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ABSTRACT

The problem of optimizing the thrust of a vertically ascending rocket

is solved here under the assumption of isothermal atmosphere in two important

cases: 1) the Jet Mach number is sufficiently large; 2) the drag is a

convex function of the velocity.

The first case embraces all physical drags and is valid for the Earth;

the second extends to all atmospheres, but is restricted to drags that are

fairly comon.

With impulsive boosts in velocity admitted, the solution is shown to

contain a finite number of such boosts in the sonic region of the rocket

velocity, and to contain no coasting arcs except in the terminal stage.

An absolute minimum is proved with the aid of a Sufficient Condition

applicable to problems of optimum control.
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1. INTRODUCTION

The problem of maximizing the summit altitude of a vertically ascending

rocket, of which the Goddard Problem (1919) is a variant, has received

considerable attention in the literature. One of the earliest attacks on the

problem should be credited to Lewy (1944), instigated by Dr. R. H. Kent, then

the Associate Director of the Ballistic Research Laboratories. Despite the

notable advance achieved by Tsien and Evans (1951), numerous gaps in the theory

still remain to be filled. As has been pointed out by Leitman, Ross, et al.,

the problem continues to be beset by the difficulty arising from the require-

ment that the mass be monotone. Solutions that meet this requirement have

been obtained only in a few very special cases, typified by the work of

Miele (1958), who treated flight in vacuum and the power law of drag.

In the present paper, which is an outgrowth of the author's unpublished

work of 1949, reported at a Ballistic Research Laboratories Colloquium, the

class of soluble cases is considerably broadened. With the assumption of

isothermal atmosphere and the admissibility of infinite thrust, a solution is

obtained in the following two cases:

1) The jet Mach number is sufficiently large.

2) The drag is a convex function of the velocity.

The first case is valid for the Earth; the second is restricted to a class of

drags that are fairly common. The remaining case, where neither (1) nor (2)

holds, is being left as a subject for future investigation.

A recapitulation of the relevant existing theory, designed to provide the

necessary background for the current development, is incorporated in sections

2 and 5.

2. FORMUIATION OF THE PROBLEM

The equation of motion of the rocket, subject to forces of gravity, drag,

and thrust, is

1+ m + 1 CD(V,X)p(X)V 2 S + mg(X) = 0, (i)
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where m is the mass, V the velocity of the rocket, CD the drag-coefficient,

X the altitude, p the density of the air, S the cross-section, g the acceleration

of gravity, c the Jet velocity, and the superscript dot indicates the

differentiation with respect to the time.

We shall introduce the simplifying assumptions:

1) CD is a function of V only,

2) g = const., (2)

3) P = P0 exp (-X/I), A = const.,

define the dimensionless parameters a, 0 by

a _ gl/c2 C2POS ,a~gA/c , .2 mg/cp
(3)

0 < a < Co 0 < P < co,

where m0 is the iritial miass, and dimensionless variables X, v, w, y, and f by

x gX/c 2  , v V/c ,W log mo/m ,

Y W-V-/a f Cv2 ev (4)
y c-v-x/c , f-Cve/B.()

Then (1) becomes

= - y' + fey/v + 1/v - 1/a = 0 (5)

x < x < xi

the prime indicating the differentiation with respect to x. The initial

conditions are

x =0, v(o) =0, y(o) =0; (6)

the terminal conditions are not specified.

The quantities m and 1 in (1) are bounded by the inequalities

m> mini n 1 0< - 1 <oo0, (7)

if infinite thrust is admiLted as a mathematic4l convenience. Such a thrust,

operating for an infinitesimal time, produces ,alfinite positive Jump A v, while

y and (wn - v) remain continuous in virtue of (5) and (4). In terms of the new

variables, (7) can be written

*1 = max-y v - x/a > 0

*2 =y '+ V I + l/a > 0.(8
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The two unknown functions y(x), v(x) are connected by a differential

constraint $ = 0; the systom therefore has one degree of freedom, which can

be realized physically by a choice of an arbitrary v(x), ideally regulated

by a servo-mechanism controlling the flow rate m. Functions y(x), v(x) will

be admissible if y, v, y satisfy the contraints (5) and (8) with the initial

conditions (6), and if they are continuous except at corners, where y and v

may be discontinuous with Av > 0. In the class of admissible functions we

seek v(x) that minimizes -x .1

The problem is thus identified with the Problem of Mayer in the

Calculus of Variations, complicated by the presence of algebraic and

differential inequality constraints.

