408691

۰.

TRAFFICABILITY OF SOILS

TESTS ON COARSE - GRAINED SOILS WITH SELF - PROPELLED AND TOWED VEHICLES 1958 - 1961

TECHNICAL MEMORANDUM NO. 3-240

SEVENTEENTH SUPPLEMENT

May 1963

U. S. Army Engineer Waterways Experiment Station CORPS OF ENGINEERS Vicksburg, Mississippi

4

DDC DCRCUL JUL 17 ISI JUL 17 ISI TISIA D

REPORTS OF THE SERIES ENTITLED "TRAFFICABILITY OF SOILS" (TECHNICAL MEMORANDUM NO. 3-240

Supplement No.		Date
	Pilot TestsSelf-propelled Vehicles	Nov. 1947
1	Laboratory Tests to Determine Effects of Moisture Content and Density Variations	Mar. 1948
2	Trafficability Studies, Fort Churchill, Summer 1947	Aug. 1948
3	Development of Testing Instruments	Oct. 1948
4	Tests on Self-propelled Vehicles, Yuma, Arizona, 1947	Apr. 1949
5	Analysis of Existing Data	May 1949
6	Tests on Self-propelled Vehicles, Vicksburg, Miss., 1947	Sept. 1949
7	Tests on Towed Vehicles, 1947-1948	June 1950
8	Slope Studies	May 1951
9	Vehicle Classification	May 1951
10	Tests on Natural Soils with Self-propelled Vehicles, 1949-1950	Jan. 1 954
11	Soil Classification	Aug. 1954
12	Tests on Natural Soils with Self-propelled Vehicles, 1951-1953	Nov. 1954
13	Pilot Study, Tests on Coarse-Grained Soils	Nov. 1955
14	A Summary of Trafficability Studies Through 1955	Dec. 1956
15	Tests on Coarse-Grained Soils with Self-propelled and Towed Vehicles, 1956 and 1957	June 1959
16	Soil Classification	Aug. 1961
17	Tests on Coarse-Grained Soils with Self-propelled and Towed Vehicles, 1958-1961	May 1963

ASTIA Availability Notice

Qualified mquestors may obtain copies of this report from ASTIA

PREFACE

A CONTRACTOR AND AND A CONTRACTOR

素育さ シャック

The tests reported herein are part of the studies conducted by the U. S. Army Engineer Waterways Experiment Station (WES) under Corps of Engineers Task No. 1-T-O-21701-A-046-02, "Surface Mobility." Tests were financed in part by the Bureau of Yards and Docks, Department of the Navy.

Acknowledgment is made to consultants and representatives of various Government agencies who attended a trafficability conference held at the Waterways Experiment Station on 12 May 1955 and offered guidance for the tests on coarse-grained soils. Special acknowledgment is made to Messrs. Sam Gorelick and Fred Knoop, U. S. Navy Bureau of Yards and Docks, who assisted in formulating priorities for conduct of coarse-grained soil testing reported herein.

These tests were conducted by personnel of the Army Mobility Research Center, Soils Division, WES, under the general supervision of Messrs. W. J. Turnbull, S. J. Knight, and A. A. Rula. Engineers actively engaged in the study were Messrs. A. A. Rula and E. S. Rush. This report was written by Mr. Rush.

Directors of the WES during the conduct of this study and the preparation and publication of this report were Col. A. P. Rollins, Jr., CE, Col. E. H. Lang, CE, and Col. Alex G. Sutton, Jr., CE. Technical Director was Mr. J. B. Tiffany.

iii

CONTENTS

Pa	<u>ge</u>
PREFACE	i
SUMMARY	.i
PART I: INTRODUCTION	1
	1
	1
	2
Definitions	5
PART II: TEST PROGRAMS	9
Test Areas	9
Instruments Used to Obtain Test Data 1	5
Vehicles Tested	.8
Tests Conducted	24
Sand Data Obtained	26
PART III: ANALYSIS OF DATA	27
Effect of Driver Proficiency and Vehicle	
•	27
	27
	33
	15
	17
	19
PART IV: CONCLUSIONS AND RECOMMENDATIONS	53
	53
Recommendations	54
TABLES 1-11	

PLATES 1-32

ŝ,

そうなまし こそい

こうとうかられい世界に変形したが、「日本ない、日本の日本のたい、作品を記載した」を読みていた。

SUMMARY

Standard and special vehicle tests were conducted with 21 military vehicles over a range of vehicle weights, tire pressures, and sand strengths and conditions to pursue investigations recommended in the 15th Supplement of this series. Standard tests were of three kinds: selfpropelled, towing, and towed. Special tests included tests on: "honeycomb" sand; gravel beaches; drawbar pull-slip; a truck-trailer combination; the effects of a traction device, tire tread, and wheel load; and the Airoll.

Coarse-grained soil tests were made in five locations in the United States and France. Principal conclusions were that: (a) maximum towing force of self-propelled wheeled vehicles on level sand (for the same sand and vehicle conditions) was about 2% greater than maximum slope negotiable, and these data can be correlated; (b) vehicle performance tended to improve with decreasing contact pressure; (c) 6x6 vehicles generally had higher tractive coefficients than 4x4 vehicles with the same contact pressure on the same sand conditions; and (d) vehicle performance on wet sand that tended to liquefy under the vehicle load was similar to that on finegrained soils.

いんにあるので ちろんちののたい

TRAFFICABILITY OF SOILS

「「「「「「」」」

TESTS ON COARSE-GRAINED SOILS WITH SELF-PROPELLED AND TOWED VEHICLES 1958-1961

PART I: INTRODUCTION

Purpose and Scope of Test Program

1. The tests reported herein are part of a comprehensive study to quantify the trafficability of coarse-grained soils. The specific objectives of these tests were to:

- a. Establish slope-climbing and towing abilities of a range of self-propelled wheeled and tracked vehicles operating on sands of various strengths (cone index) and moisture contents.
- b. Establish towing force required to tow vehicles over sands of various strengths and moisture contents.
- c. Investigate the effects of such vehicle characteristics as wheel load, tire tread, and special traction devices on vehicle performance in sand.
- d. Establish suitable vehicle performance-sand relations for truck-trailer combinations.
- e. Investigate the trafficability of gravel beaches.

Previous Investigations

2. Since 1945 the Waterways Experiment Station (WES) has conducted a large number of traffic tests with military vehicles on a variety of soil conditions. Results of this work have been published in a series of reports with the general title "Trafficability of Soils," Technical Memorandum No. 3-240, which are listed on the inside of the front cover of this volume. Most of the reports present the results of tests conducted on fine-grained scils, since these soils cover a major portion of the earth's land surface and their behavior under traffic depends to a great extent on their moisture content. The development of instruments and techniques for measuring the trafficability of these soils is considered to be essentially complete. 3. Work to develop methods for predicting, without physical contact, the trafficability of fine-grained soils is another phase of the trafficability studies. Results of this work have been published in a series of reports with the general title "Forecasting the Trafficability of Soils," Technical Memorandum No. 3-331. Work on this prediction phase is continuing.

Background of WES Testing of Coarse-Grained Soils

4. In October 1953, a joint Army-Navy ad hoc committee assigned the responsibility for studying means of determining the trafficability of coarse-grained soils to WES. The first phase of this project was a pilot study to provide background information concerning mcbility problems on sands, and to determine whether instruments and techniques that have been successful in defining trafficability of fine-grained soils would also be successful in coarse-grained soils. This study was accomplished in 1954 and is reported in Technical Memorandum No. 3-240, 13th Supplement.

5. In May 1955, a conference was held at WES with consultants and representatives of various Government agencies to discuss results of the pilot study and outline a program for future work. As a result of this conference, additional trafficability tests on a variety of beaches were suggested; subsequently, tests were conducted on beaches of various Pacific islands and at Camp Lejeune, North Carolina, and on desert dune sands near Yuma, Arizona, during 1956 and 1957. These tests are reported in Technical Memorandum No. 3-240, 15th Supplement.

Important findings of pilot study (13th Supplement)

2

6. All vehicle tests reported in the 13th Supplement were conducted with self-propelled vehicles on quartz sands found on inland areas and beaches of the United States. The important findings are summarized as follows:

> a. <u>Sand categories</u>. Two distinct sand categories were identified, each requiring a different trafficability measurement technique. The two categories are: (1) clean sands that react as a frictional material under the action of traffic with little change in trafficability with changes in

moisture content, and (2) sands with fines, poorly drained, that react in a plastic manner when wet.

- b. <u>Instruments</u>. The cone penetrometer was found to be as accurate an instrument for measuring sand trafficability as any tested, and was recommended for future use in sands, mainly on the basis of its simplicity and its ability to determine profile conditions, and also because it had been previously accepted for use in fine-grained soils.
- c. <u>Remolding effects.</u> No necessity was found for predicting strength changes under vehicle traffic for most sands (see subparagraph <u>d</u>). For sands with fines, poorly drained, a test technique was developed to indicate such strength changes.
- d. <u>Repetitive traffic.</u> In general, the first pass was found to be the most difficult for a wheeled vehicle in a clean sand area. An exception to this finding occurred in some crusted sands. The surface crust supported the vehicle for one pass (or a few) but suddenly broke on a subsequent pass, causing the vehicle to become immobilized or making operation more difficult in the much softer underlying sand and deeper ruts. Because only a few tests were conducted on crusted sands, a test for predicting the strength change thereof was not devised.
- e. <u>Tire pressure</u>. Tire-inflation pressure was found to be the most significant single vehicle characteristic affecting the performance of wheeled vehicles in sand.
- <u>f</u>. <u>Critical layer</u>. For all vehicles tested, the critical layer for clean sands appeared to be the top 6 in. For sands with fines, poorly drained, the critical layer appeared to be the same as that for fine-grained soils (i.e. the 6- to 12-in. layer).

Important findings of subsequent tests (15th Supplement)

Sale & Sec. 4

the subsect

a stance

7. Test results reported in the 15th Supplement are based on selfpropelled, towing, and towed tests. The important results and conclusions from these tests are summarized in the following paragraphs.

8. <u>Tests with single, self-propelled, wheeled vehicles</u>. These tests resulted in the following conclusions:

- a. Self-propelled vehicle performance can be defined by means of cone index-slope climbing relations provided cognizance is taken of the general wetness of the sand.
- b. Wet sands are more trafficable than dry-to-moist sands. Saturated or near-saturated sands, however, are likely to become quick under vehicular traffic and therefore are the least trafficable.

- c. Self-propelled vehicle performance on dry-to-moist sands, as defined by the cone index-slope climbing relations, is the same regardless of sand source (quartz, volcanic, or coral) or location (beach or desert).
- d. Payload variation from empty to 1.5 times the rated load has no major effect on the slope-climbing ability of selfpropelled vehicles when operated at the same tire pressures.

9. <u>Towing tests with self-propelled vehicles</u>. Pilot towing tests were conducted on natural and harrowed sand. The tests on undisturbed sand were inconclusive; however, harrowed-sand tests showed the following results:

- a. Maximum drawbar pulls on level sand ranged between 20 and 40% of the gross vehicle test weight for wheeled vehicles, and between 50 and 60% of the gross vehicle test weight for tracked vehicles.
- b. Tests with wheeled vehicles having the same payload capacities but differing in wheel arrangement and tire size resulted in differences in performance. Single-rear-tandem, all-wheel-drive vehicles appeared to have approximately 5% higher drawbar-pull ability than dual-rear-tandem vehicles.
- c. The maximum slope-climbing ability of vehicles can be estimated from maximum-drawbar-pull determinations on level sands with reasonable accuracy if the level and sloping surfaces have the same strength.

10. <u>Towed tests with wheeled trailers</u>. These tests produced the following conclusions:

- <u>a</u>. Sand disturbance by the towing vehicle has little effect on towing-force requirements when the towed and towing vehicles are operated at the same tire pressures.
- b. Towing-force requirements for wheeled trailers can be correlated with cone index and tire pressure.

Recommendations from 15th Supplement

11. From the findings mentioned in the above paragraphs, certain recommendations were made which have been used as a guide for the current studies; however, the recommendations were not in order of priority for proposed studies. Some of the recommendations have not been followed as yet, but it is expected they will be considered in preparation of subsequent reports on sand trafficability.

12. It was recommended in the 15th Supplement that:

a. A rapid method be developed for confident recognition of the

4

three moisture conditions of sand that are important from the trafficability standpoint--dry to moist, wet to inundated, and quick condition.

- b. Additional single self-propelled vehicle tests be made, with emphasis on wheeled vehicles of more than 5-ton capacity.
- <u>c</u>. Detailed studies of the effect of wheel load, tire pressure, and other vehicle characteristics on performance of vehicles in sand be continued.
- <u>d</u>. Towing tests on undisturbed sand with a range of military vehicles be conducted.
- e. Additional towed-vehicle tests, including tests with tractor-trailer combinations, be conducted.
- <u>f</u>. Work be conducted on procedures to derive means of evaluating performance of vehicles not tested.
- g. Vehicle tests on gravel beaches be conducted.
- h. Work on estimating the trafficability of untested beaches be continued.

Definitions

13. Certain terms used in this report are defined below.

Soil terms

and shake

<u>Fine-grained soil.</u> A soil of which more than 50% of the grains, by weight, will pass a No. 200 U. S. standard sieve (smaller than 0.074 mm in diameter).

<u>Coarse-grained soil.</u> A soil of which more than 50% of the grains, by weight, will be retained on a No. 200 sieve (larger than 0.074 mm in diameter).

<u>Sand.</u> A coarse-grained soil with the greater percentage of the coarse fraction (larger than 0.074 mm) passing the No. 4 sieve (4.76 mm).

Sand with fines, poorly drained. A sand that contains some finegrained soil and is slow-draining. When wet, such sands behave in a manner similar to very wet fine-grained soils under vehicular traffic.

<u>Density.</u> The unit weight of the soil in pounds per cubic foot. Unless otherwise stated, the density is the dry unit weight.

<u>Moisture content.</u> The ratio, expressed as a percentage, of the weight of water in the soil to the dry weight of the solid particles.

Cone index. An index of shearing resistance of soil obtained with

the cone penetrometer. The value represents the resistance of the soil to penetration of a 30-degree cone of 0.5-sq-in. base or projected area. The number, although considered dimensionless, actually denotes pounds of force on the handle divided by the area of the cone base in square inches.

<u>Trafficability.</u> The capacity of a soil to support the traffic of military vehicles.

<u>Bearing capacity.</u> The ability of a soil to support a vehicle without undue sinkage.

<u>Traction capacity</u>. The ability of a soil to provide sufficient resistance to the tracks or wheels of the vehicle to furnish the necessary thrust to move it forward.

<u>Critical layer.</u> The layer of soil regarded as being most pertinent to establishing the relation between soil strength and vehicle performance. (For coarse-grained soils, this appears to be the 0- to 6-in. layer.)

Liquefaction. The puddling and drastic reduction in strength of saturated (although initially firm) sand under the action of repetitive loading. The combined effects of wetness, structure, and fineness of the sand may prevent the sand from draining fast enough to maintain intergranular friction when a dynamic load is applied, thus causing pore pressure to develop and the sand to liquefy.

Beach terms

<u>Foreshore (FS).*</u> That part of the beach ordinarily traversed by the uprush and downrush of waves as the tide rises and falls.

<u>Backshore (BS).*</u> That part of the beach between the foreshore and the forward dune apron (if present) of the coastline.

<u>Berm crest (BC).*</u> The seaward limit of the backshore; usually a relatively flat area paralleling the foreshore and occasionally wetted by waves at high tide.

<u>Berm backslope (BBS).</u> A backshore area between the berm crest and the forward dune apron, usually sloping gently downward and landward. Backshore flat (BSF). A backshore area between the berm crest and

6

^{*} Terms marked with an asterisk were extracted from Appendix A, Beach Erosion Board Bulletin, Special Issue No. 2, March 1953. Other terms pertain to specific areas in which vehicular tests were conducted but which are not defined in the above-mentioned reference.

the tidal flat, usually on the seaside of barren islands. The elevation is approximately 1 ft higher than that of the tidal flat.

Forward dune apron (FDA). The concave seaward slope of a line of dunes.

<u>Dune area (DA).</u> An area of wind-deposited sand between the forward dune apron and the coastline. Coastal dunes may be active or partially stabilized by vegetation.

<u>Tidal flat (TF).</u> A large low-lying area that is affected by tidal action of a body of water. Portions of the area may be inundated at high tides, and other portions, though not inundated, may have fluctuating water tables that are influenced by tidal action.

<u>Spit.*</u> A small point of land or submerged ridge running into a body of water from the shore.

Sand conditions

18 A A 200

<u>Dry sand.</u> Sand that was light-colored, loose, and free-flowing when poured from the hand. Dry sand usually occurred on the surface of all components of the beaches except the foreshore, but never extended deeper than about 5 in. before becoming moist. Sand classed as dry on the basis of visual observation usually contained less than 1.5% moisture by weight.

Moist sand. "Moist" sand usually lay directly beneath the dry sand layer. It was usually darker in color, showed slight cohesion, and was cool to the touch. In general, moist coarse sand was found to contain about 1.5 to 5.0% moisture, and moist fine sand about 10 to 12% moisture.

<u>Wet sand.</u> Sand on the foreshore that was being wetted by waves, but was not under a finite depth of water during the time of testing. Wet sand exhibited a considerable amount of cohesion, and free water could be squeezed out of it.

<u>Honeycomb sand.</u> A term tentatively used to identify a particular sand condition encountered at Padre Island (see paragraph 122).

<u>Inundated sand.</u> Sand covered by water during the time of testing. NOTE: A spot on the foreshore "inundated" at one moment during the uprush of a wave might become "wet" a few seconds later when the wave receded.

Quick-condition sand. Loose, yielding, wet, or more commonly,

inundated sand that had water flowing through it vertically upward and became liquefied under a moving vehicle (thereby causing its immobilization) was termed sand in a "quick condition."

Vehicle terms

<u>Vehicle performance</u>. In this report, the maximum drawbar pull that a vehicle can exert, or the maximum slope it can climb, on a given soil condition.

Pass. One trip of the vehicle over the test course.

<u>Multiple passes.</u> More than one pass of the vehicle in the same path over the test course.

<u>Immobilization</u>. In this report, failure of a self-propelled vehicle to travel forward over sand, although it could possibly back up in its ruts; immobilizations of wheeled vehicles were also considered to have occurred whenever the drive wheels began to jerk violently and the vehicle progressed forward very slowly.

<u>Maximum drawbar pull (maximum towing force)</u>. The maximum amount of sustained towing force a self-propelled vehicle can produce at its drawbar under given test conditions.

Towing-force requirements. The amount of force required to tow a given vehicle in neutral gear under given test conditions.

<u>Tractive coefficient.</u> The ratio of the drawbar pull to the gross weight of a vehicle under given test conditions.

<u>Total tractive effort.</u> The maximum towing force or drawbar pull developed by a vehicle plus the force required to tow it (in neutral gear) under given test conditions.

<u>Slip.</u> The percentage of track or tire movement ineffective in thrusting the vehicle forward.

<u>Ply rating (PR).*</u> A term used to identify a given tire with its maximum recommended load when used in a specific type of service. It is an index of tire strength and does not necessarily represent the number of cord plies in the tire.

* American Tire and Rim Association Yearbook, 1955.

8

PART II: TEST PROGRAMS

14. The tests reported herein were conducted at five widely separated locations: at Padre Island, near Corpus Christi, Tex. (plate 1), during November-December 1958; at La Turballe and Suscinio Beaches, Brittany, France (plate 2), during May-June 1959; on Mississippi River sand, near Vicksburg, Miss. (plate 3), during September-October 1959 and February 1961; in the vicinity of Cape Cod, Mass. (plate 4), during June 1960; and at Warren Dunes State Park on Lake Michigan (plate 5), during October 1960. Tests included the operation of wheeled and tracked vehicles over beach, tidal flat, coastal dune, and river sands, and over beach gravel. Measurements of vehicle performance were made and pertinent sand data were obtained for each test. Details of the various test programs are described in the following paragraphs together with the appearance of each test area at the time the tests were conducted. The sand or gravel classifications (according to the Unified Soil Classification System) discussed in the following paragraphs are based on laboratory analyses performed on representative samples taken from the O- to 6-in. depth. Cone index data presented are for the same depth.

Test Areas

Padre Island test areas

1 i a v v v

15. Padre Island (plate 1) is one of the chain of barren islands that lies parallel to the Texas coast in the vicinity of Corpus Christi. It varies in width from a few hundred yards to 3 to 4 miles, and is approximately 100 miles long. The major portion of the island consists of sand that has not been stabilized by vegetation. The east or gulfside sand beaches are firm with a few exceptions; automobiles can be driven along the foreshore with ease. The west or lagoonside is for the most part a tidal flat area that remains constantly wet because of tidal fluctuations. Active dune areas occur between the east and west shorelines.

16. Tests were conducted on the gulfside and lagoonside of the island. Test areas are described below. Representative grain-size curves and supplementary physical property data are presented in fig. 1 of plate 6.

9

17. <u>Gulfside test areas.</u> Most of the tests on the gulfside were conducted on a flat (less than 1% slope) area (fig. 1) between the Gulf to

the east and an inland water area, known as Packery Channel, to the west. At the time of the tests, Packery Channel was connected to the Gulf; thus, tidal fluctuations of the Gulf affected the water level in the channel. Tests were conducted in the surf, on the wet foreshore 50 to 200 ft wide, along the

Fig. 1. Gulf foreshore, Padre Island, Texas

berm and backshore 25 to 100 ft wide, and in the tidal flat area (approximately 20 acres) near Packery Channel. The soil was a uniform fine sand (SP). Cone index for this area ranged from 25 in the tidal flat area to over 500 on the wet foreshore.

18. A few vehicle tests were run on a shell beach, approximately 30 miles south of the area described above and on the gulfside of the island. This beach was composed largely of a mixture of loose shell frag-

ments and sand, which resulted in a softer foreshore than the sand test area mentioned in the preceding paragraph. The soil was a uniform, medium to fine sand (SP).

19. <u>Lagoonside</u> <u>test area.</u> Tests on the lagoonside of the island were conducted in a level area (fig. 2) approximately 2-1/2 miles

Fig. 2. Lagoonside (west side) test area, Padre Island, Texas

southwest of the Gulf foreshore area. The lagoonside testing covered an area from near the sand dunes into the tidal flats of sand and mud; however, the testing was done on areas where the sand was level and fairly clean to a depth of 3 ft. The soil was a uniform fine sand (SP) with about 2% fines. Cone indexes ranged from 20 close to the lagoon to about 75 near the dunes.

Brittany, France, test areas

「「 」

1

20. <u>La Turballe Beach</u>. This beach (fig. 3) is located on the Brittany coast of France near the town of La Turballe, between the cities

of Vannes to the north and St. Nazaire to the south (plate 2). The beach area utilized for testing was about 2000 yd long. The foreshore averaged 125 ft in width and had an average slope of 15%; cone index ranged from 45 to 143. The backshore was 55 ft wide with an average slope of 10%; cone index ranged

Fig. 3. La Turballe Beach, France

from 26 to 72. The forward dune apron, partially stabilized with vegetation, averaged 45 ft in width and had an average slope of 25%; cone index was 150+. Inland from the forward dune apron was a series of small dunes stabilized with grass and weeds. The soil on the foreshore was a uniform coarse to medium sand (SP), and that on the backshore a uniform medium sand (SP). Representative grain-size curves and supplementary data are presented in fig. 2 of plate 6.

21. <u>Suscinio Beach.</u> This beach (plate 2 and fig. 4) is also located on the Brittany coast, north of La Turballe, southeast of Vannes. The test area was about 1/2 mile long. The foreshore averaged 150 ft in width and had an average slope of 9%; cone index ranged from 51 to 156. The backshore was 15 ft wide with an 8% slope; the cone index ranged from 77 to 145. The forward dune apron was almost entirely covered with vegetation, and the



Fig. 4. Suscinio Beach, France

presented in fig. 2 of plate 6. Mississippi River test areas

22. During low water, areas of sand

cone index ranged from 93 to 197. The foreshore and backshore were nonuniform gravelly sand (SW). Representative grain-size curves and supplementary data are

suitable for vehicle testing were found in the form of sandbars and beaches along the banks of the Mississippi River. Tests were conducted on two such beaches (plate 3) near Vicksburg, Miss.; the test areas are described below. Representative grain-size curves and supplementary data are presented in fig. 3 of plate 6.

23. <u>Vicksburg Bridge area.</u> This test area (fig. 5), located on the

west bank of the river, extended from the Vicksburg Bridge to approximately 2000 ft south of the bridge; it varied in width from about 50 ft on the north end to about 500 ft on the south end. The beach surface was gently undulating with an average slope of about 1%. Inland from the beach was a flat terraced area of

Fig. 5. Vicksburg Bridge area, Mississippi River

sand and silt that was partially stabilized with small willow and cottonwood trees. Cone index ranged from 100 to approximately 160. The soil was a uniform fine sand (SP). 24. <u>Marshall Cutoff</u> <u>area.</u> This area (fig. 6) of approximately 50 acres was located on the west top bank of the river about 10 river miles north of the Vicksburg Bridge. Because of its higher elevation, this area was available for testing for longer periods than the

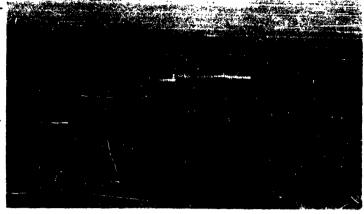


Fig. 6. Marshall Cutoff area, Mississippi River

The Marshall Cutoff area consisted of long, flat sections with very little undulation. The soil was a uniform medium to fine sand (SP). The cone index ranged from 85 to 147.

Cape Cod test areas

Vicksburg Bridge area.

25. <u>Camp Wellfleet.</u> Camp Wellfleet Military Reservation is situated on the Atlantic Ocean (east) side of Cape Cod, Mass., approximately 16 miles south of the northern point of the Cape (plate 4). Vehicle tests were conducted on beach areas (fig. 7) representative of beaches along the

east coast of the Cape. Foreshore width varied considerably with the tide. At low tide, the foreshore was generally 60 to 100 ft wide; at high tide the foreshore was completely inundated. The backshore was generally about 50 ft wide with some areas about 150 ft wide. The beach was bordered on the

Fig. 7. Camp Wellfleet beach, Cape Cod, Mass.

inland side by a cliff or forward dune apron (50 to 70% slope) that was approximately 25 to 50 ft high. Tests in this area (fig. 8) were conducted

leveled by construction
equipment several years
before. Check tests were
conducted in the disturbed area to determine
its suitability for the
traffic testing. The
surrounding undisturbed
dune area was partially
covered with vegetation.
Cone index ranged from 57

adjacent to a cliff in an

area that had been

Fig. 8. Camp Wellfleet dune area, Cape Cod, Mass.

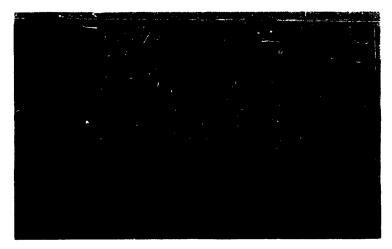
to 140 in the beach area and from 57 to 230 in the dune area. The beach soil, foreshore and backshore, was uniform medium sand (SP), whereas the soil in the dune area was nonuniform gravelly sand (SW). Representative grain-size curves and supplementary physical property data are presented in fig. 1 of plate 7.

26. <u>Duxbury Beach</u>. Duxbury Beach (plate 4 and fig. 9) is a narrow

spit approximately 2 miles long extending south from the coast near Duxbury, Mass., on the northwestern boundary of Cape Cod Bay. Tests were conducted on gravel portions of this beach. The foreshore areas on the east side were predominantly sand, while the foreshore areas on the west side were sand and

Fig. 9. Duxbury Beach area, Mass.

gravel mixtures. No tests were conducted on foreshore areas on the east side. Backshore areas were largely gravels of various sizes. Some vegetation existed on portions of the backshore. A representative grain-size curve with supplementary data for each test series is shown in fig. 2 of


plate 7. The soil tested ranged from coarse gravel (GP) with cobbles to gravelly sand (SW). Reliable cone index measurements could not be taken in the gravel areas where trafficability tests were conducted. Lake Michigan test areas

27. Tests were conducted on the beach and unstabilized dunes at Warren Dunes State Park

Fig. 10. Lake Michigan beach, Warren Dunes State Park

(plate 5 and figs. 10 and 11) located approximately 10 miles north of the Michigan-Indiana state line on the east bank of Lake Michigan. Slopes

ranged from level to 75%, and cone index ranged from 16 to 110. The soil in the dune area was uniform fine sand (SP). The beach soil, foreshore and backshore, was medium to fine sand (SP). The foreshore had a slope of approximately 10%, whereas the backshore surface was level. Representative grain-

Fig. 11. Lake Michigan dunes, Warren Dunes State Park

size curves and supplementary data are presented in fig. 3 of plate 7.

Instruments Used to Obtain Test Data

28. The cone penetrometer and moisture-density cylinder were used in all test areas. A level was used for measuring slopes. Laboratory-type test gages were used to check tire pressures of all wheeled vehicles; dynamometers and related equipment were used to measure towing forces. The various items of equipment are described in the following paragraphs. Sand data

29. <u>Cone penetrometer</u>. The cone penetrometer is a field instrument which consists of a 30-degree cone with a 0.5-sq-in. base area mounted on a 5/8-in.-diameter shaft (fig. 12). The cone is forced into the soil

Fig. 12. Cone penetrometer slowly and a proving ring and calibrated-dial assembly are used to measure the load applied. The penetration resistance is termed cone index (see "Definitions"). The standard cone penetrometer permits cone index readings to be taken up to 300; however, to obtain measurements in firm sands that exceeded 300 cone index, a 30degree cone with a 0.2-sq-in. base area and a 3/8-in.diameter shaft was used. The 0.2-sq-in. cone permitted taking cone index readings up to 750.

30. <u>Moisture-density cylinder.</u> A 2-3/4-in.diameter, 3-in.-high, thin-walled, stainless steel cylinder was used in obtaining all moisture-density samples in sand. Fig. 13 shows a moisture-density sample taken with the cylinder.

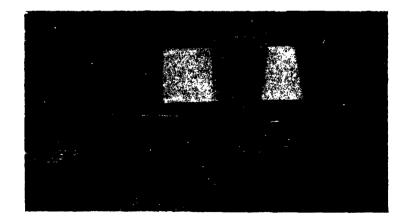


Fig. 13. Moisture-density sample

31. <u>Mechanical analysis sieves</u>. Normally the mechanical analysis of a soil was determined in the laboratory by drying approximately 400 g of the material and passing it through a set of U. S. standard sieves mounted

16

in a mechanical shaker. For the Duxbury Beach gravel areas, the majority of the sieve analyses were conducted on the beach because of the large gravel sizes and the large quantity of material needed for a representative sample. Standard sieves were used but the material was hand-screened. Any material less than 1/4 in. in diameter was analyzed in the laboratory in the usual manner.

32. <u>Levels</u>. A hand level accurate to 0.5% was used for determining slopes of test lanes that were fairly steep; a rod and a level mounted on a tripod were used to measure shallow slopes.

Vehicle data

33. <u>Tire-inflation pressure gage.</u> A laboratory-type test gage, accurate to 0.25 psi throughout the range of tire pressures tested, was used to measure tire-inflation pressures.

34. <u>Dynamometers.</u> The dynamometers used were electrically recording load cells that measured forces in tension by translating changes in force into changes in electrical energy. The load cells are hermetically sealed and operate without mechanically moving parts. The sensing element is a high-strength load-carrying member to which are bonded special SR-4 strain gages that undergo resistance changes precisely proportional to the applied strain. The dynamometers were used to measure the amount of drawbar pull during the towing and towed tests; they were connected between the test vehicle and the load vehicle. Dynamometers ranged in capacity from 5000 to 20,000 lb, depending upon the amount of force to be measured.

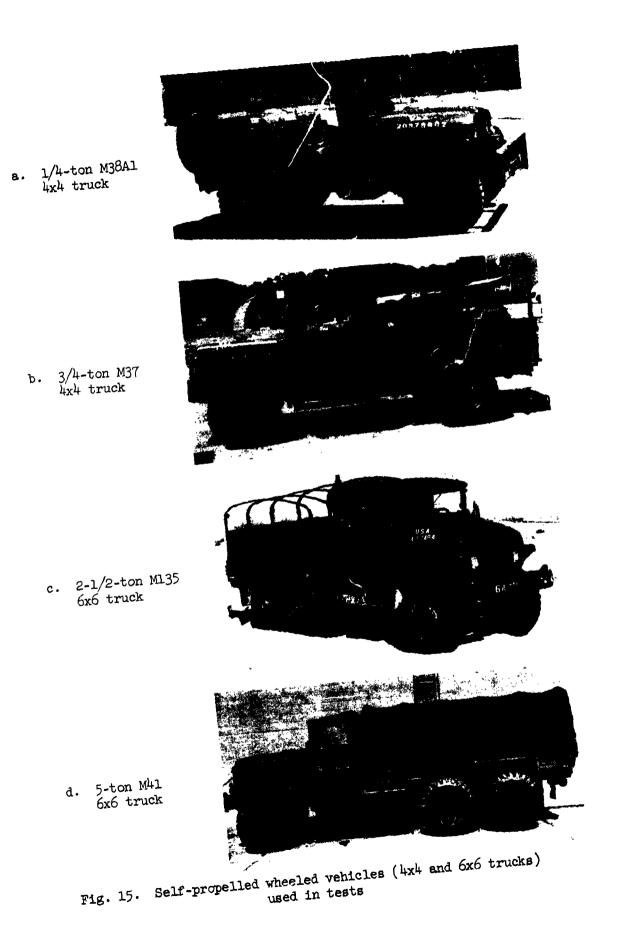
35. <u>Slip meter.</u> The distance a point on the periphery of a wheel or track traveled during a given time and the distance the vehicle traveled during the same time were determined by a slip meter. The meter indicated the number of revolutions the vehicle wheel made while propelling the vehicle, and the number of revolutions made by a nonslipping bicycle wheel trailing the test vehicle and attached to it.

36. <u>Recorder for dynamometer and slip meter</u>. During the tests, the force exerted on the dynamometer and the events experienced by the slip meter were recorded simultaneously as traces on a direct-inking recorder.

37. The system for measuring drawbar pulls contained a recorder, amplifier, power supply, cables, and dynamometers. The recorder, amplifier, and power supply were mounted in the rear of the load vehicle or in a third

Fig. 14. 2-1/2-ton truck instrumented for drawbar pull-slip test

vehicle. Fig. 14 shows a drawbar pull-slip test being conducted.


Vehicles Tested

38. Detailed data for wheeled and tracked vehicles of the types tested are given in table 1. Vehicles tested are shown in figs. 15 through 19. The following tabulation lists the

vehicles tested at each test area along with pertinent vehicle data.

	Empty	Wheeled Test	Vehicles	Empty	Test		
Vehicle	Weight 1b	Weight	Vehicle	Weight lb	Weight 1b		
Padre Island			Mississippi River				
1/4-ton M38A1, 4x4 truck	2,690	2,690	2-1/2-ton M211, 6x6 truck	12,792	18,470		
,		2,860 3,200	2-1/2-ton M135, 6x6 truck	12,450	18,750 18,100		
3/4-ton M37, 4x4 truck	5,687	5,687 6,407 7,187		12,000*	17,610 17,610		
2-1/2-ton M135, 6x6 truck	12,450	14,750	Bucket loader, 4x4 tractor	13,595	13,595		
		17,450	Tournadozer, 4x4 tractor	31,070	31,070		
5-ton M41, 6x6 truck	19,070	23,070 28,170	5-ton XM520 GOER, 4x4 carrier	16,670	26,670		
France			Cape Cod				
1/4-ton M38A1, 4x4 truck	2,625	2,625		- (0-			
3/4-ton M37, 4x4 truck	5,687	5,687	3/4-ton M37, 4x4 truck	5,687	5,687		
	1.1	6,887	2-1/2-ton M135, 6x6 truck	12,450	12,450		
2-1/2-ton M34, 6x6 truck	11,775	11,775 16,775	2-1/2-ton DUKW 353, 6x6 truck	15,285	15,285		
2-1/2-ton DUKW 353, 6x6 truck	14,670	14,670 19,670	5-ton M52, 6x6 truck	18,310	18,310 22,310		
5-ton M51, 6x6 truck	22,663	32,663	12-ton M127Al semitrailer	10,400	10,400		
,	,5	0-90	Lake Michigan	<u>n</u>			
			5-ton M704 Jumbo, 4x4 truck	13,000	20,100		
		Tracked	Vehicles				
Vehicle	Gross Weight 1b		Vehicle		Gross Weight 1b		
Mississippi River			Cape	Cod			
	5 5(0				00 667		
1/4-ton M29C weasel Standard D4 engineer tractor	5,560 14,870		Standard D6 engineer 18-ton M4 hi-speed t		22,667 30,250		
Standard D7 engineer tractor	27,000		to-ton my nit-speed to		30,290		
13-ton M5A4 hi-speed tractor	25,230		Leke Mi	chigan			
18-ton M4 hi-speed tractor	28,700						
TO-DOIL HE HE SPEEK DIRECTOR			1/4-ton M29C weasel		4,200		
			Airoll		19,100		

* M135 tested with front tandem wheels removed, reducing number of tires to 4.

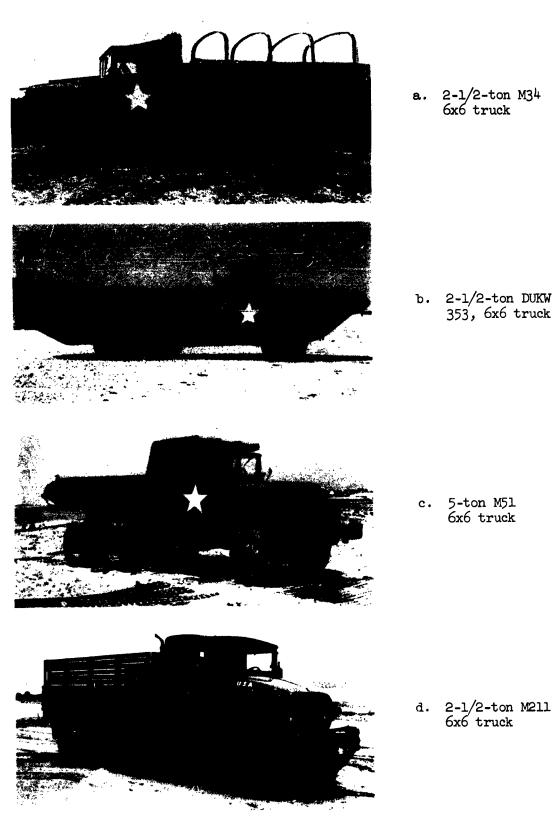
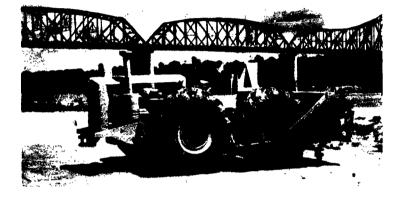
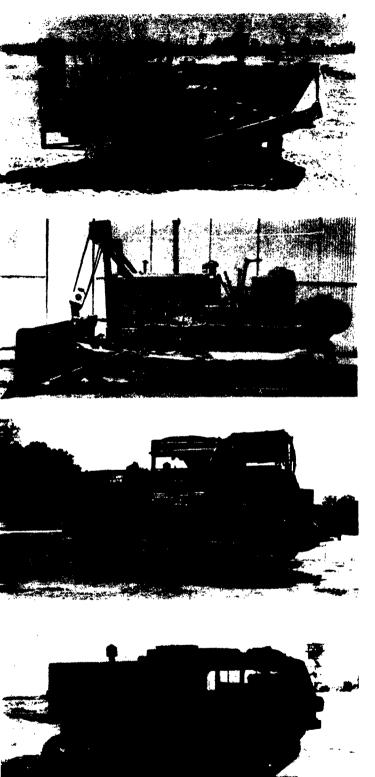



Fig. 16. Self-propelled wheeled vehicles (6x6 trucks) used in tests

a. Bucket loader 4x4 tractor

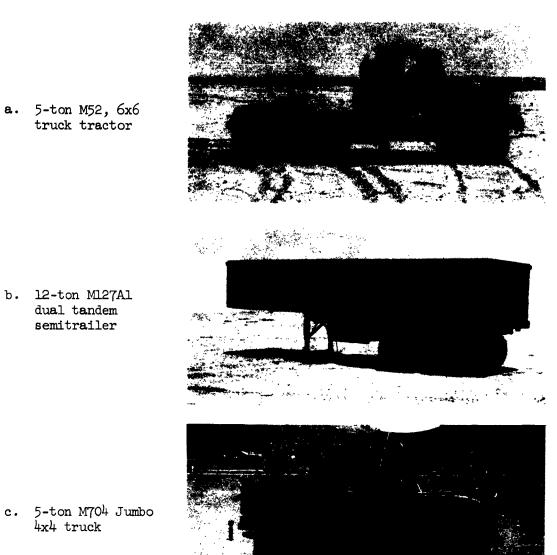
N-52-

b. Tournadozer 4x4 tractor


c. 5-ton XM520 GOER 4x4 cargo carrier. (18.00-26, 10-PR tires)

d. 1/4-ton M29C weasel

Fig. 17. Self-propelled wheeled and tracked vehicles (constructiontype and cargo carriers) used in tests


a. Standard D4 engineer tractor

b. Standard D7 engineer tractor

c. 13-ton M5A4 hispeed tractor

> d. 18-ton M4 hispeed tractor

Fig. 18. Self-propelled tracked vehicles (tractors) used in tests

c. 5-ton M704 Jumbo 4x4 truck

d. Standard D6 engineer tractor

Fig. 19. Self-propelled and towed wheeled vehicles, and self-propelled tracked vehicle used in tests

- b. 12-ton M127A1
 - dual tandem semitrailer

Tests Conducted

39. The following tabulation summarizes the standard vehicle tests and special tests conducted in this investigation.

		(Table 2)	Test Type (Table 3) (Table	5)	Total
Vehicle	Location	Self-propelled Tests	Towing Tests Towed T	ests	Tests
		Wheeled Vehicles			
м38	France	20	0 0		20
M38AL	Pedre Island	0	42 0		42
M37	Padre Island	ō	60 8		68
M37	France	40	0 0		40
M37	Cape Cod	0	11 0*	,	11
M211	Mississippi River	õ	20 0		20
м34	France	32	10 0		42
M135	Padre Island	0	24 8		32
M135	Mississippi River	õ	20 2*	*	22
M135	Cape Cod	⊥7	0 0		17
DUKW 353	France	29	27 0		56
DUKW 353	Cape Cod	8	24 4		36
M41	Padre Island	ŏ	27 8		35
	France	11	11 0		22
M51		0	8 51		13
M52	Cape Cod	0			15
Bucket loader	Mississippi River	0			15
Tournadozer	Mississippi River				29
XM502 GOER	Mississippi River	0			29 57 36
M704 Jumbo	Lake Michigan	36	0 0		30
	r	lotal 193	369 51		61.3
		Tracked Vehicles			
M29C weasel	Mississippi River		19 1		20
M29C weasel	Lake Michigan	9	0 0		
Std D4		9	6 1		9 7
	Mississippi River	3	8 2		12
Std D6	Cape Cod	0	2 1		
Std D/	Mississippi River	ő			13 3 6
M5A4	Mississippi River	0	5 1 8 1		0
M4	Mississippi River	-			9 10
M4	Cape Cod	2	γ <u>1</u>		10
	9	Potal 14	55 8		77
		Special Tests			
	T	One-iel Mest Cauduated	magt firms	mahle Ne	Total
Vehicles	Location	Special Test Conducted	Test Type	<u>Table No.</u> 1 6	Test: 40
38A1, M37, and M135	Padre Island	Quick-condition sand	Multiple-pass, self-propelled		
135, D7, and M5A4	Mississippi River		Towing	7	95
135	Mississippi River	Traction device	Towing	8,_	19
135	Mississippi River			8 and 5	79
52 towing Ml27Al	Cape Cod	Truck-trailer	Towing and towed	9 and 5	48
37 and M135	Cape Cod	Gravel	Self-propelled, towing, and	· · · -	
			towed	10 and 5	49
iroll	Lake Michigan	Airoll	Self-propelled and towing	11	63
			-	1 -+1	
				[otal	393
			(Frand total	1083

Standard Tests

* Two tests in table 5 are gravel tests.

