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I. TINTRODUCTION

I.1 The Concept of locking

S8olids exhibit wide and significant variations in physical properties.
Thus it is extremely difficult to characterize the mechanical behaviour
of solids by a‘single equation or a single set of equations which can be
used in practical analysis to determine stresses, strains, displacements
and other related quantities. Therefore an engineer is compelled to
devise 'ideal materials' such as the perfectly elastic solid, fhe per-
fectly plastic body etc. The idealization depends on the particular
problem to be solved and the accuracy desired in the final solution.

The locking material considered in this report is one of the 'ideal
materials'. The phenomenon of locking which characterizes this ideal
material can be visualized by considering the following model.

(0 T > T
R AAAAS .
(®)
T

Fig. 1l.1.

A spring AB of spring constant kg, has a flexible wire attached
firmly to its ends. The cross-sectional area A and the modulus of
elasticity E of the wire are such that the quantity EA/L is very
large compared with the spring constant kg of the spring. If a tensile
force T 1s applied to the ends of the spring, the spring elongates by
a certain amount AL. As T 1is increased AL also increases. For a
certain value of AL = AL the wire becomes taut as indicated in Fig.
1.1b." After the elongation has attained the value AL, any attempt to
elongate the spring involves the elongation of both the spring and the
wire together. Thus a considerably larger force is necessary to produce

-l



a given amount of elongation than is necessary to produce the same amount
of elongation when the displacement is less than AL. The variation of
T with AL 1is then as shown in Fig. 1.2

Fig. 1.2.
: B

[}
'
]
:
A s AL

The system is said to be locked when AL = AL. If the wire were infinitely
rigid, the T - AL curve would be the curve ABD instead of ABC. This
type of locking is called ideal locking.

A granular material consisting of grains of various sizes constitutes
another example of a locking material. A simple model can be constructed
if the material is made of grains of two sizes as indicated in Fig. 1.3.

Fig. 1.3.

The larger grains are assumed to be vary hard to deform compared with
the smaller grains. If the model is cumpressed by a uniform pressure
p the volume decreases. The volumetric strain is denoted by 3e. For
a certain value of 3e = 3el the model assumes the form as indicated
in Fig. 1.4.




It can be seen from the figure that the volume can be decreased only
- very slightly beyond this state. However, shear strain can be produced
by the application of a shear force. (Fig. 1.5)

Fig. 1.5.

The stress-strain diagram is then as indicated in Fig. 1.6.

Shear
Stress

Fig. 1.6.

[(, QUSSR

! e Shear
Strain
The material is said to be locked when e = e,

I.2 Application of the Idealization

In many cases, granular soll which behaves very similar to the
second example considered in section I.1 can be idealized as a locking
material. Another example of locking material would be rubber. It is
a common experience that it takes very little effort to stretch a rubber
band upto a certain amount. With increasing deformation it becomes
harder to stretch the rubber. The material resists greater load with
little deformation. This behaviour fits very well with the concept of
locking as described earlier. Stress problems in rubberlike materials
can be treated as problems in locking media.

These are two examples in which the material can be idealized as a
locking material. However this is not an exhaustive list.



I.3 Loading and Unloading, Conservative Property

The spring-wire model will again be considered in this section to
discuss the loading-unloading properties of locking materials. If a
tensile force T 1is gradually applied to the ends of the spring, the
spring elongates. The loading process can be represented by the line
ABC in the T - AL disgram (Fig. 1.7). If the tensile force T is
now gradually reduced to'zero, the unloading curve in the T - AL
diagram is CBA provided the spring and the wire are still elastic;

i.e., the unloading curve follows the loading curve in the reverse

T

Fig. 1.7. 7

Ay A Al AL

direction, i.e., the system i1s conservative. Systems which follow a curve
like A.'BCAl can easily be invented, but unloading along a curve like
CA2 would be in conflict with the basic laws of mechanics, since it
would involve the creation of mechanical energy. In this report only

conservative materials will be considered.

I.b Locking Condition, Locking Surface

In the case of a spring model one can easily state that locking
takes place when the elongation AL has attained a value AL or the
strain has reached a value ZEVL. Similarly, in the case of the granular
material locking takes place when the bulk strain 3e has become equal
to Sel- Therefore, in general, the condition of locking depends on the
state of strain in the body. 1In an isotropic material the locking con-
dition should be independent of the particular choice of the coordinate
system. It therefore depends on the three invariants Jl’ Jz, Js, of
the strain tensor which are defined in the following way in terms of
principal strains el, 52, GS:

-l a
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J =3(€1+€2+€3)

[N
n

A % [(el - e2)2 + (e2 - e3)2 + (63 - 51)2] ? (1.1)

[
1]
m
m
m

N

From Eq. (1.1), the locking condition

B(3,53,505) = O (1.2)
can also be expressed in terms of the principal strains

Ple e 0€5) = 0 (1.3)

This equation represents a surface in the principal strain space which
is called the locking surface. The locking surface can also be defined

in a general six-dimensional strain space.

The ™locking function™ @ is defined in such away that the strain state of
the body is elsstic if § <O. Then in ideal locking @ is always less then orequal to zero,
ie. =0 inthelocked regions of the body while §< O in regionsthat are still elastic.
However in anm-ideally locking body @ can be greater than zero.

I.5 Volumetric and Distortional Iocking

The locking condition can depend on the three invariants Jl,J2
and J 3
deformations) the shear stress does not produce any bulk strain and the

of the strain tensor. However, in isotropic bodies (under small

hydrostatic stress does not produce any shear strain. Thus two different
types of locking can be defined in an isotropic body.

(1) Volumetric. locking which depends on the invariant J, of the
strain dilatation.

(11) Distortional locking which depends on the invariants Jé,J:'s
of the strain deviator.



Again, due to isotropy, the stress and strain deviators are related by
Hooke's law in a volumetrically locked region, while hydrostatic stress

and bulk strain are related by Hooke's law in distortionally locked regions.
However, some regions could be locked both volumetrically and distortion-
ally. In the latter case there is no further change in strain if both

the volumetric and distortional locking are ideal. The possible types of
locking and the stress-strain relationship in locked regions will be
studied in the next chapter.

1.6 Uniqueness

Locking materials are conservative. Therefore, a unique solution
for an equilibrium stress problem or a dynamic response problem can be

expected under appropriate boundary and initial conditions. These will
be studied in the next chapter.



II. GENERAL THEORY

II.1 Strain Energy in Locking Materials

Strain energy per unit volume in a locking material is assumed to
be a unique function of strains. This statement can be easlly Justified
in the case of a non-ideally locking body in which stresses depend
uniquely on the strains as discussed in section I.3. The statement can
also be Justified in the case of an ideally locking body where the
stresses can increase or decrease by indefinite amounts while the strains

remain constant because no work is done during such changes.

Further, if the assumption of small deformations is made, the dila-
tation 3e 1in an isotropic locking body depends reversibly and uniquely
on the hydrostatic stress s. Also each component of the strain deviator
eid depends reversibly and uniquely on the corresponding component of
the stress deviator. The functional relationship is the same for all

pairs of stress and strain deviators, i.e.,

e(s)

[
"
(1] g
—
m
[
(=
+
m
n
n
m
w
w»
~r

s(e)

* oy, * 033)

)
H
ol

(o)
> (2.1)

€', = (eiJ - Bije)
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where 81J is the Kronecker delta.

Certain simplification in the expression for strain energy can be
achieved by using the preceding set of equations.

The increment of strain energy per unit volume can be written as



du = 0,, de

13 %13
i,

=§z (55iJ + o:'LJ)(desiJ + deij) 1, = 1,2,3
i,

Because

} T E - )
oii =0 , de11 =0
> (2.2)
- 1 1
du = 3sde + E oijdeid
1,J /

From Egs. (2.1) and (2.2), one can see that the strain energy can

be split into two parts Uq and u'. The part u, depends on the

0]
dilatation e while the part u' depends on the strain deviator.
Furthermore, the strain energy is independent of the choice of the
coordinate system in an isotropic body. Therefore, u' must be a

function of the invariants of the strain deviator, J'! and J!.

2 3
Thus one can see that
duo
duo =9 de = 3sde (2.3a)
du' du'
v _ ' L. ' ' = .
s3d

II.2 Relationship between the Components of Stress and Strain Tensors
in Terms of Strain Energy Function

Principal stresses (al, Ty 05) and principal strains (el, €y 63)
will be used in the further analysis. Then the strain dilatation is

1
e=3 (el +e, + es)



and the strain deviator is

et - o] e . - oM
El El e
! = - ! - = - - -
Gia €2 €2 e
- - €' - - € - e
L 3 3
—J Y e

The three components of the strain deviator are not independent of each

other. One of them can be expressed in terms of the other two:

[P Y | '
€ = (e1 + ea)

Similar relationships for principal stresses yleld the following result:

v ' 1 .
oy = (ol + 02) (2.4)
Therefore
t _ ~lA3e! 13cg1 taet
du' = aldel + 02d€2 + usde3
= t L t t ] ] .
(20l + °2)d€1 + (al + 202)d52 (2.5)
Further,
lgl Y- 12 2 = Tife! [
J2 5 (el e e ) = Ja(el, e2)
' - elele! = J(e! 1
Iy = €1epey = Igle), €5)
Hence
dJ} aJé
(. 1 '
dJ2 a{ d€1+s-€-£ d€2
&y oy
] 1 ]
USIE?I d€1+3?5 ﬂ€2
Then
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Comparing Egs. (2
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-
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aul
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+

) de
u' 3J '
) de2

33T
.5) and (2.6) one can see that

1
1l

Q/
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+

(2.6)

X

3

! oJ!
du' 2 o' ‘3

20! + 0! = +
l 2 53; Sei SJé Eei
! oJ!
du' 2 du' U3

o! + 20! = +
1772 T3] 3¢ T 333547

The expressions for J

! and Jé in terms of the components of strain

2
deviator are
2 2
1 _ gt 1 tet
J2 = el + e2 + ele2
(2.6a)
2 2
1 = €'€e! _ ele!
Iz 1% " %%
Therefore
du. u’ )
2oi+aé=(2€i+eé) (-l*—-eél)
1 L
aaa BJ:5
) (2.7)
Ju' du'
' v 1 ' - et
o) + 20} = (el + 2€2) (33T € 337)
2 3 /
One can solve for ai, oé and hence aé from Eqs. (2.7) and (2.4).
Thus
du' .1 2 2, o'
1 - ! = e _ te! o oet .
0] =€ T+ 3 (el 2ese) - 2¢) ) (2.8a)

2

3
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du' 1 2 2, du'

1. et = (.0e!c _ 1et '

Byt (e -2t ) H (2.80)
du' 1 2 2, o'

1 - e! ' 11 '

BTy ts (G0 theln ) ST (2.8¢)

Also, from Eq. (2.3a)
du
1 Mo
8 =% 3= (2.9)

Then the components of the stress tensor can be calculated from the
following relationships:

gy =0 +s
o, = oé + B > (2.10)
g = ué + 8 )

Equations (2.8)-(2.10) show how the stress-strain law depends on the
relationships expressing the strain energy in terms of strains, i.e.,

the strain energy function. The stress-strain law can then be established
if the strain energy functions u(e) and the u'(Jé, Jé) are known.
Therefore, the investigation in the next few sections will be to deter-
mine the strain energy functions in locking materials.

II.3 Strain Energy Function in Volumetric and Distortional Locking

As discussed in Chapter I, a material locks when a certain function
of principal strains called locking function ¢(€l,€2,€3) reaches a cer-
tain given value. One can define the function P such that for $ <O
the material is elastic, and that @ = O represents the state of in-
cipient locking. Then in an ideally locking material # > O is impos-
sible. However @ could be greater than 2ero in a non-ideally locking
body.