3. THE AUXILIARY PROBLEM

The differential constraint *2 ? O, assuring the monotonicity of the mass,

admits subarcs on which *2 = 0 while *1 > 0; i.e., the "burning" regime may

be interrupted by the insertion of "coasting" subarcs. In order to avoid such

complications let us consider an auxiliary problem characterized by the absence

of the constraint *2 > 0. While such a formulation, used by Tsien et al.,

automatically eliminates the aforesaid complication, it creates another one

by admitting *2 < 0 and Av < 0. Of course, negative fuel consumption is a

physical absurdity! The resulting solution would not be of physical interest,

were it not for the curious fact that such an occurrence is precluded in certain

practical cases. Indeed, if the constraints are satisfied anyway in the form

*2 > 0, Av > 0, it is clear that the auxiliary and the actual problems have the

same solutions. In particular, that such is the situation in both cases

treated here will be shown in Theorems 1 and 2 of section 13. In terms of the

quantities a and v, the two cases can be respectively characterized by:

1) a is sufficiently small;

2) CD 2 is convex.

Accordingly, we shall attack the Auxiliary Problem, which is in the

standard form of the Problem of Optimum Control:
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"We seek a function u(x) satisfying

t
y + g(x,y,u) 0 ,

(9)
xo < x < x,

subject to the boundary conditions and the inequalities:

x = a, y(x0) =b,

I(x 1, y(x1)) 0 o , (10)

*(x,y,u) > 0

and minimizing some prescribed function

G(xl,y(x,)). " (11)

Here y, u, * , are vectors of n, m, p, r components respectively, with

p < n + 1. In our problem n = m = r =1, p = 0; G =-x 1 l, u = v, and

g (fey + 1)/v - l a
(12)

w. -y -v -x/a =OP

Since v has disappeared from the problem, v has assumed the role of a "control"

variable, which enters g(x,y,v) non-linearly. That the problem is non-singular

is shown in section 8; the solution is obtained in sections 5 - 11 by the

application of the Necessary Conditions I - IV and the Fundamental Sufficiency

Condition of Weierstrass. The first one is the Multiplier Rule, comprising

the Euler, the Transversality, and the Corner Conditions, treated respectively

in sections 5, 6, and 7.

The existence and the character of the solution intimately depend on the

nature of the drag coefficient CD(v), which is the subject of the next section.

4. SOME PRoPERTIES OF THE DRAG

We shall assume the usual positiveness and the continuity of CD(v), the

monotonicity of the drag,

d ( C 2 ) > 0(1 3 )S(cDv) > o ,(1)
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and the asymptotic expansions

C D =A01l + A2v 
2 +.. as v -*0

C D= B 0 +B /v + 2/v
2 + 0. as v-4oo, (14)

A>2 0 , ?0 P i = 0, 1, as00

Then the logarithmic derivatives k and kc' defined by

k=-d og C /d log v k' =dk/d log v (15)

have the properties:

k(0) =k (oo) = k' (0) =k'(oo)= 0

k(0+) > 0, k(oo-) < 0, (16)

k' (0+) >0,p k' (co) > 0

kc + 2>0.

k

k

FIG. I LOGARITHMIC DERIVATIVES
k W)AND k'(v)



Furthermore, let CD(v) have a single maximum at, say ao . Then k has a

maximum at a,, a zero at a0 , and a minimum at a2 , while k' has zeros at

a1 and a2 . It follows, in view of (16), that

(ao-v)k >0 , (v - al)(v - a2 )k' > 0 , (17)

0 < a1 < a < a2 < oo .

In the analysis, the function f(v), defined in (4), and the derived

functions H(v), h(v), defined herewith, will be extremely useful:

f = CD(V)v2 eV/ > 0 ,

H vfv - f , (18)

h Z H -afv = (v - a) fv " f

with literal subscripts denoting the argument of differentiation.

