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I. IYMRODUCTION

I.1 The Concept of Locking

Solids exhibit wide and significant variations in physical properties.

Thus it is extremely difficult to characterize the mechanical behaviour

of solids by a single equation or a single set of equations which can be

used in practical analysis to determine stresses, strains, displacements

and other related quantities. Therefore an engineer is compelled to

devise 'ideal materials' such as the perfectly elastic solid, the per-

fectly plastic body etc. The idealization depends on the particular

problem to be solved and the accuracy desired in the final solution.

The locking material considered in this report is one of the 'ideal

materials'. The phenomenon of locking which characterizes this ideal

material can be visualized by considering the following model.

(a TA B T

(b)AAA A AAAA A AAV VVV V V I V V V

Fig. 1.1.

A spring AB of spring constant ks has a flexible wire attached

firmly to its ends. The cross-sectional area A and the modulus of

elasticity E of the wire are such that the quantity EA/L is very

large compared with the spring constant ks of the spring. If a tensile

force T is applied to the ends of the spring, the spring elongates by

a certain amount AL. As T is increased AL also increases. For a

certain value of AL - AL the wire becomes taut as indicated in Fig.

l.lb." After the elongation has attained the value ZE, any attempt to

elongate the spring involves the elongation of both the spring and the

wire together. Thus a considerably larger force is necessary to produce
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a given amount of elongation than is necessary to produce the same amount

of elongation when the displacement is less than AM. The variation of

T with AL is then as shown in Fig. 1.2

D C

T/

Fig. 1.2.

IB

A 2 AM L

The system is said to be locked when AL = AM. If the wire were infinitely

rigid, the T - AL curve would be the curve ABD instead of ABC. This

type of locking is called ideal locking.

A granular material consisting of grains of various sizes constitutes

another example of a locking material. A simple model can be constructed

if the material is made of grains of two sizes as indicated in Fig. 1.3.

l,• :•.*. I Fig. 1.3.

The larger grains are assumed to be vary hard to deform compared with

the smaller grains. If the model is compressed by a uniform pressure

p the volume decreases. The volumetric strain is denoted by 3e. For

a certain value of 3e = 3e the model assumes the form as indicated

in Fig. 1.4.

Fig. 1.4.
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It can be seen from the figure that the volume can be decreased only

.very slightly beyond this state. However, shear strain can be produced

by the application of a shear force. (Fig. 1.5)

Fig. 1.5.

The stress-strain diagram is then as indicated in Fig. 1.6.

Shear
p Stress

Fig. 1.6.

ef e Shear
Strain

The material is said to be locked when e e e*

1.2 Application of the Idealization

In many cases, granular soil which behaves very similar'to the

second example considered in section I.1 can be idealized as a locking

material. Another example of locking material would be rubber. It is

a coimmon experience that it takes very little effort to stretch a rubber

band upto a certain amount. With increasing deformation it becomes

harder to stretch the rubber. The material resists greater load with

little deformation. This behaviour fits very well with the concept of

locking as described earlier. Stress problems in rubberlike materials

can be treated as problems in locking media.

These are two examples in which, the material can be idealized as a

locking material. However this is not an exhaustive list.

-3-



1.3 Loading and Unloading, Conservative Property

The spring-wire model will again be considered in this section to

discuss the loading-unloading properties of locking materials. If a

tensile force T is gradually applied to the ends of the spring, the

spring elongates. The loading process can be represented by the line

ABC in the T - AL diagram (Fig. 1.7). If the tensile force T is

now gradually reduced to zero, the unloading curve in the T - AL

diagram is CBA provided the spring and the wire are still elastic;

i.e., the unloading curve follows the loading curve in the reverse

T

Fig. 1.7.

B

A2  A A1  AL

direction, i.e., the system is conservative. Systems which follow a curve

like ABCA 1 can easily be invented, but unloading along a curve like

CA2 would be in conflict with the basic laws of mechanics, since it

would involve the creation of mechanical energy. In this report only

conservative materials will be considered.

1.4 Locking Condition, Locking Surface

In the case of a spring model one can easily state that locking

takes place when the elongation AL has attained a value AM or the

strain has reached a value W/L. Similarly, in the case of the granular

material locking takes place when the bulk strain 3e has become equal

to 3e C Therefore, in general, the condition of locking depends on the

state of strain in the body. In an isotropic material the locking con-

dition should be independent of the particular choice of the coordinate

system. It therefore depends on the three invariants J1 , J 2 ' J 3 ' of

the strain tensor which are defined in the following way in terms of

principal strains l, 1 2, E3:
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J (e + 2 + C3)

12" [(el " s)2 + ( "G)2 + 2€ la lZ

2 612 } 2J.3i

From Eq. (i.i), the locking condition

0(j 1 ,J 2 ,j 3 ) = 0 (1.2)

can also be expressed in terms of the principal strains

95(ee 2"E3 ) =0 (1.3)

This equation represents a surface in the principal strain space which

is called the locking surface. The locking surface can also be defined

in a general six-dimensional strain space.

The Olocking functione 0 is defined in such away that the strain state of

the body is elastic if 0 < 0. Then in ideal locking 0 is aJmas 2ess then or equal to zero,

i.e., 0 = 0 in the locked regions of the body while O< 0 in regionsthat are still elasti.

However in a rmn-ideelly locking body 9 can be greater than zero.

1.5 Volumetric and Distortional Locking

The locking condition can depend on the three invariants JiJ2

and J 3  of the strain tensor. However, in isotropic bodies (under small

deformations) the shear stress does not produce any bulk strain and the

hydrostatic stress does not produce any shear strain. Thus two different

types of locking can be defined in an isotropic body.

(i) Volumetric. locking which depends on the invariant J of the

strain dilatation.

(ii) Distortional locking which depends on the invariantsJ',J

of the strain deviator.
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Again, due to isotropy, the stress and strain deviators are related by

Hooke's law in a volumetrically locked region, while hydrostatic stress

and bulk strain are related by Hooke's law in distortionally locked regions.

However, some regions could be locked both volumetrically and distortion-

ally. In the latter case there is no further change in strain if both

the volumetric and distortional locking are ideal. The possible types of

locking and the stress-strain relationship in locked regions will be

studied in the next chapter.

1.6 Uniqueness

Locking materials are conservative. Therefore, a unique solution

for an equilibrium stress problem or a dynamic response problem can be

expected under approriate boundary and initial conditions. These will

be studied in the next chapter.
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II. GENERAL THEORY

II1. Strain Energy in Locking Materials

Strain energy per unit volume in a locking material is assumed to

be a unique function of strains. This statement can be easily justified

in the case of a non-ideally locking body in which stresses depend

uniquely on the strains as discussed in section 1.3. The statement can

also be justified in the case of an ideally locking body where the

stresses can increase or decrease by indefinite amounts while the strains

remain constant because no work is done during such chaiges.

Further, if the assumption of small deformations is made, the dila-

tation 3e in an isotropic locking body depends reversibly and uniquely

on the hydrostatic stress s. Also each component of the strain deviator

e'i depends reversibly and uniquely on the corresponding component of

the stress deviator. The functional relationship is the same for all

pairs of stress and strain deviators, i.e.,

. ( 1 1  2 2  3 3  e(s)

8 (i- ie) =f(ayjj)

"a' = (a " 5i-s) = f' 1(' )
ij ii ii

where 8ij is the Kronecker delta.

Certain simplification in the expression for strain energy can be

achieved by using the preceding set of equations.

The increment of strain energy per unit volume can be written as

"-7-"



du =Z a j deij
i, j

-ý (sbij + 1' )(debij + dei'j) i,j = 12,3
i,j

Because

ai' = O0l de,'ii= 0

(2.2)

du = 3sde + at de
Yl j ,j

From Eqs. (2.1) and (2.2), one can see that the Btrain energy can

be split into two parts u0  and u'. The part u0  depends on the

dilatation e while the part u' depends on the strain deviator.

Furthermore, the strain energy is independent of the choice of the

coordinate system in an isotropic body. Therefore, u' must be a

function of the invariants of the strain deviator, J' and J'"
23

Thus one can see that

duo
duo 0 e de = 3sde (2.3a)

du' = ', dJT + U dJ =3 a'de' i,j = 1,2,3 (2.3b)
2 i3 Liii

11.2 Relationship between the Components of Stress and Strain Tensors
in Terms of Strain Energy Function

Principal stresses (al, 02' 03) and principal strains (El, E2' 63)

will be used in the further analysis. Then the strain dilatation is

ie= (l+4 2 + 63)
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and the strain deviator is

• - " 1 - e -
1l 1 e

=:- 6' -2 -e
= 2

- 6 - - 3-e

e3 3

The three components of the strain deviator are not independent of each

other. One of them can be expressed in terms of the other two:

C;= ..(E + ý

Similar relationships for principal stresses yield the following result:

3 (a + 21) (2.4)

Therefore

du' = alde' + o'de2 + o3del
1 1 2 2 33

= (2a + ci')de' + (a' + 2al)del (2.5)

Further,

,. = 1 (e,2+ G 2 + ,2) = .(C', 10)
2 e2 1' e''21

J3'= '1-''62'r' = J3'(6' e'2)

Hence

2T de'+
2 2

1 2

1 2

Men
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2 e1 3;" 1' )

+ u (UU ~+ au, a4 de~ (2.6)
ýJ'"2 "3 "2

Comparing Eqs. (2.5) and (2.6) one can see that

2a' + = au, 2 U' ()
12 ". 1T 73rpTE

2 1 73 1

al' + 2o =U 7 2r 7 +

The expressions for J' and J' in terms of the components of strain2 3
deviator are

J' =EC' 2 + 6;2 +E

(2.6a)

e,= e - ELc 2
J3 1= 1

Therefore

2cy! + a' (2el' + e') au- e- u,

2 1i
(2.7)

al+ 2q; = (ell + 2eL) (~.e{l j'
One can solve for a~ Ia' and hence a' from Eqs. (2.7) and (2.4).

O 2 3
Thus

, , ' 1 ( 2 , , _ 2 ) '" " = ' • + - 6,' - 2CC' - 26,2 (2.8a)
1' =e72r 3 '1 12
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W• G' au + 1 (-6 2- 21e 2 )cu (2.8b)
2 2u' 1 2 ' + e2 7u'

a= * + 1 (el 2 + 46"1 2 ) au, (2.8c)

Also, from Eq. (2.3a)

i du0a d • (2.9)

Then the components of the stress tensor can be calculated from the

following relationships:

a a1 + s

a2 5' + s (2.10)

03 +3

Equations (2.8)-(2.10) show how the stress-strain law depends on the

relationships expressing the strain energy in terms of strains, i.e.,

the strain energy function. The stress-strain law can then be established

if the strain energy functions u(e) and the u'(Jý, J•) are known.

Therefore, the investigation in the next few sections will be to deter-

mine the strain energy functions in locking materials.

11.3 Strain Energy Function in Volumetric and Distortional Locking

As discussed in Chapter I, a material locks when a certain function

of principal strains called locking function O(e1 ,E 2 ,E 3 ) reaches a cer-

tain given value. One can define the function 0 such that for 0 < 0

the material is elastic, and that 0 = 0 represents the state of in-

cipient locking. Then in an ideally locking material % > 0 is impos-

sible. However 0 could be greater than zero in a non-ideally locking

body.



In general the strain energy per unit volume u0 and the strain

energy of distortion per unit volume u' in a locked region can be

written as

90 2 o

2 (2.11)
u' = 2GJ' + u'!

In these equations (9/2)Ke2 and 2GJL would be the strain energy of

dilation and distortion if the material were deforming as an elastic

material. They are called elastic parts of the strain energy. uOf(e)

and u,'(J, J;) are the excess of strain energy over the elastic values.

These are called locked parts of the strain energy. In further analysis,

u' will be assumed to be a function of Jt only.

As mentioned in Section 1.5, stress and strain deviators are related

by Hooke's law in a volumetrically locked region, while hydrostatic

stress and dilation are related by Hooke's law in a distortionally

locked region. Then u01  is zero in a distortionally locked region

while u, is zero in a volumetrically locked region.

Similarly, the stress tensor in a locked region can be split into

elastic and locked parts:

s = 3Ke + s .

(2.12)

a, = 2Gc'+
ij ii- + li,

3Ke and 2GE'i are the elastic parts ofthe stress tensor which would

be the stresses if the material were deforming elastically. s! and

_7' are the excess of stresses over the elastic values in the locked

regions. These are called the locked stress components. sI is zero

in a distortionally locked region while a' is zero in a volumetrically
ij 1

locked region.

Now, let us consider a body in a locked state. The case of non-ideal

volumetric locking will be studied. Ideal volumetric locking is a limit-

ing case of non-ideal locking.

- 12-



In the volumetrically locked state 0 > 0. Stresses and strain

energy are given by Eqs. (2.11) and (2.12) with ' = u' = 0. If the
ci.- f

strain state of the body in the locked region changes such that

becomes equal to zero, the locked region again becomes elastic wherever

0 has become equal to zero. Then the expressions for the stresses and

strain energy should reduce to the elastic values as 0 tends to zero,

i.e.,

lim u01 (e) = 0

(2.13)

lim sB(e) t 0

0+ is used to indicate that the limits are taken from the locked state.

u0! is a continuous function of one variable, e. Further, Uo,

must tend to zero as the locking function 0 tends to zero. Then e

must be a functior of 0. Also, as explained in section 1.5 the volu-

metric locking function 0 depends only on the invariant J = e. Thus

e = e(0)

0 = 0(e)

In these equations it has been implicitly assumed that e and 0 are

interchangeable, i.e.,

-4A0 (2. 14)
de

If e is replaced by 0 in Eq. (2.13) one obtains

if + U o(O) = 00--0

If it is assumed that uof allows a power series representation for

0> 0, one can write

Uo - c 1 + +'"01 +(2.15)

0 - -(e) 1 0

-13



where

a , 2 , ... are constants.

The result can be summarized in the following way. Volumetric

locking takes place when 0 = 0(e) > 0. In a volumetrically locked

region distortion continues to follow Hooke's law while the dilation

must be computed from the formulae that apply in the locked regions:

u0 = 2 Ke2 +U
2 U01

"U' = 2GJi 2216

" o 1f = a +a2O ÷... (2.16)

0 =- (e) > o, - j e

Similarly, by assuming that u' is a function of J' only, and

that the distortional locking function 0 is a function of J ' only,

one can derive the following equations applicable in a distortionally

locked region:

u .2 Ke2

u' = 2WJ1 + u'1

2 A

us= 30+ a + .

0 = (j2) _o 0--o (2.17)

lim u' =0
-- 0+ A

lima cj, = 0
0 ".0+



In concluding one can summarize the achievements in this aection

as follows. It has been possible to express the strain energy as a

function of e, J' and the locking function 0, in volumetric as well
2

as distortional locking, (See Eqs. 2.16, 2.17) Thus if the locking

function for the material is determined by experimental or other methods,

the strain energy function can be determined. Once the strain energy

function is known the stress-strain relationship in the locked region

can be established from the formulae derived in section 11.2.

In further analysis it will be assumed that the locking fur- ion

is known and the stress-strain relationship in distortional and volumetric

locking will be discussed.

11.4. Stress-Strain Relationship in Distortional locking

From the discussion in section 11.3, one can write the expression

for the strain energy function in a distortionally locking material in

the following way. For 0(j•) < 0

u0 = 2 Ke
2

uO 2

u'= 2GJ'

For O(J' 2 ) > 0 (2.18)

22 Ke2

u, -- 2GJ 0 +l 8 6 2 + .