** Six tests in table 5 are special tests (tire tread and wheel load). † Six tests in table 5 with trailer are special cests (truck-trailer). † Also total of tests in tables 2-11.

40. All tests, standard or special, followed one or more of the three basic test types or methods of operation: single self-propelled, towing, and towed. They are described in the following paragraphs. For all tests, sand and vehicle performance data were obtained, and pertinent notes were recorded describing the action of the vehicle. <u>Single self-propelled tests</u>

41. All single self-propelled tests were performed in the same manner insofar as possible. Each test was conducted with the vehicle traveling in a straight-line path in low gear and low range, at track or wheel speeds of approximately 2 mph. In the wheeled vehicle tests, all wheels were driving and great care was taken to ensure that the pressure in all tires was at the desired level. Two types of single self-propelled tests were employed:

- a. <u>Single-pass tests.</u> Usually the first pass of a vehicle is the most difficult to make in sand. Nearly all single-pass, single self-propelled tests were conducted on sloping terrain because level terrain produced few, if any, immobilizations. A test was conducted by running the vehicle up a preselected sand slope to a point where it became immobilized or until it reached the top of the slope. It was found that if the vehicle could negotiate the slope on the first pass, it could also negotiate the slope on subsequent passes in the same path. For tests where first-pass sinkage was slight and the vehicle traveled with ease, only one-pass traffic tests were conducted to expedite testing.
- b. <u>Multiple-pass tests</u>. If excessive sinkage occurred on the first pass because of soft sand conditions, additional passes were made in the same ruts until it was established whether the vehicle could negotiate 40 to 50 passes.

Towing tests

42. These tests were of the two general types described in the following subparagraphs.

- a. <u>Maximum-drawbar-pull (maximum-towing-force) tests</u>. These tests were performed on level sand with the test vehicle towing a load vehicle by means of a cable. The test was performed with the vehicle moving forward about 2 mph. To obtain the maximum drawbar pull, brakes were gradually applied to the load vehicle while the towing vehicle was simultaneously accelerated. Measurements were made of the load being towed at a time when it appeared that a further increase of load would cause the test vehicle to become immobilized. For each test, three or four runs were made and the data were averaged.
- b. <u>Drawbar pull-slip tests</u>. Drawbar pull-slip tests were conducted in the same manner as the maximum-drawbar-pull tests, except that at several stages between no drawbar pull and maximum drawbar pull, measurements were made of the distance

the wheels or tracks moved and the distance the test vehicle traveled. These latter measurements were used in the determination of slip.

Towed-vehicle tests

43. In these tests, measurements were made of the force required to tow self-propelled vehicles on level sand and an asphalt road. For one series of special tests, a 12-ton M127A1, dual-tandem semitrailer was used. For the sand tests, the test vehicle was offset slightly to straddle the ruts created by the towing vehicle, thus permitting the test vehicle to travel on undisturbed sand.

Sand Data Obtained

44. Sand data collected for each test included cone index, moisture content, density, and slope. The data collected are described in the following paragraphs. A representative bulk sample from the O- to 6-in. depth was obtained for each test area for laboratory determinations of grain-size distribution, shown in plates 6 and 7.

Cone index

45. For each test, five sets of before-traffic cone index readings were usually made along the center line of the test lane between the path of the wheels or tracks. Test lanes ranged in length from 50 to 100 ft. A set of cone index readings consisted of measurements made at the surface and at 3-in. vertical increments to a depth of 24 in. unless 300+ cone index readings were obtained before reaching this depth. For some of the tests, after-traffic cone index measurements were made in the ruts, usually after 1 and 10 passes.

Moisture content and density

46. Moisture content-density samples were collected at the center of the test lane. Firm sands were sampled in 3-in. increments to a depth of 6 in.; soft sands were sampled in 3-in. increments to a depth of 18 in. <u>Slopes</u>

47. The slope of the test lane was determined along its center line and also perpendicular to traffic.

PART III: ANALYSIS OF DATA

Effect of Driver Proficiency and Vehicle Mechanical Features

48. Since varying driver proficiency and vehicle mechanical features may influence significantly results of the "go" or "no-go" type of testing performed in this program, every attempt was made to eliminate or minimize these factors. Driver proficiency was believed to have been virtually eliminated as a factor by conducting all tests in a straight line, at a speed of approximately 2 mph, and in lowest gear at low range. No shifting of gears was permitted. Vehicle mechanical features were somewhat harder to control, since the vehicles used were those made available by various agencies at various times. Nevertheless, care was taken to "warm up" the vehicle before the test was conducted, to use no vehicle with an engine that sounded as though it were not tuned properly, and to regulate and check tire pressures. When mechanical features of the vehicle could not be controlled fully, this fact was noted and allowance was made in analysis of the data, where feasible. For example, paragraph 61 mentions the difficulty of control of tire pressures in the DUKW, paragraph 64 refers to the uneven load distribution of the Jumbo, and paragraph 99 points out the severe buckling that occurred in the tires of the bucket loader.

Single Self-propelled (Slope-Climbing) Tests

49. Vehicles used in the single self-propelled tests conducted during the France, Cape Cod, and Lake Michigan test programs were mainly of the type for which performance (maximum-slope-negotiable) curves had been established and reported in the 15th Supplement; however, a few vehicles for which there were no previously established curves also were tested. During these test programs, tests were conducted on soils coarser than any previously tested. The coarsest soil previously tested was medium sand, whereas the majority of slope-climbing tests reported herein were conducted on soil ranging from coarse sand to gravelly sand; however, some tests were conducted on fine sand at Lake Michigan. Single self-propelled tests also were conducted on gravel; these are discussed under "Special Tests."

Data analysis procedures

50. Analysis of data consisted of plotting slope versus cone index for each tire pressure of a given vehicle, and then drawing a line that separated immobilizations from nonimmobilizations. Where applicable for analytical purposes, data reported in the 15th Supplement were combined with data reported herein. (The 15th Supplement reported data for the 1/4ton M38A1, 3/4-ton M37, 2-1/2-ton M211, M135 and other 2-1/2-ton trucks with 11.00-20 tires, and 5-ton M41.) Current data were combined with data on similar vehicle types from the 15th Supplement, and used to draw revised slope-cone index-tire pressure curves. For vehicles not previously tested, slope-cone index-tire pressure curves were established from the data reported herein. Where data are limited, these curves were shaped according to curves developed for other vehicles for which sufficient data were available. Limited slope-climbing tests were conducted with the 2-1/2-ton DUKW 353, 5-ton M51, 5-ton M704 Jumbo, M29C weasel, M4 hi-speed tractor, and D6 engineer tractor.

51. Where applicable, the slope-climbing tests and the maximumtowing-force tests are plotted on the same graphs (plates 8 through 14). The scale for the slope-climbing tests may be read from the right side of each graph, while the scale for the maximum-towing-force tests may be read from the left side of each graph. In this manner the data were combined to develop the performance curves shown. The relation of maximum slope negotiable to maximum towing force is explained in the discussion of maximumtowing-force tests (paragraph 78).

Moisture classification

52. All except four of the single self-propelled vehicle tests were conducted on sand in the dry-to-moist category. Backshore and dune areas are usually in the dry-to-moist category, while the foreshore areas washed by surf are usually in the wet-to-inundated category. The four tests on wet sand were conducted on the foreshore of the French beaches; however, coarseness of the beach material and moderate slopes of the foreshores at these test sites contributed to fast drainage after inundation. Presentation of test results

53. The following paragraphs discuss self-propelled test results. Test data are summarized in table 2 and plotted in plates 8 through 15. (No plots are shown for the tracked vehicles.) Tests were plotted as open symbols if vehicles negotiated the slope-cone index conditions measured, and as closed symbols if vehicles were immobilized. The curve drawn to separate open symbols from closed symbols represents the line of best visual fit.

54. <u>1/4-ton M38, 4x4 truck.</u> This vehicle is an early model of the M38A1. It was tested only in France, and since the earlier model is not used as often as the M38A1, but has the same essential vehicle characteristics, the data for both vehicle types were combined in plate 8. Twenty tests were conducted at 30- and 20-psi tire pressures on Suscinio and La Turballe Beaches in France (see table 2, items 1 through 20, and figs. 1 and 2 of plate 8). In 4 tests (items 13, 14, 16, and 17) at 20-psi tire pressure, the vehicle climbed slopes steeper than it was expected to climb. In the remaining 16 tests, the vehicle test results were as expected. The M38 operated easily on the French beaches at 15-psi tire pressure; therefore, tests were not conducted at tire pressures less than 20 psi.

55. 3/4-ton M37, 4x4 truck. Forty tests were conducted in France at tire pressures of 30, 20, 15, and 10 psi, and at gross weights of 5687 and 6887 lb. (Tests of the M37 at Cape Cod were on gravel beaches and are therefore discussed separately.) Test data are summarized in table 2, items 21 through 60, and plots of cone index versus slope-climbing performance are shown in figs. 1 through 4 of plate 9.

56. Three tests (items 25, 42, and 55) were immobilizations on slopes that the vehicle was expected to climb; however, one of these tests (item 25) was conducted in an area where old ruts were present, and the vehicle became immobilized while crossing the ruts. In three tests (items 43, 48, and 54) the vehicle climbed slopes steeper than it was expected to climb. Item 43 was conducted on sand with an 8.1% moisture content, which probably explains the improved vehicle performance. In the remaining 3⁴ tests the vehicle performed as expected.

57. 2-1/2-ton M211, 6x6 truck. Single self-propelled tests were not conducted with this vehicle; however, curves for maximum slope negotiable taken from the 15th Supplement are shown in plate 10 for purposes of comparison with maximum-towing-force test results.

58. 2-1/2-ton M135 and M34, 6x6 trucks. These trucks have similar features, such as weights and tire sizes, and their performance appears to

be similar; therefore, test data are comparable and are plotted together in plate ll. Test data for each vehicle are summarized in table 2.

59. Seventeen tests (table 2, items 61 through 77) were conducted with the M135 at Camp Wellfleet during the Cape Cod test program. (Slopeclimbing tests conducted with the M135 on gravel beaches at Duxbury are discussed under "Special Tests.") Thirty-two tests (items 78 through 109) were conducted with the M34 in France. Only one immobilization (item 69) occurred on a cone index-slope condition which previous data had indicated the vehicle should have been able to travel. In six tests (items 63, 68, 98, 101, 107, and 108), the vehicle climbed slopes greater than expected from the curves; however, in three of these tests (items 98, 107, and 108) the differences between actual slopes climbed and those expected to be climbed were negligible. In the remaining 42 tests vehicles performed as expected.

60. 2-1/2-ton DUKW 353, 6x6 truck. This truck was tested in France and at Cape Cod. Test data are summarized in table 2 (items 110 through 146), and plots of cone index versus slope-climbing performance are shown in plate 12. Twenty-nine tests were conducted in France, 25 on dry-tomoist sand and 4 on wet sand. The wet sand tests (table 2, items 111, 113, and 126) are indicated by an asterisk in plate 12. (Item 117 was a test at 25 psi and was not plotted in this plate.) Eight tests were conducted at Cape Cod, all on dry-to-moist sand.

61. Curves for maximum slope-climbing performance (plate 12) were determined from the tests reported herein. They are tentative because of the small number of tests conducted and the considerable scatter of data. Also, it is pointed out that the DUKW 353 is equipped with an internal tireinflation system operated from the instrument panel, and although this system is extremely useful for field operation, it was not amenable to close control or measurement of tire pressures. For these reasons curves were drawn to be conservative, i.e. with a large number of "go" tests plotted to the left of the curve. Despite their conservativeness, the curves indicate that the DUKW performed better than the 2-1/2-ton M135 and M34 trucks.

62. <u>5-ton M41, 6x6 truck</u>. Slope-climbing tests were not conducted with this vehicle; however, the curves for maximum slope negotiable taken from the 15th Supplement are presented in plate 13 for comparison with maximum-towing-force test results. 63. <u>5-ton M51, 6x6 truck.</u> Single self-propelled tests with this vehicle were conducted only in France, at two tire pressures, 20 and 15 psi. Test data are summarized in table 2, items 147 through 157; plots of cone index versus slope-climbing performance are shown along with maximumtowing-force tests of the M52 in plate 14. Tentative curves for maximum performance are also shown for both tire pressures.

64. <u>5-ton M704, 4x4 Jumbo truck.</u> Thirty-six tests at four tire pressures were conducted during the Lake Michigan test program. Test data are summarized in table 2, items 158 through 193; plots of cone index versus slope-climbing performance are shown in plate 15. Tentative performance curves are shown for each tire pressure. The Jumbo was unevenly loaded, with over twice as much weight on the rear wheels as on the front. This unevenly distributed load undoubtedly affected the performance of the vehicle.

65. <u>Standard D6 engineer tractor</u>. Only three tests were conducted with this tracked vehicle. Test data are summarized in table 2, items 194 through 196. Results are inconclusive since all three tests were immobilizations. Flatter slopes were not available to determine the cone indexslope combination that would permit the vehicle to travel. Results of these tests are not shown graphically.

66. <u>18-ton M4 hi-speed tractor</u>. Two tests were conducted with this tracked vehicle; the data are summarized in table 2, items 197 and 198. Results show that the tractor was able to climb a 51% slope on a cone index of 48 in the 0- to 6-in. layer, but it became immobilized on a 53% slope on a cone index of 37. Results of these tests are not shown graphically, and maximum-performance curves were not determined.

67. 1/4-ton M29C weasel. Nine tests were conducted with this tracked vehicle during the Lake Michigan test program, and data are summarized in table 2, items 199 through 207. The results are not shown graphically but indicate that the weasel can climb a 44 to 50% slope on a sand with cone index of 20 to 40 in the 0- to 6-in. layer. The vehicle was able to continue up the slopes even while considerable track slip was occurring. At high slips the tracks were digging through the 0- to 6-in. layer, which is normally used for correlations with vehicle performance in sand. Therefore, data obtained from these tests with the weasel are considered inconclusive.

Discussion of test results

68. Results of slope-climbing tests indicate that the maximum-slopenegotiable curves reported in the 15th Supplement for the 1/4-ton M38Al, 3/4-ton M37, 2-1/2-ton M135 and M211, and 5-ton M41 trucks are applicable to similar vehicles operating on coarse sand and gravelly sand consisting of up to 28% fine gravel.

69. Results of tests with the 2-1/2-ton DUKW are not as consistent as results of tests with the other vehicles. It is believed that the inconsistency of results was caused by lack of proper control of tireinflation pressures rather than by the coarseness of the test materials, although this vehicle was not tested on fine and medium sands.

70. It was observed that coarseness of the soil caused some difficulty in obtaining cone index measurements. Occasionally the cone would hit a large stone and could not be pushed into the soil. When this happened, the penetrometer was moved, usually just a few inches, to an undisturbed area and a new set of measurements was made.

71. In France, the coarseness of the beach material and the slope (approximately 15% on La Turballe and 8% on Suscinio) allowed fast drainage of the sand after it was washed by waves. Only four single self-propelled vehicle tests were conducted (with the DUKW 353) on wet, coarse sand; therefore, a comparison between slope-climbing performance on wet-to-inundated sand and on dry-to-moist sand was not made. It was observed, however, that when a vehicle was operating on gravelly sand being washed by waves, the



Fig. 20. Partial liquefaction in ruts of 2-1/2-ton DUKW

gravelly sand appeared to be in a quick condition after passage of the vehicle. Fig. 20 shows ruts created by the 2-1/2-ton DUKW on the wet foreshore. At the time this quick condition was observed, the affected sand was not deep enough to cause immobilizations, but it is believed that beaches of this type could be difficult to traverse during periods of a highly active surf.

72. In determining the curves for maximum slope negotiable, reliable curves were derived for slopes up to about 20%; however, curves for slopes above about 20% are not as reliable because of the small number of tests. Suitable test areas having steep slopes with high strengths are difficult to find. In order to guide the shape of curves for the maximum slope negotiable at slopes above about 20% it was necessary to conduct maximumtowing-force tests with similar vehicles on level, firmer sands. When expressed as a percentage of the test weight of the vehicle, maximum towing force is a close approximation of maximum slope-climbing ability of the vehicle; therefore, an indication of the shape of the curves for maximum slope negotiable can be determined from maximum-towing-force tests, which are discussed in the following paragraphs.

Maximum-Towing-Force Tests

73. Maximum-towing-force tests were conducted at four of the five test locations with major emphasis on determination of the maximum towing force of vehicles for which maximum-slope-negotiable curves have been established for only a limited range of sand strengths and slopes. By combining results from slope-climbing tests with results of maximum-towingforce tests, reliable vehicle performance curves can be determined for a range of sand strengths likely to be encountered on any sand beach.

74. Results of maximum-towing-force tests with wheeled vehicles are summarized in table 3, and results of tests with tracked vehicles in table 4. Data in table 3 are plotted in plates 8 through 14 and 16 through 19. Data in table 4 are plotted in plate 20.

Basis of analysis

着ちこう

75. <u>Mathematical computations to determine maximum towing force on</u> <u>a given slope.</u> The maximum towing force a vehicle can develop on a level surface can be used to estimate, for similar conditions, the maximum towing force a vehicle can develop on a given slope, and vice versa. A complete review of the principles involved is given in TM 3-240, 8th Supplement. Briefly, the maximum towing force on a slope, expressed in pounds, can be determined from the formula: $P' = P \cos \emptyset - W \sin \emptyset$

where

 P^{i} = maximum towing force on slope, lb

P = maximum towing force on level, 1b

W = test weight of vehicle, lb

 \emptyset = angle of the slope, deg

The maximum towing force on a slope, expressed in percentage of vehicle weight, can be determined from the formula $\frac{P'}{W} \times 100$.

76. <u>Mathematical computations to correct for side slope</u>. The above formula is applicable provided the vehicle is operating straight up or down the slope and not tilting to either side, in which case an adjustment is necessary to correct for the side slope before an estimate of the amount of towing force for a given sand condition can be made.

77. Such a correction was necessary in the tests on Suscinio Beach, France. Due to the absence of level sand surfaces and the narrowness of this beach, maximum-towing-force tests were conducted by operating the vehicle on a given straight-line contour of a slope. For these tests, the vehicle was operating in a tilted position with a tendency to slide down the slope; therefore, an adjustment was necessary to estimate the amount of towing force that could have been generated on level sand. This adjustment was made by means of the formula:

$$P = \frac{\sqrt{(P')^2 + (W \sin \phi)^2}}{\cos \phi}$$

where

P = maximum (computed) towing force on level, lb
P' = maximum (measured) towing force on the side slope, lb
W = test weight of vehicle, lb
Ø = angle of the slope, deg

78. <u>Relation of maximum towing force to maximum slope negotiable.</u> Theoretically, the maximum towing force a vehicle can develop on a given surface, expressed as a percentage of the vehicle's weight (maximum tractive coefficient), is the same as the maximum slope (expressed in percent) it can climb on the same surface. However, in the drawbar testing on clean sands performed with wheeled vehicles in this program, it was found that maximum tractive coefficients were usually higher (about 2%) than maximum

slopes for the same cone index at low strength ranges, and appeared to be about 2% higher at high strength ranges than the slope the cone index-slope curve would indicate if the curve were extended to higher cone indexes. (Few actual data were available for slope-climbing tests on high slopes and high cone indexes.) Accordingly, to provide a reasonable basis for extending vehicle performance-cone index relations to higher cone indexes than before possible, it was decided to plot both parameters of vehicle performance against cone index; this was done by arbitrarily shifting the slope scale (on the ordinate) 2 units higher than the towing force scale, as shown in plates 8 through 14. The scale for towing force is shown on the left, that for slope on the right.

79. The fact that maximum towing forces were found to be higher than corresponding maximum slopes is attributable to the deeper rutting that occurred on the slope (thus increasing rolling resistance), and the tendency for the rear wheels to settle somewhat more than the front ones (thus making the actual slope of the vehicle somewhat steeper than that of the surface). A shift in the center of gravity of the vehicle on the slope also was probably significant to this difference.

Moisture classification

80. Since previous tests had shown that performance of vehicles on sand was influenced by the moisture content of the sand, all tests were separated into tests on dry-to-moist sand and tests on wet-to-inundated sand. The assignment to categories was made by observation of the sand's condition during each test; however, actual moisture content determinations were made where possible.

81. All of the tests on wet-to-inundated sand reported herein were conducted during the Padre Island test program. In plates 8 through 20 all maximum-towing-force tests on wet-to-inundated sand are plotted as an upright triangle symbol, while similar tests on dry-to-moist sand are plotted as an inverted triangle symbol. Performance curves are shown for wet-toinundated sand and dry-to-moist sand where data permit.

Sand strength measurements

82. During the Padre Island and Cape Cod programs, it was necessary to deviate slightly from the usual procedures for obtaining sand strength measurements. In some wheeled-vehicle tests conducted on the wet foreshore of Padre Island and the dune area of Camp Wellfleet, sand strength in the O- to 6-in. depth was beyond the capacity of the cone penetrometer mounted with a 0.5-in. cone. For these tests, a penetrometer with a 0.2-in. cone was used, and cone index readings were multiplied by 2.5, based on previous correlation studies reported in TM 3-240, 13th Supplement. Tests for which the 0.2-in. cone was used (and whose cone index values have therefore been multiplied by 2.5) are indicated by two asterisks in table 3.

Presentation of wheeledvehicle test results

83. Data from 369 tests with 12 wheeled vehicles are presented in table 3. These data were used to determine the maximum towing force-cone index-tire pressure curves presented in plates 8 through 14 and 16 through 19. Data points have been plotted for each vehicle and tire pressure, and performance curves have been drawn for wet-to-inundated sand and dry-tomoist sand where applicable. In cases where data are lacking or scattered, the final position of the performance curves was influenced by curves for the same vehicle at other tire pressures, or similar vehicles at the same tire pressures. Where possible, the curves of maximum slope negotiable and maximum towing force have been combined into one by staggering the vertical scales.

84. Evaluation of the test results was made by determining the deviation of the maximum towing force, in percentage of test weight, from the average curve. Comparisons of test results with the performance curves were made at equal cone index. Results of the evaluation are shown in the tabulation below, followed by a discussion of results for each vehicle.

			Devi	ations of Max	imum Towin	g Force
			Wet-to-In	undated Sand	Dry-to-	Moist Sand
		Tire		Avg Dev of	<u></u>	Avg Dev of
		Pres-		Points from		Points from
Vehicle	Plate*	sure psi	Number of Tests	Performance Curves, %	Number <u>of Tests</u>	Performance Curves, %
1/4-ton M38A1	8	30	8	4.8	3	0.6
1/4-ton M38A1 and 1/4-ton		20	7	5.6	3	2.4
м38 ́		15	7	2.7	3	0.6
		10	8	3.8	3	2.0
			A	wg 4.2	P	lvg 1.4
			(Continue	ed)		
* Diete on sch	toh torda	a famo	data ama	mlattad		

* Plate on which towing-force data are plotted.

				ations of Max		
		Tire	<u>Wet-to-In</u>	Avg Dev of	Dry-to-	Moist Sand Avg Dev of
		Pres-		Points from		Points from
Vehicle	Plate	sure psi	Number of Tests	Performance Curves, %	Number of Tests	Performance Curves, %
3/4-ton M37	9	30 20 15 10	10 9 9 10	5.9 6.3 1.1 2.7	9 8 8 8	0.9 2.1 0.6 1.0
			Av	rg 4.0	Av	rg. 1.1
2-1/2-ton M211	10	30 20 15 10	0 0 0	 	5 6 4 5	0.3 0.7 0.3 1.0
					Av	rg 0.6
2-1/2-ton M135 and M34	11	60 30 20 15 10	0 4 5 5 5	1.8 1.2 1.7 5.1	5 6 7 9 8	0.7 0.7 0.2 1.6 1.4
			Av	rg 2.5	Av	rg 0.9
2-1/2-ton DUKW	12	30 20 15 10	0 0 0 0	 	12 14 15 10	2.3 3.2 1.5 1.9
					Av	rg 2.2
5-ton M41	13	30 20 15 10	5 6 5 4	8.6 3.5 4.1 3.8	3 1 2 1	1.8 0.8 0.8 3.2
			Av	rg 5.0	A	rg 1.6
5-ton M51 and M52	14	20 15	0 0		4 15	1.8 1.5
					Av	ng 1.6
Bucket loader	16	30 20 15 10	0 0 0 0	 	4 2 3 2	0.1 0.3 0.4 0.3
					A	rg 0.3

(Continued)

			Devi	ations of Max	imum Towin	g Force
			Wet-to-In	undated Sand	Dry-to-	Moist Sand
		Tire		Avg Dev of		Avg Dev of
		Pres-		Points from		Points from
		sure	Number	Performance	Number	Performance
Vehicle	Plate	_psi_	of Tests	Curves, %	<u>of Tests</u>	Curves, %
Tournadozer	17	30	0		5	1.6
		20	0		7	1.2
		15	0		8	0.6
		10	0		5	0.8
					Av	g 1.0
5-ton XM520	18	30	0		7	0.9
GOER		20	0		6	0.3
(18.00-26		15	0		6	1.3
tires)		10	0		4	0.8
					Av	g 0.8
5-ton XM520	19	30	0		6	0.5
GOER	-	20	0		7	0.3
(15.00-34		15	0		8	0.2
tires)		10	0		5	0.4
					Αν	rg 0.4

85. <u>1/4-ton M38Al, 4x4 truck.</u> All tests with this vehicle were conducted on Padre Island and are listed in table 3, items 1 through 42. Twenty-nine tests were run on wet sand, one test (item 39) was run on inundated sand on the foreshore, and 12 tests were conducted on moist sand. Average deviations of test results from the performance curves are large for tests on wet sand, but there is good agreement for tests on moist sand.

86. It should be noted that four wet-sand tests (items 3, 6, 27, and 31), plotting well below the performance curves in plate 8, were run on a backshore flat area with an abnormal cone index profile, as shown in fig. 21. Also shown in fig. 21 is a normal cone index-depth profile of backshore flat areas for the two backshore flat tests (items 9 and 12) that plot nearer the performance curves. Vehicle performance for items 3, 6, 27, and 31 was probably influenced by the weaker layer below 9 in. However, examination of the average moisture contents of the 0- to 6-in. layer for these four items shows that the lower performance may have been a result of a lower moisture content (15.6) as well as the weak layer below 9 in. The moisture contents for the other wet-sand tests are over 19%.

87. The 12 tests on moist sand were performed on the berm crest area, the only area suitable for towing tests where dry or moist sand could be found. The sand was moist (about 3.0% moisture content), at least to a depth of 12 in., with a 1/2-in. layer of dry sand at the surface.

88. Observation of maximumtowing-force tests indicated that the M38Al develops much higher wheel slip than most other vehicles in maintaining approximately 1 to 2 mph forward speed.

89. <u>3/4-ton M37, 4x4 truck.</u> Tests with this vehicle were conducted at Padre Island and Cape Cod, and are listed in table 3,

items 43 through 113. Thirty-four tests were run on wet sand, 4 (items 77, 84, 91, and 99) on inundated sand (see fig. 22), and 33 on moist sand. The tabulation in paragraph 84 shows rather large deviations of towing force for wet-sand tests at tire pressures of 30 and 20 psi (figs. 1 and 2 of

plate 9). The high deviations were caused partially by items 45, 56, and 76 in fig. 1 of plate 9, and items 48, 60, and 83 in fig. 2 of plate 9; these were tests conducted in the backshore flat area on wet sand with a cone index profile similar to the abnormal one shown in fig. 21.

Fig. 22. Towing test on inundated sand, Padre Island

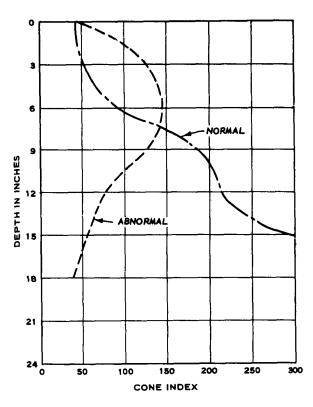


Fig. 21. Average profiles of backshore flat area, gulfside of Padre Island

The backshore flat tests in fig. 1 of plate 9 (items 45, 56, and 76) were conducted on wet sand with an average moisture content of 17.2%, while the backshore flat tests in fig. 2 of plate 9 (items 48, 60, and 83) were conducted on sand with an average moisture content of about 22%. Since the moisture contents of all six of these tests were not as low as those of the M38Al backshore flat tests, it is believed that the abnormal cone index profile caused the poor performance of the M37 truck.

90. In thirty-three tests conducted on moist sand there was an average deviation of towing force of only 1.1% from the performance curve for all tire pressures tested.

91. <u>2-1/2-ton M211, 6x6 truck.</u> This vehicle was tested only during the Mississippi River test program. Twenty tests were conducted on moist sand at tire pressures of 30, 20, 15, and 10 psi. These tests are summarized in table 3, items 11⁴ through 133, and plots of maximum towing force versus cone index are shown in plate 10. Also shown in plate 10 are curves of maximum slope negotiable from tests reported in the 15th Supplement.

92. From the tabulation in paragraph 84, it can be seen that the average deviation of maximum towing force is only 0.6% from the performance curves; however, the range of cone index for these tests was narrow, from about 110 to about 150 for the 0- to 6-in. layer.

93. <u>2-1/2-ton M135 and M34, 6x6 trucks</u>. Both of these vehicles are equipped with 11.00-20, 12-PR tires (single); therefore, data from tests thereof are comparable and are plotted together in plate 11.

94. Fifty-four tests were conducted on wet and moist sands and are listed in table 3, items 13⁴ through 187. Plots of cone index versus maximum towing force are shown in plate 11, with performance curves for each tire pressure tested. Maximum-towing-force tests were conducted during the Padre Island, France, and Mississippi River test programs. Wet-sand tests of the M135 were conducted at Padre Island; the average deviation of these test results from the performance curves was 2.5%, which is much smaller than deviation of test results for other vehicles on wet sand. The average deviation for all tire pressures on dry-to-moist sand was 0.9%, with the largest deviation of individual tests occurring in the tests made in France (items 178 through 187). It is believed these large deviations were a result of unsuitable test areas, i.e. absence of level or nearly level areas.

95. 2-1/2-ton DUKW 353, 6x6 truck. Fifty-one tests were conducted with the DUKW, equipped with 11.00-18, 10-PR tires (single), during the France and Cape Cod test programs and are summarized in table 3, items 188 through 238, and plotted in plate 12. From the tabulation of deviations between test results and performance curves in paragraph 84, it can be seen that the 2.2% deviation is higher than deviations for any other vehicle on dry-to-moist sand. As stated earlier, it is believed that the central tire-inflation system, controlled from the instrument panel, does not permit tire pressures as accurate as those obtained by adjusting the pressures at individual wheels. The DUKW was the only vehicle tested that had such an internal inflation system.

96. <u>5-ton M41, 6x6 truck.</u> Tests with this vehicle were conducted at Padre Island; they are summarized in table 3, items 239 through 265, and plotted in plate 13. Twenty tests were conducted on wet sand and seven on moist sand. The average deviation of the towing force from the maximum curves (tabulated in paragraph 84) is 5.0% for the wet sand and 1.6% for the moist sand. High deviations for the wet-sand tests were partially caused by tests (items 246, 259, and 264) conducted on the backshore flat area where the abnormal strength profile existed (fig. 21).

97. In the Padre Island test program, the 2-1/2-ton M135 truck was the largest vehicle available to serve as a load vehicle for the M41. Considerable difficulty was experienced when an attempt was made to determine maximum drawbar pull of the M41 on the wet foreshore (a front axle was broken on the M135 during one of these tests); therefore, some of the large deviations for tests on wet sand may have been caused by lack of proper control of the load vehicle.

98. <u>5-ton M51 and M52, 6x6 trucks.</u> These vehicles, tested in France and at Cape Cod, respectively, were both equipped with 11.00-20, 12-PR tires (dual). The M52 was tested at tire pressures of 20 and 15 psi, the M51 only at 15 psi. Test data are summarized in table 3, items 266 through 284, and plotted in plate 14. Because of lack of sufficient data over a range of cone indexes and tire pressures, the performance curves shown in plate 14 are tentative. Average deviation of test results from performance curves was 1.6% of vehicle weight.

99. Bucket loader, 4x4 tractor. This vehicle, tested during the

Mississippi River test program, was equipped with 14.00-24, 8-PR tires (single), and was tested at tire pressures of 30, 20, 15, and 10 psi and at a gross weight of 13,595 lb. Eleven maximum-towing-force tests, summarized in table 3, items 285 through 295, were conducted on sand with little variation in come index (109 to 128); therefore, the range of maximum pulls for a given tire pressure was small; however, tentative performance curves are shown in plate 16. Severe buckling of the sidewalls of the tires was noted at 10-psi tire pressure, especially on the rear tires. Average deviation of test results from performance curves was 0.3%.

100. Tournadozer, 4x4 tractor. This vehicle was equipped with 21.00-25, 16-FR tires (single), and was tested at tire pressures of 30, 20, 15, and 10 psi and at a gross weight of 31,070 lb. Twenty-five maximumtowing-force tests, summarized in table 3, items 296 through 320, were conducted during the Mississippi River test program, on sand with little variation in cone index (103 to 147). Therefore, the range of maximum pulls for a given tire pressure was small; however, tentative curves for performance are shown in plate 17. Average deviation of test results from performance curves was 1.0%. The shape of the tentative performance curves was influenced by the shape of the curves for other wheeled vheicles for similar test conditions.

101. <u>5-ton XM520 GOER, 4x4 cargo carrier</u>. The 5-ton GOER was tested during the Mississippi River test program. Maximum-towing-force tests were conducted with the vehicle equipped first with 18.00-26, 10-PR tires and then with 15.00-34, 10-PR tires; the tests were conducted at inflation pressures of 30, 20, 15, and 10 psi and at a gross weight of 26,670 lb. Results from 23 tests with the 18.00-26 tires and 26 tests with the 15.00-34 tires are summarized in table 3, items 321 through 369. For a given tire pressure, the range of maximum pulls and cone indexes is small; however, tentative curves were drawn through the data shown graphically in plates 18 and 19. The shape of the tentative curves was influenced by the shape of performance curves for other vehicles tested on a more complete range of sand conditions. Examination of performance curves for the GOER shows that the 18.00-26 tires resulted in better performance than the 15.00-34 tires at all tire pressures tested. Average deviation of test results from performance curves was 0.8% with 18.00-26 tires and 0.4% with 15.00-34 tires.

102. Effects of vehicle load. Several of the vehicles were tested at various loads (see tabulation, paragraph 38) to determine the effect of load on vehicle performance. However, no clear-cut change in performance resulted when tire pressure remained constant, and all tests with the same vehicle at the same tire pressure were analyzed together. The explanation for the fact that no difference in performance was discernible, aside from the crudity of performance measurement employed in this program, is that at the same tire pressure, the tire contact area is greater for greater loads, and over a range of loads the average contact pressure probably remains fairly constant. Since ground-contact pressure is apparently highly significant (see paragraph 111), its effect probably obscured any effects due to changes in contact area, load per wheel or axle, etc. Further testing, with more sophisticated instrumentation, is required to obtain reliable data on load effects.

Discussion of wheeled-vehicle test results

103. Three hundred and sixty-nine tests were conducted with twelve wheeled vehicles at various vehicle weights, tire sizes, tire-inflation pressures, and sand conditions. Sufficient data were collected to draw reasonably accurate curves for maximum towing force for the 1/4-ton M38A1, 3/4-ton M37, 2-1/2-ton M211, 2-1/2-ton M135 and M34, 2-1/2-ton DUKW, and 5-ton M41 trucks. Limited data were also collected for the 5-ton M51 and M52 trucks, the bucket loader tractor, the Tournadozer, and the GOER; and tentative curves for maximum towing force were determined for these vehicles. Where applicable, the curves for maximum towing force were combined with the curves for maximum slope negotiable to present performance curves for ranges of tire pressures, sand moisture categories, and sand strengths. For the vehicles not tested for all conditions of moisture, strength, tire pressure, etc., reasonable estimates can be made of their expected performance.

104. Generally, the deviations of individual results of maximumtowing-force tests from the performance curves are low. Highest deviations for the wet-sand tests were probably caused by the unusual strength profile encountered in some of the tests (see fig. 21). The deviation in test results for the 2-1/2-ton DUKW could probably be lowered by more accuracy in tire pressures, and test results with the 1/4-ton M38Al truck could possibly be improved with better control of the vehicle speed in low range, low gear.

Presentation of trackedvehicle test results

105. Fifty-five tests were conducted with six tracked vehicles during the Mississippi River and Cape Cod test programs. Test data and results are summarized in table 4 and shown graphically in plate 20. Because of the limited range of sand strengths tested with a given vehicle, performance curves are not shown; but for each vehicle, average maximum towing force was determined and is shown in the following tabulation. Also shown are the average deviations of individual maximum-towing-force results from the total average for each vehicle, and the cone index range and average for the 0- to 6-in. depth.

	Weight	No. of		m Towing Force, % of hicle Test Weight	Cone Ir 0- to 6-ir	
<u>Vehicle</u>	<u> 1b </u>	Tests	<u>Avg</u>	Deviation from Avg	Range	Avg
M29C	5,560	19	49.4	0.6	89-151	130
Sta D4	14,870	6	55.1	1.2	133 -1 44	141
sta D6	22,667	8	55.3	0.9	57 -112	85
Std D7	27,000	2	57.6	0.5	127-132	130
M5A4	25,230	5	49.0	2.2	118-127	122
м4	28,700	7*	50.7	1.4	103 -13 0	119
м4	30,250	5 **	47.6	1.2	38-91	61

* Item 34 not included.

** Items 49 and 50 not included.

106. Plots of test results, maximum towing force versus cone index, are shown in figs. 1 through 6 of plate 20; a plot of average maximum towing force versus cone index for all tracked vehicles is shown in fig. 7 of plate 20. Figs. 8 and 9 of plate 20 correlate vehicle performance and vehicle test weights. Results of these tests are discussed in the following paragraphs.

Discussion of trackedvehicle test results

107. With the exception of tests with the 18-ton M4 hi-speed tractor, ranges of cone indexes tested for each vehicle were too limited to determine relations between maximum vehicle performance and cone index similar to the performance curves for wheeled vehicles. Tests with the 18-ton M4 tractor indicated a reduction in maximum towing force with a reduction in sand strength in the 0- to 6-in. layer (fig. 6 of plate 20).

108. The tabulation in paragraph 105 shows that deviations of individual maximum-towing-force test results from the average are larger for the two hi-speed tractors (M4 and M5A4) than for the standard engineer tractors. This larger deviation is probably caused by (a) difficulty in maintaining a constant vehicle speed when a load is gradually applied, and (b) difficulty in determining, through observation of track slippage, when the maximum sustained pull is occurring. (The curve for towing force versus track slip for the 13-ton M5A4 tractor, fig. 3 of plate 24, indicates at what percentage of slip the maximum sustained pull is considered to have occurred.) More elaborate instrumentation is needed for closer control over test procedures, and such instrumentation would probably reduce the amount of variation in test results.

