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FOREWORD 

This  report was originally prepared under the  sponsorship of the 

U.   S.   Navy through the Office of Naval Research (Mechanics Branch), 

Contract No.   2653(00),   and was presented at the IAS 31st Annual Meeting, 

New York,   New York,   January 21-23,   1963. 

As pointed out in the text,   a part of the  study with the wedge and cone 

problems was carried out for the U.   S.   Air Force through the Office of 

Scientific Research,   under Contract AF 49(638)-952. 

Since the completion of the original version of the report,  which 

has been distributed as IAS paper No,   63-92,   errata as well as points of 

ambiguity have been called to the writer's attention; this version has been 

revised to incorporate the desirable changes. 
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THE BLUNT -BODY  PROBLEM IN HYPERSONIC FLOW 
AT   LOW  REYNOLDS NUMBER 

H.   K    CHENG 
Cornell Aeronautical Laboratory,   Inc.,   Buffalo,   New York 

ABSTRACT 

Existing theoretical analyses and experimental results of the  stagnation 
region in hypersonic flow at lew Reynolds number are discussed      The approach 
based on the thin-shock-layer approximation is extended to study flow fields 
beyond the  stagnation region as well as in the  shock-transition zone. 

The basic flow model consists of two adjoining thin layers:    a  shock- 
transition zone and a  shock  Layer.     The  sys:   m of partial differential  equations 
governing the high-density  shock layer reduces to the parabolic type.     The 
system governing the  shock • transition zone reduces to ordinary differential 
equations  similar tc  those cl the  cne - dimensional  shock wave.     They give rise 
to a  set of conservation relations  across the  shock,   which account for the trans- 
port processes immediately behind the  shock bat do not involve details of shock- 
wave  structure.    With the modified Rankine-Hugoniot relations,   the flow field 
in the shock layer can be determined independently of the  shock-transition zone, 
An essential feature of this formulation is that    when applied in conjunction with 
nonslip surface conditions,   it always yields the   appropriate    surface heat-trans- 
fer rate and skin friction (for unit  ic < ommedation coefficients) in the free- 
molecule limit      Comparison with more exact solutions of Levinsky and 
Yoshihara,   and of  Van  Dyke     reveals the adequacy ol the present theory in both 
the merged-layer  regime  and the inviscid limit. 

A finite-difference method is developed for  solving the shock-layer 
equations.     As examples  of flow around simple blunt or nonslender  shapes,   the 
problems of the paraboloid    hyperboloid    as well as the wedge and cone have 
been analyzed for a perfect gas with constant  specific heats.     Generally,   solu- 
tions for low Reynolds numoer  reveal substantial changes in total enthalpy and 
tangential velocity acros? the shock,   analogous to surface slip effects.    The 
solutions provide smooth transitions from the boundary-layer theory to the free- 
molecule limit      Tie  velocity  and temperature gradients near the inner edge of 
the  shock layer increase with distance from the  stagnation point or the  apex, 
indicative of boundary-layer development.    Results obtained for paraboloids 
and hyperboloids indicate the  existence  of  a  remarkably wide  range of Reynolds 
number (corresponding to the boundary-layer through the mcipient-mergcd- 
layer regime) in which the distributions of heat-transfer rate and skin friction 
on a  smooth blunt body remain essentially unchanged. 

Also studied is nonequilibriurn dissociation with  species diffusion in 
shock layers under influence of strong surface cooling.     Solutions for the 
stagnation region based on a single dissociation-recombination kinetic model 
show a substantial concentration jump across the shock,   and extensive influ- 
ence of surface ccohng ai  low Reynolds number      The role of pressure diffusion 
in a viscous  shock layer is also discussed 
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LIST OF SYMBOLS 

d nose radius 

b a parameter which appears in the equation of the  surface 

2   =. X -t- ~   X      ,   and is zero for a paraboloid and is positive 
4 

for a hyperboloid 

C» = M -—- /~7T  PL)2"      ,   coefficient of skin friction 

C„ s k- 4^- /£>   U     (i-j    - j-j   )   ,   coefficient of heat transfer 
'H K^r~/P   V     (H    - H,,)   .   coefficiei 

C-^ > Cir» ^        specific, heat at constant pressure,   volume,   and the ratio  "- rsp. 

£) coefficient of binary diffusion 

/ >>  /—=  
f =   KT/P    U    Z (Vz?) /2"v. •   tne nondimensionalized stream 

function with    3f /ans U/U*  defined as the velocity field 

H =-5- («2 + nrll)+ A,    ,   total specific enthalpy 

J£, specific  enthalpy 

'T "3 •&,i„ *-f-R\ 
/ 

/ "1 and    the thermal diffusion ratio defined 
/+   4        _ji      in pp.   519 of Ref.   80 (Hirschfelder, 

^ -1 •>    Curtiss and Bird)  rsp. 

J£ recombination rate constant 

i/2-   U-2 =     c   —"°    M        _!*. ,—*-)    and    £    /°°    °°    ,   respectively 

u — ^i + ^fn     "•-T where   7*?,    and   #7, 2   are the mass of the gas particles 
^T — 777,-77?      o^fi—oA* of species 1  and species 2,   respectively 

V the equilibrium constant 

^g_, =   ^ D,_ ET-, /.Jk       •   Lewis number (where    Cp,     denotes mean 
/ value of     C.«,    for the mixture). 

M the free stream Mach number 
00 

-    /" T* 

pr 2 ^^M/K     >   Prandtl number 

•pf^/Oyf pressure,   density and temperature,   respectively 

^5/ =   •P'/P    U   sdJsru p    ,   dimensionless pressure 
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*-, fy rate of energy transported to the body  surface (per unit time 
area),   and the rate of heat transfer to surface according to the 
boundary-layer  solution,   respectively 

Q heat of formation per unit mass of atom 

P  , f radius of curvature of the shock and (/jf+ Q-)    ,   respectively 

(52        F 
P  , P == -rr- j    ;'•••"••'     i   respectively,   gas constants for atoms and molecules 

Reb> ßsF = '«L'c0
a'/^oand   ^^  ^/W '   resPectivelY 

T =17^ ,   dimensionless temperature 

T reference temperature used in the determination of the constant of 

oo 

proportionality in the linear representation   U = "]" 

(J free-stream velocity 

U; /IT                   velocity components in the    <£     and    -i/-     directions,   respectively 

U , Äh =   —;      and ;——j- ,   respectively 

V the diffusion velocity of the atomic  species 

Mf rate of production of atomic  species (in mass) per unit volume 
_ z _    u 

W = ~ 
/^   zu- the curvilinear coordinates of which   <•£    is the distance along the 

" body,     "V-     is the distance normal to the body  surface or the  sur- 
face or the  shock interface (see discussion in Eqs,   (5.1) and 
(5   2)) 

s)L. the distance measured along the axis of symmetrv 

* s c —z— Hi r' ""S 
z? the distance of the  surface from the axis of symmetry 

oC the atomic concentration in mass fraction 

ß , A. shock angle and yaw angle,   respectively 

y recombination efficiency of atoms at the wall 
IT 
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A ss 

e 

£ 

c A 

1' 5 

i 

the lateral extents of the  shock layer and of the  shock-transition 
zones,   respectively 

r-i 
~ r+l 
= td. 
'      Zr 

-/V/p ^^2)   and  2-2L ,   respectively 

3^—=—£.) /l+i)K\ *• and — ,   respectively,   the transformed 
'o   "» 

coordinates employed in the analysis for the higher Reynolds 
number  regime 

3 ,ö   (J   -46«/^        —ZL.   the transformed coordinate 
4   °° *      "1   /" 

'ft 
0                            dimensionless temperature defined in Eq.   (8.13) 

@ »  LLaL     dimensionless enthalpy 

fc thermal conductivity 

cL/3 
kj ss —T2—    ,   longitudinal curvature of the  surface 

/U- viscosity 

l) a parameter which is zero in the plane case,  and is unity in the 
axisymmetry case 

p a constant defined by Eq.   (8. 8) 

rYw surface  skin friction 

7f parameter defined in Eq.   (8. 11) 

Y the  stream function with  -^— = ~(ZfrZfp<lT and -^- -(ZirZ)   pU. 
Q 

= Tj^^i^F ^mk > r¥W^< ' respectlvJly 

CO an exponent in the viscosity and temperature relation    L/LOLT 
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Subscripts 

W»oOi * > S pertaining to the surface condition,   the free-stream condition, 
the typical condition behind the shock,  and the condition within 
the shock or the shock-transition zone,   respectively 

0, l,Z pertaining to the stagnation condition in the free stream,   and to 
the conditions in front of.   and immediately behind,   the shock, 
respectively (except for the terms in the development of Eq, 
(6.8) 

t pertaining to the  stagnation condition behind the bow  shock in 
an inviscid flow 
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INTRODUCTION 

A number of effective methods have been developed for analyzing 

inviscid hypersonic flows and the associated boundary layers around blunt 

bodies (see,   for example,   Ref.   1-4).    Much less has been done,   however, 

for the corresponding problems at low Reynolds number or low density. 

The analysis of the low-density phenomena is nevertheless basic to the study 

of many problems of high-speed flight at high altitude where the thin-boundary- 

layer concept no longer applies.     In this paper,   the problem of hypersonic 

rarefied-gas flow will be  studied 'within the framework of the continuum theory. 

With an increasing degree of rarefaction,   the continuum theory begins 

to Dreak down.     Consequently,   a valid description of the flow field will have 

to be based on the kinetic theory to account for the collision processes.    The 

transition from the continuum to the free-molecuie limits from the view- 

point of flight application was considered some time ago by Tsien.       Tsien 

classified the problems of rarefied-gas flow into four regimes:    the continuum, 

the slip-flow,   the transitional,   and the free-molecule regimes.    It was pro- 

posed at that time that departure from the classical continuum model in the 

slip-flow regime may be accounted for by including in the governing equations 

the higher-order (Burnett) terms in a formal development for the solution to 

the Boltzmann equation.       However,   the growing body of evidence from both 

experimental and theoretical studies has since  shown disagreement with 

these higher-order equations,   and,   in most instances has indicated that the 

relatively simpler Navier-Strokes equations,  with appropriate boundary 

conditions to account for the  slip effects (and transport coefficients evaluated 

7   8 according to the Chapman -Enskog theory),   are superior.    '       A continuum - 
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flow model based on the Navier-Stoke s equations thus promises a domain 

of applicability far more extensive than previously conceived.    This 

9-12 view is  shared by the writer,   and the present  study attempts to extend 

the continuum-flow theory,   as far as is permissible,   into the range of rarefied 

gas dynamics. 

It is apparent that solution tc the transitional regime,   as well as the 

final justification of the continuum analysis,   will have to come from the 

Boltzmann equation governing the velccity-distribution function.    A number 

of approximate methods have been developed in recent years to overcome 

13,14   15 the difficulty of solving the Boltzmann equation. However,   a method 

which is satisfactory in both accuracy and simplicity has yet to become 

available-    Of significance in this respect is the recent study of the shock- 

transition zene by Liepman and co-workers,        in which a variant of Krook's 

collision model       is adopted.       The   solution obtained shows little difference 

from the Navier-Stoke s  solution on the higher-pressure  side of the shock 

even for a Mach number of ter*.     it seems to provide  support to the idea that 

the Navier-Stokes equations are adequate for describing flow fields even when 

the  Shockwave  structure becomes important. 

The problem of hypersonic flow of rarefied gas around a blunt body- 

has been discussed previously by Probstein in Ref.   11  where an extensive 

With this model,   the Boltzmann equation is simplified to one formally 
resembling a relaxation equation. 

To further augment this idea,   it would be desirable to include in the 
shock-structure analysis of Liepman and co-workers the effects of shock 
curvature as well as velocity and temperature gradients behind the shock. 
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account of the analyses of the  stagnation region in the various flow regimes 

1 2 is also given.     Recently,   the problem has been reviewed by Van Dyke, 

err ^na si zing the second-order boundary-la.yer theory.    The present report 

consists of two parts:    In Part I,   the existing analyses of the stagnation 

region will be discussed with emphasis on the more recent studies related 

to the viscous-layer and merged-layer regimes.    A comparison with 

experimental results is included.    The discussion is oriented toward the 

thin-shock-layer approach which is tc be further developed in Part II. 

In Part II,   the  thin-shock-layer approach to the viscous blunt-body 

problem is extended to study flow fields other than,   or removed from, 

the stagnation region.     The new development includes an extension of the 

thin-layer approximation to analyze the shock-transition zone and a finite - 

difference method for  solving    the  shock   layer equations without similarity 

assumptions.    Among the particular problems studied are viscous hyper- 

sonic flows over wedges,   paraboloids,   and other  simple nonslender  shapes, 

as well as nonequilibrium dissociation with species diffusion in the  shock 

layer under the influence of strong surface cooling. 
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PART I.     REVIEW OF EXISTING RESEARCH ON STAGNATION REGION 

The manner in which flow regimes are classified is,   of course,   quite 

arbitrary,   and varies from one problem to another.     For a stagnation region 

in hypersonic flow,   Probstein and Kemp       observe that there are six regimes 

between the boundary-layer and free-molecule limits.    Figure 1,   reproduced 

from Ref.   11,   illustrates the extent of the various regimes in terms of flight 

speed and altitude,     The boundaries delimiting each of these regimes were 

originally estimated by Probstein      for an ARDC 1959 model atmosphere 

and a cooled body of cne-foct nose radius,   assuming the compression ratio 

across the  shock to be ten.     These regimes,   numbered below in the order of 

increasing degree of rarefaction,   may be characterized by the following 

descriptions. 

(1)     Vorticity-Interaction Regime -  The boundary layer is still thin, 

but the second-order effects become appreciable.    They include slip and 

temperature jump,   surface curvatures and the interaction of the boundary 

layer,   through its finite thickness,  with the outer flow.    For the axisym- 

metric case,   the most important of these effects is that resulting from the 

external vorticity. 

(Z)     Viscous - Layer Regime  - The viscous region becomes an appreciable 

fraction of the shock layer and may be too thick to permit application of the 

boundary-layer concept. 

(3)     Incipient-Merged Layer Regime  - The viscous and other transport 

effects are no longer negligible behind the shock,   and the thickness of the shock 

itself becomes an appreciable fraction of the shock layer.    Hence the shock as 
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a surface of discontinuity may no longer be an adequate description. 

(4) Fully-Merged Layer Regime  - The shock thickness is comparable 

to,   and perhaps even greater than,   that of the shock layer.    Not only is the 

shock layer fully viscous,   but the  shock-transition zone may no longer be dis- 

tinguished from other parts of the flow field. 

(5) Transitional Regime - The collision frequency among gas particles 

is not high enough to make the continuum description valid,   yet not sufficiently 

low to make the kinetic-theory description simple. 

(6) First Collision Regime  - There is only a small fraction of incident 

particles experiencing one collision or more before reaching the body 

surface. 

The pre sent report mainly concerns regimes (l)-(4).    The study will be 

made under the assumption of a continuum flow model governed by the Navier- 

Stokes equations.    That assumption has in fact been implicit in the determination 

of the various boundaries in Fig.   1.    For later reference,   the regimes (3) and 

(4) together may be called the merged-layer regime. 

Aside from providing a general picture of the flow field at various degrees 

of rarefaction,   the above classification serves to indicate the appropriate flow 

models for analysis.    Attempts to analyze the stagnation region for regimes 

(l)-(4) have resulted in three main approaches.     One,  which applies to regime 

(1),   assumes  small departure from the boundary-layer limit.    This approach, 

which has been most extensively treated,   may be identified with the higher- 

order boundary-layer theories.    In another,   applicable to regimes (2),   (3), 

and partly to (4),   one considers viscous and other transport effects throughout 

the shock layer,   and integrates numerically a system of simplified Navier- 
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Stokes equations along the axis of symmetry.    Encompassing both of these 

approaches is a third approach,   favored by the present author,   which utilizes 

the thin-shock-layer approximation familiar from the inviscid hypersonic 

18-21 flow theory. The analysis based on this third approach only requires 

the distinction between two flow regimes,   labelled I and II in Fig.   1.1,     Regime 

I contains regimes (1] and (2) of the foregoing classification; Regime II contains 

(3) and the main part of (4).     Current theories will be discussed under these 

three main approaches in Sections  1-3,    The results of theories and experiments 

from several  sources are compared in Section 4, 

1.    SECOND-ORDER BOUNDARY -LAYER THEORIES 

The  second-order corrections to the boundary-layer theory may be  sub- 

divided in various categories:    the external vorticity effect,   slip and temperature- 

jump effects;  the ncn-vanishing  surface curvature effects;  and the boundary-layer 

displacement effect.    The boundary-layer displacement affects directly the 

matching of the boundary la/er with the outer vortical flow,   and also induces 

pressure and velocity changes in the outer "inviscid flow".    On account of 

their subtle nature,   the  subdivision concerning displacement effects has been 

rather arbitrary. 

4 
The relatively earlier analyses of Hayes and Probstein.      Rott and 

22 2 3 Lenard       and Kemp      are devoted primarily to the effect of external vorticity. 

More  systematic treatments of the  sec end-order effects are subsequently given 

24 25 2b by Van Dyke,        Lenard       and Maslen. The .analysis of Ferri.   Zakkay and 

27 Ting       considers vorticity effect and may also be regarded as belonging to this 

class.    There has been considerable disagreement among the various analyses 
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of slip and temperature-jump effects,   as well as the vorticity and displacement 

12 effects.     Readers are referred.to Van Dyke's review       for the many critical 

discussions and comments.     The following discussion will concern only certain 

outstanding aspects of the higher-order theories which must be considered sub- 

sequently in this paper:    the external vorticity effect,   the displacement effect, 

and the slip and the temperature-jump effects. 

1 . 1    External Vorticity Effect 

28 In his earlier work on the external-vorticity effect,  Hayes''    assumes 

that the boundary-layer displacement does not appreciably change the pressure 

and velocity distributions along each streamline in the outer flow.    He arrives 

at a modified outer boundary condition for the velocity field   f.       in the form 

^ = 1+ 2 fl f r\ > co (i.i) 

where   1'L    ,   termed the vorticity-interac tion parameter,   is the ratio of the 

external vorticity to some average value of vorticity in the boundary layer. 

This condition was applied to study the axisymmetric stagnation-point boundary 
4 

layer by Hayes and Probstein.        In this case,    _f~2_      is given by Hayes and 

Probstein as 

z /v      3 /        J   /"• 

T e m3/* //7T  / P« -n- = "  -••-'"--•—--   ' -irr (1.2) 
3 

Equation (1.1)  shows clearly that external vorticity effectively increases the 

velocity at the boundary layer's outer edge.    One may note that since Eq.   (1. 1) 

does not contain      n       ,   it also allows for the  streamline displacement in the 

matching of the inner and outer velocity fields. 

