2% +n® w2
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To ask that all of these be expressable in a simple fashion for some
Q(N) is too much. The second observation is that as v becomes larger,
the last integration becomes small quite rapidly. It is easy to verify
that this last integration in Eq. (C-1) is bounded by the quantity

(C-2) g o ol & , 0<p<w, 0<E<],
1

This expression does indeed vanish rapidly with increasing v, and
(o) is proportional to the total heat flux input in watts to the slab,

Q
2mlk ,

Qo) =

where Q is the total heat flux input. In conclusion, then, the temperature
change for large T is given approximately by the expression

)\ZT [e]

- ” e ", } €osnmE |5 o 4R
(€3 ave,sn = {an T iz oz | Tohe R,
A =0 n=1
~m et
where R < Q_ p
1 £k 12nw+

and where Q is the total heat flux input. This is the ''large-time'' approxi-
mation based on the F(b,£, T;\) representation. It yields a term which
depends on v and a term which depends only on the space coordinates.

It is assumed that the remaining integration can be performed in a form
suitable for numerical computation.

The first integration (i) presents some difficulties for all values
of 7. The problem arises in the treatmeatment of the indeterminate form

32
l_e)\'r

)\Z

at X =0. It happens that in this problem Q(\) is an even function of X
(see Eq. (B-3)), and further Q(\ ) at X =0 is not zero. Thus if one
trics to break this integral up into the sum of two,

1107~14 9



A%y

00 1- 00
(C-4) S QM ) —e;Z—— To(p N :S Q()\))\—lz- Jo(o W
\ =0 A=0
c e-)\.ZT
[ e &5 saten,
\=0

it is seen that individually the integrals do not exist. Thus the ofily way
it seems to be possible to handle this integration is by the device used to
obtain this representation,

0 -)\ZT T 00 2 7
1- -
(C-5) 5 Q) | —==— | I o = X g Qe ™ T To0o N .
xz
r=0 =0 A=0

This problem will be met again when the Gaussian input is studied and
will be handled in this manner. Later the expression in Eq. (C-3) will
be used to deduce some information on the temperature fields for the
uniform and Gaussian inputs,

Next an asymptotic expansion for the temperature field, AU(p, £, T),
as 7T 0 will be presented. This expansion is discussed more fully in an
earlier report.!? The sufficient assumptions for the expansion are as

follows:
dZN
(C-6) (@) ———_ q(p)
d 2N
P

exist for some N, and

0 2N+2
(b) S- IQ()\)’)\ exists,
x=0

These two conditions constitute the smoothness requirements for this
development.

Under these assumptions the A integration in Eq. (B-5) can be
performed to yield

Tt
(C"7) AU(Q:§:7)= § 04 ('—' iﬂT/)I(p,T/)

’ 2
T'=0
where
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N
T 1 4 d \n
p, )=q(p)+z 1;_'- <; T Pd—p“> qfe) +

n=1

N 2N+3
(N+) ! § le | A

N\

with R,

It is noted that R, is o(r N)yas + =0. The final result, an asymptotic
expansion to Nterms as v ~0 of AU(p,§,7), is given by the expression

N
1 4q d \"
(C-8) aU{p, &) = qlp) Lllo(g,T) + Zl gn%—"l <E a5 pd—p> qfp)
o TRy
where Ry < M S [Q()\)] }\ZN+3 ;y 0<p<® ,

INFD 1 Yo

and where Lpn(é,T ) is defined by

g
(C-9) LlJn{é,T) = S‘ (') 6y (E , in’*r)
T'=0

First, it is noted that the function, qJO(;,-r ), is the temperature response
for the flat plate with a uniform input over the entire front surface,
except for a multiplicative constant:

o]
N
2 2
(C-10) (G = } cos mr& (l _mm T)
n=1
[=e)
) 1 .2 1 2 cos nw§ .nqgiqt
-T+2§-§+3-nz' 2 € .
n=1
(e8]
S cos nmwé
The summation, T > is given by Jolley. '3 1t should be noted

that the integrals in Eq. (C-9) can be expressed in terms of incomplete
gamma functions,
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Thi.s the leading term in the small-time expansion is the product
of the local heat flux input multiplied by the response for the flat plate
wih 2 uriform input over the entire surface. This particular approxi-
marior. s valid on the surface as well as interior to the slab. Thus it
1s conciuded that for time sufficiently small and the input flux density
sulficiently smooth {as prescribed by conditions {(a) and {b)), the radial
-diffusion is negiigible. A similar result will be presented in the next
section with the smoothness requirement weakened. However, the flat
plete - uniform input response approximation will hold only on the input
suarface and a* *he center of the front surface.