In terms of k and k', these functions and their derivatives can be

exhibited as follows:

fv =(f/v) (2+v+k)>o,

fv= (f/v2 ) (2 + v + k) (1 + v + k) + v + k'],

H =f(l + v + k) , (19)

= vf ,

h :f [(l c/v) (2 + v + k)-l] ,

hv (v av)f

Special properties of these functions, obtained with the aid of (16), are

tabulated on the following page:
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f(O) = fv (0) = H(O) = Hv(O) = h(O) = 0 ,

f 00= (00 = f(00) = H(co) = h(cn) = C

Sf (0) C c(OW/ > 0 (20)

hv(O):- a (0)<0

2 f = fw(O)v 2 +.... as v -0,

2 H = fw(O)v 2 +.... as v -0.

5. THE JER EQUATIONS

Since the Lagrangian function of the Auxiliary Problem is F = I,

the extremals must satisfy the equations

y'= g(x,y,u),

I+Xg + 0y =0 , (21)

+ u = 0,

V= 0 , r> 0,

where X(x), .(x) are Lagrange multipliers. The subtitution from (12) into the

Euler equations (21.2) and (21.3) now yields, in view of (18.2),

x' + Xfe Y/v = = 0, (22)

(X/v2 ) (Hey 1 1) - = 0,

leading to

Xx(O) exp (H -Hvf)'ey - I x/v 2 .(23)

The use of the "switching function" p (x) permits simultaneous

consideration of subarcs lying in the region *1 > 0, where p = 0, and of

subarcs lying in the boundary 1i = 0, where p 0. Three regimes are

distinguished, designated by I, B, and C:

I. Impulsive thrust, Av 0,

B. "Burning", *1 > 0, V O,

C. "Coasting", = 0, p L 0.
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An extremal is compounded of a B-subarc, with impulsive thrusts I occurring

at a finite number of points, and a C-subarc appearing in the terminal stage

only.

During the burning stage g=0, and the "optimality" condition (22.2) yields

eyH(v) = 1 . (24)

That a solution v(y) of (24) exists follows from (20), which gives the range

of H as (0, oo); that this solution is unique will be shown in section 9, with

the aid of Condition II. Several conclusions can now be drawn. First, (8.1)

implies y < co; then from (24) and (18) there follows

H> O, v j O, (25)

and therefore v > 0. Since the initial value v (0) = 0 violates the require-

ment (25), the burning stage must be preceded by an impulsive launching with

a velocity v that satisfies (24) with the initial condition y(0) = 0; i.e.,

H(vo) = 1 . (26)

The initial discontinuity is thus specified by v (0) = 0, v+(0) = v0 , and

A w = A v. Of historical interest is the value of the gravity-drag ratio mg/D,

which equals l/fey in our symbols, and is optimized by (24) into H/f, or

mg/D-- 1 + v + k . (27)'

The solution of the Euler equations is obtained by the differentiation

of (24) with respect to x, yielding

- y' = H v', (28)

followed by the substitution from (24) into (5), which in view of (18) now

becomes

- a HIy' = h . (29)

Then, from (28) and (29),

v' = h/a Hv (30)

and, provided h j 0, v(x) is obtained by the inversion of the quadrature

v 0

x/ ,,,i vo d/h()

- X(v) - X(v 0 )
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where

X(v) = dH/h (32)

defines a "rocket function" dependent only on the form of CD (v) and on the

value of the parameter a. The equation of the extremal subarc now appears

in the parametric form x = x(v), y = y(v), in consequence of (24) and (31).

The special case h = 0 is solved in section 12.

During the coasting stage *1 
= 0, / 0, and (5) becomes

V-v + f(v) exp (-v -x/a + wmax ) + 1 = 0 (33)

with the initial conditions corresponding to the "burnout", i.e. the solution

of the equation *1 = 0 with y(v) and x(v) furnished by (24) and (31).

It is to be noted that on the C-subarc, *l = 0, the number of degrees

of freedom being zero, no variations are admitted. The implications are that

the usual requirement i < 0 does not hold, and that the necessary and

sufficient conditions are trivially satisfied.