The above boundary condition may be replaced simply by 

d, z 
-> CL (7} > oo) 
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The equivalence of Eqs.   (1.1) and (1 , 3) is guaranteed by the differential 

2 3 29 
equations governing     -f     ,   as noted by Kemp       and Moore, 

The method based on the local-similarity principle has been a very 

useful tool for analysis of heat transfer from a hypersonic boundary layer to 

a relatively cold body.    ' It is natural to anticipate an extension of the 

method to account for the ext ernal-vorticity effect.    This is presumably the 

2.1 
viewpoint of Ferri,   Zakkay and Ting      who treat the vorticity interaction on 

the basis of a iocal-flat-plate similarity.    This basis implies however that 

the velocity profile is completely unaffected by the tangential pressure gradient 

as well as by the external vorticity.    The outer inviscid flow is assumed to have 

a linear velocity profile and is completely unaltered (and undeflected) by the 

presence of the boundary layer.    The procedure of joining the inner and outer 

solutions appears to be «. rather complicated one which involves matching the 

velocity and temperature fields ever two separate boundaries.    One of the 

final equations used (Eqs.   {34'. or (38) of Ref,   27) may nevertheless be iden- 

tified in form with Hayes' boundary condition Eq.   (1 , 1), 

1 . 2   Displacement Effect 

Except for the displacement effect implicit in the boundary condition 

of Eq.   (1 . 1),  Hayes and Probstein's vc rticity-interactton theory assumes   no 

displacement effect un the outer flow.    This assumption is justified in the 

case of a thin shock layer.    In order to account for the displacement effect 

completely,   one has to solve the difficult elliptic problem (presumably by 

1 2 
iteration),   and this has been done only by Van Dyke. Unfortunately,   the 

problem is further obscured by an apparent confusion over the division of 

24 
the vorticity and displacement effects.    While Van Dyke's analysis       is 
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believed to be the most systematic and elegant,   his  subdivision of the inter- 

action problem into the effect of "entropy gradient" (i.e.   vorticity) and the 

effect of "displacement speed"    is not completely satisfactory,    In each of 

these effects,   according to this classification,   there is a second-order effect 

appearing in both the outer boundary condition as well as in the governing 

differential equations.     The second-order corrections in the differential 

equations actually arise from the change in the pressure at the boundary 

layer's outer edge,   and may therefore be combined as the displacement 

effect on the external pressure.    The combined effect turns out to be,   in 

most cases,   much smaller than if separately calculated,   and,   as already 

noted,   is negligible in the thin-shock-layer approximation. 

1. 3   Slip and Temperature-Jump Effects 

22   25 24 While the analyses of Rott and Lenard, as well as Van Dyke, 
? A 

show sizable slip effects,   Maslen's analysis       reveals that these effects 

are definitely negligible for heat-transfer analysis.     It may be noted that the 

results of these analyses depend,   of course,   on the  specific coefficients 

entering the slip and temperature-jump conditions.     The large temperature- 

jump effects reported by Rott and Lenard,   and by Van Dyke are rather  sur- 

prising,   since these effects are known to vanish in either the limit of a 

vanishing wall-to-stagnation temperature ratio or the limit of a vanishingly 

thin shock layer. 

The change in velocity at the outer edge associated with the boundary- 
layer displacement. 
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2.  ANALYSIS OF VISCOUS SHOCK LAYER BASED ON SIMILARITY ASSUMPTION 

When departure from the boundary-layer limit is too large for the con- 

cept to be applicable,   the full Navier-Stokes or other appropriate equations 

must be used to describe the  stagnation region.    Most of the existing analyses 

in this class use the Rankine-Hugoniot shock relations as an outer boundary 

condition,   and,   therefore,   can be applied only to the viscous-layer regime. 

However,   in the merged-layer regimes,   the Rankine-Hugoniot relations are 

not applicable and have to be modified.    In order to make the analyses tract- 

able,   it has been found necessary to invoke the  similarity assumption for the 

flow field in the stagnation region,       This assumption is justified for two types 

of models:    one assumes a constant density,   the other a thin shock layer. 

2.1    Similar Solutions Based on Constant Density 

Assuming a constant density behind a spherical cr cylindrical shock which 

1 0 is concentric with a spherical or cylindrical body,   Probstein and Kemp"     have 

reduced the Navier-Stokes equations in the  stagnation region to a system of 

ordinary differential equations.    Solutions are obtained for a cold surface both 

in the viscous-layer and in the incipient-merged-layer regimes.    The analysis 

in the latter regime must include the thicKness-curvature effect of the shock 

and the modification of the Rankine-Hugoniot relations to allow for the trans- 

port effects immediately behind the shock.     In Probstein and Kemp's model, 

the  shock-transition zone is treated separately from,   but simultaneously 

with,  the shock layer.    In spite of the many idealizations of the flow 

The similarity assumption amounts to postulating the flow field to be in a 
certain   form,   so that a separation of the variables may be achieved in the 
governing differential equations.    By the similarity,   the problem is reduced 
to one involving only ordinary differential equations. 
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model,   the analysis of Probstein and Kemp was first to reveal the many 

important features of the viscous-layer and incipient-merged-layer regimes. 

This constant-density model perhaps describes more appropriately the 

32 
physical problem of an insulated body,  which has been considered by Hoshizaki 

in the viscous-layer  regime.    The constant-density viscous-layer model has 

33 34 
been analyzed by Oguchi       to include a magnetic field.    Oguchi       has,   in fact, 

"t- I applied a systematic expansion in the density ratio          to describe 

analytically the constant-density viscous-layer model.    Although the range of 

validity of Oguchi1 s  solution is limited by the viscous-layer model and by the 

breakdown of the formal expansion at high Reynolds number,   the simplicity to 

be gained by the thin-shock-lay er approach is quite evident from the analysis. 

2. 2   Similar Solution Based on Thin Shock Layer 

The  stagnation-point boundary layer is much easier to handle than the 

corresponding problem based on the full Navier-Stokes equations because the 

boundary-layer equations are parabolic and amenable to separation of variables 

for the  stagnation-point problem.     The Navier-Stokes equations may,   however, 

be simplified also to the parabolic type by assuming that the shock layer (which 

includes the boundary layer  as a part) is thin.    In this way,   the  similarity 

assumption in the  stagnation region can be justified without the assumption of 

34 
constant density.     Thus,   Ho and Frobstein       integrate numerically the 

simplified Navier-Stokes equations along the axis of symmetry from the body 

to the shock in the viscous-layer regime.    The reduced equations are similar 

to the boundary-layer equations except that the outer boundary is now at a 

finite distance from the  surface (where the Rankine-Hugoniot shock conditions 
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are to be satisfied) and that the tangential pressure gradient is not a constant. 

35 Herring       postulated simply that the boundary-layer equations hold between 

the body and the shock.    His analysis of the stagnation region is then virtually 

the same as Ho and Probstein's,   except for the fact that the tangential pres- 

sure gradient term in the momentum equation is a constant determined by its 

value at the shock.     Chung       studied nonequilibrium dissociation in the viscous 

stagnation region.    He carried out his  study within the framework of the viscous- 

layer model of Ho and Probstein,   but evaluates the tangential-pressure- 

gradient term as in Herring's analysis.    The results of Chung's calculation 

will be discussed later in connection with the study of Section 7 of Part II. 

37 
Also using a viscous-layer model.   Goldberg and Scala       studied mass trans- 

fer in the hypersonic  shock layer.    The validity of some of their results may 

be questionable because of the local chemical equilibrium postulated. 

The use of the Rankine-Hugoniot relations in the viscous-layer model 

presupposes that the shock thickness and the transport effects behind the shock 

are not important.     Germain and G<Mraud,        and also Chow and Ting,        noted, 

however,   that,   in order to claim superiority over the vorticity and other 

second-order boundary-layer theories,   theories based on the viscous-layer 

model should also include the  shock thickness effects.    These effects,   though 

small for a high shock compression ratio,   have been analyzed as corrections 

in Refs.   38 and 39. 

A more recent analysis of the stagnation region in the merged-layer 

40 regimes is given by Levinsky and Yoshihara.        They,   unlike Probstein and 

Kemp      who assume a constant density for the shock layer and treat the  shock- 

transition zone by an approximate method,   applied the compressible viscous- 
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flow equations along the axis of symmetry from the body upstream to infinity, 

including the  shock-transition zone.    Although a great number of the higher - 

order terms from the Navier-Stokes equations are retained in their analysis, 

the reduced system of equations is self- consistent only to the leading approx- 

imation.    This is apparent from the assumption of a density field having 

spherical symmetry.     On account of this degree of approximation,   the analysis 

cannot be applied to the entire domain of the "fully-merged-layer regime" as 

originally defined by Probstein and Kemp       (which permits a rather thick shock) 

without sacrifice of accuracy.     The numerical solution of this analysis will be 

discussed later in connection with the new treatment of the  shock-transition zone 

developed in Part II. 

Most analyses described above have to make use in one way or another 

of the thin-shock-layer assumption.     This assumption has been used only to 

make the similarity solution possible.     Strictly speaking,   these analyses are 

no more accurate than the leading approximation given by the inviscid shock- 

1 9t - ? 1 
layer theory. An approach making consistent use of the thin-shock-layer 

approximation may therefore describe the problem with equal accuracy.     In 

fact,  under this approximation,   the analysis of the stagnation region embodies 

the analyses of both Sections  1  and 2. 

3.    THIN-SHOCK-LAYER THEORY 

An analysis of the stagnation region based on a more consistent application 

of the thin-shock-layer approximation has been given in a previous paper by 

41 the author. By this thin-layer approach,   curvature,   slip and displacement 

all become negligible higher-order effects.    The essential features of that 
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analysis will be discussed below.     In addition to reviewing the basic work 

on the axisymmetric problem,   previous related analysis for yawed cylinders 

will also be discussed. 

3.1    Two Continuum-Flow Regimes 

In the thin-layer approach,   there are two important parameters   £ 

and     K        defined as 

i-— • <^^-it^j ,3'i) 

2 
The parameter    /^      ,   except for a factor weakly dependent on the reference 

temperature,   is essentially the product of    £     and the Reynolds number   Rey, 

used by Probstein and Kemp. For the analyses of the  stagnation region in 

hypersonic flow,   the problem falls into two regimes (see Fig.   1). 

(3.2) 

9 

Regime I :       0(0 ^ £ K    < °o 

Regime II:       0(E) ^ £ <     <= 0(l) 

Note that the lower limit of Regime II includes a major portion of the fully 

merged-layer regime where the  shock layer and the shock-transition zone 

are comparable in thickness.       Also,   because of the overlap at  6K  a  0(0 , 

the viscous-layer regime is covered by both Regime I and II. 

3.2   The Higher Reynolds Number Regime 

The problem of the stagnation region with axisymmetry is reducible 

in Regime I,   which includes also the viscous-layer regime,   i.e.  6 K    = 0\l ) 

In terms of    £     and   K    ,   the domain of the incipient-merged-layer and 
fully-merged-layer regimes defined originally by Probstein and Kemp are, 
respectively,   0 (YT)  ^ E K * £ 00) and   0(L

VZ
) == £ K * ^  0(}T) 
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virtually to the vorticity-interaction theory of Hayes and Probstein.       This 

is possible because under the thin-shock-layer approximation,     which is subject 

to an error of order    £    ,   the asymptotic  solutions to the  stagnation-point 

boundary layer also describe the inviscid (vortical) portion of the  shock layer. 

Since the Reynolds number in this regime is  still quite high,   one may replace 

the shock boundary by  H—>oo   in the boundary-layer coordinate.    A more 

detailed discussion of this reduction is given in Ref.   41 . 

The system of equations governing the axisymmetric stagnation region 

in Regime I is 

Q"+ Prf ®'= 0 (3.3) 

where the parameter 

I - 8e 

^* - 

is basically the same as    STL     of Hayes and Probstein (if the reference temper 

ature    T       is equal to the wall temperature     "["       ,   _Q_     can be reduced 

essentially to    _Q_     ).    One recalls that,   in arriving at Eq.   (3. 3) or its 

equivalent,   Hayes and Probstein assume   _f"L   small and have to invoke the 

principle that the flow properties along the outer  streamlines are not affected 

by the boundary-layer displacement.     Under the   present thin-shock-layer 

approximation,   this principle is fully justified,   and the current controversy 

regarding the vorticity-displacement effect is by-passed.    In the present 

formulation,   the magnitude of  I"L* is not necessarily small,   in fact,   in the 

(3   4) 
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viscous-layer regime,   _Q_    =  0\&'j •    ^-n t'le case of plane flows,   the 

external vorticity vanishes at the surface and has relatively small influence 

on the boundary layer.    The treatment of the viscous-layer regime based on 

Eq.   (3, 3),   in addition to having removed the need for simultaneously determining 

the  shock stand-off distance with other unknowns,   has the merit of combining 

the specific-heat ratio    y   and the Reynolds number into the parameter   £)_ 

3, 3   The Lower Reynolds Number Regime 

Although the slip and temperature-jump at the  surface may eventually 

become larger at lower Reynolds number,   they cannot exceed the order 

y£ -^-     cH     ,   i.e.   /£.   -=p*- ,   so long as the thin-shock-layer approximation 

42   43 applies.      ' For a cold body,   these effects may therefore be neglected,   or 

separately treated..     On the other  hand,   the transport processes immediately 

behind the curved bow shock give rise to substantial changes in the tangential 

velocity component and total enthalpy across the  shock.    These effects resemble 

the slip temperature jump phenomena.     Probstein in Refs.   10 and 11  emphasizes 

the importance of the shock-thickening effects ia the merged-layer regimes. 

41   42 The study under the thin-shock-layer approximation     '        reveals,   however, 

that the contribution of the finite shock thickness is only secondary and may 

be neglected as compared to the more important "slip effects" at the   shock. 

(This will be further confirmed by the development in Section 5.3)    In fact, 

this is borne out by Probstein and Kemp's       analysis of the shock-transition 

zone (although it was not clearly brought out in that work).       Thus,   even in 

the merged-layer regime the Rankine-Hugoniot relations need only be modified 

"The  slip-like transport effects at the shock have recently been studied by 
Pan and Prob stein in the leading-edge region of a sharp flat plate. 4^ 
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to account for the transport effects behind the shock,   treating it as a 

surface of discontinuity.    Contributing to this result are two factors: 

first,   the shock thickness in the regimes considered is still thin in com- 

parison with the shock's raclius of curvature,   and second,   the average 

density within the  shock-transition zone is actually much closer to the low 

free-stream density than that in the thin-shock layer behind it. 

For the axisymmetric  stagnation region and a linear viscosity-temperature 

relation,   an analytical development is possible in this regime.    In terms of the 

variable    t   =   7~f~/'p    U   7f ?_Z    >   related to the  stream function,   the leading 
/ /    '   CO        00 

terms in the development for the tangential velocity component and the enthalpy 

function are simply 

u = U 

Uoo'twL 
=  K fc£ 3.5) 

where   P. (t)  is the incomplete gamma function of order 1/3 in the argument 

t     ,   and the parameter   Jfc,     is equal to    2 Ry 3 \/l + -£j  ~ l\ •    The second 

terms in the development,  which are proportional to     £      ,   have been deter- 

mined and given in Ref.   41 .       Except for a constant of proportionality,   the 

velocity ratio     U     of Eq.   (3.7) is identified in form with the corresponding 

solution of inviscid Newtonian shock-layer theory for   £—*-0 

Because of the dependence on     «*     ,   the magnitudes of the correction terms 
are actually not given by   0(6)      but are considerably larger near the body   .. 
(See Ref.   42).    By a systematic expansion in terms of      y~ (        ,   Shidlovsky 

r+i 
has recently obtained an analytic development similar to that described above. 
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3.4   Stagnation Region of a Cylinder at Yaw 

The same thin-layer model has been applied to analyze the  stagnation 

region of a cylinder at yaw. 

In the case of an unyawed cylinder,   the heat-transfer rate determined 

from the analysis (for     £.    = 0.10, Tw/T0—> 0 ) shows little departure from 

the rate based on the boundary-layer theory for    K      as small as 1. 0 even 

though the velocity and enthalpy profiles obtained would suggest considerable 

difference from the boundary-layer theory.    Apparently,   the (higher-order) 

vorticity effect and the slip-like effects behind the shock tend to compensate 

each other. 

The analysis for the yawed cylinder is essentially similar,   and is 

particularly simple for unit Prandtl number.    The essential parameter govern- 

ing the yawed cylinder is 

K   xiAo A 

where   A.    is the yaw angle.    The analysis carried out for unit Prandtl 

number shows insensitivity of the enthalpy profile to yaw at both high and 

low Reynolds numbers.    This result suggests a yaw independence principle. 

Accordingly,   the heat-transfer rates for ail yaw angles can be correlated as 

V5      K   Ä-A cc^A. 
For     JA oC   T     »   and taking into account the dependence of the reference 

2 
temperature on the yaw angle,   the parameter      \C   sec .A.      may be replaced 

by 

This rule of correlation is consistent with the previous results obtained by 

Reshotko et al      '        for the boundary-layer limit.    The results of Ref.   42 
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show that the correlation  is reasonably accurate even for yaw angles as large 

as 60°. 

4.    COMPARISON OF RESULTS FOR STAGNATION-POINT HEAT TRANSFER 

The heat-transfer rate is a quantity of engineering interest,   and can 

also be measured, in experiments conducted in low-density tunnels.    Some 

controversy appears to have arisen in recent years concerning the pre- 

dicted and measured values of this quantity at the stagnation point of a sphere. 

In the following,   the heat-transfer rates predicted by the various theories 

will first be examined. 

4. 1    Theoretical Results 

The theoretical results may be discussed in two ranges corresponding 

to high and to low Reynolds numbers. 

High Reynolds-Number - It is advantageous to consider first the 

results obtained from the thin-shock-theory,  which is not restricted to the 

small vorticity effect.     The result based on numerical integration of Eq.   (3. 3) 

for    pr     = 0. 71 ,   gives (best fit in the range of  0 <= Q   4z / , 0 < ~^- *•  0.40  ) 

±ZJt^ s o.5o a,-o.i i nl t4-1* 
where     Q.    is the surface heat-transfer rate and the subscript   SL    signifies 

the boundary-layer limit. 

27 
With the exception of the theoretical results of Ferri and co-workers, 

there is a reasonable consistency between Eq.   (4.1) and the vorticity effects 

predicted by others based on the  second-order boundary layer theory.     Van 

Dyke in Ref.   24,   assumes   Pr     = 0.71, \/j0 - 0.20,   and     7    = 1.40.     In 
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the form of Eq.   (3. 5),  his results    (excluding the temperature-jump effect) 

7 ft 
give the value 0.46 as compared to the coefficient 0.50.     Maslen,        and 

more recently Probstein (private communication),   consider    pr    = 1  and 

77,/T —^0»   and obtain 0.45 and 0.44,   respectively.    Ferri and co-workers 

give their results in terms of a parameter   <*i//2ARs      which may be closely 

identified with    f\     •    However,   the vorticity effect predicted by them appears 

to be 30 to 507o larger than the above results. 