D. The Green's Function

In this section the Green's function will be examined. Several
expansions will be presented, some of which converge well for v small
and some cf which converge well for 1 large.

Scme additional general asymptotic results for the temperature
respcnse as T >0 are given. The requirements on the input flux

dersity, gqfp}s are rot as strong as they were in Section C.

Tc begin, the integration of Eq. (B-8) with respect to A can be
performed.** The result is given by

T
) ; 1 £ '
(D-1) Glo,p'y & 1) = g — O3( = , imwt! Iy P p'>
27 ° 2 2T
! -

T'=

z . 12
exp (- ¢£_ T P P P
47!

where Igi{x) is the modified Bessel function of the first kind. This
expression may now be put in a more compact and in some respects
a more useful form by introducing the integral form for the Bessel

43

func:ion:

- o] ,')‘

) £ ] ' - -Z—T—, cos ©
(D"Z) .-‘.O ZT [} - T e de
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Using this representation one arrives at the following expression:

s

.
1
T! ) '

0=0 0

where

[p~p'|? =p2 +p' -2pp'cosb

Making use of Watson's suggestion for studying integrals containing a
product of two Bessel functions of the same order, '® as in Eq. (B-8),
it is seen that !’

”
1 - —
-4 30 T = T (g0 F B
=0
where the quantity, 'E -—p'l, is defined in Eq. (D=3), above.

Using this representation in Eq. (B=8) the expression for the
Green's function becomes

(D=5) G(p, p's E,7) =

T T 0

—_ - - |
-1—§ y 5 93/£,im'> Jo(xlp-p'l)e)‘T X
x \2

6=0 1 '=0 X= 0

If one now performs the \~integration the result is identical to Eq.
(D-3).'® The next logical attempt to simplify any of the above three
representations would be to perform the t'=integration, However,
before this a short comment on the two expansions of the theta function
(Eq. (B-6a) or (B~6b)) is necessary.

If the "long~time!'' expansion, Eq. (B-6a), is used in either Eq.

(D~1) or Eq. (D-3), or if the short=time expansion, Eq. {B-6b), is
used in Eq. (D=-5), then the resulting integrals are of the form
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T - b
- laT’ -
(D.6,‘ S‘ q(-r I} o T! .

it has not been possible tc express these integrals in any simple
fashion, The facicr

- aT'.+. —
€ 7! ]

has the form of a generating function for Bessel functions, but as yet
it has rnot heen possible to make use of this fact,

Therefore, the expansion of the theta function which is to be used
in each of the above equations is determined by this restriction,

if the short~time exparnsion of the theta function is substituted in
Eq. (D=1) the: terme~by=term integration can be performed only if the
Bessel function is also expanded in its series. The resulting expression
is very clumsy, and because of this complexity it has not been possible
to determine the range of convergence of the series. It simplifies for
sp«cial cases, but these special cases can be cobtained by more direct
methods, '

The resuli is given by the expression:

0o . . 2m
-‘:' "P: P ’ s T =
2y w (m1)? p? +p'% +4(n+€t/2)?
m=0
n=0
€= 41
1 L PP Hp? +4(n+68/2)2
. < = 3 - fl2m+ 3, ,
ypS tpt F4(n+ TE/2) 47
[s,¢]
where r(a, x) = S A=l o=t g the incomplete gamma function, !?
X

1:107-14 14



For the special case p = £ = 0, which is of interest in the case of
focused inputs as mentioned in the introduction, the above expression
simplifies to the following:

1 _1 ‘1 p:z
(D-S) G(O:P !OyT)=\J—?r—— pl r <_ 3
1

2

e

SNz

p (L p'f 440t
| p? + 4n? 2 47
1
+ R; where

Tl'\‘ TT e"l/T
6

R3 <

F _(N+1)2 /1 1
<|— e - , N> 1
™ N —_

The result in Eq. (D-8) also follows from Eq. (D-3), by substituting
the theta function from Eq. (B-6b). The gamma function, (3, x), is
related to the incomplete error function. The relationship is given by

(D-9) r <%, >> = {mr erfc (\f_x)

00
h fe (\ %) Z S -t
where eric X = e
\ITT

It will be recalled that the incomplete error function enters into the
representation for the small-time solution of the flat-plate response
for the case of uniform input over the entire surface.

The flat-plate response with a uniform input over the entire

surface can be deduced from the above expression by letting a
while Q/mwa? is held constant,
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An asymptotic expansion to one term in terms of \lT asT —+0
can be obtained from Eq. (D-8). The result again displays the local
nature of the response for time sufficiently small. From Eq. (D-8)

one has
o0
(D-10) AU(0,0,7T) = ! g qp"y T 1 p + R
o Vr e 2 T4r 2
p'::O
Q \
where R, < N L "1/

tk 12

The integral in Eq. (D-10) is O(\ T) as T —0; thus for sufficiently
small time it will afford a good approximation. In general, however,
the integration in Eq. (D-10) cannot be carried out in closed form.

It is possible, however, to obtain an asymptotic expansion of
AU(0,0,7)as T >0 to one term under the following assumptions:

(@) alp) =q(o) +O(p)as p =0
(b) q(p) <M, a positive constant, for all p .

Under these assumptions, which are the smoothness requirement
for this case, one arrives at the result

(D-11) AU(0,0,T) = Z\H q(o) + O(1) as T =0

This result states that for v sufficiently small the responseatp = £= 0
is given by the local input multiplied by the small-time response of the
plate to a uniform input over the ertire {ront surface, This is the
result one would expect on a physical basis. This result is almost the
same as that deduced in the previous section in Eq. (C-5). And for

p = 0 and 7t sufficiently small, the one~term expansion of Eq., (C-8)

is the same as (D~11).

Next, attention is focused on the integration of Eq. (D=3). For

this expression the small-time expansion of the theta function is again
used, The term-by~term integration yields the following expression:
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" 1 [p-7E 4 g
Mz 4T

S Ws-9l + g

-12 Glp,p', £, =
(D~-12) {p.p's &, ) =

8=0
N (1 4m-g/2)? + |5 -T2 )
+ A r 2 4+

Al \4(m-£/2)2 + |7 -P'|?

N (g 4(n +£/2)% + |5 =" |
1-‘Z’ 47 )

1 4w +e/22 + [5-F?

H

n
+R3,

where the remainder R; 1s bounded for all p by

/
1 1 (N #1 - £/2)2
e ety e e
1 (N +1+¢/2¢ 0<tct
* F N+§/2 .exp<'[ T }) N >1

Ry < g \mr e'l/T, N =0, t=0

1 il 2 - 2
R I {_3 0 £/2)2/x X e(1+r§/2) /T}

E|

]

v 2
{A n
— O
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This result is quite similar to that in Eq, (D~7), except that the
summation on "m' in Eq. (D-~7) has been replaced by an integration
on 6in Eq. {D-12), and it has been possible to deduce a remainder for
this last expansion. This approach then provides a method for a
partial summing of Eq, (D-7). Furthermore, using Eq. (D-12), with
time sufficiently small the results in Eq, (D~10) can be generalized to
yield
(D-13) AU(p.&,T) = g alp ') p' | —— §

YW g

p': ) =0

1 |5 -pr]E e
r{s. p

(o -3+ &

+ R,

where the remainder is bounded for all 'p by

Q {nmt e-l/-r

Ry <% 12 670
Q - - nl - >
Ry < —— v L e (1-£/2)* /v te (1 +e/2)% / .