In general the strain energy per unit volume U,

energy of distortion per unit volume u' 1in a locked region can be

and the strain

written as
=2 ket
Uy =5 Ke +u,,
(2.11)
u' = 26J! + u'

2 !

In these equations (9/2)Ké and 26J, would be the strain energy of
dilation and distortion if the material were deforming as an elastic
material. They are called elastic parts of the strain energy. uOI(e)
and u;(Jé, Jé) are the excess of strain energy over the elastic values.
These are called locked parts of the strain energy. In further analysis,

u; will be assumed to be a function of Jé only.

As mentioned in Section I.5, stress and strain deviators are related
by Hooke's law in a volumetrically locked region, while hydrostatic
stress and dilation are related by Hooke's law in a distortionally
locked region. Then Uy, is zero in a distortionally locked region
while u; is zero in a volumetrically locked region.

Similarly, the stress tensor in a locked region can be split into
elastic and locked parts:

8 = 3Ke + 8,

(2.12)
1] - 1] |
oiJ = 2GeiJ + 0131
3Ke and QGeiJ are the elastic parts of the stress tensor which would

be the stresses if the material were deforming elastically. 8, and

aijl are the excess of stresses over the elastic values in the locked
regions. These are called the locked stress components. 8, is zero
in a distortionally locked region while ¢! is zero in a volumetrically

ij¢2
locked region.

Now, let us consider a body in a locked state. The case of non-ideal
volumetric locking will be studied. Ideal volumetric locking is a limit-
ing case of non-ideal locking.

-12 -



In the volumetrically locked state > 0. Stresses and strain
energy are given by Eqs. (2.11) and (2.12) with °th= u, =0. If the
strain state of the body in the locked region changes such that
becomes equal to zero, the locked region again becomes elastic wherever
P has become equal to zero. Then the expressions for the stresses and
strain energy should reduce to the elastic values as ¢ tends to zero,

i.e.,

¢lirb+ uOI(e) =0
(2.13)

lim s,(e) =0
p—~o *

0% 1s used to indicate that the limits are taken from the locked state.

Yot Yoy
must tend to zero as the locking function @ tends to zero. Then e
must be a functior of @. Also, as explained in section I.5 the volu-

metric locking function ¢ depends only on the invariant J1 = e. Thus

i1s a continuous function of one variable, e. Further,

e = e(g)

2 = ge)

In these equations it has been implicitly assumed that e and ¢ are
interchangeable, i.e.,

‘_12,4 0 (2.14)

de

If e is replaced by § in Eq. (2.13) one obtains
lim  u.,(p) =0
¢_’o+ 0] ]

If it is assumed that u
§ > 0, one can write

Uy, = 1¢ + °§¢2 +oeee

g=ple)>0

o1 allows a power series representation for

(2.15)
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where

al’ o., ... are constants.

2

The result can be summarized i

locking tekes place when # = f(e) > O.

region distortion continues to foll

must be computed from the formulae
= 2 ke
up =5 Ke” * g,
u' = 2GJé

2
ug, = al¢ + a2¢ + e

)

¢=¢(e)20) de

£0
Similarly, by assuming that u

that the distortional locking funct

one can derive the following equati

locked region:

= 2 ke
uo =5 Ke
- | 1
u' = 2GJ2 + u,
ul = B.f+ B F° + ...
L = P

¢1im u} =0
-— o+

1
goor C1at=

Volumetric
In a volumetrically locked
ow Hooke's law while the dilation
that apply in the locked regions:

n the following way-.

3

(2.16)

. is a function of Jé only, and
ion @ 1is a function of J} only,

ons applicable in a distortionally

(2.17)

b -



In concluding one can summarize the achievements in this section
as follows. It has been possible to express the strain energy as a
function of e, Jé and the locking function ¢, in volumetric as well
as distortional locking., (See Eqs. 2.16, 2.17) Thus if the locking
function for the material is determined by experimental or other methods,
the strain energy function can be determined. Once the strain energy
function is known the stress-strain relationship in the locked region
can be established from the formulae derived in section II.2.

In further analysis it will be assumed that the locking fur ion
is known and the stress-strain relationship in distortional and volumetric
locking will be discussed.

II.h. Stress-Strain Relationship in Distortional lLocking

From the discussion in section II.3, one can write the expression
for the strain energy function in a distortionally locking material in
the following way. For ¢(Jé) <0

3\
uo = g Kéa
u' = QGJé
For ¢(J'2) >0 > (2.18)
2
uo = % Ke
7

" 1 2
u' = 2GJ2 + Bl¢ + 52¢ + ..

Then from Eqs. (2.8)-(2.10) the stress-strain relationship can be
obtained. For P < O the strain energy function and Egs. (2.8)-(2.10)
give us the well-known Hooke's law. However for @ > 0 the following
stress-strain relationship can be obtained using Egs. (2.8)-(2.10) and
(2.18).

- 15 -



- ' 1 ﬂ_ ' .
o) = 26¢; + B %?Z €] + 28,8 ary &t
'= 1 d’ ]

o 2652+elag-£eé+262¢%§£e2+...

oy = 20y vy ey v 2mp ey +

N

Comparing these equations with Egs. (2.12)

However, from Eqs. (2.17)

lim

=0
p—~o'

I 1
(010 pr 054)
Therefore
By = O

because (see Eqs. 2.17)
# 4o
aJ3

! can not all be zero. Then

and ei, eé, ‘3

o, =2 9% Qﬂr e + o(g?)

(2.19a)



€ + o(g%) (2.19b)

E:ﬂ-

o5y = 280

Uét = 2ﬁ2¢ eé + O(¢2) (2.19¢)

B

The stress-strain relationship in a distortionally locked region can
then be expressed by the following relationships

T : g ., 2
o, cl+s-5Ke+2Gel+262¢a%el+O(¢)
e _ . ag 2
o, 02+s-5Ke+2662+232¢a§-£e2+0(¢) (2.194)

Q
i
Olq-
+
0
"

d 2
3Ke + 20} + 28, Egg ey + o(g%)

The constants B, =0, By .. depend on the particular material.
1 2

Thus it has been possible to express the stress-strain relationship
in a distortionally locked region in the form of Eq. (2.19d4) which con-
tain infinite series on the right-hand sides. However these equations
can be simplified by introducing the concept of stress increments. This
will be discussed in the next section.

II.5. Concept of Stress Increment

let us consider a point of the body where ¢(Jé) has Just attained
the value Zero. Then the point is in a state of incipient locking. The
stresses and strains at the point in the state of incipient locking are
denoted with a suffix I , e.g., Ul
at the point increases by an arbitrary small positive quantity ¢f, the

7> ete.  Suppose the value of )]

stress and strain at the point increase from the value at the state of
incipient locking. These stresses and strains are denoted with a suffix f.
By using the Eq. (2.194), one can then write the following equations

= SKbI + 2Ge!

%1 1I

ag 2
= 1 1
0lp = 3Ke, + 26€], + 252¢f a7] €t o(¢f)
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i.e.,

8,0 -

- - 1 - 1
1 olI—.'SK(ef eI)+2G(elr €'.)

1I

+ 252¢f %JQ; €, + o(¢§) (2.20)

The increments O1p = 9177 elf elI’ e, - e; are now denoted by the
symbols A0y, A€,, Ae. Further ¢f = ¢f - ¢I is denoted by the symbol
&f. Then Eq. (2.20) can be written as

Aoy = 3Khe + 20Ae! + 2B NP % €+ ol ()]

Similarly

Do, = 3lhe + 26Ae) + 2B,AP %1- € + ol (2¢)?)

n

Aoy = 3Ke + 26AEL + 280 %% €+ 0[(A¢)2]

The quantities Aal, A02 and AUS are the stresses at the point
in excess of the stresses at the point at the state of incipient locking.
They can be split into two parts in the following way:

Acl = Acle + Aol !

Aa2 Aoae + A02 1

Ao3 = Aose + Aﬂsz

where

R

1
1le 3Kbe + 2GA£1

B

t
be 3KAe + 2GA€

&

SKhe + 20663



are the stress increments calculated from Hooke's law and

' 2
a0y = 28,08 §or <} + ole9)

A02 !

28,1 % e + o(op)

Ao,y = 28,00 % e + o(ag)?

are the excess of the locked stresses over the elastic values. If the
limiting velues are considered as A tends to zero in these equations,

one obtains the following result.

do,, = 28,48 (%) et \
do,, = 252d¢ (%Jgg) eé ? (2.21)
dcst = 2[52d¢ (%%5) e:'5 J

Similarly
do, = 3Kde + 2Gde; )
do,, = 3Kde + 2Gde] ? (2.22)
doSe = 3Kde + eGde:',) )

The quantities doll’ doal, dost are called locked stress increments.

dol s do are called elastic stress increments. The total stress

e 2 3e
increments are then given by the following equations:

do
e}

dcl = dale + dcll

do, = d°2e + do,, (2.23)

dcs = clc::Se + dou
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Thus,using the concept of stress increments,it has been possible
to obtain the simple relationships (2.21)-(2.23) between the stress in-
crements, strain and strain increments. These increments have been
calculated at the locking surface, i.e., the surface @ = 0 in the
principal strain space. These relationships are sufficient to discuss
some interesting geometrical properites pertaining to the locking sur-
face and to the problems of ideal distortional locking. These will be
investigated I1n the next few sections.

II.6. Direction of the Locked Stress Increment Relative to the Locking
Surface

As discussed in section II.4, distortional locking takes place

when
¢(Jé) =0

Now, Jé is a function of ei: Gé

We may therefore write

and these in turn depend on el,ea,es.

B(33) = PLI(e e 0e,)]

and may form partial derivitives like

oJ)
o 2

The definition of J! as given in section I1I.2, may be rewritten in

2
the form
' | - 2 - - 3
Ja(el,ea,es, 15 [(2e1 - €, es) + (2e2 € es)

2
+ (2e3 -€ - ea) ]

from which
aJ!
2 1l '
® "3 (2¢) - €, - €5) = €]
and hence



Similarly
o '
= €
62 dJ2 2
3 '
= €
63 dJ2 3

Then these equations and Egs. (2.21) yield for the stress increments

d
doy, = 2B,aF 52
1
d
doy, = 28,47 Sg;
do,, = 28,47 d
31 2 €
3
or
d'&l = 28,47 grad # (2.24)

The vector grad £ 1is normal to the surface { = O. Therefore it can
be concluded that d;l is normal to the distortional locking surface.
This is an interesting result which is useful in establishing the
uniqueness of a solution in equilibrium stress problems or dynamic res-

pounse problems in an ideal locking medium.

II.7. Magnitude of Stress Increment and the Locking Surface

The locking function ﬂf corresponding to the state of strain
3} = (elf, eaf, eSf) can be expressed in terms of the locking function
-
corresponding to the state of strain € = (elI’ €sp0 GSI) by the

following power series expansion
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Po=fp+ (ael) (e1p - €3p) + (aea) (e3¢ - €op)

€=€I €=eI
+ (2 (€ny - €20) +  (2.25)
€ 3f 31 v ‘
€-€I

If the state I corresponds to the state ¢I =0 (i.e., incipient

locking), and (elf - are replaced by

° €1’ S2r ~ a1’ 3¢~ 31)
N = (Aﬁl, &, Aes) , Eq. (2.25) can be written as

B = B, - B, = (grad B2 _ 2 - & + o(}aZ]?)