There is an apparent inconsistency between Eq.   (3. 5) and the earlier 

4 
result of Hayes and Probstein    who gave a coefficient of 0.19 instead of 

0. 50.    Their calculation was made for    R-     =0.71,   and a low value of "Ty//Te   • 

Instead of the linear viscosity-temperature relation,   as used in most other 

analyses,   the Sutherland law is used.     Clearly,   the discrepancy results from 

the difference in the viscosity law.    In order to compare the two results,   one 

must use the appropriate reference  temperature   in the linear viscosity law, 

which in this case can be taken,   according to the  study of Ref.   45 as 

Ts + Tw J^_ (4  la) 

and one must remember that,   implicit in Hayes and Probstein's parameter 

f\   of Eq.   (1.2),   the wall temperature is taken as a reference temperature. 

Allowing for a low value of T^/T   >   the relatively small numerical coefficient 

42 
given by Hayes and Probstein can actually be accounted for. The apparent 

discrepancy should not be taken,   however,   to indicate inadequacy of the linear 

In this example with a cold surface,   the effects associated with curvatures 
and displacement are very small.    The ambiguity resulting from the arbitrary 
division of the vorticity and displacement effects mentioned in Section 1  does 
not arise. 
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representation of the viscosity-temperature relation.    Examples in Ref.   45 

show in fact that with the proper reference temperature the linear relation 

is adequate for predicting the heat transfer rate,   skin friction,   shock stand- 

off distance and other quantities of interest.    Rather,   the discrepancy 

reflects the inappropriatenes s of using the wall temperature as a reference 

condition for the definition of  £)_    .    In fact,   Hayes and Probstein's results 

lead to an infinite rate of heat transfer in the limit of  -— *•()   • 
T 'o 

Low Reynolds Number  - Heat-transfer results pertaining to the merged- 

layer regimes have been obtained by Probstein and Kemp,        Levinsky and 

41 42 Yoshihara,        and the author. For these regimes,   the thin-shock-layer 

approach yields the first approximation consistent with Eq.   (3. 5) as 

CH =   5/Dl U) * Jk 2/3 e"*] (4.2) 

which approaches the free-molecule limit corresponding to a unit accommoda- 

tion coefficient.    One notes that the effect of the specific heat ratio     7   will 

only appear as a correction to the value of    CH    given above,  which is a function 

only of   Jk Therefore,   flows with different values of     y     should correlate 

reasonably well in terms of the parameter    |<      in the merged-layer as well as 

in the viscous-layer regimes (see the numerical solutions given in Ref.   41 and 

42),     In fact,   the heat-transfer rates based both on the  solutions of Levinsky 

and Yoshihara       (     y s —r- ) and that of Probstein and Kemp       (constant-density 

model with     ?-z. —~ ),   agree reasonably well with Eq.   (4. 2).     The corresponding 

shock stand-off distance (to be more precise,   the thickness of the  shock layer) 

predicted by Probstein and Kemp is,   however,   much higher than that obtained 

41 by the present approach,        primarily because of their constant-density 

assumption. 
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4.2   Experimental Results 

Measurements of stagnation-point heat transfer have been made on 

46 
spheres in hypersonic rarefied gas flow by Neice and co-worker,        Ferri 

27   47  48 49   50 51 and co-workers,      '       '        Wittliff and Wilson,      '        Varig,        Bloxsom and 

52 Rhodes,        and Hickman and Giedt (unpublished but reported in Ref.   12). 

Similar data for yawed and unyawed cylinders were also obtained by Vidal 

50 and Wittliff. While discrepancies do exist among the data reported,   as 

well as among analyses,   the general trend of the data does bear out the 

theoretical predictions.    The disagreement between theory and experiment 

is found mainly in the vorticity-interaction regime where the departure 

from the boundary-layer prediction is actually quite small. 

27  47 In Fig.   4. 1 ,   the data for spheres of Ferri and co-workers 

which encompasses both the high and low Reynolds number regimes,   are 

reproduced along with theoretical predictions based on their analysis of 

Ref.   27.    The data were taken in tests with a stagnation temperature 

T0    = 1280°K and test flow Mach numbers of 5 and 8.    If one assumes 

vibrational equilibrium,   the value of    £.    behind the shock should be about 

0.13 to 0.14.    The experimental data are presented as sA       vs   Re     , 

where   Q.    is the stagnation-point heat-transfer rate measured on a small 

sphere and     4. is the heat-transfer rate measured on a considerably 

larger  sphere corresponding to vanishing vorticity.    The Reynolds number 

Re      may be related to    |<      as 

= &zS_f:  ~    Reb   =    i /T0  MA K
Z 

o    -  auzsJ:  ~   "cfa UJ°.,£2*. ±__ (4.3) KeF   - /Ut ~    /2   £       -     /TVTH     MO)   lZ 
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Included in the same figure for comparison is the theoretical curve based 

on the thin-shock-layer approach described in the last section (for both 

Regimes I and II) calculated for    Pr    =0.71,    7L/T 0,   and       &   =0,13. 

Also included in the figure are the relatively recent measurements of Vidal 

50 and Wittliff. Their experiments,   performed in a hypersonic  shock tunnel, 

extend the measurement ot a range corresponding to the fully-mergcd-layer 

regime and beyond.       Although the  shock-tunnel data of Vidal and Wittliff are 

obtained for a test section stagnation temperature as high as    T0   = 2500 — 

3000°K,   chemical reaction is expected to be frozen both in the  shock-layer 

as well as on„the (noncataiytic) surface.      There was nevertheless a consid- 

erable concentration of atomic species present in the test flow of the experi- 

ments due to freezing in the nozzle expansion.    In the data correlation of 

Ref.   50 the energy associated with the frozen atomic  species has been 

subtracted from the total enthalpy. 

The general trend of agreement of these data with theory is quite 

evident from Fig.   4,1.     In the higher Reynolds number range ( Re     —    500), 

there is a rise over the boundary-layer value due to the external-vorticity 

effect.    In the lower Reynolds number range ( Re   ^ 500),   the heat transfer 

ratio  a. ,'<L    begins to decrease and scon goes below unity,   approaching 

the free molecule limit.    If one considers the scatter of the data and the 

degree of approximation in the analysis,   the agreement is reasonable.    To- 

ward the high Reynolds number end,   the data of Ferri and co-workers agree 

Only data in the range of 0 , 1 0   —   K    —  •      of Ref.   50 are included in Fig 
4.1. 
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well with their own theoretical prediction, but appear to be higher than that 

predicted by the thin-shock-layer approach (as well as the others). As far 

as the fractional increase in heat transfer {f-^f   ) /   9" ^s concerned, 

measurements of Ferri and co-workers are consistently higher than the 

writer's prediction by 30 to 50%.    The unsolved discrepancy suggests that 

effects of vibrational (and perhaps also rotational) relaxation in the experiments 

on the vorticity effect should be examined. 

Heat-transfer data for  sphere obtained by Hickman and Giedt (reported 

by Van Dyke) at Mach numbers from 2 to 6 in a low-density wind tunnel have 

been compared with the  second-order boundary layer analysis by Van Dyke. 

The measured departure from the boundary-layer theory is  seen to exceed the 

prediction by a  factor of two or more.     It has been noted in Section 1  that 

the  slip and temperature jump effects in Van Dyke's calculation are comparatively 

large,    As indicated by Van Dyke himself,   simply deleting them would bring 

better agreement with experiment. 

Heat-transfer rates along the stagnation streamlines of yawed and 

unyawed cylinders have bean measured in the low-density hypersonic shock 

45 tunnel and compared with the. analysis of Cheng and Chang      by Wittliff 

50 and Vidal. The comparison bears out the validity of the independence 

principle mentioned in Section 3.3. 
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PART II.    EXTENSION OF THE THIN SHOCK LAYER APPROACH 

The  study in Part I reveals clearly that the thin-shock-layer approxima- 

tion,   appropriately modified to take account of the transport effects,   simplifies 

and unifies analyses in both the low and high Reynolds number regimes.    In 

Part II,   this approach will be extended to study flow regions other than,   or re- 

moved from,   the  stagnation region; a treatment of the shock-transition zone is 

included.    In Section 5 below,   the basic flow model will be developed,   the prob- 

lem formulated,   and the adequacy as well as limitations of the approach dis- 

cussed.    Section 6 will present and discuss a numerical method based on a finite 

difference approximation for solving the  shock-layer equations.    The method is 

applied in Section 7 to study flows over wedge,   paraboloid and other  simple 

nonslender shapes.    Finally,   in Section 8;   the thin-shock-layer approach is 

generalized to include nonequilibrium dissociation and specific analysis is made 

of the stagnation region. 

5.    THE THIN SHOCK LAYER APPROACH TO THE VISCOUS BLUNT BODY 
PROBLEM 

In this section, the basic assumptions and the flow models underlying the 

thin-layer approach will be discussed; equations governing the shock layer and 

the shock-transition zone will be derived; and the initial-value problem formu- 

lated.    As examples to demonstrate adequacy of the general formulation,   solu- 

12 53 tions are tested against an exact numerical solution of Van Dyke       and Swigart 

for a paraboloidal shock in the inviscid limit,   and against the numerical solution 

40 of the stagnation region obtained by Levinsky and Yoshihara       in the merged- 

layer regime. 
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5. 1    The Two-Layer Flow Model 

For the purpose of the present analysis,   the flow field around the body 

may be divided into an inner and an outer region as illustrated in Fig.   5. 1: 

the shock layer and the shock-transition zone.    For convenience,   the surface 

separating the two regions will be referred to as the "shock interface".     The 

compression ratio p/p    across the shock-transition zone is assumed to be 

high.     Both regions will be assumed to be thin in comparison with a typical 

dimension of the body (say the nose radius or a lateral dimension); this assump- 

tion is consistent with high compression ratio assumed. 

With the exception of the  study of Section 7 which deals with the nonequi- 

librium dissociation.,   an ideal  gas with constant specific heats is assumed. 

In the subsequent analyses,   a linear viscosity-temperature relation may be 

adopted.    The formulation presented applies to piane and axisymmetric  steady 

flows around smooth;   nonslender bodies. Applications are made mainly to 

highly cooled surfaces with low wall-to-stagnation temperature ratios. 

Let    <#   denote the distance along the body  surface and    <y-    the distance 

along the outward normal from the  surface;    /£    and    ^    form a pair of 

orthogonal curvilinear coordinates (refer Fig.   5.1).     It is assumed that both 

3 9 the  shock laver and the  shock-transition region are thin so that   -x—-CC -=—. 

Implicit in the assumption of constant specific heats is the assumption that 
internal degrees of excitation,   such as molecular vibration and dissociation 
do not undergo the processes of relaxation.    Under this condition,   one may 
assume a zero "bulk viscosity".    ' ow 

The nonslender bodies admissible for the present study can be pointed,  but 
the surface angle must not be small and (except the apex of a pointed body) the 
surface curvature must be finite. 
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The Navier-Stokes equations governing the compressible,   viscous,  heat- 

4   24 conducting flow   '        may then be reduced to the following form,   neglecting 

the transverse and longitudinal curvature effects and retaining only the 

highest-order derivatives with respect to   1L   in the transport terms. 

i^+ ptcu
z + p (uJL + ^^^s -y^Vy 

(5.1) 

Y 
Here    U.        is the velocity component along   /£   ;  /y   ,   velocity component 

along   1L,   ;    p   ,   the density,  4» ,   the pressure;   J\j   ,   the specific enthalpy; 

jiK     ,   the coefficient of viscosity;    E    the distance of the body surface from 

cLß 
the axis of symmetry;    Yj      ,   the longitudinal curvature of the surface —p—   . 

The index     >>     is zero for plane flow and unity for axisymmetric flow.     Pr 

is the Prandtl number.    These flow variables are further related through the 

equation of state  -p = l?/)T>   ^/^C.T,   and the relation between ju.    and    T    . 

In the above equations,   both the transverse curvature effect,   as well as the 

higher-order longitudinal curvature effects,  have been neglected. 

The system of Eq.   (5.1) which has been given previously by Hayes and 

4 
Probstein    is valid in the shock layer and in the shock-transition zone to 

within errors of the order   &/<&   and   5 fa,  ,   respectively.    To the  same degree 

of accuracy,   the coordinates (   /& , <U,   ),   and the corresponding velocity com- 

ponents ( u.   > <V ),   in the system of Eq.   (5. 1) may also be interpreted as the 

coordinates and velocities parallel and normal to the shock interface instead 

of to the body surface.    The terms   - p fcc K/tr in the second of Eq.   (5.1) and 
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and can be neglected.     One may note that the system of Eq.   (5. 1) is parabolic, 

the term    OH—— in the third of Eq.   (5.1) actually belong to the higher orders 
'        art* 

To be more precise,   Eq.   (5, 1) has a degenerated characteristic pair 

cL'ty/cL't, =  - co .   similar to the boundary-layer equations of compressible flow. 

Equations (5.1) can,   however,   be simplified further in the shock-layer region 

and in the shock-transition zone. 

5. 2   Governing Equations in the Shock Layer 

Because of the high compression ratio across the shock-transition zone, 

one has in the shock layer,   in addition to the  simplification     4C 

feo/p      *<    I (5.2) 

This implies that the normal velocity component within the  shock layer is  small, 

or more  specifically, 

u w Ä ' <5-2a> 
CO ' 

One notes that the ratio nr/UL    is usually small in the shock layer,  but there is 

no requirement that it has to remain small.    This observation is essential with 

respect to the validity of the following equations in the  stagnation region.    Anti- 

cipating that    -p/    is of the order of   jO    U    Attu ß  ,   and     U     is of the order 

OQQ/COJ/JO   and less within the shock layer,   Eq.   (5.1) can be further simplified to 

If terms of order (A+<5s)/a      in the Navier -Stoke s equations were also retained, 
the partial differential equations would contain such terms as K^u- >  "V%*J- >   etc- 
and would therefore appear to be hyperbolic.     One  still has an initial-value prob- 
lem,   however. 

The subsequent formulations of the problem in the two flow regions are com- 
parable to solving Eq. (5. 1) by a procedure of inner and outer expansion under 
the assumption of high compression ratio across the shock. 
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n+ /° (" Tz*'* &)u --1 0*ur>- 
•fvy + mc p u.< =0 (5.3) 

9V 
where    /-/     i-s the total enthalpy.    The system Eq.   (5. 3) which is to be applied 

in the shock layer is subject to a fractional error of the order  A/a.  ,   or    £    . 

This  system differs from the boundary-layer equations only in one respect, 

namely,   the pressure variation across the layer is no longer negligible and is, 

in fact,   accounted for here by the same equation as for the inviscid shock layer, 

One may note that in the present formulation the tangential pressure gradient 

-7b/     ,   which has been generally regarded as a higher-order term in the exist- 

41 ing inviscid theory,   is retained.    As has been observed,        this term will be 

important near the body surface when the Reynolds number is high,   since the 

flow speed near the base of the shock layer is of the order ~fz~ 0^ instead of 

U       according to inviscid theory.    The term -p>    is therefore retained as a 

principal term in order to insure uniform validity of the equation at the higher 

Reynolds numbers.    This is essential for  a correct description of the boundary- 

layer phenomena under the present formulation. 

Before turning to the shock-transition zone,   one should recall that there 

are two well recognized shortcomings of the inviscid shock-layer theory which 

would also appear to affect the present approach.    One is the breakdown of the 

approximation at a certain critical region on a convex body,   corresponding to 

the shock-layer "separation" at the zero-pressure point.    ' This difficulty 
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is not found, however, with certain shapes such as the cones, paraboloids and 

hyperboloids to be studied. In any case, the viscous effect tends to reduce the 

flow speed,   thus the centrifugal action,   and delay the separation.    The  second 

difficulty has to do with the slow convergence of the Newtonian series,   familiar 

54 
from the work of Chester,       which renders the leading approximation worthless. 

This shortcoming,   however,   is not applicable to the present formulation.    As 

4   55 
is apparent from a discussion by Van Dyke, the inaccuracy may be traced 

back to the tangential-pressure-gradient term   -jü>,   disregarded in the leading 

approximation.    The present formulation,  which has included •&    as a principal 

term,   averts this difficulty as will be demonstrated by subsequent examples in 

Section 5.6, 

5. 3   Governing Equations in the Shock-Transition Zone 

From the existing analyses of the shock-wave  structure in one dimen- 

55-57 sion, one may anticipate the normal velocity component   /if*   to vary more 

or less in an anti-symmetric manner with respect to   -U-    between the two limits 

oo / 

It follows that,   excluding a layer of thickness   £ 5      near the shock interface 

(see Fig.   5.1),   one has in the  shock-transition zone 

-~    *    0(0 (5.5) 

Anticipating   PW /v p  (J jvroß ,   it also follows from Eq.   (5.4) that in the 

shock-transition zone (again excluding the region near the  shock interface) 

•4"   =    0(1) (5.6) 
' oo 

That is,   the density in the shock-transition zone is generally at the (low) free- 
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stream level.    One must note the fact that an anti- symmetric normal-velocity 

profile will give a highly asymmetric density profile for high compression ratio, 

since p cQ. — •    This explains why the average density through the shock- 

transition   zone is so low compared to the density at the interface.    In any case, 

the assumptions related to Eqs.   (5. 5) and (5. 6) are readily verified a posteriori. 

For the study of the  shock-transition zone,   it will be more convenient to 

employ the system of orthogonal coordinates in which the surface    f  = 0 

coincides with the shock interface 

Using Eqs.   (5. 5) and (5. 6) and the thin-layer assumption,   the system of 

Eq.   (5. 1) is then reduced simply to 

^(X+«±-^=f* JL j_ jj    , 2 
__—  T       _        T " — ' Af VPr   '    2    '  3 "  Xf 

(5.7) 

(5.8) 

which can be simply integrated to yield a system of first-order ordinary differ 

ential equations governing the  shock-transition zone 

•p>+   p>i ATt AT - -J- M /Wy   -   pf AT* 

where the  subscript 1  refers to the upstream condition,  with   fi>  •=.   P    ,   A. - A, 

U, =   U^suhis/S  and  /jr, = — U^ Ainsß . 

Noting that,  immediately behind the shock, /V^-AT^   the system of 

equations Eq.   (5.8) after neglecting terms of order   A/-   is  seen to include the 

modified Rankine-Hugoniot shock relations of Refs.   41  and 42: 
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^2   =   P,^ 

^A^'Hy^[H-0-Pr)^\ 

(5.9) 

where the subscript 2 refers to the condition at the shock interface. 