Lk 8 3

The result in Eq., (D=13) reduces to Eq. (D~10) for p = 0 since the
integrand becomes independent of 6 and the 6~integration can be
performed, In this case the dependence on £ can be retained, and in
this sense it is more general than Eq. (D-10). An asymptotic
expansion can be deduced similar to that given in Eq. (D-11). Equation
{D~13) is written for p = 0 as follows:

D-14 AU(0, ¢ )—_1_ 3 | ____L__. 1 p'* +£° +R
( ) ( » &y T )= ﬁ— S\ CI(P) gz + pyZ r 2’ 41 3
p'=0

where R; is bounded as abovein Eq, (D-13).
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The asymptotic development of Eq. (D-14) yields (under the same
assumptions as those for Eq. (D-1l)) the result:

2
(D-15) AU(0, &, 1) ~ q(o) Z,x: e_gl /4 ‘_g‘_ r <l_ ’ _§_> +0(7)
™ 2 (T 2 47

as Tt —~0.

At the front surface, £ = 0, this reduces to the result given in
Eq. (D=ll). Again the local nature of the response for small time is
emphasized., Furthermore, it is seen that this approximation is
independent of the thickness of the slab, £, while the remainder is not,

The next approach is to perform the ' integration in Eq. (D-5),
This yields the following result:

1 A 1- e-)‘z T
(D-lé) G(P’PI: ﬁ,T) = - 5 S‘ ————
™ )\'2
6=0 \=0

It has unfortunately not been possible to perform the following integration:

o] [s¢]
~(\% +n? 72 - _
(D-17) R,= Zg _ﬂﬂw_g__ e ( ntws)r Jo()\lp- p'l))\ .
A% +n? n?
A=0 n=1

However, an upper bound can be obtained on this remainder and the result
is an expansion which is accurate for t sufficiently large, The bound,
valid forall 0<§ <land0<p<ew, 0<p <, is given by

2

-T" T
€

1
(D-18) R, < = ¢+ ——— .
6 T
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When the exponential factor is not present it is possible to perform
the \ -integration2® in the second term of Eq. (D=-16),

This yields the following expansion:

m [e'e) 2
1 1 -e"MT - _
(D-19)  Glp,p', £,7) = — g g —=— | 17T
™ N2
g=0 A=0
1T it
+1—r Zz cos nwf Ky (nw [;-.ﬁ'l)+R4.
0=0 n=1

It is also possible to rewrite this last sum, making use of the addition

theorem, %! as

m
(D-20) ig K (om |5 -9']) =
m
0=0

Io(nwp) K (nmwp') p <p'
I(nmp") Kolnmp)  p >p' .

It appears that the only way to handle the first integral is to make
use of the equality

-\ET w22 !
(D-21) l1ae™™ © g SN
XZ
T'=0

By making use of this, both the \ -integration and the t '=integration can
be carried out in terms of the incomplete gamma function, TI(0, x), or
the exponential integral,

Incorporating these suggestions and using Eq. (D-20) in Eq. (D-19),

one arrives at the following expression for the Green's function, which is
useful for v large:

1107-14 20



1 (7 < o0 |2 )
(D'ZZ) G(ps-ol:é!‘r) = o 5‘ r{0, —— +
(

o
Z\ cos nwél (nwp) Ko(nmp'), p < o'

3
[}
—

[ae]
z cos nm &l (nmp' )Ky(nwp), p > o'

J\nZl
- ér 0<p<ow
+R4,WhereR4<-l(;eT 0<p< o
0<EL],

It has not been possible to deduce any general asymptotic results
for T large similar to those in Egs. (D-11) and D-15) for v small.

In this section several expansions have been presented for the
Green's function. Some of these converge quickly for 7 small, and some
of them for T large. In addition, some general asymptotic results for
the temperature response as T ~ 0 have been given. The requirements
on ¢(p) needed to obtain these results are not as strong as in the case of
the development in Section C.