109. It can be seen from fig. 7 of plate 20 that the standard engineer tractors are able to produce higher maximum sustained pulls than the hi-speed tractors and the M29C weasel. This can also be seen in fig. 8 of plate 20, which correlates vehicle test weight in pounds with maximum pull in pounds. Data for the engineer tractors, D4, D6, and D7, plot in such a manner that a straight line drawn through the origin best fits the data when making an angle whose tangent is 0.56 with the horizontal, and a similar straight line through the origin best fits the data for the M29C, M5A4, and M6 when making an angle whose tangent is 0.50. Maximum drawbarpull data are combined with towing-force-required data for further analysis in paragraph 117.

Summary of Self-propelled Vehicle Performance

110. A summary of vehicle performance curves for both tracked and wheeled vehicles is shown in plate 21; figs. 1 through 4 of this plate show curves for wheeled vehicles at the various tire-inflation pressures, and fig. 5 shows curves for tracked vehicles, including the curves for the Airoll which are discussed in the section on "Special Tests," paragraphs 148 through 154.

111. The GOER with 18.00-26 tires, the same vehicle with 15.00-34

tires, and the Tournadozer, which is equipped with 21.00-25 tires, performed better at every tire pressure than the more conventional wheeled vehicles. The principal reason for this is probably the fact that these vehicles were equipped with tires which were larger in proportion to the weight of the vehicles than those of the more conventional vehicles, thus affording comparatively larger contact areas and smaller ground-contact pressures. The effect of ground pressure on wheeled vehicle performance in sand apparently is highly significant, as can be seen from plate 22. In this plate the maximum towing force in percent of vehicle weight, selected arbitrarily at cone index = 100, is plotted against the average ground-contact pressure. Maximum-towing-force values were taken from figs. 1 through 4 of plate 21, extrapolating when necessary. Average groundcontact pressures are taken from table 1. There is a reasonably good correlation between maximum towing force and contact pressure for 6x6 vehicles with single wheels, and an equally good one for 6x6 vehicles with dual wheels and 4x4 vehicles (together).

112. All tracked vehicles attained maximum towing forces considerably higher than those attained by the best wheeled vehicle (see fig. 5 of plate 21). It is noted that change in cone index does not appear to influence maximum towing force significantly; however, the data are sparse. The superiority in maximum towing force can be attributed at least partly to the lower ground pressures of the tracked vehicles. If data for tracked vehicles were shown in plate 22 they would plot in the upper left-hand corner. The three vehicles with rigid tracks (D7, D6, and D4), although higher in ground pressure, attained higher maximum towing forces than the four vehicles (two M29C's, M5A4, and M4) with more flexible tracks, indicating, at least superficially, that rigidity of track is of significant benefit for vehicle performance in sand.

113. No further analysis of the effects of ground-contact pressure, number of wheels and axles, and rigidity of tracks on vehicle performance will be made in this report. However, studies are under way, using the data reported herein and elsewhere, which are expected to provide rational, but not necessarily mathematically rigorous, explanations for the superiority of one vehicle over another in terms of vehicle characteristics. If this study is successful, it will produce the means for evaluating the

performance of other vehicles of similar types on the basis of their physical characteristics without the necessity of testing the vehicles. These data are also being studied, in conjunction with other data measured in the laboratory in other studies, for the purpose of developing general, mathematically rigorous relations between vehicles and sand which should apply to all ground vehicles, whether similar to those actually tested or not.

Towed-Vehicle Tests

114. Towed-vehicle tests were conducted to determine the force required to tow vehicles as trailers. Towed tests conducted with wheeled trailers on sand and on asphalt pavement were reported in the 15th Supplement. In the tests reported herein self-propelled wheeled and tracked vehicles, with transmissions disengaged, were towed as trailers on sand and asphalt. The tests on sand are summarized in table 5; data collected during the tests on asphalt pavement are not included in the data tables but are summarized below, following the discussion of the sand tests. <u>Sand tests</u>

115. <u>Wheeled vehicles.</u> Data for this analysis are presented in table 5 and shown graphically in plate 23. All items are discussed below except items 19 through 24, and items 42 through 47, which are discussed under "Special Tests." Fifty-one tests were conducted with seven wheeled vehicles at tire pressures ranging generally between 30 and 10 psi.

116. The performance curves of towing force required (in percentage of test weight) versus cone index (plate 23) are similar to those in the 15th Supplement, plate 16, but they were adjusted slightly to accommodate the additional data for a greater range of cone indexes. Fig. 5 of plate 23 shows curves for 45- and 60-psi tire pressures taken from the 15th Supplement; no data at these tire pressures were collected during the current test programs. As can be seen from examination of figs. 1 through 4 of plate 23, some scatter of test results around the average curves occurs for all tire pressures, but test results are not consistently higher or lower than the average curves that were drawn using both trailer tests (from the 15th Supplement) and self-propelled vehicle tests. The average deviation of test results from the average curves for equal cone indexes is 1.9%, while the average deviation of trailer test results (from the 15th Supplement) was only 1.0%. (Further analysis of these results is needed to take into account basic vehicle factors.)

117. Tracked vehicles. Eight towed tests (table 5, items 64 through 71) were conducted with six tracked vehicles. Poor correlations exist between force required to tow the tracked vehicles and cone index, and between required towing force and vehicle weight; however, when required towing force in pounds is added to the maximum towing force in pounds, the resulting total tractive effort shows good correlation with vehicle weight (fig. 9 of plate 20). For example, total tractive effort for the D4 was obtained by adding the maximum drawbar pull of 8193 lb (from paragraph 105, 55.1% of 14,870 lb) and the towing force required, 1487 lb (from table 5, item 65), to obtain a total of 9680 lb. Total tractive efforts for the other vehicles were obtained in a similar manner. The data for all vehicles plot so that a straight line drawn through the origin best fits the data when making an angle with the horizontal whose tangent is 0.64. Direct shear tests (consolidated and drained) performed on oven-dry Mississippi River sand show the sand to have an angle of internal friction of 32 degrees. The tangent of 32 degrees is 0.625. Direct shear tests on sand at the moisture content prevailing during the vehicle tests (3%) shows the tangent of the angle of internal friction to be 0.543.

Asphalt pavement tests

118. Towed-vehicle tests on asphalt pavement were conducted with self-propelled vehicles to obtain a measure of the force required to overcome internal resistance of the vehicle and external resistance between the pavement and the wheels or tracks.

119. <u>Mheeled vehicles</u>. Limited tests were conducted with three wheeled vehicles at four loads and four tire pressures. The vehicles used were the 3/4-ton M37, 2-1/2-ton M135, and 5-ton M41 trucks. Results of these tests indicated that the force required to tow, in pounds, was directly proportional to the increased load for a given vehicle and tire pressure. This relation allowed force required to tow to be expressed as a percentage of vehicle weight, and comparisons could be more easily made between force required to tow and tire pressure for a given vehicle, or between required towing forces of different vehicles at equal tire pressures. Comparisons of results of the three vehicles indicate that the force required to tow any of the vehicles at a given tire pressure was the same if force was expressed in percent of vehicle weight. The following tabulation summarizes the results and shows a comparison with similar results for trailers from the data reported in the 15th Supplement.

Tire Pressure	Avg Force (% of Test We Required to Tow	eight)
psi	Self-propelled Vehicles	Trailers
30	2.1	1.3
20	2.8	1.3
15	3.3	1.5
10	4.1	2.3

As can be seen above, towing force required on asphalt pavement tends to increase with decrease in tire pressure, and the force required to tow trucks is greater (on the average, 1.5% of vehicle weight) than the force required for trailers.

120. <u>Tracked vehicles</u>. Limited tests with three vehicles--a 1/4-ton M29C weasel, an 18-ton M4 hi-speed tractor, and a 38-ton M6 hi-speed tractor--indicate that the force required to tow tracked vehicles on asphalt pavement is about 5.5% of their test weight. This is slightly higher than that required for wheeled vehicles at 10-psi tire pressure (4.1%) on asphalt, and lower than that for tracked vehicles (8.7%) on sand with a cone index of about 100 in the 0- to 6-in. layer.

Special Tests

121. Major emphasis of the tests reported herein was on the development of performance curves for a range of vehicles, tire pressures (where applicable), and dry-to-moist and wet-to-inundated sand conditions. However, during conduct of these test programs opportunities arose to perform some special studies pertinent to the investigation of vehicle performance on coarse-grained soils. These special studies included tests on a sand that will be identified in this report as a "honeycomb" sand; drawbar pullslip tests; tests of the effects of traction devices and tire treads; a special vehicle test in which a 6x6 vehicle was converted to a 4x4 vehicle; truck-trailer combination tests; and tests on gravel. These studies are discussed below.

Tests on honeycomb sand

122. On the lagoonside of Padre Island there occurred tidal flat areas which were nearly level and composed of a very fine sand with little or no fines (plate 6), a pronounced honeycomb structure (fig. 23), high

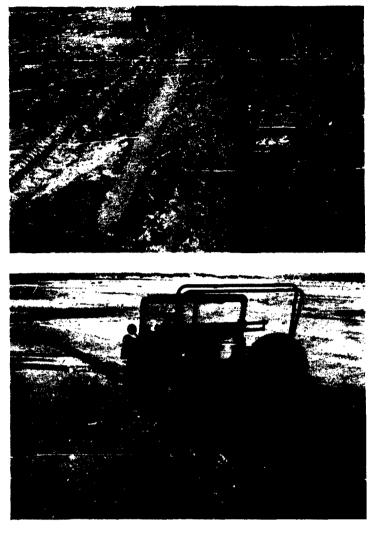


Fig. 23. Profile of sand, lagoon test area, Padre Island, Tex.

moisture content (table 6), and a water table usually within 15 in. of the surface. Forty tests were conducted on this sand using three vehicles: the 1/4-ton M38Al, 3/4-ton M37, and 2-1/2-ton M135 trucks. A test consisted of running a vehicle back and forth in the same path until it became immo-

bilized or until it appeared capable of running indefinitely. In some tests vehicles were immobilized; in others they were not. Results of the tests are summarized in table 6. Scenes of typical tests are shown in figs. 24 through 26. The behavior of the honeycomb sand differed somewhat under the traffic of vehicles from that of sands previously tested. This is discussed in the following paragraphs.

123. <u>Immobilization of vehicles.</u> Immobilization occurred as a result of progressive deepening of ruts with repetitive traffic until the vehicle rested on its undercarriage. Cone index measurements made in the ruts during the test indicated that in nearly every test a progressive softening of the sand was occurring. In this sense, the honeycomb sand behaved like fine-grained soils or sands with fines, poorly drained, and unlike other sands of approximately the same grain size and moisture content. The strength of the latter sands usually remained the same or was increased by repetitive traffic; thus, if a vehicle was able to make one pass, it was able to make a large number of passes. The behavior of the

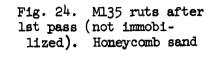


Fig. 26. M37 ruts after 2d-pass immobilization. Honeycomb sand

Fig. 25. M38Al immobilized on 3d pass. Honeycomb sand honeycomb sand also differed from that of similar sands identified as "quick-condition" sands in a previous report (Technical Memorandum No. 3-240, 15th Supplement). Whereas the honeycomb sand always allowed at least one pass of a vehicle, the quick-condition sand would not allow even one pass.

124. <u>Remolding.</u> Undoubtedly, the reduction in strength caused by repetitive traffic was a primary factor in determining the trafficability of the honeycomb sand. Unfortunately, only limited opportunity was available to study this feature. A few remolding tests of the types that are successfully applied to fine-grained soils and sands with fines, poorly drained, were attempted, but their results were inconclusive and they were abandoned.

125. Effect of tire-inflation pressure. The tire pressure was varied in the first few tests on honeycomb sand; however, the test engineers felt that tire pressure was not significant, and thereafter conducted all vehicle tests with tires at the same inflation pressure, 15 psi.

126. <u>Correlation of vehicle performance and condition of honeycomb</u> <u>sand.</u> An attempt was made to correlate the performance of the vehicles with the various measurements and combinations of measurements made in the honeycomb sand. The results were negative. Cone index measured before traffic did not clearly indicate whether or not the vehicles would be immobilized. Cone index measured after one pass showed a crude relation; however, even a measurement made after only one pass of a vehicle had little practical value for prediction purposes. Neither moisture content nor percent saturation of the sand provided a good index of its trafficability. A combination of before-traffic cone index with percent saturation showed some correlation with "go" and "no go," as it had in a previous study (Technical Memorandum No. 3-240, 4th Supplement), but the correlation was far from satisfactory.

127. <u>Summary</u>. The tests performed on honeycomb sand at Padre Island revealed that this sand behaved differently from sands previously tested. The tests were not adequate to develop a good technique for the assessment of the trafficability of the sand. Observations and results indicated that the remolding phenomenon is probably the key to measurements of the trafficability of this sand. Additional field testing is required to define proper means of measuring the trafficability of this sand. Drawbar pull-slip tests

128. During the Mississippi River test program, 95 drawbar pull-slip tests were conducted with three vehicles to obtain a comparison of vehicle performance for three different traction systems. The three vehicles used were the 2-1/2-ton M135 truck, the standard D7 engineer tractor, and the 13-ton M5A4 hi-speed tractor. All three vehicles were tested on similar sands with cone index of the O- to 6-in. layer ranging between 117 and 132. Data and test results are summarized in table 7, and plots of drawbar pull versus slip are shown in plate 24.

129. <u>2-1/2-ton M135, 6x6 truck.</u> Tests with this truck (table 7, items 1 through 44) were conducted at tire pressures of 30 and 10 psi; drawbar pull-slip curves are presented in fig. 1 of plate 24. Results of these tests show that maximum drawbar pull (maximum towing force) occurred at about 12% slip for 10- and 30-psi tire pressures; as the percentage of slip increased, drawbar pull decreased until about 75% slip, after which the drawbar pull tended to increase again with an increase in wheel slip. The drawbar pull at 100% slip was higher than at 12% slip; however, pull at 100% slip is not a suitable value for expressing vehicle performance.

130. Observations of wheel slip during the tests indicated that maximum pull occurred when shear planes such as those in fig. 27 first appeared in the ruts behind the wheels (at 12% slip for these tests). (Tests

reported in the 15th Supplement indicate maximum pull on harrowed sand occurred at higher slips, usually 20 to 25%.) In the current tests, when wheel slip increased beyond 12%, the wheeled vehicles usually developed a "jerking" and "bouncing" motion, which is undoubtedly harmful to the vehicle.

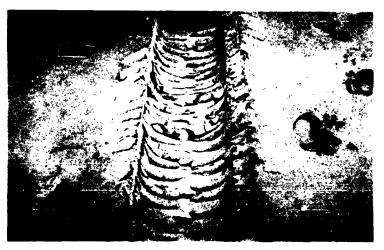


Fig. 27. 2-1/2-ton M135 rut pattern after maximum drawbar-pull test. Moist sand

131. <u>Standard D7 engineer tractor.</u> Fig. 2 of plate 24 shows the results of 25 drawbar pull-slip tests conducted with the D7 tractor during the Mississippi River test program (table 7, items 45 through 69). Maximum drawbar pull (maximum towing force) first occurred at about 25% slip and remained constant up to a track slip of almost 90%.

132. <u>13-ton M5A4 hi-speed tractor.</u> Fig. 3 of plate 24 shows results of 26 drawbar pull-slip tests and the average curve for tests conducted with the M5A4 tractor during the Mississippi River test program (table 7, items 70 through 95). The M5A4 tractor's drawbar pull continued to increase as track slip increased, up to 100% slip; however, the maximum drawbar pull was considered to have occurred at about 45% slip while the vehicle was moving approximately 1 to 2 mph. Since maximum towing force occurred at a much higher percentage of slip with the M5A4 than with the D7 engineer tractor, it is considered that the D7 is a better performer on sand. This may be a result of differences in track systems, grouser shearing action, and other features.

Effects of traction devices

133. A set of snap-tracs* was mounted on the 2-1/2-ton M135 truck (fig. 28) during the Mississippi River test program to determine their effect on the performance of the truck. To obtain the photograph in

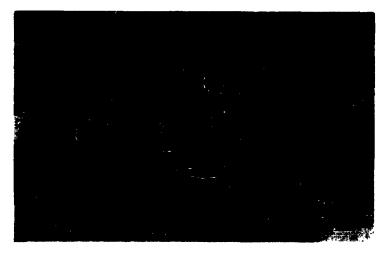


Fig. 28. Snap-tracs on M135 wheel

fig. 28, the moving truck was halted abruptly, and the sand alongside the wheel was shoveled away carefully without disturbing the position of the grousers of the snap-tracs. Test results are summarized in table 8, items 30 through 48, and presented graphically in

^{*} U. S. Army Engineer Waterways Experiment Station, CE, <u>A Limited Study of</u> <u>Snap-tracs</u>, <u>Miscellaneous</u> Paper No. 4-322 (Vicksburg, Miss., February 1959).

plate 25. Nineteen tests were conducted at tire pressures of 60, 30, 15, and 10 psi and at a vehicle weight of 19,188 lb. Tentative curves for average performance were drawn for each tire pressure. The shape of the curves was guided by the shape of curves for the same vehicle operating without snap-tracs.

134. A comparison of maximum towing force of the vehicle equipped with snap-tracs with that of the vehicle without snap-tracs is shown in fig. 3 of plate 29. Tests indicated that towing force was reduced by use of snap-tracs at tire pressures of 10 to 30 psi, those normally used on sand, but that towing force was increased slightly by the use of snap-tracs at a tire pressure of 60 psi. Maximum towing force is the difference between gross tractive effort and motion resistance. While the snap-tracs undoubtedly increased the gross tractive effort, they also increased the motion resistance. At the low tire pressures where the tire deflects and sinkage is low, the effect of the snap-tracs was more significant in increasing motion resistance than at the higher tire pressures where sinkage is greater.

Effects of tire tread

135. Standard 11.00-20, 12-PR, NDCC tires, purposely devoid of tread, were mounted on the 2-1/2-ton M135 truck during the Mississippi River test program to determine the effects of tire tread on performance. Fifty-three tests were conducted with smooth tires; for 29 of the tests (table 8, items 1 through 29) the vehicle was operated as a 6x6 (fig. 29), and for 24 tests

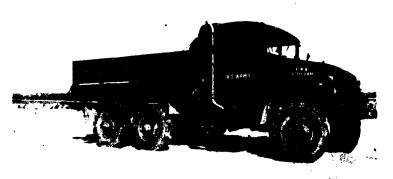


Fig. 29. M135 tested as a 6x6 with smooth tires

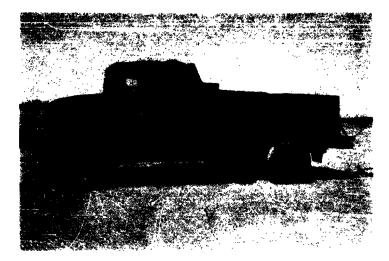


Fig. 30. M135 tested as a 4x4 with smooth tires

(table 8, items 69 through 92) the vehicle was operated as a 4x4 (fig. 30). Test data are shown graphically in plates 26 through 28.

136. Comparisons can be made in plate 29 of the tire contact area, fig. 1, and tire contact pressure, fig. 2, for both the treaded and smooth tires. A comparison of performance on

sand can be made in fig. 3 of plate 29. Maximum towing force was increased at a given tire pressure when smooth tires were used on the vehicle tested both as a 6x6 and as a 4x4. Improved performance is probably explained by the fact that contact area of the tires was substantially increased (fig. 1 of plate 29) and ground-contact pressure decreased (fig. 2 of plate 29) when the treads were removed.

6x6 versus 4x4

137. As can be seen from fig. 3 of plate 29, the Ml35 produced a higher maximum force at a given tire pressure when it was operated as an aborted 4x4 than when it was operated as a normal 6x6. On the basis of average ground-contact pressure, superiority of the 4x4 configuration over that of the 6x6 also is evident. This is directly the reverse of the general relation between 6x6's and 4x4's that has been found for the other vehicles (see plate 22). A reasonable explanation for this is that when the Ml35's weight was distributed to four wheels (4400 lb per wheel versus 2950 lb per wheel as a 6x6), the tires bulged so much that the bulging sidewalls may have carried a significant part of the load in shallow ruts. Thus the average contact pressure measured on a hard surface was probably significantly higher than the actual contact pressure that prevailed during the test in the sand. This brief investigation, while inconclusive because of the lack of reliable and detailed data on tire-to-soil contact areas and

pressures, at least serves to illustrate that, in an emergency, a 6x6 vehicle will perform satisfactorily as a 4x4 in soft sands. <u>Truck-trailer combination tests</u>

138. <u>Maximum-towing-force tests.</u> These tests with the 5-ton M52 truck towing the M127Al semitrailer were conducted at Camp Wellfleet. The force required to tow the truck-trailer combination and the maximum drawbar pull the truck-trailer combination could develop were measured in a few tests. The towing force required for the semitrailer alone was not measured because instrumentation and equipment for this purpose were not available.

139. Truck and trailer tire pressures were varied, and tests were conducted on a range of sand strengths. Test results are summarized in table 9, and plots of maximum towing force in pounds versus cone index and tire pressure are shown in figs. 1 through 4 of plate 30. (Force in pounds was used instead of percent of test weight, as was the case with the single self-propelled vehicles, since all wheels of the combination were not driving.)

140. Results of these tests indicate that at 60-psi tire pressure (fig. 1 of plate 30) for both truck and trailer, a cone index of about 180 was required to permit the combination to travel, but when the truck tire pressure was reduced to 30 psi (fig. 2 of plate 30) and the trailer tires remained at 60 psi, for the same cone index the combination could move forward and have about 2100 lb of excess towing force. When the tire pressure of the truck and trailer was reduced to 15 psi (fig. 4 of plate 30), the combination for the same cone index could move forward with an excess towing force of about 3500 lb. Further tests with this and other trucktrailer combinations are needed before any definite conclusions can be drawn.

141. <u>Towed-vehicle tests.</u> Limited tests were conducted by towing the combination at various tire pressures. Test results are summarized in table 5, items 42 through 47, and are also shown in figs. 1 through 4 of plate 30. Because of differences in tire pressures within the combination, direct comparisons could not be made with towed-vehicle tests in plate 23 for item 65. For this test the force required to tow the combination was approximately 2.5% of vehicle weight higher than the average 15-psi curve for the same cone index. Results are inconclusive because of the small number of tests conducted.

Tests on gravel beaches

142. Self-propelled (slope-climbing) and maximum-towing-force tests were conducted on gravel to determine the effects of a range of sand-gravel sizes on vehicle performance, and also to determine the approximate limits in sand-gravel sizes that can be measured accurately with the cone penetrometer. Vehicle tests were conducted with the 3/4ton M37 and 2-1/2 ton M135 trucks on Duxbury Beach during the Cape Cod test program. Summary of data and test results are presented in table 10, gradation curves for the range of soils tested are shown in plate 7, and test results are shown graphically in plate 31, in which maximum-towingforce and maximum-slope-negotiable data are plotted as in plates 8 through 14.

143. <u>Significance of cone index in gravel.</u> When the cone penetrometer is pushed into a coarse gravel, it may bear directly on a large stone and thus yield a very high reading, well above the capacity of the instrument, at a small penetration depth. It may then slip off this stone and move downward between other stones, giving finite readings on the dial before abruptly being stopped again. The whole action is jerky, and the readings are erratic. If the penetrometer operator ignores the very high readings and considers only those "between stones," a mental average of the readings will give him a rough estimate of the tightness or compactness of the gravel, and thus a rough estimate of its trafficability. In a fine gravel the penetration action is much smoother, and the readings apparently reflect the trafficability with a greater degree of accuracy.

144. The column of average cone indexes in the 0- to 6-in. layer in table 10 (Duxbury Beach) shows that the readings vary between 69 and 188+. The plus sign indicates the occurrence of one or more readings beyond the capacity of the instrument. The dashes indicate that the penetrometer could not be pushed more than 6 in. into the soil by the weight of the operator. The three values of 69, in tests 185, 186, and 187 (items 43, 44, and 34, respectively, of table 10), proved to have been measured in a gravelly sand in which the gravel (about 40% of the total) was fine gravel. Subsequently it was shown that these three tests could be plotted with tests on dry-to-moist sands conducted with the same vehicle and tire pressure (plate 31).

145. The cone index values assigned to the remaining tests covered only a narrow range and were not believed to be truly indicative of the strength of the gravel. For these reasons, no attempt was made to draw a performance versus cone index curve. Instead, a semiquantitative estimate of the trafficability afforded by the gravel on Duxbury Beach was sought by indicating the drawbar pulls measured, the slopes climbed, and the slopes failed against the background of the appropriate curve for dry-to-moist sand. This analysis is indicated in plate 31. Drawbar-pull tests shown on the left are bounded by horizontal lines extending to the sand performance curves. An arbitrary horizontal line is drawn separating "go" and "no go" on the right and extending to each curve. On this basis it may be said that the trafficability of the gravel beach at Duxbury was similar to that of dry-to-moist sands with cone indexes ranging from about 70 to 130.

146. Obviously, the cone penetrometer does not provide a good means of quantifying the trafficability of a coarse gravel. However, it apparently does distinguish gravels that can be classed with sands (by a comparatively smooth penetration) from those that must be classed separately. For the latter it provides a rough estimate of maximum vehicle performance, based on known performance of similar vehicles on dry-to-moist sands at cone indexes of 70 to 130.

147. Observations of vehicle performance. Observations of vehicles operating in gravel revealed the following: (a) Once the wheels begin to slip in loose gravel, wheel action is similar to action in sand in that wheels alternately grip and shear in their attempt to gain traction. (b) Lowering of tire pressure improves vehicle performance in gravel as in sand. (c) Vehicle performance is improved on the passes after the first pass as in sand, but the degree of improvement is not as great as in sand. (d) Clean gravel (no sand sizes present) tends to be slippery when wet; on occasion, if silt or other materials such as vegetal matter are present, it can become difficult for wheeled vehicles to move.

Tests with the Airoll

1

148. During the Lake Michigan test program, tests were conducted

with the Airoll (fig. 31) on dune slopes and level backshore. The Airoll has a unique propulsion system, and movement can occur under two different

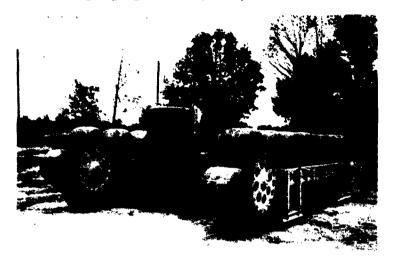


Fig. 31. Airoll used in tests

and distinct actions of the tires on the ground; these are considered as rolling-wheel track and stationary-wheel track actions. Movement as a rolling-wheel track can occur on level or only moderately sloping, firm surfaces when the tires are made to roll beneath the platform by the tangential force being ap-

plied by the platform. In this case, the friction force between platform and tires is greater than the rolling resistance between tires and ground. Movement as a stationary-wheel track occurs when rolling resistance offered by soft soil or steep slopes exceeds the frictional force between the platform and the tires. In this case, the tires remain stationary or rotate in place and the platform slides along on top of the tires. Immobilization occurs when the force necessary to move the vehicle is greater than the shearing resistance of the soil. In this case, the tires are forced to slide beneath the platform, shearing soil as they slide. A more complete description of the Airoll is contained in a separate report.*

149. <u>Slope-climbing tests.</u> Self propelled (slope-climbing) tests were conducted in the usual manner. In a typical run, the Airoll began its climb as a rolling-wheel track. At some point during its climb the Airoll shifted from a rolling-wheel to a stationary-wheel track performance (see arrow in fig. 32), and continued to climb (as a conventional tracked vehicle) until steepness of the slope finally immobilized it or it reached the top of the slope. On each test run, test lane sections were marked to

^{*} U. S. Army Engineer Waterways Experiment Station, CE, <u>Trafficability</u> <u>Tests with the Airoll on Organic and Mineral Soils</u>, Miscellaneous Paper No. 4-439 (Vicksburg, Miss., August 1961).

identify the maximum slope on which the Airoll operated as a rolling- and as a stationary-wheel track, and the slope on which it became immobilized. Thus one run up a slope usually provided several tests. Fig. 32 illustrates a typical test with the Airoll.

Fig. 32. Typical test with Airoll

150. Slope-

climbing test results are summarized in table 11, items 1 through 50, and shown graphically in figs. 1 through 3 of plate 32. Tests were conducted at tire pressures of 15, 10, and 5 psi. Analysis of data indicates that slope-climbing ability as a rolling-wheel track is unchanged between 15 and 10 psi, but increases when tire pressure is reduced to 5 psi, as shown in the lower portions of figs. 1 through 3 of plate 32. Nominal tire pressure recommended for these tires is 2 to 8 psi. Slope-climbing ability as a stationary-wheel track is increased with increased tire pressure, as shown in the upper portions of figs. 1 through 3 of plate 32.

151. Airoll performance is compared with the performance of two wheeled vehicles (2-1/2-ton M135 and 5-ton Jumbo trucks) and one tracked vehicle (M29C weasel) in fig. 4 of plate 32. The performance curves for the M135 and Jumbo trucks are from plates 11 and 15, respectively. The performance curve for the weasel was developed from test results, table 2, items 199 through 207. Examination of fig. 4 of plate 32 shows Airoll performance as a rolling-wheel track to be similar to the performance of conventional wheeled vehicles, and its performance (at 15 and 10 psi) as a stationary-wheel track to be slightly better than that of conventional tracked vehicles such as the weasel.

152. <u>Towing tests</u>. Drawbar pull-slip tests were conducted on the backshore area at Warren Dunes State Park at 5-psi tire pressure. Results of these tests are summarized in table 11, items 51 through 63. The Airoll

was instrumented for slip measurements in the same manner as conventional tracked vehicles. A zero-slip datum was established from measurements made when the Airoll was operating with no drawbar pull. On the sand tested it traveled as a rolling-wheel track on the "no-load" run. When drawbar pull-slip runs were made the Airoll traveled as a rolling-wheel track until at some drawbar load the rolling-wheel action changed to stationary-wheel action. This change was noted on the records. Determining slip in this manner resulted in rolling-wheel track operation from 0 to -100% slip, and stationary-wheel track operation from 0 to 100% slip.

153. Test results are shown graphically in fig. 5 of plate 32. Two curves are shown, to represent rolling- and stationary-wheel performances. The Airoll developed a maximum drawbar pull of 24% of its weight at -20% slip operating as a rolling-wheel track, and a maximum drawbar pull of 50% of its weight at 100% slip operating as a stationary-wheel track. The two curves shown tend to break at about -15% slip instead of 0 as would be expected. This is probably a result of lack of refinement of instrumentation for slip measurements of an unconventional vehicle. From the slopeperformance curves of fig. 4 of plate 32, it is apparent that the maximum drawbar pull of the Airoll as a stationary-wheel track would have been greater at tire pressures of 15 and 10 psi.

154. <u>Towed-vehicle tests.</u> Limited towed tests were conducted at 5-psi tire pressure to determine the amount of force necessary to tow the Airoll on asphalt pavement and clean sand. Results of these tests are not shown graphically herein, but they indicated that a towing force of 4.5and 6.6% of vehicle weight is required on asphalt pavement and sand, respectively.

PART IV: CONCLUSIONS AND RECOMMENDATIONS

Conclusions

155. The following conclusions are based on analysis of the data collected in the five test programs reported herein. The basic guide for these test programs was the findings and recommendations in the 15th Supplement of the "Trafficability of Soils" report series.

- a. The maximum tractive coefficient a vehicle can develop in a given sand condition, multiplied by 100 to express it in percent, is usually about 2% higher than the maximum slope it can climb, expressed in percent.
- b. The maximum towing force of self-propelled wheeled vehicles is higher on wet-to-inundated sands (e.g. on the foreshore of flat beaches) than on dry-to-moist sands through the range of cone indexes and tire pressures tested.
- c. The maximum towing force on a given sand condition increased generally with a decrease in average ground-contact pressure. 6x6 vehicles attained higher maximum towing forces than 4x4's at the same average ground-contact pressures.
- d. Limited tests with tracked vehicles on sand show that the engineer tractors have a higher performance (expressed as a percentage of the test weight) than the hi-speed tractors and the M29C weasel, despite the fact that the average ground-contact pressures of the engineer tractors also are higher.
- e. Drawbar pull-slip curves for the 2-1/2-ton ML35 truck show that maximum sustained drawbar pull occurs at about 12% slip.
- f. Drawbar pull-slip curves for the standard D7 engineer tractor and the 13-ton M5A4 hi-speed tractor have different shapes; maximum sustained drawbar pull occurs at about 25% slip for the D7 and at about 45% slip for the M5A4.
- g. Vehicle performance is better with smooth tires than with treaded tires or traction devices, and limited tests with the 2-1/2-ton M135 truck indicate that increasing wheel load by removing two wheels improves its performance slightly, although probably not enough to offset the adverse effects of overloading the tires.
- <u>h</u>. The towing force required to tow self-propelled wheeled vehicles as trailers is similar to the towing force required for wheeled trailers, but deviations of individual test results from the average curves are larger for the self-propelled vehicles.

- i. Results of 40 tests at Padre Island on honeycomb sand indicate that this sand behaved somewhat differently from other sands. However, testing was not adequate to permit development of reliable techniques for assessing its trafficability.
- j. Results of tests with a truck-trailer combination indicate that performance of such a combination can be estimated (with reasonable accuracy) from the performance curves developed for towing and towed vehicles.
- k. Sands containing as much as about 40% fine gravel (and little or no coarse gravel) exhibit essentially the same characteristics as sands containing no gravel, i.e. test data for all these sands can be plotted and analyzed together. Sands containing more than 40% fine gravel (and little or no coarse gravel) have not yet been tested.
- 1. The trafficability of coarse gravels cannot be measured with the same degree of accuracy as that of sands. However, the trafficability of coarse gravels (regardless of cone index) was found to be similar to that of dry-to-moist sands in which cone index varied from 75 to 125. The maximum slope or towing force that could be developed on coarse gravels by the vehicles tested in this program was approximately equal to that developed by the same vehicles on dryto-moist sands with cone indexes between 100 and 125.
- m. On sand slopes the Airoll performs better than wheeled vehicles, and appears to perform on a par with tracked vehicles.

Recommendations

- 156. It is recommended that:
 - a. Additional studies be conducted to determine the effects of wheel arrangements and loads, tire sizes, and tread design on the performance of wheeled vehicles on sands.
 - b. A study be conducted and a report prepared on procedures for evaluating performance of vehicles on sands without the necessity for actual tests.
 - c. Investigations be made of differences in vehicle performance on "natural" and "prepared" sand conditions; the reason why vehicle performance is better on wet sand than on dry sand with the same cone index; a method for identifying quick-condition sand areas; and the probable cone index necessary to permit vehicles to execute difficult maneuvers.
 - d. Studies be conducted of methods of estimating trafficability of untested beaches.

- <u>f</u>. Additional tests (including towed-vehicle tests) be made on gravel beaches when opportunities arise, and instruments other than the cone penetrometer be considered for measuring the trafficability of gravel beaches.
- g. Test sites with broader ranges of cone index be found and utilized in expanding performance-cone index relations where necessary.
- <u>h</u>. A special program be conducted at Padre Island for the purpose of development of adequate means of measuring the trafficability of honeycomb sand.
- i. Additional testing be done on vehicles equipped with lowprofile, low-silhouette tires similar to those used on the 5-ton XM520 GOER vehicle.
- j. Search for an explanation of the better performance of the 2-1/2-ton, 6x6 vehicle with its middle wheels removed be continued.

			Transmission		Synchromesh	Synchromesh	Synchr anesh			Hydramst1c			Synchromesh	Hydramatic		
		Rneine	Brake, hp		72 at 4000 rpm	60 at 4000 r<u>p</u>m	78 at 3200 rpm			130 at 3400 rpm			127 at 3200 r p m	130 at 3200 rgm		
		-	Type		Gasoline	Gasoline	Gesoline			Gasoline			Gesoline	Gasoline		
		Ground	in.		0.6	9.25	0.11			0'21			3-21	0.21		
		Tire Print	h Width		7447 0.844				7.66					0.0 0.0 0.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		
			Leng		6.7 8.5 9.5 9.5				00101 00101		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6.6 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		6년11 6년2 8년	2.54 8.55 9.51 9.51 9.51 9.51 9.51 9.51 9.51 9	
			putesure	<u>icles</u>	30.2 24.4 21.1 17.8	No data	31.6 26.0 22.8 22.8	31.8 56.7 53.5 53.5	51-5 5-7-5 5	37.6 31.2 27.5	38.6.9	31-3 31-3 56-9 3 56-9 3 56-1- 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	No data	33.4 33.4 28.5 28.5	41.3 35.1 27.2 27.2	(þe
BART STOTISA	ton	Total Contact	80 1n.*	Wheeled Vehicles	98.6 121.7 141.3 167.5		178.7 217.4 247.3 200.0	223.1 265.7 301.0	241.2 241.2 281.1 363.6	340.2 465.0	204-07 165-8 561-4 649-7 780-3	526.0 639.5 639.5 904.9		324.9 372.8 436.9 499.8	419.4 566.1 566.1 637.7	(Continued)
	Tire Description	Tire	19d	되	80 12 12 13		8835	388355	388333	80355	388355	88859		88333	8853	
	111	No.	Tres		4	4	4			10			9	9		
			Rating		Q	9	œ			8			12	শ		
		Rim Remotion	in.		91	JL6	16			50			20	50		
		Nominal 11441	in.		7.00	7.00	0.0			9.0			00.11	11.00		
		Gross Wet alt	lb		2,975#	2,625#	5,645##	7,085##	7,805##	## 26 1'रा	17,960##	20,03 ⁴⁺⁺	11,775# 16,775#	12,4504#	17,330##	
		Empty the set	1b		2,475	2,625	5,645			26 2 ' टा			51 7, 11	12,450		
			Vehicle		1/4-ton M38Alt† 4x4 truck	1/4-ton M38 4x4 truck	3/4-ton M37tf 4x4 truck			2-1/2-ton M211 6x6 truck			2-1/2-ton M3 ⁴ 6x6 truck	2-1/2-ton MI35tt 6x6 truck		

Vehicle Data Table l

.

(Sheet 1 of 3 sheets)

.

Note: Weights shown here are the veights of the vehicles when tire prints were made. Test veights for the vehicles, which sometimes differed, are shown in data tables and plates. Wheel and acie loads were not measured. * Determined from tire prints on a hard surface. * Determined from thre prints on a hard surface. * Determined from the prints on a hard surface. * Average dimensions for all tires on vehicle. * Average dimensions for all tires on vehicle. * Example dimensions for all tires on vehicle. * Measured. * Measured.