‘1
If one considers the limit as A-E tends to zero, one obtains

ap = (grad 9), - de
€=¢;

From Eqs. (2.24) the locked stress increment is then

ds, = 28,[(grad p); .3 d€lgrad § (2.26)

This equation can also be written as

d-ét = Eﬁalgrad ¢|.§ - EI (m- &)n (2.26a)
where n is the unit vector in the principal strain space normal to the
locking surface at €= -e'I. Then n -d€ is the component of increment
of strain normal to the locking surface. Therefore it can be concluded
that the magnitude of d-c;l is proportional to the increment of strain
normal to the locking surface.

The formula (2.26) will now be used in the next section to discuss
ideal distortional locking.
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I1.8. Case of Ideal Distortional Locking

From Eq. (2.26) B, can be expressed as

a3,

By =
2(grad ¢ - d¢)|graa ¢ |

i.e., 52 is proportional to the ratio of the magnitude of the increment

of the locked part of the stress to the increment of the strain normal to

the locking surface. Further, the preceding equation is applicable to

both ideal and non-ideal distortional locking materials when $ = O.

In case of the ideal locking material stresses dal can increase
while the end point of the strain vector remains on the locking surface,

i.e.,
grad f.de = 0
while |d31| is not zero. Then 62 tends to infinity. However the

quantity dn = 2B,.[grad ¢ -dZ] can tend to & finite limit. The locked
2

stress increment can then be written as

dgt = dh grad @ (2.27)
i.e.,
P N
do,, = & 5'2_1
_ =0
d0,, = & 3% ) (2.27a)
= O
1930 = P 3¢ )
Suppose ¢(Jé) is assumed to be
Bar) = JL - € (2.28)
2 2 !

The increment of the locked part of the stress can be calculated
from Eq. (2.27a):
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= ]
dclt el
= 1)
do,, aXea
= &re!
dog, = die;

Then the complete incremental stress-strain relationship corresponding
to the locking function given by Eq. (2.28) is

- 1 t

do, = 3Kde + 2Gdel + aXel

do, = 3Kde + 2Gdeé + axeé (2.29)
- 1 et

do5 = 3Kde + 2G<1e:5 + dkes

vhere d\ 18 determined(as explained in section II.1ll) in the particular
problem being solved.

Another simple locking condition is

B = B(33) = plel,el) = lef - "jl -C=0
(2.30)
1,3 = 1,2,3

From physical considerations it is obvious that the quantity Ie i - ejl
to be used in Eq. (2.30) corresponds to one of maximum difference be-
tween two principal strain deviators. This can also be interpreted as

the condition of maximum shearing strain for locking. The locked stress
increments in this case are

_ a9
dcll = d)sge—l Iei - €3|
21

a 1] )
doy, = & 5= e -eJl

dog, = dez— le! - et}

The stress-strain incremental relationship similar to Eq. (2.29) can
then be obtained.
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II.9. (Case of Volumetric Locking

In this section the stress-strain relationship in volumetrically
locking bodies will be studied.

From the results of the section II.3 volumetric locking takes
place when

p=p)=0
and in the volumetrically locked region

t _ t
u! = 2GJ2

=2 re2
Uy =5 Ke” +u,,

where

2
Uy, = al¢ + a2¢ + e

Then from the formulae (2.8) and (2.9)

- T
01 = 2Gel
| - 1]
02 = 2Ge2
| - 1
03 = 2653
i 1y 8 ,2,48
s=3Ke+3o F+3OPG0 -
But
1lim 8 = 3Ke
g ot
Therefore,
al =0
because
4o
Then
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g = 3Ke + % aé¢ %g A

The stress-strain relationship in a volumetrically locked region is
then

2 ol
2ce! +3Ke+-ga2¢a§+

1 1
- 2ge! 2qg38

o, = 2Ge) + 3Ke + 5a2¢ =t (2.31)
- 26e! 244

05 = 2Ge; + 3Ke + 3a2¢ =t

By following a procedure similar to that of section II.5, stress incre-

ments can be defined. Thus

do. = do + do

1l le 1z
do, = do,_ + do,, (2.32)
dcr3 = dUSe + dcst
where
dcle = 2Gdei + 3Kde
do,, = 2Gdeé + 3Kde (2.33)
d°3e = 2Gdeé + 3Kde
and
do,, = do,, = do, = %’“éd¢ %g (2.33a)

As in the case of distortional locking, a volumetric locaing sur-
face in principal strain space can be defined in the following way.

B = Ble) = Bleys €y &) = O



By following a procedure similar to that of section II.6, the normality of
the locked stress increment to the volumetric locking surface can be
established. Also the magnitude of the locked stress increment is
proportional to the component of strain normal to the volumetric locking
surface. This result is similar to that obtained in section II.7. The
equation of locked stress increment is

d'c?t = 2a,[(grad $)-de) grad @ (2.34)
where
d d >

I1.10. Particular Cases of Volumetric Locking

A simple volumetric locking condition is

P = ..(el +ey+ es) - €, (2.35)

where € P is a positive constant. Here locking 1s assumed to be in

compression only. Then from Eq. (2.33a)
d-ét = 6a,(de, de, de)
Therefore,

= ]
dol 2Gdel + (3K + 6a2)de

- L

do, = 2Gde} + (3K + 6C!2)de
- L]

do, = 2Gdey + (3K + 6a2)de

The hydrostatic part of the stress tensor 1s then
ds = (3K + 6, )de

For a material with the stress-strain diagram of the type of Fig. 2.1,
this equation can be integrated. Thus

B = (3K+6a2)e + 8,

where
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3K + 60% = tan v'

-8

Fig. 2.1. y!

-61/3 = e[

Also when e = e, the material is in inciplent locking state. Then

s =-&hl
hence
8g = -6aéet
Then
5 = (3K + 6a2)e - 6abe[
or
8 = AMe - el) + Ke, (2.36)
where
AN=3K+ 60%

Equations (2.35) and (2.36) together with distortional elasticity
complete the stress-strain relationship. In case of ideal locking

®, >
and
(grad g)-d€ = 0
=0
Then
A9y, = 40, = 49y, = &

The quantity d\ is to be determined in the particular problem being
solved.
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II.11. Problem of Eggilibrium—Unigueness

So far the investigations in the chapter have been directed
towards studying stress-strain relationships in locking materials. 1In
this section the formulation of an equilibrium stress problem and the
question of uniqueness under prescribed boundary conditions will be
investigated. Further discussion in the thesis will be restricted to
ideal locking materials only.

Iet us consider a body of locking material enclosed by a surface
S. ILet the surface traction 'lgI be prescribed overa part Sp of the surface 8
and the displacements ;i
S - SP = Sv' Depending on the strain pattern the body will have locked

regions Vl and elastic regions Ve. In particular cases either V

be prescribed over the remaining part

!
or Vé could be zero. The stress distribution 31, the strain pattern

EI’ and the displacements KI

boundary values should satisfy the equilibrium conditions, appropriate

in the body corresponding to the given

stress-strain relationship in the locked and elastic regions and kine-
matics. These equations when referred to a set of cartesian coordinates

are:

(1) Equilibrium Conditions

aox T asz
Tt tK=0
oT dao or
R R
ot oT do

Xz 2
St IR g t2=0

(11) Stress-Strain Relationship

(a) If § < 0, the elastic stress-strain relationship should
be satisfied. They are (%e is Lamé's constant)

o= 3\ e + 20¢
x e b'e

0 =3\ e + 20¢
Y e Yy
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o = 3\ e + 20¢

z e z
= 2G€

Txy ¥

= 2Ge
Tyz ¥z

T = ZGez

22X X

(b) If P=0, andthe material is an ideal distortionally
locking material, the stress-strain relationships are

do_ = 3\ de + 2Gde +dX§L
X [] X Ex
do_ = 3\ de + 2Cde +dfg&
y e y €

y
do_ = 3\ de + 2Gde +di§2-
Z e 2 €z
dr, =

2cde_ + dn
xy
ar

ar

]
n
&
m

N

+

=

zX

%
é
5
=%
SR Sl Sl

and

¢=0

(¢c) If @ =0, and the material is an ideal volumetrically
locking material, the stress-strain relationships are:

do_ = 3\ de + 2Gde +d7\gL
x e x €,

dg_ = 3\ de + 2Gde +a7\§9-
Yy e Y ey



doz = sxede + 2(}(1ez + dA gg-z-

a = 26de
Ty
d = 2Gde
Tyz ¥z
dex = 2Gd€zx
p=o
(111) Kinematics
¢ = du
x _ ox
v
€ =
y S
_dw
€2 = 1z

From the sets (1), (11), and (111) of these equations, one can see that
the equations and unknowns are well balanced in elastic and locked
regions. In an ideally locked region six stress-strain relations, the
locking condition, six kinematic relations, and three equilibrium
equations are available to determine six stress components, six strain
components, three components of displacements and the proportionality

parameter A or. A.

The preceding formulation of equilibrium stress problem is in
cartesian coordinates. Similarly,the problem can be formulated in other
céordinate systems. Now the question of uniqueness of the solution of a
problem of equilibrium will be considered.
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Statement of Uniqueness Theorem: ILet a body made of locking
material enclosed by a surface 8 be subjected to the surface traction

31 prescribed over a part SP of the surface S. Let the displacements
;I be prescribed over the remaining part of the surface S - SP = sv
Further, let the stress distribution, the strain pattern, and the dis-

-

placements in the body corresponding to these boundary values be gy

s s and EI’ Now, suppose the boundary values are given increments

d% and d‘;I, then a unique stress distribution 31 +dg and a unique
-

strain pattern € + d¢ are assured in the body .

-

Proof: Uniqueness of 31 + d'c;, € + d¢ 1s assured if the unique~

—p - —p -
ness of do, d¢ 1s proved. Suppose the increments do, d€ are not
unique, at least two sets of solutions

(1) dEv’a, d'e’a, du

- -y -
(11) do, , de, , du

are possible. Both solutions satisfy the same set of boundary values.
Then the stress distribution

d—o d—o_*
08- O.b-d

the strain pattern
- - * (2.37)
de - deb = €

and the displacements

- -
- = yu*
dua du.b u ;
are the solutions of a problem satisfying the following boundary values.
(1) Surface traction on the boundary Sp 1s zero
(11) Displacements on the boundary 8, are zero

Further, the body forces are assumed to be prescribed throughout the body.
Then they are zero for the problem defined by # quantities.
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The stresses o* are the solutions of a problem of equilibrium.
Therefore, they should satisfy the equilibrium conditions. These con-
ditions when referred to a set of cartesian coordinates can be written
in the following form:

9 d d .
i R R (2.38a)
d d d

SET;,VJ'B?";*L&T:}':O (2.38b)
gi'r;zl'%?;z*'?ﬁo*:o (2.38¢)

Multiplying Eq. (2.38a) by u*, (2.38b) by W*, Eq. (2.38c) by w*,
adding and integrating the resulting expression over the volume, one
obtains

Bo; or* BT;‘x
\[[[ u* (ax—+1yE+ z)

Volume

Txﬁ + ?g'ﬁ + 3?) dxdydz = O (2.39)

Using the divergence theorem this equation can be simplified to the
following form.