6. THE TRANSVERSALITY CONDITION

In the control problem of section 3 the relation

[Gd + X . g) dx + (G0y -%) . dy] xi =0 (34)

must hold for all dx and dy satisfying the differentiated equation 4 = 0, the

dot placed between vectors indicating their inner product, In the Auxiliary

Problem n = 1, G = - x, , and p 0, so that dx and dy are arbitrary, and (34)

reduces to

-1 + Xg 0,

X 0 (35)

'at x = x1 . Three conclusions can be drawn. First, since both X and p cannot

vanish simultaneously, p(xl) 0 0, so that *1 (xl) = 0. Second, noting that

Ig(x 1 )I = oo from (35), and recalling that y < oo, a > 0, f < co , we deduce

15



from (12) that V(xI) = 0. Of course, both conclusions are physically obvious: x

must be reached with zero velocity after coasting with fuel consumed. The

third conclusion,

%(xI - 0) > 0 (36)

follows from the observation that: 1) As v -+0 the asymptotic value of g is

g-l/v > 0, in view of (12), (20), and (25), and that 2) lim (Xg) = 1 as x +Xl,

in view of (35). Now, since X(x) cannot change its sign in virtue of (23), the

inequality (36) implies

X(x)>0 for x.<x<x l , (37)

which requirement can be satisfied by choosing

X(o) = 1 . (38)

For future use, we note the following asymptotic values as v -+0:

g ~i1/v , ). ~v , )! -il/v , g ~ -1l/v, (39)

which can now be obtained from (35), (22), and (20).

The existence and the continuity of the multipliers X(x), ±(x), required

by the Multiplier Rule, is now assured between corners of a minimizing arc.

7. THE CORNER CONDITION

At a "free" corner, the relations

A(%.g) =0 , AX=0 (40)

must hold, with A denoting a jump. Noting that in our problem, with n = 1,

(40) implies 6g = Ay' = 0, and recalling that Ay = 0 in virtue of (5), we

deduce from (24), (29), and (18) that

= Ah = f v 0 (1i)

on a B-subarc. The definition of H now implies

f/Av = fv , v = 0 , (42)

from which the transition values v and v + can be determined.
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The transition values at the corner are then determined as follows:

v_= v I , v + = v 2  if vI >0

(l6)
v_ =v 2 , v+ = v1  if v2 <0

It will be shown in section 9 that such a jump in velocity is required by the

Weierstrass Condition II whenever the Corner Condition is satisfied.

The results of the last paragraphs can be easily generalized for any N,

with (44) replaced by

2N
f --v l (v - Ii) >0 , (47)

there being a velocity jump for each one of the N double tangents.

At the junction of the B and C-subarcs the Corner Condition is satisfied

with

Av = AY= y'y =A%= A o, = 0<o. 0(8)

8. THE HILBERT CONDITION

With n = m = r = 1, the four unknown functions y(x), X(x), u(x), 4(x) are

related by the four equations (21). The highest derivatives being (;, , u, 41,

the non-vanishing of the Jacobian determinant is the Hilbert Condition

/ ' (49)

or

IF uu I /o if' > o. (50)

Here F is the Lagrangian function, and F uu is generally an m x m matrix, The

condition assures the existence of the highest derivatives listed above, as

well as their piecewise continuity of class 0k-2 if g and * are of class C 
k

and is a direct consequence of the Legendre Condition IIIV.

In our problem (50) becomes

Xfv,/vH 0 , (51)

18



and, since X, v, and H are positive by (25) and (37),

fw / 0 . (52)

Provided this requirement is met on the B-subarc, Hilbert Condition is satisfied,
and since g is analytic in our problem, the functions (y,%,vp) are analytic
between corners. It is noteworthy that the use of the velocity v as a control
variable, in place of the thrust val , removes the apparent singularity of the
original problem.

9. CONDITIONS OF LEGENDRE AND WEIERSTRASS

The necessary conditions III and II, modified by the inclusion of the
control variable u among the set of slope functions, can be written for the

one dimensional case, n = m = 1, as

[Lu (x, y, u) + ouu] bu2 > 0,

E X [g(x, y, U) - g(x, y, u)] >0, (53)

for all (x, y, u, X, P) belonging to the minimizing extremal, and for all - / u
and satisfying 0 = . In our problem (53), with the aid of (12) and (24), reduces

to

Xfvv/VH > 0 ,

(%I-H) [T - f - (:-v)f > 0,

where T = f(v), and finally, since v, H, and X are positive, to the

requirements that

f- f > (- v)f v

hold on every B-subarc.
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In the language of geometry, (55) implies that v must be restricted to

the domain where the tangent to the curve f(v) lies entirely below the curve.