Then from Eqs. (2.8)-(2.10) the stress-strain relationship can be

obtained. For 0 < 0 the strain energy function and Eqs. (2.8)-(2.10)

give us the well-known Hooke's law. However for 0 > 0 the following

stress-strain relationship can be obtained using Eqs. (2.8)-(2.lO) and

(2.18).

- 15 -



3 3 1 €3 2dJ3

s = 3Ke

Comparing these equations with Eqs. (2.12)

11 1LJ 2 2 1W1+

2

W21 2d22  2W 2

a; = W e 'r , E+ 2

Wd 3 2 0 3dT2

B =0

However, from Eqs. (2.17)

lirn (ol ' '~ a) = 0

e 0 _OEl
~+ 2p 0d +I'•1

Therefore

i=0

because (see Eqs. 2.17)

and E, €, a' can not all be zero. Then

all =290• Ce + 0(02) (2.19a)

- 16 =



28-6 .r C,+O(0) (2. 19b)

=~l 202 -Or e' + 0(02) (2. l9c)
W23

The stress-strain relationship in a distortionally locked region can

then be expressed by the following relationships

a I+s 3Ke + 2Ge{ + 2 2#d0 e + 0( 2+

Mes 3 + 2Gc' + 2 +- ' (2.19d)
2= 2" P2 W2 2

=3 0' + s = 3Ke + 2Ge' + 22 • % +4S 3 3 20 d 2

The constants Pi = O, P2' depend on the particular material.

Thus it has been possible to express the stress-strain relationship

in a distortionally locked region in the form of Eq. (2.19d) which con-

tain infinite series on the right-hand sides. However these equations

can be simplified by introducing the concept of stress increments. This

will be discussed in the next section.

11.5. Concept of Stress Increment

Let us consider a point of the body where 0(JT) has just attained

the value zero. Then the point is in a state of incipient locking. The

stresses and strains at the point in the state of incipient locking are
denoted with a suffix I , e.g., ali, etc. Suppose the value of 0
at the point increases by an arbitrary small positive quantity of, the

stress and strain at the point increase from the value at the state of

incipient locking. These stresses and strains are denoted with a suffix f.

By using the Eq. (2.19d), one can then write the following equations

a MKe 1 + 2GlIi

a M.ef + 2Gef + 2 + 0(02
lf 2-fdJ ief f

- 17 -



i.e.,

-if " CF = 3K(ef - eI) + 2G(eir - eIT)

+ 200 4 elf. + 0(0 2 (2.20)

The increments al- ll Eif l ef- e, are now denoted by the

symbols Al, teli Ae. Further of = -f - 0I is denoted by the symbol

Lr. Then Eq. (2.20) can be written as

S-- KM e + 2G I + 2P • l + o[(b )2]

1 2 1

Similarly

Ac2 = 3F• + 2G•eI + 202bT el + o[(L)2]2 W 2

AC = M + 2GAE + 2,2,, -c o+ 0(4)2]

The quantities Aai' Ac2  and Ac3 are the stresses at the point

in excess of the stresses at the point at the state of incipient locking.

They can be split into two parts in the following way:

A0I = Ale + AcGi

A02 m Aa2e + A'21

3 = A31 + 3

where

= 3Ke + 2cGa{

A2e = 3K2 +

AC = 3KYe + 2(U'3e 3

-18-



are the stress increments calculated from Hooke's law and

AG = 22•0 , F{ + O(a)2

A2, -= 2026 % e, + o(02
Wý2

/A3 1 =2V 2 A W 2

are the excess of the locked stresses over the elastic values. If the

limiting values are considered as b tends to zero in these equations,

one obtains the following result.

Similarlyr
dole = 3Kde + 2 ed'

do = 3Kde + 2,de (2.22)

21 2 (dj 3

do = 3Kde + 2GdcJ

le 3

The quantities do,,, do2 1, doa3  are call-d locked stress increments.

dole, do2e, dO3e are called elastic stress increments. The total stress

increments are then given by the following equations:

do1 = dole + do i

do2 = do2e + do2, (2.23)

dd3 = da3e + do31

- 19 -



Thususing the concept of stress increments,it has been possible

to obtain the simple relationships (2.21)-(2.23) between the stress in-

crements, strain and strain increments. These increments have been

calculated at the locking surface, i.e., the surface 0 = 0 in the

principal strain space. These relationships are sufficient to discuss

some interesting geometrical properites pertaining to the locking sur-

face and to the problems of ideal distortional locking. These will be

investigated in the next few sections.

11.6. Direction of the Locked Stress Increment Relative to the Locking

Surface

As discussed in section 11.4, distortional locking takes place

when

0CJ') = 0

Now, J2' is a function of el, e' and these in turn depend on e
2 122'3

We may therefore write

OGx') = O[J'Ce, ee)

and may form partial derivitives like

The definition of J' as given in section 11.2, may be rewritten in
2

the form

1 [(2e1 e2 )23)+ (22 e1 632 Vel,~ T, 1 - 32 - 1 - 3

+ (2e3 - el - 2)2]

from which

6j,
2 1

!(2,1 - '2 - 4)

and hence
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1 21

Similarly

Then these equations and Eqs. (2.21) yield for the stress increments

dl2 = 202doý 4

da2 / -- 2• 2 d0

da31 = 202d0 6
4L3

or

d•! = 212do grad 0 (2.24)

The vector grad 0 is normal to the surface 0 = 0. Therefore it can

be concluded that da! is normal to the distortional locking surface.

This is an interesting result which is useful in establishing the

uniqueness of a solution in equilibrium stress problems or dynamic res-

ponse problems in an ideal locking medium.

11.7. Magnitude of Stress Increment and the locking Surface

The locking function Of corresponding to the state of strain

Gf= C ' e2f' 63f) can be expressed in terms of the locking function
corresponding to the state of strain eI = (E11 ' e2I' e3 1 ) by the

following power series expansion
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Of I + (' •- el I) + ('0) (2f e21)

+ (e '31) + .(2.25)

C4 e4

If the state I corresponds to the state 01 = 0 (i.e., incipient

locking), and (e if - 6ll, 2f - 21 63f 631 ) are replaced by

S= (A l' A 2' At 3 ) , Eq. (2.25) can be written as

If one considers the limit as A tends to zero, one obtains

dO = (grad 0).. de

From Eqs. (2.24) the locked stress increment is then

d = 212 [(grad $ = dZ]grad • (2.26)

This equation can also be written as

d'a* = 213 2 Igrad 01C,.T (C n n)n (2.2 6 a)

where n is the unit vector in the principal strain space normal to the
.4 .4

locking surface at C = eI" Then n • Ce is the component of increment

of strain normal to the locking surface. Therefore it can be concluded

that the magnitude of da! is proportional to the increment of strain

normal to the locking surface.

The formula (2.26) will now be used in the next section to discuss

ideal distortional locking.
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11.8. Case of Ideal Distortional Locking

From Eq. (2.26) p2 can be expressed as

Id; I
2(grad -. d0)1grad € I

i.e., 02 is proportional to the ratio of the magnitude of the increment

of the locked part of the stress to the increment of the strain normal to

the locking surface. Further, the preceding equation is applicable to

both ideal and non-ideal distortional locking materials when 0 = o.

In case of the ideal locking material stresses dea can increase

while the end point of the strain vector remains on the locking surface,

i.e.,

grad 0 -.d' = 0

while Id' 1I is not zero. Then P2 tends to infinity. However the

quantity dX = 2P2 [grad 0 • dc] can tend to a finite limit. The locked

stress increment can then be written as

d = d% grad 0 (2.27)

i.e.,

do d = dK (2.27a)d°22

do31

Suppose 0(JL) is assumed to be

2 2
=(•)- J2 " Et (2.28)

The increment of the locked part of the stress can be calculated

from Eq. (2.27a):
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do if d3ZC'

do 21 ' CN

do31 3e3

Then the complete incremental stresB-strain relationship corresponding

to the locking function given by Eq. (2.28) is

do1 = MKde + 2GdeI + dae

11 1

do ; 3Kde + 2Gde' + d'Ke'} (2.29)
do = 3Me + 2GdE' + d•e

where dX is determined(as explained in section II111) in the particular

problem being solved.

Another simple locking condition is
0 = O(Jý) = -ei1 - C = 0

(2.30)

i,j = 1,2,3

From physical considerations it is obvious that the quantity Ie -6

to be used in Eq. (2.30) corresponds to one of maximum difference be-

tween two principal strain deviators. This can also be interpreted as

the condition of maximum shearing strain for locking. The locked stress

increments in this case are

do 1  =3 e-l

dX- IEi -

do21 = •: k -NE

31 N3

The stress-strain incremental relationship similar to Eq. (2.29) can

then be obtained.
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11.9. Case of Volumetric Locking

In this section the stress-strain relationship in volumetrically

locking bodies will be studied.

From the results of the section 11.3 volumetric locking takes

place when

S= O(e) = 0

and in the volumetrically locked region

u' = 2WJ'

u0=2 Ke2 +Uo

where

U = a1  + a 2 +

Then from the formulae (2.8) and (2.9)

cI' = 2G'•
a We

a' = 2GO
2 2

a; = 2Ge'
3 3

s = MKe + (I +gX 2 .
3 1lde 3 C2 o

But

lim s = MKe

Therefore,

al= 0

because

Then
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s 3- e + 2 0 +

The stress-strain relationship in a volumetrically locked region is

then

oY = 2G, i + Me + 2 dO + .
01 =G + 3Ke+ '2 de

a2 = 2Ge• + Me + a2 2 + ... (2.31)

a3 = 2GC; + 3Ke + 1 a +
3 3 de

By following a procedure similar to that of section 11.5, stress incre-

ments can be defined. Thus

doI = dole + doli

do2 = da2e + do2I (2.32)

do3 = do3e + doJ3

where
dole = 2Gd•' + 3Kde

dO2 e = 2Gdý + 3Kde (2.33)

do3 e= 2Gde' + 3Kde

3e 3

and

do 2=do2.3af d322 =2 de 32C12ad

As in the case of distortional locking, a volumetric locking sur-

face in principal strain space can be defined in the following way.

0 = O(e) = 0(61, e2' 63)= 0
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Br fb1lowinga procedure similar to that of section II.6, the normality of

the locked stress increment to the volumetric locking surface can be

established. Also the magnitude of the locked stress increment is

proportional to the component of strain normal to the volumetric locking

surface. This result is similar to that obtained in section 11.7. The

equation of locked stress increment is

d = 2a 2 [(grad o).d'] grad 0 (2.34)

where

grad 00 -

II.10. Particular Cases of Volumetric Locking

A simple volumetric locking condition is

S= "(el + 62 + 53) - e (2.35)

where eI is a positive constant. Here locking is assumed to be in

compression only. Then from Eq. (2.33a)

d'I= 6a 2 (de, de, de)

Therefore,

dc 1  2GdE• + (3K + 6a 2 )de

dT 2 = 2Gdhr t p+r(3K +o 6a 2 )de

d3 = 30d ~+3+c 2)

The hydrostatic part of the stress tensor is then

ds = (3K + 6cz2)de

For a material with the stress-strain diagram of the type of Fig. 2.1,

this equation can be integrated. Thus

s = (3K + 6a 2 )e + so

where
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3K + 6C2 t tan '

-S

Fig. 2.1. 7

.e-/3 = el -e

Also when e = eI the material is in incipient locking state. Then

s = -3Ke,

hence

so =-6a2e

Then

s = (3K + 6a2)e - 6a2e,

or

s = X(e - e,) + 3Me 1  (2.36)

where

= 3K + 6a2

Equations (2.35) and (2.36) together with distortional elasticity

complete the stress-strain relationship. In case of ideal locking

a2

and

(grad 5)-de = 0

Then

dol = do~ = d~ = dX

The quantity dX is to be determined in the particular problem being

solved.
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II..1. Problem of Equilibrium-Uniqueness

So far the investigations in the chapter have been directed

towards studying stress-strain relationships in locking materials. In

this section the formulation of an equilibrium stress problem and the

question of uniqueness under prescribed boundary conditions will be

investigated. Further discussion in the thesis will be restricted to

ideal locking materials only.

Let us consider a body of locking material enclosed by a surface

S. Let the surface traction P I be prescribed overa pert Sp of the surface S

and the displacements vI be prescribed over the remaining part

S - Sp = Sv. Depending on the strain pattern the body will have locked

regions V and elastic regions V e. In particular cases either V1

or Ve could be zero. The stress distribution a,, the strain pattern

EI' and the displacements uI in the body corresponding to the given

boundary values should satisfy the equilibrium conditions, appropriate

stress-strain relationship in the locked and elastic regions and kine-

matics. These equations when referred to a set of cartesian coordinates

are:

Wi) Equilibrium Conditions

acO 6T 6T

3x+ -ey + -z + x =0c'r •-r •i

.-TM + + -. + y = 0

xzza• rx z 6 T a c o
+ -ey• + n-+ Z =O

(ii) Stress-Strain Relationship

(a) If 0 < 0, the elastic stress-strain relationship should

be satisfied. They are (Ne is Lam6's constant)

a = A) e + 2Gex e x

a =a 3 e + 2GEy e y
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a A e + 2Gez e z

"T =2Ge,

Tyz = 2Gyz

Tzx 2Gezx

(b) If O= 0, andthe material is an ideal distortionally

locking material, the stress-strain relationships are

do = 3?ý de + 2Gde + d'60
x e x 0E

x

do = 3Ade+2de +d
y

do = 3Xede + 2Gde + J
z

d- = 2Gde +d? L
xyy

dTzx = 2Gdez6 + dkc
YZ

zx

and

0=0

(c) If 0 = 0, and the material is an ideal volumetrically

locking material, the stress-strain relationships are:

do = 37% de + 2Gde + A6

X e x re
x

do -=3Nde+2Gd +dX
y
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doz =3Nelde + 20dez +d 4

0 Zo6Z

d'r 2Gdexy xyr

d-r = 2Gdeyz y

dT 2Gdezx zx

-=o

(iii) Kinematics

au
x =

av
Ly =•

C)
z dz

C 1 = + .
xy 23y T

1 6~v + (\
.M IF r

2 (~wu

1 2v
zx 2 (3t dz

From the sets (i), (ii), and (iii) of theseequadtons, one can see that

the equations and unknowns are well balanced in elastic and locked

regions. In an ideally locked region six stress-strain relations, the

locking condition, six kinematic relations, and three equilibrium

equations are available to determine six stress components, six strain

components, three components of displacements and the proportionality

parameter 7 or

The preceding formulation of equilibrium stress problem is in

cartesian coordinates. Similarly, the problem can be formulated in other

coordinate systems. Now the question of uniqueness of the solution of a

problem of equilibrium will be considered.

- 31 -



Statement of Uniqueness Theorem: Let a body made of locking

material enclosed by a surface 8 be subjected to the surface traction

! prescribed over a part Sp of the surface S. Let the displacements

vI be prescribed over the remaining part of the surface S - Sp - BV.
Further, let the stress distribution, the strain pattern, and the dis-

placements in the body corresponding to these boundary values be oil

e , and u . Now, suppose the boundary values are given increments

and dvi, then a unique stress distribution •I + de and a unique

strain pattern eI + dl are assured in the body.

Proof: Uniqueness of aI + de, eI + de is assured if the unique-

ness of do, de is proved. Suppose the increments da, de are not

unique, at least two sets of solutions

a a au

(ii) d~ob de b

are possible. Both solutions satisfy the same set of boundary values.