13.6 7.5 14.9 7.7 17.1 8.4 17.1 12.0 Ganoline 13.6 7.5 13.1 12.0 Ganoline 13.1 8.4 13.1 8.4 13.1 8.4 13.1 8.4 13.2 Ganoline 130 at 3200 rpm 13.9 7.6 13.9 7.6 13.9 7.6 13.9 7.6 13.9 7.6 13.1 1.7 13.2 1.9 13.7 11.0 13.7 13.0 13.7 13.0 13.7 13.0 13.7 13.0 13.7 13.0 13.7 13.0 13.7 13.0 13.7 13.0 13.7 13.0 13.7 13.0 13.7 13.0 13.7 13.0 13.8 13.0 13.1.1 12.0 <t< th=""></t<>
11.3 13.6 7.5 32.0 15.9 7.7 32.0 15.9 7.7 32.1 13.6 7.5 32.1 13.6 7.5 37.1 13.6 7.5 37.1 13.6 7.5 37.3 13.7 12.0 0atoline 130 at 300 rps 18.2 13.9 7.6 0atoline 130 at 300 rps 95.3 13.9 7.6 0atoline 130 at 300 rps 95.3 13.9 7.6 0atoline 130 at 300 rps 95.3 14.7 1.2 0atoline 130 at 300 rps 95.3 14.7 1.2 0atoline 130 at 300 rps 95.3 14.6 1.3 0at 300 rps 130 at 300 rps 95.3 14.7 1.2 0at 300 rps 130 at 300 rps 95.3 15.2 13.3 11.0 0at 300 rps 95.3 15.3 13.3 11.0 0at 300 rps 95.4 13.7 11.1 7.3 11.1 11.1 17.3
with Samp-trace 12.0 Gasoline 130 at 3600 rps 1 34.3 13.6 7.5 Gasoline 130 at 3600 rps 1 27.3 13.6 7.5 Gasoline 130 at 3600 rps 1 27.3 13.6 7.6 Gasoline 130 at 3600 rps 1 27.5 15.0 7.6 Gasoline 130 at 3600 rps 1 37.6 15.0 7.6 6.6 7.6 6.6 7.6 37.6 15.0 7.6 6.6 130 at 3600 rps 1 1 37.6 15.0 7.6 6.6 130 at 3600 rps 1 1 1 38.7 11.1 7.3 11.0 0.6 130 at 3600 rps 1 </td
34.3 13.6 7.5 Gaoline 130 at 3200 rpm 27.3 13.6 7.5 Gaoline 130 at 3200 rpm 27.1 13.9 7.6 Gaoline 130 at 3200 rpm 16.2 15.9 7.6 Gaoline 130 at 3200 rpm 17.1 8.1 7.9 7.6 Gaoline 130 at 3200 rpm 17.1 8.2 17.7 8.3 Gaoline 130 at 3200 rpm 26.5 15.8 8.3 Gaoline 130 at 3200 rpm 1 27.1 17.7 8.3 11.0 Gaoline 130 at 3200 rpm 27.1 17.7 8.3 11.0 Gaoline 130 at 3200 rpm 28.5 15.8 9.4 13.7 7.9 28.5 11.0 7.3 11.0 Gaoline 190 at 2000 rpm 28.5 11.6 9.4 13.7 7.9 35.6 13.0 28.5 10.6 13.7 13.0 Gaoline 196 at 2000 rpm 1 28.5 11.9 13.0 13.0 13.0 13.0 1
45.9 13.9 7.6 Gaodine 130 at 3200 rpm 37.6 17.7 8.5 17.7 8.5 37.7 8.5 17.7 8.5 17.7 28.5 115.8 8.3 9.3 9.5 28.5 115.8 8.3 9.3 9.5 28.0 11.1 7.3 11.0 0.011ne 130 at 3200 rpm 28.1 12.4 7.7 8.2 13.7 7.9 31.9 12.4 7.7 3 11.0 0.0011ne 130 at 3200 rpm 31.9 12.4 7.7 8.9 13.7 7.9 9.5 13.7 32.9 13.7 7.9 8.9 13.0 0.011ne 190 at 3200 rpm 1 32.4 11.5 9.9 13.0 0.011ne 196 at 2000 rpm 1 32.6 13.7 7.9 13.0 0.011ne 196 at 2000 rpm 1 32.6 11.1 12.0 0.011ne 196 at 2000 rpm 1 1 32.6 11.1 12.0 0.011ne 196 at
38.5 15.8 8.3 Gaoline 130 at 300 rg and 100 rg at 300 rg at 3
36.0 11.1 7.3 11.0 Gaoline 92 et 2750 rpm 25.1 15.3 8.1 7.7 7.9 25.4 15.3 8.1 7.9 8.9 21.9 11.9 8.9 13.0 Gaoline 92 et 2750 rpm 25.5 11.9 8.9 13.0 Gaoline 196 et 2800 rpm 25.5 17.8 10.7 Gaoline 196 et 2800 rpm 25.5 17.8 10.7 Gaoline 196 et 2800 rpm 25.6 10.4 10.7 Gaoline 196 et 2800 rpm 25.7 10.8 10.7 Gaoline 196 et 2800 rpm 26.7 19.8 10.7 Gaoline 196 et 2800 rpm 26.7 19.8 10.6 Gaoline 196 et 2800 rpm 27.3 11.9 8.1 12.0 Gaoline 196 et 2800 rpm 27.3 11.9 8.1 12.0 Gaoline 196 et 2800 rpm 28.7 11.9 8.1 12.0 Gaoline 196 et 2800 rpm 29.4 13.4 7.9 12.0
31.9 11.9 8.9 13.0 Gaodiine 196 at 2800 rpm 26.5 14.6 9.5 9.4 13.0 Gaodiine 196 at 2800 rpm 27.4 11.6 10.0 9.5 9.5 9.5 9.5 27.5 16.5 10.0 20.0 10.1 20.0 19.6 at 2800 rpm 27.5 16.5 10.1 37.6 10.1 37.6 10.1 37.6 27.0 19.8 10.0 20.6 10.1 37.6 10.5 Gaodiine 196 at 2800 rpm 26.7 19.8 10.5 Gaodiine 196 at 2800 rpm 27.8 27.3 11.9 8.1 12.0 Gaodiine 196 at 2800 rpm 27.3 13.4 7.9 12.0 Gaodiine 196 at 2800 rpm 27.3 13.4 7.9 12.0 Gaodiine 196 at 2800 rpm 28.3 13.4 7.9 15.0 Gaodiine 196 at 2800 rpm 27.3 13.4 1.9 12.0
35.6 10.4 35.7 19.8 10.4 25.7 19.8 10.5 25.7 19.8 10.5 21.9 22.6 11.3 36.7 10.6 7.1 35.3 10.6 7.1 36.7 10.6 7.1 25.9 13.4 7.9 21.3 15.5 8.2 25.4 13.4 7.9 21.3 15.5 8.2 26.4 13.4 7.9 21.3 15.5 8.2 22.8 14.2 12.0 23.1 15.7 15.0 22.8 14.2 12.6 15.7 15.4 12.6
No data 10.5 Gasoline 196 at 2600 rpm 36.7 10.6 7.1 12.0 Gasoline 196 at 2600 rpm 29.3 11.9 8.1 21.3 15.5 8.2 21.3 15.5 8.2 26.4 13.4 11.7 15.0 Gasoline 77 at 2200 rpm 22.8 14.2 12.4 19.4 15.9 12.7 15.7 18.4 12.8
36.7 10.6 7.1 12.0 Gasoline 196 at 2800 rpm 29.3 11.9 8.1 25.9 13.4 7.9 21.3 15.5 8.2 26.4 13.4 11.7 15.0 Gasoline 77 at 2200 rpm 22.8 14.2 12.4 19.4 15.9 12.7 15.7 18.4 12.8
26.4 13.4 11.7 15.0 Gesoline 77 et 2200 rym 22.8 14.2 12.4 19.4 15.9 12.7 15.7 18.4 12.8

Table 1 (Continued)

(Sheet 2 of 3 sheets)

++ Imia from table 2 of IM 3-240, 15th Supplement, but considered applicable for this report. * Estimated. ** Measured.

Registy Ib Grosse Ib Grosse House Ib Grosse Ia Grosse House Ib Grosse Ia 31,070 31,070 31,070 31,070 21,00 0055 15,570 25,570+ 18.00 0056 15,570 25,570+ 18.00 15,570 25,570+ 18.00 15,00 10,400 13,000 20,100+ 19.00 15.00 10,400 10,400+ 11.00 11.00 10.400 10,400 10,400+ 11.00 11.00 11.00 10,400 10,400+ 10,400+ 11.00 11.00 10,400 10,400+ 10,400+ 11.00 11.00 10,400 10,400+ 10,400+ 11.00 11.00 10,400+ 10,400+ 10,400+ 11.00 11.00 11.00 10,400+ 10,400+ 10,400+ 10,400+ 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00	R4 meter meter R4 R4 R4 R4 R4 R4 R4 R4 R4 R4	80 04 04 04 04 04 04 04 04 04 04 04 04 04	Thre Presence Total Contact Ander Area Contact Area Ander Area Wheeled Vehicles Continued So Pail Pail 30 1114.0 27.9 20 30 1114.0 27.9 20 30 1286.0 24.2 21.5 30 1241.0 21.5 24.6 30 1281.0 21.5 21.6 30 1281.0 21.5 21.5 30 1281.1 21.5 21.6 30 1283.1 21.7 21.6 30 1283.1 21.7 21.6 30 1283.1 21.7 21.6 30 1283.1 21.7 21.7 30 1263.1 21.7 21.7 30 1265.1 21.6 21.6 30 1265.1 21.6 21.6 30 25.6 31.9 32.6 30 26.1 32.6 39.1 30 26.1<	1 Continued 2 Con	9.68 9.69 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.0		Ground Clearance in. 14.0 Gasoline 21.0 Diesel 16.5 Gasoline	<u>Endine</u> <u>Endine</u> <u>Endine</u> 127 at 3400 rpm 110 at 2200 rpm 160 at 2800 rpm	framewission Tournamette, constant-mesh, clutch-operated forque converter
31,070 31,0704+ 21.00 31,070 31,0704+ 21.00 15,670 26,6704+ 18.00 13,000 20,1004+ 18.00 13,000 20,1004+ 18.00 13,000 20,1004+ 18.00 15,00 10,400 10,4004 11.00 2 10,400 10,4004 11.00 2 10,4004 10,4004 11.00 2 10,5004 10,5	111- 122 25 34 122 10 10 16 12 12 12 12 12 12 12 12 12 12	9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Pat- bat By the last of th	(contrined) (cont					Transmission Tournammatic, constant-spend clutch-operat
31,070 31,0704+ 21.00 16,670 26,6704+ 18.00 13,000 20,1004+ 18.00 13,000 20,1004+ 18.00 10,400 10,4004 11.00 2 10,400 10,4004 11.00 2 10,400 10,4004 11.00 2 10,400 10,4004 11.00 2 10,400 10,4004 11.00 2 11,5004 78 20 11 5,5604+ 78 20 11 5,5604+ 78 20	25 25 10 26 26 10 20 26 10 20 26 20 10 20 10 20 20 20 20 20 20 20 20 20 20 20 20 20		Ave Ave Ave Ave Ave Ave Ave Ave	· · · · · · · · · · · · · · · · · · ·	8888 84888888 99949 999 999 999 999 999				Tournamatic, countant-mest clutch-operat forque converte
16,670 26,6704 18.00 13,000 20,1004 19.00 13,000 20,1004 19.00 13,000 20,1004 19.00 10,400 10,4004 11.00 10,400 10,4004 11.00 10,400 10,4004 11.00 10,4004 10,4004 11.00 10,4004 10,4004 11.00 10,4004 10,4004 11.00 10,4004 78 20 11 5,56044 78 20 10,57044 78	20 20 34 20 70 20 20 10 10 10 20 20 10 10 10 10 20 20 10 10 10 10 20 20 10 10 10 10		Ave a contract of the contract	88%% 2 15 5 1 2 2 5 5 5 5 5 5 5 5 5 5 5 5 5					Tournamatic, constant-mest clutch-operat forque converte
16,670 26,670+# 18.00 13,000 20,100+# 19.00 13,000 20,100+# 18.00 13,000 20,100+# 18.00 10,400 10,400+ 11.00 10,400 10,400+ 11.00 10,400 10,400+ 11.00 10,400 10,400+ 11.00 10,400 10,400+ 11.00 10,400 10,400+ 11.00 11 4.200+* 78 11 5,560+* 78 11 5,560+* 78	26 26 10 10 20 26 10 10 20 26 10 10 20 26 20 10 10 20 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 1	w w	So Ak						tour tart - set clutch-operat clutch-operat Porque converte
 l6,670 26,6704* 18.00 13,000 20,1004* 18.00 13,000 20,1004* 18.00 10,400 10,4004 11.00 10,400 10,4004 11.00 10,400 10,4004 11.00 10,4004 11.00 	26 26 10 10 20 26 10 10 20 26 10 10 20 26 20 10 10	ω	Sv Av	12892438225555555555555555555555555555555555			_		clutch-operat Porque converte
15.00 13,000 20,100** 18.00 (est) 2,000* 19.00 10,400 10,400* 11.00 10,400* 11.00 10,400* 11.00 10,400* 11.00 11,500** 78 20 11,5,500** 78 20 11,600** 61 13,000 20,100** 18.00 20,100** 18.00	89 56 34 50 10 10 10 10 10 10 10 10 10 10 10 10 10		Avg	8883355 115555 12575			_		Torque converte.
15.00 13,000 20,100** 18.00 (est) 20,100** 18.00 lo,400 10,400* 11.00 10,400 10,400* 11.00 10,400 10,400* 11.00 10,400 10,400* 11.00 10,400* 78 20 11 5,560** 78 20 11 5,560** 78 20	34 10 20 26 10 20 12 20 12 20 10 16 10 10 10 10 10 10 10 10 10	ω.	Avg	888395 11215 2 88			-		
15.00 13,000 20,100** 18.00 (eet) 20,400* 11.00 10,400 10,400* 11.00 10,400* 10,400* 11.00 10,400* 78 20 1 5,560** 78 20 1 4,970** 61 13	34 10 20 26 10 10 21 20 21 21 20 21 21 20 21 21 20 21 20 20 20 20 20 20 20 20 20 20 20 20 20		Avg	121281 22121 2888 22121 2222 2228			_		
13,000 20,100++ 18.00 (eet) 20,100++ 18.00 10,400 10,400+ 11.00 10,400 10,400+ 11.00 10,400+ 11.00 10,400++ 78 20 11 5,560++ 78 20 11 5,560++ 61 13	80 80 10 10 10 10 10 10 10 10 10 10 10 10 10 1	م م	Avg	8882 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1		_		
13,000 20,100+* 18.00 (eet) 10,400 10,400+ 11.00 10,400 10,400+ 11.00 Test Contact Contact "Test Contact Contact "Ish In. In. 10 10,400+ 10.00	26 26 10 12 10 12 10 14 14 14 14 14 14 14 14 14 14 14 14 14	⇒+ ∞	Avg	88888 15 55 888			-		
(eff) 50,400 10,4004 11.00 10,400 10,4004 11.00 Test Contact Contact 10,4004 78 20 1 5,5604 78 20 1 4,87044 61 13	Bhoe 10 10 10 10 10 10 10 10 10 10 10 10 10	≠ α)	Avg	27-12-1-1-1-2-2-2-2-2-2-2-2-2-2-2-2-2-2-			-		
10,400 10,4004 11.00 10,400 10,4004 11.00 Test Contact Contact 10,40044 78 20 1 5,56044 78 20 1 4,80044 61 13	Shoe 12 Itemeth	œ	Avg	50.01 50.02 50					•
l0,400 l0,4004 l1.00 200 10,4004 11.00 200 2004 201 1 4,2004 78 20 1 5,5604 78 20 1 5,5604 78 20 1 4,8004 61 33	Shoe 12 Itemeth	ω	Avg	6.19 6.19 6.19 6.19 6.19 6.19 6.19 6.19					Mechanical,
Loyroo Loyroo 11.00 Test Contact Contact Width Length Width 10 5,560## 78 20 1 5,560## 78 20 1 5,560## 78 20	Bhoe Length	ω	Avg	50.1 50.1 50.1 50.1 50.1 50.1 50.1 50.1				•	
Test Contact Test Contact weight Langth ib in.	Shoe Lenath		Avg	33 33 39 1 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9					
Teef Contact Teef Contact Reight Length ib In ib In ib In ib Ju, BTOSet ib Ju, BTOSet	Shoe Iterath		Avg	38.0 88.1 89.1		اسعة	;	;	:
Street Constant 2000 100 10 100 11 5,56000 1 5,56000 1 10,877000	Shoe Ieneth		Avg	28.7		8,			
Test Contact Neight Length 1b in. 1 5,500** 78 1 5,560** 78 24,970** 61 24,980**	Shoe Length		Avg	1					
Neight Length 1b in. 1 /, 200** 78 e1 4,,200** 78 1 5,560** 78 1 5,560** 78	Length	Both Tracks Thtal Contact	And And A						
el 4,20044 78 1 5,56044 78 1 4,,87044 61		Area	Pressure		Ground				
el 4,20044 78 1 5,56044 78 14,877044 61	ц.	89 in.	Pet	Side		Type Engine	1ne BB	Transmission	
e1 4,200++ 78 1 5,560++ 78 14,870++ 61			Tracked Vehicles	icles				214	No. 11
1 5,560## 78 14,870## 61	h oc								
14,870## 61	1 25	031 C	1.3	8	-	Gastoline 6	65 at 3600 rpm	Mechanical	for the second se
			7. 0		11.0 G	Gasoline 69	65 at 3600 rpm	Mechanical	Busha human
	s S	000(17	9.4		FE 0'TT	Diesel 44	4 at 1400 rpm	Mechani cal	
Standard D6 engi-22,667** 86 16 neer tractor	6.75	2,752	8.2	9 1	12.5 M	Mesel 22			Inclantor you
Standard D7 eng1- 27,000++ 95 20	e e							Mechanical	Net horsepower
			1.1	7 15	15.0 DI	Diesel 80	80 at 1000 rpm	Mechanical	Ket horsenan
13-ton M5A4 h1- 25,23044 117 17 speed tractor	5.50	3,878	6.5	5 20	20.0 G	Gasoline 20	207 at 2000		
18-ton M4 hi-speed 28,700## 131 17 tractor	6.00	454,4	6.4	5 20	0.0				Brake horsepower
18-ton 14 h1-speed 30,250** 131 17	w y	1 1 2 4	e v				mdu 0012 19 061	Torque converter	Brake horsepower
tot	3	+(+*+	0.0	20	50.0	Gasoline 19	190 at 2100 rpm	Torque converter	Brake hursenmer
245 2134 510044 2138 545	;	10,224	1.9	7 26	26.0 Gas	Gasoline 18	187 at 1100		
								ALLISCN XIG-90 converter	Brake horsepower
<pre># Estimated. ## Measured.</pre>									

Tuble 2
Summary of Data and Test Results, Single Self-Propelled (Slope-Climbing) Tests with Wheeled and Tracked Vehicles

						Tire Pres-		Average (Traffic Sone Index	\$ by	e Content Weight	Moisture Class. 0- to		u ft
Item No.	Test Program	Location	Test <u>Area</u> *	Test No.	Slope	sure psi	Immo- bilized	0- to 6- in. Depth	6- to 12- in. Depth	0- to 6- in. Depth	6- to 12- in. Depth	6-in. Depth	0- to 6- in. Depth	6- to 12- in. Depth
								ed Vehicles	Weight 2,62	= 1)				
1	France	Suscinio	PDA	174	27	30	Yes	152+		3.0		Noist	100.9	
274			FDA FDA FS	176 175 172	17 16 11		Yes Yes Yes	151+ 166+ 83	 249+	3.0 3.0 4.3		Noist Noist Noist	100.9 100.9 103.7	
5 6 7 8			78 78 75	177 178 173	10 9 7		Yes No No	60 126 104		1.4 1.4 2.4		Moist Noist Noist	104.2 104.2 109.5	
8 9 10		La Turballe	185 185 185	22 25 26	11.5 10.5 10	20	Yes Yes Yes	43 27 49	131 125 180	5.7 5.7 3.5	6.3 7.3 4.5	Noist Moist Moist	92.8 89.2 93.0	88.5 87.9 93.1
11 12			BS BS	28 23 24	10 9.5 6.5		Yes No	49 50 30	159 189	3.5 5.4	4.5 2.9	Noist Noist	93.0 89.0	93.1 92.3
13 14 15 16			BS BS	27 29	6.5 5.5		No No No	37 59	85 96 160	1.6 4.6 4.6	6.0 5.6 5.6	Noist Noist Noist	92.1 86.6 86.6	85.5 90.6 90.6
17 18		Suscinio	FDA FDA FS	179 180 171	25 25 10		No No	127+ 162+ 62	223+	2.4 2.4 4.3		Noist Noist Noist	106.7 106.7 103.7	
19 20			P S P S	169 170	8 6.5		No No	75 107	236+	4.4 2.7		Moist Moist	102.4 106.2	
-01	Turner	Suscinio		05	_	-ton M3			leight 5,687			W- 4 - 1	o 7 9	
21 22 23	France	Suscinio	PDA PDA BS	95 100 93	15.5 15 8	30	Yes Yes No	142 140 77	 245+	4.4 4.4 2.2		Moist Moist Moist	97.8 97.8 104.4	
24 25 26			265 175 185	98 96 92	8 7 6		No Yes No	87 118 124+	256+ 	2.2 2.2 2.3		Moist Moist Moist	104.4 102.6 106.4	
27 28			B6 B6 B6	94 97 99	6		No No No	145 133 123		1.7 2.3 1.7		Moist Moist Moist	104.9 106.4 104.9	
293123355658			FDA FS	105 101	26 10	20	Yes No	99 109		4.4 2.1		Moist Moist	97.8 102.9	
33 34			186 186 186	104 103 102	9 8 7		No No No	113 81 118	241+	1.7 2.2 2.3		Moist Moist Moist	104.9 104.4 106.4	
35 36 37			FDA FS FS	108 106 107	23 9 8	15	Yes No No	165 99 150		4.4 2.2 3.9		Moist Moist Moist	97.8 102.6 108.0	
38 39			FDA FS	110 109	23 7	10	No No	131 113		4.4 2.2		Moist Moist	97.8 102.6	
40	France	La Turballe	7 5	18	<u>3/4-</u> 18.5	ton <u>M37</u> 15	<u>, 4x4 Tru</u> No	<u>ck, Test We</u> 128	ight, 6,887	<u>1</u> b 2.6	7.7	Moist	95.5	93.4
41 42 43			75 75 36	17 20 14	13 12 11	·	No Yes No	132 66 51	205 179	5.8 4.8 8.1	3.7 3.2 2.1	Moist Moist Moist	93.9 96.0 90.8	93.4 96.4 97.3 89.8
43 44 45			166 166 186	19 15	11 10.5		Yes Yes	53 40	208 153+	3.1 5.7	3.9 3.8	Moist Moist	92.1 87.4	89.6 87.9
45 46 47 48			185 185	11 13 12	10 8 5		Yes Yes No	42 37 31	166 146 105	4.5 3.1	4.1 5.0	Moist Moist Moist	87.3 86.4	87.6 86.0
49 50 51 52			PS PS BS	3 8 16	20.5 18.5 16	10	No No Yes	101 122 28	169	3.2 3.2 3.4	4.4 4.4 5.5	Moist Moist Moist	96.7 96.7 87.5	93.7 93.7 88.9
52 53 54			196 185 186	4 9 10	15 13 12.5		No No No	70 72 39	247+ 185	5.3	3.0	Moist Moist Moist	93.2 93.2	93.6 93.6
53 55 55 56 57 58			PS 16 175	1 5 21	12 12 12		Yes Yes	57 40 66	195 155	3.1 3.9 4.8	3.5 4.4	Moist Moist	92.7 93.5	100.6 91.3
58 59 60			75 75	6 2	10.5 10		No No No	54 109	205 219+	3.1 5.1	3.2 3.5 2.8	Moist Moist Moist	96.6 92.7 94.4	97-3 100-6 94-6
00			78	T	10 <u>2-1/2</u>	-ton Mi	№ <u>35.6жбт</u>	119 ruck, Test	 Weight 12,4	5.1 <u>50 1b</u>	2.8	Moist	94.4	94.6
61 62	Cupe Cod	Wellfleet	78 75	150 151	11 11	20	Yes Yes	46 43	178 83			Moist Moist	Ξ	
63 64 65			146 146 146	152 149 142	9 14 13	15	No Yes Yes	47 55 51	143 150 111	3.0		Noist Noist Noist	91.5 	
66 67 68			96 96 75	140 137 147	12.5 12 11		Yes Yes No	49 50 41	134 140 162	1.6 3.3		Moist Moist Moist	92.1 87.6	
69 70			BC BC BC	138 141	10.5 8		Yes No	55 53 63	117 117	3.2		Moist Moist	92.6	
72 73			B6 B6	139 136 143	5 2 22 14	10	No No Yes	63 55 51	195 132 111	2.9		Noist Noist Noist	93.1 	
634 65 66 768 69 70 1 72 73 74 75 76 77			BC B6 178	145 148 146	14 11		Nic Nic	55 51 55 55 41	131 150 162	3.3		Moist Moist Moist	87.6	
77			BC	144	8.5		No	60	134	3.3 4.3		Moist	89.3	

* See "Beach Terms" under "Definitions" in text.

(Continued)

Table 2 (Continued)

				·		Tire		Before	Traffic	Moteture	Content	Noisture Class.	Dary De	maity
ten			Test	Test	Slope	Pres-	Inno-		Cone Index 6- to 12-	5 by 1		0- to 6-in.		nu ft 6- to 12-
0.	Test Progress	Location	Area	No.	<u></u>	pai	bilized	in. Depth		in. Depth	in. Depth	Depth		in. Depth
							Wheele	1 Vehicles	(Continued)			-		
						2- <u>1/2-t</u> c	n M34, 6x	6 Truck, Te	st Weight 1	1,775 15				
18 19 10	France	Suscinio	FDA FDA	141 143	27 21.5	30	Yes Yes	160+ 197+		1.3 1.3		Noist Noist	107.0 107.0	
) L			PS PS	146 145	10 8.5		Yes Yes	59 82	220+ 252+	2.5 3.1		Moist Moist	100.9 106.3	
2			PS PS	144 147	8 8		No Yes	94 68	226+	9.3 2.5		Moist Noist	98.8 106.4	
3			FS BS	148 140	8 6		No No	156+ 114	273+	4.8 2.3		Moist Moist	102.7 98.6	
6			B6 FS	142 149	4.5 11	20	No Yes	109 61	259 220+	2.3		Moist Moist	98.6 100.9	
7999			FS FS	151 152	10 8.5	20	Yes	60 114+	217+	2.5		Moist Moist	100.9 106.4	
>			FS FDA	150 157	8 17	15	No No	69 93	228+	2.5		Moist Moist	106.4	
2			FS FS	153	11	17	No	95 66 57	229 213+	2.3		Moist Moist	106.5	
8 • •			FS	155 156	8.5		No	87	253+	3.0		Moist	104.6	
5		La Turballe	PS BS	154 69	7 24	10	No Yes	95 41	254+ 115	3.0 3.1	2.4	Moist Moist	104.6 91.4	89.7
			BS BS	70 72 66	20 18		Yes No	43 51	218+ 224+	2.6 2.6	3.8 3.8	Moist Noist	92.8 92.8	94.ե 94.ե
)			BS FS	71	17.5 15		Yes No	34 101	203+ 257+	3.5 4.8	4.1 5.0	Moist Moist	90.9 95.6	88.5 93.0
2			BS BS	68 67	13.5 12.5		No No	35 41	159 131	3.6 3.5	4.1 4.1	Moist Moist	88.6 90.9	89.1 88.5
						/2-ton 1	M34, 6x6 1	ruck, Test	Weight 16,7					
3	France	La Turballe	BS	57	17	15	Yes	42	188	3.4	3.5	Moist	88.3	93.8
+			BS BS	60 55 58	16.5 15		Yes Yes	41 24	152 154	2.9 3.0	3.7 3.0	Moist Moist	92.4 90.3	88.3 91.8
Ś			BS FS		14 13.5		Yes No	52 55	232+ 237+	3.4 3.1	3.5 3.5	Moist Moist	88.3 93.7	93.8 92.4
8 9			BS FS	59 54	12.5 11		No No	49 79	217+ 238+	3.4 4.4	3.5 3.3	Moist Moist	88.3 93.1	93.8 95.8
				2-1/2		UTKW 353,	6x6 True		n, Test Weig	ht 14,670 1				
,	Trance	Ia Turballe	FS	39	13.5	20	No	60	183	2.6	4.5	Moist		
•			FS	37	12		No	53	199+	2.6	13.4	Wet		
						JKW 353,	6x6 True		n, Test Weig		-			
23	France	La Turballe	FS FS	34	13 11.5	30	No Yes	128 55	178	2.6	4.6 13.1	Moist Wet	95.4	90.2
•		Suscinio	es Fs	43 111	10.5 10		Yes Yes	55 62	176 199	4.0 2.4	4.0	Moist Moist	92.2 104.8	89.8
5 T			FS FS	113 46	8 12	25	No Yes	134+ 54	181	1.8 10.5		Moist Wet	97.7 99.4	
3		La Turballe	FS FS	47 32	23 16	20	Yes No	45 115	152	4.7 2.7	5.0 3.4	Moist Moist	90.2	93.1
) L			BS FS	33 30	14.5 13		No Yes	31 50	145 154	3.6 2.8	4.4 6.5	Mcist Moist		
5			TS TS	36 38	13 13		No Yes	74 61	226 182+	3.0 2.8	4.4 3.0	Moist Moist		
4 5			BS TS	50 44	12.5 11		Yes No	41 78	100 241	3.6 4.0	3.8 3.4	Moist Moist	90.1 94.7	89.7 93.8
ć 7			FS FS	45 31	11 10.5		No	58 67	174 218+	10.6 6.5	3.6	Wet Moist	99.5	
69			FS BS	35	10.5		No	61 55	202+ 176	4.2 4.0	3.0 4.0	Moist Moist	.92.2	89.8
9 0 1		and a d	BS BS	40 112	10		No	59 98	211+	3.6 3.8	3.9	Moist Moist	91.2 103.4	88.8
5		Succinio	F S	114 115	9 9 8		No No	71 111	194	2.4		Moist Moist	104.8	
3		La Turballe	FS FS	48	21	10	No	57 30	143	4.7	5.0 4.1	Moist Moist	90.2 92.9	93.1 89.3
5			BS BS	53 52	15 12 14		No No	26	103 92	3.0	3.2	Moist Moist	90.2 91.2	89.8
7 8			BS BS		12.5		No No	32 41	110 100	2.9 3.6	3.7 3.8	Moist	90.1	90.5 89.7
					<u>2-1/2</u>	ton DUK	₩ <u>353,6x</u> t	Truck, Te	st Weight 15	<u>,285 lb</u>				
9	Cape Cod	Wellfleet	78 78	17 16	14.5 14.5	20	Yes No	30 72	75	 3.5		Moist Moist	97.5	
1 2			BS FS	21 18	15 14		Yes Yes	49 81	151	0.4		Dry Dry	96.2	
3			75 36	22	13 14	15	No Yes	112 49	151	2.5 0.4		Dry Dry	94.9 96.2	
5			PS PS	23	13.5 11	-/	No	112 32	64			Dry Dry		
-				-7		5-ton M5		-	eight 32,663	16		-		
7	France	Suscinio	FS	160	9	20	Yes	70	203+	6.0		Moist	105.1	
8			F8 F8	159 158	8.5 8		No Yes	95 51	245+ 145	5.0		Moist Moist	105.0	
0 1 12		La Turballe	BB	85 86	17 17	15	Yes Yes	47 41	168 170	2.7	3.6 3.6	Noist Noist	91.0 91.0	92.1 92.1
2			BS FS	84 81	11.5 10.5		No No	52 60	161	2.3	3.2 3.9	Noist Noist	92.4 91.6	91.7 95.5
3 34 55			1°5 185	83 82	10.5 10		No No	81 62	205	2.6 2.3	3.9 3.2	Moist Moist	91.6 92.4	95.5 91.7
56 57		Suscinio	75 75	161 162	9		No No	64 73	164 183	7.1 7.1		Noist Noist	107.9 107.9	
								Continued)	-				(Sheet 2 of	73 sheets)

						Tire		Inform	Traffic	Noisture	Content	Moisture Class.	Dry De	neity
						Pres-		Average	Cone Index	S by W	tabt	0- to	10/0	u ft
Item			Test		flope	-	Inno-	0- to 6-	6- to 12-	0- to 6-	6- to 12-	6-in. Depth	0- to 5- in. Depth	6- to 12-
<u>lo.</u>	Test Program	Location	Ares	<u>10.</u>	-	pei	bilised	in. Depth	in. Depth	in. Depth	10. 00000		In. Depen	III. Deput
						1	meeled Ve	hicles (Co	ntinued)			-		
					5-to				et Weight 20	,100 1b		-		
158	Leke	Warren	DA	43	19.5	30	Yes	74	188			Noist		
150	Michigan	Dunes	DA	42	18	30	No	74 85 84	231+			Noist		
159 160			DA	46A	17.5		Yes	84	236+			Moist		
161			DA	47 44	16.5		llo	84	202			Noist		
162			DA	b b	14		Yes	69	185			Moist		
163 164			DA	45	10.5		No	75 74 89	178			Moist		
164			DA DA	49 48	24	20	Yes	74	189			Noist Moist		
165 166 167			DA	40	23 18.5		Yes No		235 237+			Moist		
100			DA	50 463	17.5		lio lio	93 84 63 64 63	236+			Moist		
168			DA	554	16		Yes	<u>61</u>	120			Noist		
169			DA	51	15		Yes	63	131			Noist		
170			DA	52	15		llo	64	125			Noist		
171			DA	15 53595969995937978	15 14		No	71 68	117			Noist		
172			DA	53	14		Yes	68	133			Moist		
173			DA	54	6		No	50 64 76 98 73	102			Moist		
174			DA	92	28	15	Yes	64				Moist		
175			DA	59	28		Yes	76	195+ 243+			Noist		
176			DA	60	27		No	98	243+ 166			Noist		
177			DA	~ 25	27 24 24		Yes	13	265			Noist Noist		
178		•	DA DA	20	24		Yes No	98 110	207			Moist		
179 180			DA	22	21		No	105				Moist		
181			DA	57	17.5		Tes	57	116			Moist		
182			DA	67	17.5		No	86				Noist		
183			DA	58	16		No	58	117			Noist		
184			DA	55B	16		No	57 86 58 64 96 67	120			Noist		
185 186			DA	98 104	34.5	10	Yes	96	249			Moist		
186			DA	104	28.5		Yes	67	142			Moist		
187			DA	102	27		Yes	67	222			Moist		
188			DA	99 100	27		No	91 64				Moist		
189			DA DA	100	21		Yes	04	145			Moist Moist		
190			DA		25		No No	95 88	201			Moist		
191 192			DA	105 96	25 24		No		265			Moist		
193			DA	101	21		No.	98 75				Noist		
.,.							Tree	ked Vehicl						
			-		Step	lard D6	Engineer	Tractor, T	est Weight 2	2,667 15				
	a a.a											Madat	98.1	
194	Cape Cod.	Wellfleet	FDA	115	36-1/8	2	Yes	59 49	114 80	2.3		Noist Noist		
195 196			FDA	116	49		Yes	49	101			Noist		
196			FDA	117	55		Yes	50				MULBO		
						ion 144 1			st Weight 30				-0.1	
197	Cape Cod	Wellfleet	FDA	94	51		No	48	101	2.3		Moist	98.1	
198			FDA	95	53		Yes	37	79			Moist		
						L/4-ton	M29C Wea		leight 4,200	16				
199	Lake	Warren	DA	64	56.5		Yes	23	82			Moist		
200	Michigan	Dunes	DA	23	51		Yes	39 24	114	1.0		Moist		
201			DA	25 86	50		Yes	24	111	3.7		Moist		
202			DA	86	47.5		No.	81	129 66			Noist Noist		
203 204			DA DA	30 82	46.5		Yes	16 58	100	2.5		Noist		
204			DA	29	45.5 44.5 38.5		No No	25	88	1.0		Moist		
ev 2			DA	22			lio lio	29	70	1.0		Noist		
206														

Table 2 (Concluded)

 Table 3

 Summary of Data and Test Results, Maximum-Towing-Force Tests with Self-propelled Wheeled Vehicles

	Dussary of Date and lest Results, Maximus-fouring-force lests with Self-properies wheeled vehicles													
Item					Tire Pres-	Towin	asured M g Force (on Slopes	Maximu	rected n Towing for Level	Average Cone Index 0- to 6-	Moisture Content \$ by Weight	Moisture Class.	Dry Density lb/cu ft
No.	Test Program	Location	Test Area*	No.	psi	Slope \$	16	<pre>> of Test Weight</pre>	16	<pre>> of Test Weight</pre>	in. Depth Before Traffic	0- to <u>6-in. Depth</u>	0- to 6- in. Depth	0- to 6-in. Depth
						1/4-ton	M38A1, 4:	x4 Truck, T	est Weig	ht 2,690 1b				
1 2 3 4 5 6 7 8 9 10 11 2	Padre Jaland	Gul f	FS BSF FS BSF FS BSF FS BSF	3563377488 7377488 739996	30 20 15 10	0.5 0.5 0.5 -0.5 -0.5 -0.5 -0.5 -0.5	1,229 667 550 1,259 875 697 1,399 968 884 1,555 1,120 1,022	45.7 24.8 20.4 325.9 52.0 36.0 32.9 57.8 41.6 38.0	1,229 653 550 1,259 861 683 1,399 955 872 1,555 1,120 1,009	45.7 24.3 20.4 46.8 325.4 52.0 352.5 352.5 352.5 352.5 352.4 57.8 41.6 37.5	300#* 377#* 81 310#* 107 862#* 370#* 71 300#* 314** 324** 56	23.5 3.1 15.9 3.4 15.6 2.3 23.9 23.9 23.9 24.0	Wet Moist Wet Wet Wet Wet Moist Wet Moist Wet	99.9 85.9 96.1 95.7 95.7 95.5 95.5 97.3 91.2
					-	1/4-ton	M38A1, 4:	x4 Truck, T	est Weig	ht 2,960 lb				
13 14 15 16 17 18 19 20 21 22 24 24 25	Padre Island	Gulf Lagoon Gulf Lagoon Gulf Lagoon Gulf Lagoon	fs sch sch sch sch	40-1 40-2 193 194 194 195 194 255 195 196	30 20 15 10	0 -2.0 0 0 -1.0 -0.5 0 1.0 0	1,368 1,136 707 610 1,516 873 556 1,636 1,636 1,636 1,083 838 1,744 1,317 764	46.2 38.4 230.6 51.2 29.5 18.3 55.6 368.3 58.5 368.3 58.5 28.5 28.5 28.5 28.5 28.5 28.5 28.5	1,368 1,136 648 1,516 873 556 1,607 1,607 1,607 838 1,773 1,317 764	46.2 38.4 21.0 51.2 29.5 184.3 54.3 59.5 28.3 59.5 28.3 59.5 28.3 29.5 28.3 29.5 29.5 28.3 29.5 29.5 29.5 29.5 29.5 29.5 29.5 29.5	4 30## 330## 337## 52 307## 382## 382## 395## 352## 29 380## 335## 235## 21	23.1 19.3 24.0 3.1 20.2 22.5 3.1 21.2 23.1 3.0 21.3	Wet Wet Wet Wet Moist Wet Moist Wet Wet Wots Woist Wet	100.4 95.9 91.3 95.9 78.7 100.2 95.2 82.1 100.0 96.2 85.0
						1/4-ton	M38A1, 4:	x4 Truck, T	est Weig	ht 3,200 lb				
2678290312334556778 37333333333333333333333333333333333	Padre Island	Gulf Lagoon Gulf Lagoon Gulf Lagoon Gulf	fsficsfics fbcsfics ffcsfics ffcs ffcs	44 88 45 190 46 190 46 190 47 190 47	30 20 15	0 -0.5 0 -0.5 -1.0 0 1.0 0 0 0 0	1,459 839 996 681 1,631 925 941 742 1,800 1,153 522 1,114 1,905	45.6 26.2 31.1 21.3 51.9 29.4 23.2 23.2 23.6 2 36.0 34.3 34.5 59.5	1,459 822 996 714 1,616 893 971 1,800 1,153 522 1,114 1,905	45.6 25.7 31.1 22.3 50.9 25.0 25.0 25.0 25.0 36.0 16.3 34.5 59.5	362** 137 65 290** 100 37 285** 51.5** 80 33 330** 482**	23.0 12.9 20.1 2.9 23.2 18.0 21.6 3.3 22.5 24.4 20.6 2.6 22.5	Wet Wet Wet Wet Wet Wet Wet Wet Wet Wet	100.3 93.3 96.9 99.8 95.6 95.6 95.6 98.2 88.1 95.3 88.1 95.3 98.7
39 40		Gulf	Surf TF	47-2 72		0 -0.5	1,813 1,124	56.7 35.1	1,813 1,107	56.7 34.6	125	23.1	Inundated Wet	90.2
41 42		Lagoon Gulf	TF BC	192 51		0 -2.5	648 1,319	20.2 41.2	648 1,238	20.2 38.7	33 341**	20.6 3.3	Wet Moist	88.1 95.6
						<u>3/4-ton</u>	M37, 4x	4 Truck, Te	st Weigh	t 5,687 1b				
445678901234 555555	Padre Island	Gulf	fscff fscff fscff fscff fscff fscff fscff	171 85 18 286 19 37 20 48	30 20 15 10	0 0.5 0.5 0.5 0 -0.5 0 0.5 0 0.5	2,150 1,030 1,123 2,256 1,421 1,320 2,625 1,690 1,711 2,800 2,072 2,186	37.8 18.1 19.7 39.7 25.0 23.2 46.2 29.7 30.1 49.2 36.4 38.4	2,150 1,030 1,177 2,286 1,450 2,684 1,690 1,683 2,800 2,186	37.8 18.1 20.7 40.2 25.2 25.2 47.2 29.6 49.2 36.9 36.9 38.4	477** 367** 128 420** 103 407** 310** 62 396** 287** 61	22.4 4.7 16.7 22.1 4.7 21.8 22.6 5.5 22.6 22.7 4.5 23.3	Wet Moist Wet Moist Wet Moist Wet Moist Wet Moist Wet	100.7 95.8 92.7 101.9 95.7 93.4 100.7 95.0 91.8 99.5 97.8 95.6
						<u>3/4-ton</u>	M37, 4x	Truck, Te	st Weigh	t 6,407 1b				
556 578 590 612 634 566 667 890 70	Padre Island	Gulf Lagoon Gulf Lagoon Gulf Lagoon Gulf Lagoon Gulf	rsffyrsffyr ffreffr	9 81 185 10 82 186 14 11 83 187 15 12 84 188 16	30 20 15 10	0 -0.5 -1.0 0 -1.0 0 0 -0.5 -0.5 -0.5 -0.5 0 -0.5 0	3,008 1,034 9355 2,8555 1,333 1,675 2,909 2,225 1,445 2,909 2,225 1,445 2,268 1,695 2,463	46.9 14.7 18.2 44.5 26.1 24.7 26.1 24.7 28.8 51.0 45.4 34.7 28.8 51.0 45.5 36.5 38.4	3.008 1,064 910 1,102 2,855 1,378 1,455 2,909 2,191 1,454 2,909 2,296 1,762 2,463	46.9 16.2 17.2 41.5 26.1 24.5 28.2 34.2 7 34.5 34.5 34.5 34.5 34.5 34.5 34.5 34.5	417** 87 35 312** 500** 104 44 337** 480** 73 37 330** 422** 63 32 340**	23.2 17.3 20.6 4.6 23.2 21.8 21.8 21.8 21.9 23.4 21.9 24.5 23.4 21.9 24.8 21.9 4.5 21.9 25.0	Wet Wet Moist Wet Wet Wet Wet Wet Wet Wet Wet Wet We	98.4 90.0 73.8 96.8 97.4 96.1 87.0 95.7 99.1 99.1 99.1 86.9 95.2 87.1 87.1 88.4

(Continued)

* See "Beach Terms" under "Definitions" in text. ** 0.2-in. cone penetrometer reading multiplied by 2.5.

Ę.

