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A SOLUTION OF THE GODDARD PROBLEM

ABSTRACT

The problem of optimizing the thrust of a vertically ascending rocket
is solved here under the assumption of isothermal atmosphere in two important
cases: 1) the jet Mach number i1s sufficiently large; 2) +the drag is a
convex function of the velocity.

The first case embraces all physical drags and is valid for the Earth;
the second extends to all atmospheres, but 1s restricted to drags that are
fairly common.

With impulsive boosts in velocity admitted, the solution i1s shown to
contain & finite number of such boosts 1n the sonic region of the . rocket
velocity, and to contain no coasting arcs except in the terminal stage.

An absolute minimum is proved with the aid of a Sufficient Condition
applicable to problems of optimum control.
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1. INTRODUCTION

The problem of maximizing the summit altitude of a vertically ascending
rocket, of which the Goddard Problem (1919) is a variant, has received
considerable attention in the literature. One of the earliest attacks on the
problem should be credited to Lewy (1944), instigated by Dr. R, H. Kent, then
the Assoclate Director of the Ballistic Research Laboratories., Despite the
notable advance echieved by Tsien and Evans (1951), numerous geps in the theory
still remain to be filled. As has been pointed out by Leitman, Ross, et al.,
the problem continues to be beset by the difficulty arising from the require-
ment that the mass be monotone. Solutions that meet this requirement have
been obtained only in a few very special cases, typified by the work of
Miele (1958), who treated flight in vacuum and the power law of drag.

In the present paper, which is an outgrowth of the author's unpublighed
work of 1949, reported at a Ballistic Research Laboratories Colloquium, the
class of soluble cases is considerably broadened. With the assumption of
isothermal atmosphere and the admissibility of infinite thrust, a solution is
obtained in the following two casges:

1) The jet Mach number is sufficiently large.
2) The drag 1s a convex function of the velocity.

The first case is valid for the Earth; the second is restricted to a class of
drags that are fairly common. The remaining case, where neither (1) nor (2)

holds, is being left as a subject for future investigation.

A recapitulation of the relevant existing theory, designed to provide the
necessary background for the current development, is incorporated in sections
2 and 5.

2, FORMUIATION OF THE PROBLEM

The equation of motion of the rocket, subject to forces of gravity, drag,
and thrust, is

me + mv o+ % CD(V,X)p(X)VES + mg(X) = 0, (1)



where m 1s the mass, V the velocity of the rocket, CD the drag-coefficient,

X the altitude, p the density of the air, S the cross-section, g the acceleration
of gravity, c the jet velocity, and the superscript dot indicates the
differentiation with respect to the time.

We shell introduce the simplifying assumptions:

1) Cpis e function of V only,
2) g = const., (2)
5) P =P, eXp (=x/2), £ = const.,

define the dimensionless parameters a, B by

2
Q= gl/c , B

{1}

2
2 mbg/c pOS,
O<a<m®™ , 0<B<K®, (5)
where m, is the iritial mass, and dimensionless variables X, v, w, ¥, and £ by

o
x = gX/e , v =V/c :U)Elogmo/m:

YW=V - X/a ’ t cheeV/B . (l‘l‘)

Then (1) becomes

p=-=-y + fe¥/v + /v - 1/a =0 ,

(5)

X, <x < X s
the prime indicating the differentiation with respect to x. The initial
conditions are

x, =0, v(0) =0, y(0)=0; : (6)
the terminal conditions are not specifiled.

The quantities m and m in (1) are bounded:by the inequalities
m>m, 0<-m<wm, (7)

if infinite thrust is admitted as a mathematical. convenience. Such a thrust,
operating for an infinitesimal time, produces &;finite positive jump A v, while
y and (0 - v) remain continuous in virtue of (5) and (4). In terms of the new
variables, (7) can be written

Vo, ~¥-V x>0,
¥ =¥ + v+ a>o0. (8)



The two unknown functions y(x), v(x) are connected by a differential
constraint ¢ = O; the systom therefore has one degree of freedom, which can
be realized physically by a choice of en arbitrary v(x), ideally regulated
by a servo-mechanism controlling the flow rate m. Functions y(x), v(x) will
be admissible if y, v, y satisPy the contraints (5) and (8) with the initial
conditions (6), and if they are continuous except at corners, where y' and v
may be discontinuous with &v > 0. In the class of admissible functions we
seek v(x) that minimizes X, .