E. Gaussian Input

The thermal response to the Gaussian input is discussed in this
section. Two small-time expansions for the temperature at the center
of the spot, p = £ = 0, are given and their relative accuracy is compared.
In addition the criteria necessary to use the asymptotic expansion pre-
sented in Eq. (C-8) are satisfied for this input flux density. For the
parameter 4T/T]é <1, this yields a convergent series which can be
summed to give a form convenient for numerical computation. This
result can also be obtained by other techniques. The asymptotic expansion
deduced from Eq. (C-8) is of course not restricted to the spotp = § = 0.
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The Gaussian input is defined as follows:

— . Q0 .1 . 2 2
(E-1) qlp) = STk _"i_é exp(-p /Wo ), P20

where Q is the total heat flux input and n_= a/l where "a'' is the '"radius"

of the spot. The transformed input, Q(x?, is given'by a function of the

same form,?%?

B = _Q.— ' [-Aeme/4
{E-2) QM) = = o exp (o) nZ/4).

The fact that the parameter A enters the expression for the temperature
field in the same manner as the factor exp(-\?t') in Eq. ( B-5) makes this
input particularly amenable to analysis. Here is the first divergence from
the rather general results obtained in the last two sections. It is a fruitful
divergence because of the special form of the heat flux input. The short-
time expansion of the theta function given in Eq. (B-6b) is going to be used
with the F(p, §7; A) form. This will, of course, limit the results to the
case §= 0 and a one-term expansion. This is because of the difficilties
presented by integrals of the form

as was discussed above in Section D. An upper bound on the remainiiy
terms in determined. The result is given by the expression

. Q 1 -1 f 4kt
{E-3) AU(0,0,1)= == ——__ tan + R,
’ ak n!rr a? =

where
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5 {k 1

Q NE=S ( 4kt/a? > e-l/'r

Ry < 1+ akt/az

There are several things to note about this expression. First,
for T small, this approximation is best, that is the error bound is
controlled by the term e-1/7, Second, the approximation itself does
not depend on the thickness of the slab, but error, R, does. Third,
for t fixed the approximation becomes better as the thickness of the
slab increases. This statement is somewhat redundant since this con-
clusion follows from the first. However, the conclusion in this form
emphasizes the '"'small-time' aspect of the approximation. Furthermore,
as £ = » this response approaches that of the semi-infinite body at
p = § = ( since the remainder R, >~ 0Oas £ > . A plot of this approxi-
mation is shown in Fig. 2; while the plot appears to say that the tempera-
ture is bounded as t — oo,_this is not the case since, as the remainder
indicates the approximation eventually becomes very poor as t increases
with the other parameters fixed.

10 SR |
|
09 Q = Total Absorbed Power |-+ f—-- e —}
08 £ =Slab Thickness
—_— K = Thermal Gonductivity |
k= _.a y /'
07— TMo=% s T - t
N K = Diffusivity I
= (1'6___....1 I . B
. | o /
olg O 7 b A !
s |
|
S S SO G
I
g |
T |
50 10 50 100

Fig. 2. The response to the Gaussian input as
given by the arc-tan representation.

1107-14 23



The second expansion, deduced from the large-time theta function
expansion given in Eq. (B~6a) and the F(p, £, 7 ;A ) form, is convergent for
all 7. In contrast fo the arc-tan representation, the first term of this
expansion does depend on the thickness of the slab, £. The expression
for the remainder shows that the remainder is again small for 4kt/a?
small, but by contrast to the arc-tan representation, the representation
is best when the parameter ng is large. The representation is given by

Q 1 + 4Kt
E-4 A0, &,7) = 2T ent
( ) \ gT) Y {n a,z

N
HZTTZT](Z) nzﬂzné 4Kt
+Zcosnn‘§f‘0,—— -r{o, ——— 1+ —
4 4 a

2. 2.2
'expnzlo-]-l-Ra

where

Q 2 |1~ exp(- NZ 27 +
tk  n'nd

sz_m erfc NnJTJ, N>1
<9_- 22- I—,N:o.
Ttk Tng T

From the above expression for the remainder it can be shown that
for all 1 the remainder can be made arbitrarily small by increasing the
number of terms, N, in the expansion. However, as N becomes large the
remainder vanishes only as 1/N and the convergence is very slow. However,
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in contrast to the arc-tan representation, arbitrairly good accuracy can

in principle be obtained from this expansion for all v. Finally, the accuracy
of this representation when only one term is retained is not as good as

that obtainable from the arc-tan representation, as an examination of the
remainders show. A graph of the logrithm representation is given in

Fig. 3. for two values of M, using the log term plus the first term in the
series.