(Sheet 1 of 5 sheets)

Table 3 (Continued)

	Table 3 (Continued)													
					Tire Pres-		nsured Ma	aximum on Slopes	Maximum	rected a Towing for Level	Average Cone Index 0- to 6-	Moisture Content % by Weight	Moisture Class.	Dry Density lb/cu ft
Item No.	Test Program	Location	Test Area	Test No.	sure psi	Slope \$	16	% of Test Weight	1b	<pre>% of Test Weight</pre>	in. Depth Before Traffic	0- to 6-in. Depth	0- to 6- in. Depth	0- to 6-in. Depth
					-									
127345677898888388888889891993459878	Padre Island	Gulf Legoon dulft Gulft Gulft Gulft Gulft Gulft Gulft Gulft Gulft	FS BBC F IF BC BS IF BC BC F IC BC F BC F I BBC F BC F I BBC F SC F I BBC F I BBC F I F BC F I F F I F BC F I F F F I F F	$\begin{array}{c} 1-1\\ 1-2\\ 5-3\\ 77\\ 141\\ 180\\ 209\\ 6\\ 78\\ 142\\ 1806\\ 210\\ 3\\ 7\\ 9\\ 143\\ 183\\ 211\\ 4-1\\ 8\\ 80\end{array}$	30 30 15	3/4-ton c 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	M37, 4xi 3,100 3,201 1,392 1,392 1,550 1,550 1,550 1,550 1,550 1,550 1,505 1,505 1,505 1,505 1,505 1,505 1,805 1,805 1,805 1,805 1,650 1,650 3,565 2,593 3,594 3	+ Truck, Te 4 3.1 44.5 17.4 19.4 20.9 21.6 22.5 12.5 12.5 12.5 12.5 25.1 22.5 11.8 49.2 26.3 25.1 14.5 9 47.7 28.5 25.1 15.9 47.7 28.5 25.0 23.0 51.3 23.0 55.1 23.0 37.6 9 20.9 23.0 25.0 23.0 25.0	st Weight 3,100 3,2047 1,3447 1,550 1,550 1,550 1,550 1,550 1,550 1,550 1,550 1,550 1,550 1,550 1,505 3,425 2,943 3,605 2,595 2,595 3	$\begin{array}{c} {}_{k} {}_{k} {}_{1} {}_{1} {}_{k} {}$	378** 510** 272** 360** 113 60 34 86 96 490** 129 60 48 62 122 372** 300** 49 60 38 69 120 80 60 38 69 110 502** 472** 300**	26.1 24.2 4.8 17.6 20.1 3.8 23.7 5.3.5 21.6 4.1 23.9 5.1 21.4 23.9 21.4 23.9 21.4 23.9 21.4 23.9 21.4 23.9 21.4 23.9 21.4 23.1	Wet Wet Moist Noist Wet Noist Wet Noist Wet Noist Wet Noist Wet Noist Wet Noist Wet Noist Wet Wet Wet	95.2 96.6 96.0 91.1 94.5 99.7 986.8 99.4 56.8 99.4 56.6 88.1 97.5 88.1 99.4 56.6 88.1 99.4 56.6 99.5 56.6 99.4 56.6 99.4 56.6 99.4 56.6 99.4 56.6 99.4 56.6 99.4 56.6 99.4 56.6 99.4 56.6 99.4 57.7 99.4 56.6 99.5 56.6 99.5 56 56.6 56.
99 100			Surf TF	144 184		0	2,100 1,725	29.2 24.0	2,100 1,725	29.2 24.0	60 49	19.3	Inundated Wet	87.7
101 102		Gulf† Gulf†	BC BC	208 212		0.5 0	1,900 2,050	26.4 28.5	1,933 2,050	26.9 28.5	98 101	4.2 3.6	Moist Moist	88.1 95.6
						3/4-ton	M37, 4x	4 Truck, Te	st Weigh	<u>t 5,687 16</u>				
103 104 105 106 107 108 109 110 111 112 113	Cape Cod	Wellfleet	DA DA DA DA DA DA DA DA DA	1 2 3 4 5 8 9 10 11 12 13	30 20 15 10	2 -1 1.5 3 1 32.5 -2 0	800 950 1,150 1,250 1,250 1,300 1,250 1,600 1,750 1,700	14.1 16.7 20.2 18.5 22.0 22.9 22.0 28.1 30.8 29.9	916 893 1,007 1,206 1,137 1,422 1,359 1,422 1,740 1,638 1,700	16.1 15.7 17.7 21.2 20.0 25.0 23.9 25.0 30.6 28.8 29.9	128 128 104 136 139 138 131 131 120 127 103	3.3 4.2 2.7 3.1 3.2 2.8 2.8 2.8 2.8 1.9	Moist Moist Moist Moist Moist Moist Moist Moist Moist Moist	96.0 97.5 102.9 100.6 99.6 97.2 97.2 97.2 97.9
					1	2-1/2-to	n M211,	6x6 Truck,	Test Weig	sht 18,470	<u>1</u> b			
114 115 116 117 118 119 120 121 123 124 125 126 127 128 129 130 131 132 133	Mississippi River	Vicksburg Bridge		18 19 21 22 23 4 25 26 27 8 29 31 23 34 55 37 33 4 55 37	30 20 15 10	0 -1.4 -2.1 -0.4 -2.7 -1.5 -0.5 -3.6 -3.6 -0.4 1.6 0.2 0.6 0.8 -0.6 0.8 -0.6 0.8 -0.6 0.8 -0.6 0.8 -0.6	1,880 2,122 2,325 3,149 3,449 3,449 3,449 3,449 3,449 3,449 3,449 3,449 3,449 3,449 3,449 3,458 3,562 3,574 3,573 3,57533 3,57533 3,57533 3,57533 3,57533 3,57533 3,57533,	10.2 11.5 11.6 11.6 12.6 17.0 16.7 18.7 18.6 16.0 16.3 19.4 19.4 27.2 28.6 26.4 27.8 26.7 25.7 5556 Truck,	1,880 1,865 1,755 1,958 2,807 2,807 3,343 2,715 2,356 3,343 2,715 2,356 3,353 3,563 3,559 5,283 3,559 5,283 4,825 4,825 4,825 Test Weij	10.2 10.1 9.5 10.6 9.9 16.0 15.2 18.2 18.2 18.2 18.7 14.7 14.7 18.2 19.4 19.0 28.6 28.4 28.5 28.4 28.5 324 14,750	132 122 122 122 124 126 126 147 140 121 117 112 113 121 122 147 140 121 117 112 113 131 135 136 138	3.6 3.4 3.5 3.5 5.7 4.5 3.5 5.9 2.4 3.9 2.4 3.9 2.4 3.9 2.4 3.9 2.4 3.2 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2	Moist Moist Moist Hoist Noist Moist Moist Moist Noist Noist Moist Moist Moist Moist Moist Moist Moist Moist Moist Moist	90.7 89.6 86.2 87.9 91.5 89.5 89.5 89.5 89.5 91.2 90.3 89.6 87.7 90.9 90.9 90.2 88.4 87.4 90.2 88.4
134	Padre Island	Gulf	TF	89	- 30	-0.5	4,022	27.3	3,953	26.8	 90	31.3	Wet	87.3
135 136 137 138 139 140 141 142 144 144 145		Lagoon Gulf Lagoon Gulf Lagoon Gulf Lagoon	FS TF FS TF FS FF FS FF FS	931 929 942 9532 9532 9542 9532 9544	20 15 10	0 -0.5 -0.5 0 -0.5 0 -0.5 0 -0.5 0 0	6,958 2,820 3,975 7,410 2,855 4,640 7,200 3,774 5,333 7,250 3,432	47.2 19.1 26.9 50.2 19.4 31.5 48.8 25.6 26.2 23.3	6,958 2,820 3,894 7,331 2,855 4,640 7,124 3,774 5,266 7,250 3,432	47.2 19.1 26.4 49.7 19.5 48.3 25.6 35.7 49.2 23.3	467** 42 63 472** 51 442** 50 50 445** 32	23.0 19.9 23.3 21.8 19.6 22.4 24.8 35.2 22.8 22.8 22.8 22.7 17.6	Wet Wet Wet Wet Wet Wet Wet Wet Wet Wet	99.4 92.8 89.9 99.4 89.2 88.6 96.4 80.9 83.6 100.0 80.6

Table 3 (Continued)

[tem No.	Test Program	Location	Test Ares	Test No.	Tire Pres- sure		isured Margaret M 16	on Slopes 5 of Test Weight	Maximu	rected m Towing for Level \$ of Test Weight	Average Cons Index O- to 6- in. Depth Before Traffic	Noisture Content \$ by Weight O- to 6-in. Depth	Moisture Class. O- to 6- in. Depth	Dry Density 1b/cu ft 0- to 6-in. Depti
	Test Trogram	HOGHCION	Area	<u> </u>	<u>psi</u> 2					ht 17,450 1		o-m. sepun	In. Deput	<u>0-111. Depu</u>
146 147 148 150 151 152 155 155 156 157	Padre Island	Gulf	rscfrscfrscfrscf	101 105 109 102 106 110 103 107 111 104 108 112	30 20 15 10	0.5 2.0 -1.0 0 0 0.5 0 0 0 0 0	7,097 4,610 2,488 8,312 5,048 8,786 6,500 5,777 9,400 7,314 6,564	40.7 14.3 14.3 28.9 373.2 373.9 333.9 41.9 37.6	7,189 4,956 2,321 8,312 5,970 5,048 8,865 6,500 5,777 9,400 7,314 6,564	41.2 28.4 13.3 47.6 28.9 34.9 50.2 373.9 53.9 53.9 53.9 53.9 53.9 53.9 53.9 5	312** 325** 505** 352** 62 432** 352** 69 55'** 317** 47	23.5 6.5 6.7 21.7 7.0 23.4 23.4 23.4 22.2 6.5 22.2 6.5 22.2	Vet Noist Noist Wet Vet Wet Wet Noist Wet	98.22 98.11 99.6 97.5 97.5 93.6 93.6 85.9 85.9 85.9 87.5
.58	Mississippi	Vicksburg		60	<u>ج</u> 60	-0,8		6.8	1,125	<u>18,750 1</u> 6.0	134	2.0	Moist	90.5
55961263455667890112345567	filesitesippi River	Bridge			30 20 15 10	-1.3 -1.2 -0.3 -1.3 -2.0 -1.3 -2.0 -1.6 -0.5 -1.6 -0.5 0.5 0.7 -1.8 -0.7 -1.8 -0.7	$\begin{array}{c} 1,270\\ 1,594\\ 1,050\\ 1,1506\\ 3,626\\ 4,907\\ 3,984\\ 2,953\\ 4,020\\ 4,137\\ 4,153\\ 5,257\\ 4,153\\ 5,257\\ 4,538\\ 6,276\\ 6,100\\ \end{array}$	8.5 7.5.6 6.1 19.3 21.9 21.4 22.1 22.1 22.1 22.1 22.1 22.1 22.4 23.5 24.4.8 33.5 24.4.8 33.5 24.5 33.5	$\begin{array}{c} 1,350\\ 1,194\\ 9,150\\ 3,375\\ 3,750\\ 2,755\\ 4,275\\ 4,275\\ 4,275\\ 4,275\\ 4,275\\ 4,275\\ 4,275\\ 5,156\\ 4,294\\ 5,156\\ 4,969\\ 5,962\\ 5,962\end{array}$	7.2 5.3 6.1 18.0 19.7 22.0 20.7 21.5 27.5 27.5 27.5 27.5 27.5 21.8 21.8 21.8 21.8 21.8 21.8 21.5 27.5 21.5 21.5 21.5 21.5 21.5 21.5 21.5 21	14 14 12 169 143 160 156 129 139 152 125 125 135 135 134 140 134 132	0 5 1 6 6 5 1 6 6 5 7 5 8 4 4 5 8 6 9 8 2 9 8 9 8	Moist Moist Moist Moist Moist Moist Moist Moist Moist Moist Moist Moist Moist Moist Moist Moist Moist	2887.617588 877.617588 877.617588 87.5708 89.887.5708 89.361778 89.885.885.361778 89.885.361778 89.885.361778 89.885.885.3651778 89.885.885.3651778 89.885.885.3651778 89.885.885.3651778 89.885.885.3651778 89.885.885.3651778 89.885.885.3651778 89.885.8858 89.98588 89.98588 89.98588 89.98588 89.98588 89.98588 89.98588 89.98588 89.98588 89.98588 89.98588 89.98588 89.98588 89.98588 89.98588 89.98588 89.98588 89.98588 89.99588 89.99588 89.99588 89.98588 89.995888 89.99588 89.99588 89.99588 89.99588 89.99588 80.99588
						2-1/2-tor	<u>1 M34, 6</u> 1	6 Truck, 1	lest Weig	ht 11,775 1	b			
178 179 180 181 182 183 184 185	France	Succinio	FC FS FS FS FS FS FS	132+ 133+ 134+ 135+ 136+ 136+ 138+ 139+	20 15 10	9 7.5 8 8 8 10 9.5	1,542 1,584 1,600 1,515 1,408 2,417 2,295 2,041	13.1 13.5 13.6 12.9 12.0 20.5 19.5 17.3	1,871 1,810 1,851 1,781 1,781 2,591 2,581 2,321	15.9 15.4 15.7 15.1 14.4 22.0 21.9 19.7	78 92 51 70 92 94 64 55	5.7 3.3 2.2 2.8 4.0 2.1 2.1 2.4	Moist Moist Moist Moist Moist Moist Moist	108.1 109.7 105.0 103.0 102.1 103.3 104.3 99.8
.86	France	La Turballe	FS	61	10	14.5	1,850	11.0	4,278	ht <u>16,775 1</u> 25.5	<u>.0</u> 66	3.0	Moist	90.9
87			FS	62		15	2,225	13.3	4,747	28.3	125	4.0	Moist	89.6
88	France	La Turballe	FS	<u>ع</u> 63	1/2-to 15	<u>n DUKW 3</u> 6.5	2,700	18.4		est Weight 24.9	14,670 1b 103	3.6	Moist	92.6
.89 .90	J T MILL	ha tu outre	FS FS	64 65	10	7.5 8.5	3,200 3,390	21.8 23.1	3,653 4,298 4,636	29.3 31.6 est Weight	141 86	3.5 2.6	Moist Moist	94.0 94.1
191	France	Suscinio	FS	<u></u> 116‡	<u>30</u>	6	4,058	20.6	4.230	21.5	143	6.9	Moist	103.9
92 93 94 95 95 96 97 98 99 99 80 80 80 80 80 80 80 80 80 80 80 80 80		La Turballe Suscinio La Turballe	***************	117# 121# 122# 124# 119# 120# 125# 126# 125# 126# 127# 76 77 128# 129# 130# 73	20	888998878881159.5 11100.5	2,696 3,390 3,376 3,561 4,924 4,018 4,415 3,423 2,000 2,860 3,423 2,000 2,860 3,298 4,078 4,078 4,078 3,505	13.7 17.2 17.2 17.2 18.1 25.0 17.6 20.4 17.1 17.4 10.2 14.5 16.9 16.8 20.7 21.0 21.8	3,120 3,730 3,820 3,970 3,820 3,970 3,820 4,250 4,250 4,170 3,830 3,760 4,170 3,830 3,940 4,520 4,5692	15.9 19.0 19.4 19.4 28.3 19.3 21.6 23.8 19.1 2.5 19.3 23.0 23.4 23.4 9	133 105 106 133 140 107 67 95 67 92 104 80 143 68 61 68 69	5.9 1.2 0.9 1.9 2.3 3.4 9 5.5 5.5 2.4 7 3.0 2.5 3.0	Noist Noist Noist Noist Noist Noist Noist Noist Noist Noist Noist Noist Noist Noist Noist	104.1 104.6 105.5 103.0 102.5 103.0 102.5 105.4 104.4 102.1 106.2 96.5 93.3 104.8 108.7 103.9 105.9 105.9 105.9
210 211 212 212 213 214			FS FS FS FS	74 75 78 79 80	10	12 12 12 12 12	2,750 2,767 3,610 4,057 3,950	14.0 14.1 18.4 20.6 20.1	5,133 5,150 5,009 6,449 6,341	26.1 26.9 30.5 32.8 32.2	95 96 86 78 117 86	3.6 4.0 4.8 3.5 4.8	Moist Moist Moist Moist Moist	92.4 88.7 97.1 93.3 97.1
					2-	1/2-ton I				ight 15,28				
215 216 217 218 219	Cape Cod	Wellfleet	DA DA DA BS	24 25 26 27 41	30	-2.0 0 1.0 -0.5 1.0	3,225 2,950 2,900 3,125 625	21.1 19.3 19.0 20.4 4.1	2,919 2,950 3,057 3,042 780	19.1 19.3 20.0 19.9 5.1	169 181 193 160 48	2.7 2.1 3.2	Moist Moist Moist Moist Moist	98.6 100.1 92.4
220			BS	42		0.5	750	4.9	825	5.4	կև		Moist	

** 0.2-in. cone penetrometer reading multiplied by 2.5.
* Indicates tests conducted with tradicic operating on a side slope. See paragraphs 76 and 77.

(Sheet 3 of 5 sheets)

Table 3 (Continued)

	Table 3 (Continued)													
Item			Test	Test	Tire Pres- sure		asured Ma g Force of	nximum on Slopes	Maximu	rected Towing for Level 5 of Test	Average Cone Index 0- to 6- in. Depth	Moisture Content \$ by Weight 0- to	Moisture Class. 0- to 6-	Dry Density 1b/cu ft 0- to
No.	Test Program	Location	Area	No.	<u>psi</u>	<u> </u>	<u>1b</u>	Weight	<u>1b</u>	Weight	Before Traffic	6-in. Depth	in. Depth	6-in. Depth
					1/2-ton	DUKW 35		uck, Test	Weight 1	5,285 16 (0				
221 222 223 225 226 227 228 230 231 232 233 234 235 235 236 237 238	Cape Cod	Wellfleet	DA DA BES BES DA DA DA BES BES DA DA BES BES BES BES BES	28 29 34 34 45 1 32 33 46 77 8 43 55 69 90 1	20 15 10	-0.5 -1.0 0 1.5 0.55 -2.5 -3.0 -1.0 0 3.0 0 0.5 1.0 -1.5	3,800 3,625 3,625 1,200 1,200 1,200 5,225 4,700 1,650 1,650 1,650 5,200 5,200 5,200 5,200 3,100 3,150	24.9 225.7 7.8 34.2 30.3 12.5 30.8 10.8 34.0 9 34.0 9 34.0 9 34.0 9 34.0 9 34.0 9 34.0 9 34.0 9 34.0 9 34.0 9 2.5 .6	3,730 3,4705 1,2025 1,4226 1,8454 4,2349 1,6600 1,6555 5,151 5,201 3,256 2,919	24.4 226.2 7.8 9.0 31.7 29.3 11.8 10.8 33.7 29.3 11.8 33.0 21.3 21.3 24.0 21.3 21.3 21.3	185 159 172 49 60 172 182 142 46 43 40 162 160 129 40 39 14	2.1 1.8 2.5 2.9 1.9 2.9 3.3 2.1 2.5 2.9	Moist Moist Moist Moist Moist Moist Moist Moist Moist Moist Moist Moist Moist Moist Moist Moist	100.2 99.6 94.0 93.6 100.6 90.8 90.7 100.8 101.8
						4		Truck, Tes						
239912234567899122345567 232242234567899122345567	Fadre Island	Lagoon Gulf Lagoon Gulf Lagoon Gulf	FS BSF TF BC FS FS FS FS FS FS FS FT BSF FS FT BSF FS FT FS FT FS FT FS FT FS FS FS FS FS FS FS FS FS FS FS FS FS	60 117 121 197 64 61 122 198 65 62 119 123 199 66 63 120 124 200	30 20 15 10	1.0 0 1.5 -1.5 1.5 0 0.5 -1.5 0 0.5 -1.0 0.5 -1.0 0.5 0	9,303 3,900 6,336 5,760 5,052 7,231 5,052 7,231 12,804 7,875 5,809 9,860 12,804 9,860 12,804 9,860 12,804 9,860 9,860 9,860 12,805 9,860	40.3 16.9 16.9 5.2 5.9 21.9 38.2 34.1 82.6 4.0 2 2.0 2 39.2 34.2 22.6 23.0 2 39.2 2 39.2 2 39.2 39.2 2 39.2 2 39.2 39.	9,528 3,910 3,836 6,336 7,544 11,649 5,168 6,875 9,159 12,804 7,870 5,209 10,174 12,752 8,541 12,752 8,541 8,928	41.3 9 16.6.5 7 20.4.4 8 7 9 5 2,4.8 7 9 1 3 6 6 1 2 0 7 9 8 2 4 5 7 0 7 9 8 2 4 5 7 9 7 9 8 2 4 5 7 9 7 9 7 9 7 9 7 9 7 9 7 9 7 9 7 9 7	355** 97 76 52 340** 35 110 47 305** 39 99 33 360** 270** 30 93 30	22.7 91.7 11.9.1 2.2 23.9 23.6 16.8 2.0 2.3.6 19.8 2.3.6 19.8 2.3.7 9.6 19.8 4.3 2.4.4 2.2.9 19.3 2.4.4 2.2.9 19.3 2.0.4	Wet Moist Noist Wet Wet Wet Wet Wet Wet Wet Wet Wet We	101.4 85.8 90.9 100.2 824.0 85.8 95.8 84.0 95.8 88.0 95.8 88.0 95.8 88.0 95.8 88.0 74.9 95.8 88.0 95.8 88.0 95.8 88.0 95.8 95.8 95.8 95.8 95.1 95.1 95.1 95.1
257 258		Lagoon Gulf	TF BC	200 67		0 2.0	6,900 10,600	29.9 45.9	6,900 11,051	29.9 47.9	30 360**	20.4	Wet Moist	97.7
						5-ton	M41, 6x6	Truck, Tea	st Weight	28,170 lb				
259 260 261 262 263 263 264 265	Padre Island	Gulf	BSF TF FS BSF TF BSF TF	130 133 68 131 134 132 135	30 20 15	0 0.5 -0.5 0 -0.5	8,700 10,081 13,200 12,200 10,500 10,280 11,200	30.9 35.8 46.9 43.3 37.3 36.5 39.8	8,700 10,081 13,200 12,338 10,367 10,280 11,071	30.9 35.8 46.9 43.8 36.8 36.5 39.3	189 40 455** 162 89 140 88	24.8 24.0 24.0 23.6 24.3 21.7 21.2	Wet Wet Wet Wet Wet	98.1 97.8 99.4 100.5 94.7 98.6 95.2
					5	-ton M51	, 6x6 Du	mp Truck, 1	Fest Weig	ht 32,663	<u>1</u> Þ			
266 268 269 2701 272 273 274 275 276	France	Suscinio Le Turballe	FS FS FS FS FS FS FS FS FS FS	163# 164# 165# 166# 167# 168# 87 88 89 90 91	15	8 9.5 10 10 10 12 10.5 10.5 10.5	4,279 4,477 2,424 2,280 3,525 3,321 2,343 2,979 2,979 2,979 2,619 3,223	13.1 13.7 7.4 7.0 10.8 10.2 7.2 9.1 6.3 8.0 9.9	5,010 5,180 3,930 3,970 4,800 4,650 6,284 6,428 5,340 6,674	15.3 15.9 12.0 12.1 14.7 14.2 19.2 19.7 16.3 18.6 20.4	107 54 51 57 84 99 66 87 93	2.9 5.0 1.2 2.9 2.5 2.6 3.6 3.2 6 3.2 6	Moist Moist Moist Moist Moist Moist Moist Moist Moist	110.5 104.3 108.3 102.3 103.2 104.0 94.9 96.1 87.9 94.9 96.1
						-		Truck, Te						
277 278 280 281 282 283 283 284	Cape Cod	Wellfleet	DA DA DA DA DA DA DA	102 103 104 105 96 97 98 99	20 15	-0.5 0.5 0.5 -1.5 0	1,400 1,600 1,500 2,000 2,300 2,400 2,300 2,700	7.6 8.7 8.2 10.9 12.6 13.1 12.6 14.7	1,300 1,600 1,592 2,000 2,400 2,123 2,300 2,700	7.1 8.7 8.7 10.9 13.1 11.6 12.6 14.7	53 51 54 56 50 50 50 70	3.1 3.7 3.1 4.0	Moist Moist Moist Moist Moist Moist Moist	95.7 94.5 96.8 94.5
					_					ght 13,595				
285 286 288 289 290 291 293 293 295	Mississippi River	Vicksburg Bridge		163 164 165 166 169 170 173 174 175 180 181	30 20 15 10	1.0 0.3 0.4 0.2 0.5 -0.5 -0.4 0.5 -0.4 0.5 -0.4 0.5 -0.4 0	2,600 2,720 2,580 3,320 3,320 4,220 4,180 3,850 4,780 4,820	19.1 20.0 29.0 24.4 31.0 30.7 28.3 35.5 35.5	2,733 2,760 2,746 2,610 3,426 3,236 4,078 4,119 3,929 4,622 4,820	20.1 20.3 20.2 25.2 23.8 30.0 30.9 34.0 35.5	122 128 126 125 125 120 124 121 117 109 123	0.3 4.38 2.6 2.8 6 9 1 4 2.9 1 2.2 3.4 3.4 5 3.4	Noist Noist Noist Noist Noist Noist Noist Noist Noist	99.5 88.5 93.4 94.5 94.6 94.8 92.8 93.8 93.2 95.5

(Continued)

** 0.2-in. cone penetrometer reading multiplied by 2.5.
* Indicates tests conducted with vehicle operating on a side slope. See paragraphs 76 and 77.

Table 3 (Concluded)

					Tire Pres-		asured M		Cor Nexture	Toving for Level	Average Cone Index 0- to 6-	Noisture Content \$ by Weight	Moisture Class.	Dry Density 1b/cu ft
Item No.	Test Program	Location	Test Area	Test No.	sure	Slope	lb	on Slopes 5 of Test Weight	15	\$ of Test Weight	in. Depth Before Traffic	0- to 6-in. Depth	0- to 6- in. Depth	0- to 6-in. Depth
	Test Hoging	Descion	11.68		<u></u>	 Iournado				ht 31,070 1				
296	Mississippi	Vicksburg		86	30 -	0.7	6,488	20.9	6,711	21.6	103	2.9	Moist	88.2
297 298	River	Bridge		87 88		-0.8 -1.0	6,856 7,000	22.1 22.5	6,618 6,680	21.3 21.5	130 115	2.7	Noist Noist	86.8 84.4
299				89		-1.4	7,731	24.9	7,301	23.5 21.6	147	3.6 5.8	Noist Noist	86.3 90.6
300 301				91 92	20	-2.2 0.7	7,410 8,571	23.8 27.6	6,711 8,793	28.3	141 136	2.7	Noist	88.2
302				93 94		0.4 -0.4	8,333 9,522	26.8 30.6	8,451	27.2 30.2	138 136	3.4 3.3	Noist Noist	86.0 89.3
303 304				95		-0.4	8,850	28.5	9,383 8,731	28.1	136	3.3	Moist	89.3
305 306 307				97 98		-0.3 -0.3	9,000 8,840	29.0 28.4	8,917 8,731	28.7 28.1	122 136	2.7 2.7	Moist Noist	81.5 88.3
307				99		-1.4	8,890	28.6	8,451	27.2	138	2.3	Noist	87.4
308 309				100	15	-3.0 -1.2	11,038 10,520	35.5 33.9	10,098 10,160	32.5 32.7	125 124	3.1 2.7	Noist Noist	86.6 88.0
310				102		-0.7	10,750	34.6	10,533	33.9	139	2.9 3.9	Noist Noist	90.0 91.2
311 312				103 104		-0.3 -0.3	10,246 9,913	33.0 31.9	10,160 9,818	32.7 31.6	135 130	3.4	Moist	86.0
313 314				105 106		0 0.2	10,500	33.8 33.0	10,500 10,315	33.8 33.2	124 134	3.0 2.7	Moist Moist	87.0 89.1
315				107		-0.5	10,657	34.3	10,502	33.8	133	3.5	Moist	88.4
316 317				108 109	10	-0.5 -0.4	12,500 12,600	40.2 40.6	12,335 12,490	39.7 40.2	116 137	2.5 3.9	Moist Noist	88.5 88.4
318				110		-1.7	12,600	40.6	12,086	38.9	116	2.4	Moist	88.1
319 320				111 112		-0.6 -0.3	13,000 12,500	41.8 40.2	12,801 12,397	41.2 39.9	138 133	5.2 2.6	Moist Moist	84.5 87.2
5-0					5-ton	-				t Weight 2				
					2-000	ARJEO (18.	.00-26, 10-1	R Tires					
321 322	Mississippi River	Vicksburg Bridge		1-1 1-2	30	-0.3 -0.8	7,500 7,000	28.1 26.2	7,413 6,773	27.8 25.4	143 113	3.2 6.8	Noist Noist	93.8 91.6
323	Alver	BLIGGE		1-3		-1.2	6,750	25.3	6,227	24.1	119	2.5	Moist	92.4
324				1-4 1-5		-1.6 -0.1	7,750 7,000	29.0 26.2	7,307	27.4 26.1	132 140	3.6 3.5	Moist Moist	94.9 98.6
325 326				1-6		0.5	7,000	26.2	7,120	26.7	143	9.2	Moist	84.7
327 328				1-7 2-1	20	0.6 -0.2	7,000 9,000	26.2 33.7	7,147 8,933	26.8 33.5	126 151	8.6	Moist Moist	93.5
329				2-2		-0.2	9,250	34.7	9,200	34.5	151	5-3	Moist	94.3
330 331				2-3 2-4		-3.2 1.1	9,000 8,250	33.7 30.9	8,133 8,533	30.5 32.0	136 126		Moist Noist	
332				2-5 2-6		-0.1 0.6	8,750	32.8 31.9	8,720 8,667	32.7 32.5	134 135	7.3	Noist Noist	95.6
333 334				2-0 3-1	15	0.5	8,500 10,000	37.5	10,133	38.0	157		Moist	
335				3-2		-0.6 -1.2	10,500 11,000	39.4 41.2	10,347 10,667	38.8 40.0	146 136	3.7	Moist Moist	95.8
336 337				3-3 3-4		-2.0	10,500	39.4	9,973	37.4	142		Moist	
338 339				3-5 3-6		1.0 0.1	9,500 9,750	35.6 36.5	9,760 9,760	36.6 36.6	147 144	5.2	Moist Moist	90.6
340				4-1	10	0	11,500	43.1	11,493	43.1	126	3.0	Moist	92.8
341 342				4-2 4-3		-0.3 0.4	12,000 11,750	45.0 44.0	11,920	են.γ հեւե	145 141		Moist Moist	
343				4-4		-2.2	12,000	45.0	11,413	42.8	149		Moist	
					<u>5-tor</u>	XM520	GOER, 4x1	+ Cargo Car:	rier, Te PR Tires	st Weight 2	6,670 <u>1</u> 6			
344	Mississippi	Vicksburg		1-1	30	-0.4	6,500	24.4	6,400	24.0	135	6.0 3.4	Moist Moist	94.0 93.0
345 346	River	Bridge		1-2 1-3		-0.3 -2.1	6,750 7,000	25.3 26.2	6,667 6,427	25.0 24.1	132 134	3.1	Noist	94.2
346 347 348				1-4		0.4 0.1	6,500	24.4	6,613	24.8 23.5	144 142	7.8 3.3	Noist Noist	91.3 95.0
348 349				1-5 1-6		0.6	6,250 6,750	23.4 25.3	6,267 6,907		142	3.9	Moist	90.1
350				2-1 2-2	20	0.4 -1.0	8,250 8,500	30.9 31.9	8,347 8,240	31.3	130 136	4.3	Noist Noist	91.6
351 352				2-3		-0.8	8,500	31.9	8,293	31.1	130		Moist	
353 354				2-4 2-5		-1.1 0.6	8,500 8,000	31.9 30.0	8,213 8,160	30.8 30.6	123 130	3.8	Moist Moist	93.4
355				2-6		0	8,000	30.0	8,000	30.0	130		Moist	
356				2-7 3-1	15	0.3	8,000 9,500	30.0 35.6	8,080 9,493	35 6	129 145	3.5 3.2	Moist Moist	91.6 88.2
358				3-2	-/	Ó	9,500	35.6	9,493	35.6	143		Moist	94.2
359 360				3-3 3-4		-1.1 -1.6	9,750 10,000	37.5	9,440	35.4 35.9	134 148	3.7	Moist Moist	
361				3-5		0.3	9,250 9,250	34.7	9,333	35.0	141	3.7	Moist Moist	91.2
362 363				3-0 3-7		0.5 -0.7	9.500	35.6	9,493 9,493 9,440 9,573 9,333 9,387 9,387 9,387 9,387	35.2 34.9	141 136		Moist	
364				3-6 3-7 3-8 4-1	10	-0.8 -0.4	9,500	35.6	9,280	34.8 42.7	139	3.8 7.2	Moist Noist	94.8 89.5
366				4-2	10	-0.6	11,500	43.1	11,333	42.5	151 146		Noist	
357 358 359 361 363 364 365 364 366 368 368 368 368 368 368 368 368 369				4-3 4-4		-0.3 -0.1	11,000	41.2	11,387 11,333 10,907 10,960	40.9 41.1	139 129	2.9	Noist Noist	90.9
369				4-5		-2.2	11,000	41.2	10,400	39.0	126		Moist	
-														

	Table 4	
Summary of Data and Test Results,	Maximum-Towing-Force Tests	with Self-propelled Tracked Vehicles

					,	leasured M	aximum		rected m Towing	Average Cone Index	Moisture Content	Dry Density
T +			. .	 .	Tow	ing Force	on Slopes		for Level	0- to 6-	🖇 by Weight	lb/cu ft
Item No.	Test Program	Location	Test Area*	Test No.	Slope	15	% of Test Weight	16	<pre>\$ of Test Weight</pre>	in. Depth Before Traffic	0- to 6-in. Depth	0- to 6-in. Depth
							Weasel, Test					
_												_
1 2	Mississippi River	Vicksburg Bridge		66 67	1.1 -0.4	2,726 2,819	49.0 50.7	2,786 2,797	50.1 50.3	129 147	2.4 3.7	89.1 89.5
		211000		68	-0.4	2,710	48.7	2,685	48.3	134	3.8	89.2
3				69	0	2,657	47.8	2,657	47.8	126	2.7	89.2
56				70 71	-1.9 -1.0	2,834 2,794	51.0 50.2	2,730 2,736	49.1 49.2	133 112	2.8 3.7	87.0 86.5
7 8				72	0	2,733	49.1	2,733	49.1	115	3.3	88.1
				73	-0.9	2,748	49.4	2,697	48.5	131	4.8	89.8
9 10				74 75	0 -1.0	2,681 2,835	48.2 51.0	2,681 2,780	18.2 50.0	125 98	4.6 4.3	89.2 88.5
11				76	-0.6	2,804	50.4	2,769	49.8	127	3.8	90.1
12				78	0.0	2,761	49.7	2,761	49.7	151	4.0	89.7
13 14				79 80	-1.6 -1.3	2,853 2,767	51.3 49.8	2,763 2,697	49.7 48.5	137 131	4.9 5.0	89.9 89.1
15				81	0	2,750	49.5	2,750	49.5	142	4.6	87.4
16				82	-0.5	2,819	50.7	2,791	50.2	135	5.1	87.5
17 18				83 84	-1.3 -2.4	2,829 2,919	50.9 52.5	2,758 2,786	49.6 50.1	134 141	6.7 4.3	89.3 88.6
19				85	-2.3	2,939	52.8	2,808	50.5	140	4.6	88.8
				St	andard	D4 Engine	er Tractor,	<u>Test Wei</u>	ght 14,870	lb		
20	Mississippi	Vicksburg		117	-2.5	8,286	55.7	7,911	53.2	141	2.8	94.6
21	River	Bridge		118	-0.8	8,139	54.7	8,015	53.9	144	3.1	93.4
22 23				119 120	-0.6 -0.5	8,444 8,562	56.8 57.6	8,357 8,491	56.2 57.1	144 142	5.6 3.4	93.5 92.6
24				121	-0.8	8,225	55.3	8,104	54.5	142	2.4	95.3
25				122	-1.1	8,460	56.9	8,297	55.8	133	5.3	95.4
				<u>St</u>	andard	D7 Engine	er Tractor,	Test Wei	ght 27,000	<u>1b</u>		
26	Mississippi	Vicksburg		125	-0.3	15,500	57.4	15,417	57.1	127	3.1	95.3 94.8
27	River	Bridge		126	-0.1	15,750	58.3	15,714	58.2	132	2.4	94.8
-0							ed Tractor,			_		6
28 29	Mississippi River	Vicksburg Bridge		128 129	-0.4 -0.2	12,500 12,000	49.5 47.6	12,388 11,959	49.1 47.4	124 127	5.7 4.8	95.6 95.7
30 31				160	0.3	13,250	52.5	13,321	52.8	121	2.8	94.7
31 32				161 162	1.2 -0.6	12,500	49.5 45.6	12,792	50.7 45.0	118		
2						11,500	-	11,354 West West	49.0 ht 28,700 1	121 b		
				_							_	
33 34	Mississippi River	Vicksburg Bridge		145 146	-0.1	14,000 13,500**	48.8 47.0	13,977 13,500	48.7 47.0	128 132	2.8 2.7	92.0 95.1
35	NIVEI	DITORC		147	-0.2	15,000	52.3	14,953	52.1	118	3.3	97.3
36				148	-0.1	15,500	54.0	15,469	53-9	115	2.8	89.9
35 36 37 38				149 150	-0.4 0.2	14,500 14,500	50.5 50.5	14,379 14,551	50.1 50.7	115 130	2.6 2.4	95.6 93.5
39				151	0	14,500	50.5	14,500	50.5	127	3.3	94.1
40				152	-0.2	14,000	48.8	13,948	48.6	103	3.6	95.5
				1	8-ton M	4 H1-Speed	l Tractor, T	est Weig	ht 30,250 1	<u>Þ</u>		
41 42	Cape Cod	Wellfleet	FS FS	127 128	0.5 0	9,000**	29.8	9,166	30.3	107	2.8	99.3
43			FS FS	120	-0.5	12,000** 14,500	39.7 47.9	12,000 14,338	39.7 47.4	106 91	3.8	103.2
44			BS	131	-2.0	14,750	48.8	14,157	46.8	51		
45 46			BS	132	2.5	14,500	47.9 44.6	15,246	50.4	55	2.8	94.0
47			BS BS	133 134	1.0 0	13,500 14,500	44.8	13,794 14,500	45.6 47.9	70 38		
				S	andard	D6 Engine	er Tractor,					
48	Cape Cod	wellfleet	BS	118	1.0	12,500	55.1	12,716	56.1	57	2 2	80.7
49		-	BS	119	0	12,000	52.9	12,000	52.9	73	3.3	89.7
50 51			BS BS	120 121	0.5 0	12,250	54.0	12,354	54.5	66	3.2	90.4
52			FS	122	0.5	12,500 12,500	55.1 55.1	12,500 12,603	55.1 55.6	63 98	2.5	100.1
53			FS	123	0.5	12,500	55.1	12,603	55.6	111		
51 52 53 54 55			FS FS	124 125	0.5	12,500 13,000	55.1 57.4	12,603 13,000	55.6 57 h	96	2.8	98.2
,,			10			1),000	57.4	T),000	57.4	112		

Note: All tests performed on moist sand. * See "Beach Terms" under "Definitions" in text. ** Not maximum towing force.