The problem is thus identified with the Problem of Mayer in the
Calculus of Variations, complicated by the’ presence of algebraic and
differential inequality constraints.

3. THE AUXILTARY PROBLEM

The differential constraint 1|f2 > 0, assuring the monotonicity of the mass,
admits subarcs on which \lre = 0 while ‘#l > 0; i.e., the "burning" regime may
be interrupted by the insertion of "coasting" subarcs. In order to avoid such
complications let us consider an auxiliary problem characterized by the absence
of the constraint \1:2 > 0. While such & formulation, used by Tsien et al.,
automatically eliminates the aforesaid complication, it creates another one
by admitting \|r2 < 0 and &Av < 0., Of course, negative fuel consumption is a
physical absurdity! The resulting solution would not be of physical interest,
were it not for the curious fact that such an occurrence is precluded in certain
practical cases. Indeed, if the constraints are satisfied anyway in the form
\y2 >0, &v >0, 1t 18 clear that the auxiliary and the actual problems have the
same solutions, In particular, that such 1s the situation in both cases
treated here will be shown in Theorems 1 and 2 of section 13. In terms of the
quantities o and v, the two cases can be. respectively characterized by:

1) « is sufficiently small;

2) ¢C V2 is convex.

D
Accordingly, we shall attack the Auxiliary Problem, which is in the
standard form of the Problem of Optimum Control:



"We seek a function u(x) satisfying

t
¢="y+g(x:5’:u)=o;

(9)
X, SX <X
subject to the boundary conditions and the inequalities:
X, =8, y(xo) =D,
Px, ¥(x)) =0, (10)

‘l’(x,y’u) >0,
end minimizing some prescribed function
G(xl}y(xl))' " (ll)

Here y, u, @ , ¥ are vectors of n, m, p, r components respectively, with

Pp<n+l, Inour problemn=m=r =1, p=0; G = - Xy, u=v, and

(te¥ + 1)/v - 1o,

g =
(12)
Vo, -y-v -x/a = ¥
Since v has disappeared from the problem, v has assumed the role of a "control"

variable, which enters g(x,y,v) non-linearly. That the problem is non-singular
is shown in section 8; the solution is obtained in sections 5 - 11 by the
application of the Necessary Conditions I - IV and the Fundamental Sufficiency
Condition of Welerstrass. The first one is the Multiplier Rule, comprising
the Euler, the Transversality, and the Corner Conditions, treated respectively
in sections 5, 6, and 7.

The existence and the character of the solution intimately depend on the
nature of the drag coefficient CD(V), which is the subject of the next section.

4. SOME PROPERTIES OF THE DRAG

We shall assume the usual positiveness and the continuity of CD(V), the
monotonicity of the drag,

ET% (chz) >0, (13)

10



and the asymptotic expensions

2
CD=A°+A1V+A2V + coe as v -0 ,

2
CD = BO + Bl/v + Ba/v + eee as v - 00 [} (lu)

A>o, BiZO, i=0,l,o.wo

Then the logarithmic derivatives k and k' defined by

k = d log CD/d logv , k' =dk/a logv (15)
have the properties:

k(0) = k (c0) = k' (0) = k*'(c0)=0 ,

k(0+) >0, k(oo-) <0, (16)

k'(0+) >0, k' (0-) >0,

k+2>0.

FIG. | LOGARITHMIC DERIVATIVES
k(v) AND K'(v)

11



Furthermore, let CD(V) have a single maximum at, say a . Then k has &
meximum at 8y, & zero at &, and & minimum at a2, while k' has zeros at
8, and a,. Tt follows, in view of (16), that

(ao-v)k >0, (v- al)(v - a2)k' >0, (17)

0 <a, < ao <a, <00,

1 e

In the analysis, the function £(v), defined in (4), and the derived
functions H(v), h(v), defined herewith, will be extremely useful:

£ ECD(v)vaev/B>0 s
HEva-f, (18)
hzH=-of =(v-a)f -%,

with literal subscripts denoting the argument of differentiation.