0.012 —

0.010 To= 10
o =
3

0.008 /

|3
Sits /
9* Ny 0.006
:<:] (e} /
=20
0004 7o
0002 ,/
o]
0002 0004 0006 0008 000 0012 004
4kt
a2

Fig. 3. This is the response to the Gaussian input as given
by the log representation using the log term plus the
first term in the series. The response is plotted for
two values of My

This graph shows that for v and the total heat input fixed, the
temperature decreases as n, increases. This is the expected result.

The requirements necessary to use the asymptotic expansion in
Eq. (C-8) are fulfilled by the Gaussian input. The first three terms in
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the expansion are given by

r

g (6;71) +

e}

—
©
kM
!J_‘(‘r
1
{

qlr)

4 Y s .

— __) -1 klll(g,. T)

n a

(@]

_zj [ §_|.4_4{£)2+2:l ¢Z(§_,T)}+RB,

~

where the remainder is bounded by

‘R < 9 1 - (4Kt \a-
Rp 20 ™2 2% bolbn 71,

for all p. Thismayalsobewrittenh for the case of the Gaussian input as
follows.!?

. . \ 4 A /
(E-S) AU(D’E”T) = q(p) “(\—1)n (_1"]_2) ’ lb (D:IT) Lz _‘ez—) + R 6
n=0 \ ° . .
where
T
- { [ n 5
¢n(én)u ) el S iwr)
T =0
Lj (x) = Laguerre polynomials, 23,- and
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4 N+l 2
R < QKD)(-T) Lns (%E‘) N4 (E,7), N2> O.

no (0]

The expression for the upper bound can be simplified by use of the fact

that
(E-6) Ung (BT < TNy (8, )
and | iz_ < epz/“g ,

nO

where y(§, T) is given by Eq. (C-10).

One last representation for the temperature fields will be given.
It can be obtained by a variety of techniques. One technique is by in-
troducing the integral definition of Yu(£, 7) into Eq. (E-5) and then noting
that?*

00
1 Xz
(E-7) Z 2" Ly(x) =7— exp 2=, lz]<1.
n=0

Another method for arriving at the same result is by direct integration
of Eq. (B-5): ‘

T © |+1Q 22
(E'S) AU(D»&. T) = Q S‘ 83 (% y imT ') 5 e r 4) Jo()\p))\ .

2w ik

The integration with respect to X can be performed!’ to yield the following
result:

o a £ ., —1——> -ef
(E'g) A[.I(p,g,‘f)— Tle § 93<E’IWT)(4TI+.”?) exp 4,1_1 +"Tf) .
T'=

0
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This form of the response seems most useful if a numerical computation
is required. The term ¢(p) can be factored from this expression to
yield the result indicated by the sum in Eq. (E-7).

F. The Uniform Input

In this section the temperature fields due to a uniform input on
a circular spot of finite radius are presented. The input is defined in
Eq. (F~1) below. Because of the discontinuity in q(p). the results for
this case are not as abundant as they were for the case of the Gaussian
input.

One of the results is an extension of Qosterkamp's work.® It is
extended to include results for 0 < £ < £ and p = 0, while his results
held only for p = § = 0. Included is an upper bound on the remainder
which serves to give a precise meaning to the approximation. Graphical
information is also included.

The long-time Green's function, defined in Eq. (D-22), is used to
obtain the response for the uniform input. A simple explanation in terms
of the effect of radial diffusion is given. Graphical information is also
included.

The results of this section also show that when the spot size in-
creases to infinity and the input flux density is held constant, the tem-
perature response approaches that of the flat plate with a uniform input
over the entire front surface. This is of course-to be expected.