Table 5 Summary of Data and Test Results, Towed-Vehicle Tests with Self-propelled Vehicles

					Truck Tire Pres-	R Tow <u>Measur</u>	equire ing Fo ed on	rce	Requi	rrected red Towing for Level		e Cone 0- to Depth	Moisture Content \$ by Weight	Moisture Class.	Dry Density 1b/cu ft	Rut Depti
Item No.	Program	Location	Test <u>Area</u> *	Test No.	sure psi	Slope	<u>1b</u>	Test Weight	<u>1</u> b	% of Test Weight	Before	After Traffic	0- to 6-in. Depth	0- to 6-	0- to 6- in. Depth	After One Pass, in.
		<u></u>				3/4	-ton M			ehicles Test Weigh	t 7,187 1				_	
12345678	Padre Island	Gulf	BC BC BC BSF BSF BSF BSF	28 29 30 31 32 33 34 35	30 20 15 10 30 20 15 10	1.0 2.0 1.5 0 0 1.5 0	214 154 274 467 898 546 417 366	3.0 2.1 3.8 6.5 12.5 7.6 5.8 5.1	144 165 467 898 546 309 366	2.0 0.1 2.3 6.5 12.5 7.6 4.3 5.1	330** 359** 372** 309** 141 170 174 164	230** 268** 277** 282** 97 107 143 120	2.7 4.3 2.0 23.0 20.5 24.3 22.5	Moist Moist Moist Wet Wet Wet	98.1 95.6 95.2 96.8 100.0 97.5 98.4 96.4	0.25 0.25 0.25 1.00 1.50 0.50 0.50
						<u>2-1/2</u>	-ton M	135, 6x (Truck	, Test Weig	ht 14,750	110				
9 10 11 12	Padre Island	Gulf	BSF BSF BSF BSF	97 98 99 100	30 20 15 10	1.0 0.5 0.5 2.5	2574 1347 2002 1268	17.4 9.1 13.6 8.6	2419 1268 1932 899	16.4 8.6 13.1 6.1	82 128 109 78	88 89	14.6 11.5 14.6 20.4	Wet Wet Wet Wet	83.3 84.2 88.3 89.2	3.25 1.50 3.75 2.75
			_					135, 6x (
13 14 15 16	Padre Island	Gulf	TF TF TF	113 114 115 116	30 20 15 10	1.0 0.5 0.5 0	2647 2900 2502 2583	15.2 16.6 14.3 14.8	2478 2809 2408 2583	14.2 16.1 13.8 14.8	124 32 33 31	78 41 36 47	16.5 23.5 22.4 23.2	Wet Wet Wet Wet	90.1 85.0 88.6 93.5	3.25 3.00 2.75 3.00
				1				135, 6x				<u>15</u>				
17 18	Mississippi River	Vicksburg Bridge		154 157	30 10	0.6 -0.4	1760 1600	9.6 8.7	1649 1667	9.0 9.1	121 128		2.8 2.5	Moist Moist	96.8 96.1	
			1/2-tor		Tested	lasa 4	x4 wit]	h 11.00	20, 12	-PR Tires (Std NDCC	Tread), T	est Weight 17	<u>,610 lb</u>		
19 20 21	Mississippi River	Cutoff		80 79 78	30 20 15	0 0	1638 1602 1444	9.3 9.1 8.2	1638 1602 1444	9.3 9.1 8.2	127 100 112		2.6 2.6 2.4	Moist Moist Moist	97 2 96.7 95.9	
22	Mississippi	<u>2-</u> Marshall	1/2-ton	<u></u> 53	Tested	0	<u>x4 witi</u> 1285		20, 12. 1285	<u>-PR Tires (</u> 7.3			st Weight 17,			
23 24	River	Cutoff		52 51	20 15	0 0 2-1/2-t	1197 1039	7.3 6.8 5.9	1197 1039	6.8 5.9	85 103 102		2.8 2.4 2.6	Moist Moist Moist	97.1 95.2 97.3	
25	Cape Cod	Wellfleet	DA	40	30	1.5	2250	<u>7 353, 6</u> 14.7	<u>x6 Tru</u> 2018	13.2	ight 15,2	<u>5 16</u>		Moist		
26 27 28	-		DA DA DA	39 38 37	20 15 10	1.5 2.5 0	1700 1650 2250	11.1 10.8 14.7	1467 1269 2250	9.6 8.3 14.7	112 114 88	 	2.2	Moist Moist Moist	99.4 102.0	
29	Padre	Gulf	m	105	20	_	ton M43			Test Weight		-	a) a		0	
29 30 31 32	Island	GUTI	TF TF TF	125 126 127 128	30 20 15 10	-1.0 -1.0 0	4453 3467 2745 2884	19.3 15.0 11.9 12.5	4683 3691 2745 2884	20.3 16.0 11.9 12.5	41 25 23 30	54 37 35 47	24.3 22.7 23.0 22.9	Wet Wet Wet Wet	83.0 79.1 85.3 84.7	3.75 4.00 3.00 2.75
				• • •			ton M41			lest Weight		_				
33 34 35 36	Padre Island	Gulf	BSF BSF BSF BSF	136 137 138 139	30 20 15 10	-2.0 -2.0 2.0 0.5	3!,23 1120 1280 1381	12.5 4.0 4.5 4.9	4085 1690 704 1239	14.5 6.0 2.5 4.4	70 186 302** 166	87 120 253** 124	10.7 24.7 7.8 12.4	Moist Wet Moist Wet	87.6 98.2 94.7 94.8	2.00 0.50 0.25 1.00
						5-1	on M52	2, 6x6 T	ruck, 1	West Weight	18,310 11	<u>b</u>				
37 38 39 40 41	Cape Cod	Wellfleet	DA BS DA BS DA	81 101 80 100 79	30 20 20 15 15	0 1.5 -1.0 -2.0 1.0	2000 3400 1450 2000 1200	10.9 18.6 7.9 10.9 6.5	2000 3131 1630 2362 1007	10.9 17.1 8.9 12.9 5.5	160 51 135 62 188	 	1.7 3.9	Moist Moist Moist Moist Moist	100.2 94.3	
	<u>5-ton</u>	M52, 6x6 Tr	uck, Te	st Wei	ght 22,	310 1Ъ,	Towing	<u>z 12-ton</u>	M127A1	Semitrail	er with 1	0,400 1ъ с	on Wheels; To	tal Weight,	<u>32,710 15</u>	
42 43 45 46 47	Cape Cod	Wellfleet	DA DA DA DA BS BS	82 83 114 78 84 85	30† 20† 20†† 15† 15† 15††	-1.5 1.5 0 0.5 0	3400 2000 1700 3300 6000 5400	10.4 6.1 5.2 10.1 18.3 16.5	3892 1472 1700 3300 5822 5400	11.9 4.6 5.2 10.1 17.8 16.5	126 209 202 126 66 48		1.7 2.6 3.3 3.6	Moist Moist Moist Moist Moist Moist	100.2 98.1 96.7 95.6	
								er, 4x4				<u>5 1b</u>	-			
48 49 50 51	Mississippi River	Vicksburg Bridge		168 172 179 183	30 20 15 10	-0.9 -0.2 -0.7 -1.3	680 802 720 880	5.0 5.9 5.3 6.5	802 829 816 1060	5.9 6.1 6.0 7.8	135 117 117 117		2.4 2.3 2.5 2.7	Moist Moist Moist Moist	95.1 94.1 94.2 94.0	
									(Contin	ued)						

* See "Beach Terms" under "Definitions" in text.
 ** 0.2-in. cone penetrometer reading multiplied by 2.5.
 * Trailer at 60 psi.

(Sheet 1 of 2 sheets)

Table	5	(Concluded)
-------	---	-------------

Item <u>No.</u>	Program	Location	Test Area	Test No.	Truck Tire Pres- sure psi	Tow	ing Formed on	Slopes S of Test	Requi Force	rrected red Towing for Level \$ of Test Weight	Index 6-in. Before	cone , O- to Depth After <u>Traffic</u>	Noisture Content 5 by Weight 0- to 6-in. Depth	Moisture Class. 0- to 6- in. Depth	Dry Density 1b/cu ft 0- to 6- in. Depth	Rut Depth After One Pass, in.
								heeled '	Vehicle	s (Continue	nd)		<u> </u>	<u>.</u>		
						Tourn	adozer	, 4x4 T	ractor,	Test Weigh	at 31,070	15				
52	Mississippi			116	30	0.5	2800	9.0	2641	8.5	128		3.0	Moist	95.0	
53 54	River	Bridge		115 114	20 15	0.5 -1.1	2300 1900	7.4 6.1	2144 2237	6.9 7.2	130 134		3.2 2.9	Moist Moist	93.4 96.6	
55				113	10	0	1709	5.5	1709	5.5	126	•••	3.1	Moist	96.0	
					<u>5-t</u>	on XM520	GOER	4x4 Ca	rgo Car	rier, Test	Weight 2	6,670 <u>15</u>				
								18.00-2	20, 10-	PR Tires						
56	Mississippi			1-7	30	0	1733	6.5	1733	6.5	126		8.6	Moist Moist	93.5	
57 58	River	Bridge		2-6 3-6	20 15	ŏ	1490 1390	5.6 5.2	1490 1390	5.6 5.2	135 144		5.2	Moist	90.6	
59				4-3	10	õ					141			Moist		
					5-	ton XM52	O GOEF	1, 4x4 Ci	argo Ca	rrier, Test 0-PR Tires	: Weight,	26,670 11	2			
60	Mississippi	We also have a		1-6	20	o	1490	5.6	1490	5.6	144		3.9	Noist	90.1	
61	River	Bridge		2-7	30 20	ŏ	1575	5.9	1575	5.9	129		3.5	Moist	91.6	
62				3-8	15	0	1470	5.5	1470	5.5	139		3.8	Moist	94.8	
63				4-5	10	0					126			Moist		
								Tre	cked V	hicles						
						1	/4-ton	M29C We	easel,	Fest Weight	5,560 11	Ь				
64	Mississippi River	Vicksburg Bridge		85A		-1.1	400	7.2	460	8.3	140		4.6	Moist	88.8	
						Stands	rd D4	Engineer	Tract	or, Test We	1ght 14,8	870 15				
65	Mississippi River	Vicksburg Bridge		123		-2.6	1100	7.4	1487	10.0	142		3.3	Moist	93.8	
						Stands	urd <u>D6</u>	Engineer	r Tract	or, Test We	ight 22,6	<u>667 15</u>				
66	Cape Cod	Wellfleet	FS	130		٥	1750	7.7	1750	7.7	97		3.8	Moist	103.2	
67	oupe oou	10221 2000	BC	135		3.0		8.8	1315	5.8	39			Moist		
						Stands	rd D7	Engineer	r Tract	or, Test We	ight 27,0	<u>000 lb</u>				
68	Mississippi River	Vicksburg Bridge		124		-0.5	1800	6.7	1944	7.2	135		2.2	Moist	97.3	
						13-tor	M5A4	Hi-Speed	1 Tract	or, Test We	ight 25.3	230 15				
69	M	114		130		-0.2	2400	9.5	2447		135		4.9	Moist	94.4	
bу	Mississippi River	Bridge		130		-0.2	2400	9.5	244 (9.7	135		4.9	MOIST	y4.4	
						18-to	na 1444 B	1-Speed	Tracto	r <u>, Test Wei</u>	ght 28,7	00 <u>1b</u>				
70	Mississippi River	Vicksburg Bridge		159		0.4	3700	12.9	3587	12.5	118		2.6	Moist	92.6	
						18-to	m MH B	i-Speed	Tracto	r, Test Wei	ght 30,2	50 <u>15</u>				
71	Cape Cod	Wellfleet	FS	126		0	2500	8.3	2500	8.3	112		2.8	Moist	89.2	
17	cape cou	46TTI T662	10	10		v	2,00	0.5	2,00	0.5	TTC		2.0			

Table 6 Summary of Data and Test Results on "Honeycomb" sand Self-propelled Wheeled Vehicles

Padre Island Test Program

							Average Cone Index 5 by Weight						Dry Density lb/cu ft			
Item <u>No.</u>	Location	Test <u>Area</u> *	Test No.	Passes Com- pleted	Immo- bilized	Pass No.	0- to 6-in. Depth		12- to 18-in. Depth	0- to 6-in.			0- to 6-in Depth		12- to 18-in. Depth	Rut Depth in.
					1/4-	ton M3	8A1, 4x	4 Truck,	Test We	ight 3.	<u>200_15</u>					
1	Gulf	BSF	68a**	3	Yes	0 3	26 9	40 34	57 104							
2	Lagoon	TF	149	20	No	0 1 10	31 17 36	78 73 158	217+ 220+	23.5	23.8	23.0	97.6	94.8	101.0	1.75 6.00
3		TF	150	20	No	0	50 52	49 71	66 76	20.0	23.2	22.2	98.1	89.4	93.7	2.00
4		TF	151	2	Уев	0 1	33 16	69 25	114 83	20.8	21.2	22.0	91.6	99.2	90.1	3.00
5		TF	152	2	Yes	0 1	15 	41 	68 	20.8	21.2	22.0	91.6	99.2	90.1	
6		TF	167	2	Yes	0 1	26 14	35 29	55 49	23.1	22.5	23.2	95.4	97.1	98.3	4.00
7		TF	169	25	No	0 1 10	23 24 28	66 67 105	138 153 195	21.2	21.5	21.8	89.3	100.8	105.3	3.75
8		TF	170	25	No	0 1 10	25 34 32	74 86 102	145 152 216	21.2	21.5	21.8	89.3	100.8	105.3	3.50 7.50
9		TF	179	4	Үев	0 1	26 32	38 46	58 110	22.2	22.9	22.2	94.4	85.6	85.8	6.50
					3/4	-ton M	137, 4x4	Truck,	Test Wei	ght 7,1	.87 1ъ					
10	Lagoon	TF	145	1	Үев	C l	19 14	36 40	57 125	23.2	22.5	23.0	94•7	91.0	90.4	8.00
11		TF	146	3	Yes	0 1	36 21	72 37	85 106	20.8	21.2	22.0	91.6	99.2	90.1	5.25
12		TF	147	10	Үев	0 1	78 49	73 56	74 61	20.0	23.2	22.2	98.1	89.4	93.7	5.00
13		TF	148	20	No	0 1 10	35 19 18	74 69 113	234+ 212+ 	23.6	23.8	23.8	97.6	94.8	101.0	2.50
14		TF	165	2	Yes	0 1	20 11	33. 27	53 60	23.1	22.5	23.2	95.4	97.1	98.3	7.50
15		TF	168	27	No	0 1 10	31 18 15	80 45 75	148 96 135	21.2	21.5	21.8	89.3	100.8	105.3	4.00
16		TF	171	4	Yes	0 1	40 16	46 34	97 46	23.0	23.3	22.0	100.7	92.8	95.1	5.00
17		TF	172	25	No	0 1 10	38 22 21	53 60 106	136 121 171	23.0	23.3	22.0	100.7	92.8	95.1	2.00 7.50
18		TF	173	3	Yes	0 1	68 51	65 59	37 57	17.2	23.1	22.6	93+3	97.5	89.2	7.00
19		TF	175	3	Yes	0 1	39 44	37 120	99 174	21.6	22.5	21.1	98. 5	88.9	98.7	7.00
20		TF	178	5	Yes	0 1	51 41	40 56	46 95	16.2	21.5	22.2	91.7	82.2	90.6	9.00
21	Gulf	BSF	213**	25	No	0 1 10	43 37 30	125 103 144	249+ 233+	23.8	21.3		89.8	95.4		
22		BSF	214**	36	No	0 1 10	26 16 8	91 56 61		23.0	22.6		94.6	97.4		
23		BSF	215**	25	No	0 1 10	22 18 10	31 101 85		24.6	23.8		91.6	82.1		
24		BSF	216**	1	No	0 1	26 15	43 114 (Continu								

Note: All tests conducted at 15-psi tire pressure except where noted. * See "Beach Terms" under "Definitions" in text. ** Test conducted at 30-psi inflation pressure.

(Sheet 1 of 2 sheets)

							Avera	ge Cone	Index	Mois ≸	ture Con by Weig	ht		ry Densi 1b/cu ft	,	
Item <u>No.</u>	Location	Test <u>Area</u>	Test No.	Passes Com- pleted	Immo- bilized	Pass No.	0- to 6-in. Depth	6- to 12-in. Depth	12- to 18-in. Depth	0- to 6-in. Depth	6- to 12-in. Depth	12- to 18-in. Depth	0- to 6-in. Depth	6- to 12-in. Depth	12- to 18-in. Depth	Rut Deptl in.
					<u>2-1/2</u>	-ton M	135, 62	6 Truck,	Test We	ight 14	,750 lb					
25	Lagoon	TF	153	2	Yes	0 1	19 19	41 55	66 116	22.7	23.5	22.9	87.6	94.1	89.5	8.50
26		TF	154	3	Yes	0 1	18 16	44 49	73 97	22.7	23.5	22.9	87.6	94.1	d9.5	8.50
27		TF	155	2	Yes	0 1	35 21	85 43	90 85	21.8	21.9	22.6	91.0	94.2	89.2	6.50
28		TF	156	6	Yes	0 1	61 54	73 76	108 107							7.50
29		TF	157	25	No	0 1 10	46 36 40	62 78 180+	105 211+	23.2	23.5	23.2	92.9	90.7	89.4	7.50 13.50
30		TF	158	25	No	0 1 10	59 40 46	63 59 199+	74 157	20.4	21.8	22.6	94.4	97.0	91.6	9.00 13.00
31		TF	159	23	No	0 1 10	53 45 57	90 60 197+	52 79	18.8	22.3	22.9	93.3	96.2	88.3	7.0 9.5
32		TF	160	3	Yes	0 1	69 35	62 51	67 71	17.6	24.1	22.7	96.5	90.8	96.3	7.5
33		TF	161	3	Yes	0 1	41 29	40 53	70 102	23.2	22.6	22.4	92.8	89.9	92.2	8.2
34		TF	162	5	Yes	0 1	24 15	72 39	107 98	23.6	22.9	22.7	90.7	96.2	89.7	11.5
35		TF	163	30	No	0 1 10	36 16 9	78 37 58	97 85 213+	21.0	21.6	22.0	98.8	101.1	93.4	5.0
36		TF	164	32	No	0 1 10	34 19 13	76 44 90	89 99 219+	21.1	18.5	21.6	87.9	100.9	89.3	7.5
37		TF	166	2	Yes	0 1	25 16	36 34	62 67	23.1	22.5	23.2	95.4	97.1	98.3	8.5
38		TF	174	5	Yes	0 1	57 46	74 67	38 78	17.2	23.1	22.6	93.3	97.5	89.2	13.5
39		TF	176	25	No	0 1 10	47 41 34	37 66 170	52 93							13.5
40		TF	177	25	No	0 1 10	55 37 46	47 64 199	54 110	16.2	21.5	22.2	91.7	82.2	90.6	7.5

Table 6 (Concluded)

Table 7

Summary of Data and Test Results	Dravbar Pull-Slip	Tests with Self-propelled	Wheeled and Tracked Vehicles
Mis	issippi River Test	Program, Vicksburg Bridge	

	Mississippi River Test Program, Vicksburg Bridge												
Item	Test	Tire Pressure		asured ng Force	Wheel or Track	Average Cone Index O- to 6-in. Depth	Moisture Content \$ by Weight	Moisture Class. 0- to 6-	Dry Density lb/cu ft				
No.	No.	psi	<u>_1b</u>	Test Weight	Slip, \$	Before Traffic	0- to 6-in. Depth	in. Depth					
				2-1/2-to	n M135, 6x	6 Truck, Test Weigh	at 18,320 1b						
1	138-1	30	2,100	11.5	6	123	3.5	Moist	95.9				
2	138-2	50	2,700	14.7	13		5-7		,,,,,				
3 4	138-3		3,200	17.5	12								
4	138-4 138-5		1,000 2,800	5.5 15.3	0 12								
5	139-1		2,900	15.8	ii	117	3.8	Moist	96.4				
7	140-1		3,000	16.4	8	129	4. 6	Moist	89.3				
8 9	140-2 140-3		3,000 1,100	16.4 6.0	10 1								
10	140-4		600	3.3	1								
11	140-5		1,600	8.7	4								
12 13	140-6 140-7		3,000 3,100	16.4 16.9	8 11								
14	140-8		2,400	13.1	33								
15 16	140-9		1,800	9.8	58								
16 17	140-10 140-11		1,200 2,400	6.5 13.1	4 24								
18	140-12		4,000	21.8	100								
19	140-13		2,000	10.9	33								
20	141-1	10	4,000	21.8	6	126	2.9	Moist	96.7				
21	141-2		3,000	16.4	5								
22 23	141-3 141-4		1,600 6,400	8.7 35.0	3 19								
24	141-5		6,200	33.8	ĩó								
25	142-1		5,800	31.6	11	131	2.9	Moist	94.2				
26 27	142-2 142-3		6,800 3,600	37.1 19.7	12 3								
28	142-4		3,600	19.7	3								
29	142-5		4,800	26.2	3								
30 31	142-6 142-7		5,600 7,600	30.5 41.5	80 100								
32	143-1		1,600	8.7	l	132	2.9	Moist	93•7				
33 34	143-2		2,400	13.1	2								
34 35	143-3 143 - 4		6,800 6,200	37.1 33.8	12 25								
35 36 37 38	143-5		6,800	37.1	9								
37	143-6		1,200	6.5	3				ar (
38 39	144-1 144-2		6,600 5,600	36.0 30.5	9 45	129	3.0	Moist	95.6				
40	144-3		5,600	30.5	62								
41	144-4		6,200	33.8	88								
42 43	144-5 144-6		8,000 5,500	43.6 30.0	100 67								
44	144-7		4,900	26.7	74								
				G t - 1 - 1	77 Ex. 4		-1+ 07 000 1h						
*				Standard	J Enginee	er Tractor, Test We:	ight 21,000 15						
45	125-1		4,000	14.8	0	127	3.1	Moist	95.3				
46 47	125-2 125-3		12,500 3,500	46.3 13.0	4 1								
48	125-4		16,000	59.2	33								
49	125-5		12,000	կկ կ	10								
50 51	125 - 6 125 - 7		15,000 16,000	55.5 59.2	10 47								
52	125-8		16,100	59.6	78								
53	125-9		14,000	51.8	10								
53 54 55 56 57	125-10		15,500	57.4	52 71								
22 56	125-11 125-12		16,000 15,500	59.2 57.4	18								
57	125-13		15,750	58.4	12				-1 0				
58	126-1		15,750		8	132	2.4	Moist	94.8				
58 59 60	126-2 126-3		16,250 5,000	60.0 18.5	25 0								
61	126-4		11,500	42.6	1								
62	126-5		12,500	46.3	2								
63 64	126-6 126-7		16,500 9,000	61.1 33.3	88 10								
65	126-8		16,000		25								
65 66	126-9		5,500	20.4	0		<u> </u>	Me + -+	oh 1				
67 68	127-1 127-2		5,000 8,500		0 2	131	2.6	Moist	94.1				
69	127-3		11,250		ī								
- /													

(Continued)

(Sheet 1 of 2 sheets)

Table 7 (Concluded)
-----------	------------

Tire Toring Force Wheel or Cone Index Moisture Content Item Test Pressure \$ of Track 0- to 6-in. Depth \$ by Weight No. Poil 1b Test Weight Slip, \$ Before Traffic 0- to 6-in. Depth 10 Test Weight Slip, \$ Before Traffic 0- to 6-in. Depth 13-ton M5A4 Hi-Speed Tractor, Test Weight 25,230 lb 70 128-1 9,000 35.7 26 124 5.7 71 128-2 16,500 65.4 100 72 128-3 5,250 20.8 1 73 128-4 9,500 37.6 24 5.7	0- to 6-	Dry Density 1b/cu ft <u>0- to 6-in. Depth</u> 95.6
70 $128-1$ $9,000$ 35.7 26 124 5.7 71 $128-2$ $16,500$ 65.4 100 72 $128-3$ $5,250$ 20.8 1 73 $128-4$ $9,500$ 37.6 24	Moist	95.6
71 128-2 16,500 65.4 100 72 128-3 5,250 20.8 1 73 128-4 9,500 37.6 24	Moist	95.6
71 128-2 16,500 65.4 100 72 128-3 5,250 20.8 1 73 128-4 9,500 37.6 24		
73 128-4 9,500 37.6 24		
74 128-5 12,000 47.5 37		
75 128-6 12,250 48.5 52		
76 128-7 5,000 19.8 1		
77 129-1 9,000 35.7 15 127 4.8	Moist	95.7
78 129-2 12,000 47.5 38		
79 129-3 16,000 63.4 98		
80 129-4 9,500 37.6 15		
81 129-5 12,000 47.5 45		
82 129-6 12,000 47.5 42		
83 129-7 15.000 59.4 76		
84 129-8 2,500 9.9 0		
85 129-9 8,800 34.9 19		
86 129-10 17,000 67.4 100		
87 160-1 13,250 52.5 53 121 2.8	Moist	94.7
88 160-2 8,750 34.7 16		
89 160-3 10,000 39.6 25		
90 161-1 12,500 49.5 43 118	Moist	
91 161-2 18,000 71.3 100		
92 162-1 8.500 33.7 10 121	Moist	
93 162-2 5,000 19.8 4 94 162-3 9,250 36.6 19		
94 162-3 9,250 36.6 19		
95 162-4 11,500 45.6 43		

.

٠

Table 8

Summary of Data and Test Results

Special Maximum Towing Force Tests with 2-1/2-ton M135 Truck

Mississippi	River	Test	Program.	Mershall	Cutoff

				Maximum mured To	1	Correc	ted Max		Data, 0- 1	to 6-in. De	epth
Item <u>No.</u>	Test <u>No.</u>	Tire Pres- sure <u>psi</u>	Forc	<u>e on S</u>	Jopes % of Test <u>Weight</u>		Level % of Test Weight	Average Cone Index Before Traffic	Moisture Content % by Weight	Moisture Class.	Dry Density lb/cu_ft
		Tea	sted as	a 6x6,				12-PR Tires	(Tread Ren	<u>noved)</u>	
					Te		tht 18,10				
1 2 3 4 5 6 7 8 9	1 2 3 4 15 16 55 56 57	30	0			3200 3194 3416 3200 2810 2328 2600 2500 2610	17.7 17.6 18.9 17.7 15.5 12.9 14.4 13.8 14.4	133 128 138 120 101 117 90 113 99	4.8 3.8 4.1 6.2 2.8 2.8 5.2	Moist Moist Moist Moist Moist Moist Moist Moist	96.2 96.6 98.1 96.5 97.5 97.5 95.8
10 11 12 13 14 15 16	5 6 7 8 17 18 19	20	0			4300 4655 4628 4288 4556 4431 4310	23.8 25.7 25.6 23.7 25.2 24.5 23.8	125 129 141 128 109 112 118	4.0 3.4 4.8 3.0 5.2	Moist Moist Moist Moist Moist Moist Moist	94.8 97.5 96.2 96.9 100.0
17 18 19 20 21 22	9 10 11 20 21 22	15	0			4800 5047 5504 4996 5157 4786	26.5 27.9 30.4 27.6 28.5 26.4	127 119 126 103 111 105	3.5 5.2	Moist Moist Moist Moist Moist Moist	95.0 100.0
23 24 25 26 27 28 29	12 13 14 23 24 25 26	10	0			6067 6150 6200 6025 6272 6050 6079	33.5 34.0 34.3 33.3 34.6 33.4 33.6	140 125 147 107 114 101 125	5.4 3.2	Moist Moist Moist Moist Moist Moist Moist	97.3 98.1
		Test	ted as a					2-PR Tires (tht 19,188 11		fread)	
3312334567889012345678	$\begin{array}{c} 131\\ 132\\ 338\\ 40\\ 42\\ 434\\ 45\\ 1356\\ 78\\ 49\\ 51\end{array}$	60 30 15 10	-0.5 -1.0 0.1 1.0 -1.4 -0.3 -0.9 -0.3 -1.0 0.6 0.2 0 J.1 -0.4 J.1 -0.4 0 0 0	1390 1992 2451 2226 1996 1787 1835 2317 2115 2074 2029 3265 3784 4191 4290 3800 4190 3800 4300	$\begin{array}{c} 7.2 \\ 10.4 \\ 12.8 \\ 11.6 \\ 10.4 \\ 9.3 \\ 9.6 \\ 12.1 \\ 11.0 \\ 10.8 \\ 10.6 \\ 17.0 \\ 19.7 \\ 21.8 \\ 22.4 \\ 21.5 \\ 19.8 \\ 22.9 \\ 22.4 \end{array}$	1286 1804 2478 1727 1669 1784 2149 2053 1884 2149 3300 3784 4410 4221 4078 4100 4200 4300	6.7 9.4 12.9 12.6 9.0 8.7 9.3 11.2 10.7 9.8 11.2 19.8 22.9 22.0 21.2 21.4 22.9 22.4	$\begin{array}{c} 127\\ 139\\ 127\\ 139\\ 127\\ 135\\ 125\\ 116\\ 126\\ 121\\ 121\\ 121\\ 119\\ 124\\ 116\\ 125\\ 120\\ 125\\ 120\\ 125\\ 136\\ 127\\ 138\\ 131\\ \end{array}$	2 3.4 3.8 4.7 2.9 3.6 3.7 2.2 3.2 3.7 2.2 4.1 3.4 3.5 1 3.4 2.5 1 5.1	Moist Moist Moist Moist Moist Moist Moist Moist Moist Moist Moist Moist Moist Moist Moist Moist Moist	95.3 98.0 92.5 87.4 86.7 87.0 882.3 89.6 882.3 89.6 98.6 89.7 89.4 89.7 89.4 89.7 89.4 89.7 89.4 89.5 89.5

(Continued)

<u> </u>		<u> </u>	-	Maximu ured T			ted Max	Sofl	Data. 0-	to 6-in. I)enth
Item <u>No.</u>	Test No.	Tire Pres- sure psi		<u>1b</u>	Q		Level % of Test Weight	Average Cone Index Before Traffic	Moisture Content % by Weight	Moisture	Dry Density lb/cu ft
		Test	ed as a	4 x 4,			.00-20, 1 ht 17,610	2-PR Tires (8 D 1b	sta NDCC 1	read)	
49 501 552 554 556 557	58 59 61 63 63 65 66	30	0		_	1926 2161 1710 1808 1821 1844 1973 2065 2064	10.9 12.3 9.7 10.3 10.3 10.5 11.2 11.7 11.7	104 104 109 101 105 116 117 120 106	3.2 2.2 2.4 2.4	Moist Moist Moist Moist Moist Moist Moist Moist	96.0 97.7 96.6 95.7
58 59 60 61 62 63 64	67 68 69 70 71 72 73	20	0			3339 3275 3558 3599 3595 3418 3938	19.0 18.6 20.2 20.4 20.4 19.4 22.4	98 112 118 116 111 111 108	2.4 2.4	Moist Moist Moist Moist Moist Moist	97.0 95.5
65 66 67 68	74 75 76 77	15	0			4574 4768 4431 4538	26.0 27.1 25.2 25.8	106 120 106 106	2.2 6.0	Moist Moist Moist Moist	94.6 99.2
		Tes	ted as a	a 4x4,				<u>12-PR Tires (</u>	Tread Ren	wved)	
69 71 72 73 74 75 77 78 79 80	27 28 30 31 32 33 34 35 36 37 38	30	0		<u>16</u>	2308 2641 2769 2381 2903 2409 2804 3265 2754 2698 2723 4239	24t 17,610 13.1 15.0 15.7 13.5 16.5 13.7 15.9 18.5 15.6 15.3 15.5 24.1	99 91 105 100 109 100 94 107 111 111 86	2.6 2.7 3.0 2.7 2.6 2.4	Moist Moist Moist Moist Moist Moist Moist Moist Moist	96.9 98.2 96.2 98.1 99.7 102.9
812 83 84 85 86 87 88 89	5901234567 4244567		0			4181 4731 4428 4134 4295 4579 4188 4308 4430	23.7 26.9 25.1 23.5 24.4 26.0 23.8 24.5 24.5 25.1	113 101 106 109 100 99 105 106 96 102	2.3 2.7 2.8 1.2 2.9	Moist Moist Moist Moist Moist Moist Moist Moist Moist	95.0 97.0 96.3 95.0 98.0
90 91 92	48 49 50	15	U			5200 5353 5825	29.5 30.4 33.1	99 100 111.	2.8	Moist Moist Moist	99.0

•

Table 9

Sumary	of	Data	and	Test	Results,	Truck-Trailer	Combination

Maximum-Towing-Force Tests of 5-ton M52, 6x6 Truck Towing 12-ton M127Al Semitrailer

Cape	Cod	Test	Program,	Wellfleet

Test Truck Truck No. Truck Truck Slopes Hessured Naximum Slopes Corrected Porce for Level Soft for Soft feet Average Device Soft for Soft feet Average Device Soft feet Noist Soft feet Hoisture Soft feet Hoisture S													
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Corrected Average Moisture												
Teen Teest Teest Pressure Teest No. Pressure S of Teest in. Depth in. Depth $0 - to$ <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th colspan="2"></th><th></th><th></th><th></th><th></th></t<>													
No. Areast No. pst. 4 1b Weight Defore Traffic 6-in. Depth in. Depth 6-in. Depth 1 DA 52 60** 1.5 900 4.4 1316 5.9 214 1.6 Moist 98.0 3 DA 53 0** 1.0 1800 8.1 2030 9.1 213 1.6 Moist 99.4 4 DA 55 3.0 1900 8.5 2056 1.5 216 2.2 Moist 1.0 1900 8.5 2068 9.0 161 1.7 Moist 1.2 7 DA 59 1.0 1500 6.7 1718 7.7 154 Moist 9 DA 60 20** 1.0 1500 6.7 1718 7.7 154 Moist 9 DA 60 20*0 12.6 </th <th></th> <th></th> <th></th> <th></th> <th></th> <th>Force</th> <th></th> <th>Force</th> <th></th> <th></th> <th></th> <th></th> <th></th>						Force		Force					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$													
2 DA 53 1.5 0 0 335 1.5 188 Motet 3 DA 54 30 30 1.4 2037 9.4 168 Motet 9.4 5 DA 55 -4.0 3000 13.4 2037 9.4 168 Motet 9.4 6 DA 55 -1.5 2400 10.6 2075 9.3 176 Motet 100.9 7 DA 56 -1.5 2400 10.6 2075 9.0 16.1 1.7 Motet 102.2 8 DA 59 -1.0 1500 6.7 1718 7.7 154 Moist 10 DA 61 -3.0 2800 11.6 233 Moist 11 DA 62 -3.0 2800 11.6 126 11.7 Moist 10 DA 64 -3.0 2800 10.6<	No.	Area*	No.	psi	<u>_%</u>	<u>1b</u>	Weight	<u>1b</u>	Weight	Before Traffic	6-in. Depth	in. Depth	6-in. Depth
J DA 54 30** 1.0 160 1.1 213 1.6 Moist 5 DA 56 300 13.4 2097 9.4 168 Moist 6 DA 57 -1.5 2400 10.8 2075 9.3 178 Moist 7 DA 59 0.5 1900 8.5 2066 9.0 161 1.7 Moist 9 DA 60 20** 4.0 2800 12.6 3703 16.6 233 Moist 10 DA 61 0 2500 11.2 2500 11.2 156 1.5 Moist				60**							1.6	Moist	98.0
i DA 55 DA 56 Noist 5 DA 57 1.5 2400 10.6.8 2075 9.3 176 Moist 100.9 6 DA 57 1.5 2400 10.6.8 2075 9.3 176 Moist 100.9 7 DA 59 1.0 1500 6.7 1718 7.7 154 Moist 102.2 9 DA 60 20*** 4.0 2800 11.2 2500 11.2 156 1.5 Moist 10 DA 62 3.0 2400 10.8 3079 13.8 138 1.7 Moist Moist Moist Moist 10.1 11 DA 65 -3.0 3200 15.7 11.7 11.7 Moist 10.1 10.1 10.1 10.1 10.1 10.1	2	DA	53		1.5	0	0	335	1.5	188		Moist	
5 DA 56 3.0 1000 $\overline{6}$.5 2566 11.5 216 2.2 Moist 100.9 7 DA 58 0.5 1900 $\overline{6}$.5 2006 9.0 161 1.7 Moist 102.2 9 DA 60 20** 4.0 2800 12.6 3703 16.6 233 Moist 10 DA 61 0 2500 11.2 2500 11.2 156 1.5 Moist 9.8 11 DA 62 3.0 2400 10.8 3079 13.8 138 1.7 Moist 9.8 12 DA 65 -3.0 2400 10.8 2400 10.8 159 Moist 9.7 13 DA 64 0 2400 10.8 2400 10.8 157 212 1.5 Moist 9.7 14 DA 65 -3.0 3500 15.7 3500 15.7 212 1.5 Moist 10.1<				30**	1.0						1.6	Moist	99.4
7 DA 56 0.5 1900 6.5 2008 9.0 161 1.7 Moist 102.2 8 DA 59 1.0 1500 6.7 1718 7.7 154 Moist 9 DA 60 20** 4.0 2800 12.6 3703 16.6 233 Moist 10 DA 61 0 2800 12.6 3703 16.6 233 Moist 11 DA 62 3.0 2400 10.8 3079 13.8 138 1.7 Moist 99.8 12 DA 65 -3.0 2800 12.6 135 159 Moist 101.1 13 DA 65 -3.0 3200 15.7 3500 15.7 212 1.5 Moist 99.7 16 DA 66 2.0 2500 15.7 3510 17.7 17 17 17 160.6 2.0 2.0		DA	55		-4.0	3000						Moist	
7 DA 56 0.5 1900 6.5 2008 9.0 161 1.7 Moist 102.2 8 DA 59 1.0 1500 6.7 1718 7.7 154 Moist 9 DA 60 20** 4.0 2800 12.6 3703 16.6 233 Moist 10 DA 61 0 2800 12.6 3703 16.6 233 Moist 11 DA 62 3.0 2400 10.8 3079 13.8 138 1.7 Moist 99.8 12 DA 65 -3.0 2800 12.6 135 159 Moist 101.1 13 DA 65 -3.0 3200 15.7 3500 15.7 212 1.5 Moist 99.7 16 DA 66 2.0 2500 15.7 3510 17.7 17 17 17 160.6 2.0 2.0	5	DA			3.0						2.2	Moist	100.9
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		DA	57		-1.5	2400		2075				Moist	
9 DA 60 20** 4.0 2800 12.6 3703 16.6 233 Moist 10 DA 61 0 2500 11.2 2500 11.2 156 1.5 Moist 99.8 11 DA 62 3.0 2400 10.8 3079 13.8 138 1.7 Moist 13 DA 64 0 2400 10.8 2400 10.8 159 Moist 15 DA 66 0 3500 15.7 3500 15.7 80.7 14.6 181 1.5 Moist Moist Moist 10.6 10.6 201 3500 15.7 3507 14.6 181 1.5 Moist 100.6 10.6 201 2.0 3500 15.7 3949 17.7 147 Moist 100.6 10.7 <t< td=""><td></td><td></td><td></td><td></td><td>0.5</td><td>1900</td><td></td><td></td><td></td><td></td><td>1.7</td><td>Moist</td><td>102.2</td></t<>					0.5	1900					1.7	Moist	102.2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	8	DA	59		1.0	1500	6.7	1718	7.7	154		Moist	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		DA		20**	4.0			3703				Moist	
12 DA 63 -3.0 2800 12.6 2142 9.6 159 Moist 13 DA 64 0 2400 10.8 2400 10.8 169 1.7 Moist 10.1 14 DA 65 -3.0 3200 14.3 2521 11.3 157 Moist 15 DA 66 0 3350 15.7 3500 15.0 214 Moist 16 DA 67 0 3350 15.7 3949 17.7 147 Moist 100.6 18 DA 69 -4.0 2600 11.7 1718 7.7 147 Moist 100.6 65 3000 15.7 3949 17.7 195 2.9 Moist 100.2 2.0 3400 15.2 3837 17.2 150 Moist 2.7 Moist 100.2 2.0 100 1.5 4000 17		DA									1.5	Moist	
13DA640240010.8240010.81691.7Moist101.114DA65-3.0320014.3252111.3157Moist15DA660350015.7250115.72121.5Moist99.716DA670335015.0335015.0214Moist17DA682.0260011.717187.7147Moist100.618DA69-4.0260011.717187.7147Moist100.220DA107-1.5360015.7394917.71952.9Moist100.221DA1062072.0350015.7394917.71952.9Moist100.222DA1091.5400017.9432819.4178Moist22DA1091.5400017.9432819.4178Moist98.124DA111-2.0260011.721649.71232.6Moist98.124DA111-2.0430019.3481921.6235Moist25DA1122.0300017.935k715.91621.9Mo					3.0						1.7		96.6
14DA65-3.0320014.3252111.3157Moist15DA660350015.7350015.72121.5Moist99.716DA670335015.0335015.0214Koist17DA682.0280012.6325714.61811.5Moist100.618DA69-4.0260011.717187.7147Moist19DA1062072.0350015.7394917.771952.9Moist100.220DA107-1.5360016.1325714.61422.7Moist95.321DA1082.0340015.2383717.2150Moist22DA1032.0340015.2383717.2150Moist23DA1103.5290013.0368016.51503.3Moist94.224DA111-2.0260011.721649.71232.6Moist25DA1132.0400017.93481921.6235Moist26DA1132.0320014.3274412.3162Moist <td></td>													
15DA660350015.7350015.72121.5Moist99.716DA670335015.0335015.0214Moist17DA682.0280012.6325714.61811.5Moist100.618DA69-4.0260011.717187.7147Moist100.220DA107-1.5360016.1325714.61422.7Moist100.220DA1082.0350015.7394917.71952.9Moist100.221DA1062.0116.1325714.61422.7Moist96.321DA1082.0350015.7394917.71952.9Moist100.222DA1091.5400017.9432819.4178Moist23DA1103.5290013.0368016.51503.3Moist94.224DA111-2.0260011.721649.71232.6Moist24DA111-2.0260011.721649.71232.6Moist25DA1122.0400017.944199.6235Moist <td>13</td> <td></td> <td>101.1</td>	13												101.1
16DA670335015.0335015.021kMoist17DA682.0280012.6325714.61811.5Moist100.618DA69-4.0260011.717187.7147Noist100.220DA1062012.0350015.7394917.71952.9Moist100.220DA107-1.5360016.1325714.61422.7Moist96.321DA1082.0340015.2383717.2150Moist23DA1103.5290013.0368016.51503.3Moist94.224DA111-2.0260011.721649.71232.6Moist25DA1122.0430019.3481921.6235Moist26DA1132.0400017.9354715.91621.9Moist27DA7015**-2.0320014.3274412.3162Moist27DA71-2.0380017.0403615.0196Moist28DA71-2.0380017.0403615.01661			65		-3.0							Moist	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	15										1.5		99.7
18DA69-4.0 2600 11.7 1718 7.7 147 Noist19DA1062012.0 3500 15.7 3949 17.7 195 2.9 Moist 100.2 20DA107-1.5 3600 16.1 3257 14.6 142 2.7 Moist 96.3 21DA1082.0 3400 15.2 3837 17.2 150 Moist23DA110 3.5 2900 13.0 3680 16.5 150 3.3 Moist 94.2 24DA111-2.0 2600 11.7 2164 9.7 123 2.6 Moist 98.1 25DA112 2.0 4300 19.3 4819 21.6 235 Moist $$ 26DA113 2.0 4000 17.9 3547 15.9 162 1.9 Moist $$ 26DA71 -2.0 4000 17.9 3547 15.9 162 1.9 Moist $$ 27DA70 $15**$ -2.0 3000 17.0 4239 19.0 219 $$ Moist $$ 28DA71 -2.0 4000 17.9 3547 15.9 162 1.9 Moist $$ 30DA73 2.0 3600 17.0 4239 19.0 219 $$					-								
19DA10620t2.0350015.7394917.71952.9Moist100.220DA107-1.5360016.1325714.61422.7Moist96.321DA1082.0340015.2383717.2150Moist96.322DA1091.5400017.9432619.4178Moist94.223DA1103.5290013.0368016.51503.3Moist94.224DA111-2.0260011.721649.71232.6Moist98.125DA1122.0430019.3481921.6235Moist26DA1132.0400017.9354715.91621.9Moist9.426DA71-2.0380017.0423919.0219Moist27DA7015**-2.0380017.0423919.0219Moist28DA71-2.0400017.9354715.91621.9Moist99.430DA732.0380017.0423919.0219Moist31DA741.0300013.4321314.4164 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1.5</td><td></td><td>100.6</td></t<>											1.5		100.6
20DA10710710710710710710710710710710710721DA1082.0340015.2383717.2150Moist22DA1091.5400017.9432819.4178Moist23DA1103.5290013.0368016.51503.3Moist94.224DA111-2.0260011.721649.71232.6Moist98.125DA1122.0430019.3481921.6235Moist26DA1132.0400017.9444019.9195Moist27DA7015**-2.0320014.3274412.3162Moist28DA71-2.0400017.9354715.91621.9Moist29DA721.0380017.0423919.0219Moist31DA741.0300013.4321314.41641.8Moist99.932DA750330014.8230014.8249Moist33DA765.0275012.3386017.32162.1 </td <td>18</td> <td>DA</td> <td>69</td> <td></td> <td>-4.0</td> <td>2600</td> <td>11.7</td> <td>1718</td> <td>7.7</td> <td>147</td> <td></td> <td>Moist</td> <td>*-</td>	18	DA	69		-4.0	2600	11.7	1718	7.7	147		Moist	*-
21DA1082.0 3400 15.2 3837 17.2 150Moist22DA1091.5400017.9 4328 19.4178Moist23DA1103.5290013.0368016.51503.3Moist94.224DA111-2.0260011.721649.71232.6Moist98.125DA1122.0 4300 19.3 4819 21.6235Moist26DA1132.0400017.9 4440 19.9195Moist26DA1132.0400017.0404618.019621.9Moist99.429DA721.0360017.0423919.0219Moist30DA732.0380017.0423919.0219Moist31DA741.0300013.4321314.41641.8Moist99.932DA765.0275012.3386017.32162.1Moist33DA765.0275012.3386017.32162.1Moist34DA771.5340015.2372616.7168Moist<				20†									
22DA1091.5 4000 17.9 4328 19.4 178 Moist23DA1103.5290013.0368016.51503.3Moist 94.2 24DA111-2.0260011.721649.71232.6Moist 98.1 25DA1122.0 4300 19.3 4819 21.6235Moist26DA1132.0 4000 17.9 4440 19.9195Moist27DA7015**-2.0320014.3 2744 12.3162Moist28DA71-2.0400017.9 3547 15.91521.9Moist99.429DA721.0380017.0 4239 19.0219Moist30DA732.0380017.0 4239 19.0219Moist31DA741.0300013.4321314.41641.8Moist99.932DA750330014.8330017.32162.1Moist33DA765.0275012.3336017.32162.1Moist35BS8615†012505.616.7168 <td></td>													
23DA110 3.5 2900 13.0 3680 16.5 150 3.3 Moist 94.2 24DA111 -2.0 2600 11.7 2164 9.7 123 2.6 Moist 98.1 25DA112 2.0 4300 19.3 4819 21.6 235 $$ Moist $$ 26DA113 2.0 4000 17.9 4440 19.9 195 $$ Moist $$ 27DA70 15^{**} -2.0 3200 14.3 2744 12.3 162 $$ Moist $$ 28DA71 -2.0 4000 17.9 3547 15.9 152 1.9 Moist 99.4 29DA72 1.0 3800 17.0 4239 19.6 1.9 Moist $$ 30DA73 2.0 3800 17.0 4239 19.6 $$ Moist $$ 31DA74 1.0 3000 14.8 3213 14.4 164 1.8 Moist $$ 33DA76 5.0 2750 12.3 3860 17.3 216 2.1 Moist $$ 35BS 86 157 0 1250 5.6 81 $$ Moist $$ 36BS 87 1.0 1250 5.6 15.7 168 $$ Moist $$ 36 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>													
$2\frac{1}{4}$ DA111-2.0 2600 $1\overline{1.7}$ 2164 9.7 123 2.6 Moist 98.1 25 DA1122.0 4300 19.3 4819 21.6 235 Moist 26 DA1132.0 4000 17.9 4440 19.9195Moist 27 DA7015**-2.0 3200 14.3 2744 12.3162Moist 28 DA71-2.0 4000 17.9 3547 15.91621.9Moist99.4 29 DA721.0 3800 17.0 4239 19.0219Moist 30 DA732.0 3800 17.0 4239 19.0219Moist9.9 31 DA741.0 3000 13.4321314.41641.8Moist99.9 32 DA765.0275012.3 3860 17.32162.1Moist 33 DA765.0275012.3 3860 17.32162.1Moist 34 DA771.5 3400 15.2 3726 16.7168Moist 35 BS86157012505.616.7168Moist 36 BS871.001200													
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	23												
26DA1132.0400017.9444019.9195Moist27DA7015**-2.0320014.3274412.3162Moist28DA71-2.0400017.9354715.91621.9Moist99.429DA721.0360017.0401618.0196Moist30DA732.0380017.0423919.0219Moist31DA741.0300013.4321314.41641.8Moist99.932DA750330014.8330014.8249Moist33DA765.0275012.3386017.32162.1Moist99.334DA771.5340015.2372616.7168Moist35BS86151012505.612505.681Moist36BS871.012005.414286.485Moist36BS88-3.010000.41000.4384.3Moist103.938BS901.000.41000.4384.3Moist98.9													
27 DA 70 15^{**} -2.0 3200 14.3 2744 12.3 162 Moist 28 DA 71 -2.0 4000 17.9 3547 15.9 162 1.9 Moist 99.4 29 DA 72 1.0 3800 17.0 4239 19.0 219 Moist 30 DA 73 2.0 3800 17.0 4239 19.0 219 Moist 31 DA 74 1.0 3000 13.4 3213 14.4 164 1.8 Moist 99.9 32 DA 76 5.0 2750 12.3 3860 17.3 216 2.1 Moist 33 DA 76 5.0 2750 12.3 3860 17.3 216 2.1 Moist 34 DA 77 1.5 3400 15.2 3726	25												
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	26	DA	113		2.0	4000	17.9	4440	19.9	195		Moist	
29DA721.0380017.0401618.0196Moist30DA732.0380017.0423919.0219Moist31DA741.0300013.4321314.41641.8Moist99.932DA750330014.8320014.8249Moist33DA765.0275012.3386017.32162.1Moist99.334DA771.5340015.2372616.7168Moist35BS8615t012505.612505.681Moist37BS88-3.010004.53351.5618.4Moist103.939BS901.000.41000.4384.3Moist98.939BS901.011004.913165.969Moist40BS91010004.510004.5723.5Moist95.941BS9205002.253Moist				15**									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$													
31DA741.0300013.4321314.41641.8Moist99.932DA750330014.8330014.8249Moist33DA765.0275012.3386017.32162.1Moist99.334DA771.5340015.2372616.7168Moist35BS8615t012505.612505.681Moist36BS871.012005.414286.485Moist37BS88-3.010004.53351.5618.4Moist103.938BS8901000.41000.4384.3Moist98.939BS901.010004.513004.5723.5Moist40BS91010004.510004.5723.5Moist41BS9205002.253MoistMoist	29												
32 DA 75 0 3300 14.8 3300 14.8 249 Moist 33 DA 76 5.0 2750 12.3 3860 17.3 216 2.1 Moist 99.3 34 DA 77 1.5 3400 15.2 3726 16.7 168 Moist 99.3 35 BS 86 15† 0 1250 5.6 16.7 168 Moist 35 BS 86 15† 0 1250 5.6 1250 5.6 81 Moist 36 BS 87 1.0 1200 5.4 1428 6.4 85 Moist 37 BS 88 -3.00 0.000 4.5 335 1.5 61 8.4 Moist 103.9 38 BS 89 0 100 0.4 100 0.4 38 4.3 Moist 98.9 39	30												
$\begin{array}{cccccccccccccccccccccccccccccccccccc$													
34 DA 77 1.5 3400 15.2 3726 16.7 168 Moist 35 BS 86 151 0 1250 5.6 1250 5.6 81 Moist 36 BS 87 1.0 1200 5.4 1428 6.4 85 Moist 37 BS 88 -3.0 1000 4.5 335 1.5 61 8.4 Moist 103.9 38 BS 89 0 100 0.4 100 0.4 38 4.3 Moist 98.9 39 BS 90 1.0 1000 4.5 1260 5.79 69 Moist 40 BS 91 0 1000 4.5 1000 4.5 72 3.5 Moist 41 BS 92 0 500 2.2 53 Moist	32												
35 BS 86 15† 0 1250 5.6 1250 5.6 81 Moist 36 BS 87 1.0 1200 5.4 1428 6.4 85 Moist 37 BS 88 -3.0 1000 4.5 335 1.5 61 8.4 Moist 103.9 38 BS 89 0 100 0.4 100 0.4 38 4.3 Moist 98.9 39 BS 90 1.0 100 4.9 1316 5.9 69 Moist 40 BS 91 0 1000 4.5 100 4.5 72 3.5 Moist 95.9 40 BS 92 0 500 2.2 53 Moist	33												
36 BS 87 1.0 1200 5.4 1428 6.4 85 Moist 37 BS 88 -3.0 1000 4.5 335 1.5 61 8.4 Moist 103.9 38 BS 89 0 100 0.4 100 0.4 38 4.3 Moist 98.9 39 BS 90 1.0 1100 4.9 1316 5.9 69 Moist 95.9 40 BS 91 0 1000 4.5 1000 4.5 72 3.5 Moist 95.9 41 BS 92 0 500 2.2 53 Moist	34	DA	77		1.5	3400	15.2	3726	16.7	168		Moist	
37 BS 88 -3.0 1000 4.5 335 1.5 61 8.4 Moist 103.9 38 BS 89 0 100 0.4 100 0.4 38 4.3 Moist 98.9 39 BS 90 1.0 100 4.4 100 0.4 38 4.3 Moist 98.9 40 BS 91 0 1000 4.5 1000 4.5 72 3.5 Moist 40 BS 91 0 1000 4.5 1000 4.5 72 3.5 Moist 9.9 40 BS 92 0 500 2.2 53 Moist	35			15 1									
38 BS 89 0 100 0.4 100 0.4 38 4.3 Moist 98.9 39 BS 90 1.0 1.00 4.9 1316 5.9 69 Moist Moist 9.9 40 BS 91 0 1000 4.5 1000 4.5 72 3.5 Moist 95.9 41 BS 92 0 500 2.2 53 Moist	36									85			
39 BS 90 1.0 1100 4.9 1316 5.9 69 Moist 40 BS 91 0 1000 4.5 1000 4.5 72 3.5 Moist 95.9 41 BS 92 0 500 2.2 500 2.2 53 Moist	37												
40 BS 91 0 1000 4.5 1000 4.5 72 3.5 Moist 95.9 41 BS 92 0 500 2.2 500 2.2 53 Moist										38			98.9
41 BS 92 0 500 2.2 500 2.2 53 Moist	39								5.9				
					-								
42 BS 93 0 50 0.2 50 0.2 60 Moist													
	42	BS	93		0	50	0.2	50	0.2	60		Moist	