In terms of k and k', these functions and their derivatives can be
exhiblted as follows:

fv=(f/v) (2 +v +k) >0,

fw=(f/v2) (2 +v +Xk) (L+v+k)+v+k'],

H =f(l+v+k), (19)
R, =vE_ ,

h =f [(L-afv) (2 +v+k)-1],

h, = (v -a)_ . |

Special properties of these functions, obtailned with the aid of (16), are
tabulated on the following pege:



£(0) = £, (0) = H(0) = HV(O) = h(0) = 0,
f(oo) = fv(oo) = fw(oo) = H(0) = h{w) = © ,

51,,0) = c (0)/8 >0, (20)

hv(O) =-qQ fW(O) <0,

2f

2
fW(O)v + vee. 85V =0,

2 H

f (0)V2+oooo aSV-—)Ou
v

5. THE EULER EQUATIONS

Since the Lagrangian function of the Auxiliary Problem is F = A + py,
the extremals must satisfy the equations

y'= g(x,y,u),

Y+ ag + =0 21
A gy I-l‘yy ’ ( )
Xgu + u\lfu = 0,

W =0, ¥>0,

where A(x), u(x) are Lagrange multipliers. The subtitution from (12) into the
Euler equations (21.2) and (21.3) now yields, in view of (18.2),

M +are YN - u=o0, (22)
(A7) (B - 1) - u =0,
leading to x
A = A(0) exp j [(H -ve) e - ] ax/ve (23)
0

The use of the "switching function" u(x) permits simultaneous
consideration of subarcs lying in the region vl > 0, where p = 0, and of
subarcs lying in the boundary ¥, = 0, where p ¢ O, Three regimes are
distinguished, designated by I, B, and C:

I. Impulsive thrust, A&v ¢# 0,
B. "BU.'l‘ning", *l > 0’ B = 0,
C. "Coasting", ¥ =0 u # 0.

13



An extremal is compounded of a B-subarc, with impulsive thrusts I occurring
at a finite number of points, and a C-subarc appearing in the terminal stage

only.
During the burning stage pu=0, and the "optimality" condition (22.2) yields
eH(v) = 1. (24)

That a solution v(y) of (2L4) exists follows from (20), which gives the range
of H as (0, c0); that this solution is unique will be shown in section 9, with
the aid of Condition II. Several conclusions can now be drawn. First, (8.1)
implies y < oo ; then from (24) and (18) there follows

E>0, v#0, (25)

and therefore v > O. Since the initial value v (0) = O violates the require-
ment (25), the burning stage must be preceded by an impulsive launching with
a velocity v  that satisfies (24) with the initial condition y(0) = 0; 1i.e.,

Hv )=1. (26)

The initial discontinuity is thus specified by v_(0) = O, v+(0) = v, and
Aw= Av. Of historical interest is the value of the gravity-drag ratio mg/D,
which equals l/fey in our symbols, and is optimized by (24) into H/f, or

mg/D=1+v+k. (27)

The solution of the Fuler equations is obtained by the differentiation
of (24) with respect to x, ylelding

- Hy' = HVV' y (28)
followed by the substitution from (24) into (5), which in view of (18) now

becomes
~aHy =h . ‘ (29)
Then, from (28) and (29),

v' = hja HV ’ (30)

and, provided h # O, v(x) is obtained by the inversion of the quadrature
v
xfa = dH/h (31)
Yo

= X(v) - X(vo) ,

1y



where

X(v) = jv dH/h (32)
1

defines a "rocket function" dependent only on the form of CD(V) and on the
value of the parameter a. The equation of the extremal subarc now appears
in the parametric form x = x(v), y = y(v), in consequence of (24) and (31).
The special case h = 0 is solved in section 12.

During the coasting stage ¥; = 0, #£ 0, and (5) becomes

w' + £(v) exp (-v -x/a + &max) +1=0 (33)

with the initial conditions corresponding to the "burnout", i.e. the solution
of the equation ¥, =0 with y(v) and x(v) furnished by (24) and (31).

It is to be noted that on the C-subarc, Wl = 0, the number of degrees
of freedom being zero, no variations are admitted. The implications are that
the usual requirement u < O does not hold, and that the necessary and
sufficlent conditions are trivially satisfied.