Then the stress distribution

doa - dab = a*

the strain pattern

d - d b (2.37)

and the displacements
dua - dub

are the solutions of a problem satisfying the following boundary values.

(i) Surface traction on the boundary 8p is zero

(ii) Displacements on the boundary S8V are zero

Further, the body forces are assumed to be prescribed throughout the body.

Then they are zero for the problem defined by * quantities.
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The stresses ;* are the solutions of a problem of equilibrium.

Therefore, they should satisfy the equilibrium conditions. These con-

ditions when referred to a set of cartesian coordinates can be written

in the following form:

() a + * + T*= 0(2.38a)

C) T + a* + 6 r* = 0 (2. 38b)
y zy

C) 14 + 6 *+ 6 4= 0 (2.38c)

Multiplying Eq. (2-38a) by u*, (2-38b) by V*, Eq. (2.38c) by w*,

adding and integrating the resulting expression over the volume, one

obtains

Volume a (S42j*x)

+ v* X

+ W aTz 6T + u: dxdydz = 0 (2.39)

Using the divergence theorem this equation can be simplified to the

following form.

if [u* (Lci*+ mT* + nii4)

Surface

+ V* (IT* +ma* + n*)

+ unT* + n*) Id

o Q*+ re* + aft* + 2* 0* +2T* r* + 2T* a* ]dxdydz =0
y x y Y 5 2z XYxy yZ yS ix x

volume

(2.40i~)
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where 1, m, and n are the direction cosines, and e* ... G* are

the components of the strain tensor corresponding to the stresses o* ...x
zx

Because the boundary values for this problem are zero, Eq. (2.40)

simplifies to

Jf * * dxdydz - (2.41)
Volume

In general depending on the strain state, the volume of the body is

divided into elastic regions Ve and locked regions V . Then Eq. (2.41)

becomes

~ ddys +ff;~.;~dxdydz = 0 (2.42)

V VI

The positive definiteness of the integrands of this equation will now

be studied.

For practical convenience the integrand over the elastic regions

Ve is denoted by Ie and the integrand over the locked region VI by

I . Because the stresses and strains are related by Hooke's law in the

elastic regions

I > 0 (2.43)

In this equation the equal sign applies only if all ode are identi-

cally zero. Using Eqs. (2.37), the integrand I, can be written as

I (da - d) (de - d) (2.45)

The type of locking could be ideal or non-ideal. Only the case of

ideal locking will be considered.
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Ideal locking: In case of the ideal locking strain vectors

de and dle in the locked region must be along the locking surface
a b

(Fig. 2.2)

Fig. 2.2.

The stress increments in thelocked region doa and dab can be split

into elastic and locked stress increments. Thus

da dae a

dob = dobe + d

Then the expression for I is

I= doe" de (d -" 7a÷ d•-,"b d, I- d'e
Then, II can be written as

Ii =I11 + 12

where

1 (do - do b de (ea - de b)

(2.46)

12 dai - Obl (da - db)

The stress (dae - d be) corresponding to (d a- d') can be found

from Hooke's law. From the results of section 11.5, (doat do b) is

normal to the locking surface while (Fig. 2.2) de* - de is tangential

to the locking surface. Then
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I2= (ea - e -(d~e - d) * (2.417)

From this equation and Eq. (2.46), Eq. (2.42) can be rewritten

as

fff *. *xyd +11 '1*. 6 * dxdyd~z = 0
ve

Ve V1

where

a*= d~a - doa
e ae be

In Ve, a* • 6* (which when expanded in cartesian coordinates is
o*e* + o*6* + oy*6* + 2 T* 6* + 2r* 6* + 2,' e* ) is twice the strain
x x yy z z xyxy yz yZ xz xz

energy 2ue per unit volume of the materialt corresponding to the stress

distribution cy*. Similarly a* -e* represents twice the strain energy
e

2ute in V because the contribution from the locked stresses are zero

(see Eq. 2.447) and e = dae - dabe is related to 6* = a - dl

by Hooke's law. Then the preceding equation becomes

fif 2udxdydz = 0
V

where u is the strain energy per unit volume of the body. Then the
integral can be zero only if u is identically zero in the body. Hence,

only rigid body displacements u*, v*, w* are possible. This means that

*~0

6*a0

throughout the body. Then

tRef. 2., p. 171.
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doa= dobd;a , ab

de =deb

That is, the increments ea, de, are unique.

Though the stresses do do not contribute towards any work, it

should be noted that they are not arbitrary but are determined, through

the locking parameter d%, by the sets of equations (equilibrium, stress-

strain relationship, locking condition and kinematics) as discussed

earlier.

This concludes the proof of the uniqueness theorem as stated on

page 32.

11.12. Limitations on Displacement Boundary Conditions in Ideal Locking

It has been proved in the last section that if a solution of an

equilibrium boundary value problem exists, it is unique. In this section

a particular case will be illustrated where the solution does not exist.

Consider a body made of an ideally locking material. Let only

displacements be prescribed on the surface of the body. Let the distri-

bution of these displacements have a fixed pattern on the surface and

increase the magnitude of v gradually from zero. For a certain value

of V = vI the body locks in some region. In general the complete body

will not be locked at once. As v is further increased the locked re-

gion increases until at a certain value of v = vc, the complete body is

locked. This is called the 'completely locked state' of the body. In

certain cases the body can change at once from the elastic to the

completely locked state.

If the body obeys the following distortional locking condition

= - - C = 0

the body becomes completely locked when

J = C

throughout the body. Then, because the locking is ideal
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6J2' = 0

throughout the body, i.e.,

6C1 =G2 =e3*

Now consider the strain energy u of the body.

u = UO(e) + u'(J•)

After the body is complete locked u'(J') cannot be increased, because

the locking is ideal. Therefore additional work can be done only by

increasing uO(e), that is, the body is deforming without distortion.

But, the distribution of displacements on the surface has a fixed pattern.

Then the prescribed displacement should be such that the body is deformed

without distortion. However, this is a contradiction, because such dis-

placements will not produce distortional locking. Hence it can be con-

cluded that no further increase of v is possible after the body is

completely locked distortionally.

Similar results can be obtained for volumetric locking with the

locking condition defined by the following equation

O(e) = 0

11.13. Dynamic Problem - Uniqueness

In the present section the formulation of a dynamic response

problem and the uniqueness under certain boundary and initial conditions

will be studied.

The formulation of the dynamic response problem is very similar

to the formulation of the equilibrium problem, excepting that the

equilibrium conditions are replaced by the equations of motion. The

second problem under investigation, the uniqueness, will be considered

in the following way.
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Statement of Uniqueness Theorem (dynamic problem): Consider a body

of a locking material enclosed by a surface S. Let the surface traction

1(t) be prescribed over a part Sp of the surface S and the displace-

ments v(t) over the remaining part S - Sp = S • Also let the stress

distribution a,, the strain pattern e•I the displacements U

and velocity fI in the body be known at time t = t . Then during the

interval t = tI and t = tI + dt unique increments d'8 of -6, dt

of IV and du of uI are assured.

Proof: If the solution is not unique, at least two solutions are

possible.

Mi do de du

Both solutions correspond to the same set of boundary values. Therefore,

the stress distribution

doa -dab =a

the strain pattern

eea- d"b= 14(2.48)

and the displacements

eu- d'* = '

are the solutions of a problem satisfying the following boundary values.

(i) surface traction on Sp is zero

(ii) displacements on Sv are zero

Furthermore, body forces for the problem defined by Eq. (2.48) are zero

because the body forces are assumed to be prescribed in the body.

-39 -



0*, C*, u* are the solutions of a problem in dynamics. Therefore,

they should satisfy the equations of motion, appropriate stress-strain

relationships and kinematics. These equations are the same as those

discussed in section 11.12, excepting that the equations of motion

replace the equations of equilibrium.

The equations of motion for the stress distribution c* and the

displacements u* are

aQ* aT* aT

+ + PX ~ u
= at

3T * T 2
+ aV* (2.49)

aTr* a,* aa* 2
I•• .- + + z- - a p at

By using these equations an integral of the following type can be written

2 U* aT* 3T*
a g [u Pau* x y xzAtI T-- - -

Volume

+• Tr =x-- - •
+ / . . - .-at

that is,
a t. ff7 P_ [ /C-t•%2 + (•• 2 + 2•• ]dxdydz

-- (t R- ) - ]-cI

At (f Eau*( ~ + + )J
(2.50)
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Pyusingtbe divergence theorem and observing that the boundary values are

zero, this equation simplifies to

ff (1 + I 2 )dxdydz = 0 (2.51)
Volume

where

a P u* 2 2_ 2t- + ( ) + f)
Tt' 2 t* 071 €*)

2 I-

I can be written as

L()* + ()v*2 + (-w* 2]t=t

t=t
2F~u\ R Tr) 2

at t = tI all the increments u*, v*, w* and their time derivatives

are zero because we know the solution aI , EI, u I and tt at t = tI.

Then

I1 > 0 (2.52)

Now consider 12 We write

I 2 (d;o - d~b 7d; - de~±

that is,

2 = ( da - d~b)[(dE a d7b) -(t=ti+at bttI]

Further, at t = tI

d~e dl b = 0
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Therefore,

1 2 'a (d;y - dcb)*(d-,a - deb)tjA (2.53)

The expression on the right-hand side of this equation has been dis-

cussed in section 11.12. It has been shown that the integrand corresponds

to twice the strain energy. By following a procedure similar to that of

section 11.12 it can be shown that Eq. (2.51) implies that only rigid

body displacements, independent of time, are possible and hence the

uniqueness of stresses and strains.
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III. PROELDS OF EUILIERIUM VOILMNTRIC LOCKING

I.I Plane Stress Problems in Volumetric Locking

Let us consider a thin plate in a state of plane stress as shown

in Fig. 3.1. The conditions of equilibrium for the stresses are

x0Z

Fig. 3.1.

aT
T x. +-.÷ = 0

(3.1)
ýT 60

These equations are identically satisfied if a stress function X is

defined such that

2 (32)

ax=

If volumetric locking occurs, stress and strain in the locked region

are related in the following way.

2G(EX - E ) = a

2G(r~ - f ) a
2G(cy - y ; a 

(3.3)
Gxy = xy

x y z
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These equations can be simplified into a more useful form:

ax +ey e

(3.4)a y;=2G(ex + 2e - et

x x % (2a - ) + 3

S(-a + 2a) +(.5)y MG x ay 3- 2)

Further, in order to assure single valued displacements in a simply

connected body, the strains must satisfy the compatibility conditions.

It is not possible to satisfy all the compatibility conditions if one

assumes that the stresses ax, a and T are functions of x and
x y X

y only. It becomes necessary to assume that the stresses depend on

z also. However, as in the case of elastic materials*, it can be shown

that the dependence on z becomes negligable as the thickness of the

plate becomes small. Then, the only compatibility condition to be

satisfied by the strains is

2 C a2 2
-2x + 2 - (3.6)

Then, by using Eqs. (3.1) and (3.4) this equation can be written in

terms of stresses

S+ as) =0 (3.7)

where

'2 2 + 2

Ref. 3, p. 241.
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Then, this equation and Eq. (3.2) yield the following differential

equation for X

V -- o (3.8)

Thus, if the stress function X is obtained by solving this equation with

appropriate boundary conditions, stresses, strains and hence displacements

can be calculated.

The plane stress problem in an elastic locking material can now be

stated in the following way. In general, a thin plate in a state of plane

stress may contain locked and elastic regions. The stress function and

hence the stresses can be obtained by solving Eq. (3.8). The solution in

the elastic region can be determined by methods of solving plane stress

problems in elastic bodies. Then the solution is complete if the stresses,

strains and displacements in elastic and locked regions satisfy the appro-

priate boundary and interface conditions.

111.2 Pure Bending of Beams in Plane Stress

(i) Elastic Solution

We shall now study the stresses in a beam of narrow rectangular

cross section made of ideal volumetric locking material subjected to pure

bending moments M as shown in the Fig. 3.2. When the value of M is

very small the corresponding strains are very small. The beam then deforms

as an elastic beam. The stresses in such a beam are

Cy = --

bh

0 =0a =1 T =T T 0y z yz zx xy
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Mh h/

Fig. 3.2. h:: x

L

y

where h is the depth of the beam and b is the width of the beam.

From the preceding expression for the stresses one can evaluate the

dilatation:

+ + 1 - 2v 12M
6x +6 +C€ -y~~

yE bh5

Because the beam is made of volumetrically locking material, locking

takes place when

6 + 6 +6 = + 6
x y z E L

This locking condition assumes that the material can lock in

compression as well as in tension. Then, the beam subjected to pure

bending moments M locks at y = h/2 when

M = M 6D2b e (3.9)

(ii) Problem after Incipient Locking

If M is increased beyond the limit given by Eq. (3.9),

locked regions will develop near the upper and lower edges of the

cross-section. There is an elastic core between these two locked regions.

The interfaces between the elastic core and the locked regions are at

y = + y, as shown in Fig. 3.3.
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Fig. 3.3. Y y x

yy

Because the locked regions are situated symmetrically with respect to

the x-axis, the stress distribution is as shown in the figure and the

neutral axis is the line y = 0. The stress function is governed by

the differential equation

VY 2 X = 0

in the elastic as well as in the locked regions. The boundary conditions

for the problem will now be discussed.

Because the stress and displacement fields are antimetric with

respect to the neutral plane y = 0, it suffices to restrict the further

discussion to the region y > 0 only. Then, (Stresses, strains, and

displacements in the locked region will be denoted with a bar over the

letters, e.g., a) for x = 0 and x = L

Tr = = 0 (a)

h/2

I a2x dy 0 
(b)

-h/2

h/2

2b f y dy = M (c)
0
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for y = h/2

y XY (d)

for y y I

u= (e)

v-v (f)

a=0 (g)
y y

T = (h)
xy xy

C + C + C i=- 0C • (i)
x y z aE x

(3.10)

(iii) Solution in the Locked Regions

The stress function X in the locked region is assumed as

3a 3 1 2 (3.11)

The stresses in the locked region y > 0 are then given by the following

expressions.

ax ay - GEI

Sy 0 (3.12)

"rxy=0

The corresponding strains can be calculated from Eq. (3.5). They are

,z =ay
x 3G

y =. + (3.13)

3- 0 J
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These three equations can be integrated to obtain the displacements.

Thus,

(3.14)2 2 g
Ma~- ax + I

" 12G "7•- T -y + Wx + 2

(iv) Solution in the Elastic Region

In the elastic region the stress function is

d 3

where d is a constant. From this the stresses in the elastic region

can be calculated:

x =dy ) (3.15)
y XY

The corresponding strains and displacements are given by the following

equations:

x E

e =yd (3.16)
y E

7xy=

(3.•17)
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(v) Matching the Boundary Conditions

The boundary conditions (3.10a,bd,g,h) are automatically

satisfied by the stresses as given in subsections (iii) and (iv). The

conditions (3.10e,f) yield the following relationships:

d a

(3.18)

2 C 2ay y 1 + 2 +W=-d +clx (3.19)I + 2"- Y, + C2 + Wx + C + O x (319
=G 222E 2 1

Equation (3.19) can be satisfied only if w w wi" Then

2 E y
c1 - aY (1 f I

C2- C2 7_ (i + 2

(3.20)

C =C

From this equation and Eq. (3.10i) we have

b (1 - 2) =a (1 3- 2,) IE y! :ay! 3( I

(3.21)
- 3

C2 -C2 V )y

Now the only condition to be satisfied is (3.10c). This will be dis-

cussed in the next sub-section.