The uniform input is defined by the expression

Q 1
F-1 = = . = <
( ) ale) Ta k'’ P Mo
=0 , p > o
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where a is the radius of the spot and

2
Mo = 3

The transformed input is given by the expression?®

2
Tra?‘

Jy (Ang)

(F-2) Q) = Mo

=y

The Green's function, G{p,¢, % 7)seems to be the most useful for this
input because the integrand of the expression,

(F'3) AU(p,é,‘r)= S‘ Q()\) F(p'g’T;)\»\:
X =0

contains the product of two Bessel functions of different order and argument,
and these, as mentioned before, are the most difficult to handle. The

only possible approach using the representation in Eq. (F-3) is to make

use of the expansionz'6

(F-4) Ji(N7

0 2m
_)11?. E‘ _(inj___ )\T]O F 1 .1 2/ 2
2 ) m!(m+l)! 2 2By (-m, -1-milp T]0)
m:

p< -
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The functions , F; (-m, a;b;x2) are hypergesnetric functions, ¥ and be-
cause of the factor (~m) are polynomials of degree m in x? ., This ex-
pansion allows one to perform the \ integration, but the integration on
' cannot be carried out for £ = 0. The special case p = 0 can be
handled with the form given in Eq. (F-3) but will be obtained later with

the use of the Green's function. This result is given by the expression

T
(F-5) AU(0,E,7) = Q . -1-2(- . g (l-e-nzo/47')e3 (%, iTTT') .

T al
T'=0

Before passing to the Green's function approach, several comments about
this resultiare in order. First, it is recalled that the solution to the flat-
plate problem with a uniform input over the entire surface is given by

T
__.Q ¢ £ .
(F-6) AU = A "1:- S' 0, (—Z , 1w T) .

q
"
o

This is precisely the result that one would obtain from Eq, (F-5)
by holding Q/w a? constant and letting a »=. Also for T small the
effect of the exponential term in the integral of Eq. (F-5) is small, and
thus it is seen that when T is small, the response of the temperature
at p = 0 is that of the flat plate with a uniform input over the entire
surface, This again indicates the local nature of the response for =
small.

If the first term in the small-time expansion of the theta function
for £ = 0 is retained and the integration performed, the result is the same
as Oosterkamp's., It is not necessary, however, to require £= 0, The
integration can be performed even for £ # 0. Also an upper bound on the
remainder can be computed. For £ = 0 the result is given by

1 2 1 m
(F-T7) AU, 0, 1) = —2— . ZT -1 o (—— , E) +R,
m ak {? 'qo 2
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where

R < R . {rr -/
2 1k 12

ttention is called to the similarity of this result and the small-time
approximation given in Eq. (D-15}.

The result in Eq. (F-~17) may also be rewritten as follows:

a® /4Kt
(F-8) AU(0,0,7) = 2 . ,‘*;K; [l_e_____ N

=
& erfcf[_2 + R, ,
2 Kt (zﬁ'&)] :

which is closer tc Oosterkamp's notation. A plot of this result is shown
in Fig. 4. These formulas emphasize the ''small-time'" aspect of the
approximation. Note that the approximation does not depend on the thick-
ness of the slab (it is therefore the response of the semi-infinite slab
since R, =0 as { » ), but the bound on the remainder does depend on
the slab thickness. The requirement that Eq. (¥-7) or (F-8) be a good
approximation is that

T = % be small.

Thus for any fixedt (in seconds), the thickness of the slab can be in-
creased so that the approximation in Eq. (F-7) or (F-8) offers an approxi-
mation as good as needed. Some typical values of the normalized remainder
R/[Q/tk], are given in Table I below.

TABLE 1
Some typical values of the remainder
associated with Eqs. (F-7) and (F-8).

T R/[Q/tk]
.01 5 . 10746
0.1 2 - 107¢
1.0 51072
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Fig. 4. This is the response to the uniform
stop as obtained by Oosterkamp.

For £# 0 the response is given by the following, which is quite similar

to the earlier result in Eq. (F-8):

2
a
- Q 4Kt T4kt
(F-9) AU(O,F,,T) = ?a._k[ _a—z_ l-e

+J-].-}(z/a)7: erfc< i;-(tz//a)z)
a

«(z/a) erfc ( z/a + R,
4Kt/a

where
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Ro< @ nr [L gegrep W22
7 Ik 2 |6 S s —
T 2 T ,

0< &<,

Note again that there is no dependence on the thickness except in the re-
rnainder, and that as { — o, R, — 0. For § = 0 the above approximation

reduces to the former case.