6. THE TRANSVERSALITY CONDITION

In the control problem of section 3 the relation

EGx+x.g)dx+(Gy-x). dy_-l xl=o (34)

must hold for all dx and dy satisfying the differentiated equation = 0, the
dot placed between vectors indicating thelr inner product, In the Auxiliary
Problemn = 1, G = -~ X, , and p = 0, 80 that dx and dy ere arbitrery, and (34)
reduces to

-1+ =0,
\ =0 (35)

it

‘at x = Xy Three conclusions can be drawn. First, since both A\ and p cannot
vanish similtaneously, p(xl) # 0, so that Wl(xl) = 0. Second, noting that
Ig(xl)l = 0o from (35), and recalling that y <00, ¢ > 0, £ < ®© , we deduce

15



from (12) that v(xl) = 0. Of course, both conclusions are physically obvious: X,
must be reached with zero velocity after coasting with fuel consumed. The

third conclusion,
Mx, - 0) >0 (36)

follows from the observation that: 1) As v - O the asymptotic value of g is
g~1l/v > 0, in view of (12), (20), and (25), and that 2) lim (Mg) = 1 as x X,
in view of (35). Now, since A(x) cannot change its sign in virtue of (23), the
inequality (36) implies

r(x) >0 for X, SX <% (37)

vhich requirement cen be satisfied by choosing
20) = 1. (38)
For future use, we note the following asymptotic values as v —O0:
galfv, AV, Na-lfv,p~-1/v, (39)
which can now be obtained from (35), (22), and (20).

The existence and the continuity of the multipliers M\(x), u(x), required
by the Multiplier Rule, is now assured between corners of & minimizing arc.

7. THE CORNER CONDITION
At a "free" corner, the relations
A (hg) =0 , AA=0 (40)

must hold, with A denoting a Jjump. Noting that in our problem, with n = 1,
(40) implies Ag = &y’ = 0, and recalling that Ay = O in virtue of (5), we
deduce from (24), (29), and (18) that

AH = 0h = OF =0 (1)
on a B-subarc. The definition of H now implies
OFftv = £, &f =0, (¥2)

from which the transition values v_ and v, can be determined.

16
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H¥(v), h¥(v)
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The transition values at the corner are then determined as follows:

t
v_=vl,v+=V2 ifVl>0

' (16)
V_=Vy, V, =V, ifv2<0-

It will be shown in section 9 that such a Jump in velocity is required by the
Weierstrass Condition II whenever the Corner Condition is satisfied.

The results of the last paragraphs can be easily generalized for any N,
with (44) replaced by

2N
fwT;r (v-1,) >0, (47)

there being a velocity Jjump for each one of the N double tangents.

At the Junction of the B and C-gsubarcs the Corner Condition is satisfied
with

Av = by =Ay'=AA=0p =0, &N<O. (48)

8. THE HILBERT CONDITION

Withn =m = r = 1, the four unknown functions y(x), A(x), u(x), u(x) are
related by the four equations (21). The highest derivatives being (¥ , M, u, a7,
the non-vanishing of the Jacoblan determinant is the Hilbert Condition

F ¥
uu u
to, ' (49)
B¥, ¥
or
lFuul;éo fFy>0. (50)

Here F 1s the Lagrangian function, and Fuu is generally an m x m matrix, The

condition assures the existence of the highest derivatives listed above, as
well as thelr plecewise continuity of class Ck'a if g and ¥ are of class Ck,
end 1s & direct consequence of the Legendre Condition IIr'.

In our problem (50) becomes

M, /VEFO, (51)

18



and, since A, v, and H are positive by (25) and (37),

£, F0. (52)

Provided this requirement is met on the B-subarc, Hilbert Condition is satisfied,
and since g 1s analytic in our problem, the functions (y,x,v,p) are anslytic
between corners. It is noteworthy that the use of the velocity v as a control
variable, in place of the thrust vu} , removes the apparent singulexrity of the
originel problem.

9. CONDITIONS OF LEGENDRE AND WEIERSTRASS

The necessary conditions III and II, modified by the inclusion of the
control variable u among the set of slope functions, can be written for the

one dimensional case, n = m = 1, as

[A’guu (x: Y u) + H\l’uu] 5112 >0,

- (53)
E=)[g(x, y, ) - alx, vy, u)] >0,

for all (x, y, u, A, p) belonging to the minimizing extremal, and for all U £ u
and satisfying ¢ = 0. In our problem (53), with the aid of (12) and (24), reduces
to

M /VE> 0,

- - (54)
(\/vH) [T - - (v—v)fv] >0,
where T = £(V), and finally, since v, H, and A are positive, to the
requirements that
£.,20,
(55)

F-f>F-v)i,

hold on every B-subarc.