Note: Percent maximum towing force computed on basis of truck weight of 22,310 lb. Test weight of trailer, 10,400 lb. * See "Beach Terms" under "Definitions" in text. ** Trailer at 60 psi. † Trailer at 15 psi.

•

.

Ъ. 6,

	514	RTC DET	1-01-00-0	TTen (D	<u>lope Clim</u> <u>Car</u>			gram, Duxb		TARCE ALCU	Wheeled Vehicle	<u>-</u>
Item No.	Test Area*	Test No.**	Slope	psi	Immo- bilized	Towing Slope \$ Slope	<u>lb</u> -Climbi	on Slopes % of Test Weight ng Tests	Maxim Force	rrected um Towing for Level f of Test Weight	Average Cone Index O- to 6- in. Depth Before Traffic	Moisture Class. O- to 6- in. Depth
				3	/4-ton M	37, 4x4	Truck,	Test Weigh	nt 6,18	<u>7 16</u>		
1 2 3 4 56 7 8 9 10 11 2 3 4 56 7 8 9 10 11 2 3 4 56 7 8 9 10 11 12 13 14 5 16 17	X X X X X X X X X X X X X X X X X X X	155 156 158 159 175 182 188 189 200 160 164 165 164 179 198 202	17 13 19 12 11 13 21 11 17.5 10.5 20 12 9.5 11.5 13.5 18 20.5	30	Yes No Yes No No Yes No Yes No No No No Yes						188+ 188+ 188+ 188+ 171+ 153+ 147+ 188+ 171+ 	Dry Dry Dry Dry Dry Dry Moist Dry Dry Dry Dry Dry Dry Dry Dry Dry Dry
				<u>2-1</u>	/2-ton M1	135, 6x6	Truck,	Test Weig	ght 12,	<u>700 lb</u>		
18 19 20 21 22 23 24 25 26 27 28 29	X X X X X X X X X X X X X X X X X X X	153 154 157 176 201 163 166 173 181 199 203	17 8.5 24 13.5 13.5 17.5 10 7.5 12 13 21.5 24	30 15	Yes No Yes No Yes No No No Yes Yes							Dry Dry Dry Dry Dry Dry Dry Dry Dry Dry
						1	'owing 1	lests				
					3/4-ton M	37, 4x4	Truck,	Test Weigh	nt 6,18	<u>37 15</u>		
301233455678890123145678	es e	162 169 177 183 187 190 192 194 195 161 184 184 185 184 191 193 196 197		30		0 0 0.5 2.0 4.5 3.0 0 0 0 0 1.0 1.0 1.0	700 600 500 700 450 800 450 1400 1000 1000 1000 1000 1000 1000 1000 1000 1000 1400 1400 1400	11.3 9.7 8.1 11.3 7.3 12.9 12.9 6.5 7.3 19.4 16.2 16.	700 600 500 700 483 829 922 681 637 1200 1000 1000 1000 1000 1005 1400 1460 1250 959	$ \begin{array}{c} 11.3\\ 9.7\\ 8.1\\ 11.3\\ 7.8\\ 13.4\\ 14.9\\ 11.0\\ 10.3\\ 19.4\\ 16.2\\ 16.2\\ 16.2\\ 16.2\\ 16.4\\ 22.6\\ 23.6\\ 23.6\\ 25.5\\ 15.5\\ \end{array} $	171+ 69 150+ 171+ 171+ 69 69 150+ 	Dry Dry Dry Dry Moist Moist Dry Dry Dry Dry Dry Dry Dry Dry Dry Dry
				2-1	L/2-ton M			, Test Wei				_
49	BS	170		15	initions"	0	1800	14.2	1800	14.2		Dry

Summary of Data and Test Results, Test	s on Gravel Beaches
Single Self-propelled (Slope Climbing) and Maximum-Towi	ng-Force Tests with Wheeled Vehicles

* See "Beach Terms" under "Definitions" in text. ** See fig. 2 of plate 7 for soil classification of each test.

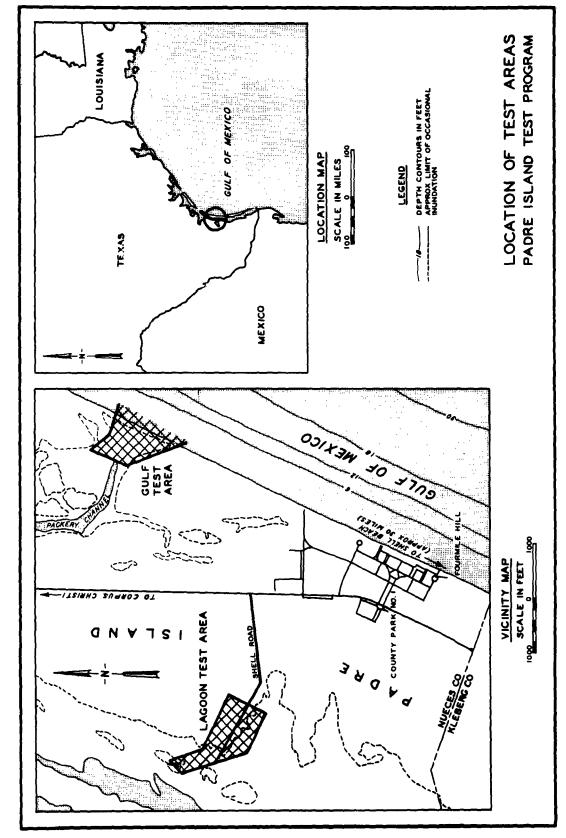
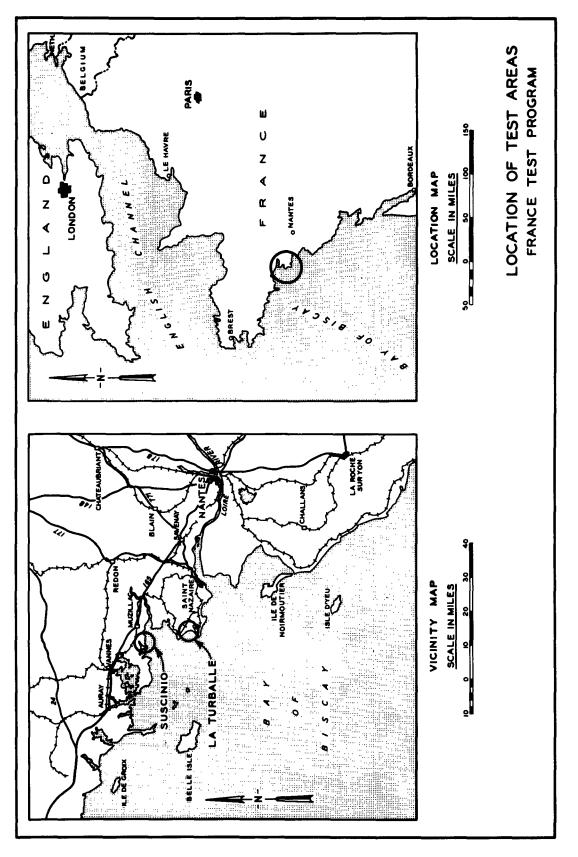
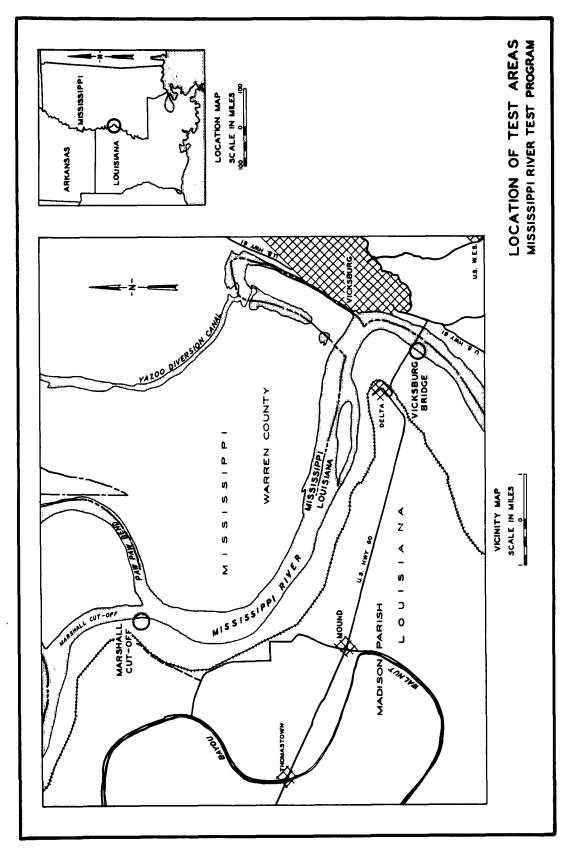

Table 10

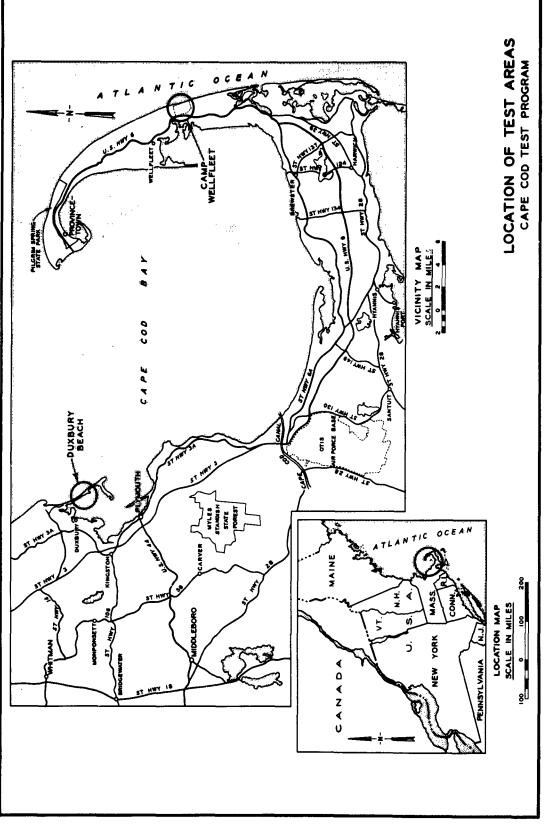
Table 11

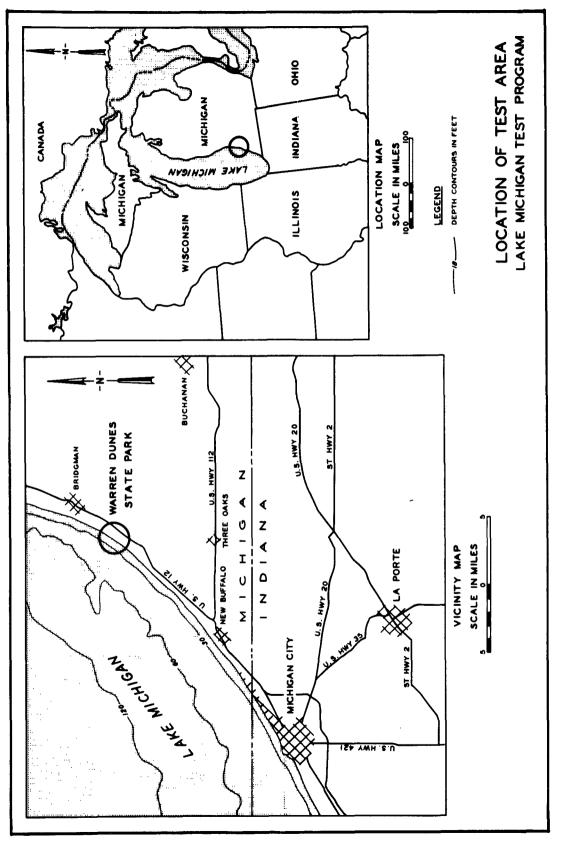

Summary of Data and	Test Results with	Airoll Vehicle	Weight 19,100 1b				
Lake Michigan Test Program							

	IAKE MICHIGAN TOUL FROMTAN									
			Tire	-	Measure	d Towing Force	614 -	Average Cone Index		
Item <u>No.</u>	No.	Slope	Pressure psi	Immo- bilized	<u>1b</u>	5 of Test Weight	Slip	0- to 6-in. Depth Before Traffic		
				Slope-Cl	imbing Tests	*				
1 2 3 4 5 6 7 8 9 10 11	26 24 25 25 26 25 25 26 21 41 19 27	61.5 55.5 51.0 50.0 38.5 30.5 28.5 20.5 19.5 18.5 18.5	15	Yes No** No** Not Not Not Not Not+ Not+				25 16 39 24 89 33 43 58 65 53 52		
12 13 14 15 16 17 18 19 20 12 20 24 25 26 77 28 29 03 13 23 33 4	8 11 17 6 11 67 66 09 90 98 63 66 62 69 22 44 65 88 33 61 35	62.5 59.0 57.5 54.5 53.0 46.5 53.0 46.5 53.0 46.5 53.0 41.5 5327.5 21.5 21.5 21.5 21.5 21.5 21.5 21.5 18.5	10	Yes No** Yes Yes Not Not Not Not Not Not Not Not Not Not				44 16 47 23 30 21 48 16 45 37 23 57 60 76 83 57 68 83 95 83 95 83 95 83		
356 778 90 1 2 3 4 4 5 6 7 8 9 0	759 86 82 4 7 83 87 376 4 285 90 1	50 49.55 47.55 33.15 33.15 27.7.55 24.00 13.00 13.00 13.00 13.00 13.00 14.00 1	5	Yes Yes Yes Not Not Not Not Not Not Not Not Not Not				27 24 81 28 58 53 75 83 82 59 80 73 67 100 47 50		
51 52 53 55 55 56 57 58	78 78 78 78 78 78 78 78		5	<u>Drawbar P</u>	ull-Slip Test 9500 7500 6000 5000 4750 4500 4250 4000	49.7 39.3 31.4 26.2 24.9 23.6 22.3 20.9	50 28 -6 -8 -17 -52 -80	64		
59 60 61 62 63	79 79 79 79 79		5		9500 7500 6250 2500 750	49.7 39.3 32.7 13.1 3.9	100 9 -6 -90 -97	63		

Note: Sand classified as dry to moist; moisture contents, 1.5 to 3.0% dry weight. * Dune area. * Moved forward with difficulty, stationary-wheel track action. † Moved forward easily, stationary-wheel track action. † Moved forward with rolling-wheel track action. * Backshore area.

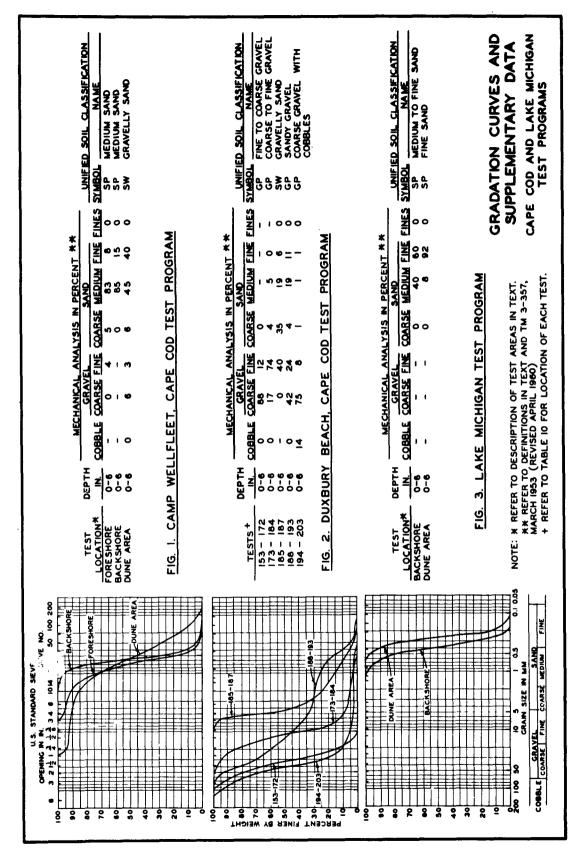






2

State and state of the state of


UNFRED SOIL CLASSIFICATION EINE FINES SYMBOL 98 2 SP FINE SAND 98 2 SP FINE SAND 52 0 SP MEDIUM TO FINE SAND	JT ** UNIFIED SOIL CLASSIFICATION FINE UNIFIED SOIL LAME B 0 SP COARSE TO MEDIUM SAND B 0 SP MEDIUM SAND 5 0 SW GRAVELLY SAND 1 0 SW GRAVELLY SAND	TT ** UNIFIED SOIL GLASSIFICATION FINE FINES SYMBOL 06 0 SP FINE SAND 75 0 SP FINE SAND 75 0 SP MEDIUM TO FINE SAND
MECHANICAL ANALYSIS IN PERCEN GRAVEL SAND COBBLE COARSE FINE COARSE MEDIUM 0 2 46 0 2 46 ISLAND TEST PROGRAM	MECHANICAL ANALYSIS IN PERCENT ** NTH MECHANICAL ANALYSIS IN PERCENT ** SAND SAND N COBBLE COARSE FINE -6 - 6 24 -6 - 0 6 8 -6 - 0 6 8 -6 - 0 6 8 -6 - 0 6 8 -6 - 27 36 30 5 -6 0 1 24 40 1 FRANCE TEST PROGRAM	MECHANICAL ANALYSIS IN PERCEN BLE COARSE FINE COARSE MEDIUM 0 25 0 25 0 25 1 25 RIVER TEST PROGRAM
TITTEST TTTT TEST LCCATION* GULF FORESHORE LAGOON AREA SHELL BEACH FIG. L.	TEST TEST TEST TEST TEST LA TURBALLE LA TURBALLE LA TURBALLE COCESHORE BACKSHORE BACKSHORE CO-6 BACKSHORE CO-6 BACKSHORE CO-6 BACKSHORE CO-6 BACKSHORE CO-6 BACKSHORE CO-6 BACKSHORE CO-6 CO-7 CO-6 CO-7 CO-6 CO-7 CO-7 CO-6 CO-7	TEST DEPTH TEST DEPTH LOCATION* DEPTH VICKSBURG BRIDGE 0-6
оевинс и и. зтлисло seve и оевинс и и. з г. и	A CORESOOR	


PERCENT ** SAND MEDIUM FINE 0 98 2 SP FINE SAND 0 98 2 SP FINE SAND 46 52 0 SP MEDIUM TO FINE SAND		I PERCENT * * UNIFIED SOIL CLASSIFICATION SAND MEDIUM FINE FINES SYMBOL NAME	62 8 0 SP COARSE TO MEDIUM SAND 86 8 0 SP MEDIUM SAND	30 5 0 SW GRAVELLY SAND 40 11 0 SW GRAVELLY SAND	PERCENT * * UNIFIED SOIL CLASSIFICATION SAMD MEDIUM FINE FINES SYMBOL 4 96 0 SP FINE SAND 25 75 0 SP MEDIUM TO FINE SAND	GRADATION CURVES AND SUPPLEMENTARY DATA PADRE ISLAND, FRANCE, AND MISSISSIPPI RIVER TEST PROGRAMS
DEPTH MECHANICAL ANALYSIS IN PERCENT ** DEPTH CARAVICAL ANALYSIS IN PERCENT ** OPH COBBLE COARSE FINE COARSE MENUM FINE FINE FINE FINE FINE FINE FINE FINE	PADRE ISLAND TEST PROGRAM	DEPTH MECHANICAL ANALYSIS IN PERCENT # * DEPTH CRAVEL SAND IN. COBBLE COARSE FINE COARSE MEDIUM FINE F	6-0 6-0 6-0 7-1 7-1 7-0 7-0 7-0 7-0 7-0 7-0 7-0 7-0 7-0 7-0	0-6 0 2 27 36 0-6 0 1 24 24 2. FRANCE TEST PROGRAM	DEPTH MECHANICAL ANALYSIS IN DEPTH CRAVEL ANALYSIS IN COBBLE COARSE FINE COARSE 0-6 0	FIG. 3. MISSISSIPPI RIVER TEST PROGRAM NOTE: * REFER TO DESCRIPTION OF TEST AREAS IN TEXT ** REFER TO DEFINITIONS IN TEXT AND TM 3-357 MARCH 1953.
TEST LOCATION [#] GULF FORESHORE LAGOON AREA SHELL BEACH		TEST LOCATION*	LA TURBALLE FORESHORE BACKSHORE	FORESHORE BACKSHORE FIG.	TEST LOCATION* VICKSBURG BRIDGE MARSHALL CUT-OFF	
U.S. STANDARD SEVE OPENING N N. 3 2 1 3 1 3 2 3 3 4 6 104 2030 50 100 200 100 1 2 1 3 1 3 3 4 6 104 2030 50 100 200 100 1 2 1 3 1 3 2 1 3 2 1 0 104 2030 50 100 200 100 101 1 2 1 2 1 3 2 1 3 2 1 0 104 2030 50 100 200 100 101 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2						20 20 10 10 10 10 10 10 10 10 10 1

PLATE 6

.

The second se

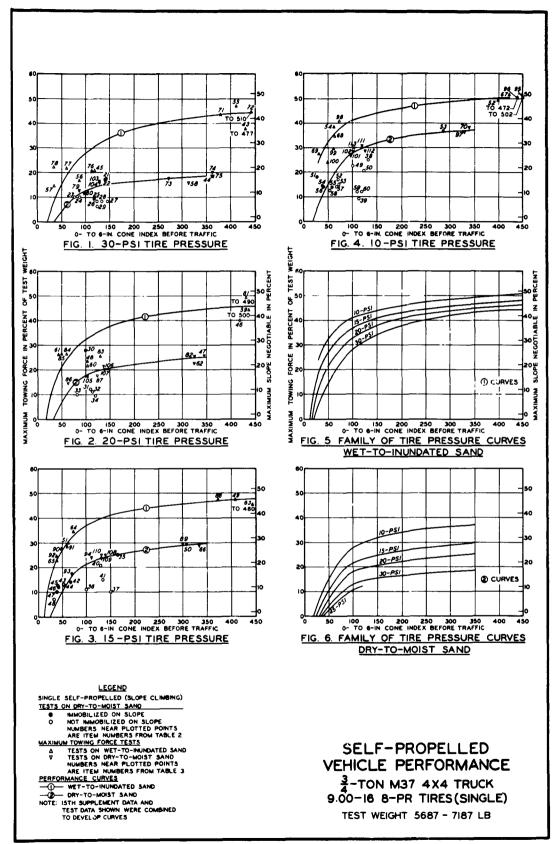
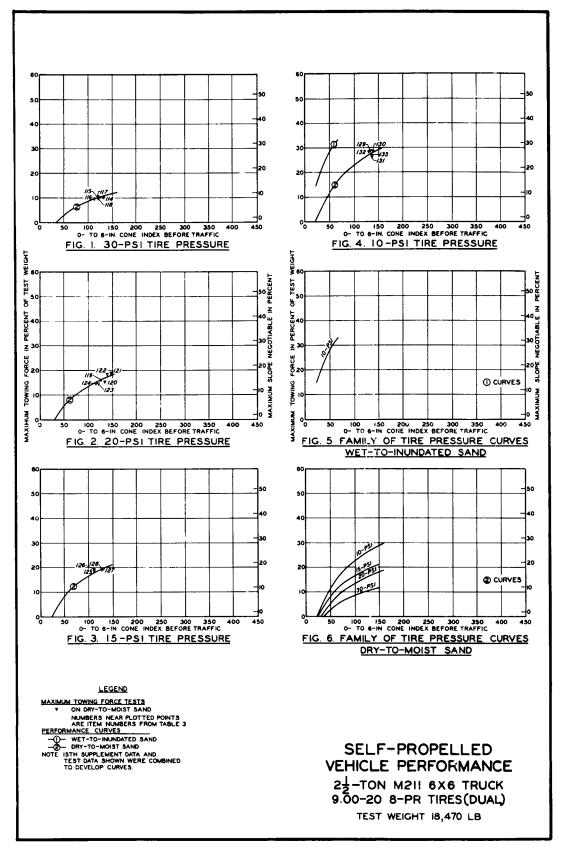
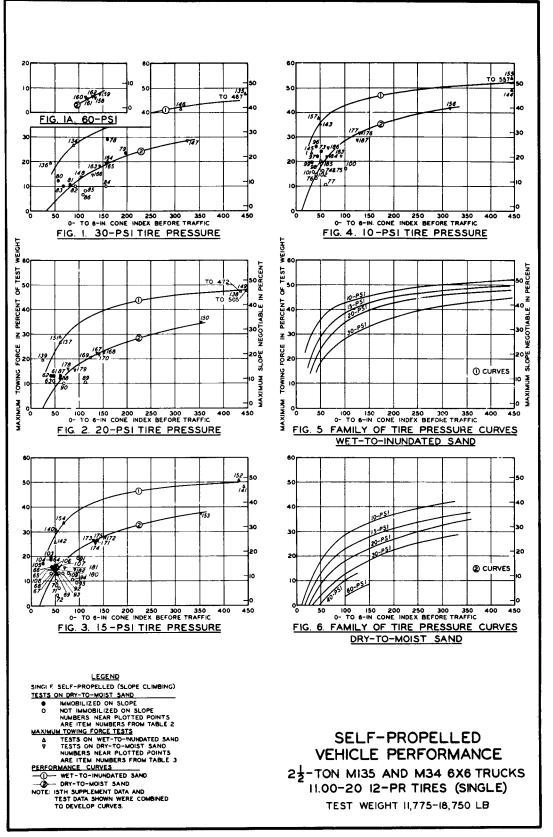
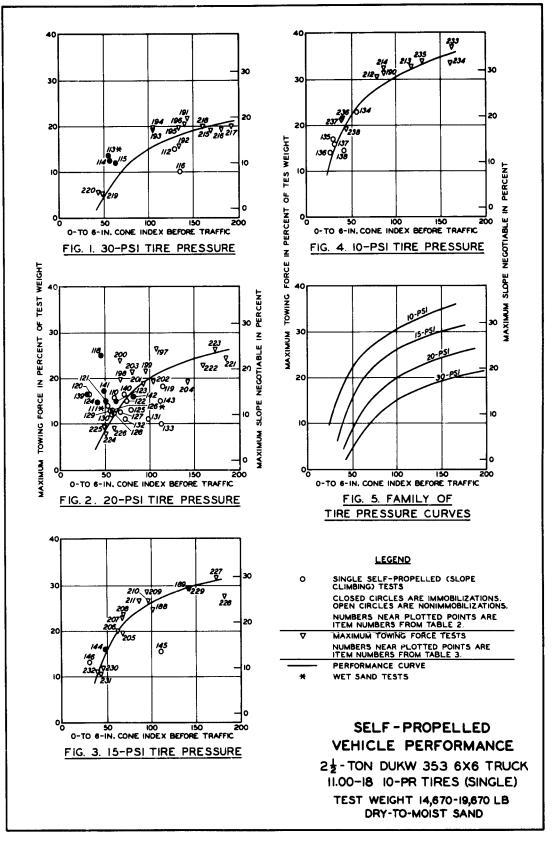
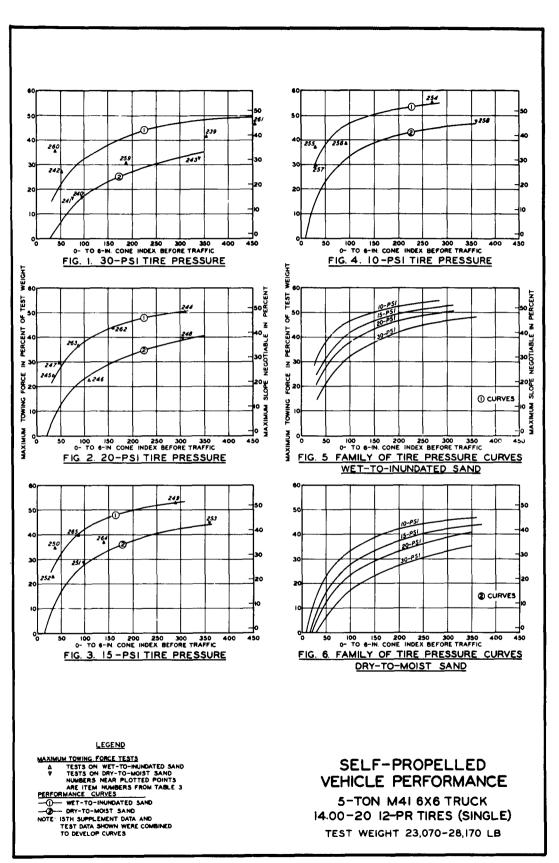
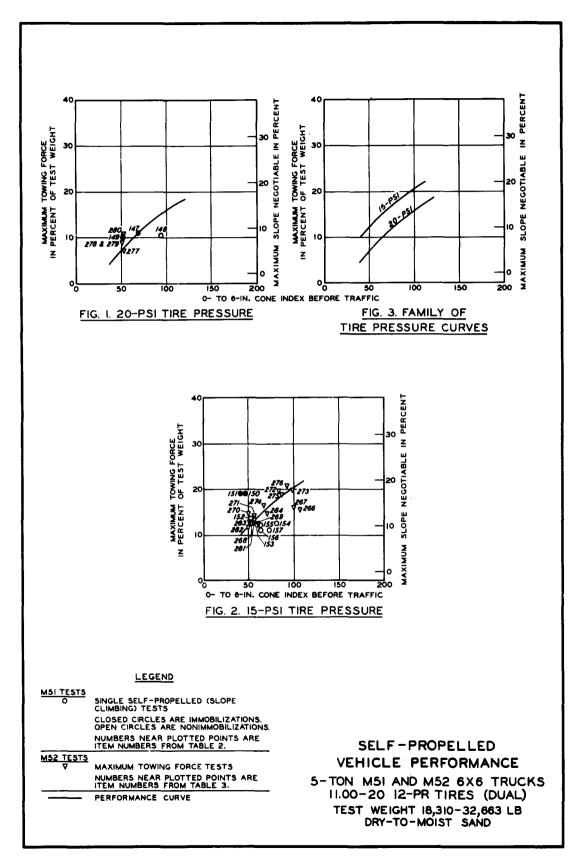
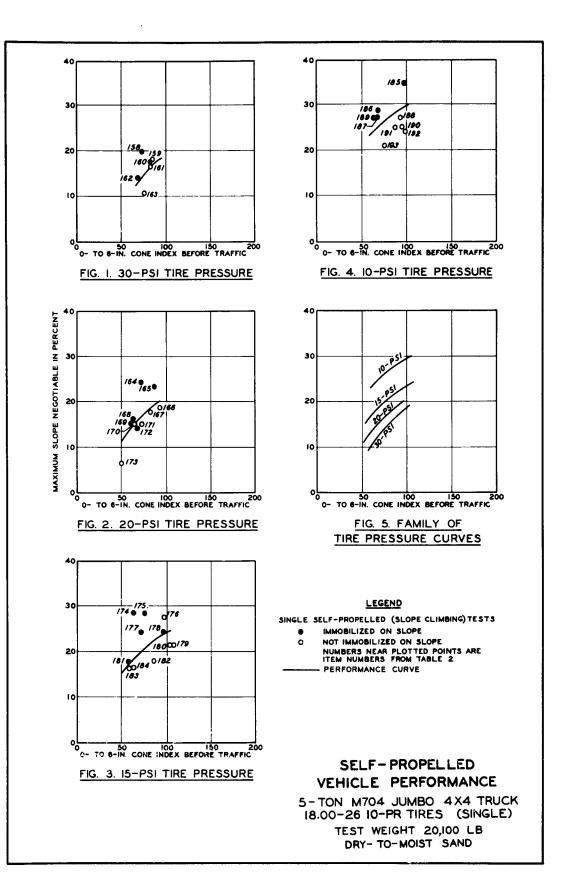
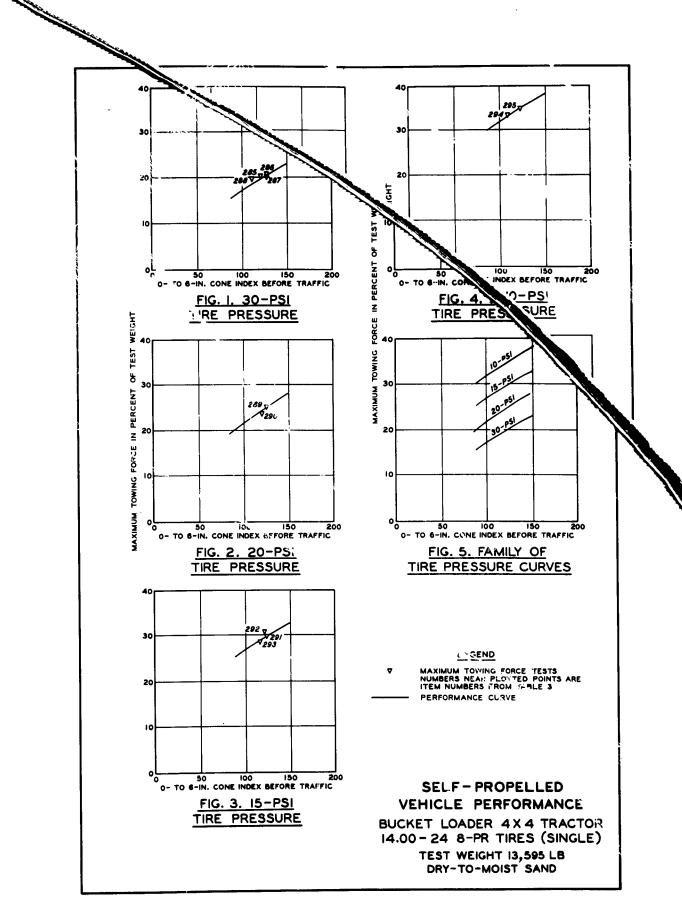