Now the long-time Green's function is used to obtain the temperature

This Green's function is given in Eq. (D-22). In
.28, 29

response for v large.
order to obtain this result, use is made of the two integrals

) e'Konmp) = L [pK, (nmp) - m K, (nmny)].
ni
p'=p

The temperature fields for p < N, aTe given by

Mo ¢ T = =2
¢ 1 ° 55|
(F-10) AU, g,7) = 2, L L g S v rfo, 1P P17
Ta® k 2m ° 4T
p'=0 9=0
Q N £
¢ cos nm
+2 — X .
sl ? —— [Ko(nmp)ol, (nmo)
n=1

+ Ig(nmo) { 0K, (nmp)-n K, (nmn,)} ]+Rl .

1107-14 33

PROSRA




The temperature fields for p > n, are given by

(F-11) wie, gy = 5 2L g%

where

=p% +p'? - 20p'cos®

and

Some typical values of the normalized remainder are given in Table II.

TABLE I
Some typical values of the normalized
remainder for Eqs. (F-10) and (F-11).

T Rl/[Q/fk]
0.1 .10

1.0 .4 - 1073
10. .15+ 1078

Again attention is called to the fact that as a =~ » but with Q/mwa?
held constant, the above result (Eq. (F-10) must be used because of the
restriction p < no) reduces to the response for the flat plate with a uniform
input over the entire front surface, except for the term which contains
both a £ dependence and the time-~-dependence. This term has been
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absorbed by the remainder. The last summation becomes independent of
p since it is p multiplied by the Wronskian of I (x), Ko(x). The initial

integration can be performed and is proportional to T but is also in-
dependent of p.

Again the special case p = 0 can be given more attention. Setting
p = 0in Eq. (F-10) one arrives at the following result:

F-12 AU(0E, 7)) = 2 L _ 5 [4Kt

(F-12) (0.8,7) = £ Lo (Z’f
Q £ 1l 2 1
*:r;?;[zg T3

00
- Zn; z c_os_n_rr_& Kl (nm no)] + Rl

awn,

where

Again as m, —o but ol remains fixed, this result reduces to the flat-
plate response with a uniform heat flux density input over the entire surface.

Note that the first term in this response is ''tr'" multiplied by a
factor in brackets. This factor

4Kt -’ /47 : :
8 (2L kl1-eo + o rlo, To_
a 4T 4T )

will be called the diffusion factor, and it carries the effect of not having
a uniform input over the entire surface. Note that it is independent of
the slab thickness. This factor is shown graphically in Fig. 5. This
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Fig. 5. This is a plot of the diffusion factor defined
in Eq. (F=~12) assoicated with the long~time
response for the uniform spot.

figures shows that as "a'' increases, for t fixed, the effect of radial
diffusion at p = 0 decreases. Also it shows that as t or K increases
for "a' fixed, the effect of radial diffusion at p ® 0 also increases.
The last term in the response of Eq. (F-12),

[+ ]
1 1 2 cosnw §
Lg _g4l g ) cosmb (anJ,

2 nm
nsl

is independent of time, and as n_ = « the last sum vanishes and also the
response, Thus the larger n,, the less the effect of radial diffusion at
p=0, Fig. 6 displays this last sum for a range of n.,
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Fig. 6. The last summation in Eq. (F-12) is
shown for £= 0 and 0.1< mn_ <60,

G., Conclusions

Transformation techniques are used to obtain several alternative
representations of the solution in terms of the Green's function and its
transform, Some representations converge well for time small, and
some for time large,

Several asymptotic expansions are deduced for the small-time response
of the temperature fields under various assumptions on the heat flux input
density.

An extension of the results of Oosterkamp has been derived as
well as a verification of the validity of the approximations through the
derivation of an upper bound on the error.

Two specific inputs have been considered in detail: the Gaussian,
and the uniform spot. These two inputs can serve as models of the heat
flux input caused by such sources as the laser; the study of the thermal
response is the initial step in a study of the thermal-elastic response
of a slab to an input such as the laser,
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