If the alternative coordinate system is used in which the surface     ty    - 0 

coincides with the body instead of with the interface,   the first of the system of 

Eq.   (5.7) should be written as K"-3H1 = 0.    The term   —;  U 
ci#, 

accounts for the fact that maximum gradients do not occur in the same direction 

as the normal to the body-surface,   and is important near the interface where 

OT    becomes small and of order 6 \J    .    The appearance of this term does not 

materially complicate the matter.    The whole system of the governing equa- 

tions can be written,   without increasing the degree of inaccuracy,   in a form 

identical to Eq.   (5. 7) with    /if  replaced by I /if — 
dt «; 

The  simplified Eq.   (5.7) is not strictly valid in the neighborhood of the 

shock interface,   i.e.,   in the shaded region of Fig.   5.1.    However,   the equa- 

tions after integration with respect to     14-    (the distance along the normal to 

the interface),   that is Eqs.   (5.8) as well as  shock relations Eqs.   (5.9),   are 

valid uniformly.    The remainder in each of these integrated equations causes 

an error in the solution,   which is at most of the order 

fouK dt s- U4- (5.10) 
pnr a. pw 

where the integral is taken over the shock-transition zone. 

One should note that the modified Rankine-Hugoniot shock relation 

Eq.   (5.9) does not contain any information on the shock-wave structure.    A 
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similar set of shock relations has been proposed previously by Sedov, 

56 Michailova and Chernyi       for the case in which the transport effects are 

weak.    The theoretical basis for neglecting the shock thickness-curvature 

effects has not been provided,   however.    It is interesting to note that,   in 

view of the appearance of the velocity and enthalpy gradients in these modi- 

fied shock relations,   the tangential velocity and the total enthalpy will change 

across the shock in a manner quite  similar to the  slip and temperature jump 

across the Knudsen layer next to a body surface.    With Eq.   (5.9) as an outer 

boundary condition,   the shock-layer region can be analyzed independently of 

the  shock-transition zone.    Before formulating the  shock-layer problem, 

however, the treatment of the shock-transition zone will be further  simplified. 

5.4   Treatment of the Shock-Transition Zone 

The equations governing the shock-transition zone have been reduced, 

in a manner consistent with the thin-shock-layer approximation,   to a system of 

first-order ordinary differential equations,   namely.   Eq.   (5.8)      One notes that 

that system has satisfied the flow condition upstream of the shock,   and that the 

boundary conditions for this first-order system are to be furnished by the shock- 

layer solution at the interface.    In the following,   the shock-transition zone 

problem will be further reduced under the assumption of a Prandtl number of 

3/4 to the solution of a  single first-order differential equation. 

It is convenient to introduce the nondimensional quantities 

r 
i 

u s "Ü7     ' ^ ö  or,      ' L (5.11) 

*a^'     f£i"'    'si 
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To eliminate the viscosity   /A     ,   one introduces the transformation 

I 4- I     r03     co JA 
Jt* 

3 
9 5 + 

where    It-   gives the location of the shock interface.    In terms of this new vari- 

ble       "n   and the dimensionless variables    U.    ,   nP'    ,   etc.,   the system Eq.   (5.9) 

is reduced to 

par   = / 

3f» + Tjr- + nr     -1 

3   - >        (5.13) 

where 
__   2 2 ? 2 
H = T + /Ctf«^ ^5 5    *• -^ ^ '-I/- 

To complete this system of differential equations,   one requires the equation of 

state in terms of the new variables 

_ /5 T 

Note that the equations governing the tangential velocity   u.   can be inte- 

grated independently of the rest of Eq.   (5. 13) to give 

U.   -   I -(l - £2)e   3  ' (5.15) 

where U. « is the boundary value for U. to be furnished by the shock-layer 

solution at the shock interface. For a Prandtl number of 3/4, having deter- 

mined    U.   ,   the last of Eq.   (5. 1 3) governing the total enthalpy     H     can also be 
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simply integrated,   giving 

V ' , (5.16) 

-§-«**/('-»0*«",('-e"w) 
where     H    is the boundary value for     /-/ 

In passing,   one may note that the requirement of continuity of the tangential 

velocity    U.     and total enthalpy    H     across the interface,   as is implicit in the 

provision of   U. and   jrl     by the shock-layer  solution,   also guarantees the con- 

tinuity of the gradients   W     and  H ,„, in the present formulation, 
11 

To eliminate   ^p,   in the second of Eq.   (5, 13),   one makes use of the equation 

of state (5. 14).    With the help of the definition of   H    and the continuity relation 

p   =   __     ,   the analysis of the problem is finally reduced to 
IT 

cLnr 
^-^ (l- z)/V -h(<AoZ^)(H -/wfiu *)-L- =1 (5.17) 

where   H    and    LL     have been determined by Eqs .   (5. 1 5) and (5 . 1 6).    Note that 

the magnitude of   or  varies from unity at upstream infinity (fl—^-ooj to order 

£,      near the shock interfaced ft > 0) •    Concerning the  term associated with 

g/Äp  in Eq.   (5. 17),   one must notice two essential facts.    First,   as the interface 

is approached,   this term (being inversely proportional to  ^h  ) becomes the 

most important one in the equation and cannot be dropped even though it is pro- 

portional to    6     .    Second,   with this term retained,   the condition of continuity 

of the normal velocity at the interface is automatically satisfied (to the leading 

approximation) by the  solution to Eq.   (5. 17).    This follows from the observation 

that,  when   /jp   becomes of order     £    ,   Eq.   (5.17) gives 
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which is essentially the  same value provided by the shock-layer  solution at 

the shock layer's outer edge. 

Taking advantage of the first-order continuity of   W   ,   one may prescribe 

/IT—      at     f)    - 0 as the boundary condition for Eq.   (5.17).    This will thus insure 

continuity (matching) in both   nr  and   iV   within the degree of approximation 

considered. 

The boundary condition for Eq,   (5. 17) may now be written as 

mr = ' iTR«bu^ß KT^i K*f)z    ^-0)   (5-18) 

where (/*//•< )    and (d/iryd/y.)  are to be provided by the solution to the shock- 

layer equations. 

It may be noted,   however,   that if one were to prescribe   /y   instead of 

ctiv'/cLrj&'t the shock interface,   the continuity in both  fir"   and its first derivative 

could not be generally achieved.    This is because,   on account of the term  S/v- 

2 _ _ 
in Eq.   (5.17),   even a change of order     £       in    /y-    at     fl    = 0 will critically 

affect the leading approximation of  d.nr/d.1) at     fj    - 0, 

After determining   nr  from Eq.   (5. 17) and (5. 18),     p    can be obtained 

from \ hfr ,   T   from the definition of   hj    ,   and  -fit   from the equation of the 

state.    The coordinate    'W-   corresponding to   T)     may finally be determined 

In the stagnation region, &v/Sf)~ on tne right-hand side of Eq.   (5. 18) can be 

evaluated from (refer to List of Symbols)(~) = - i^S2.(| + y>)äz [/+ -§^rUj\   ,   if 

the normal velocity  AT    determined from the shock-layer  solution is based on 

a coordinate system with   o±-  = 0 coincide with the body surface,  I——]     in 

«,.  ,5. ..) *»** be replace* by (|^ - ^)(§^ • *< 
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from the inverse of the transform Eq.   (5.17). 

Finally,   one notes that,   in the limit of infinite Reynolds number the 

Rankine-Hugoniot relations hold,   and    U..—^^2 —^ '     •    ^-n Ais limit,   the 

solutions given by Eqs.   (5. 15) and (5. 16) degenerate to    U >• /   and H—>•/ ; 

and Eqs.   (5.17) and (5. 18) reduce to 

*1 J       " \ (5.19; 

The solution for  /v   may then be obtained by a separation of variables and 

57   58   59 
corresponds to that of Becker and others.      '      ' In the general case,   a 

simple quadrature of Eqs,   (5. 17) does not seem to be obvious in view of the 

dependence of   H    and   D[   on    f)    .      The numerical integration of Eq.   (5. 17) 

is,  however,   rather   straightforward.    An example is given and discussed in 

Section 5. 6. 

In passing,   it may be pointed out that the present analysis of the shock- 

transition zone differs from the usual one-dimensional analysis only in the 

boundary condition at the inner edge.    It provides a generalization to include 

downstream nonuniformity under the assumption of   Sa/a.    4A.   I 

5. 5   Formulation of the Shock-Layer Problem 

To complete the description of the shock-layer  region,   one has to specify 

the boundary conditions at the body surface.    The velocity slip and temperature 

A "uniformly valid approximation" to the solution, of Eq.   (5.17) is neverthe- 
less possible in which Eq.   (5.17) is solved with    H      and    ZZ     taken as 
constants evaluated at    fl    =0. 
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jump at the surface,   according to the theories of Maxwell and Smoluchowski 

(see,   for example,   Ref.   60),   are proportional to the local mean-free path and 

the gradients of velocity  and temperature at the  surface.    These effects have 

been investigated by many within the framework of the boundary-layer theory 

(see Section 1  of Part I).    Making use of expressions for the momentum and 

energy fluxes provided by the Navier-Stoke s equations,   one arrives at the 

following estimates,   in terms of the skin-friction and heat-transfer coefficients 

Q.     and 

T-Tw 

(L 

M ü-^£_- 
o 
' w 77RTW &T VJ 3f. <sf(' Ik.,, 

15.20) 

/      T0        IJ 

The magnitudes of    C^    and    C      are small in most flow regimes and cannot ex- f    CH    and    C 

ceed unit order.    Hence,   for a thin shock layer ( f ä |   ) and a cold surface 

l-rpr- -4S- I  )    ,   the velocity slip and temperature jump at the surface are  small. 

In the present study, non-slip boundary conditions will be used.    A correction 

for these effects can be made afterwards,   if necessary. 

For the present approach,   it is advantageous to use the von Mises coor- 

dinates (   -ji   ,   ~f  ),   where  "V   is the  stream function defined by 

^ (2TTZ) /öU 
3T 

7 
(5.21) 

The equations governing the thin shock layer,   Eq.   (5.3),   may then be recast 

into the form 

3Y    ~      WwW 

(5.22) 

3H = (zmf -^{f- ,*-^(Pr-o^-]\ 
d/)& df 
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The inner boundary condition is,   at   ~\jf   = 0, 

«=0, H = Hw (5.23) 

and the outer boundary condition is provided by the modified Rankine-Hugoniot 

shock relations,   Eq.   (5.95,   as 

.    , J /*/>* du . 

These equations are to be applied at the shock interface where  f— ^ Um gfri). 

Note that under the present approximation,      2   can be taken as either the  shock 

surface or the body surface.    The  system of Eqs.   (5. 22),   (5. 23) and (5. 24) com- 

pletely determines the flow quantities    U    ,    H    and   -p/  in terms of the variables 

<£     and   f     for a given surface    £ -• Z. (<%) .    The normal velocity   w  ,   the 

coordinate   -U-    corresponding to  "V    ,   as well as the location of the shock inter- 

face,   can be determined through Eq.   (5.21). 

Of interest is the behavior of the solution to Eqs.   (5. 22) to (5. 24) in the 

formal limit of zero Reynolds number.    On account of the predominance of the 

transport effects at this limit,   solutions to Eq.  (5. 22) will be characterized by 

layer.    Hence,   the values of the last three quantities at the body surface will be 

a uniform distribution of   /jr  ,    T    ,   ~fv    , jm •— ,   and  IG -—across the shock 

provided by the  shock relations Eq.   (5.24),   giving 

,8      .      2 1"»9 1»x9 p^M** fl 

<**9(< 1$^ '-»»("»'"J^A 
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These limiting values are no more nor less than the pressure, stress and heat- 

transfer rate in a hypersonic, free-molecule flow for unit surface accommoda- 

tion coefficients. 

The errors introduced in the application of Eqs.   (5.22) to (5.24) belong, 

respectively,   to the orders   A/a      ,  j£ Tw/T0 and   8JL*v &/a.     •    In the 

present study,   only cold surfaces will be considered.    The analyses will be 

further limited to regimes where the   shock cannot be thicker than the shock 

layer,   i.e.     §     :£    0(A)  .    Under these restrictions,   the errors in the analyses 

may be kept at essentially the same order as     £    ,   or,   at most,   £ ,£«, £    . 

The above condition,      §    ^    Q (A\   ,   may be expressed with the help of 

estimates based on the Navier-Stokes equations in terms of the parameter    K 

previously introduced.    The essential requirements for the present formulation 

may then be written as 

e. <&/   ,       K*   ^ o(0 
which are consistent with Eq.   (3. 2) of Part I.    Implicit herein,   of course,   is 

also the hypersonic condition     £ M     ~>s  I     •    With some  sacrifice in accuracy, 

the present formulation could also be extended to cover completely the fully - 

merged-layer regime of Probstein and Kemp. At the lower Reynolds -number 

end of the latter regime   [6^  ••-• Vj,  <z )   ,   the errors in the present theory would 

become   /£ ^^ £     instead of    5 JU\s* . 

For the surface pressure to be correct,   one requires,   in addition to a unit 
surface accommodation coefficient for the normal component,   that  Tw /f  ^c I    • 

** a p   U   a.       T 
For pointed bodies,   the quantity   <£    in   X  g  <L—?S-~7T-—'      *    must be re- 

s   * ' o 
placed of course by a length representative of the lateral dimension of the body. 
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Thus,   using an approximation consistent with the thin-shock-layer con- 

cept,   one can determine the hypersonic viscous flow field around a blunt body 

independent of the  structure of the shock-transition zone,   even though the shock 

and shock layer are comparable in thickness.    The above formulation clearly 

indicates that insofar as the skin friction and heat-transfer characteristics are 

concerned,   the shock-wave structure and related thickness-curvature effects 

are only secondary in importance.    For purpose of analysis,   the  shock-transition 

zone may be treated as a surface of discontinuity located at the outer edge of 

the  shock layer. 

As do the boundary-layer equations,   the partial differential equations Eq. 

(5.22) lead to an initial-value problem.    With    U    ,    H     anfi   -f"   specified at any 

station   /£    ,   the  solution can be continued downstream by a forward integration 

with respect to   #    ,   satisfying also the boundary conditions Eqs.   (5.23) and 

(5. 24).    The method of solution to this system of equations will be discussed and 

developed in Section 6; the theory will be applied to study flows around simple 

blunt shapes in Section 7. 

5. 6   Assessment of the Accuracy 

Before going on to the applications of Sections 6 to 8,   some indication of 

the accuracy of the present approach is desirable particularly in view of its sim- 

plicity.    For this purpose,   certain results obtained by application of the present 

theory will be singled out for discussion here.    Two comparisons are made with 

the results of previous,   more exact analyses.     In one,   the shock-layer theory of 

the present formulation is applied in the inviscid limit to describe the hypersonic 

flow field and body supporting a paraboloidal shock; the results are then com- 

pared with the corresponding "exact" numerical solutions of Van Dyke    and 
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53 Swigart. In the other,   the present theory is compared with a numerical solu- 

40 tion of Levinsky and Yoshihara       for the  stagnation region in the merged-layer 

regimes.    The comparison in the first case bears on the general criticism with 

regard to the poor degree of approximation of the Newtonian shock-layer 

1   4   12   55 theory,    '    '      '        as discussed in Section 5.2,    The example chosen is particu- 

larly meaningful as it has a direct implication for accuracy of the subsequent 

examples of Section 7.    The comparison in the  second case provides a crucial 

test of the present two-layer model. 

Paraboloidal Shock in the Inviscid Limit - The inviscid supersonic flow asso- 

ciated with a paraboloidal shock has been analyzed numerically,   for M^j—>oo , 

1 53 Y      - 1.40,  by Van Dyke    and Swigart. For the assessment of the accuracy 

of the thin-shock-layer formulation based on Eqs.   (5.22) to (5.24),   the  same 

problem has been analyzed in the limit of a vanishing viscosity   JU.—*~0 ,   using 

Eqs.   (5. 1 3) and (5. 1 5).    The non-slip boundary conditions Eq.   (5.14) are not 

used,   of course.    The results of the analysis are presented in Fig.   5. 2 along 

j 53 with the corresponding results of Van Dyke    and Swigart. To avoid distraction 

from the basic point of interest here,   the method employed to solve Eqs.   (5.22) 

and (5. 24) will not be discussed except to mention that it was similar to the 

finite difference scheme described in Section 6. 

Figure 5.2(a) gives the streamline patterns and the body shapes support- 

ing the paraboloidal bow shock.    Figure 5.2(b) presents the pressure distributions 

along those body surfaces.     Unlike the corresponding Newtonian theory (results 

not shown),   the present formulation shows reasonably good agreement with the 

"exact" solution.    The body surfaces predicted by both the exact method and the 

present approximation agree very well.    The present calculation provides a 
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somewhat higher pressure at the surface; the difference of the two pressure 

distributions varies from 6% at the  stagnation region to about 18% beyond the 

sonic region.    Note that if the pressure were plotted in the form of the pressure 

ratio   '^P'a./^P' >   the agreement would be even better. 

One notes in Fig.   5.2(a) a discrepancy in the location of sonic lines in the 

two analyses.    This can,   however,   be explained by the observation that the 

changes in Mach number along the  streamlines in the  shock layer are generally 

quite slow (the changes being of the order  f%     according to the Newtonian 

theory).    The differences in Mach number at the  same point are actually quite 

small,   being typically 15%. 

The comparison given above  shows that the present version of the thin- 

shock-layer analysis is reasonably adequate for the study of flow fie) is assoc- 

iated with a paraboloidal or  similar shock.    The results have also confirmed 

the importance of the tangential pressure gradient effect in the analysis of the 

hypersonic  shock layer (cf.   Section 5.2). 

Merged-Layer Stagnation Region - The analysis of the hypersonic stagnation 

40 region in the merged-layer regimes by Levinsky and Yoshihara      has been 

discussed in Section 3 of Part I,    The particular set of results of Ref.  40 

singled out for the purpose of comparison here was calculated for the case of 

M       =10,    y = 5/3 and   Re c = 1 00,   corresponding to     £    =1/5 and   K *  = 5 . 

In their analysis,   the Prandtl number was assumed to be 3/4,   the wall temper- 

ature taken to be equal to the free-stream value,   and the viscosity law   u oC. /T~ 

adopted.    The results for the profiles of temperature,   normal velocity and 

tangential velocity are reproduced in Fig.   5. 3 as solid curves.    To distinguish 

from their results,   the corresponding analyses based on the two-layer model 
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described in Section 5. 4 and 5. 5 are represented in the same figure as 

circles and triangles.    Considering the value     7~   = 1 . 667,   the applicability 

of the thin-shock-layer theory to the present problem should be regarded as 

being critical. 

The present analysis gives a shock interface at     /\(-/a'   &     0.10.    The 

solution for   '¥'/«  XP    0. 10 is obtained by numerical integration of the shock- 

layer equations of Eq.   (5.22) to (5.24) in the stagnation region,   and the solution 

for y/cL & 0. 10 is obtained from the transition-zone  solution of Eqs.   (5. 15) to 

(5. 18).    The value of    Uz ,   /-/,   and [dint/cLn)  are provided by the shock-layer 

solution.    In addition to the profiles of the normal velocity   /\r   ,   the temperature 

T    and the tangential-velocity gradient   U    which are reproduced from Ref.   40, 

the corresponding density distribution p/P    in the shock-transition zone is also 

calculated and presented in Fig.   5. 3 for comparison. 