For drag of type 1, (55) is automatically satisfied; for drag of type 2, where

(44) and (45) hold, (55) is equivalent to the requirement

(v- vl) (v - v2) >0, (56)

where vI and v2 are the points of contact of the double tangent. The exclusion

of the interval (vl, v2) from the B-subarc then demands that a corner occur

when v reaches the values vI or v2, as described in (46). Conversely, the

occurrence of such a corner satisfies the requirement E > 0, the equality holding

only at corners for v = vl, V = v2 , and conversely. Consequently, E > 0 except

on a set of measure of zero, so that the Weierstrass Condition holds in its

strengthened form II'.

A fortiori, the strengthened Legendre-Clebsch Condition III! ; i.e.,

f > 0 (57)
vv

also holds, from which two consequences follow. First, (57) establishes the

Hilbert Condition (52); second, with the aid of (19.4) it implies that RV > 0.

We conclude that H(v) is monotonic in the domain defined by (56), and has an

inverse H-1, thus assuring the uniqueness of the solution v(y) of the equation (24).

In view of this fact, it is convenient to replace H and h in all the equations

referring to the B-subarc by H* and h* (see Fig. 3) defined by

H _H, h -h if (v-v 1 ) (v-v 2)>0 ,

R H(Vl) , h = h (Vl) if (v - vl) (v - v2) < 0

In the future, if no confusion results, the asterisks of H and h will be dropped.

10. THE JACOBI CONDITION

The decond variation in the control problem defined by (9) - (11) with

n = m = r = 1, p = 0 can be written

d J= - yFy) dx2 +2Fy dydx + d2G]

+ x  (F by 2 + 2Fyv YSV + Fwvv 2 ) dx (59)

0
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where F is defined by F = $+p, - Y + g(x, y, v) , p* = O, *>0. The

necessary Jacobi Condition is that

d2 J>O (60)

must hold on a minimizing extremal for all dx, dy, and for all By, Bv

satisfying the differentiated equations $ = 0, P* = 0.

Observe that F = - from (21.2), and that our problem possesses the

following special features: 1) G = - Xl, so that d2G = 0; 2) Fx = - p/a in

view of (12); 3) u = v; and.F. = Xgv, since *1 is linear in v; 4) By and Bv

must satisfy

- by + gBy + gbv = 0 ,
(61)

P (by+5v) =0

Furthermore, on the B-subarc, x 0 < x < g, where t is the "burnout" point, observe

that p = 0, gV = 0 by (21.3), and the initial condition y(O) = 0 implies By(O) = 0,

and hence the solution of (61) is by o, 8v arbitrary. On the other hand, on

the C-subarc, g < x < xl , P / 0, and the continuity of by in (61) implies

5y( + 0) = by(t - 0) = 0. Hence the solution of (61) is by = Zy 0, in

agreement with the remark in the last paragraph of section 5. Now, since

by = 0 everywhere, dy = y dx, and (59) becomes

2 2
d J= ( X/'g)dx ]  + Xg k Bv 2 

. (62)

9x1 o

Finally, at x = x, (39) yields p -- 1/v and .Xg,- 1/v 2 as v -+0; on the

B-subarc Xgvv > 0 by (53.1) and (57). Since a and v are positive, we conclude

that the Jacobi Condition is satisfied in its strengthened form IV', d2 J > O.

An immediate consequence is that in our problem, with n = 1, IV I assures

the existence of a field. Let a family of extremals y(x,e) be defined by

(9) - (11) with the initial condition (10.1) replaced by

x= a, y(x0) =b +9, (63)

where 9 is a family parameter. That the region bounded by x = a, I(x,y) = 0

is, indeed, a field follows from the following considerations: 1) The

extension of IVI to 8 / 0 is trivial; 2) I assures the simple covering of
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the region; i.e., the existence of the function 8 (x,y), and hence of the slope

functions u(x,y) and multipliers X(xy), p(xy); 3) in a one-dimensional

problem, the Euler equations suffice to assure that the Hilbert integral is

independent of the path.

11. THE SUFFICIENCY CONDITION

We resort to the following variant of the Fundamental Sufficiency Condition

of Weierstrass, proved in Appendix:

"Let a family y(x,e) of extremals of a control problem be generated by

the initial conditions (63), involving 9 as a parameter. If this family

constitutes a field, and if each extremal of the field satisfies I and II! with

the appropriate initial conditions, then the extremal for 9 = 0 yields an

absolute minimum of the control problem."