19



In the langusge of geometry, (55) implies that v must be restricted to
the domain where the tangent to the curve f(v) lies entirely below the curve.
For drag of type 1, (55) is automatically satisfied; for drag of type 2, where
(44) and (45) hold, (55) is equivalent to the requirement

(v - vl) (v - v2) >0, (56)

where vy and v, are the points of contact of the double tangent. The exclusion
of the interval (vl, v2) from the B-subarc then demands that a corner occur

when v reaches the values v, or v,, &s described in (46). Conversely, the
occurrence of such a corner satisfies the requirement E > O, the equality holding
only at corners for v = vy v = Vo) and conversely. Consequently, E > 0 except
on a set of measure of zero, so that the Welerstrass Condition holds in its
strengthened form II'.

A fortiori, the strengthened Legendre-Clebsch Condition pang ;3 Lleeo,

£,>0 (57)

also holds, from which two consequences follow. First, (57) establighes the
Hilbert Condition (52); second, with the aid of (19.4) it implies that H, > 0.

We conclude that H(v) is monotonic in the domain defined by (56), and has an
inverse H'l, thus assuring the uniqueness of the solution v(y) of the equation (24),
In view of this fact, it is convenient to replace H and h in all the equations '
referring to the B-subarc by H* and h* (see Fig. 3) defined by

H*E,H, h :—_-,h* if (v-vl) (v-v2)20, (58)
B =H(v)) ,h =h(v)  if (v-v) (v-v,) <0,

In the future, if no confusion results, the asterisks of H and h will be dropped.

10. THE JACOBI CONDITION

The 8econd variation in the control problem defined by (9) - (11) with
n=m=1r=1, p=0 can be written

2 ' 2 2
a“J = [('Fx-yFy)d.x +2Fydydx+dG]xl
X, (59)
2 2
+
Jx (Fyy By~ + 2Fyv8y5v +F & ) éax ,
[}

20



]
vhere F 1s defined by F = M + w¥ , =~y + &(x, y, v) , uw =0, ¥ > 0. The
necessary Jacobl Condition is that

Fi>o0 (60)

must hold on & minimizing extremal for all dx, dy, and for all &y, b&v
satisfying the differentiated equations 95 = 0y p¥ = O.

Observe that Fy = - X from (21.2), and that our problem possesses the
following special features: 1) G = - X, 80 that % = 0; 2) F =~ p/a in
view of (12); 3) u = v; and F_, = M, since ¥; 1s linear in v; 4) 8y and &v
must satisfy

- &y + gy +gbv =0,
(61)

p (By + &v) =0 .

Furthermore, on the B-subarc, x < X < &, where £ is the "burnout" point, observe
that p = 0, g, = 0 by (21.3), and the initial condition y(0) = O implies 8y(0) = O,
and hence the solution of (61) is 8y = 0, &v arbitrary. On the other hand, on

the C-subarc, £ < x < Xy, ;4 0, and the continuity of &y in (61) implies

8y(t + 0) = dy(t - 0) = 0. Hence the solution of (61) is &y = &v = 0, in
agreement with the remark in the last paragraph of section 5. Now, since

8y = O everywhere, dy = y'dx, and (59) becomes

2 p) ¢ 2

i€ J = [(-p/a -'g) dx] + J' A, BV (62)

P b 4
) 1 o)

Finally, at x = x; (39) ylelds p~- 1/v and ANga- l/v2 as v = 0; on the

B-subarc Ag_. > O by ¢53.1) and (57). Since a and v are positive, we conclude

that the Jacobi Condition is satisfied in its strengthened form IV' ’ d2J > 0,

An immediate consequence 1s that in oﬁ.r problem, with n = 1, IV' assures
the existence of a field. let a family of extremals y(x,8) be defined by
(9) - (11) with the initial condition (10.1) replaced by

xo=a,y(xo)=b+e, (63)

where @ is a family parameter. That the region bounded by x = &, (x,y) =0
is, indeed, a field follows from the following considerations: 1) The
extension of IV' to © ;4 0 is trivial; 2) IV assures the simple covering of

21



the region; i.e., the existence of the function 8 (x,y), and hence of the slope
functions u(x,y) and multipliers A(x,y), nu(x,¥); 3) in a one-dimensional
problem, the Euler equations suffice to assure that the Hilbert integral is
Independent of the path.

11. THE SUFFICIENCY CONDITION

We resort to the following variant of the Fundamental Sufficiency Condition
of Welerstrass, proved in Appendix:

"Let a famlly y(x,6) of extremals of & control problem be generated by
the initial conditions (63), involving @ as a parameter. If this family
constitutes a field, and if each extremal of the fleld satisfies I and II' with
the appropriate initial conditions, then the extremal for € = O yields an
absolute minimum of the control problem."