* 3%
ﬂ [u (ld;+m1"q+n1';z)
Surface

+ v* (1% + mo* + *
('l'Jv Illy m'yz)
+w*(t1~;x+m;z+no;)] as

- * * =
, w [ofer+ a¥ek +ojex +2rX ex +2r¥ ¥ + 213 e) laxdydz = 0

Volume
(2.40)
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vhere 1, m, and n are the direction cosines, and e; ‘:x are

the components of the strain tensor corresponding to the stresses o; e

Tix'
Because the boundary values for this problem are zero, Eq. (2.40)
simplifies to

% . €% dxdydz = O (2.41)
Volume

In general depending on the strain state, the volume of the body is
divided into elastic regions V, and locked regions V,. Then Eq. (2.41)

becomes

- -> -> -
\ﬁ]‘o*-e*dxdydzi-wa*-e*dx&/dz=o (2.42)
Ve vl

The positive definiteness of the integrands of this equation will now
be studied.

For practical convenience the integrand over the elastic regions
Ve is denoted by Ie and the integrand over the locked region V ! by
I,. Because the stresses and strains are related by Hooke's law in the

]
elastic regions

1,2 © (2.43)

In this equation the equal sign applies only if all ode are identi-
cally zero. Using Egs. (2.37), the integrand I ! can be written as

-

I, = (a‘&a - d'&b) . (a'e“ - a¢)) (2.45)

The type of locking could be ideal or non-ideal. Only the case of
ideal locking will be considered.



Ideal locking: In case of the ideal locking strain vectors
d?a and dz.b in the locked region must be along the locking surface

(Fig. 2.2) 2
ae -
a deb
€1
Fig. 2.2.

The stress increments in thelocked region d-c;a and d-t;b can be split

into elastic and locked stress increments. Thus

-p - -~
daa = dc’ae + d‘oat

Ql

- -
doy = doy, + doy,

Then the expression for I ! is

- e d —p - -> ad -5 g
I, = (doae- dobe)-(dea- deb) + (doal -aom)-(dea— deb)

Then, I , can be written as

=L +1
where
- g - -
I, = (d"ae - dobe)-(dea - deb)
(2.46)
- - - -
I, = (doal - dobl)'(dea - déb)

The stress (d-c;ae - d'c?be) corresponding to (d_e'a - dzb) can be found
from Hooke's law. From the results of section II.S, (d.-c;a .- d'c;b l) 18
normal to the locking surface while (Fig. 2.2) d'e’a - d¢. s tangential

b
to the locking surface. Then
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I, = (d-c;at - d?bl)'(d?a -d¢) =0 (2.47)

From this equation and Eq. (2.46), Eq. (2.42) can be rewritten

\[[/3*.?*dxdydz+~[[/.3:.z*dxdydz=0
Ve Vl

where

as

In Ve, T L e (which when expanded in cartesian coordinates is

* ¥* * * e * *
akex + o';ey + okeX + 2Txyexy + 27;2 e+ 2’*xz‘xz) is twice the strain
energy 2ue per unit volume of the materialt corresponding to the stress
distribution o*. Similarly 'J: .€* represents twice the strain energy

2u le in V ! because the contribution from the locked stresses are zero
- - - g
. . = - * = -
(see Eq. 2.47) and o* do,_ dobe is related to € de, de,

by Hooke's law. Then the preceding equation becomes

_/][ 2udxdydz = O
v

where u 1s the strain energy per unit volume of the body. Then the
integral can be zero only if u is identically zero in the body. Hence, .
only rigid body displacements u¥*, v*, w¥ are possible. This means that

0

f;& i&
1]

0

throughout the body. Then

TRet. 2., p. 171.



- -
a0, = do,
-y -
dela = deb

That is, the increments dﬁ', d?, are unique.

Though the stresses ‘ﬁl
should be noted that they are not arbitrary but are determined, through
the locking parameter d\, by the sets of equations (equilibrium, stress-

do not contribute towards any work, it

strain relationship, locking condition and kinematics) as discussed

earlier.

This concludes the proof of the uniqueness theorem as stated on

page 32.

II.12. Limitations on Displacement Boundary Conditions in Ideal Locking

It has been proved in the last section that if a solution of an
equilibrium boundary value problem exists, it is unique. In this section
a particular case will be illustrated where the solution does not exist.

Consider a body made of an ideally locking material. Iet only
displacements be prescribed on the surface of the body. Iet the distri-
bution of these displacements have a fixed pattern on the surface and
increase the magnitude of v gradually from zero. For a certain value
of V= ;I the body locks in some region. In general the complete body
will not be locked at once. As Vv is further increased the locked re-
glon increases until at a certain value of V= ;;c’ the complete body is
locked. This is called the 'completely locked state' of the body. In
certain cases the body can change at once from the elastic to the

completely locked state.
If the body obeys the following distortional locking condition
1y = 7' o =
p(3)) =3, -¢c=0
the body becomes completely locked when

' o
J2—C

throughout the body. Then, because the locking is ideal
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! =
AJ2 0

throughout the body, i.e.,

Now consider the strain energy u of the body.

u = uy(e) + u'(3})

After the body is complete locked u'(Jé) cannot be increased, because
the locking is ideal. Therefore additional work can be done only by
increasing uo(e), that 1s, the body is deforming without distortion.

But, the distribution of displacements on the surface has a fixed pattern.
Then the prescribed displacement should be such that the body i1s deformed
without distortion. However, this is a contradiction, because such dis-
placements will not produce distortional locking. Hence it can be con-
cluded that no further increase of v is possible after the body is
completely locked distortionally.

Similar results can be obtained for volumetric locking with the
locking condition defined by the following equation

pe) =0

I1.13. Dynamic Problem - Uniqueness

In the present section the formulation of a dynamic response
problem and the uniqueness under certain boundary and initial conditions
will be studied.

The formulation of the dynamic response problem is very similar
to the formulation of the equilibrium problem, excepting that the
equilibrium conditions are replaced by the equations of motion. The
second problem under investigation, the uniqueness, will be considered
in the following way.



Statement of Uniqueness Theorem ggxnamic BroblemZ: Consider a body

of a locking material enclosed by a surface 8. Let the surface traction
?(t) be prescribed over a part SP of the surface S and the displace-
ments V(t) over the remaining part S - Sp = 8, Also let the stress

distribution Oy, the strain pattern €., the displacements U

IJ
and velocity ﬁI in the body be known at time ¢t = tI- Then during the
interval t =ty and t =t +dt unique increments dd of Y, a¢

of 3i, and 43 of ﬁi are assured.

Proof: If the solution is not unique, at least two solutions are

I

possible.
-> e d —lp
(1) do,, de_, du,

(11) d?b, d’é’b, dL’.D

Both solutions correspond to the same set of boundary values. Therefore,
the stress distribution

3
—> - -
doa - d°b = g%

the strain pattern
-»_-o=-o* .
de, - d€, =€ > (2.48)

and the displacements

e d -y ->
- = u*
d.u.a d.u.b u J

are the solutions of a problem satisfying the following boundary values.

(1) = surface traction on 8p 1is zero

(11) aisplacements on S, are zero

Furthermore, body forces for the problem defined by Eq. (2.48) are zero
because the body forces are assumed to be prescribed in the body.
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'3*, 3*, U* are the solutions of a problem in dynamics. Therefore,
they should satisfy the equations of motion, appropriate stress-strain
relationships and kinematics. These equations are the same as those
discuseed in section II.12, excepting that the equations of motion
replace the equations of equilibrium.

The equations of motion for the stress distribution O* and the
displacements U* are

do* T oT* 2

X X Qu*
i s A

OT*  Jgx It 2

zy O v* )
+3—5¥-+ zZ —pbte (2.49)

Jr* dr* do* 2

Xz z QwH
s 2 v



Byusing the divergence theorem and observing that the boundary values are
zero, this equation simplifies to

f/] (I1 + Ia)dxdydz =0 (2.51)

Volume

vhere
nee R B3]
I, = o - & (I

I, can be written as

< (e (B
(3 66,

at t = tI all the increments u¥%, v*, w* and their time derivatives
are zero because we know the solution -(;I, EI’ -1; and ﬁI at t = tI.

I
Then

(5 6.,

I,20 (2.52)

Now consider 12' We write

. —-p a —p -
I,= (doa - dcb) . [6‘5 (dea - de.b)Aa
that is,
1=(d'5-d'6)-[(d?-d‘e’) -(a'e’-d'e’) ]
2 a b a b t=tprat a 1) t=tI
Further, at t = tI

- -
dia = deb =0
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Therefore,

I, = (do, - d5,)-(d€, - dzb)tlmt (2.53)
The expression on the right-hand side of this equation has been dis-
cussed in section II.12. It has been shown that the integrand corresponds
to twice the strain energy. By following a procedure similar to that of
section II.12 it can be shown that Eq. (2.51) implies that only rigid
body displacements, independent of time, are possible and hence the

uniqueness of stresses and strains.
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III. PROBLEMS OF EQUILIERTUM VOLUMETRIC LOCKING

III.1 Plane Stress Problems in Volumetric Iocking

Iet us consider a thin plate in a state of plane stress as shown
in Fig. 3.1. The conditions of equilibrium for the stresses are

X
L
L., .

Fig. 3.1.
\
aux . T
3%
\ (3.1)

or o

=0
3
et

These equations are identically satisfied if a stress function X 1is
defined such that

7/

2 2 2’(
X X )
%=E Y32 Ty (3-2)

If volumetric locking occurs, stress and strain in the locked region
are related in the following way.

2G(ex - ez) =0,
2G(€ - € ) =g
Yy 2 y > (3.3)
G’xy = T}w
€ +€ +€ =¢€
x Yy z 1 )
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These equations can be simplified into a more useful form:

o, = 20(2ex + < - et)

(3.4)
o, = EG(E:x + aey - el)
€
€ = %5 (2°x - ay) * 3£
. (3.5)
1 !
& =5 ('°x + 2°y) + =

Further, in order to assure single valued displacements in a simply
connected body, the strains must satisfy the compatibility conditions.
It 1s not possible to satisfy all the compatibility conditions if one
assumes that the stresses Oyr qy and Txy are functicns of x and

Y only. It becomes necessary to assume that the stresses depend on

z also. However, as in the case of elastic materials*, it can be shown
that the dependence on 2z becomes negligable as the thickness of the
plate becomes small. Then, the only compatibility condition to be

satisfied by the strains is

a"’ex 3% ?27

— - xyﬂ (3.6)

dy
Then, by using Eqs. (3.1) and (3.4) this equation can be written in
terms of stresses

&
N

ve(qx +a) =0 (3.7)

where

*
Ref. 3, p. 2h4l.



Then, this equation and Egq. (3.2) yield the following differential
equation for X

V2$X =0 (3.8)

Thus, if the stress function X 1s obtained by solving this equation with
appropriate boundary conditions, stresses, strains and hence displacements
can be calculated.

The plane stress problem in an elastic locking material can now be
stated in the following way. In genersl, a thin plate in a state of plane
stress may contain locked and elastic regions. The stress function and
hence the stresses can be obtained by solving Eq. (3.8). The solution in
the elastic region can be determined by methods of solving plane stress
problems in elastic bodies. Then the solution is complete if the stresses,
strains and displacements in elastic and locked regions satisfy the appro-
priate boundary and interface conditions.

III.2 Pure Bending of Beams in Plane Stress

(1) Elastic Solution

We shall now study the stresses in a beam of narrow rectangular
cross section made of ideal volumetric locking material subjected to pure
bending moments M as shown in the Fig. 3.2. When the value of M 1is
very small the corresponding strains are very small. The beam then deforms

as an elastic beam. The stresses in such a beam are
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Fig. 3.2.
8 h/2
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Y
where h 1s the depth of the beam and b 1s the width of the beam.