From Eqs. (3.18)-(3.20) one can observe that three of the five

quantities C 1• 1, C2 ,7 2 ,w, can be arbitrarily chosen. These correspond

to two rigid body displacements and a rigid body rotation permissible in

a plane stress problem.
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(vi) Relationship between Bending Moment and Curvature

From Eqs. (3.10), (3.12) and (3.15) the stresses in the locked

and elastic regions can be expressed in the following way.

x 1 - 2V yj

(3.22)
_ __E____ _ Ee1

x-2(l + V)(1-0 yj 2(l+ V)

By substituting these expressions in (3.10c) one obtains the bending

moment

M = bEE1 f 1 h .3h 2 (3.23)6(1+v) v I i - 2vy y 1 .l

Strains in the elastic and locked regions can be obtained using Hooke's

law and Eq. (3.5). Then cx in the elastic as well as the locked region

is given by the following equation

x _Y (3.24)

This equation shows that the plane sections before bending remain plane

after bending. Also, from this equation, the curvature of beam is

found to be

ct 1

- 1 - 2v

Then the expression for the bending moment becomes

r 3
M bE el 1 + 3 3 3 2 (3.25)M)6(1 + 2(v1 _ ])2

The variation of M with K is shown in Fig. 3.4.
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The value of MPC as y tends to zero can be evaluated from

Eqs.(3.24) and (3.25). It is

_M = b•ll
= blh 3 EI (3.26)

K I + - e

where I is defined as the effective moment of inertia. For a value
e

of V = 0.25,

E e= (3.27)Ee =107

which is not an appreciable change from the elastic flexural rigidity

Ebh 3 /12. This can also be seen from Fig. 3.4b.

(vi) Application of the Results to the Solution of Beam Problems

As an application of the derived results, the problem of a

beam subjected to a loading other than pure bending will be considered.

In particular, the deflections of a simply supported beam AB under the

action of a concentrated load P at mid span will be studied (Fig. 3.5)

P

PL/4I
x

II
M

Fig. 3.5-
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The bending moment diagram is shown in the figure. According to Eq. (3.9)

the beam locks when

24iEh2 b
M IM I =-V It

Then the beam begins to lock at x = L/2 when

P = P 96Eh 2 be 1  (3.28)

For P> Pf there will be a locked region x0 < x < (L/2) + xO. At x0

the bending moment is just equal to M!. Then

48Eh2 b 1  (3.29)

Xo = (1-2v)P

If one assumes that the moment-curvature relationship derived for pure

bending can be used in this case, i.e., the change of curvature due to

shearing forces is negligible, one has (see Eq. 3.23)

P x =EIK 0 < x < x 0

P bE 1 1+ 3 h 3K 3 h 2 (3.30)

2 6(1 + v) 1 -2 v 7 'E h T I

L
Ko<X

0 2

For small deflections K can be expressed as the second derivative of

the deflection w:

2
K w (3.31)

dx

This equation and Eq. (3.30) can be used to determine w. However as

explained in sub-section (vi), even in the extreme case where the complete

cross-section of the beam is locked, the change of flexural rigidity from
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the elastic value E1 is very small. Then one can get upper and lower

bounds for the deflection by considering the following two cases

(i) The complete beam is elastic

(ii) The region 0 < x < x0  is elastic while in the region

x0 < x < (L/2) the beam is locked over the entire cross-

section.

In case (i) the deflection is

w - P (x3 _ 3 L2x) (3.32)

In case (ii) we have from Eq. (3.26)

d2w p
E - x 0 < x <x 0

dx 2X
(3.33)

2 -

dx

whence

P 3w--- -•x +C lx'C 2  0<x<x 0

= -x +xC3x + C4 xO<x<L/2
12EI 1  3

The following conditions can be used to determine C C2,CC4

x=0 w= 0

x. dw 0(-4

- dw d7x x0 w=wU, -

Then
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2
C1- "7E- I +I -•

C 2 =0

p,2
C = 

PL

3T3

Then

w: - ý -• + _ý( 1 _ L xO x x0

(3.35)

In the extreme case when x= 0

P ( x 3 L2x> (3.6)

In the two extreme cases given by Eqs. (3.36) and (3.32) the maximum

deflections are at x = (L/2). The values are

PL
3

max =

- PL3

max 4=1

For V = 0.25, I/Il is given by Eq. (3.23). It is equal to 0.8333.

Then

wa
max = 0.8333

w
max

The maximum deflection is reduced if the beam is made of locking material.
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111.3 Rotating Disks

In this section stresses in a rotating disk (of constant thickness)

made of ideally locking material will be studied. The present study is

restricted to small deformation.

(i) Elastic Solution

When the angular velocity of the disk is very small the disk

deforms as an elastic body. The stresses in such a solid disk are*

+ 2 2
@r = g- pw R -r )

oo=3+ V 2R2 1+ 3v w2 r2

a w -- (337

Gz = TrG = Trz = Tez = 0

where p is the mass per unit volume of the material, 2R is the diameter

of the disk and r is the radial coordinate. From Eqs. (3.37) the dil-

atation is found to be

1 -2vE+Ce+E %

r e z E r 0e

1 - 2v 2 + 2 2(r[(+• t .- E 2( + V (338)

Its maximum occurs at r =0 and is

3~ +E 3 v 2 2 1- 2v

r + E z )max = E

It reaches the locking limit E when

2 2 1Ec

W 2 = Wo 2 (3.39)
(3 + v)pR 2(1 - 2-)

Ref. 3, p. 70.
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(ii) Problem after Initial Locking

If w is increased beyond w0, the disk can no longer be

analysed as an elastic disk. There will be a locked region r < k and

an elastic region k < r < R. The problem then reduces to that of com-

puting the stresses, strains, and displacements in the elastic and locked

regions such that they satisfy the equation of motion, the appropriate

stress-strain relationship and kinematics as well as the boundary and

interface conditions.

Fig. 3.6.

(iii) Expressions for Stresses, Strains and Displacements in the
Locked Region

Under the assumption of plane stress and axisymmetry the

quantities to be determined are the stresses ar '0e, strains er, Ce,)z

and the radial displacement I.

Because the locking is ideal the following locking condition

+ re +- 1 - 2v - 5.o
+r + z + E (r +Be) (3.o)
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holds throughout the locked region. In the locked region, the stress

and strain deviators are still related by Hooke's law, i.e.,

2G(Ze - 7) =-e

(3.41)

2 G 7r - z ) r

Other equations to be satisfied by the stresses, strains and displace-

ments are the equation of motion and of kinematics, i.e.,

dar +3r - ae 2 wrr+ +pw =
r

(3.42)

r

i (3.43)

Equations (3.40)-(3.43) are sufficient to determine the unknown quantities

r 8' 'Er e' z and I.

By solving (3.40) and (3.41) for stresses one obtains

0r 2G(2r +7,9 - el)

+2e - ) }(3.44)je -- 2G(7r + r27@ - C I

When this equation and Eq. (3.43) are substituted into the equation of

motion a differential equation for u results.

d2 + du÷u + pw2r(l + v)=
r2dr -=02

dr r

It has the solution

C 23
R - plrl + V (3.45)

1 r
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Then, the stresses and strains are given by the following expressions:

S C 2 32rr2U + V)
r =l " " E

(3.46)- c2 pw r 2(l + V)

[30 1 + 4 7+~ - E]

r

- 3c .- 7P E -+ V

(3.47)
E C 2 5p 2 r 2 l + yv) 1

+e= 3Cl -+ 16E -
r

(iv) Stresses, Strains and Displacements in the Elastic Region

From the known solution* of the problem one can write

C4 2rr3 V 2u C r I - _ U i -
r 6E

C 4 3w2 r 2(1- V2)
r 3 "-•" 6E

r

C 2 2 2
E +0 4 . r2! .l - V(3.48)e 3 2 Er

E E 4 pw r2(3 + v)

'r 1-VC53 r+v 2-
r

a E E C4 2 +o9 f= -7 C53 +• 1 -+ p r r2 d

(v) Boundary Conditions

The following boundary and interface conditions must be

satisfied by the stresses, strains and displacements

Ref. 3, p. 70
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r 0 u - 0 (a)

r =k u=u (b)

r =k ar r (c) (3.49)r

r k r +E + = EC (d)

r =R a = 0 (e)
r

Then, from Eqs. (3.45)-(3.48) and the boundary conditions (3.49) one can

evaluate the constants C1, C2 , C3  and C4 to obtain

= 22 [(1 -2)+ (1+V)2 R + EiCl1 + R 2 )

PW"2 (1 + ft2 [(+ 4 1.-2V3
" "OE' k-+

c2 = 0 (3.50)

c3 p•k l Vý) + 1 - 7v
4E 2(l - 2v) E1

C P,,2k2R2(1. + ,)2 + 1 + V R 2 E ,,,2R 4 (3 + V)(l + V)
S4E 2(l - 2V) I bE

The unknown radius k can be obtained from the following equation

(see Eq. 3.49c)

k 4 +4(l+ v)k2 2(3 +v) 8ZE 1 1 1(.1
R 1 - 2v I 2VT pw2 (l -2v)

(vi) Jump in q@

The variations "of ar and o. with r for k/r = 0.5 is

shown in Fig. 3.7b. In Fig. 3.7a .pW2 R2 /EE has been plotted against
k/r for several values of -0. The purpose of the figure is to study

the effect of Poisson's ratio.
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One can see that there is a jump in a. at the elastic locking

interface. This can be explained in the following way. At the inter-

face we have satisfied the continuity of the displacement and the con-

tinuity of the radial stress, i.e., for r = k

uu = ar = r r (3.52a,b)

From Eqs. (3.43), (3.44)

- E 26_+(3.53)
r l +V FdrrA/

and from Hooke's law

ar = a + E- (3.54)
_ V

Now, from (3.52b) ar = a at r = k. Then, from Eqs. (3.54), (3.55)

and (3.52a) one obtains at r = k

8 C) a(- +2) (3.55)

This shows that there is jump in ýu/ar at r = k. Equations similar

to (3.54) and (3.55) can be written for a. Then

- E 1 l 2V + E ( 2-(u +E C (3.56)0le - Ce F2k dr +d7 l ~ l+ v

From this equation and (3.55) one can see that there is a jump in ce

(vii) Problem After the Disk is Completely Locked

As the angular velocity w is increased the disk becomes

completely locked when (see Eq. 3.51)
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After the disk is completely locked, i.e. for

0P.2
2 > 8V4£

1 - 2v

the stresses, strains and displacements in the disk are given by Eqs.

(3.45)-(3.47). Now, the boundary conditions are

r=O u=0

r=R 0
r

Then, the constants C1 and C2 can be evaluated. In this case they

are

c1 3 lbE

C2 =0

The expressions for the stresses can then be written as

r 2 2 20o=21;- (7R -5r)

Similarly, the corresponding strains and displacements can be obtained.

The variation of ar and a are shown in the Fig. 3.8.
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IV. PROBLEM OF EQUILIBRIUM - DISTORTIONAL LOCKING

IV.1 Stresses Around a Small Spherical Cavity in a Body Subjected to
Uniform External Pressure

We shall consider a body of distortional locking material subjected

to uniform external pressure (see Fig. 4.1) with a spherical cavity of

radius a. The radius a is assumed to be very small compared with the

dimensions of the body. In the absence of the spherical cavity the

stress distribution in the body corresponds to one of uniform hydrostatic

stress throughout the body. The spherical cavity modifies this stress

distribution. However the effect of the cavity is not felt appreciably

farther away from the cavity, i.e., at distances from the center of the

cavity which are large multiples of a. The modification of the uniform

hydrostatic stress distribution in the body due to the spherical cavity

will now be investigated.

Wi) Elastic Solution

Let us consider a large sphere of radius b concentric with

the sphere of radius a. The radius b is assumed to be very large

compared with a. The modification of the stress distribution due to

the presence of the cavity of radius a is very small at tie external surface

of the large sphere of radius r = b. Then it can be assumed that at

r = b >> a the stress distribution corresponds to one of uniform hydro-

static stress.

As a final step in the solution, the derived formulae are modified

by letting the radius b go to -. These simplified formulae are use-

ful in application to bodies whose dimensions are very large compared

with the radius of the spherical cavity a.

In the elastic hollow sphere of inner radius a and outer radius

b, the stresses, strains and displacements should correspond to the

following boundary values

r=a a r=0
r (4.1)

r=b ar =-p

-66-



40
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The geometry and the boundary values are spherically symmetric. The

stresses ar, ae, the strains c r, C@ and the displacement u should

then satisfy the equilibrium equation (a., Ce, are the normal stress

and normal strain in any direction in the plane normal to the radius

vector r)

dar r - Ce
r + 2 r 0 (4.2)

dr r

The stress-strain relations

a +2ae =3K(c r+2ce) (a)

(4.3)
ar ae = 2G(Er - Ce) (b)

and the kinematic relations.

du = u (4.4)
r dr ' r

By substituting (4.3) and (4.4) in the equilibrium equation (4.2) one

obtains the following differential equation for u:

d2u +2 du _ 2u (4.5)

dr r

Integration of Eq. (4.5) yields

C2
u = C1r +-f (4.6)

r

The corresponding stresses and strains can then be calculated from

Eqs. (4.4) and (4.5). Thus,

2C2

r = 1 - -T
r (4.7a)
C2Ce = C 3 +-3

r
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S= 3 - 4G -2
r

(4.7b)
C2

= 3KC ++2G-2
r

From the boundary conditions (4.1) and the stresses (4.7b), one obtains

a3b3

2 b 3 b 3a

(4.8)

b3-Cl = 3 K b 3 3

If one considers the limit as b -, , one obtains

3
cC =- C (4.9)

Then, one can write the following formulae for u, cr, , Ee r and a.

in the body which deforms like a completely elastic body:

u 2- r - a 3 (a)
r

3

+ p (b)
r 3K 2G 7 br

3
e " G-) (4.10)

r

3

r 7_ (d)

3
3e = . EL (e)2r3
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However, the body is made of distortionally locking material. Therefore,

locking takes place when the characteristic locking function

S= OOL) = 0

In this case the locking condition is assumed to be of the following form

(Er C )2 + (e - )2 + -c)2 - 2E2 = 0 (4.11)Bc - as - +

Because C• O , this equation simplifies to

Cr - Ce = C A (4.12)

From Eqs. (4.10) and (4.12) one can see that the body starts locking at

r =a

when

4Gcp --3- (4.13)

In the next sub-section the stresses in the body after incipient locking

will be investigated.

(ii) Problem after Incipient Locking

If the pressure is increased from the value given by Eq. (4.13)

the locked region in the body increases. Because of spherical symmetry,

one can assume that the region a < r < k (Fig. 4.1) is locked while

the region r > k is still elastic. k is the radius defining the

elastic-locking interface when the external pressure p > 4Gc /3. Then,

the stresses, strains and displacements in the locked region should

satisfy Eqs. (4.14) through (4.17), where the barred letters denote

the quantities in the locked region.