As is evident from the figure,   the analysis of Levinsky and Yoshihara 

and the considerably simplified treatment based on the present formulation 

agree in all essential details both in the bhock layer and in the shock-transition 

zone.    The small difference between the two analyses is somewhat surprising, 

when one notes that the specific-heat ratio 1.667 is rather far from unity.    One 

notes,   however,   that the profiles of normal velocity and temperature given by 

the present analysis are discontinuous at the shock interface   'W-/2- S* 0. 10. 

These discontinuities are unavoidable in the present formulation which matches 

the derivatives of nr at the interface.    However,   they are rather  small,   being. 

z 
of order    £      as compared to unity,   and are indeed consistent with the assumption 

of the theory (see discussion of the preceding section). 

It may be noted that if one were to interpret the length " a, " in the  shock- 
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layer  solution as the shock radius instead of the body nose radius,  as was done 

in the preceding paraboloidal-shock problem,   the abscisa of the circles and 

triangles in Fig.   5, 3 would increase by 10% and result in a better agreement 

with the solid curves.    This interpretation is permissable within the present 

thin-layer approximation and also implies that the shock and the body are con- 

centric.    The latter assumption is in fact implicit in the analysis of Ref.   40. 

It must be pointed out that the reasonably good agreement revealed in Fig, 

5. 3 is by no means an indication of the accuracy of present formulation in the 

absolute  sense,   since the analysis of   Levinsky and Yoshihara also involves cer- 

tain approximations.    The small differences do demonstrate convincingly,  how- 

ever,   the validity and adequacy of the two-layer concept underlying the present 

formulation.    The result of the compdriaun implies,   of coarse,   that the most 

important aspect of the flow phenomena affecting the aerodynamics and heat 

transfer in the merged-layer regimes is not the   direct effects related to the 

shock-thickness and the  shock-wave structure but rather the  slip-like transport 

effects immediately behind the shock. 

6. METHOD FOR SOLVING THE VISCOUS SHOCK LAYER EQUATIONS 

With the basic problem formulated and the adequacy of the flow model 

assessed,   the thin-shock-layer theory willnowbe applied to study hypersonic 

viscous flows over wedge,   paraboloid and other simple blunt shapes.    To do so, 

we must first develop a method which is capable of obtaining nonsimilar  sol- 

utions to the partial differential equations Eqs.   (5.22) to (5. 24) governing the 

shock layer.    The present solution to the dissimilar problem requires the 

combined use of two methods; a forward-integration method based on the finite- 
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difference approximation,   and the solution by  scries in the vicinity of the 

leading edge or the  stagnation point.    The iar.jer  solution is required to pro- 

duce valid initial data for calculation by the finite-difference method. 

6,1       Discussion of General Treatment 

For the analysis of the shock layer,   it is convenient to work with the 

dimensionless quantities     U_     ,      Q      and     -js, 

Ü 2 
UcoyC**'/ 

"*£' 
/*coUeo<*"'/6 

Introduce the variables 

>  = 2 •-£- 

fir 7 V 

(6.1: 

(6.2) 

Note that    M1
   is the distance measured along the axis of symmetry (cf Fig. 

5.1) related to     /£     through (dvC.) -fa-4>J  + u* H)       ,   and that      U.       and    0 

behave like   "YTfT    near the body surface and therefore will be regular in   £ 

In terms of the new variables of Eq.  (6. I; and (6. 2),   the system of differential 

equations Eqs.  (5. 22) is transformed to 
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Nf Sr 

-Zr**/-^ 
3*>  5 

a/ 

fc»-(^ar*^-gf .ff-s 
5 

where 

w _ ^ and     0* 3 

(6.3) 

/«**    T " 2/«, 

The subscripts   A     and   C,    denote partial derivative with respect to   A    and 

£      .    As before,   the parameter    (C      is defined as 

where    T,     and    >&     are the reference temperature and the corresponding 

viscosity respectively.    If the linear representation /M//U^. 
=

 T/T),   is adopted, 

the factor    |\J     in the above equations 'ijcoiyi ?s unity.    The boundary conditions 

at the surface      2£   = 0,   Eq.   (5.23),   becomes 

£    = &   -0 (6.4) 

The shock relations at the outer edge of the  shock layer,   Eq.   (5. 24),  become 
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0       .       /WWN       Ö®5 - 2^   ('-^)    - f,    K\      V(6'5) 
0 = ' - VT7 Fü?^ T^ ~ 2^/* T-TX "('-«> V  2    /   Pr K* 5 H 

These relations are now to be  satisfied at    £   = 1 .    The relation between the 

physical distance   4JU   from the body surface and   £    can be determined from 

J_ „(LL) _'fr,|aL<([-S)el-MS--<K.V r^i^-) (6.6) 

The local skin friction and the local heat-transfer rate at the surface can be 

calculated from    ~j&    .,     (A _      and      ©_    at      £    = 0: 

c 

(6.7) 

' oo      ÖOV    00 W/ 

Aside from the dependence of the  solution on the shock or body shape 

through   ß    and      cr     ,   the system Eqs.   (6. 3} to (6. 5) is governed by the par- 

, * ameters:     K      ,     £,     , T. /T     and     Pr     .     Clearly,      \£      is the most important 

parameter and controls the transport effects in the  shock layer.     Following 

the classification for the  stagnation region,   Eq.   (3.Z) of Part I,   one may also 

divide the general shock-layer problem into two regimes,     in one,   defined by 

0(0   —    £ K    i«  i   the inviscid shock relations hold,   i.e.   U—>&—>• ~f>—>\ 

at    £   = 1.    In the other,  where     0\&) —  6 K    - 0(l) <   the speed and enthalpy 

changes across the shock-transition zone are important. 

As noted before, th<j thin-shock-layer approximation has reduced the 

governing differential equations to the parabolic type. This makes forward 

integration in the downstream direction possible.    One may note,  however, 
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that the great simplification found in the analysis of the stagnation region 

cannot be found in the general case.    Specifically,   an analytical treatment 

in the merged-layer regimes (Regime II) is not generally possible.    Although 

the differential equations themselves admit a separation of variables (after 

neglecting the tangential-pressure-gradient term),   a self-similar  solution 

does not exist owing to the outer boundary condition Eq.   (6. 5). 

For analysis in the higher Reynolds number regime (Regime    I),   Eqs, 

(6. 3) to (6. 5) may best be handled by transformation to the coordinate system 

(   i»   ,   n    ),   familiar in boundary-layer theory.    However,   vorticity-interaction 

theory based on the boundary-layer approximation can no longer be extended, 

as is permissible   for the stagnation region,   to treat the non-linear vorticity 

effect in the viscous-layer regime.    This is because the  solution in the more 

general case cannot be simply described in terms of the asymptotic property 

of the boundary-layer  solution,   as in the case of the  stagnation region (or,   at 

least,   the possibility of such a simple description is not obvious).    Of course, 

for small departures from the boundary-layer limit,   the second-order 

boundary-layer theory is valid.    In fact,   Hayes' original matching condition, 

Eq.   (1.1) 

f,2 = i + zn f n—>TO 

is consistent with the thin-shock-layer approach and should be generally 

applicable.       A treatment of the vorticity-interaction theory based on Eq. 

Presumably,   the alternative condition Eq.   (1.3)     £ „(oo) = O.     may also 
apply.    To the writer' s knowledge,  the equivalence oi Eqs.   (1 . 1) and (1 . 3) 
has not been proved in the general case,   however. 
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(1.1) (which also requires the use ol* a numerical method to handle the non- 

similar solution),   though not carried out here,   may be considered as com- 

plementary to the method presently to be described,  whose range of validity 

covers the merged-layer as well as the viscous-layer regimes. 

Before passing to the discussion of the two methods employed in the 

4  29   61 present procedure,   the possibility of using momentum-integral methods   ' 

as well as other methods familiar from the boundary-layer theories,      ' 

should not be   completely overlooked.    The main   objection to the use of 

momentum-integral methods which also involve stepwise numerical integration 

for the present study is its limited range of applicability.     This shortcoming is 

related to the fact that the velocity and temperature profiles of the  shock layer 

in the low and high Reynolds number ranges considered are radically different, 

and do not permit the simple description characteristic of most integral methods 

6. 2   Series Expansion Near Axis of Symmetry 

For flow regions not f^r removed from the axis of symmetry,   solution 

by a series in ascending power of the distance from the axis is possible.    Thus 

for the stagnation region,   one may assume a development in  yfr/0-J    for     u    , 

Q)    and    -p> .    In terms of the variables   \    and    £    ,   one has,   for the stagna- 

tion region of a smooth blunt body (considering only positive    X.    ). 

Ü   ~ Ü.& + X 5. -> X    Üz+  (6.8) 

with similar developments for    0    and   -pu    ,    The leading terms     U0   ,    Q 

and   -f>  ,   together with   -O   ,   determine the solution in the  stagnation region 

for which Eqs.   (6. 3) to (6. 5) reduce to the following   system of ordinary 

differential equations 
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ZPrK1  \ 4 

Ho(0)= 0o(ö) = O 

'(6.9) 

(6.10) 

^>(0 ft(l)~ö 

>+J 

0o(') = i-^ N R.0)O.'0) 

(6.11) 

where the prime ( )' denotes differentiation with respect to   £     •    The 

appearance of   -pr   in the first equations signifies the tangential-pressure- 

gradient effect.    Eqs.   (6.9) to (6, 11) constitute a two-point boundary-value 

problem.    This analysis of the stagnation region has been discussed in Section 

3 of Part I,    More detailed results are given in Refs.   42-44. 

By collecting terms of the next power of    X.    in the Eqs.   (6. 3) to (6.5), 

one obtains a system of ordinary differential equations governing    U,   ,   Q    , 

and   ~ps  .    These equations,   given in the Appendix,   lead to a two-point 

boundary-value problem involving a system of linear ordinary differential 

equations.    By virtue of their linearity,  however,   solution to this two-point 

boundary-value problem can be obtained simply by  superposition of the par- 

ticular solutions.    This considerably simplifies the task of numerical analyses. 

The systems of equations governing the coefficients for the higher powers 
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of    X    >    M,   .   0     and   -p/   ,   etc.   are  similar,   but more complex.     In the 

following study of the problems of paraboloidal and hyperboloidal shapes, 

only the coefficients   U,-   ©.    and  -pi   have been determined.    The range of 

validity of the solution based on the two-term representation,  Un+XlL. ,   etc. , 

is of course rather limited,   but the roles of the coefficients    J2   ,   0     and -p/ 

are nevertheless crucial for the numerical solution of the downstream flow 

field,   as will be discussed subsequently. 

The series solution of the type of Eq.   (6. 8) is applicable only for a body 

with finite nose radius.    For a pointed body,   the appropriate  series solutions 

take the form 

u   = u.0A    +  's-, A +• uz A   +   • • • • 

0 = 0o x,/s+ e,x 4 es f*+ • • • • (612) 
-  x'A    _   . 

•j> = I + fy A    + -f>z A 4- • • • • 

The leading terms for    u    and    0   are simply proportional to    £     .    In this 

case,   the  successive coefficients    Li U.    •   U      ,   etc.   can also be determined 
f    ' Z 3 

in explicit analytical form.     These developments will be used in the study of 

wedge and cone flows in Section 7.1. 

6. 3   Finite-Difference Method 

Numerical methods for solving the parabolic and hyperbolic partial 

differential equations by finite-difference approximations have been quite 

extensively studied in recent years (for example,   see Refs,   64 and 65).    The 

methods have been applied to viscous-flow problems within the context of the 

boundary-layer theory by a number of investigators. 

Singularities in the Difference Equations - In the finite-difference 

approximation,   the derivatives are replaced by the quotients of the differences, 
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and the partial differential equations are satisfied approximately at a finite 

number of grid or lattice points.    For an initial-value problem such as the 

present one,   a forward integration is possible; the  solution to the difference 

equations may then be determined in terms of values obtained at preceding 

stations or grid lines.    That is,   the difference approximation is used to 

evaluate   du/dh, dQ/dX     i-n terms of quantities given on the right-hand side 

of Eq.   (6. 3).    The quantities   U.    and   0    are then obtained by integrating with 

respect to    X    .    Strictly speaking,     this procedure is not applicable to Eq. 

(6. 3) at    X    =0 and     (^   = 0,  because some of the terms on the right-hand side 

of the first and second of Eqs.   (6. 3) are proportional to 

/_JL_Y 
\otft//ß ) 

Hence in the limit of either X—*0 or   £—>0 ,   the values of   Bü/$\    ,   etc. 

become indeterminate,   or even infinite (in the case of pointed bodies).    This 

leads to two important observations.    First,   in order to achieve forward 

integration correctly in the vicinity of the  stagnation point    X    = 0,   it is most 

essential to provide the coefficients    U,   ,   etc.   in the series solution of Eq. 

(6.8),   which are in iact the correct expressions for du/BK    >   etc.   at     X    = 0. 

Starting the integration procedure merely with the knowledge of    U0  ,   etc. , 

as has been proposed in some previous work,      '        cannot yield the correct 

solution.    Second,   in view of the factor    l/XC,     >   errors resulting from the 

difference approximations will be greatly amplified in the vicinity of the 

"leading edge"     X   - 0 and at the body surface    C    = 0.    As far as the method 

of difference is concerned,   the lines     X    = 0 and    £    = 0 may therefore be 

regarded as singularities of the equations.    It is clear that application of the 

difference equations must exclude these lines. 
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The manner in which the difference quotients are formed and in which 

the equations are approximated gives rise to a variety of difference methods. 

The best known are the standard explicit and implicit scheme and,   in addition, 

that introduced by Dufort and Frankel.       '       ' Near the singularities,   the 

conditions for  stability and convergence,   together with the small truncation- 

error requirement,   are so stringent that the explicit schemes become hardly 

practical for the present application.       The implicit scheme,  which is sub- 

ject to none of these restrictions,   not only is superior as has been demonstrated 

by Flugge-Lotz and Blottner   for the boundary-layer analyses,       but is 

necessary in the present analysis.     This is quite clearly brought out by the 

71 conclusion of a recent study of A.   L.   Chang and the writer,        in which the 

relative merit and efficiency of all three schemes are examined for the case 

of a cone (the result of which is to be presented in Section 7 ). 

In view of the critical nature of the  singularities in amplifying the trun- 

cation errors,  the regions near    \    = 0 and    Z,    - 0 will both be excluded.    The 

system of  difference equations considered applies therefore only in the domain 

s0 £ c £ /     J 
The boundary condition originally at    Ü (Q) -s.  Q (0) = 0    can be simply trans- 

formed to the new boundary   (^ - ~C,       by the Taylor theorem. 

O^U.-U.-t +  £„_£+•••• (6.14) 

The stability for the standard explicit scheme would require AX - 0 1X£ (AO _|> 
the convergence of the Dufort-Frankel scheme would require (£\j*• £f- X£(A%") . 
Whereas small trunction errors would require   [AX+^tJ^/AC    <1< | 
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where    TZ    ,    U.        and   U are evaluated at   f ; 5        .If one applies the 

first-order correction in the Taylor  series,   as is done below,   the error in- 

curred by shifting the boundary from     £    = 0 to    <J = ^      will be  of the order 

2 — 
C .    In the following,   the initial data for   U.    ,   etc.  will be prescribed at 

A = A   by the two-term development    (X  + X Ü.   >   etc.       The exclusion of   A = Cf = Ö 

in this manner will therefore introduce an error of the order (A    -/-£  \.   (In 

most calculations performed    A    and   (1     are taken as 0.10.)    With the 

exclusion of the region close to   A= ^- 0    ,   the truncation errors in the dif- 

ference equations are  still very large;  solution with acceptable accuracy will 

require increments   A A   and A <JL   considerably smaller than   Ao  and   ^ 

(In subsequent applications,  A A     and At   are taken in most cases as 1/100.) 

Difference Quotients and Difference Equations - In the implicit scheme 

(see the  sketch on Fig.   6.1) the unknown values of    ü    and   ©   at point   e 

along a new grid line (column m) are to be solved simultaneously with values 

at points d,   f,   etc.   along the same grid line using known data from the pre- 

ceding stations.     The difference quotients for    U    derivatives which define 

the present scheme,   are the first terms in the following development 

2 (A A) 
-t(AA)   u m 

uf-u o> U. 

3S/e 2(A?) 

[d*U 

ft--i^5«c + (6.14) 

\5S 
\   _ St^E&lIä - ML ü     +        ) 

v.   ~       Mr)1 '2      s«s • y (*s) 
To be more precise,   the following formulation requires initial data along 
X = A.    as well as along A-X.-&X • 
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The difference quotients for    Q    derivatives are similar.    One must note 

that the difference approximations   for 3u./d\ have been carried out to within 

an error of order (A X)  instead of /A X)  •     With these quotients,   the partial 

differential equations Eqs.   (6. 3) are approximately satisfied at the grid point 

e       .    The difference equations can be linearized without sacrificing accuracy 

by expressing the values of the coefficients of—— , g   ,   etc.   in the dif- 

ferential equations at point   Q    in tf rms of their corresponding values at   b 

and   Qs   of the preceding station (refer to Fig.   6. 1),    This is accomplished 

through the relation 

where   X   may be any of the dependent variables.    To eliminate the pressure 

as an unknown in the difference equation,   one can replace  'ä-p'/äX in terms of 

values of   -p,   at the preceding three stations    b    ,    Q.     and Jo   (see sketch) 

through « 

V3A/e \d\i    W/? 2       W*'x*X (616) 

2 (AX) 
The pressure   -pj   can always be obtained after   ü    is determined by integrating 

the third of Eq.   (fa. 3) with respect to   /"     .    The error resulting from the 

integration by Simpson's rule is of the order (A 5 ) •    Application of Eqs.   (6. 14) 

to (6. 16) to the system of differential equations Eqs.   (6. 3) gives rise to twice 

as many algebraic equations as the number of points between  £ = £    and (l-\ 

along a grid line. 

To complete the formulation,   one must convert the boundary condition 

at    £    =1,   Eq.   (6.5),   and the boundary condition at    £ -  Z,      ,   Eq.   (6.13),   to 
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two linear algebraic relations among the unknown values of   U.    and   @   without 

introducing new unknowns corresponding to points beyond £j £. £ <  /    .    This 

(6.17) 

can be accomplished by the typical relation 

and relations similar to Eq.   (6. 15).    The difference equations at all grid 

points along the same grid,   together with the boundary conditions,   form a 

linear algebraic  system sufficient for determining    U.    and   @   at all grid 

points between ^-£ and   ^   = 1 .    The complete system of equations is given 

in the Appendix.    It sufficies to say that the matrix of this system is the tri- 

diagonal type,   and the solution can be obtained by following the standard 

65 procedure,   e.g.   Gauss' elimination method. 