Note that Conditions I and II' have been established in sections 5-9 for
® = 0, and that their extension to the family defined by (63) is trivial.
Furthermore, the existence of a field has been proved in section 10. We
conclude that the hypothesis of the theorem is satisfied, and that our extremal
therefore ylelds an absolute minimum of the Auxiliary Problem.

12, THE STEADY STATES OF MOTION

Aside from theilr intrinsic interest, the lemmas of this section are
required in the proof of the Basic Theorems of section 13.

*
Lemma 1: "The function h (v) has one and only one positive zero, 7."

The proof proceeds from (18), (19), (20), (57), (58). Two cases are
distinguished:

case 1. « 1s outside (vl, v2) (See Fig. 3)

Then the relations h = (v-q) £,-f,h = (v-cx) £y ? Ty >0 imply that n*
has one and only one stationary point,

min b = h(a) = - £{a) < O. (64)

22



*
Since the minimum is negative, the relations h (0) = O, h () = o, and the
continuity of h* imply the conclusion of the lemma, with

a<)!<vl or v2<a<7,

6
(v-y)h*>0. (65)

case 2. « is inside (vl, v2)

Then h*, stationary on the interval (v,, v,), atteins there & minimm,

min b = h(v;). That the minimum is again negative is implied by h(0) = O,
h(a) <0, and 0 <v, <o finally, h(vl) = h(va) <0 and ¥ (o) = 0o imply
the conclugsion of the lemma, with

Vl<a<V2<7, (66)

(V-7)h*>00

ILemma 2: "On the burning subarc of an extremal, the acceleration of
the rocket cannot chang » its sign."

The proof proceeds from (30) and (19), leading to
V' = h/aHV ’ hv = (1 - afv) Hv ’
(61)

h = h exp fx (1/a - 1/v) ax .
(o]

Noting that a >0, and that H >0 by (19), (25), and (57), we conclude that
sgn v = sgn n = sgnho* . (68)
The Corollary, "h0 = 0 implies h(x) = O and v = 7" follows immediately.
Three types of trajectory are thus distinguished:
a) v, <7, h(x) <0, ;J' < 0, deceleration;
b) Vo>, h(x) >0 , v > 0, acceleration;

c) V°=7’ h(x) =0, v

.7, steady state;

In case c) the solution (24) and (31), of the Euler equations, must be replaced
byy=z0, vzy.
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15. THE BASIC THEOREMS

Having constructed the solution of the Auxiliary Problem, we shall show
that under the assumptions of Theorems 1 or 2 it satisfies the constrainte
1;2 > 0 and 4&v > 0 on the B-subarc,

Theorem 1: "2q < min (a.l, vl) implies: 1) @< 7 < 2u, 2) ¥, >0,
3) &v >0, with the last two relations holding on the B-subarc of an extremal
of the Auxiliary Problem.

To prove 1), observe that from (18.3)

hi@) = - f(a) ,
(69)
h(2a) = f(20) [ +3 k (20)],
and that the hypothesis and (17) imply
0<2a<a <a_,
(70)
k(2x) >0 .

Then (69} and £ > O imply h(a) < O and h(2a) < O. Furthermore, from the

*
hypothesls, @ < 2a < v, <V,, 80 that h = h™ on (a, 2a), in view of (58). The
conclusion 1s now implied by the continuity of n* and by 1 enma 1.

To prove 2), observe that V,, defined by (8.1) es

Vo =o' =y +v' +1/a ’ (1)

can be exhibited as & function of v, with the aid of (29), (30), (18), (19),
in two alternate forms:

¥, (v)

)

h/aHv + rv/n
§ (72)
}I/or.ﬂv + (fv/vHv)[a +k+ (v + k')/(l +v+k)],

The positiveness of v, f, H, f , H, 2 +k, 1 + v + k 13 agsured by (16), (18),
(19), (20), and (57). There are two possibilities: REither h >0orh<o0, If
h >.0, then *2 >0 in the first line of (72), On the other hand, if h < 0, then
v < 7 in (65); the previous conclusion, y < 2q, and the hypothesis, 20 < 8
imply v < a; then (17) implies k' >0, and finally ¥, >0 1n the last line

of (72). :

L]
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To prove 3), recall that v, >2¢>7, end that by Lemma 2, v >y implies
h >0, v'>0, and conversely. Then note, with the aid of (41), that
h(vl) = h(v2) > 0. Therefore v >0 1f v = v, or v = v,, thus excluding the
possibility Av < O in the second line of (46).