(a) Equilibrium Equation

d u - a
r Or - e I4
-+2 r
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(b) Dilatational Elasticity

a+ 2 3SK(7 + 0(4.15)

(c) Ideal Locking Condition

C r E = (4.16)

(d) Kinematics

e 2r
(4.17)

du
r E

The expressions for stresses, strains and displacements in the

elastic region are still given by Eqs. (4.6) and (4.7). Boundary con-

ditions for the problem are

r a ;r 0 (a)

r =k r a r (b)r r

U= u (c) (4.18)

Er - e (d)

r b a r -p (e)

(iii) Stresses and Strains in the Locked Region

From Eqs. (4.16) and (4.17) one has

du -r u 0 (4.19)

The solution of this equation is

u = Cr + er log r (4.20)

Then,
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Cr = C3 + E(l + log r)
(4.21)

Ce = C3 + C log r

From Eqs. (4.15) and (4.21) one can write

- 1"Ce = I [3K(3C3 + U j log r + - r (4.22)

By substituting this expression in the equilibrium equation (4.14) one

obtains

dr r 3K (3C2 + 3C log r + C)= 0 (4.23)
dr r r 3 A

which, when solved, yields the following expression for rr

3C4
a - + 3KC + Me log r
r 3 3 3Klgr

whence (4.24)

- 3 C4  C•
C + 3KC + 3KMe log r + 3K --

r

By substituting Eqs. (4.20), (4,24), (4.6), (4 .7a-e), in the boundary

conditions (4.18b-e), one obtains

C1 p L 4G k 3 c I

1 3K 3K b3 3

k3ck2 3.

(4.25)
C5 4G k 3 c• j j Clo
c3  3K V -3l T'

3

C4 =+. (4G + 3K)k3E19 A
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These constants have been expressed in terms of k and p. The rela-

tionship between k and p can be obtained from Eq. (4.1 8 a). Thus

kk €a k3 1Ej(4G + 3K) a C'-p-Kel+3Melog-4G-- _ = 0 (4.26)

a b53

Taking the limit as b as, i.e., as a/b, (k/b) 40 , Eqs. (4.25) and

(4.26) will become

C1  3K

k3c

C2 = -

C3 = ?_ - C log k (4.27)

3

c4 = +(4G +3K) - 9

(4G+ 3K)--I+3KC log p + I
a

Now, the expressions for the stresses are

3 = +(4G + 3K) L3 I p + 3Ke log r_

(4,28)rk3 3 jIr Kc

e= . (4G + 3K) 3 ! P +3Kg loME +--8
r

Variations of 0r' r e with the radius r (for various values of k) are

plotted on Fig. 4.2. In Fig. 4.3, variations k/a with p/KeA are

plotted for different values of G/K and b/a.
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The expressions (4.28) show that there is a otress concentration at

r = a. The stress ae at r = a is given by

a= - (p + 3Kelog (4.29)

When k -o a, the stress concentration factor reduces to the elastic

value of 3/2.

(iv) Apparent Bulk Modulus

One can measure the reduction in volume AV of a solid sphere

subjected to uniform external pressure p, by measuring the reduction in

the outer radius of the sphere, i.e.,

AV =-47b2 (u)-rb (4.30)

where 2b is the diameter of the sphere. This equation is consistent

with the assumption of small displacements.

If the sphere were made of elastic material, AV can be calculated

from Eq. ( 4 .10a), with a = 0, i.e.,

AV = +4urb
3 p

3K

Then one can obtain the bulk modulus as

On the other hand, if the sphere has a small cavity of radius a, and

one measures the reduction in volume by measuring the reduction in the

outer radius only and calculates the bulk modulus from the preceding

equation one obtains

((b3a b a)
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This value of the bulk modulus K is defined as the apparent bulk

modulus. K is lower than the true value of the bulk modulus K. This

means that the presence of a hole softens the elastic sphere.

Let us now consider a sphere made of distortionally locking material

and having a spherical cavity of radius a. Then from Eqs. (4.20) and

(4.30a) the value of the apparent bulk modulus RI is

K = _3 (.31b)

The value of KCI/K has been plotted in Fig. 4.4 for values of b/a. =

2,3, and V = 0.25. One can see that locking slightly hardens the

material. For b/a , k/b = 0 for finite p and K = K

Now, let us consider a solid body of volume V as shown in Fig.

4.5 with several small cavities. Let the volume enclosed by each cavity

be v, the number of cavities n and the diameter of the cavity 2a. If

the cavities are evenly distributed as shown in the figure, one can

imagine the volume V to be made of n fictitious spheres of diameter

2b = 2 V'3V/4n. Then the approximate value of the reduction in volume

4V computed by measuring only the changes in the outer dimensions of

the body is

3a 3

4iGb 3  b

if the body is elastic and

if the body is locked. Then one can calculate the apparent bulk

modulus K. The variation of K with p for n = 12, 4, 1 and

V/v = 324 are shown in Fig. 4.6.
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Fig. 4.5.
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IV.2. Stresses Around a Small Spherical Inclusion in a Body Subjected
to Uniform External Pressure

In this section we shall consider a distortionally locking body

containing a small spherical rigid inclusion of radius a. The radius

of the spherical inclusion is assumed to be very small compared with

the other dimensions of the body. If the body is subjected to a uniform

external pressure, the stress distribution will be different from the

uniform hydrostatic stress. This stress distribution will now be studied.

(i) Elastic Solution

One can follow a procedure very similar to that of section

IV.l. Then, we shall again consider a large sphere of radius b con-

centric with the sphere of radius a. The radius b is assumed to be

very large compared with a. Then the difference between the stress

distribution in the body and the uniform hydrostatic stress distribution

will be very small at the outer radius r = b.

Then, one can assume that the stress distribution at r = b » a

is essentially a uniform hydrostatic stress. After deriving the formulae,

the expressions are simplified by considering the limit as b tends to
00.

When the applied external pressure p is very small, the hollow

sphere of inner radius a and outer radius b deforms as an elastic

body. Then the general expressions for stresses, strains and displace-

ments are given by Eqs.(4.6) and (4.7). In this case the boundary

conditions can be expressed by the following equations

r a u 0

r =b .or -p .32)

By using these boundary conditions, one can evaluate the constants C1

and C2  in Eqs. (4.6) and (4.7). They are
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"1 3
3K + 4G a

b

(4.33)
C2 -- 3K--+

7 -3

Taking the limit as b - •, one has

3

C C . pa (4.34)1 3K' 2 3K

The expressions for the stresses and strains are then given by the

following equations:

3
P_ 2P2 - a

r 3K 3K 3
r

(4.35)
3

9 3K 3K 3
r

4G a3
a r -- P - K-• P -3

r
(4.36)

2G a3

e 3K 3r

The locking condition for the material is again assumed to be of the

form of Eq. (4.12). Then, the body deforms as an elastic body if

every where

3
a <- (4.37)r =K
r

and the body begins to lock at r = a when
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2 . C (4.38)

(ii) Problem After Incipient Locking

If

p > K (4.39)

the body contains a region which is distortionally locked. Because of

spherical symmetry one can assume that the region a < r < k is locked

while the region r > k is still elastic. The expressions for the

stresses, strains and displacements in the elastic region are given by

Eqs. (4.6) and (4.7). However, the stresses, strains and displacements

in the locked region must satisfy the equilibrium equation (4.14),

dilatational elasticity (4.15), kinematics (4.17) and the following ideal

locking condition.

CE r = C I (4.4o)

The boundary conditions for the problem are

r =a 0=0

r =k u=u

r r
(4.41)

Ce C r I

r =b a = -pr

(b.c.)

(iii) Stresses and Strains in the Locked Region

From Eqs. (4.40) and (4.17), one has

dC 0 (4.42)
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The solution of this equation yields the following result:

U C3r - CIr log r

r =C 3 - CA(l + log r) (4.43)

Ce = C3 - CI log r

Then, the dilation elasticity Eq. ( 4 .3a) yields the following relationship

between a and a

a= [3K(3C3 - U log r - et) - •r' (4.44)

This equation together with the equilibrium equation (4-2) then results

in a differential equation for r, i.e.,

dr +-33rr - rK (3C . 3 log r -) 0 (4.45)
i7r r r- 3 A A

The solution of this equation is

- 3C4

jr= 4+ 3KC3  M eKE£ log r
r

and (4.46)

3c 3K4e
ae ="• + 3KC 3 -ME A log r 2

r

Eqs. (4.6), (4.7), (4.43), (4.46) and the boundary conditions (4.41)

yield the following values for the constants C1 , C2 , C3  and C4'

C1 p • + 4G k 3 e A

b

C k 3

C2 =-- 84
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C 3 a log a

k /3 k3 A ' 3 €EC4 =-- . -3K e log -p + 4G --- 4G =- k[(3K+4G] -_

The relationship k and p is expressed in the form of the following

equation:

1 p+4G k5 3• c A
"� log (4.48)

The stresses are then

3a
a =-(3K + 4G)_ + M3Ke log- a < r <k
rr r - -

a k5aar k
je =(3K + 4G) 6 - + 3&c log a < r < k

6r- -

(4.49)

+r 4G -p 3 1--)- k < r< b

k 3 ( 2 rl

Ge -p + 2G3C ( r) k < r <b

If one considers the limiting values as b * m, the constants C1 , C2,
C and C4 become

C1 = 3K

2 3

C3 z C log a
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c ~ (3K- log p - 4G

Then, the relationship between k and p can be expressed in the form

of the following equation

- log a
3K 3 11-k

The expressions for the stresses are then

z i (3K + 4G) + 3Elog 2 s
3r

" E=) (3K + 4 G) + 3KcI log- 3K- a < r < k

(4.50)
4G k

r 3P 3•
r

2G k
3

" e = p + 7-- 1Ej r > k

r

The variation of ar and a e for various values of k/a are

shown in Fig. 4.7. b/a has been assumed to be -. In Fig. 4.8 varia-

tions of p/KCA with k/a are plotted for different values of G/K

and b/a. The preceding expressions for the stresses yield the following

values for the stresses at the surface of the rigid inclusion.

-r.r a =! L -3Kc loge - p - 4G e) (3K+ 4G)

SkK3
3KE og - G +K _(3K + 4G)

2er a (_ -6~•p •O + :a

If the body were completely elastic the stresses at the surface of the

inclusion would be
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+= 4G

(iv) Apparent Bulk Modulus

By following a procedure similar to that of section IV.l,

an apparent bulk modulus can be calculated in this case:

3 3

1-a

b

if the material is elastic, and

1 (4.51b)

if the material is locked. The variation /K for different values of

b/a are shown in Fig. 4 .9a. In Fig. 4.9b, variation of K1 /K with

k/a for b/a =3,- are plotted for the case of a spherical cavity and a

spherical inclusion. The different effects of the cavity and the in-

clusion can be seen in the figure.

IV.3. Stresses Around a Circular Cylindrical Hole in a Body, in Plane
Strain Condition, Subjected to Uniform Pressure Along the Edges
of Every Cross-Section

We shall now consider a body (Fig. 4.10) whose length in the

z-direction is large compared with the dimensions in x and y directions.

The body is subjected to uniform pressure p applied at the edges of every

cross-section perpendicular to the z-direction. The sections normal to

the z-direction are assumed to be restrained from deformation in that

direction. The stresses in such a body with a circular cylindrical hole

of radius a will be investigated. "a" is very small compared with the

dimensions of the body.
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Fig. k�.iO.
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(i) Elastic Solution

When the applied pressure is small enough, the body deforms

like a completely elastic body. We shall anlayze the stresses under such

conditions by considering a circular cylinder of radius b concentric

with the cylinder of radius a. If b >> a the stresses at b are

essentially a uniform pressure p. Then one can assume (cylindrical

polar coordinates have been used for analytical convenience) at

r b a = -p

and at (4.52)

r=a a =0
r

If we now assume an axisymuetric stress distribution in the region

a < r < b we have the general expression for stresses[3]*

C1

r

Cl 1 (4.53)ae = - + C2

By using the boundary conditions (4.52) we can determine the constants C1

and C2 . Then the stresses are

ar b - a - i 1

(4.54)

S b b 2 a (1 +a

The corresponding strains are

1 + V a2 b2 1 1 - 2V) (4.55a)
"r E _ b=

Ref. 3, p.59.
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ab ( 1 _(I-2V) (4.55b)
S= p E 2• _ 2 7 2 .•h

b -a r b

E 0 (4.55c)z

The body is made of distortionally locking material. In this case

the condition of distortional locking is assumed to be of the form

"(4. 
6 

=)

where c and c are to be chosen out of three principal strains such

that Iei -Cj is a maximum. From Eq. (4.56) one can see that locking

takes place at r = a when

Cr - Ce = 4(lE+ v) 2 2 (4.57)

(ii) Problem After Incipient ILcking

If the pressure

•A(b2 - a2)
p > 1(4.58)

2(l + v) b 2

the body contains a region which is locked and a region which is elastic.

Because of axisymmetry we can expect that the region a < r < k is

locked while the. region r > k is elastic. The expresssions for the

stresses and strains in the elastic region are still given by Eqs. (4.53)

and (4.56) while the stresses in the locked region should satisfy:

(a) The Equilibrium Equation

doa j -a
r+ - 0 (4.59)

dr r

(b) Dilatation Elasticity

Sr + 78 = K (;r + ';a + z) (4.63)
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(c) The Ideal Locking Condition

7 r - e = 1( 4 6 1

(d) Kinematics

F d E =-U (4-.62)r ; d e = r

(d) The Incremental Stress-Strain Relationship which will

be derived in the next sub-section.

The boundary conditions for the problem can be expressed by the

following equations

r=a: =0
r

r k : = =a
r r

u= u (4.63)
E r E e = E I

r=b: a r -p

(iii) Incremental Type of Stress-Strain Relationship

In the present problem the locking condition is given by

=e - Er - EA = 0

As discussed in Chapter II, the stress components - - and z can

be represented as

Or = ari + are

ae = Get + a (.64)

z Z, + Oze

where ore, oe• and a,, are the locked parts of the stress components,

and ,r % , 7t are the elastic parts of the stress components. From

the Eq. (2.27a) we have
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The relationship between the elastic components of stress and strain are

given by Hooke's law, i.e.,

.: ere Oe= 2G(e =-%

a Br - -2GE (4.66)

0ze " are +-O~ ='.3K(% + e)

From this equation and the locking condition (4.61) we have

and
Oz -aze = 82c, rv(8r + )=v(b + (4.67b)

Equation (4.67b) can be integrated to yield

ajz = V(73 + 39)(4.68)

Another useful formula can be obtained by using (4.68) and the dilata-

tional elasticity Eq. (4.60)

a +O a 5K(* + Fe) (4.69)
r e l+v r 6

(iv) Solution in the Locked Region

From Eqs. (4.61) and (4.62) we get the following differential

equation in T.
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du
du r7 _ C 0 (4.70)

which when solved yields the following result.

u= C3 r + Ir log r

Cr : 3 + C2 (1 + log r) (4.71)

e = 3 + C log r

Then from Eqs. (4.69) and (4.71) we have

- 3K (2C + 2c log r + E)- (4.72)= r

The equilibrium equation (4.59) then reduces to a differential equation

in 1.
r

+- r -- 2- r 3K (2C3 + 2cg log r + c) r (4.73)

Hence,

- 3K 3K C4

Or +V- C3 + I - 4E log r + - (4.74)
r

(v) Matching the Boundary Conditions

The solution in the elastic region is given by Eqs. (4.53) and

(4.56). Byusing the boundary conditions (4.63) we find

C I E k2 cC (4.76a)1 271+V7 1

C2 E k (4.76b)

3 A 2 9 -'1 E =7

. •. (4.76c)



EE A (1- V) 2
4 ( +v)(1- 2v) (476d)

and the relationship between k and p is given by the following

equation

C A k 2 + I i 2 Z k7

P= (1+ v- ( - 2v) L -- k (2.