Note that Conditions I and I3 have been established in sections 5-9 for

9 = 0, and that their extension to the family defined by (63) is trivial.

Furthermore, the existence of a field has been proved in section 10. We

conclude that the hypothesis of the theorem is satisfied, and that our extremal

therefore yields an absolute minimum of the Auxiliary Problem.

12. THE STEAMY STATES OF NOTION

Aside from their intrinsic interest, the lemmas of this section are

required in the proof of the Basic Theorems of section 13.

Lemma 1: "The function h* (v) has one and only one positive zero, y."

The proof proceeds from (18), (19), (20), (57), (58). Two cases are

distinguished:

case 1. a is outside (vl, v2 ) (See Fig. 3)

Then the relations h = (v-a) fv - f, h = (v-a) fvv , fvv > 0 imply thath*

has one and only one stationary point,

min h* = h(a) - f(a) <0. (64)
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Since the minimum is negative, the relations h*(0) = O, h*(oo) = c, and the

continuity of h imply the conclusion of the lemma, with

a < y < v 1 or v2 <a< ,

(v -Y)h* > 0 
(65)

case 2. a is inside (vl, v2)

Then h*, stationary on the interval (v1 , v2 ), attains there a minimum,

min h = h(vl). That the minimum is again negative is implied by h(0) = 0,

h(a) <0, and 0 <v 1 <a; finally, h(vl) = h(v2 ) <0 and I (co) = o imply

the conclusion of the lemma, with

vI <a <v 2 < , (66)

(v - 7) h* >0

Lemma 2: "On the burning subarc of an extremal, the acceleration of

the rocket cannot chan( 3 its sign."

The proof proceeds from (30) and (19), leading to

I
iv = h/a v  h hv = (1 - v) 1

(67)
x

h=h 0 exp f (1/a- l/v) d.

Noting that a > 0, and that Hv > 0 by (19), (25), and (57), we conclude that

sgn v = sgn h = sgn hO  . (68)

The Corollary, "ho 0 implies h(x) M 0 and v M 7" follows immediately.0

Three types of trajectory are thus distinguished:

a) v0 < Y 0 h(x) <0 , v < 0, deceleration;

b) v0 > Y , h(x) > 0 , v > 0, acceleration;

c) vo = 7 , h(x) =0, v =,y, steady state;

In case c) the solution (24) and (31), of the Ruler equations, must be replaced

by y M 0, v = y.
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13. THE BASIC THEORMS

Having constructed the solution of the Auxiliary Problem, we shall show
that under the assumptions of Theorems 1 or 2 it satisfies the constraints

*2 > 0 and Av > 0 on the B-subarc.

Theorem 1: "2a < min (a,, vl) implies: 1) a < y < a, 2) *2 > 0

3) Av > 0, with the last two relations holding on the B-subarc of an extremal
of the Auxiliary Problem.

To prove 1), observe that from (18.3)

h(a) = - f(a)

(69)
h(2a) = f(2a) [a + k (2a)],

and that the hypothesis and (17) imply

0 <2a <aI <a

k(2a) > .70)

Then (69) and f > 0 imply h(a) < 0 and h(2a) < 0. Furthermore, from the
hypothesis, a < 2a <v I <v 2 , so that h = h on (a, 2a), in view of (58). The

conclusion is now implied by the continuity of h* and by tamma 1.

To prove 2), observe that *2' defined by (8.1) as

*2 M (0 = Y + v + 1/a (71)

can be exhibited as a function of v, with the aid of (29), (30), (18), (19),

in two alternate forms:

*2(v) = h/aH + fv/H (72)

- H/aHv + (fv/vv)[2 + k + (v + k')/(l + v + k)] .

The positiveness of v, f, H, fv' Hv' 2 + k, 1 + v + k is assured by (16), (18),

(19), (20), and (57). There are two possibilities: Either h > 0 or h < 0. If

h >0, then *2 > 0 in the first line of (72). On the other hand, if h <0, then
v < y in (65); the previous conclusion, y < 2a., and the hypothesis, 2a < al,
imply v < a; then (17) implies k' > 0, and finally *2 > 0 in the last line
of (72).
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To prove 3), recall that vI > 2a > y, and that by Lema 2, v > y implies

h > 0, vI> 0, and conversely. Then note, with the aid of (41), that

h(vl) = h(v2) >O. Therefore v' >0 if v = v, or v = v2, thus excluding the

possibility Av < 0 in the second line of (46).