Truncation Error - One may now examine more closely the truncation 

errors in the difference equations.    Only the truncation errors associated 

with the first of Eq.   (6. 3) need be considered.    A  similar conclusion applies 

to the other equations.    There are two terms in the remainders of the dif- 

ference equations which are most critically affected by the  singularity 

X     =0 and    ^   = 0:    one associated with the tangential pressure gradient and 

the other with the tangential stress term.    With the knowledge of the remainders 

given in Eqs.   (6 . 1 4) to (6 . 1 6),   and of the fact that near   \ •= ^ = 0, tW/ö^ — **•> A. 

and   U. r+t £  ,   the fractional error in   u.    caused by these two terms may be 

estimated as 

Au + xb ^u W 

The factors W*1 
and    fi^/lC 

z 

^is K 
a   i^ 

are not large numbers,  especially 
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at K - 0(l) > because 6C is essentially proportional to £ for small 

X (refer to the discussion in Section 3, Part 1). In the merged-layer 

regimes,   at least,  the fractional error in   U,    cannot exceed 

u. 
ü Ta    Xs?; AO? 

A ^ A3   ,      £  > C 

Taking   X    ^ ^~rr»   and   A X ~ A t AJ  -rrr"    .   and    £  -5 =:   ~T7T   ,   the fractional b        O Jo    \Q 3 /(JO T^ /O 1    and   AX-A5-7fe-    '   and   E  V-   - 
error   S U. / U.     is seen to remain at the level of one percent, 

7.    STUDY OF FLOWS OVER SIMPLE NONSLENDER SHAPES 

The method of solution formulated in the preceding section will now 

be applied to study hypersonic flow around wedge,   cone,   paraboloid and 

hyperboloid shapes at low Reynolds number.    Only solutions to the shock- 

layer region will be discussed below.    The flow structure in the  shock- 

transition zone,   in each case,   can be determined by simply integrating 

the first-order ordinary differential equations,   Eq,   (5.13),   after the shock- 

layer solution is obtained. 

7. 1    Nonslender Cone and Wedge 

As examples of flows around pointed bodies,   the  shock layers on 

cones and wedges will first be  studied.    The analysis may provide a basis 

for assessing the low-density aerodynamic and heat-transfer characteristics 

of flat surface at high incidence,  which could be meaningful to the current 

72-74 lifting re-entry studies. From the viewpoint of present approach 

based on the two-layer concept,   the cases considered are interesting in 

that the curvature of shock above the wedge, and cone  surfaces is generally 
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small,   and,   therefore,   the formulation developed in Section 5. 5,  which has 

neglected the  shock curvature effect,   could possess a regime of validity 

even beyond the limit 

%- ±  0(6) Z 

On the other hand,   the  solution will break down in the vicinity of the leading 

edge because of its singularity at the apex.    This will be discussed later. 

One may also note that the problem of a flat-plate at zero incidence 

has been the  subject of both theoretical and experimental studies of recent 

43,50,75-77    _ .. . . ,, . ..      .    , ,      „. years. Generally speaking,   the problem is complicated by the 

presence of both the boundary-layer displacement and surface-slip effects. 

However,   in the present problem which considers thin shock layers over 

highly cooled,   nonslender cones and wedges,   these two effects can be 

regarded as unimportant compared to the  slip-like velocity and enthalpy 

changes across the shock. 

The problem under the present framework is also attractive in that 

for the case of a linear viscosity law the analysis is reduced to the solution 

of a single parabolic differential equation governing the velocity.    It may 

therefore serve as a testing ground for the various methods and schemes 

71 
of solving the  shock-layer equations. In this case,   the first of Eqs. 

(6. 3) can be alternatively written for    W — U. /Z    as, 

The boundary conditions,   Eqs.   (6.4) and (6.5),   are 
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w = 0 (Y = o) 

^-'-^ff     (r-o «       ,7'2) 

Note Eq.   (7.1) contains none of parameters     |^     ,     £     >    Pr      
and Tw /]"    . 

The effects of gas rarefaction and surface incidence,   as well as the variation 

of the reference temperature with respect to    /£    ,   are all contained in,   and 

therefore can all be correlated by,   the variable 

* - * —^7- fa V    ^ {7 3) 

The appearance of the factor JSsOß  in   <£     signifies the influence of the 

oblique - shock angle on the local Reynolds number      This is particularly 

evident,   if one considers a linear viscosity-temperature relation and high 

Reynolds number;  in that case     the local velocity varies like /&•£>ß,   and the 

viscosity like cofa ß.    To relate the variable    s£   to the Reynolds number 

based on the free-stream condition,   say  Re.  ,   one may use the reference 

temperature   TL 

•# =  _ / .- I       •=- d.U.   = -as—H   - --—! —t-* <#4sß  5  (7  A) 

After the velocity field is determined,  the other flow quantities can in 

turn be found.    For a unit Prandtl number,  the total enthalpy may be obtained 

simply from the Crocco relation 

@ s Ü   = yiw (7.5) 

As observed in Section 6. 2,   the solution of   5    may be developed as 

a series in the form 

_    _//» - »A 
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of which the coefficients can be analytically determined,  for     iJ   - 0 and 1 , 

respectively,   as 

The appearance of the argument   % '''clearly indicates that the solution to 

the shock-layer equations in this case is singular at the apex    ^   = 0.    As 

in the classical boundary-layer theory,   the immediate vicinity of the leading 

edge of a cone or flat plate has to be excluded from the present analysis. 

With the initial data provided by the series Eq.   (7. 6),  the numerical 

solutions to Eq    (7.1) are obtained for the wedge and cone.    The procedure 

used follows essentially that discussed in the preceding section,  which is based 

on an implicit difference scheme.    The advantage of using the variables   W  , <6 

and ~Y     rather than    u.   ,    #      and    2^    is that in these new variables the 

truncation errors of the difference  scheme for this particular problem become 

less critical with respect to the singularity at the surface mentioned previously. 

Consequently,   the increment  A~V~ used is not required to be as small as At,   . 

Strictly speaking,   the use of    V7    and   1/T    requires certain corrections to the 

difference quotients shown in Eq.   (6. 14),  because   VJ   is not strictly regular, 

but behaves like 

w - *v +br  +o(t) 
near the surface where     f   = 0.    Examination shows,  however,   that the 

corrections are numerically small and not necessary,  at least for the present 

The  singularity is more critical when -ps ^-0-    In this more general case, 
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43 problem. 

The results of skin friction and heat-transfer rate on cones and on 

wedges for   Pr   = 1  are presented in Fig.   7.1  as     ^^J (=  ^^ \/) Vs-   %   • 

As shown,   the values of   C„  and   c „   approach,   respectively,  JOÖT^/S and 

sdisru2ß as    /%, >0  ,   as required by the free-molecular-flow theory for unit 

accommodation coefficients.    Fig.   7. 1  indicates that,   as far as the heat- 

transfer rate and skin friction on cones and wedges are concerned,  appreciable 

departure from the boundary-layer theory does not occur until /Jt 24 I .     For 

?£ <£. I    ,   the analytical development (6-term expansion for      l)   - 0,   4-term for 

y      =1) appears tc b e adequate.    The calculation performed begins at   <£    =0.01 

and uses   AT   =1/10 and    A &   = \ /1000 for  .01 £ £ ^.2 and     A *.    =1/100 

for  ,2 =  ÖC   —  /0   .    The total computation time (including print-out) on an 

IBM 704 digital computer is approximately Z minutes. 

The corresponding velocity profile tends to a linear distribution in   ? 

in the limit of  iC—>0 ,   as is also revealed by the coefficients     U0     in the 

development of Eq.   (7. 5).    As   /j£    increases,   the velocity gradient increases 

near the  surface,   tending to form a boundary layer,   and decreases at the outer 

edge,   thus reducing the velocity change across the  shock.    The value of    tt 

immediately behind the "shock" is also given in Fig.   7.1.    It is rather inter- 

esting to observe in this respect that,   even at   %   as low as 3,   the flow field 

can already be represented very closely by the classical boundary-layer 

limit,   in spite of the fact that the velocity at the outer edge is  still quite far 

from the inviscid value and that the viscous layer is still a major fraction 

of the shock layer.    To bring out clearly this observation,   the velocity pro- 

files at various     <fc   stations are correlated in terms of the similarity variable 

AF-1285-A-10 62 



/3 + 
3<Z 

rf cLT 

The good correlation and the excellent agreement with the Blasius profile,   as 

revealed in Fig.   7. 2,   also provide a check on the accuracy of the method. 

Finally,   from the local skin-friction of the wedge  surface,   one can 

determine the lift/drag ratio for a flat plate at incidence in the low Reynolds 

number regime.    This ratio corresponding to a 46° incidence angle,   which 

is calculated on the basis of one surface on the compression side,   is in- 

cluded at the lower part of Fig.   7.1  as a function of   /£    .    Though not pre- 

sented in the figure,   the L/D ratio at    p   - 30° and 60°  does not differ a 

great deal from that for    /5=45°„    The L/D ratio at    -^   = 1 . 0 is about 0. 35, 

becomes lower for   /£ <. /    ,  and tends to zero as   •# >0 •    Once again,   the 

present analysis yields the correct free-molecule limit for unit accommoda- 

tion coefficients.     It may be noted that using boundary-layer theory -would 

lead to a negative L/D at low Reynolds number. 

As a check on the internal consistency of the analysis,   one can examine 

the  solutions to determine whether or not the shock layer remains thin in 

comparison with the lateral dimension of the body.    Examination of the solu- 

tion obtained shows that the particular assumption of equating the shock 

slope with the body slope may not be strictly satisfactory for a flat plate 

at less than 25° incidence in the range of   /)C /. /   .    (The case of a cone is 

less critical. )   An interesting question arises,   in this respect,   that is, 

whether and when the viscous  shock layer will also detach from the surface, 

as it does in the inviscid limit,  when the wedge or cone angle becomes too 

high. 

t 
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7. 2    Paraboloid and Hyperboloid 

As examples of flows around bodies of revolution having finite nose 

radii, the shock layers around a paraboloid and a hyperboloid will now be 

studied,   applying the full method developed in Section 6. 

The principal reason for selecting this class of bodies is that the 

•     4,19 zero-pressure point does not occur on these bodies,   and the shock- 

layer theory should be valid.    The comparison provided at the end of 

Section 5 for the paraboloidal shock in the inviscid limit has further indi- 

cated that the present version of the thin-shock-layer approximation may 

be used to describe the flow field with fair accuracy.   It is   reasonable to 

expect that the approximation will remain adequate in trie corresponding 

viscous problem.    The degree of approximation in the case of the hyper- 

boloidal shape may presumably be better,  because of its smaller surface 

curvature.    Here,   the distinction between a shock and body geometry should 

not be essential,   so long as the  shock-layer approximation is valid,   since 

the two are equivalent in the leading approximation.    To provide a flexible 

interpretation of the present analysis,   one may regard either the body 

shape or the shape of the "shock interface" as specified. 

The following study concerns highly cooled bodies of uniform surface 

temperature with   -=!£• =• —     ,   £ =-«-   and     Pr =.7/   .    To simplify the 
'o O O 

matter,   the linear viscosity-temperature relation    JcAu   = 7/ 7Z  is 

assumed.    The constant ijU.#/Tu) can be evaluated in the manner des- 

cribed in Section 4. 1  of Part I,   using the reference temperature given in 

Eq.   (4.1a) for the  stagnation region. 

This linear representation may perhaps be somewhat improved by taking 
into account the effect of flow speed on the mean temperature of the shock 
layer,   in a manner  similar to that provided in Eq.   (7.4). 
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In the present study concerning flow regions not very far from the 

blunt nose,   such idealization should be  sufficient.    In terms of the variable  A   , 

the  shock or body shape considered can be described as 

where    b    is zero for a paraboloid,   and is positive for a hyperboloid.    The 

analyses to be discussed are obtained for    b    = 0 and    fc>    =1.    The latter 

corresponds to a hyperboloid which approaches a 45°  cone at infinity -- 

(ideally the hyperboloid may be regarded as a blunted cone).    For each 

geometry,   values of      |<C     = 0.3,   1,   3,   10 and 30 are considered,   encom- 

passing the viscous-layer,   the incipient-merged layer as well as the fully- 

merged layer regimes. 

The method of series expansion is first employed to determine    U.e ,  &0 , 

•fa    i    Ü.     i    ©     <   and -&>   which provides initial data for the difference 
2 

method.    The solutions are carried out for each value of   «    from     \    =0.1 

near the axis of symmetry to    A.   - 3 (about Z to 3 times the nose radius), 

with a step size of    AX = 1/100 and   A^=l/100.    To avoid excessive 

amplification of the truncation error near    C,   = 0,   the inner boundary is 

shifted from     £   = 0 to      £  =  ~T     >   as previously discussed.    The value of   £ 

used is 0.15 for the cases then     K     =0.3,   1,   and 3,   and 0. 10 for the less 

critical cases where     j^    =10 and 30.    Instability is not detected,   except 

for a bounded oscillation of small amplitude which is found in the case of 

Kl     = 0. 30 over the range of 0. 1 £ X£  0. 30.     For each value of   K* ,   the 

total computation time (including print oat) on an IBM 704 digital computer 

is about 27 minutes.    The results of the calculation are presented in Figs. 

7. 3 to 7. 11. 
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The profiles of velocity,   enthalpy,   pressure and temperature at three 

successive stations  -r-   = .59,   1.24 and 2.82 downstream of the  stagnation 

point are presented in Figs.   7. 3 to 7. 5 for various values of    K    ,    The 

profiles for the paraboloidal case which are essentially similar are not 

presented.    The particular features of these profiles which should be 

emphasized are the reductions of tangential velocity and total enthalpy at 

the outer edge from their respective upstream values as a result of the 

transport effects behind the shock.    The reductions increase,   of course, 
2. 

with decreasing density,   i.e. ,   decreasing    K    >   and decrease generally 

with increasing distance   i£    from the axis of symmetry.    As in the solution 

for  shock layers on the wedge and cone,   the gradients Su./diu. >  dT/dsu- •   etc- 

near the body surface increase with distance    <%   ,   and a boundary layer is 

seen to emerge gradually at the base of the  shock layer,   as one moves 

downstream.    At the higher Reynolds numbers,      «"=10 and 30,   the 

temperature profiles at the downstream stations attain maximum values 

inside the shock layer,   as in a boundary layer with surface cooling.    The 

profile of the total-enthalpy function   ©    also reveals  similar characteristics, 

7- 
though to a lesser degree.    In fact,   for the case of   ((   = 30,   the function   &    , 

thus the total enthalpy itself,   overshoots   slightly its free-stream value at 

the  station         - Z.82.    This overshoot results from the mutual compensa- 
CL 

tion of the viscous dissipation and heat conduction (from the higher- 

temperature region inside the shock layer),   with the former overbalanced 

by the latter.    This feature is peculiar only for  the Prandtl number 0. 71 

assumed,   and is absent for   Pr > I .    The similar overshoot in total enthalpy 

has also been found previously in Van Driest's calculations of laminar boundary 
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78 
layer over a flat plate. One may also note from these results that there 

is very little variation of pressure across the shock layer for all Reynolds 

numbers.    This property is,   of course,   only incidental to the particular 

configuration studied. 

From the velocity,   temperature and pressure,   the streamline pattern 

describing the flow field around a blunt body can be determined.    Results are 

presented in Figs.   7. 6 and 7. 7 for    «    = 1  and 30 for both the paraboloid 

and the hyperboloid.    In order to provide a closer comparison with the 

inviscid case previously presented in Fig.   5=2 of Part I,     the results 

presented in Figs.   7. 6 and 7. 7 have been interpreted as solutions to the 

inverse problem,   that is,   the flow fields and body surface  supporting 

paraboloidal and hyperboloidal shocks.    To be more  specific,   by the term 

"shock" one is referring to the "shock interface" discussed in Section 5, 

which is also the location of the outer edge of the  shock layer in the present 

two-layer model.     Consider first Fig.   7. 6 at    «"    =1.0,  which represents 

the flow fields in the merged-layer regimes.    Comparing the results of the . 

paraboloidal shock in Fig.   7.6(a) with the corresponding results in Fig.   5.2, 

one sees that far from the axis of symmetry the inviscid and viscous shock 

layers are comparable in thickness,  but that,  near the stagnation region, 

the thickness in the viscous case  studied is noticeably smaller.    The results 

are understandable through the observation that the high rate of surface 

cooling effectively increases the density level,   and hence the mass flux, 

p U.   ,  near the stagnation region.    Away from the stagnation region,   the 

Strictly speaking,   the particular example given in Fig.   5. 2 which assumes 
£      =1/7 does not correspond to the inviscid limit of the example considered 
here,  which assumes     £    = 1/8.    The difference however is rather small. 
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heat conduction to the cooled body is offset and even overbalanced by the 

viscous dissipation.     For an insulated body,   one may anticipate a sub- 

stantial thickening of the shock layer downstream of the stagnation point. 

Comparing the flow pattern of the paraboloidal (Fig.   7.6a),   with the hyper- 

boloidal shocks (Fig.   7.6b),   the latter is  seen to be generally thinner.    The 

relative difference between the inviscid and the "fully viscous" shock layers 

observed for the paraboloid case also applies for the hyperboloidal case. 

The flow patterns at a higher Reynolds number,     K    = 30,   is pre- 

sented in Fig.   7.7.    It is of interest to observe that the shock-layer thicknesses 

around the bodies have not changed much from those of the preceding figure, 

in spite of the considerably larger difference in Reynolds number.    The main 

a. 
reason is presumably that,   at    K    ~ 30,   a good fraction of the  shock layer 

near the stagnation point still belongs to the region where viscous and heat- 

conducting effects are important. 

It may be remarked that the results presented in Figs.   7. 6 and 7. 7, 

as well as in the other figures,   do not provide the complete flow picture, 

since they describe only the pattern within the shock layer.    As pointed 

out before,   solution to the  shock-transition zone can be easily obtained from 

the information provided here.     The  streamline pattern in the shock- 

transition zone may be constructed by working backward. 

The  surface pressures on the paraboloid and hyperboloid,   non- 

dimensionalized by the pressure behind the  shock,   are provided in Fig.   7.8. 

Although not corresponding to the exact inviscid limit for     £    = 1 /8,   the 

inviscid results calculated previously for     £   =1/7 are also included for 

comparison.    The results obtained show a continuous transition between the 
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inviscid limit and free-molecule limit (which is   -pj  - 1).    As already 

noted,   -pi    is practically unity for the hyperboloid.    Also included in Fig. 