Now if we consider the limit as b - m the expressions for C1 , C2 , C3

and C4  become

C,=-TE-+ k eCl=2(1+ v) £,

C2 = -p

(4.78)

C3 = - log k - E- _ p (1+V)(l-2V)

E1(1 - V) 2
C4 = (i1+ v)(l - 2v)

Then the stresses are given by the following equations:

FA k2

r = 2(1 -+V) 2 pr

A k2

-e 2(l + V) • 2

Ee 1 z+v( v - V) !L2 + log I -p
rr

"r = -7~ -A 2V r) 2  k~A1 -
Ee k2j

ce, '(1+v)(1-2v7 r k

where k follows from
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FA' i~ )1 (1) (l V) ? + log s - )(1+V)l- N7 (a 7

The stress a 9  at r = a is

a-2p + log (4.79)79 =- (Il+ V b

This is higher than the value of a. derived on the assumption of elastic

behavior of the material. In Fig. 4.11, the variation of ar and a1

with r is shown for different values of k. b/a has been assumed to be w.

In Fig. 4.12a, p/E 61 has been plotted against kA for different values of V

The effect of different b/a is shown in Fig. 4.12b. In concluding

this section, one can observe that the problem of computing stresses

around a circular cylindrical rigid conclusion in a body, in plane

strain conditions subjected to uniform pressure along the edges of every

cross-section can be worked out in a similar way.

IV.4. An Example to Illustrate the Limitations on the Displacement
Boundary Condition

It has been proved in section 1-13 that if the displacements are

prescribed on the surface of the body so that they increase from zero

value proportionally, the prescribed displacement can be increased cnly

up to that value which makes the body completely locked. This will now

be illustrated by a simple example.

We consider a hollow sphere of inner radius a and outer radius

b with prescribed displacement u = Wc at r = a and u = r43 at

r = b. a is assumed to be greater than P. The prescribed displace-

ments are assumed to increase from their zero value proportionally, i.e.,

n increases from its value zero to its present value. For small values

of n the sphere deforms like a completely elastic body. Further, this

problem has spherical symmetry. Then the stresses, strains and dis-

placements are given by Eqs. (4.7) and (4.6). By using the boundary

conditions the constants C and C2 can be evaluated. Thus,
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C 2 na b -a.81

(4.80)

Co na b2 Cib-a 
}

a -a

The stresses, strains and displacements in the body can then be calculated

using these values of C and C h The sphere is capable of locking dis-

tortionally. The locking condition is assumed to be of the form

(C- 2 2 (.i

C r) = Cwh(481

From Eqs. (4.7a) and (4.87) ce - C can be computed. Its value is

a b _
Ce Cr = 3nafb 3 ather ars > al (4.82)

This has the maximrim at r = a. Then the sphere begins to look at

r = a when

A b r3 3 3
bi- a - (4r83)

3b a- 0
a

(i) Problem After Incipient Locking

As n is further increased from its value given by (4.83) the

sphere will contain a region which is locked and a region which is

elastic. From spherical synuetry we can assume that the region

a < r < k is locked and the region k < r < b .'is still elastic.

In the region a < r < k the general expressions for stresses,

strains and displacements are given by Eqs. (4.20), (4.21), and (4.24)

with +e A replaced by -ep i-e.,
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u - C3 r - Ejr log r

r C•3 - CA(1 + log r)

(4.84)

_ aCCe 3 - jlog r

7 a 4 + 3KC -3E log r
r 3 3 3Klgr

The general expressions for stresses in elastic region are again given

by Eqs. (4.6). Now, the boundary conditions can be expressed by the

following equations

r=a W-ra

r b u =no•

r =k u = (4.85)

a=o
r r

Then

C to C Ik3

l b 3 b3

k5C2 - +"I •

(4•.86)
nC ma+ C• log a

3 a I--

C4  3 A (4G - 3K)
C4-9

The relationship between n and k is given by

a - - log k (4.87)
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The sphere will be completely locked when k = b, i.e., when

b

n = b C l a (4.88)ab_.
a

(ii) Problem After the Sphere is Completely Locked

Let us now attempt to study the sphere in the completely

locked state. In this state the expressions for stresses, strains and

displacement throughout the sphere are given by Eqs. (4.84). The boundary

conditions are

r = a: na (4. 89a)

r = b: u=n1 (4.89b)

From (4.89a)

C3 = C• log a + na (4.90)
3 A a

From (4o89b)

C3 = E log b + R (4.91)

Contradicting conditions (4.90) and (4.91) for b require that

C log = n a

This can be reconciled for any n only if a = b. Therefore, the pro-

portional increase of surface displacement is not possible for

b
c b log b

n a- b
a

- 103 -



V. WAVE PROPAGATION IN LOCKING MEDIA

V.1. One-Dimensional Wave Propagation

(i) Stress-Strain Relationship in the Uniaxial Stress

System and Volumetric Locking

In this section we shall study the wave propagation under a

uniaxial stress system. As a first step toward the study, the stress-

strain relationship in a volumetrically locked region applicable in

this case will be derived.

The locking condition for the material is assumed to be

ex + Cy+ Az= el (5.1)

After locking, the deviatoric parts of stress and strain tensors are

still related by Hooke's law. In the one-dimensional stress system the

stress tensor consists of only one component cx . The strain tensor

contains three components of normal strain cx) Cy, Cz . If the devia-

toric parts of strain and stress tensors are obtained and Hooke's law

is used one obtains
2o = 2G(2- •y- Z )

xý xy Y-

x = 2G(-4x + 2Ey z) (5.2)

-a = 2G('Ex- Zy+ 2eZ)

Only two of these three relations are independent. By simplifying

these equations one obtains

6y = ,z ax = 2G(ix- Zy) (5.3)

Eqs. (5.3) together with the locking condition yield the following

relationships

;x = 3Gex GEt (5.4a)
• x

= 61 O- (5.4b)
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These equations express the relationship between ax, ex and ey in

the locked region.

The locking condition (5.1) can be expressed in terms of stresses

also. If the material is elastic

Ex + 6Y + ez = L_ iv_ (ax+ Oy+ Oz)

In this case Oy = Oz = 0 . Then Eq.(5.1) becomes

x 1 (5.5)

Then one can state the following inequalities. The material is elastic

if

x ' l-2v

and locked if

x 1- 2v

The stress-strain diagram is as shown in Fig.5.1

a

B

P/A- C

0 ex

Fig. 5.1.
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The straight lines OA and AB are defined by the following equations

axOA : X

x E

x 3GAB: Cx=••+.•.

(ii) Equation of Motion

Let us consider a bar of uniform cross section made of elastic-

locking material. It is assumed that the average stresses on any cross

section can be approximated by a one-dimensional stress system. Then,

one can apply Newton's law of motion to an element of bar of length dx

as shown in Fig.5.2 . The displacement in the x-direction is represented

by u and the velocity by v = au/6t

v v +d~v

CYx + doOx Ox x

xL dx

Fig. 5.2.

In further discussion of one-dimensional wave propagation the

usual notation of barred letters to denote the stresses, strains and

displacements in the locked region will not be applied because we are

working most of the time only with the stresses in the locked region.

The equation of motion can then be written as

6ox av 2 u
x t ;J

In general the stress-strain law can be expressed as
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a - f(e) (5.6)

If one defines the normal force N such that

N= Aax

and the mass per unit length 4 as

4-= Ap

the equation of motion and the stress-strain relationship can be re-

written in the following way

Nw ( N r pA riu') (5d7)

where represents partial differentiation with respect to r and
()represents partial differentiation with respect to t .Elimina-

tion of N from Eq.(5.7) yields

df itA -Tu = 4u (5.8)

By introducing the symbol

E(u') = du '

equation (5.8) becomes

u" = iU (5.9)

From this equation one can infer that there is a wave of velocity c

such that

c2 = AE(u') (59)

moving in the locked region.
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Alternately, one can derive the equation of motion by considering

the discontinuities at the wave front.

Fig. 5.3.

By the impulse momentum theorem one can write (See Fig. 5.3)

dtA(0xl-O0,) = pA(i 2 - Ul)dX

i.e.,

a -2 - pc (l 2 " (a ( .(10)

or

N1 - N c(Z 2 -N2A) (5.loa)

where

dxdt

By introducing the Jump symbol

&( )= ( )2 - ( )l

one can rewrite equation (5.10a) in the following way

= ,, -AN (5.11)
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From the condition of continuity of displacements along the wave front,

one can write

u2 - U 1 = Au = 0

By differentiating this equation along the wave front in the x-direction

one obtains

S(&u)= + 1 u A = AU' + -! Aa = 0 (5.12)

Eqs. (5.11) and (5.12) can be simplified to obtain

c.2&u' = AN (5.13)

If one makes the assumption that the discontinuities &t, AN, Au'

carried by the wave are infinitesimal quantities, one can write

M = A (u') AE (u')t&u'

Then,

ge2Au' = AE(u')Au'

i.e.,

c= ýEE(5.14)

The result represented by Eq. (5.14) is the same as that obtained by the

differential equation. However, by the study at wave front we have

learned that the results (5.14) and (5.9a) are true only for infinites-

imal discontinuities. Then the next problem will be to study whether

there is a possibility of the discontinuity being finite. As a first

step toward the study the variation of discontinuity during the propa-

gation of the wave will be studied in the next section.
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(Iii) Variation of Discontinuity During the
Propagation of the Wave

By differentiating Eq. (5.11) along the line of propagation

of the wave in the x-direction, one

PC& (AA) + cIAA+ • -Il A AN (5.15)

From Eq. (5.7) one can write that

AN'= pAd (5.16a)

S= A(EAa') (5.16b)

Eq.(5.16b) can then be written as

•E•2 , (5.17),ni= A d-- 6'&u' + JA(17

This equation is for infinitesimal waves only. Further, from Eq.(5.9a)

one has

2cc A dE u"
A dE

2c6 = • du , (5.18)

By substituting (5.16a), (5.17), and (5.18) in Eq.(5.15), the following

equation is obtained:

D (A) + A dE (u" + . ,)A A dE A &u' = 0Xc 2c du- c c du '

Then, by using Eq.(5.12) this equation can be simplified to the follow-

ing form

D (A) + A dE (u"- ,,i_ )M = 0 (5.19)
4c2 du' c
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This is a differential equation in AA . It will be used in the next

sub-section to study the effect of variation of discontinuity as the

wave propagates into the bar. It should be noted that this equation is

valid only for infinitesimal waves.

(iv) Case of Unloading Wave

Let us consider a bar prestressed to N = P . Let a stress-

discontinuity of the magnitude

N(Ot) = - PI(t)

be sent through the bar from the end x = 0 . In this equation I(t)

represents the unit step function, i.e., the force P is suddenly

released at the end x = 0 . Further, it is assumed that the discon-

tinuity - P is made up of elementary waves of magnitude - AP which

propagate successively through the bar.

At first u(x,t), A(x,t) are equal to zero throughout the bar.

Then, the second term in Eq.(5.19) is zero. Therefore, AA is constant

throughout the bar; i.e., as the first elementary wave propagates through

the bar, the wave creates a state of constant velocity and constant stress

behind the wave. Then, one can conclude that u" and d' are zero

behind the wave. Thus, for the second elementary wave of magnitude -6SP,

the second term of the Eq.(5.19) is again zero. The Eq.(5.19) again yields

the same result, i.e., AA = constant throughout the bar. That is, the

propagation of the second elementary wave through the bar also creates a

state of constant stress and constant velocity behind the wave.

Thus, one can see that all elementary waves spread through the bar,

similar to the linearly elastic waves. However, they propagate with

different speeds as given by Eq. (5.9a). It means that after the nth

elementary wave has passed through an arbitrary point x1  of the bar,

the stress at the point is P - nAP . The speed of propagation of the

nth elementary wave is

c (5.20)
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where En is the slope of the stress-strain curve evaluated at

n~

oxa x 0 -

i.e.,

E

From Fig. 5.1

EEl

En = 3G if ax > -2

1- 2v

= E if ox < Eelf

Also, 3G > E . Then, one can see that the unloading wave falls apart

into two waves with speeds VSZG1& and V'~ .

Further, according to Eq.(5.11) the elementary waves add a con-

tribution

6N
P.C

to the velocity A . Therefore, the particle velocity at a point

allowing an axial force P - nrP is

nAP
or•P A do

S - 1= Af (5.21)
cN)

From Eq.(5.21) it is evident that u(x,t) is a function of the stress

ax only. Thus it does not depend on the stress distribution along the

length of the bar.

If one considers the upper limit of the integral in Eq. (5.21) as

n6P - P
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one obtains the velocity at the end of the bar immediately after the

application of the discontinuity.

(v) Case of the Loading Wave

Let us now consider the unloaded bar x > 0 . Let a stress

discontinuity of intensity

N = Pl(t)

be sent through the bar from the end x = 0 . Again, one can consider

the stress discontinuity to be made of elementary waves of intensity

AP . The first of these waves travels with a speed c = c(O) while

the final elementary wave travels with a speed

c = c(P/A)

(see Fig.5.1a), which is greater than that of the first wave, i.e., the

last wave catches up with the first at a certain point. Similarly, all

the elementary waves introduced at a later time can catch up with those

introduced when nAP < EcY1-2v . However, when the two waves catch up

with each other they cannot pass one another as two waves approaching

from opposite directions, in an elastic bar. In this case the wave that

overtakes passes from a domain of higher stress to a lower stress.

Hence it becomes the slowest wave. Therefore, one can see that the waves

do not separate after they catch up with each other. They move together

with a common speed, i.e., the discontinuity at the wave front starts

accumulating and becomes finite. One can no longer apply the formulae

derived on the assumption of an infinitesimal discontinuity. In order

to find the speed of propagation of the wave carrying a finite discon-

tinuity, one must use Eq. (5.13) which is applicable for finite

discontinuities, i.e.,

2 1•(u 2 11 - '2 (5.22)
c ( = I~zu- u') - e-e1 21 2

In this equation and in further analysis, the subscript x of ax and

e has been dropped.
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In concluding, one can see that the case of loading produces a

phenomenon which is quite different from that of unloading. Stress and

velocity discontinuities in the case of loading do not fall apart as in

the case of unloading. They move together as a finite wave (called the

shock wave). The speed of this wave at any point is given by Eq. (5.22).

(vi) Impossibility of an Unloading Shock

The relationships (5.13) and (5.22) are valid whether the

load increases or decreases. The concept of loading shock has been

explained on the basis of these equations. Then, one may ask the

question whether an unloading shock exists? If not, what are the reasons

preventing the existence of an unloading shock? This can be explained

by energy considerations.

Let us consider the loading wave. When the stress changes from
al to 02 and the velocity from flI to 02 , the change in kinetic

energy is

= Ld -2_ a2)

The increase in elastic energy during the same process is

N 2

U2 = dx N2 N(u')du'

1

Net work done during the process is

U3  - (N. 1 i1- N2A2 )dt

Then one can define the energy loss U as

U = increase in kinetic energy + increase in elastic
energy - work done

i.e.,
"2

Udx -1 -Idx(2 &2 + dx N(u')du' + :(NI 1- N2 ! 2 )dx (5.23)
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The a-e curve is of the shape shown in Fig.5.4

a

B

LDal -,A:

VC

TI

Fig. 5.4.

When the curvature is concave upwards the integral can be estimated

in the following way:

N2 a2
N2 2

N(u')du' = A ade = ( 5.42)( 2 " ) )

where C is the shaded area in the figure. Further, C is a positive

quantity.