For rough practical purposes, the hypothesis of the theorem may be replaced

by

KM > 4 ,(73)

where M is the jet Mach number, and K is the ratio of the atmospheric specific
heats. To derive this result observe that: 1) a = gf/c 2 = i/ k by the law

of perfect gas and the formula for the sonic velocity, 2) the constants al and Vl,

which are the values of v at the maximum of k(v) and at the first point of
contact of the double tangent to f(v), respectively, lie in the sonic region,

3) the sonic velocity corresponds to ao . 1/M, and both a1 and v, are generally

sufficiently near so to Justify the inequalities al/a° > 1/2 , vl/a O > 1/2.

Thus, (73) implies 2n < al,and 2a < v.

For the Earth, with c ~ 2000 m/s, g09.8m/s 2 , A 8000 m/s, t= 1.4, we

calculate

(0.02, 
M(7)

KM 8

concluding that the hypothesis of the theorem is satisfied for terrestrial

rockets.

The vacuum case, p = 0, solved by Miele, corresponds to a = 0 and is,
therefore, a subcase of the theorem. On the other hand, the constant-density

atmosphere, p = const., corresponds to a = oo and hence lies outside the scope

of Theorem 1. Indeed, Leitman succeeded 'in solving this case only by
invoking the quadratic law of drag, CD = const., bringing the problem within

the scope of Theorem 2.

Theorem 2: "If CDV2 is convex, then *2 > 0 and Av > 0 on the B-subaac of

an extremal of the Auxiliary Problem."

In the proof, note that the hypothesis, in view of (15), implies

(k + 1) (k + 2) + > 0, (75)
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and, consequently, *2 > 0 in the last line of (72). Furthermore, observe that

(75), (16.4), and (19.2) imply the convexity of f(v). Hence the drag belongs

to type 1 of section 7, with no corners on the B-subarcp and with Av = 0.

The cases of quadratic law of drag and, the more general, power law of

drag, also treated by Miele, appear as subcases of the theorem.

14. SWO4ARY

Under the assumptions of Theorems 1 or 2 the solution is characterized

by the structural formula

(mB)N + 1 C; (76)

i.e., the burning stage B, preceded by an impulsive launching I0 contains N

additional impulsive thrusts, N being the number of double tangents of the

curve f(v), and is followed by the coasting stage without fuel. The solution

therefore includes as a special case the results of Tsien and Evans, where

N = 0. An absolute minimum has been established with the aid of the second

variation and a variant of the Sufficiency Principle that is particularly useful

in problems of optimum control.

Theorem 1 applies to terrestrial launching and any drag function with

some very general properties listed in section 4; Theorem 2 covers extra-

terrestrial launching but is restricted to a fairly common class of drags that

includes all the cases previously treated in the literature.

BORIS GAMF]2IKHL
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APPENDIX

To prove the Sufficiency Condition stated in section 11, define w(xy) by

wG(x,y) +I ,

I =_ f [X. g(x,y,u) + 'iL*] dx - X.dy (77)

*
where I is the Hilbert integral of the control problem and u, X, g belong to

the field. With A denoting an increment, observe that: 1) Aw = 0 on a

closed path; 2) Aw = 0 on a boundary subarc in = 0, in virtue of the

Transversality Condition (34) and 4 = 0; 3) tw = 6G on an extremal of theI

field, in view of y = g(x,y,u), where u(xy) is the "slope function".

Next let 0 and 1 denote the end-points of the extremal for @ = 0, and

let C02 be any admissible arc connecting 0 and a terminal point 2 lying in

= . Then there follows from the properties of w listed above that

1
wo = G(l) - G(O)
2

w, = 0 (78)

wo = G(2) - G(O) +I (002)

2 1 2wo =W0 +W

leading to

G(l) -G(2) = I* (C02) . (79)

Finally, note that, in view of (53) and r = 0, the expression for I in (76)

can be also exhibited as

I = X. (g -g) dx=- E dx (80)

_ g(x, y,U) ; U,
I *

and that II implies E > 0 on C0 21 and hence I < 0 in (80) and (79). The

conclusion

G(l) < G(2) (81)

follows immediately.
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