7. 8 are the distribution of the thickness of the shock layer around bodies 

for the five cases of    K    analyzed.    Except for the case of   K    = 0. 30,   the 

results for all    K    's compare closely one with another,   confirming the 

relative insensitivity of the shock-layer thickness with respect to change in 

Reynolds number previously observed. 

Finally,   the local skin friction and surface heat-transfer rate are 

presented respectively in Figs.   7.8 and 7.9 for both the paraboloid and 

hyperboloid.    Also included are the distributions corresponding to the 

free-molecule limit (for unit accommodation coefficients).    The smooth 

transition to the free-molecule limit is quite evident from the results 

presented for successive values of    h\     .    Generally,   the value of   C^   falls 

off as one moves away from the  stagnation point.    Similar is the value of   C „  , 

after reaching a maximum.    One notes that the rate of this falling-off increase 

generally with increasing Reynolds number,   also that the distributions of 

the higher   (<     's arc remarkably similar.    To study the heat-transfer charac- 

teristics more closely and to make comparison with the boundary-layer 

limit possible,   the results of Fig.   7. 10 are reproduced in Fig.   7.11   in the 

form of  <2./4. vs.   t/ei      ,  where    <L- is the heat-transfer rate at 

the stagnation point.    One sees that for both paraboloid and hyperboloid,   the 

i. 
heat-transfer distributions at    K    = 30,   10,   as well as 3,   are reasonably 

close to one another.    While the rate of falling-off from the stagnation-point 

value is seen to increase with increasing   K     as in the preceding figure, 

Fig.   7.11  reveals that there is a reversal of this trend for     f'/'fr at: 
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«        =10 for both paraboloid and hyperboloid.    That is,   at the same  ty/a,    , 

the ratio   <%•/%- is slightly higher for     «   = 30 than for    '<    - 10.    This 

reversed trend is further confirmed by the boundary-layer limit estimated 

on the basis of the local-similarity method (using the inviscid solution ob- 

tained from the present theory for the outer flow),   also included in Fig.   7.11. 

x 
The reversal in the trend of heat-transfer distribution at    K    =10 can be ex- 

plained by the vorticity effect.    Since the external vorticity effect generally 

decreases in the downstream direction,   the effect may tend to decrease on 

CL. /<£• ratio from the corresponding boundary-layer     prediction,   in agreement 

with the reversed trend observed. 

From the above discussion,   one should note that the distribution of the 

heat-transfer ratio is relatively independent of Reynolds number over a very 

wide range.     In particular,   the variation of   the heat-transfer ratio in the range 

%. 
K       = 3-30 is remarkably small.    This,   together with the fact that the vorticity 

interaction is itself not a predominantly large effect,   suggests that the heat- 

transfer distributions on a smooth blunt body should remain essentially un- 

changed in the boundary-layer through the incipient-merged-layer regimes. 

A similar conclusion is applicable to the skin-friction characteristics. 

The insensitivity of the distribution of the measured heat-transfer rate with 

respect to Reynolds number has been    reported in Refs.   50 and 52 for low- 

density hypersonic flows over spheres. 

The accuracy of the local-similarity method for the boundary-layer analysis 
is taken for granted here. 

In this instance,   one shall  consider the distribution of the ratio of   f    to 

AF-1285-A-10 70 



8.    STUDY CF NONEQUILI.BRIUM DISSOCIATION IN SHOCK LAYER AT LOW 
REYNOLDS NUMBER 

Thus far,   only an ideal gas with constant specific heats has been considered. 

A more realistic analysis of the low-density hypersonic flow must include non- 

equilibrium flow chemistry.    The following section will discuss briefly an exten- 

sion of the thin-layer approach to study dissociation and species diffusion in the 

viscous shock layer,   assuming a single dissociation-recombination reaction. 

The stagnation region in the viscous layer and merged-layer regimes will be 

analyzed. 

8. 1    Relation to Previous Work 

The  stagnation region with nonequilibrium dissociation has been studied 

by Chung,        on the basis of a viscous-layer model.    His analysis assumes 

a binary mixture of diatomic molecules with a unit Lewis number and a linear 

viscosity-temperature relation,  for a noncatalytic surface.    Very significant 

effects of surface cooling on the flow chemistry have been revealed.    The 

following analysis assumes a similar chemical kinetic model but will be con- 

ducted from a viewpoint more consistent with the  general approach developed 

in the preceding sections.    The present flow model allows for changes in the 

tangential velocity,   total-enthalpy,   and species concentration across the shock 

and therefore possesses a regime of validity larger than the viscous-layer 

model.    The influence of the wall catalycity on the species diffusion and flow 

chemistry will also be studied. 

In considering nonequilibrium flow of rarefied gases,   questions naturally 

arise as to the importance of the effects associated with the vibrational (also 

79 
perhaps rotational) relaxation. Although not being accounted for in the 
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present study,   the basic flow model developed here may provide a simple 

framework for  studying these as well as other more complex high-temperature 

real-gas effects. 

Before passing to the  specific analysis of the stagnation region,   the 

general problem of the shock layer with species diffusion and nonequilibrium 

chemistry will be discussed, 

8.2   General Discussion 

Consider a binary mixture of diatomic molecules and dissociated atoms. 

The diffusion velocity of the atomic species   V     may be written for the present 

study as 

V'=-D,2 
^u^(^)^u^^+4(l.^UT (8.1) 

where oc is the atomic concentration in mass fraction, and X>l2 the binary 

diffusion coefficient. The thermal diffusion has been generally neglected in 

boundary layer analysis (    ~y^-a 1/10 for air) but may be quite significant 

for nonequilibrium flow with a highly cooled surface. 

Of particular  significance is the  second term on the right of Eq.   (8. 1) 

corresponding to the pressure diffusion.    This term is not present in boundary- 

layer analysis which assum.es a uniform pressure across the layer,  but is 

important in the present study because the pressure variation is not generally 

negligible in the shock layer (as well as in the  shock-transition zone).    In fact, 

in the merged-layer regimes,   the contribution of the pressure diffusion can 

be as important as that due to any other processes,   and should therefore be 

included in the general formulation of the problem.    In the stagnation region, 

however,   the pressure gradient is small and the pressure diffusion effect can 
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also be neglected.    From Eq.   (8. 1),   one may infer that pressure diffusion tends 

to increase the flux of the (lighter) atomic  species toward the (convex)  surface 

in region downstream of the stagnation point. 

Consistent with Eq.   (8. 1) is the expression for the energy flux 
6, 77 

f = -K-f£+fav-A+aWv-/« 9u 
U (8.2) 9/u.      V"l    '"">• '  "V ' '     Q/u, 

where   Q    is the heat of formation per unit mass of the atoms,   and  J\j   and -A^ 

the specific enthalpies of the atoms and molecules,   respectively.       The differ- 

ential equations governing the shock layer Eq.   (5. 3) remain unchanged except 

for the last equation governing the total enthalpy.    The equations governing the 

total enthalpy   H     and the atomic concentration   OC   in the shock-layer  region 

are 

3/i, >    l        rtrJ diu.1'' dsy,      Pr     S ? 
H+fa-O-T- A 

+ ^(^-04r(A-^Q.)~z CM*-   v ''    Pf    V "I i       "V    C*'V* 

+ %* £#,-A+*)«g*?«äf-fr«~»V.O a^r 
>r j> V (8.3) 

z0 ("Ä 3^y a r f><*\/' -f-   ^iA 7 
where    MJ"      is the rate of production of the atomic  species in mass per unit 

volume. Consistent with the present two-layer model,   and with Eqs.   (8.1) 

and (8. 2),   are the two equations relating total-enthalpy drop and concentration 

The assumption of   —5—   ^x^~^^v> ~•i  an<^   ^    ^as ^een used. 

To complete the system of differential equation, one has -]&•=• %,2\\ + e£) pT, 
where £ is the gas constant for the molecule, as well as .X, and X2 as 
function of   T     ,   yH   as function of   7"   and     oi    ,   etc. 
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(8.4) 

jump across the shock-transition zone. 

P,<ir,(«.%-ocJ* ~(ocvl)z 

The finite atom concentration at the outer edge of the shock layer,   oC    ,   is 

a result of upstream diffusion of the atomic species which are produced inside 

the shock layer.    Implicit in the last of Eqs.   (8.4),   which resemble a concentration- 

jump across the Knudsen layer,   is the assumption that the gas-phase reaction is 

frozen within the shock-transition zone,   i.e.     AV   is negligible.    The assumption 

may be justified on the basis of the relatively low collision frequency in the 

transition zone.    Because of the temperature maximum reached inside the trans- 

ition zone however,   a domain (corresponding to a flight speed and altitude much 

higher than contemplated) does exist in which excitations of modes of vibration 

and dissociation within the shock can be important. 

The boundary condition governing the species concentration at the surface, 

78 
assuming a first-order recombination rate       and neglecting dissociation at the 

surface,   is 
f8R,T (~V'>=2^/W« >   <r-0) 

(8.5) 

where    /        is the recombination efficiency (the probability for each atom to 
w 

recombine after reading the surface) and (oCV')is provided by Eq.   (8.1) in- 

cluding the pressure diffusion.    To see more clearly the manner in which the 

recombination efficiency     "/       affects surface catalycity in the regimes con- 

sidered,   one may express Eq.   (8.5) in terms of the variable   C      , 

.    J+y    ofe   (Z-rw\J—T-^w    I     — {8  fc) 
a« 
3$ 
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One sees that as K.  decreases,   for a fixed recombination efficiency   7^     , 

2. 
the wall-catalycity effect reduces.    In the range of   K     = 0(1),   the question of 

whether or not a fully catalytic wall (i.e.   OC c^>   O   ) can be realized will depend 

on whether 

— /Y~    <<   ' (8.6c 7W    A 

Since      U oC  T       >   and    cO   is not much larger than 1/2,     it seems that a fully 

catalytic surface would require comparatively high value of    Y.  at    fc     = 0(1). 

Assuming a single dissociation-recombination reaction of the type 

X^ + M^i X+X+M,   the rate of production MTyO    may be written in the familiar 

, 28,29,79 form     '      ' 
,2 r 

UAT • .  .       -a  / -A.  \     I 

r - iM*"&)]&("<)-&-] 
wh ere    «      is the "equilibrium constant" which may be related to the constant 

19 p      of Lighthill      through 

fi   =     ^ (8-8) 

Lighthill finds     <0    remains practically constant for pure oxygen and pure 

nitrogen for a temperature as high as 8000°K.    Examination shows that at 

higher temperature,   large departure of    P     from the nearly constant value 

will occur for nitrogen because of the excitation of certain highly degenerated 

electronic states of the nitrogen atoms.    In his study of the viscous shock layer, 
of. 

Chung       assumed "unexcited electronic  state" (apparently meaning the high- 

lying levels to be unexcited).     Presumably,   his     O     does not differ a great 

deal from its value at 8000°K. 

Another point of importance with regard to the reaction rate is the re- 

latively weak recombination in the gas phase at low density.    As observed by 
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84 Gibson,        the recombination rate based on the three-body process becomes 

29   30   82 negligible as density level decreases.    In boundary-layer studies,       ' 

the recombination is important because the ambient density level is sufficiently 

high and increases further towards a highly cooled surface.    In the low Rey- 

olds number regimes studied here,   the ambient density is too low to make the 

three-body processes effective,   even with a highly cooled surface.    The re- 

combination in the gas phase may therefore be expected to be negligible.    The 

range of validity of this  simplification can be easily established by an order-of- 

magnitude analysis based on Eq.   (8. 7).    A direct consequence of neglecting the 

three-body processes is the binary scaling law,  which permits correlations 

of nonequilibrium flow fields of different body scale and ambient density by 

preserving the product ( pa, ) in the same manner as in the Reynolds-number 

84 similitude. It is evident that this scaling law may apply to both inviscid and 

viscous flows.    In case of viscous flow,   however,   in order to preserve  similar- 

ity in the boundary condition,   the binary scaling law requires the nonslip surface 

In the following,   nonequilibrium dissociation in the  stagnation region will be 

condition,   and a noncatalytic (  -JJ-J- = 0) or a fully catalytic surface (  oC   - 0). 

analyzed on the basis of the model described.    In passing,   it may be pointed 

out that the procedure of solution developed in the previous section for  shock 

layers around nonslender bodies can be extended to study nonequilibrium 

dissociation,   including species diffusion in the  shock-transition zone. 

8. 3   Nonequilibrium Dissociation and Species Diffusion in the Stagnation Region 

In the following study,   the perfect-gas value of   Cvj, for the atom species 

and molecular species will be assumed to be,   respectively, 
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Thus the molecules in the shock layer are assumed to possess,   in a classical 

sense,   the full rotational as well as vibrational degrees of freedom.    Implicit 

is the assumption that excitation of the electronic  states of the atoms and 

molecules does not contribute to the internal energy of the particle.    Thus, 

associated with the atomic and molecular  species are two specific heat ratios 

7"     = 5/3 and    y    - 9/7.    To make the temperatures in the following analysis 

(8.10) 

dimensionless,   one introduces a "free-stream stagnation temperature": 

T sj£- = e   ÜL 
where £ = y     -~-,   corresponds to a specific ratio of     Y    - 7/5. 

It will be convenient to introduce the following parameters 

6^  = v/j>T0 

00 2.     ^oo 

(8.11) 

(8.12) 

<r =    p /e  A' ' oo/    oo (rf 
where   D      is a reference value for   C    and will be taken for the present 

purpose as 122 gm/cc. 

The system of differential equations governing the shock layer in the 

stagnation region in terms of the variable    C,    ,  becomes 
2 I TT     r 7! r. >        "I / 

U  -quu   - ~rp. 

- ^ uoc' = 
c^e r   üoc/   y,   x fA^-ve,.   v g/<^M 

(8.13) 

"(flf 2&Jg«&/ 

?'""C(l+«L 
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where   /-/ — H/~K U       and   0 = 7/7^ are respectively the dimensionless 

enthalpy and temperature,   which are related through 

G= l^i-T»-6*«) (8"14) 

/        P U   a.\ 
Note that   «  (= £     °°   °°—I   is the  same parameter as defined previously.    In 

the above equations,   a viscosity law      iX oC T   has been used, and the thermal 

diffusion neglected. 

The boundary condition on the surface becomes,   at     £   = 0 

ü =0 
Q=TW/T0 }• (8., 1.5) 

where 

r wg T. 

The boundary condition at the outer edge of the shock layer becomes,   at     ^   = 1 

U + ü u' 
7*,  =0. \ 

>        (8.16) 

/ 

Eqs.   (8.13) to (8.16) constitute a standard two-point boundary-value problem. 

The above formulation includes the frozen atomic  species in the free  stream. 

In the following examples,   the above formulation is applied to an ideal- 

ized mixture    of "air molecules" and air "atom" as in Refs.   29 and 79,   thus 

one uses a value of     Tj, = Tj/g       =101, 300°K,   which is a weighted average 

between 59, 000°K (oxygen) and 113,200°K (nitrogen),   based on the composition 

This idealization may lead to oversimplification of the chemical rate equation. 
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in the free stream.   To make the present calculations comparable with Chung's 

analysis,   the same values of    U    ,   2J&    ,    S     ,    a,    ,  T     and   oC     (=0),   are 

used and are listed in Fig.   8. 1,    Differing from Chung's however are the 

values    CO   =1/2 and  oSe.   = 1.40,   also     P /P'  ~ !• •    These differences should 

not be considered to be critical.    The value    Ugg   - 26, 000 ft/sec used corres- 

ponds to re-entry from satellite speed. 

Numerical integrations have been performed for    K      = 0. 473,   1 . 97, 

5.79,   1 6. 24 and 35.2,   corresponding to a one-foot nose radius at altitudes 

of 350,000  ft.,   320,000 ft.,   300,000 ft.,   280,000 ft.   and 265, 000 ft. , 

respectively.    Throughout the whole series of calculations,   the values of 

\<y/Q which controls the recombination rate are of the order of 10       or 

much less,   and one may use the binary-scaling rule to apply the present 

results to bodies of other dimension.     The table given on top of Fig.   8. 1 

z 
provides the correspondence between the value of    K     and the altitude for 
* o 

nose radius smaller and greater than one foot,   according to this rule. 

The  solutions by numerical integration are presented in Fig.   8. 1  to 

8. 3.    As typical results,   the atom concentration profiles of the shock layer 

are presented in Fig.   8. 1 for both noncatalytic as well as fully catalytic 

2 a 
surfaces for   fC       = 16.24.    This value of   kT      falls in the viscous-layer vo o 

regime and corresponds to the highest altitude considered by Chung (280,000 

ft.).    Included in Fig.   8. 1 for comparison is the corresponding profile in the 

2 
inviscid limit ( K.—^o°),   as well as a solution for unit Lewis number.    The 

difference in solution due to the Lewis number is clearly small,   at least 

for the noncatalytic case considered,   whereas the departure of the  solutions 

from the inviscid limit is clearly very large. 
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An important feature of the profiles obtained is the finite value of atom 

concentration at the outer edge,  which is absent in the corresponding solution 

of Chung.    The present results show that the concentration jump is not neg- 

ligible even in the viscous-la.yer regime where changes in tangential velocity 

and enthalpy across the shock may be neglected.    Chung's solution (not shown) 

follows the inviscid profile near the shock and becomes comparable with the 

present result (for the noncatalytic case) near the surface.    The large influence 

of the wall catalycity on the composition in the inner portion of the  shock layer 

is clearly indicated by the large difference between the two extreme cases 

shown in Fig.   8.1.    However,   the temperature profiles corresponding to these 

extreme cases (not shown) reveal indistinguishable     difference throughout the 

entire shock layer.     The negligible difference in temperature profile is ex- 

plained by the fact that for this as well as other values of    K       considered 

(and for the speed of 23, 000 ft/sec or lower) dissociation takes place mainly 

in the outer portion of the shock layer where the temperature is highest.    The 

composition in the inner portion of the  shock layer is controlled by diffusion 

as in a frozen boundary layer.    Since there is practically no heat release from 

chemical reaction in the inner part of the layer,   the change in composition 

resulting from the change in wall catalycity will not introduce appreciable 

change in temperature. 

The profiles of concentration,  velocity,   enthalpy and temperature at 

2 
other values of    K      corresponding to successive degrees of rarefaction are 

presented in Fig.   8.2 for the case of noncatalytic  surface.    The corresponding 

results for a fully catalytic surface will not be presented,   except to mention 

that the conclusion drawn from the  study of Fig.   8. 1 with respect to the large 
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influence of the wall catalycity on atom concentration profile and the small 

effect on temperature remains the same.    According to Fig.   8.2,   at a 

higher value of   K      ,   say   K      = 35. Z,   the concentration jump across the 

shock is  still appreciable and reduction of atom concentration level by 

surface cooling is still significant.    At the lower values of    k^     >   say   K0    —     5, 

the temperature is reduced (because of the combined effect of surface cooling 

and enthalpy drop across the  shock) to such a low level that the effect of dis- 

sociation is hardly distinguishable. 