Also, from Eq.(5.22) one can write

2gc = nA

where

01- a 2

12

62-1 = • (a2 "a1 )
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Therefore,

02

f 02 de - A a 2_ a ) - c

Further, from the figure one can write

0i= ,('l- E0)

02 '4(e2- 0)

Then, the energy loss U is

U A A 2_2+AC
u = -~ ( -a a) + Til 2o- cy~) 2 ( 2- ocu1  -

2L 2\ a/\ c 22c2= + 1 + 2+ 
(5.2C

-A U' +--c e +o + u'+-- "4Eo -C (5.25)
2 L C / 0) cO

The terms in the square brackets cancel each other because of continuity

of displacements. Then

U = - c (5.26)
This means that there is more energy than needed which makes the process
possible.

For an unloading wave the signs of all energy terms are reversed,

including that of the contribution C derived from the nonlinearity of

the stress-strain relationship. Instead of a loss we would then have

mechanical energy produced from nothing. This shows that upon unloading

the wave front disperses; a shock is not possible.

(vii) Interaction of two Waves Approaching
from Opposite Directions

Let us consider two waves A and B approaching from

opposite directions. The wave A is carrying a stress discontinuity

01 and velocity discontinuity vI . The wave B is carrying a stress
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discontinuity v2 and the velocity discontinuity v2 . Further, it is

assumed that

aI 4 a2 C E (5.27)

but

Then the waves A and B are elastic waves moving with the elastic

wave speed c = ,-T . Further, it is assumed that the region through

which neither of the waves has passed is stress free. Then from Eq. (5.10)

one can write the following relationships between stress and velocity

discontinuities

a 1= pcvI

(5.28)
0 '2 = pc

ECE

I - 2V

1l' -vl c c '7 2'v 2

Fig. 5.5.
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D E

I, "vi a 2 ' V2

x

Fig. 5.6.

t

D E
a-. 3' V3

a l l. . 5 2. 2

0,0B

x1 x

Fig. 5.7.
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The x -t diagram for the propagation of the wave has been indi-

cated in Fig.5.7. At a certain point x a xl, t - tI the two waves

meet. Then two different waves D and E moving with speeds c3

and c4 emerge from the point as indicated in Figs.5.6 and 5.7. The

stress and velocity discontinuities carried by these waves can be cal-

culated in the following wevry

By applying Eq. (5.10) to the waves D and E one obtains

3 -1a - Pc3 (vl+ v )
(5.29a)

"-3 = Pc(V2" v3)

By using Eqs.(5.28), these equations can be written as

03 - Pacv 1 = - Pc3 (v1 + v3 )

(5.29b)
ao3 - -ay = pc(v2v3)

Further, from Eq.(5.22)

2 1 a 1 3
c = - E

2 1 12 "03
c4 = P E 2 -C3

But from Eq.(5.4) and Hooke's law

a1

02

£2 T

03 E•a 3 +•E,1
3 3G 3
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Then

2 1 a01 "3
3C C

1 3 it

(5o30)

2 1 a2 "3
c4 03 5 5

E 30 3

Equations (5.29) and (5.30) are four equations for four unknowns, a3, v3 ,

c3 and c4.

In the special case when a1 = 02 and vI = v2) the right-hand

sides of Eq. (5.30) become equal, indicating that c3 = - C4 . The minus

sign has been chosen because the waves D and E are moving in opposite

directions. Equations (5.29) can then be written in the following way:

03 - pcv1  - p. c3 (v1 + v3 )

03 - pCV1 = Pc4(vl - v3 )

whence

V3 = 0v3O

03 (5.30a)
-C3 = + C4 = -- C

Then, from Eqs. (5.30) and (5.29a)

2 c3 (v 1 + v 3 )
c3 1 a 3 C!

By using Eqs. (5.30a) this equation becomes
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c3  (5.30b)
(c-l c3)--

Ev1 3 3)3v1

However, from Eq. (5.28)

01

pv1

Then, Eq.(5.30b) becomes

-2
c 3 + c 3 2 - c ---•1 c 0

co

where

is the wave velocity inside the locked region and c =1 is the

elastic wave velocity. If c is determined by solving the quadratic

equation, a3 can be obtained from Eq. (5.30a). However, the quadratic

equation has two roots. We should investigate to see which of the two

roots is the correct answer.

c3  can be expressed as

c 3  = T ± c - (5.30c)

where

-2
ec -2 c

Q = c+5-T c-

1 c

Now

;2- 3G _ -
c rM7 E = 271+7v
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Also, we have

EE

i.e.,

a 5 EEL

3ov1  3pv 1 (l-2v)

i.e.,

EL1 l-2v-• ia
3vI1 3c

or

-2
Ac ?1 2 v 3

3v 1  3 2(1+v)

Then the minimum value of a is

amin c + 2( +V7 - (+) =V7

Therefore

a a 0.

The equal sign is applicable where aI = Ee,/1-2v i.e., in incipient

locking. Therefore, the plus sign of the radical in Eq.(5.30c) gives a

value of c 3 higher than c . This is not possible because c corre-

sponds to the slope of the straight line AB in Fig.5.1 or Fig.5.4,

while c3  is the slope of one of the secants such as DE or OC .

Then the correct c3  corresponds to the minus sign of the radical in

P.(5.1-c).
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If in particular

EEI
l1 - 2v

c3 becomes equal to V because a = 0 . Then

y3 = v 1 (cp + .

(vii) Interaction of Two Waves Moving in the Same Direction

Now, let us consider two waves A and B as shown in

Fig.5.8a and moving in the same direction. The wave B propagates

into the undisturbed, stress free bar. It carries a stress discontinuity

E C

= 1-2v

and a velocity discontinuity vi

The wave A is assumed to carry a stress discontinuity of the

magnitude a2- a1 and to move with a velocity c1 . The value of 02

is assumed to be greater than 01 * Then one can write the following

relationships between stresses and velocities (see Eq.(5.10))

a0 = pcv 1

02 - 01 = pc,(v 2 - v1)

where c is the elastic wave speed and c1 can be calculated from the

formula (5.22).
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EE

1 - 2v

A

12) "V2 l B

Fig. 5.8a.

E

cic5

C3

x

Fig. 5.8b.
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t

E 03' "v3 D

C'2) -72 1-2 4I •€

x
xl

Fig. 5.8c.
i.e.,

cI = = C

c=

The x,t diagram is as shown in Fig.5.8c. The wave A meets the wave

B at a certain point x = xl, t = tI . Then two waves D and E

emerge from the point. The stress discontinuities o3 -2 and a3

carried by these waves will now be calculated.

By applying Eq. (5.10) at the wave fronts D and E , one can

write

03 = pc 3v 3

2 2(5.31)

a3-c2 = pc4(v2- v.)
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Further, from the equation (5.22)

2 1 03
c =
3 P a IE3 3

(5.32)

2 1 02 '3 3G 2 -2
c4 P = -3) 1 = c 1 c

3G

Eqs.(5.31) and (5.32) can be rewritten as

03 = Pc 3V3  (5.33a)

3 -a2 - v 3 ) (5.33b)

2 1 a 3 3G
c3 p 03+ (5.33c)

Eqs.(5.33) are three equations for three unknowns a3, v 3 and c3 ,

which can then be determined. Then we know the stress discontinuity,

the velocity discontinuity and the speed of the wave after intersection.

From Eqs.(5.33a) and (5.33c)

2

2 03 1 o3 3G
c3 = -- 2 = + OGe

P v533

i.e.,

2
3Gpv 3

3 = 3 +GeA
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From Eq.(5.33b) and this equation

a2 + a.e

a2+ 3GE2  = (03 - C12 v2 )

i.e.,

2 2+o2 +3Gv2 +2voejS

Ge +2o 2 + 2v2 '/W

The right-hand side of this equation contains known quantities. Hence,

03 can be calculated. Then c and v can be obtained from

Eqs.(5.33c) and (5.33a).

v.2 Spherical Wave Propagation under Volumetric Locking

(i) Equations of Motion and the Speed of the Wave

In this section the dynamic response problem of an infinite,

homogeneous, isotropic and volumetrically locking medium will be

studied under spherically symmetric conditions. One can write the

following equations governing the problem. In these equations
0r' ErJ i are the normal stress, normal strain and displacement in

the radial direction r . ae' ce are the normal stress and normal

strain in any direction in the plane perpendicular to r-direction.

The following equations govern the motion:

a) Newton's Law

r + -- -Or r- 2 ( 5 -34)

b) The Stress-Strain Law: The material is assumed to be

capable of non-ideal locking. The results for ideal locking will be

derived as a limiting case. From Eq.(2.36) and distortional elasticity

- 127 -



;r + 2ae = 3aeA + X.(+ +2ie-EA) + r2 > et

ir -ae M 2G(Zrze) (5.35a)

These equations can be solved for Ur and 9@

(= ejk-) +% G - + 2-J4G i1
ar 3 •k 3 Cr 3

(5.35b)

e '1 (k-•)+ ,-32G - 2.+23 le

c) Kinematics

r = •r = - (5.36)

From Eqs. (5.34) to (5.36) the following differential equation can be

derived

U -2 •u U (5.37)-2• +r•' ° 2- X N+ t- 2
r r =t

If one introduces a potential * such that

Eq. (5.37) can be rewritten in the following way

c[2a L ( (r 2 )] .=

i.e.,

2 2
c V (5.38)

-t2



where

2 +4Gcl = -

and

r2 2 ;rr2 TO

is the Laplacean operator under spherically symmetric conditions.

Now, one can see that Eq. (5.38) represents a wave equation with

the wave speed

c -- G (5.39)

One mi•st remember that the speed of the wave is given by this equation

only if the wave is propagating in a medium which is already locked.

If the material is an ideally locking material, ), becomes infinity.

Then the speed of the wave becomes infinity.

Alternately, one can derive the equations governing the problem by

considering the discontinuities at the wave front. By applying the

impulse-momentum theorem one can arrive at the following relationship

(Fig. 5.9):
A

DD

B

Fig. 5.9.
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(In this figure AOB is a cone with vertex at the origin, and vertex

angle being equal to dO . The wave CD sweeps through the radial

distance r 2 - r1 = dr in time dt .)

2 2

(N2- Nl)dt = pr -2 de dr(luI- A2) (5.4o)

where N1 and N2 are the resultant forces and u 1  and u 2  are the

radial velocities on sides (1) and (2) of the element shown in Fig.5.9.

Further,

2 2
N1 =

2 2
N2  

0r2 2

Then Eq. (5.40) can be rewritten as

(r2 rl) r1rde 2 dt + a nr(2r drdO2 +dr2de2)dt
r2 2 d2dr A )dt

= (Ul" u2 )pwrldedr(Ul u 2)

+ pTrde2dr 2 (rl+ k) (al- u2 )

By dividing this equation by 1rl2de2 dt and by considering the limit as

dr and dO tend to zero, this equation becomes

ar2 - Crl = pc(A 1 - A2) (5.41)

where

drC dt

Further, the displacements are continuous at the wave front. Then

u1 - u2  M 0
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By differentiating this equation along the wave front in r-direction

one can write

(1 ) = 0

where ( )' denotes partial differentiation with respect to r and ( )

denotes partial differentiation with respect to t . Then, from Eq. (5.41)

one has

2 1 Or2" arlc (5.42)
P er2  E rl

if both the sides (1) and (2) are in the locked region and the locking

is nonideal. One can derive the following value of the wave speed from

Eq. (5.42), the stress-strain relationship (5.35) and the displacement

continuity relationship, namely:

This is the same value as that obtained in Eq.(5.39). Further, as in

the case of one-dimensional wave propagation, when region (2) is elastic

and region (1) is locked, it can be shown that the loading waves catch

up with each other and move as a shock wave with finite amplitude, while

the unloading waves fall apart. Then that wave which brings the material

to a state of incipient unloading propagates with the speed just given,

and it is followed by an elastic wave of speed NP7e + 2_'p

(ii) Infinite Medium with Pressure Suddenly Applied
at the Edge of a Spherical Cavity

In this section we shall consider an infinite medium (made

of a volumetrically locking material) with a spherical cavity of radius

a as indicated in Fig. 5.10. The stresses, strains and displace-

ments in the medium due to a pressure p suddenly applied at the cavity

surface will be studied. Further, it is assumed that the pressure p

is maintained at the cavity surface for all times, i.e.,
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rLa = - p for t > 0.

When the pressure p is suddenly applied at the cavity surface

a wave starts spreading into the medium. At a certain time t this

wave front will be at a certain radius r = k(t) . Then, the region

a - r 9 k(t) will be a volumetrically locked region if

(a) the pressure p is of sufficient magnitude to cause

volumetric locking,

(b) the strains in the region 0 9 r 9 k(t) are nowhere

of a magnitude which would cause unlocking.

t

rr-kkt)

a r

Fig. 5.10.
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The preceding requirements will be checked later.

The stresses, strains and displacements in the region 0 S r S k(t)

are governed by the following equations; (equation of motion, distor-

tional elasticity, locking condition and kinematics)

a&r + _2--r- _ _-_ (5.43)

ar " ae = 2G(Z r" ze) (5.44)

Z r + 2?'0 = - EI (5.45)

2rurr F

- (5.46)
E0 =-

The locking is assumed to be ideal. Further, it is assumed to take

place in compression only. Then the locking condition (5.45) holds

throughout the locked region. Eqs.(5.45) and (5.46) then yield the

following differential equation for u.

3a 2U 0F+r T

with the general solution

S= f(t) -(4- -r (5.47)
2 3r

where f(t) is an arbitrary function of time. Then,

S 2f t) 61

r = - -T - (5.48a)
r
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=e 3 3 (5.48b)

r

Then, from distortional elasticity one obtains the following relationship

•r-Se="6G f•t (5.49)

r

The equilibrium equation and this equation then yield the following

differential equation for a

2
r r

A simple integration yields the following expression for the stress:

r = - 4G f(t) - P (t) + g(t) (5.49a)
r -p r +gtr

Eqs.(5.47), (5.48) and (5.49) constitute the general solution in the

region 0 - r - k(t) . The solution is determined if the functions

f(t), g(t) and k(t) are determined. Therefore, the investigation

in the next section will be concerned with determining these functions.

(iii) Functions f(t). g(t) and k(t)

For t > 0 the boundary condition at the cavity surface

r=a is

a - p (5.5o)

At the wave front the displacements are continuous. Further, it

is assumed that, for the time t < 0 , the infinite medium is at rest

and is stress free. The pressure p is applied at time t = 0 . Then

the region ahead of the wave front r = k(t) is at rest and is stress

free, i.e., at r = k(t)

0 ,(5.51)
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and hence

ie = 0•e=

Further, the region 0 < r < k(t) is in a state of ideal locking and,

therefore at r = k(t)
Z + 21 = -E

whence

er = (5.52)

Then, from Eq. (5.42)

2 (• )
2 I= k (a 1 rkt)dr = -e!

i.e.,

rk(t) =-P E (dt)2 (5.53)

The conditions (5.50), (5.51) and (5.53) will be used to determine

the functions f(t), g(t), and k(t). From Eqs. (5.50) and (5.49), one

has

4Gf(t) ~ t
9() 3  + a (5.53a)

aa

Then

r = 4Gf(t) (a + P? p (5.54)

From Eqs. (5.51) and (5.47) one obtains

f 6 k3  (5.56a)

Then,
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e*2 f (5.56c)
r 3 3

r

=--+-6 - (5.336)
r

r 4G e k 3 - - 13 + Pe i ji0 + 2ki2)-p (5.56e)
r 3 1a r3  a r,

Then from Eqs. (5.53) and (5.56e) the following differential equation

for k(t) can be obtained:

k -) R + (2 1) -10 (5.57)

If the function k(t) is obtained by integrating this equation, the

functions f(t) and g(t) can be determined from Eqs. (5.5 6 a) and (5.53a).