For rough practical purposes, the hypothesis of the theorem may be replaced

by
KM> 4, (73)

where M is the Jet Mach number, and K 1s the ratio of the atmospheric specific
heats. To derive this result observe that: 1) a = gl/c2 = l/ kMe by the law
of perfect gas and the formula for the sonic velocity, 2) the constants &y
which are the values of v at the meximm of k(v) and at the first point of
contact of the double tangent to f£(v), respectively, lie in the sonic region,
3) the sonic velocity corresponds to & 1/M, and both a, and v, are generally
sufficiently near a  to Justify the inequalities al/ao >1/2 , vl/ao > 1/2.
Thus, (73) implies 2@ < a,,and 20 < v,.

For the Earth, with c ~ 2000 m/s, g~9.8m/82, £~8000 m/s, K= 1.4, we
calculate

(o4 ~Oo°2, M"' .6,
(T4)
KM ~ 8.4,
concluding that the hypothesis of the theorem 1s satisfled for terrestrial
rockets.

The vacuum caese, p = 0, solved by Mlele, corresponds to ¢ = O and is,
therefore, a subcagse of the theorem, On the other hand, the constant=density
atmosphere, p = const,, corresponds to @ = co and hence lies outside the scope
of Theorem 1, Indeed, Leitman succeeded in solving this case only by
invoking the quadratic law of drag, C, = const., bringing the problem within
the scope of Theorem 2,

D

Theorem 2: "If CDV2 1s convex, then ¥, >0 and &v > 0 on the Besubarc of
an extremal of the Auxiliary Problem."

In the proof, note that the hypothesis, in view of (15), implies

(k +1) (k +2) +k' >0, (75)

25
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snd, consequently, ¥, >0 in the last line of (72). Furthermore, observe that
(75), (16.4), and (19.2) imply the convexity of £(v). Hence the drag belongs
to type 1 of section 7, with no corners on the B=gubarc, and with Av = O,

The cases of quadratic law of drag and, the more general, power law of
drag, also treated by Mlele, appear as subcases of the theorem.

1k, SUMMARY

Under the assumptions of Theorems 1 or 2 the solution is characterized
by the structural formula

(B)y , 1 C (76)
i.e., the burning stage B, preceded by an impulsive launching I, contains N
additional impulsive thrusts, N being the number of double tangents of the
curve £(v), and is followed by the coasting stage without fuel. The solution
therefore includes as a speclal case the results of Tsien and Evans, where
N = 0. An absolute minimum has been established with the aid of the second
variation and a varient of the Sufficiency Principle that is particularly useful
in problems of optimum control,

Theorem 1 applies to terrestrial launching and any drag function with
some very general properties listed in section L; Theorem 2 covers extra-
terrestrial launching but 1s restricted to a fairly common class of drags that
includes all the cases previously treated in the literature.

‘for-'. @-M__,

BORIS GARFINKEL
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APPENDIX
To prove the Sufficiency Condition stated in section 11, define w(x,y) by

*
wzGlxy +I ,

* , (77)
I = ﬁ:l- g(x,y,u) + uy] dx - .8y [,

where I* is the Hilbert integral of the control problem and u, A, p belong to
the field. With A denoting an increment, observe that: 1) Aw = O on a
closed path; 2) Aw = O on a boundary subarc in = 0, in virtue of the
Transversality Condition (3%) and p¥ = O; 3) Aw = AG on an extremal of the
field, in view of y' = g(x,y,u), where u(x,y) is the "slope function".

Next let O and 1 denote the end-points of the extremal for @ = 0, and
let 002 be any admissible arc connecting O and a terminal point 2 lying in
é: 0. Then there follows from the properties of w listed above that

woo= 6¢(1) - ¢(o) ,
w® =0 (78)
w°2 = 6(2) - ¢(0) + T (Coz) ’
w02 = wcl) tW
leading to ,
6(2) - 6@) = T (Cyp) + (79)

*
Finally, note that, in view of (53) and u¥ = 0, the expression for I 1in (76)
can be also exhibited as

- (g-E)de'-j'de.,

g

80
gx, y, u) PR i‘ u, ( )

'
and that IT implies E> O on C

conclusion

0p» end hence I <0 in (80) and (79). The

a(1) < a(2) : (81)

follows immediately.
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