From the preceding expression for the stresses one can evaluate the
dilatation:

Because the beam is made of volumetrically locking material, locking
takes place when

This locking condition assumes that the material can lock in
compression as well as in tension. Then, the beam subjected to pure
bending moments M locks at y =} h/2 when

1 =13y (3.9)

(11) Problem after Incipient Locking

If M 1is increased beyond the limit given by Eq. (3.9),
locked regions will develop near the upper and lower edges of the
cross-section. There is an elastic core between these two locked regions.
The interfaces between the elastic core and the locked regions are at

y =% y, as shown in Fig. 3.3.



Fig. 3.3.

\
y

Because the locked regions are situated symmetrically with respect to
the x-axis, the stress distribution is as shown in the figure and the
neutral axis is the line y = O. The stress function 1is governed by
the differential equation

PPX = 0

in the elastic as well as in the locked regions. The boundary conditions

for the problem will now be discussed.

Because the stress and displacement. fields are antimetric with
respect to the neutral plane y = 0, it suffices to restrict the further
discussion to the region y > O only. Then, (Stresses, strains, and
displacements in the locked region will be denoted with a bar over the

letters, e.g., ;x) for x=0 and x =1

Txy = Txy =0 (a)
h/2
o dy =0 (v)
-h/2
h/2
2b f o, ¥y dy=M (c)
0
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g =1 =0 d
™ Ty (a)

=]
o
3
<
"
<
e

<
"
<)

B

g =0
v = % (g)
= h
Txy Txy (n)
-2V
ex+ey+e = =5 o, = €, (1)
(3.10)

(111) Solution in the Iocked Regionms

The stress function X in the locked region is assumed as

Ge
a_ 3 |
X=zy -=5VY (3.11)

The stresses in the locked region y > O are then given by the following
expressions.

ox=ay-G€t

9. =0 3.12
v ( )
T =0

xy

The corresponding strains can be calculated from Eq. (3.5). They are

an a \
€x =36
€
- a 4
€ = 'Eé+§_ > (3.13)
= _o
7xy )
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These three equations can be integrated to obtain the displacements.
Thus,

T = 8 T
uszggo-uy+ G

) . (3.1%)
T=-8L .8 +€_l.y+wx+c-

126 ~ &G = 2 2

(1v) Solution in the Elastic Region

In the elastic region the stress function is

a3
X=gy

vhere d 1s a constant. From this the stresses in the elastic region
can be calculated:

o, = dy

(3.15)
g =T1__=0
Y xy

The corresponding strains and displacements are given by the following
equations:

3
d
Ey =1Ed- } (3-16)
Yoy = © )

(3.17)
2 2
- o vdy |
V=g "% T9X*C
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(v) Matching the Boundary Conditions

The boundary conditions (3.10a,b,d,g,h) are automatically
satisfied by the stresses as given in subsections (i1i) and (iv). The
conditions (3.10e ,F) yield the following relationships:

d_a_
E 3G
(3.18)
-wlyt + Cl = - wyt + Cl
ay, 1 = vy 8
TR tE Y, tCptux=—gg +Cytux (3.19)
Equation (3.19) can be satisfied only if w = w,. Then
ay2 €y
- L 1 !
€ -C =5 (5"’) * 3
(3.20)
Cl = Cl
From this equation and Eq. (3.10i) we have
b !l_‘.'_e_vz Yy, = ay M = €
E 1 ! 3G !
(3.21)

- 3
Co-Cr=g ¢,

Now the only condition to be satisfied is (3.10c). This will be dis-

cussed in the next sub-section.

From Egs. (3.18)-(3.20) one can observe that three of the five
quantities 01,51,02,52,% can be arbitrarily chosen. These correspond
to two rigid body displacements and a rigid body rotation permissible in
a plane stress problem.
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(vi) Relationship between Bending Moment and Curvature

From Egs. (3.10), (3.12) and (3.15) the stresses in the locked
and elastic regions can be expressed in the following way.

\
%y
x 1-2 yl
(3.22)
3Ee , Ee, ?

T F VL - 2v) %'E‘(—"ﬂv

xal

/

By substituting these expressions in (3.10c) one obtains the bending

moment

bEe 3 2
] 2 3 1 h 3h
S En) [Vz*n 1-avy—,'-r] (3.25)

Strains in the elastic and locked regions can be obtained using Hooke's
law and Eq. (3.5). Then € in the elastic as well as the locked region
is given by the following equation

€
I
ST -y %‘ (3.24)

This equation shows that the plane sections before bending remain plane
after bending. Also, from this equation, the curvature of beam 1is
found to be

El 1

"TTI-a ¥,

Then the expression for the bending moment becomes

3
bE €

M= 2
BRI TP

L+ I?:' nx - f- € (3.25)

2«

The variation of M with «k is shown in Fig. 3.k.
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The value of M/x as Y, tends to zero can be evaluated from
Eqs.(3.24) and (3.25). It is

3

M bEh _

% = BT +v) - EL, (3.26)
where Ie is defined as the effective moment of inertia. For a value
Of v = 0125,

3

Ebh

EIe =T (3.27)

which is not an appreciable change from the elastic flexural rigidity
Ebhs/la. This can also be seen from Fig. 3.hb.

(vi) Application of the Results to_the Solution of Beam Problems

As an application of the derived results, the problem of a
beam subjected to a loading other than pure bending will be considered.
In particular, the deflections of a simply supported beam AB under the
action of a concentrated load P at mid span will be studied (Fig. 3.5)

P
i‘——L/Q L/E——’i
L x .
i I
I |
} |
! PL/*‘* im
e— xo —
Fig. 3.5.
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The bending moment diagrem is shown in the figure. According to Eq. (3.9)
the beam locks when

M__M_21+Ehzb€
T AR - TV

Then the beam begins to lock at x = 1/2 when

96El12be !
P = Pl = Wl- I (3‘28)
For P> P, there will be a locked region x, < x < (1/2) + Xy At x,
the bending moment is Jjust equal to Ml' Then
48Eh e p
X = (T-2v)F (3.29)

If one assumes that the moment-curvature relationship derived for pure
bending can be used in this case, i.e., the change of curvature due to

shearing forces 1s negligible, one has (see Eq. 3.23)

§X=EIK O<x<xO )
€5
P _ bE ! 1 3.3 3 2
5"“6(1+v.)[1-2v ?*ﬂh"‘ﬂezh] > (3.20)
L
x0<x<-2- )

For small deflections x can be expressed as the second derivative of
the deflection w:

k= - & (3.31)
ol

This equation and Eq. (3.30) can be used to determine w. However as
explained in sub-section (vi), even in the extreme case where the complete
cross-section of the beam 1s locked, the change of flexural rigidity from

—sh-



the elastic value EI 1is very small. Then one can get upper and lower
bounds for the deflection by considering the following two cases
(1) The complete beam is elastic

(11) The region 0 < x < x, 1s elastic while in the region
X < x< (1/2) the beam 1s locked over the entire cross-

section.

In case (i) the deflection is

P 3 3.2
w--ﬁ—f(x -KLX) (3.32)
In case (ii) we have from Eq. (3.26)
2
dw P
EI —5=-3x 0<x< Xo
dx
(3.33)
d2w P
EI)—5=-3%X 0<x< L/2
dx
whence
P 3
w-‘-IB_E_Ix +Clxl-02 O<x<xo
- P 3
W= - 5T, X"+ Cx + C) Xy < x < L/2
The following conditions can be used to determine Cl,CQ,CS,Ch
x =0 w=0
x =L aw (3.34)
2 - =0
cx
. wed v _ dw
X =X =vo dx ~ ax
Then
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]
=
(]

LY

Then
2
3 X 2
P Jx 0o (1 1 L
w_-f{ﬁ-_l+ [;r <T-I—l) -m;] x} O<x<xO
(3.35)
-3 2 x3
w2 ) x Lx_ .0 1 _ 1 x, <x<Z
- E 121[ lBIt 3 I ' 0
In the extreme case when Xy = 0
- P 3 3 .2
w---Ia—E?[—l(x --HLX) (3.36)

In the two extreme cases given by Egs. (3.36) and (3.32) the maximum

deflections are at x = (L/2). The values are

-

max ~ LBEI
b _ PLS
max ~ LBEI f

For v = 0.25, I/Iz 1s given by Eq. (3.23). It is equal to 0.8333.
Then

v

X . 0.8333

w
max

The maximum deflection is reduced if the beam 1s made of locking material.
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III.3 Rotating Disks

In this section stresses in a rotating disk (of constant thickness)
made of ideally locking material will be studied. The present study is
restricted to small deformation.

(1) Elastic Solution

When the angular velocity of the disk is very small the disk
deforms as an elastic body. The stresses in such a solid disk are*

_3+y 2,2 2 3
o =g P¥ (R” - r7)

34y 2 1+3v 22 >
oy = =g pwaR - =g eur (3.37)
oz=1'ro=-rrz=-rez=0

J

where p 1is the mass per unit volume of the material, 2R is the diameter
of the disk and r 1s the radial coordinate. From Egs. {3.37) the dil-
atation is found to be

r e z E (or * 09)

2
IR B (3 + IR - 201+ )] (3.38)

Its maximum occurs at r = O and is

_3+y 22 1 -2y
(‘r+‘e+€z)max‘_1?— R =5

It reaches the locking limit € 1 vhen

2 2 hEe

W =W, = 5
(3 + v)eR7(1 - 2v)

o (3.39)

%*
Ref- 3, p‘ 70‘
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(11) Problem after Initial locking

If w 1s increased beyond wo, the disk can no longer be
analysed as an elastic disk. There will be a locked region r < k and
an elastic region k < r < R. The problem then reduces to that of com-
puting the stresses, strains, and displacements in the elastic and locked
regions such that they satisfy the equation of motion, the appropriate
stress-strain relationship and kinematics as well as the boundary and
interface conditions.

Fig. 3.6.

(1i1) Expressions for Stresses, Strains and Displacements in the
Iocked Region

Under the assumption of plane stress and axisymmetry the
quantities to be determined are the stresses Er,'c?e, strains Er,Ee,Zz
and the radial displacement u.

Because the locking is ideal the following locking condition




holds throughout the locked region. In the locked region, the stress
and strain deviators are still related by Hooke's law, i.e.,

2G('e'e - E‘z) = Ee o
3.41
ac;(Er - 'e'z) = T:r

Other equations to be satisfied by the stresses, strains and displace-~

ments are the equation of motion and of kinematics, i.e.,

do o -0

_ (3.42)
. &
€T &
- _u
€= T (3.43)

Equations (3.40)-(3.43) are sufficient to determine the unknown quantities
Ur, Oe, Gr, 69, Gz and u.

By solving (3.40) and (3.41) for stresses one obtains

o, = 2G(2‘er +€g - el)
_ _ _ (3.44)
g = EG(er + 26y - el)

When this equation and Eq. (3.43) are substituted into the equation of

motion a differential equation for u results.