The initial conditions for the differential equation (5.57) are

k(O) = a

-PE (j2) = [o ] = -p (5.58)
I t=0 r t=O, r=a

Before proceeding to integrate the differential equation, the condition

under which the region 0 < r < k(t) could be a locked region will be

investigated in the next sub-section.

(iv) The Conditions Under Which the Locked Region 0 < r < k(t) Exists

The region 0 < r < k(t) can be a locked region if the stresses

satisfy the inequality

"-(r + 2%) > 3Ke (5.59)

where 3K is the bulk modulus

K= E
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From the distortional elasticity a is related to ar (see Eq. 5.49).

Then

i 0r - 2G( - C0)Cr+ 6Gf(t)

r

Then the inequality (5.59) can be written in the following way (see

Eq. 5.54)

3p - 3Y 1-• - 12G - >_ 3K, (5.60)
a

In order that the locked region a < r < k(t) does exist, the inequality

must hold at least for r = k = a, t = 0, i.e.,

P 3K + 4G C (5. 6 0a)

for V = 0.25, 3K = 5G. Then this inequality becomes p/Ge 1 >_ 3. Also,

from the inequality (5.60), one-can see that the material will unlock

if, at any place,

3p- 3P (a 1) _ 2G = KCC1  (5.60b)
a

This will occur first where r is maximum, i.e., at r = k(t).

Further, from Eq. (5.42) and the incipient locking conditions, the

following value for dk/dt at the instant of unlocking can be derived

dk r2 -arl 1

Material ahead of the wave is at rest and stressfree. Then a r2 E r2 e 0.

Therefore

t= 1 Prl
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At the instant of unlocking arl and E rl are related by the elastic

law. Then

dk 1 e(Erl+2e) +2GErl
dt p /rl

where % e is Lamýe's constant. Also at r = k(t)e

u 1
E81 r 0

Then

dk ^ke + 2G

t P

which is the speed of the elastic irrotational wave.

(v) Solution of the Differential Equation (5.57)

Equation (5.57) is an ordinary, nonlinear differential equation

for k(t). It may be solved by numerical integration. However, before

any numerical procedure can be started, it is necessary to clarify the

behavior of the solution at k = a. This will be done first, and then

Milne's method will be used for numerical integration. Also, to prepare

the equation for numerical work it is non-dimensionalized by introducing

the following new variables

a Gt T

In this notation, Eq. (5.57) reads as follows.

q(q-i dd• + (2q- i) dT) + ( q 3_ 1) - a 2 =0 (.1

where

V G e l

The initial conditions for this differential equation are
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T=0 q = (5.62)a

and (see Eqs. 5.53, 5;58, and 5.62)

T =0dadt = a (5.63)

The power series solution is assumed in the following form.

q = 1 + CIT + b2T2 + b3 T3 + b4T4 + b5T5 (5.64)

Because this power series will be used to evaluate the values of q and

its derivatives for T < 0.003, it is reasonable to expect that the first

few terms of the series should be sufficient to evaluate d2 q/dt 2  to

the accuracy of three decimal places. Therefore, the coefficients of

T6 and higher powers are neglected in the series.

Then by keeping only terms up to the fifth and lower powers of T,

one can evaluate the individual terms of the differential equation (5.61).

By equating like powers of T the coefficients b2 ... b5 can be

calculated.

For a particular value of p/Gil = 4 the coefficients are as fol-

lows (From Eq. 5.60a, for v = 0.25, one can see that the value of

p/Geb creates a locked region.)

b= 3

3
b2 2

b3 r3

b4= -3.6

b 5 8.09

The expression for q can then be written in the following way

q=1+3T -2e + f-T3- 3.6T4 +8.09T5

2
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This power series has been used to start the numerical integration.

The typical numerical solutions for p/Gel = 4 is shown in the follow-

ing table. Unlocking takes place at q = 1.142 and T = 0.088. The

stresses, strains and displacements have been plotted in Fig. 5o12.

Fig. 5.11 shows the position of wave front and wave velocity.

0.0 -3.0 1.73206 1.0

0.01 -2.899 1.70257 1.01717

0.02 -2.809 1.67404 i.o3405

0.03 -2.714 1.64649 1.05066

O.04 -2.650 1.61962 1.06700

0.05 -2.574 1.59353 1.08305

0.06 -2.505 1.56813 1.09887

0.07 -2.441 1.54341 1.11441

0.08 -2.381 1.51930 1.12974

unlocks*

0.09 -2.328 1.49577 1.14480

Unlocks at q = 1.142 . = 1.5

In the next sub-section the problem after unlocking will be

studied.
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Fig. 5.11a. Position of Wave Front.

46t
,r .2..9 = 4
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1.3 1.5 1.7 dk

Fig. 5.11b. Wave Velocity.
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vith Problem After Unlocking

It has been shown ( see p. 140 ) that unlocking begins at the wave

front at point A (Fig. 5.13) where k(t 1 ) = rI. When the wave has

reached this point, its velocity has the value c of elastic waves,

as everywhere on the wave front u = 0, and the stress at A is

Sr = pc 2 e From here on the wave continues as an elastic wave goingr r
outward, as shown in Fig. 5.12.

The region behind the elastic wave may contain a locked region (2)

and an elastic region (3), as indicated in the figure. The wave front

AB is a straight line, its slope corresponds to the elastic wave speed

c. The problem is now to obtain the stresses, strains and displacements

in the elastic and locked regions such that they match on the interface

AD which is still unknown. Further, the solution must satisfy the

appropriate boundary and initial conditions.

The general solution in the locked region is still given by

Eqs. (5.47), (5.48) and (5.49). The general solution in the elastic

region will be derived in the next section.

(vii) General Solution in the Elastic Region

The dynamic response in the elastic region is governed by

the following equations:
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(a) Equation of Motion (see Eq.(5.34)

aur + 2 Or 2 u
rr t2

(b) Stress-Strain Relationship

Or = %e(Fr+2ee) + 2GEr

Ce = Xe(er +2ee) + 2Goe

where X is Lami's constant and 2G is the shear modulus of thee
material.

(c) Kinematics

au u
EU

Cr = r' =

From these equations the following differential equation in u can be

derived

a2u 2 6u 2 2 u
2 r 2 u X e +2G

As explained in p.128, this equation can be rewritten in the following

form by introducing the potential function * such that u -*/ar

where

Te+ 2G

c =

Integration of this equation yields
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r c t

where C1 is a constant. This equation can also be written as

) 2 (r*u) = Or (5.66)

The general solution of this equation is

r* = fl1(r +ct) + f 2 (r-ct) +Cr (5.67)

Once * is known, the displacement u and hence the stresses and

strains can be calculated.

We are seeking solution in a region which extends to infinity.

Thus, there are no incoming waves. Further the elastic waves start

at time t =t , and at radius r = rI . Therefore, the potential

function j in the elastic region can be written in the following

form:

2

* 3= f t-tI- + T 2 (5.68)

In the further analysis the abbreviation t = t -t will be used.

Then

rc i -r ( rLir Cir
u l , -2 f 3 c 3 (5.69)f; ( i - r f - c" 1

where ( )' denotes differentiation with respect to the argument of

the function.

(viii) Boundary and Interface Conditions

The general solutions in the locked and elastic regions are

given by Eqs.(5.47) to (5.49) and (5.69). They contain arbitrary func-

tions f(t), g(t) and f3 " These functions and the unknown radius
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r = r 2 (t) of the interface can be determined from the following

conditions.

(a) At the wave front the displacement is zero; i.e.,

at r = r1 + ct:

u = 0 (5.70)

(b) At the surface of the cavity, the radial stress is - p ;

i.e., at r = a

-pr p (5.71)

(c) At the interface the radial stress, the particle velocity

and the displacement are continuous; i.e., at r = r2(')

u = u (5.72a)

0r = r (5.72b)

= u (5.72c)

Eqs.(5.72b) and (5.72c) are not independent of each other because the

continuity of the radial stress implies the continuity of the particle

velocity across the interface.

(d) Further, the stresses in the locked region are in a state of

incipient locking at the interface; i.e., at r = r 2 (t)

ar + 2or =e 3KA (5.73)

From this equation and the condition that the strains in the locked

region satisfy the locking condition (5.45), we have at r = r 2 (')

Or + 206 = 3K(i r + 2Ze) = - 3KNe (5.74)

Also, from distortional elasticity in the locked region at r = r2(')

ir " 0(e (" (575)
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From the fact that the elastic stresses and strains satisfy Hooke's law

we have at r = r 2 (t)

ar + 2a = 3K(er +2Ee) (5.76a)

Or - 6  = 2G(,E - ce) (5.76b)

From Eqs. (5.75) and (5.76b) at r = 2M

(;r -O) - (ae- a) = 2G [(r-Er) - (Ze - c)]

From Eqs. (5.72a) and (5.72b) this equation becomes at r = r 2()

;e " 00 = - 2G( E r) (5.77)

Similarly from Eqs. (5.74) and (5.76a) at r = r2(i)

a6 -a 3( - E (5.78)

From (5.77) and (5.78) one obtains at r = r 2()

- E = 0
r r

and then e= E because of continuity of the radial displacement u

at the interface. Then at r = r2(t)

Er +26e = Zr + 2ie = - 1 (5.79)

This equation can be used in place of one of the equations (5.72a,b,c)

or (5.73).

From Eq. (5.69) one can write the following expressions for strains

and velocity in the elastic region:
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+U r - " + 2 f5.orr ;r 2 3 c~ 2

r rr /

-f''t&- f -- - (5.80b)
re 2 ( -= " -- 3 3 ( "" + L 7 ( -8 b
r rc c r

A = . f i -( z) f - (580c)rc r

Then, from Eqs.(5.79), (5.80a,b)

( t-_ ') . tr2c Cir2c2  (5.81)

This is a useful relation.

Now let us consider the remaining boundary conditions. From Eqs.

(5.69) and (5.70)

1- '() f 3 (0) cf3 (o) + 2) + 3 (r 1 + ct) 0";c(rl.-+ ci) (rl +1.)2

i.e.,

f()- 0

f 3 (0) ' 0 (5. 8 1a)

C 1-a0

Then Eq.(5.81) becomes
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(r2 "rl) = 5.2

f3 c .- Ccr2 (5-82)

From (5.72a), (5.69), and (5.47) one has

r(t) -cr() = -rc f 2 ( rr) (t r2c r)

r 2(t) 3 2 r2 Ccr 2  3i c

(5.83)

Similarly from (5.72c), (5.80c), (5..47) and (5.81a)

S- r2-rl) 1 ( 2 ) (54)

2 2

From (5.71) and (5.49a)

g(E) = 3 a (5.85)
a3 a

Then, as before,

= 4Gf(t) (L- ) + pf(t) -)-p (5.86)

This equation, distortional elasticity (5.414). Eq.(5.48) and the boundary

condition (5.73) result in the following equation (more simply from

(5.60b)):

4G +t) + pi L p " (5.87)
a r (a r 2 ,

Eqs.(5. 8 3), (5.84) and (5.87) are three equations for three unknowns

f11f2 and r 2 . However, the use of the equation (5.81) simplifies

the analysis.
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From Eqs.(5.82) and (5.84) one obtains

( r 2 (t)'rl) C c'cr2 2 :(•) (5.88)

Now from this equation and Eq. (5.83) one has the following expression

for f3

f3 = 6.g1 C() - er3 (5.89)
3= c 3 122

Eq. (5.88) is a differential equation in t which is the independent

variable. If both sides of this equation are differentiated with

respect to t , one obtains the following equation

2 ccr2 
t(

But, from Eq.(5.82)

f( r 2(t)jr_ c E A c2r2

Then, from Eq. (5.90) and this equation, one can write the following

expression for (t) :

C €c 2r 2 (5dr9 1
= r(+1 (5.91)cdf

If this expression for i(t) is substituted in Eq.(5.87) one obtains

f(•)(i •dr2 +i) (!a r2)
• + p( 2 cfr 2  ( - p - KEI

i.e.,

f(a) Pe c 2 , 2 )2 -1 (5.92)
TG- (p1- K)e I 2 c
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Then the following expressions for t and f can be obtained by

differentiating this equation with respect to Z

2a 3  "dr 2  2 1 d_2 21
[(2) a c ?-L1 -7 -- -rd Lt- (5.93a)PCIc 2a3 2 dr2 d2r2 dr 2  d2 d r2

f(t) 4G -- -Lc dd t2 + `+ ac -3
i - d~2 dE2  r2dtF dt

+ (5.93b)
cdt3  a

By equating the two different expressions, (5.91) and (5.93b), for

i(t) the following differential equation for r 2 (t) can be obtained

d3r2 1r 2 I+ d2r___2 (_, dr2 ) dr2 (4Gr2G 4Gr2)=0
dt dt2 aa pc ap

(5.94)

If this equation is solved for r 2 (t), f(t) can be obtained from the

Eq.(5.92). Then, g(t) and f3  can be obtained from Eqs.(5.85) and

(5.89). The displacements, stresses, and strains can then be determined

in elastic and locked regions.

(ix) Solution of the Differential Equation (5.94)

The differential equation (5.94) can be non-dimensionalized

by introducing the following variables

r 2

R2 a

t-t = t = G
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i.e.,

T = 0 , t - t or T = TI

Then the equation can be written in the following form if the value of

the Poisson's ratio is assumed to be equal to 0.25, i.e., 3K = 5G and

(see Eq.(5.66a))

c e = 3K + 4 3 3

d3 2 2 +
3R d2R2( d 2  ) 2 (5.95)

d 2 + d? dT 2 +0

The initial conditions for the differential equation can be obtained

from the conditions at the time of initial unlocking at the radius

r = rI , i.e., r = rI and t = t, or t = 0 , in the x-t diagram

(Fig.5. 13).

For example, one can consider the case when p/G.= 4 . Then,

from Fig. 5. lla

R2 (0) = 1..142

Now, the values of dR(O)/dT and d2R(O)/de can be obtained from

Eqs.(5.92) and (5.93a) in the non-dimensionalized form, i.e.,

3 dR

q2~d! d3FdT
Again, the values of dR2 /dT and d2 R2 /dt 2  in the case when p/Ge6 = 4

are
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S~2•
dR2 d2 R 2522=0, -,- =-0.2676, "25.9dT dT

Then, Eq.(5.86) can be integrated numerically. Milne,'s method is

used for numerical integration. The typical numerical solution has

been illustrated in the following table for the value of p/CGE• = 4

dR dR d3R_2
T t22 23"2dt did

0 1.142 -0.2676 -25.229 94.133

0.005 1.14o4 -0.3930 -24.92 29.98

0.01 1.1381 -0.5173 -24.93 -33.66

0.015 1.1352 -0.6428 -25.26 -l10.63

0.020 1.1317 -0.7705 -25.96 -178.76

0.025 1.1275 -0.9031 -27.07 -272.58

0.030 1.1227 -i.O421 -28.73 -393.36

0.035 1.1171 -1.1915 -31.08 -559.25

0.040 1.1108 -1.3546 -34.45 -801.84

o.045 1.1035 -1.5384 -39.31 -118o.o7

* unlocking along GH (Fig.5.14 )

The variations of r 2 , the stresses, strains and displacements in

the region are illustrated in the Figs.5.14 and 5.15. It can be seen

that unlocking takes place throughout the region GH (Fig. 5.14) at time

T = 0.044 , or T a 1.32 . The solution for the problem must be worked

separately for time T i 1.32 .
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