The stagnation-point heat-transfer coefficient  C H as well as the 

standoff distance,   A    ,   corresponding to the solutions discussed are presented 

in Fig.   8. 3.    As anticipated,   the use of a non-catalytic surface to reduce heat 

transfer becomes less and less effective as the degree of rarefaction increases, 

i.e.   K0     decreases,   since the difference in heat-transfer characteristics of 

the two extreme  surface conditions depend on the amount of atomic particles 

z 
present.    At   Ka    below 5,   the difference in heat transfer vanishes.    Also in- 

cluded is the   CH    value for a     Y   = 9/7,   corresponding to the case of completely 

frozen chemistry.    The stand-off distance,   that is,   the thickness of the shock 

layer (obtained for a noncatalytic surface) is seen to vary with density rather 

slowly.     The relatively high degree of dissociation taking place in the outer 

portion of the shock layer at higher    «Q   's reduces the temperature and in- 

creases the density,   causing a reduction in the standoff distance from the 

ideal-gas value,   as shown in Fig.   8, 3. 
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CONCLUSION 

In this paper,   the problem of hypersonic flow of a rarefied gas around 

blunt bodies is studied within the framework of the continuum theory.    The 

existing theories and experiments on the stagnation region are discussed; the 

approach based on the thin-shock-layer approximation is extended to study 

flow fields removed from the stagnation region as well as in the  shock- 

transition zones.     Particular problems are analyzed to illustrate aerodynamic 

and heat-transfer characteristics of blunt as well as pointed nonslender bodies 

at low Reynolds number.      Also  studied is nonequilibrium dissociation with 

species diffusion in the shock layer under the influence of strong surface 

cooling. 

Attempts to analyze the  stagnation region based on the continuum theory 

have resulted in three main approaches.    One approach treats vorticity and 

other effects under the assumption of small departure from the boundary- 

24 25   26 layer limit.    The theories of Van Dyke       and others     '       based on this approach 

have been most systematically and elegantly developed,   and,   in fact,   can be 

extended to study flow regions removed from the stagnation point.    In a second 

approach,   applicable to regimes of low density,   transport effects are considered 

throughout the  shock layer,   and a system of simplified Navier-Stokes equations 

is integrated along the axis of symmetry.    However,   in order to make the 

partial differential equations tractable in this approach,   one has to assume a 

constant density or a thin shock layer.    The third approach makes consistent 

use of the thin-shock-layer model.      Without sacrificing the essential features 

of the problem,   the thin-shock-layer approach simplified the analyses of the 
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stagnation region in both the high and low Reynolds number regimes. 

Within the degree of approximation used,   it embraces both of the other 

approaches 

As a  result 01 the more  systematic studies, much oi the contro- 

versy and disagreement in results of vortieity.,   displacement and other effects 

has bean resolved during recent years,     unresolved,  however,   remains the 

variance between the predicted and measured values of heat-transfer rates 

One may cite in particular that the rise oi heat-transfer rate predicted by 

26 24 45 
Maslen Van Dyke       and others       is consistently xower than the values 

27 
deduced from the experimental measurement of Ferri,   Zakkay and Ting. 

and some other  sources.     Unresolved also remains the difference among results 

tor the  flip and temperature-jump effects,    Maslen       shows that these effects 

are net important for heat-transfer studies,   as opposed to the conclusion oi 

Rot; and Len.-»rd and also of \ an Dyke.     '    Disagreement appears to be 

us- critical among results ior the  lower Reynolds number regime.     Experi- 

47 
mental heat-transfer data measured by lern and Zakkay.        and by Vidal and 

.50 
Wittiifj       appear to ioUow the theort-tical trend of the thin-shock-layer analysis 

rather well in this regime.     There exists also reasonable correlation among 

heat-transfer predictions of Probstein and Kemp, '     Levinsky and Yoshihara 

41 
and Cheng       in the merged-layer regimes. 

The new development with the thin-shock-layer approach includes an 

extension of the thin-layer concept to formulate the problem in the  shock- 

transition zone.,   and development of a finite-difference method for solving the 

shock-layer equations without similarity assumptions 

The basic flew model consists of an outer layer and an inner layer. 
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identifiable as the shock-transition zone and the shock layer,   respectively. 

Across the  shock-transition zone,   the compression ratio is assumed to be 

high.    In the shock-transition zone,   the density is assumed to be generally 

at the low free-stream level,   implying that the high compression ratio across 

the  shock is not achieved except in the vicinity of the interface of the two 

layers. 

Because of the thin-layer approximations,   the thickness-curvature 

effects which generally appear in the higher-order boundary layer or Navier- 

Stoke s equations do not appear.    Also,   the slip and temperature-jump effects 

can be separately treated as higher-order effects of the  shock-layer theory. 

The system of partial differential equations governing the shock layer is of 

parabolic type,   for which a forward integration in the downstream direction 

is possible.    The corresponding system for the shock-transition zone is re- 

ducible to   one   of ordinary differential equations,   very similar to that of the 

one-dimensional Shockwave.    This system gives rise to a set of modified 

shock conservation relations which account for the transport efforts immedi- 

ately behind the  shock.    According to these modifications,   the total enthalpy 

and tangential velocity will change across the shock in a manner similar to 

the surface slip and temperature jump across the Knudsen layer near the 

body surface.    With these  shock relations,  which do not involve any detail 

of the  shock-wave structure,   the flow field in the shock layer can be deter- 

mined independently of the shock-transition zone.    An interesting general 

property of the present formulation is that the  solution always has the  correct 

values for  skin friction and heat-transfer rate in the free-molecule limit 

(for unit accommodation coefficients). 
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The  shock-wave structure can be determined by simply integrating the 

ordinary differential equations with boundary conditions at the inner edge 

furnished by the shock-layer solution.    The analysis provides,   in essence, 

a generalization to include downstream nonuniformity under the condition 

dja,  ^ | . 

Unlike the existing Newtonian shock-layer theories for inviscid flow 

around blunt bodies,   the present analysis,  which treats the tangential pressure 

gradient as a principal term,   possesses reasonably good accuracy,   as has been 

revealed in the comparison with Van Dyke's inviscid solution    for a paraboloidal 

shock.    The rather detailed agreement with the merged-layer  solution of 

40 Levinsky and Yoshihara       confirms the validity of the two-layer concept under- 

lying the present formulation,   it also shows the surprising accuracy of the thin- 

layer approximation even for a monatomic gas. 

The method for  solving the dissimilar problem of the shock layer has 

been developed mainly for the viscous layer and the merged-layer regimes. 

It provides step-wise integration in the downstream direction,   using a finite- 

difference approximation.    The difference equations are singular at the axis 

of symmetry and at the body surface.    On account of the singularity,   it is 

necessary to develop a series solution in the vicinity of axis of symmetry 

to produce valid initial data at a station downstream of the axis of symmetry. 

Because of the singularity,   it is also necessary to resort to the use of an 

implicit scheme for the difference approximation,  which is free from the 

usual handicap of the stability and convergence requirements.    With this 

implicit scheme,  and allowing the truncation error of an order of one per- 

cent,   solutions to the shock-layer problems can be brought within the normal 
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capacity of a standard high-speed digital computer (IBM 704). 

With the method of analysis developed,   the present theory is applied 

to analyze flows over a wedge,   cone,   paraboloid and hyperboloid for a per- 

fect gas of constant specific heat.    Generally,   the  solutions obtained reveal 

substantial changes in total enthalpy and tangential velocity across the shock 

in the low Reynolds number regime corresponding to    £ K    4s.   0(1).    They 

provide a smooth transition    from the boundary-layer theory to free-molecule 

limit (for unit accommodation coefficients).    The velocity and temperature 

gradients near the body surface increase with distance from the  stagnation 

point or apex,   indicative of boundary-layer developments. 

For the nonslender wedge and cone studied,   the local heat-transfer 

rate and skin friction are found to be governed by a single variable 

^yL   <~->  £  ^e   4&oß ,  which contains the gas rarefaction as well as surface 

incidence effects.    A remarkable feature revealed by the study is that the 

velocity profile can be represented very closely by the classical boundary- 

layer  solution (at   ^  Ü   3),   even though the velocity immediately behind the 

shock is quite far from the inviscid value and the viscous layer is still a 

major fraction of the shock layer. 

For the  problems of paraboloidal and hyperboloidal shapes,   five 

successive values of    !<•      are considered in the range of       K,       =0.3-  30, 

encompassing the viscous layer and the merged-layer regimes.    For these 

examples, T^/TQ    - 1/8,     Pr   - 0.71 and    £   = 1/8.    Except for the case of 

lowest Reynolds number,   the distributions of the thickness of the shock layer 

around the body are relatively insensitive to the change of Reynolds number. 

Comparison with the inviscid solution shows however that the viscous cases 
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studied have a thinner shock layer near the nose region due to strong cooling 

by heat conduction to the low-temperature surface. 

The results obtained reveal interesting heat-transfer characteristics 

of a smooth blunt body at low Reynolds numbers.    The ratio of local heat- 

transfer rate at a fixed station   •#   to the maximum rate at the nose decreases 

from the free-molecule distribution with increasing density.    A reversal of 

this trend occurs however at   K      £2  10,   corresponding to the viscous-layer 

regime.    This reversal can be explained by the vorticity effect.    One may 

recall from the discussion that the variations in the heat-transfer ratio in the 

range of     K    = 3-30 are remarkably small.    This,   together with ehe fact that 

the vorticity interaction is itself not a large effect,   suggests that there is a 

very wide range of Reynolds number (corresponding to the boundary-layer 

through the incipient-merged-layer regimes) in which the heat-transfer 

distribution on a smooth blunt body remains essentially unchanged.    Similar 

behavior has also been observed for the skin friction characteristics. 

In the study of nonequilibrium dissociation and species diffusion in 

the stagnation region,   an example is carried out for an idealized binary 

mixture of "air molecules" and "air atoms",   and a cold body surface at 
-lL 

near-satellite  speed,   comparable to the previous analysis of Chung. The 

results reveal that the "concentration jump" across the  shock resulting from 

the upstream diffusion of the atomic species is appreciable even in the 

viscous-layer regime where changes in the total enthalpy and tangential 

velocity across the shock may be neglected.    In the merged-layer regimes, 

as a result of the combined effect of surface cooling and enthalpy drop across 

the shock,   the gas-phase chemistry is practically frozen.    Even in the 
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viscous-layer regime,   dissociation takes place only in the outer part of 

Liie  shock layer near interface.    In these low-density regimes,   the  surface 

catalycity has a predominant influence over the composition in the inner 

portion of the shock layer,   as is expected.    However,   there is very little 

change in the temperature profile associated with change in surface cata- 

lycity,   because of the frozen gas-phase chemistry in the inner part of the 

shock layer. 

The discussion has also brought out the importance of pressure 

diffusion in shock layers removed from the stagnation region. 
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APPENDIX 

In the following,   important details of the present method of numerical 

solution to the shock-layer equations described in Section 6 will be provided. 

A. 1      The System of Ordinary Differential Equations Governing the 

Coefficients    U.,    ,    &,     ,   and   'f>7.   . 

For blunt bodies with finite nose radii,    Z    is expressible  as 

©'-n-fA   
The function    U.    ,   @     and  -p*   may assume the form 

ü -   ü0 + X ü,  +•  

0 =   &0 + A ®, +  •  •*"•   •   • 

f = / f Ä f , + il  ^ +   
The system of equations governing    Z{    ,    0o   and  -jE-    have been given in 

Section 6. 2 of Part II.     The system governing     U.t    ,    Q,    and   -h<    are 

provided below. 

/3Ü.-U- tbsL +(i - "*_A 
H. H I© 

•»/ J L 
^-/f-Z^ + b^^) 

ärM-tt-^-fcf^^'-^K 
b ,7  xf'+^;N-^ik+(l±^     r" +Jr^+u/K Z/  KX" $M" 

/f^ £ *«<?-$-*>£* kw+2fa:f 

• (W)      /       A/k,  -X.  @^/7i
/  g   «.') J^_JL   C   0/ 
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'11,(0) = 9,(0) =0 

A. 2     The Implicit-Difference Formulation of the Shock-Layer Equations 

The complete,   final form of the finite-difference formulation of the 

shock-layer equations,  based on the implicit scheme,   are given below.    For 

each point    e    ,   there are two algebraic equations 

A"* + 6£   + C u. -^ 
(A.I: 

D ©, + E ©_ + F 0.   = J 
which relate the values of   ££    and   @    at the point    e   to the values at the 

neighboring points   at    and     -f    . 

The subscripts refer to grid points specified in the sketches below and 

in Fig.   6.1 
At 

(b) 

i    I 

(a) • * 

ffS« 50+AS 

%,-*<.     ::~T" 

K-o 

*& 

)f£_ 5 = 1.0 

• 2L 

a 

The coefficients A,   B,   C,   D,   E,   F,   G,   and J in Eq.   (A.I) are: 
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A 2 /    2K1 Ictyß) 
L_   &Lt£±&L (ZZk-Zf) 

AC 
fac" «O        A? + 2 l2Ub-iZ)       5 J 

G-ä.+2(2.b-S){,+rAA) |^#42t^^+-^(|£ 

/W)'   '    / <r \2 /AA\&K-H) (uc~K) 
~\z / 4K*U*/*/ Uci     (AC) 5* 

•K-*t 

Z£(AA) 
(/Cufe-ut; [Jo    V    V *. 

_/AA \\\ + * (\   ^H_V     0 + A i ~K...*A£.    ueZ 

Yliil     /     / <r \a  ^e (jg^jA) Rtf -^ _ Ac. _ ?1 

b = 3""ZV 2/ B-^AO U^ VAC/      C" T 

F = - A? 
/+?A C^       Ü 

—    z 
A— Tiny* -kri/i^K* * ""fin ~£ 

•6 ,A" i /  <r   \*   Se    (2pb-^) fr 

2PrfCx U*^   (A?) £ ^-4^-1 § 

,Q(MV (]~w) ft ft.-ft). g> E   2g ,rt .Agfa   ,x fa-nj" 
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where (d-PydX)   is to be evaluated by the difference quotient (Refer to the 

sketch of Fig.   6.1),   i.e.   gj*£ = j±- g ^ _ g ^ + 3 ^J 

The system of linear algebraic equations generated at all points 

between    £" = £    and     £   = 1 by application of Eq.   (A.l) is to be  solved 

with the boundary conditions: 

^fee)=% 

®(0=^ 

^TCTZ^J      u(Ce-AO 
£„+*?; CO-AC; 

• ttc-S. 

«tc-vi 
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Figure 75   PROFILES  OF VELOCITY, TOTAL-ENTHALPY   FUNCTION, 
PRESSURE AND TEMPERATURE   RATIO   OVER    THE 
BODY   SUPPORTING A  HYPERB0L01DAL   SHOCK 
AT z/^2.82 
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CONVERSION TO ALTITUDE, IN FT.,(ARDC ATMOSPHERE 1959) 
ACCORDING TO BINARY-SCALING 

,36 ^"-^ /c' .473 1.977 5.788 16.24 35.18 

1/10 304,000 276,000 255,000 233,000 213,000 

i 350,000 320,000 300,000 280,000 265,000 

10 410,000 370,000 345,000 324,000 309,000 

00 

06(0) = 0(NON-CATALYTIC) 

(4-26,000 FT/SEC 

iU   -  1.40 

Pr = 0.71 

7^ =  I500°K(-^«|] 

JlocfT 
TD =I01,300K° 

2^;=|.56xl02°(K°)S CM 

vX  vo =l22gm/cc 
MOLE2SEC 

=    16.24 

OUTER  EDGE  OF 
OF SHOCK LAYER 

vA 

Figure 8.1    ATOM  CONCENTRATION PROFILE   IN   THE 
STAGNATION  REGION   WITH  NONEQUILIBRIUM 
DISSOCIATION  UNDER STRONG SURFACE 
COOLING 
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Figure 8.2   PROFILES OF VELOCITY,    TOTAL   ENTHALPY, 
TEMPERATURE  AND    ATOM  CONCENTRATION 
IN   THE   STAGNATION   REGION   WITH     NON- 
EQUILIBRIUM    DISSOCIATION    FOR  A 
NONCATALYTIC   SURFACE 
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FOR ERRATA 

AD 
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.JR.-. 
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THE FOLLOWING PAGES ARE CHANGES 

TO BASIC DOCUMENT 



ERRATA - "The Blunt-Body Problem in K; ^«.rsonic Flow at Low Reynolds 
Number" by H. K    Cheng,    CAL Report AF-1285-.A-10, June 
1963. 

p. 

p. 

P- 

p. 

P« 

21 

26 

i Third line from top,   change "No,  2653(00)", to "Nonr 2653(00)". 

ii Third line from top,  insert after "approximation" the following: 
"of the continuum (Navier-Stokes) theory", 

iv        Eighth line from bottom,  change "Eq.  (5. 1) «Aid (5. 2)" to 
"Section 5. 3". 

8 Third line from, bottom»  change "done by Van Dyke" to "accounted 
for by Lenard     and Maslen^b with a dilated and shifted sphere. 
This treatment appears to be adequate in the stagnation region as 
has been shown in Van Dyke's studyi-> on the basis of the constant- 
density model". 

Eq„  (4.2) should be written as    £,., ss yfjffap /«\      —ft"] 
3 

Fifth line from bottom of the text,  Insert after "low" the word 
"constant". 

Third line from bottom, add asterisk to the end of the sentence: 
add footnote as follows: 

•''* It is assumed that   Btr/ßn s 0(e) near the interface". 

Fifth line from top, delete complete paragraph. 

Third equation of Eq.   (6. 3),  change the RKS of the equation to be 

First line from top, change Ref. 43 to Ref.  71. 

Delete sixth through tenth lines from top. 

Ninth line from bottom,  change Ref.  78 to Rcf.  81.    Fifth line 
from bottom, change "reading" to "reaching';. 

p.    87       Seventh line from top,  change "occurs however" to "appears to 
occur".    Replace next sentence by "The existence of such a trend 
may however be established by numerical solutions based ©n 
boundary - layer theory and its higher approximations". 

p.    95       Reference 21, change "I960" to "195f". 

p. 43 

p. 47 

p. 62 

p. 70 

p- 74 
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p„  <£.,  ERRAT« i'br "The  Blu -c Fl*w at Lew 
Reynold v. Numtu 

p,     103      Figure- V i    the pymboi "!d be Added ! > denote the nose 

p.-     !04     The Line pre I in Fig    5 L| is in ei the sonic 
line based on 'he present method»  alter < i >> <n.   is in . 
agreement with the   re*uH of Vats Dvki w/igart 

p       105      Exchange  •%—   «nd  Jr—xm I ig 

p       109     Figure  7   l third 
c«rv«       «inted left er  rij 

•> 

pa     119     Figun 5- 788" shewld be 
'     ih«* third • u   • ••••.. 
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