2
+M=O

o ,1d5 3§
~2 rar 2 2E
dr r

T=Cr+-2_QUTilty (3.45)
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Then, the stresses and strains are given by the following expressions:

T =C --2. §gw2r2§l + v) )
r 1 ;5 10K

> (3.46)

qu
1
(=]
+|=
<
—
[¢.]
Q
(=
1
m|°
n
1
—3
el\)
o
n
) (=
+
<
»
m
(Bl

(3.47)

[}
l
(=]
+ =
<
W
Q
H
+
l\)lo
n
]
\J
El\)
21
=
o] [ed
+
<
1
m
(il

Oy =

(iv) Stresses, Strains and Displacements in the Elastic Region

From the known solution* of the problem one can write

C 23 2
us==0Cr+ -E eur
3 r

% 3R V)
r 3 ;5 SE

m
]
Q

wri(l-~v > (3.48)

m
@

]

Q
]

+

'
o

o = E c. + E Ch_w2r21+3v )
8 " 1T-vy "3 T+y 2 -'ér '

r

(v) Boundary Conditions

The following boundary and interface conditions must be
satisfied by the stresses, strains and displacements

%*
Ref. 3, p. 70
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"
o
el
n
o

(a) \

r=k u=u (v)

r=k 0, =7, (e) > (3.49)
r=k €.+t € tE, =€, (a)

r =R or=0 (e) J

Then, from Eqs. (3.45)-(3.48) and the boundary conditions (3.49) one can
evaluate the constants Cl, 02’ CS and Ch to obtain

22 2 2 )
_pwk 2 RS 1+ V R
¢, = [:(1 -v2)+ (L+v) k2]+ STT=5v €l<l + ;2)
2 2 4
pw (1 + VK R ., 1-2v
-_i_gﬁ__ [(3+v);1;+ 5 ]
C, = 0  (3.50)
22 2
_pwTkS(1 - v9) l-v
Cy = BE YA - 4
2,2p2 2 2.k
_ pwKk 1+v) 1+V 2 pwR (3 +v)(1 +v)
C = E‘Swf Y 3aov) Re - TE /

The unknown radius k can be obtained from the following equation
(see Eq. 3.49c)

L 2 8Ee

k 4(1 + v) 2(3 +v) ] 1 1
+ - = - _— (3.51)

RE l-2v R§ 1-2v) pw2 (1 - 2v)2 Ra

(vi) Jump in og

The variations of o, and ¢y with r for k/r = 0.5 is
shown in Fig. 3.7b. 1In Fig. 3.78 -pw?R2/Ee , has been plotted against
k/r for several values of ¥. The purpose of the figure is to study
the effect of Poisson's ratio.
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One can see that there is a Jump in % at the elastic locking
interface. This can be explained in the following way. At the inter-
face we have satisfied the continuity of the displacement and the con-
tinuity of the radial stress, i.e., for r =k

u=1u o =70 (3.52a,b)

From Egs. (3.43), (3.h44)

- E N, u
°r=1—+7(23;+;-‘z) (3.53)

and from Hooke's law

0. = l_E_? (%% + :—u) (3.54)
-

Now, from (3.52b) o =Er at r = k. Then, from Eqs. (3.54), (3.55)
and (3.52a) one obtains at r = k

- o -
%-%:-2—;(1-\)+v2)-% (§-v)+€t (3.55)

This shows that there is Jump in du/dr at r = k. Equations similar
to (3.54) and (3.55) can be written for o0g. Then

- Ee€

- uE 1-2y . _E v du du )
% "% "k T2 T+v (1-v$~"3¥ +1+v> (3.5)
From this equation and (3.55) one can see that there is a jump in .

(vii) Problem After the Disk is Completely Locked

As the angular velocity w 1is increased the disk becomes
completely locked when (see Eq. 3.51)

8Ee
pw2R2 = —‘-—
l-2
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After the disk is completely locked, i.e. for

8Re
2 t
pufRe > ke

the stresses, strains and displacements in the disk are given by Egs.
(3.45)-(3.47). Now, the boundary conditions are

r=0 u=0
r =R 9 =0
r

Then, the constants Cl and C, can be evaluated. In this case they

2
are

(o]
L

1 7Ew2R2$l + v! + e
1 3 16E
0

The expressions for the stresses can then be written as

2
- _ Tow 2 2
o, = -%5- (R° - %)

—_w2 ( 2 2)
% =F (T’ -5

Similarly, the corresponding strains and displacements can be obtained.
The variation of o, and oy are shown in the Fig. 3.8.
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Fig. 3.8.
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IV. PROBLEMS OF EQUILIERIUM — DISTCRTIONAL LOCKING

IV.1 Stresses Around a Small Sphericel Cavity in a Body Subjected to
Uniform External Pressure

We shall consider a body of distortional locking material subjected
to uniform external pressure (see Fig. 4.1) with & spherical cavity of
radius a. The radius a 1is assumed to be very small compared with the
dimensions of the body. In the absence of the spherical cavity the
stress distribution in the body corresponds to one of uniform hydrostatic
stress throughout the body. The spherical cavity modifies this stress
distribution. However the effect of the cavity 1s not felt appreciably
farther away from the cavity, i.e., at distances from the center of the
cavity which are large multiples of a. The modification of the uniform
hydrostatic stress distribution in the body due to the spherical cavity
will now be investigated.

(1) Elastic Solution

Let us consider a large sphere of radius b concentric with
the sphere of radius a. The radius b 1is assumed to be very large
compared with a. The modification of the stress distribution due to
the presence of the cavity of radius a is very small at the external surface
of the large sphere of radius r = b. Then it can be assumed that at
r = b>> a the stress distribution corresponds to one of uniform hydro-

static stress.

As a final step in the solution, the derived formulae are modified
by letting the radius b go to . These simplified formulae are use-
ful in application to bodies whose dimensions are very large compared
with the radius of the spherical cavity a.

In the elastlc hollow sphere of inner radius a and outer radius
b, the stresses, strains and displacements should correspond to the
following boundary values

r (k.1)
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Fig. 4.1.
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The geometry and the boundary values are spherically symmetric. The
stresses 0. O’ the strains er, € and the displacement u should
then satisfy the equilibrium equation (oe, €y are the normal stress
and normal strain in any direction in the plane normal to the radius

vector T)
dor or - oe
.d-_r— + 2 ——r—- = O (1&.2)

The stress-strain relations

o, + 20 = 3K (er + 253) (a)
(4.3)
o, - Oy = 2G(er - ee) (v)
and the kinematic relations.
da u
€. =% € = 3 (4.4)

By substituting (4.3) and (4.4) in the equilibrium equation (4.2) one
obtains the following differential equation for wu:

[

d 2 du 2u
E-’-;a; -? =0 (’-I».5)
u=20.,r +1 (h-6)

The corresponding stresses and strains can then be calculated from
Egs. (4.4) and (4.5). Thus,

2c,
€. =C - ;3—
(4.7a)
c
- 2
€g=C) +=3
r



c

2

Or = 3KCl - bo r1
(4.70)

C2

Oe = SKCl + 2G —3

r

From the boundary conditions (4.1) and the stresses (4.7b), one obtains

c .. asbs
2 b.'S - 33
(4.8)
3
c, = - & P
1 3K .3 3
b -a
If one considers the limit as b <« =, one obtains
° Ul
=-fF -k (k-9)
Then, one can write the following formulae for u, er, €e, °r and ce

in the body which deforms like a completely elastic body:

ad 1 \
w=-fr-f5 % (a)
r
P, pa> 1
€& =-3 " 26 3 (v)

5 1
o - - B L (c) ? (4.10)

3

o = -p + -Bx- (a)
3

0=-p-2§_ (e)
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However, the body 1s made of distortionally locking material. Therefore,
locking takes place when the characteristic locking function

p=p(3)) =0
In this case the locking condition is assumed to be of the following form
2 2 2 2
(€, - €g) + (eg - e¢) + (e¢ -e )" -2 =0 (4.11)
Because €g = €¢, this equation simplifies to

€ -€=2¢, (4.12)

r=a
when
hGel
P =5 (4.13)

In the next sub-section the stresses in the body after incipient locking
will be investigated.

(11) Problem after Incipient Locking

If the pressure is increased from the value given by Eq. (4.13)
the locked region in the body increases. Because of spherical symmetry,
one can assume that the region a <r <k (Fig. 4.1) is locked while
the region r > k 1s still elastic. k 1s the radius defining the
elastic-locking interface when the external pressure p > hGei/s. Then,
the stresses, strains and displacements in the locked region should
satisfy Eqs. (4.14) through (4.17), where the barred letters denote
the quantities in the locked region.

(a) Equilibrium Equation

dqr or - oe
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(b) Dilatational Elasticity

o, + 20y = SK(er + 260)

(¢) Ideal lLocking Condition

- T -
€r ee y/

(d) Kinematics

- 1
€9 " T
-  du
& T T

(4.15)

(4.16)

(4.27)

The expressions for stresses, strains and displacements in the
elastic region are still given by Eqs. (4.6) and (4.7). Boundary con-

ditions for the problem are

- 3

r=a o = o] (a)

r =Xk -O.r = Or (b)
T-u (e) ) (4.18)
€. - € =€ (a)

r=5o o, = -p (e)

(1i1) Stresses and Strains in the locked Region

From Eqs. (4.16) and (%.17) one has

The solution of this equation is

u=csr+€‘rlogr

Then ’
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€ =Cg+ e‘(l + log r)

- (k.21)
ee=03+ez log r
From Eqs. (4.15) and (4.21) one can write
- 1 -
9 = 5 [SK(SCS + 3, logr + el) - or] (k.22)

By substituting this expression in the equilibrium equation (4.1%) one

obtains
a5 sEr -
._.+_r__;.. (3cs+3€‘103r+€‘)=0 (4.23)

which, when solved, yields the following expression for Er

\
_ :’:Cl+
or -rT- + SKCS + SKez log r

) (4.24)

whence

€

i'i+3xc + 3Ke, log r + 3K =%
3 3 g 8 2 y

% = -

o

(M I

By substituting Egs. (4.20), (4.24), (4.6), (k.7a-e), in the boundary
conditions (4.18b-e), one obtains

3 €
c - .R _hk 2 W
1 3K~ 3 3
b
k3€
C =-.—!.
2 3
> (4.25)
3 € €
. .D Mk "2 4 _
C3 = - 3% X 33 "3 €y log k

1 3 J
Ck =+§ (hG+5K)k Gt
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These constents have been expressed in terms of k and p. The rela-
tionship between k and p can be obtained from Eq. (4.18a). Thus

3 € 3 €
k™ "4 a k 4
(4¢ + 3K) :3' 3—-p-K€l+5K€t108E‘ 4 ;3 T = 0 (4.26)

Taking the limit as b -+ o, i.e., as a/b, (k/b) 20 , Egs. (4.25) and
(4.26) will become

2 N

G=-=x
k3€
C, = - 2
2 3
€
- - .2 4.27)
Cy=-%-¢, logk -3 > (
kse‘
C, = +(4G+3K) -5
3e
k™ 1 a

(hG+3K);-33+3K€‘log-l€-p+K£z )

Now, the expressions for the stresses are
- K> € r
T +(4G + 3K) 3 3T - D+ 3Ke, log -k,

(4.28)
3 € Ke

o= -3 k _t_ r,_1
ae—-e(l\tG+3K)r5:5 P + 3Ke, log ¢ + =3

Variations of '51_, 36 with the radius r (for various values of k) are
plotted on Fig. 4.2. 1In Fig. 4.3, variations k/a with p/Ke , &re
plotted for different values of G/K and b/a.
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The expressions (4.28) show that there is a gtress concentration at

r = a. The stress % at r =a 1is given by

3
o‘e = - E (P + 3K€llog E‘) (h'29)

When k —» a, the stress concentration factor reduces to the elastic
value of 3/2.

(iv) Apparent Bulk Modulus

One can measure the reduction in volume AV of a solid sphere
subjected to uniform external pressure p, by measuring the reduction in

the outer radius of the sphere, i.e.,

AV =-lnr'n2(u)-r=_D (k.30)

vhere 2b 1s the diameter of the sphere. This equation is consistent
with the assumption of small displacements.