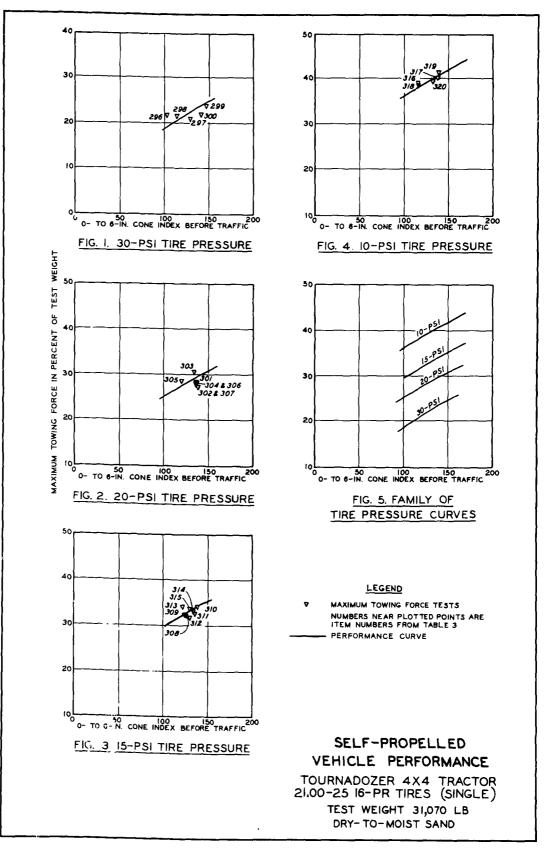
PLATE 9

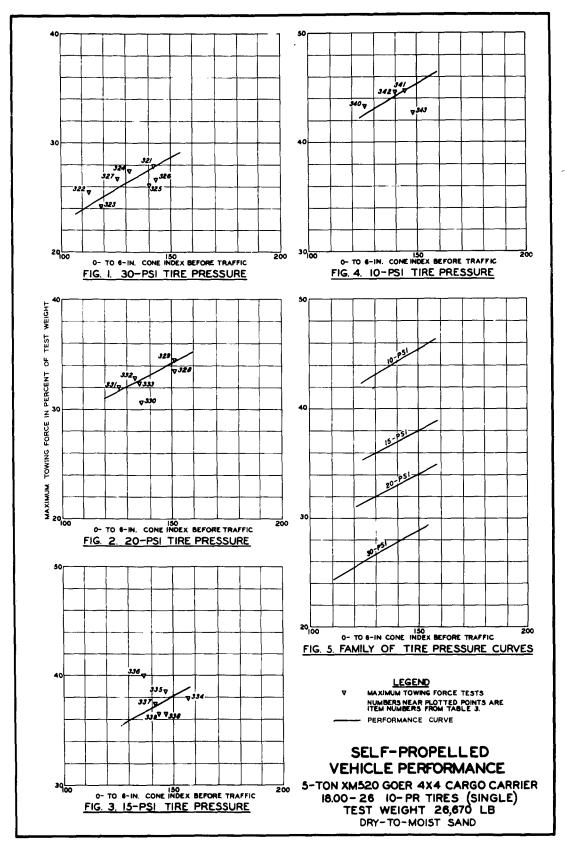





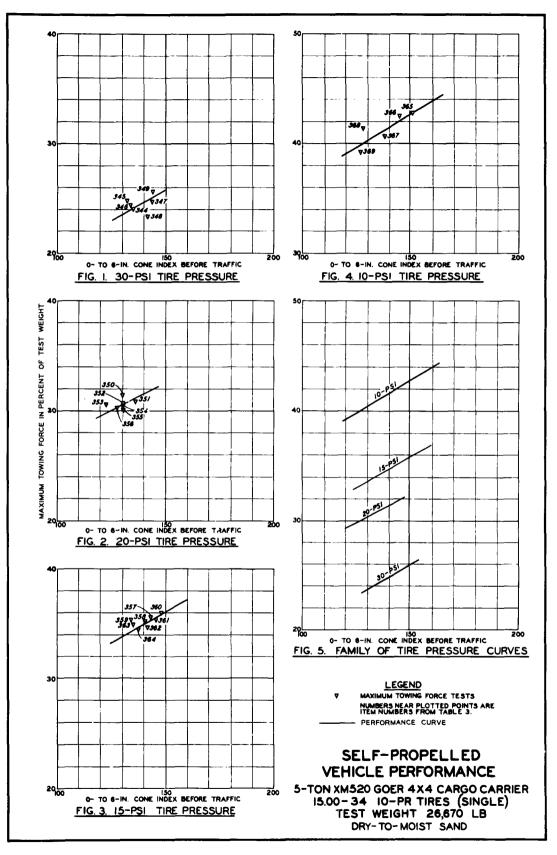

PLATE IO

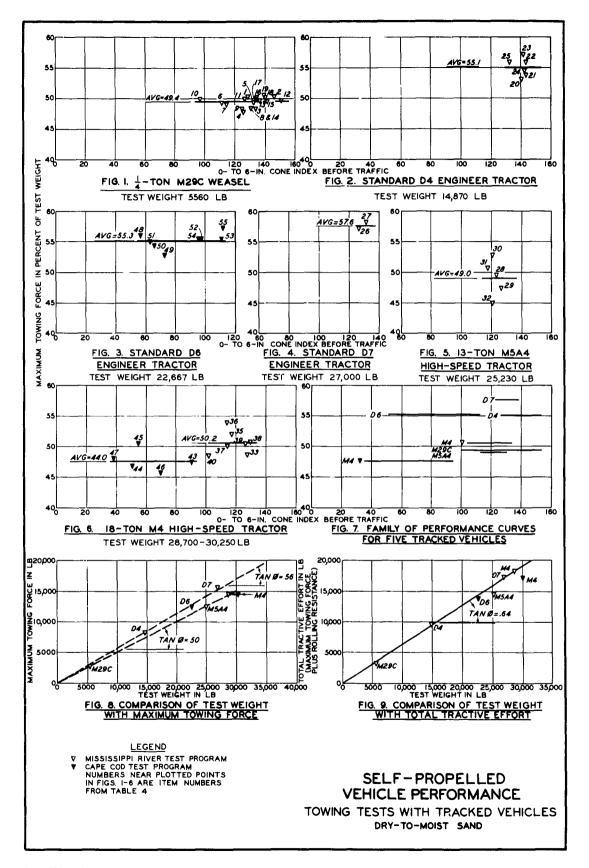


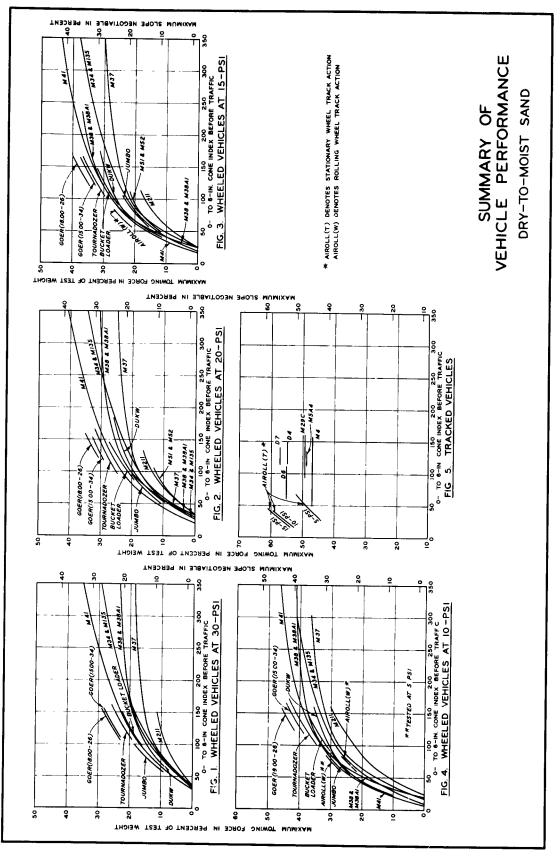

100 Carton and a 100

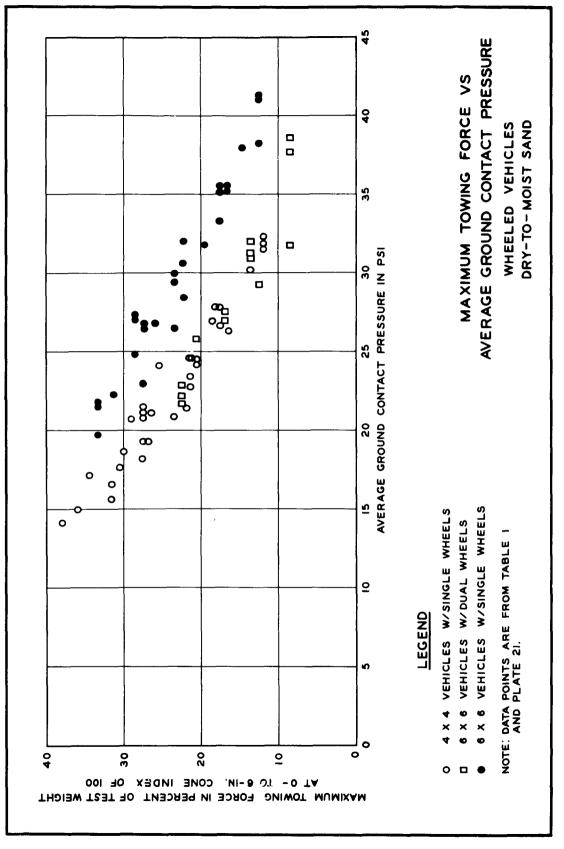


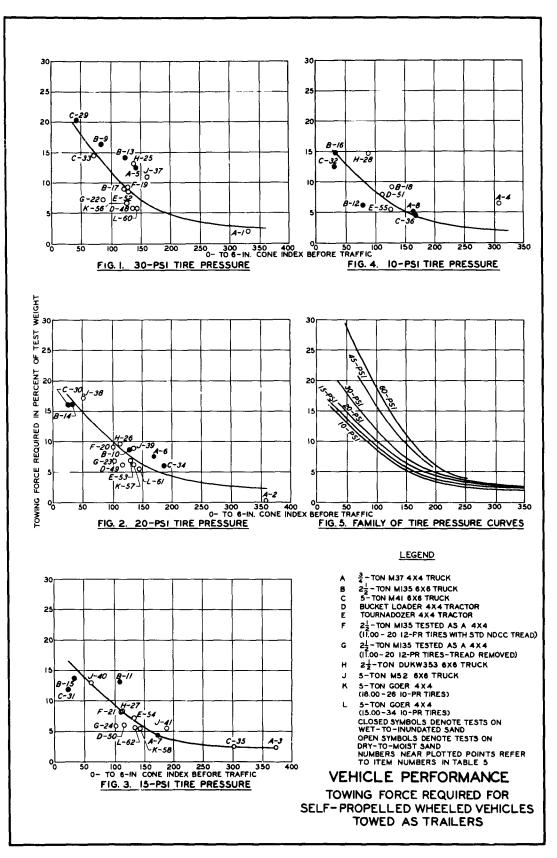


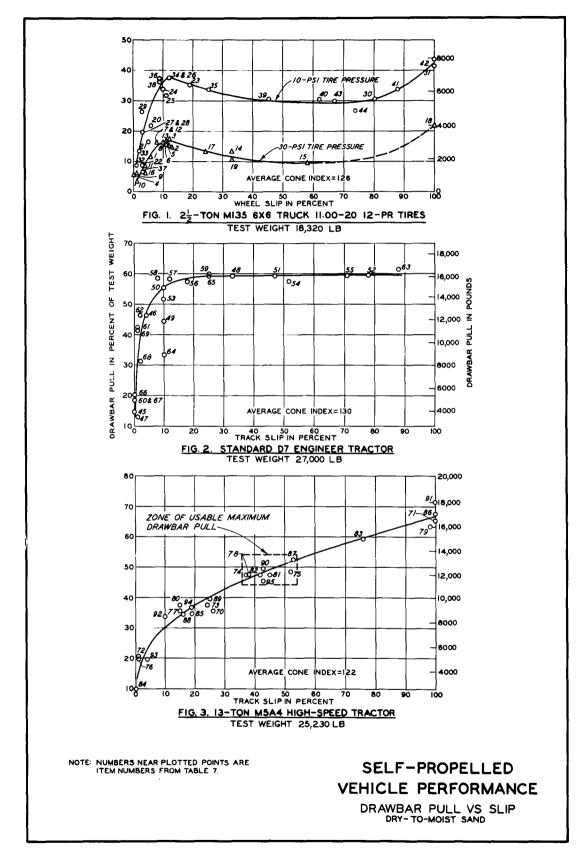

Statistics.

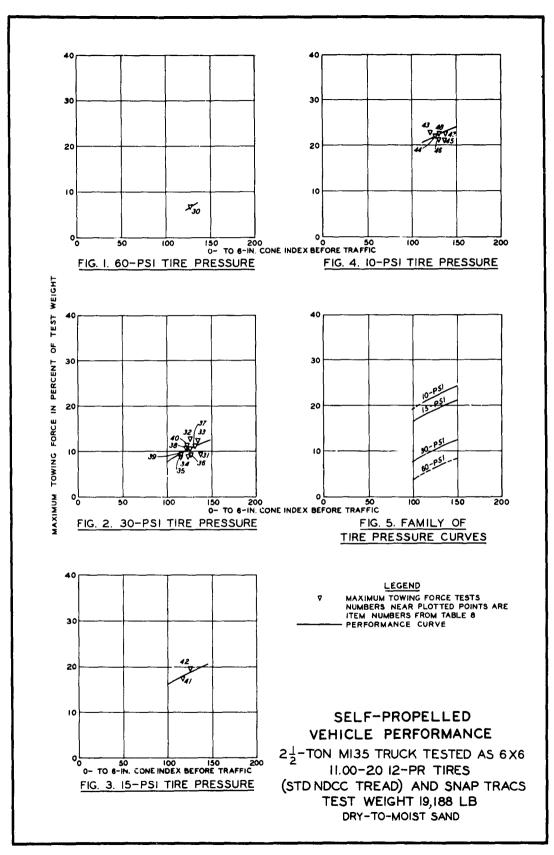

PLATE 15

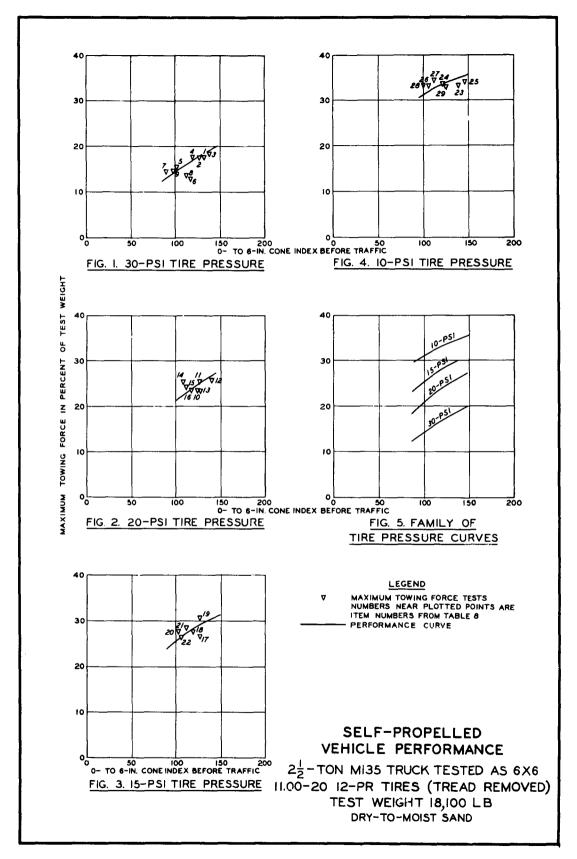


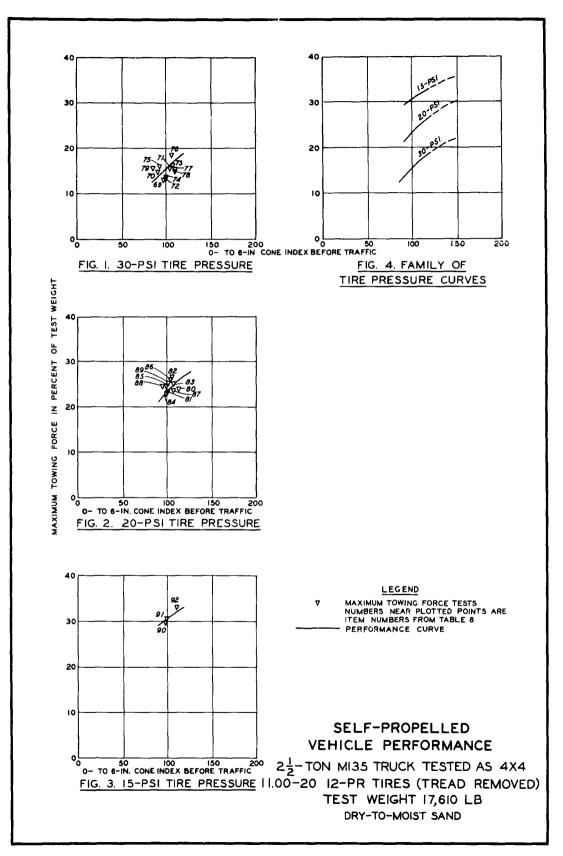


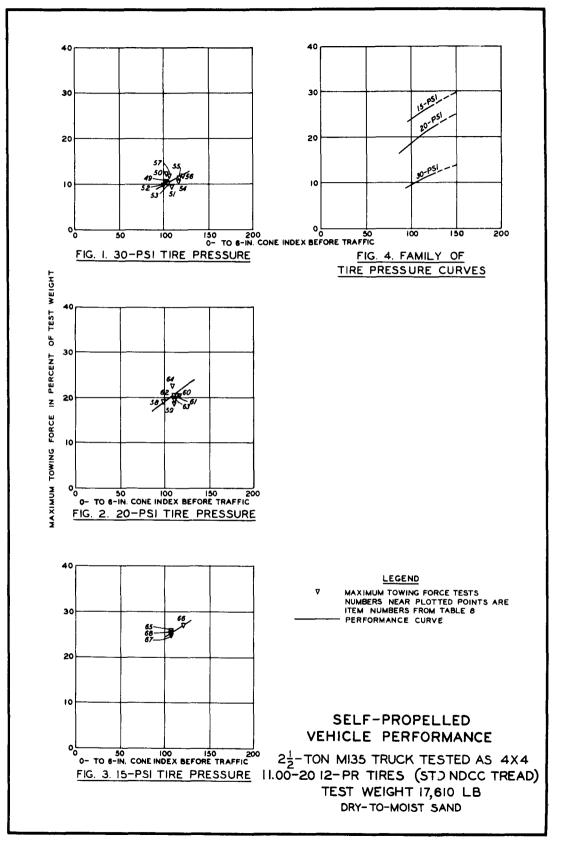


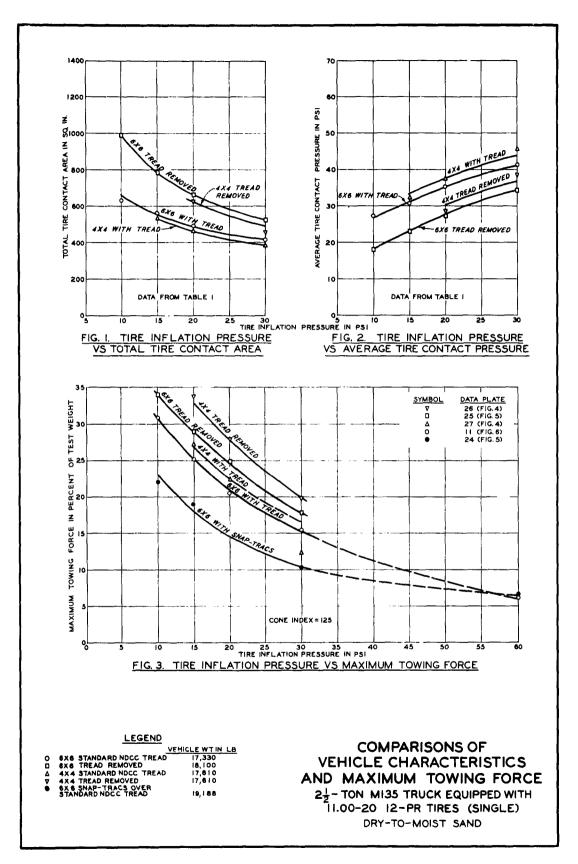


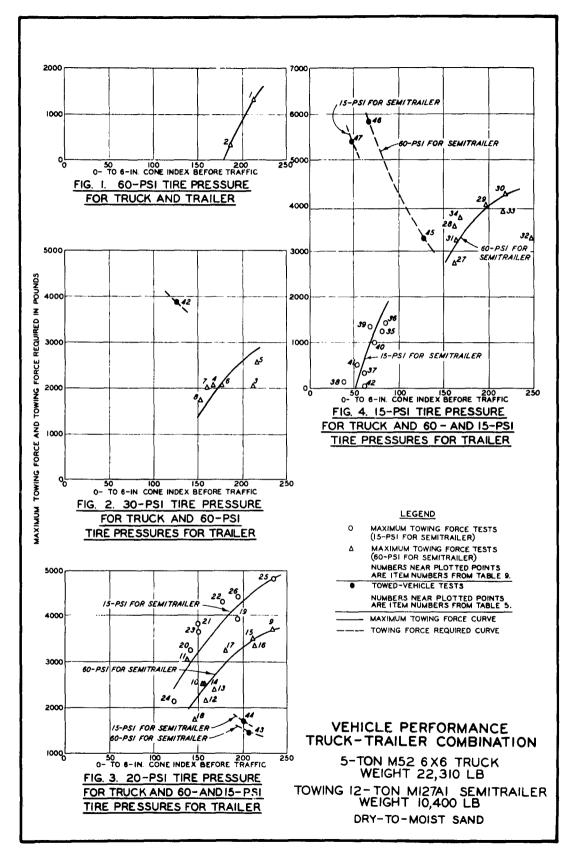


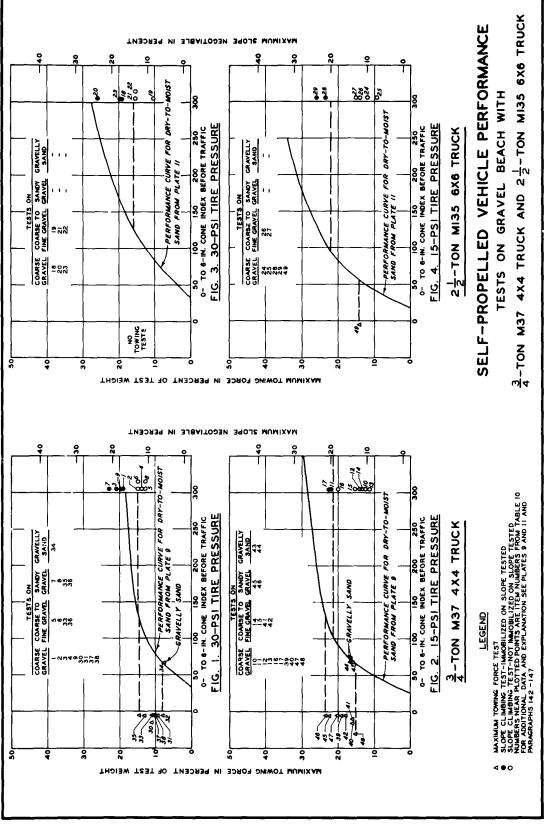


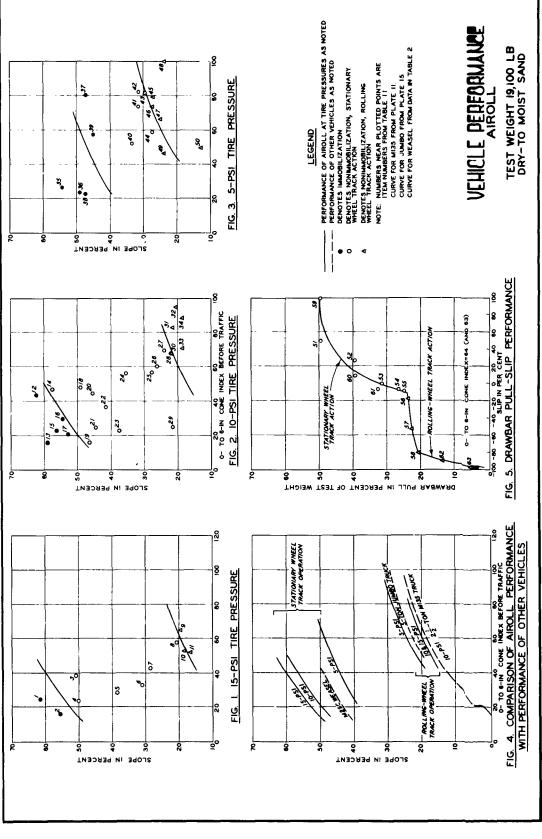












·¥ ·

16 NOV 1962

WESSR

SUBJECT: Submission of Technical Report for Approval

TO: Commanding General U. S. Army Materiel Command ATTN: AMCRD-RS-ES Washington 25, D. C.

1. We are inclosing for your comments and/or approval for publication a copy of the draft of Technical Memorandum No. 3-240, Seventeenth Supplement, "Trafficability of Soils, Tests on Coars-Grained Soils with Self-Propelled and Towed Vehicles, 1958-1961," dated April 1962.

2. We plan to distribute this report according to List A. Your approval of the proposed distribution is requested.

l Incl as /s/ ALEX G. SUTTON, JR. Colonel, Corps of Engineers Director AMCRD-RS-ES-E(16 Nov 62) lst Ind SUBJECT: Submission of Technical Report for Approval

HQ, DA, Commanding General, Army Materiel Command, Washington 25, D. C. 20 December 1962

TO: Director, ATTN: WESSR, U.S. Army Engineer Waterways Experiment Station, Vicksburg, Miss.

1. Returned herewith is the draft copy of Technical Memorandum No. 3-240, Seventeenth Supplement, "Trafficability of Soils, Tests on Coarse-Grained Soils with Self-Propelled and Towed Vehicles," dated April 1962. Publication of this report is approved subject to the comments contained this indorsement and the changes as indicated in red pencil in the draft report.

5. Distribution of the published report is approved as requested in paragraph 2 of the basic letter.

FOR THE COMMANDER:

l Incl nc /s/ ROBERT R. PHILIPPE Chief, Environmental Sciences Branch Research Division Research and Development Directorate

KNIGHT/ap

WESSR (16 Nov 62) 2d Ind 29 JAN 1963 SUBJECT: Submission of Technical Report for Approval

TO: Commanding General, U. S. Army Materiel Command, ATTN: AMCRD-RS-ES-E, Washington 25, D. C.

We sincerely appreciate the thorough review to which you have submitted the subject report. Your general and specific comments and recommendations are well-founded and pertinent, and we are revising the report to incorporate them insofar as feasible.

l Incl wd /s/ ALEX G. SUTTON, JR. Colonel, Corps of Engineers Director

LIST A - DISTRIBUTION LIST FOR

TECHNICAL REPORTS ON TRAFFICABILITY AND MOBILITY STUDIES

AMC

CG, Army Materiel Command, Director, Res & Devel, ATTN: AMCRD-RS-ES-E, Washington 25, D. C.	2	 U. S. Army Armor Bd., Ft. Knox, Kentucky U. S. Army Infantry Bd., Ft. Benning, Ga. 			
U. S. Army Air Defense Bd.,	1	Commanding General, Aberdeen			
Ft. Bliss, Texas	-	Proving Grounds, Aberdeen, Md.			
U. S. Army Infantry Bd., Tact Sect	1				
TIS, Ft. Benning, Ga.	-	CG, Rock Island Depot Activity,			
Commanding General, Dev & Proof Serv, Ord Corps, Aberdeen Prvg	Т	Rock Island, Ill., ATTN: ORDOW-TX			
Grounds, Aberdeen, Md., ATTN:		CG, Army Materiel Command, ATTN:			
Chief, Library & Museum Branch		R&D Directorate, Environmental			
AMC for Engr Standardization Program	Ъ	Sciences Br., Room 2507, Bldg.			
Library, CRREL	ĩ	T-7, Mr. R. F. Jackson,			
Engineer School Library	ī	Washington 25, D. C.			
	_				
Corps of Engineers					
	-				
Security & Fgn Relations (ENGTE-PS)		US Military Attache, London			
Library Branch (ENGAD-L)	2	CO, CE Desert Test Activity,			
US Army Caribbean, ATTN: Engineer	1	Yuma Test Station, Yuma, Ariz.			
ERDL					

Technical Documents Center 1	British Liaison Officer (Thru 4
Engineer School Liaison, 1	OCE ENGTE-PS)
Fort Belvoir, Virginia	Canadian Liaison Officer (Thru 3
Transportation Corps Liaison 2	OCE ENGTE-PS)
Officer	USAE Combat Developments Agency 1

CONARC

CONARC, Engr Sec, Ft. Monroe, Va.

General Staff, U.S. Army

1

Deputy Chief of Staff for Logistics

1 Deputy Chief of Staff for Military Operations

1

1

l

1

1

2

1

1

Navy Department

- Naval Civil Engr Labs Office of Naval Research Navy Dept., Washington, D. C., ATTN: Code 463 OIC, Naval Photographic Inter-
- pretation Center, Naval Receiving Sta., Washington, D. C. ATTN: Librarian

4 1 Chief, Bur of Yards & Docks,

- 1 Navy Dept, Washington, D. C. ATTN: Code 70 1 Coastal Studies Institute, LSU,
- 1 Baton Rouge 3, La. lst Medium Anti-Aircraft Missile 1 Battalion, Marine Corps Training Center, Twenty-nine Palms, Calif.

- Director, Naval Warfare Research Center, Stanford Research Institute, Menlo Park, Calif. - cc ltr of transmittal to: <u>Resident Representative</u>, Stanford Univ., Stanford, Calif.; <u>Naval Warfare</u> <u>Research Center Representative</u>, Stanford Research Institute, Suite 300, 808 17th St., N. W., Washington 6, D. C.; and <u>Office</u> <u>of Naval Research</u> (Code 493), Navy Dept., Washington, D. C.
- US Army Signal Engineering Laboratories (USASEL), Tech Reports Library Trans Res Engr Command, Ft.
- Eustis, Va. Armed Services Tech Infor Agency Arlington Hall Station
- Arlington, Va., ATTN: TIPCR Lockheed-Georgia Co., Dept. 72-42, Zone 13, Marietta, Ga. ATTN: V. Frisby
- Mr. T. B. Pringle, OCE
- New York University, College of Engr., Research Div, Univ Heights, New York 53, N. Y.
- The Chief Signal Officer ATTN: SIGGE-M-3 Radar & Meterological
- Br, Washington 25, D. C.
- Chief, Office of Transportation Washington, D. C.
- Director, California Forest and Range Experiment Station, P. O. Box 245, Berkeley 1, Calif., ATTN: Jack R. Fisher, Physical Scientist
- U. S. Geological Survey, Military Geology Branch, Room 4225, GSA Bldg., Washington 25, D. C.
- Cdr., Ordnance Weapons Command,
- Rock Island, Ill., ATTN: ORDOW-OR University of Ark., College of Engr.
 - Fayetteville, Ark. ATTN: Henry H. Hicks, Jr.

- Geography Branch, Office of Naval Research, Dept. of the Navy, Washington 25, D. C.
 - Commandant, Marine Corps, Hqs., 1 Marine Corps, Washington 25, D. C., ATTN: AO4E

1

- CO, PHIBCB One, U. S. Naval 1 Amphibious Base, Coronado, San Diego 55, California
- CO, PHIBCB Two, U. S. Naval 1 Amphibious Base, Little Creek, Norfolk 11, Virginia
- Special
 - 1 Davidson Laboratory, Stevens 1
 Institute of Technology, 711
 Hudson St. Hoboken, N. J.
 - 1 Commanding O_ficer, Ordnance 1
 Test Activity, Yuma Test Sta-
 - 10 tion, Yuma, Ariz., ATTN: Automotive Reference Library US Mil Acad, Engr Detach 1
 - 1 Ch Signal Off, Engr & Tech Ser 1 Prof. Parker D. Trask, Univ of 1 Calif.
 - Ch of Ordnance, Dept of Army 1
 The Pentagon, Washington, D. C. ATTN: Research & Dev Div ORDIW Research Analysis Corp. 1
 - 1 Bethesda 14, Md., ATTN: Library Commanding Office, Detroit Arse- 1
 - nal (ORDMC-RRL), Ordnance Corps, 1501 Beard, Detroit 9,
 - 5 Mich., ATTN: Land Locomotion Laboratory
 - 1 Commandant, Command and General 1 Staff College, Fort Leavenworth, Kans., ATTN: Archives
 - MIT, Soil Engineering Library 1 Cambridge, Mass.
 - 1 Library of Congress, Documents 3 Expediting Project, Washington 25, D. C.
 - National Tillage Machinery Lab., 1
 U. S. Dept. of Agriculture,
 Auburn, Alabama

Office, Quartermaster General, Dept. of the Army, Washington 25, D. C., ATTN: Res & Engr Div, Devel Br Mr. David Cardwell, Asst Dir, Basic Res Fighting Vehicles R&D Estab, Chobham Lane, Chertsey, Surrey, England (ENG-238) Mr. A. O. Barrie, Ministry of Supply, Mil Engr Experimental Estab, Barrack Road, Christchurch, Hampshire, England (ENG-240) Dr. William Lucas Archer, Scientific Res Off., Canadian Army Oper Res Estab, Canadian Army Hq, Ottawa, Canada (ENG-239) U. S. Army Map Service, Far East APO 94, San Francisco, Calif., ATTN: Area Analysis Division Mr. John Lewis Orr, Dir of Engr Res, Canadian Army Operational Res Estab, Defence Res Board Ottawa, Canada (ENG-242) Heavy Construction Section Dept. of Engineering Pavements & Materials Group, US Army Engr School, Ft. Belvoir, Va. ATTN: Raymond Hansen Meteorology Res Div, Meteorology Dept., US Army Electronic Proving Ground, Fort Huachuca, Ariz., ATTN: SELHU-MM University of Mich. Research Institute Automotive Lab., Ann Arbor, Mich. Clark Equipment Company, Construction Machinery Div. Pipestone Plant Benton Harbor, Michigan Chief of Transportation, DA, ATTN: Mr. R. C. Kerr, Chief Scientist, Washington 25, D. C. CG, US Army Transportation Research Command, ATTN: Lt. Col. R. W. Wildey, Ft. Eustis, Va. Prof. L. C. Stuart, University of Michigan, Ann Arbor, Michigan

1 Engineering Societies Library, 1
345 E. 47th St., New York 17,
N. Y.
Chief, Research & Development, 1

1

1

1

- DA, ATTN: Chief, Combat Materiel Div., Washington 25, D. C. Library, Division of Public 1
- Documents, US Government Printing Office, Washington 25,
- D. C. Martin Company, Orlando, Fla., l ATTN: W. A. Headley, Jr.,
- Technical and Research Staff, Mail No. MP-28
- Commanding General, U. S. Army 1 Transportation Combat Dev
- l Group, Ft. Eustis, Va., ATIN: Earl S. Brown
 - CO, Picatinny Arsenal, Dover, 1
- 1 N. J., ATTN: Mr. R. G. Thresher, Samuel Feltman Ammunition Labs., Ammunition Research Lab., Engineering
- 1 Research Section Caterpillar Tractor Company, 1 Peoria, Ill, ATTN: Research Library
 - CO, Rock Island Arsenal, Rock 1
- 1 Island, Ill., ATTN: Bill Heidel 9310-AR
 - Chief, Terrain Detachment, Engi- 1 neer Section, Hq., Fourth U. S.
- 1 Army, Fort Sam Houston, Texas Defense Systems Division, 1 General Motors Corporation,
 - Box T, Santa Barbara, Calif. ATTN: J. P. Finelli
 - President, U. S. Army Transpor- 1 tation Board, ATTN: TCTCB-EN,
 - 1 Fort Eustis, Virginia Chief of Research & Development, 1 DA, ATIN: Dr. L. S. Wilson,
- 1 Washington, D. C. Chief of Transportation, DA, 1 ATTN: TCDTE, Mr. C. H. Perry,
- Deputy Director of Transportation Engineering, Washington 25, D. C.

1

- CO, US Army Ordnance Tank-Automotive Command, ATTN: ORDMC-RRL, Mr. R. A. Liston, 1501 Beard, Detroit 9, Mich.
- Mr. Seth Bonder, Project Supervisor, Ohio University Engineering Experiment Station, 159 West 19th Avenue, Columbus 10, Ohio
- Engineer Intelligence Center, Office of the Engineer, ATTN: Mr. Gerald M. Goldberg, USAREUR, APO 403, New York, N. Y.
- 1 Commandant, USA Transportation 1
 School, Ft. Eustis, Va.
 Chief, Research & Development, 1
 - DA, ATTN: Chief, Earth
- 1 Sciences Div., Washington 25, D. C.
 - Library, National Research Coun- 1 cil, Ottawa, Canada (ENG-17)
- l Commander, US Strike Command, l ATTN: J4-T, McDill AFB, Florida

U. S. Air Force

- Hqs, USAF, DC/S Operations, Director of Operations, Operations & Commitments Division (AFOOP-OC-S) Washington 25, D. C.
- Hqs, USAF, DC/S Devel, AFDRQ -Command Support Div, Washington 25, D. C.
- Cdr, Wright Air Devel Center, ATTN: WCLEI, Air Installations Br., Equipment Laboratory
- Cdr, Maxwell AF Base, Ala., ATTN: A-2 Library
- Cdr, Maxwell AF Base, Ala., ATTN: Research Section
- Cdr, Air Res and Dev Command P. O. Box 1395, Baltimore 3, Md. ATTN: RDTDE, Equipment Division

- 1 Cdr, MATS, Andrews AF Base, 1
 Washington 25, D. C.
 ATTN: Air Installations Off
 Hqs, USAF, DC/S Devel, AFDRD 1
 Equip Div, Washington 25, D. C.
- 1 Cdr, Air Prvg Gr Command, Eglin 1
 Air Force Base, Fla., ATTN:
 PGAPT
- l Cdr, Wright Air Devel Center, l Wright-Patterson AF Base, Ohio, ATTN: WWDPFE
- l Installations Engr School l USAFIT, Wright-Patterson Air
- 1 Force Base, Ohio Terrestrial Sciences Laboratory, 1
- CRZG, AF Cambridge Res Labs.,
 L. G. Hanscom Field, Bedford,
 Mass., ATIN: Mr. C. E. Molineux
- To be forwarded thru Senior Representative, US Army Standardization Group, UK, Keysign House, 429 Oxford Street, London, W.1, England:
- Mr. F. L. Uffleman, Fighting Vehicles, R&D Establishment, Chobham Lane, Chertsey, Surrey, England
- 1 Prof. P. H. T. Beckett, Oxford 1 Univ., England
- To be forwarded thru Senior Representative, US Army Standardization Group, Canadian Army Headquarters, Ottawa, Ont., Canada:
- Mr. C. B. Lewis, Defence Research 1 Dr. E. G. Leger, Canadian Arma-1 Board, Ottawa, Canada ment R&D Establishment, Quebec, Canada

Lt. Col. A. L. Maclean, Canadian Hqs, Ottawa, Canada Major W. J. Dickson, Canadian Armament R&D Establishment, Quebec, Canada

1 Mr. T. A. Harwood, Defence Re-1 search Board, Ottawa, Canada 1

Consultants

. A. A. Warlam	1	Mr. C. J. Nuttall	1
of. K. B. Woods	l	Prof. R. E. Fadum	1
. Robert Horonjeff	1	Prof. N. M. Newmark	l
. A. C. Orvedal	1	Prof. Gerald Pickett	l

Dr. A. A Pro Mr. Mr.