If the sphere were made of elastic material, AV can be calculated
from Eq. (4.10a), with a = 0, i.e.,

- 5 p
AV = +41b R

Then one can obtain the bulk modulus as

K =7V

On the other hand, if the sphere has a small cavity of radius a, and
one measures the reduction in volume by measuring the reduction in the
outer radius only and calculates the bulk modulus from the preceding

equation one obtains

3

-4 (4.31a)

K= 3

+

o o,
=
5 ¢



This value of the bulk modulus K is defined as the apparent bulk
modulus. K 1s lower than the true value of the bulk modulus X. This
means that the presence of a hole softens the elastic sphere.

Let us now consider a sphere made of distortionally locking material
end having a spherical cavity of radius a. Then from Egs. (4.20) and
(4.30a) the value of the apparent bulk modulus KI is

=

The value of EA/K has been plotted in Fig. 4.4 for values of b/a =
2,3, and Vv = 0.25. One can see that locking slightly hardens the
material. For b/a = w, k/b = 0 for finite p and E‘ =K .

Kl= €

+ 2
P

(4.31b)

L I
U'olwu -

Now, let us consider a solid body of volume V as shown in Fig.
L.5 with several small cavities. Let the volume enclosed by each cavity
be v, the number of cavities n and the diameter of the cavity 2a. If
the cavitles are evenly distributed as shown in the figure, one can
imagine the volume V to be made of n fictitious spheres of diameter
2b = 2 6 S-V'/hn. Then the approximate value of the reduction in volume
av computed by measuring only the changes in the outer dimensions of
the body is

3 3
AV = pV [ = +
K Lepd oo - e

if the body is elastic and
€ 3
= = |1 Lk te)
AV‘—pV [—K"’E— (l+-3;l—a

if the body is locked. Then one can calculate the apparent bulk
modulus K. The variation of K with p for n =12, 4, 1. and
V¥/v = 324 are shown in Fig. 4.6.
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IV.2. Stresses Around a Small Spherical Inclusion in & Body Subjected
to Uniform External Pressure

In this section we shall consider a distortionally locking body
containing a small spherical rigid inclusion of radius a. The radius
of the spherical inclusion 1s assumed to be very small compared with
the other dimensions of the body. If the body is subjected to a uniform
external pressure, the stress distribution will be different from the
uniform hydrostatic stress. This stress distribution will now be studied.

(1) Elastic Solution

One can follow a procedure very similar to that of section
IV.1l. Then, we shall again consider a large sphere of radius b con-
centric with the sphere of radius a. The radius b 1is assumed to be
very large compared with a. Then the difference between the stress
distribution in the body and the uniform hydrostatic stress distribution
will be very small at the outer radius r = b.

Then, one can assume that the stress distribution at r = b >> a
is essentially a uniform hydrostatic stress. After deriving the formulae,
the expressions are simplified by considering the limit as b tends to

When the applied externasl pressure p 1is very small, the hollow
sphere of inner radius a and outer radius b deforms as an elastic
body. Then the general expressions for stresses, strains and displace-
ments are given by Eqs.(4.6) and (4.7). In this case the boundary
conditions can be expressed by the following equations
u
g = -p (4.32)

b+

By using these boundary conditions, one can evaluate the constants Cl
and C, in Egs. (4.6) and (4.7). They are
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(4.33)

(b.34)

The expressions for the stresses and strains are then given by the

following equations:

3
=2 _ok &8
€y X2 ;| 3
r
p.,p &
-l 3

o = -p+ 28
6= P P

) (4.35)

(k.36)

The locking condition for the material is again assumed to be of the
form of Eq. (4.12). Then, the body deforms as an elastic body if

every where

and the body begins to lock at r = a when

.82 -

(4.37)



12( = el (""’38)

(11) Problem After Incipient Locking

Ir

P2 Ke, (k.39)

the body contains a region which is distortionally locked. Because of
spherical symmetry one can assume that the region a < r <k 1s locked
while the region r > k 1is still elastic. The expressions for the
stresses, strains and displacements in the elastic region are given by
Eqgs. (%.6) and (4.7). However, the stresses, strains and displacements
in the locked region must satisfy the equilibrium equation (4.1k),
dilatational elasticity (4.15), kinematics (4.17) and the following ideal
locking condition.

-‘-e -€ = ?t (4.%0)

The boundary conditions for the problem are

r=a u=0 3
r=x%k u=u
o =0
r r
> (4.41)
ee-er=el
r=">» o.=-p
(b » =) -

(111) Stresses and Strains in the Locked Region

From Egs. (4.40) and (4.17), one has

u
;4‘5,'—‘0 (‘4.1&2)
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The solution of this equation yields the following result:

- 3

u = Csr - ezr log r

€. = Cy - e‘(l + log r) > (4.43)
€g = 03 - €, log r )

Then, the dilation elasticity Eq. (4.3a) yields the following relationship
o, and O_:
r

between

<O

LM Ty

Oy = [31((3»03 -3, logr - ez) - cr] (b.44)
This equation together with the equilibrium equation (4.2) then results

in a differential equation for 3;, i.e.,

dEr SEr K
Tt - = (SC3 - Sez log r - ez) =0 (4.45)

The solution of this equation is

_ 304 A
o.= :5— + :SKC:5 - 3K€[ log r
and ? (4.46)
c 3Ke
- 37, L
oe---a-;-5+3KCS-3Ke‘ log r - > )

Egs. (4.6), (4.7), (4.43), (4.46) and the boundary conditions (4.41)
yield the following values for the constants Cl, 02, C3 and ch'

3¢

- D Mk 24

¢y ® K33
C. = ks €
2" % %



Cs=ezloga

3 3¢ € €
k a k™ "2 ) 3 )/
Cu=5 (—51(63log-E-p+)+Gb1-3—--uGg-)=-k[3K+’+G]9_

The relationship k and p is expressed in the form of the following

equation:
3e€ €
lp,4ok™ "¢ £ _ a
TIKTE 3T YT T4 log (4.48)
The stresses are then
3
€ k
T =- a <p<
5 (3K+hG)$-+3Ke£logr a<r<k |
- ‘zks a
o, = (3K + 4G) + 3Ke, log = a<r<k
(<] 61‘3 2 r - -
$ (4.49)
Lg . 3 1 1
Or—“P“‘g- kez (-3-—3> k<r<b
b r
k5 2 1l
(Je='P"'2G~3-€z (—3'4'-9 k<r<bd
b r J

If one considers the limiting values as b » w, the constants Cl’ 02,

C:5 and Cu become

= - B
¢, K

3
K
Ca=3 ¢,

Cs=etloga
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3 €
-k k )
C, =3 (3K£zloga-p-hG3)

Then, the relationship between k and p can be expressed in the form
of the following equation

[ 1]
ulh?

B = a
k' €y 108 ¢

The expressions for the stresses are then

3
5 .. L (3K + 4G) + 3Ke, log 2 A
°r"_5 + P og; a<r<k
3r
- Elks a el
ae=;3—(3K+’+G)+3Kezlog;-3K2— a<r<k
> (4.50)
= o = Eg 53 € r>k
O, =P =3 3%
3
2G k
ae_-p+3—:5€‘ r>k
J

The variation of o. and % for various values of k/a are
shown in Fig. 4.7. b/a has been assumed to be w. 1In Fig. 4.8 varia-
tions of p/Ke , vith k/a are plotted for different values of G/K

and b/a. The preceding expressions for the stresses yield the following

values for the stresses at the surface of the rigid inclusion.

Grr_a=l—(-3- (-’5K€z 1og§ -p-th—‘ =--£3(3K+hG)

B a 3a
_ ks a e‘ el it: SKel
°9|r=a=';3 -3Ke, log £ - p - 4G 5% +K5-=6a (3K+46) - —=

If the body were completely elastic the stresses at the surface of the
inclusion would be
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ool )

0. = -pfh - 28
e= P K

(iv) Apparent Bulk Modulus

By following a procedure similar to that of section IV.1,
an apparent bulk modulus cen be calculated in this case:

¥ =KL1;5§53¥§ (4.51a)

-
l -
v

if the material is elastic, and

LG
(l+3_k)

if the material is locked. The variation EI/K for different values of
b/a are shown in Fig. 4.9a. In Fig. 4.9b, variation of f[/K with
k/a for b/a=3,oo are plotted for the case of a spherical cavity and a
spherical inclusion. The different effects of the cavity and the in-

clusion can be seen in the figure.

K =

7 (4.51p)

s
P

=i
doal .'rw -

IV.3. Stresses Around a Circular Cylindrical Hole in a Body, in Plane
Strain Condition, Subjected to Uniform Pressure Along the Edges
of Every Cross-Section

We shall now consider a body (Fig. 4.10) whose length in the
z-direction is large compared with the dimensions in x and y directions.
The body is subjected to uniform pressure p applied at the edges of every
cross-section perpendicular to the z-direction. The sections normal to
the z-direction are assumed to be restrained from deformation in that
direction. The stresses in such a body with a circular cylindrical hole
of radius a will be investigated. "a" 1is very small compared with the
dimensions of the body.
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(1) Elastic Solution

When the applied pressure is small enough, the body deforms
like a completely elastic body. We shall anlayze the stresses under such
conditions by considering a circular cylinder of radius b concentric
with the eylinder of radius a. If b >> a the stresses at b are
essentially a uniform pressure p. Then one can assume (cylindrical

polar coordinates have been used for analytical convenience) at

Tr = b Gr = -P
and at (4.52)
r=a o, = 0

If we now assume an axisymmetric stress distribution in the region

*
a <r <b we have the general expression for stressesls]

c 3
1
or =72 * 02
r
$ (4.53)
()
1
%=-3*C
r J
By using theboundary conditions (4.52) we can determine the constants c,
and 02. Then the stresses are
\
b2 &
o= -7 |1-3
b -1 r »
(4.54)
bgg a
%=-7 323 (\*33
b -a r
J
The corresponding strains are
e = 1l +v 32b2 1 - 1l -2V (h-55a)
r PTE ’b2 -a :‘; bE

*Ref. 3, p.59.



22
€y = p 1LY aba (_;13_ 1-22\») (4.55b)

€ =0 (k55¢ )

The body is made of distortionally locking material. 1In this case
the condition of distortional locking is assumed to be of the form

lei-edi =€, (4.56)

where € { and € 3 are to be chosen out of three principal strains such
that |ei - eJ| is a maximum. From Eq. (4.56) one can see that locking

takes place at r = a when

2
€ - €= ZQE+ v) 2pb - e, (4.57)

(i1) Problem After Incipient Locking

If the pressure
li:ez(b2 - aa)

P> (4.58)

2(1 + v) b2
the body contains a region which 1s locked and a region which is elastic.
Because of axisymmetry we can expect that the region a< r< k is
locked while the region r > k 1is elastic. The expresssions for the
stresses and strains in the elastic region are still given by Egs. (4.53)
and (4.56) while the stresses in the locked region should satisfy:

(a) The Equilibrium Equation

L+ 2.0 (4.59)
(b) Dilatation Elasticity

- - 1 - -
€&t =K (or+o

o * Fz) (4.60)
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(e) The Ideal Locking Condition

E} -€g=¢, (4.61)
(d) Kinematics
<. - %r! T =2 (4.62)

(d) The Incremental Stress-Strain Relationship which will
be derived in the next sub-section.

The boundary conditions for the problem can be expressed by the
following equations

r=a: 9 =0
r
r=k: g =0
r r
; = u 5 (h-63)
€ " 9= %
r=>=>5 or = -p

(111) Incremental Type of Stress-Strain Relationship

In the present problem the locking condition is given by

As discussed in Chapter II, the stress components 3;, 36 and Ei can

be represented as

_ _ - 3

Op = °rz * 0re

Oy = Ogy + Oge ? (4.64)
92 = gt % ]

where Erz’ Gél and Ez‘ are the locked parts of the stress components,
and %’ %Be’ aze are the elastic parts of the stress components. From
the Eq. (2.27a) we have

- o -



85, = axg%; - &% )
53,1_‘ = sX% = -8% > (4.65)
6523 =0

/

The relationship between the elastic components of stress and strain are

given by Hooke's law, i.e., \

%e = %e ° 2G(er - Ee) g
O, = 0.0 = -2G€ (4.66)

+

C e * %e ='.2">K(er + ee)

From this equation and the locking condition (%.61) we have

’(‘:(oe - or) = 5(oee +0gy = O, - ort) = 28N (4.67a)
and

ol - - - - - - - 7

80, =80, +&,, =280, = v(&ore + 5°ee) = v(zsor +509) (4.67p)

Equation (4.67b) can be integrated to yield

o =v(o +7.) (4.68)

Another useful formula can be obtained by using (4.68) and the dilata-
tional elasticity Eq. (4.60)

T 4T =T (5, + §) (4.69)

(1v) Solution in the Iocked Region

From Eqs. (4.61) and (4.62) we get the following differential

equation in .
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du u
Tr 40 (4.70)
vhich when solved yields the following result.

E=05r+€rlogr

£

mq

- Cy + €, (1 + log r) (k.71)

m |
n

6 03+ezlogr

Then from Egs. (4.69) and (4.71) we have

- 3K
% =1T+v

(2C:5 +2¢, log r + ez) - Er (4.72)

The equilibrium equation (4.59) then reduces to a differential equation

in 9 .
r
do_ 20
r r _ 3K i
I"—+T_m (2034‘2(‘1081'*'6‘)1_ (h'73)
Hence,
) S . SR +Ch (k.74)
O T T+v 3 T T+vEy BT :5 )

(v) Matching the Boundary Conditions

The solution in the elastic region is given by Egs. (L4.53) and
(4.56). Byusing the boundary conditions (4.63) we find

Cl = 5(%)- k2€l (4.76a)
E k2
C2 = -mg 6‘ -P (h‘—(éb)

Q
L

€ y 2
_ 4 12V k p(l+V)_(l-2V)=
3= "€y gk -3 z 2% 3

k2
-€, loga- et(l-v)?

% - (b.76c)



Ee(l v)

'('1—')'('+v T-2v) K (k.764)

and the relationship between k and p is given by the following
equation

Now if we consider the limit as b -» » the expressions for Cl’ 02, C:5
and Ch become

E 2 )
S euran L))
C2=-p
(4.78)
€
_ L (1 +v)(Q -2v) s
Cy=-€plogk-z-p E
; _Eez(l-v) 2
L~ (1 + v)(1 - 2v)
/

Then the stresses are given by the following equations:

I k
cr-2zl+v, =2 P
&Z k2

% =~ 21 + V) 'r-a'P

Ee,

2
- 1
O T T V(I - 3V) [(1"')1_*“31: 5] -P

Be 2
2 " I
T V(1 - 2v) [(l'v)?-log-;--é]_r,

%

vhere k follows from



- EE! (1 )1:2+l a 1
PETTEVII - a) IR -

The stress ce at r=a 1is

- ke, k
ce = <2p + Tl'+_v')' log 3 (h"79)

This is higher than the value of % derived on the assumption of elastic
behavior of the material. In Fig. 4.11, the variation of cr and oe
with r is shown for different values of k. b/a has been assumed to be =.

In Fig. %128, p/Eel has been plotted against kb for different values of V .
The effect of different b/a is shown in Fig. 4.12b. In concluding
this section, one can observe that the problem of computing stresses
around a circular cylindrical rigid conclusion in a body, in plane
strain conditions subjected to uniform pressure along the edges of every
cross-section can be worked out in a similar way.

IV.4. An Example to Illustrate the Limitations on the Displacement
Boundary Condition

It has been proved in section I-13 that if the displacements are
prescribed on the surface of the body so that they increase from zero
value proportionally, the prescribed displacement can be increased cnly
up to that value which makes the body completely locked. This will now
be illustrated by a simple example.

We consider a hollow sphere of inner radius a and outer radius
b with prescribed displacement u=nx at r=a and u=nf at
r=Db. O 1s assumed to be greater than PB. The prescribed displace-
ments are assumed to increase from their zero value proportionally, i.e.,
n increases from 1ts value zero to its present value. For small values
of n the sphere deforms like a completely elastic body. Further, this
problem has spherical symmetry. Then the stresses, strains and dis-
placements are given by Egs. (4.7) and (4.6). By using the boundary

conditions the constants Cl and 02 can be evaluated. Thus,
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4
C, = nab® T—E:b 'as
\ > (+.80)
°1=;£'%db.
b -8 J

The stresses, strains and displacements in the body can then be calculated
using these values of Cl and C2' The sphere is capable of locking dis-
tortionally. The locking condition is assumed to be of the form

2 2
(g - er) = €, (4.81)
From Egs. (4.7a) and (4.87) €g - €. can be computed. Its value is
b
a--p
€e - €r = 3na3b2 ;5}7?- fé ’ a>B (4.82)

This has the maximum at r = a. Then the sphere begins to look at

r = a when

(4.83)

(1) Problem After Incipient Locking

As n 1is further increased from its value given by (4.83) the
sphere will contain a region which is locked and a region which is
elastic. From spherical symmetry we can assume that the region
a <r <k 1is locked and the region k < r <b  is still elastic.

In the region a < r <k the general expressions for stresses,
strains and displacements are given by Eqs. (4.20), (4.21), and (4.24)
with +€‘ replaced by -G‘, i.e.,
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Egcsr-e‘rlogr A

€.=Cy- ez(l + log r)

ee=03-ezlogr
- 3
ora-—5-+3KCS-3K5£ log r
r J

(4.84)

The general expressions for stresses in elastic region are again given
by Eqs. (4.6). Now, the boundary conditions can be expressed by the

following equations

\
r=a U= n
r=>o u =nf
r=%k u=u g
6 =0
r r
€ " %9 " "%
Then 3 !
€
0121;.&-.3&5.3 )
b
3
k
Cop =+, 3

Ch = 5 (¢ - 3K)

The relationship between n and k 1is given by

3 €
Lk [ S 2
?'3;3 (a *‘zhga) 3 - €y logk

m
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The sphere will be completely locked when k = b, i.e., when

b
€, log —

N il & (1.88)
a;-ﬁ

(i1) Problem After the Sphere is Completely Locked

let us now attempt to study the sphere in the completely
locked state. In this state the expressions for stresses, strains and
displacement throughout the sphere are given by Egs. (4.84). The boundary
conditions are

r=a: u=no (4.89a)

r = b: u=np (4.89p)
From (4.89a)

C5 =€, loga +;£ (4.90)
From (4.89b)

Cs =€, logb+ %ﬁ- (4.91)

Contradicting conditions (4.90) and (4.91) for b require that

a_ g_2a
€, logg=n (b a>

This can be reconciled for any n only if a = b. Therefore, the pro-

portional increase of surface displacement is not possible for

b
blog;
b

B

€t

a

n>
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V. WAVE PROPAGATION IN LOCKING MEDIA

V.l One-Dimensional Wave Propagation

(1) Stress-Strain Relationship in the Uniaxial Stress
System and Volumetric Locking

In this section we shall study the wave propagation under a
uniaxial stress system. As a first step toward the study, the stress-
strain relationship in a volumetrically locked region applicable in
this case will be derived.

The locking condition for the material 1s assumed to be

L=< (5.1)

After locking, the deviatoric parts of stress and strain tensors are
still related by Hooke's law. In the one-dimensional stress system the
stress tensor consists of only one component o - The strain tensor
contains three components of normal strain € ey, €, - If the devia-
toric parts of strain and stress tensors are obtained and Hooke's law

is used one obtains

20x = QG(QGE Ey- €z)
-0, = 2G(-€x+ 2ey- ez) (5.2)
-0, = QG(-ex- €t 2€z)

Only two of these three relations are independent. By simplifying

these equations one obtains

€= = QG(ex- ey) (5.3)
Eqgs.(5.3) together with the locking condition yield the:following
relationships

Ex = sc;éx - Ge, (5.4a)
. € @
- _3£ - (5.k4b)



These equations express the relationship between Oy s ex and ey in
the locked region.
The locking condition (5.1) can be expressed in terms of stresses

also. If the material is elastic

1l-2v
Gt teE, =g (ox+ o+ az)

In this case °y =0, = 0 . Then Eq.(5.1) becomes

x l-2v (5.5)

Then one can state the following inequalities. The material is elastic
if

and locked if

%% = 1-2v

The stress-strain diagram is es shown in Fig.5.1

Fig. 5.1.
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The straight lines OA and AB are defined by the following equations

[+]
OA €xz-ﬁ—
o €
X 4
AB : Gx—géi-—g-

(1i) Equation of Motion

Let us consider a bar of uniform cross section made of elastic-
locking material. It 1s assumed that the average stresses on any cross
section can be approximated by a one-dimensional stress system. Then,
one can apply Newton's law of motion to an element of bar of length dx
as shown in Fig.5.2 . The displacement in the x-direction is represented
by u and the velocity by v = du/fdt .

V 7 + d?
—_— —_—

pe N

$ =3
o & ;E o+ do
x $ x x

s

X { dx .
Fig. 5.2.

In further discussion of one-dimensional wave propagation the
usual notation of barred letters to denote the stresses, strains and
displacements in the locked region will not be applied because we are
working most of the time only with the stresses in the locked region.
The equation of motion can then be written as

30, ov_ _ ng
I TPILP 32

In general the stress-strain law can be expressed as
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o= f(e) (5.6)
If one defines the normal force N such that

N-= Acx

and the mass per unit length u as
H = Ap

the equation of motion and the stress-strain relationship can be re-

written in the following way
N'=pii , N=aAf(u') (5.7)

where ( )' represents partial differentiation with respect to r and
(') represents partial differentiation with respect to t . Elimina-
tion of N from Eq.(5.7) ylelds

AE - (5.8)

equation (5.8) becomes

W = —%_')-AE — i (5.9)

From this equation one can infer that there 1s a wave of velocity ¢
such that

o? o ABlu’ (5.9)

moving in the locked region.
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Alternately, one can derive the equation of motion by considering

the discontinuities at the wave front.

b3 3
q . - 3
o D >
g% . B %
s 0B
— dx——
Fig. 5.3.

By the impulse momentum theorem one can write (See Fig.

th(oxl- x2) = pA(uz- ul)dx
i.e.,

U= Oy = - pc(u2- ul)

or
N, - N, = uc(ﬁe- 1‘11)
where
o=
dt

By introducing the Jjump symbol
a) = ()y- ()
one can rewrite equation (5.10a) in the following way

peAl = - AN
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From the condition of continuity of displacements along the wave front,
one can write

u2 - ul = Au= 0

By differentiating this equation along the wave front in the x-direction
one obtains

2 () = (% +% i)Au = Bu' + %Aﬁ =0 (5.12)

Egs. (5.11) and (5.12) can be simplified to obtain

ucaAu' = AN (5.13)

If one makes the assumption that the discontinuities Al, AN, Au'
carried by the wave are infinitesimal quantities, one can write

AN = AAf(u') = AE(u')Au’
Then,
2 t ] t
pe“Au' = AE(u')au
i.e.,

A
c = E— (5.14)

The result represented by Eq.(5.14) is the same as that obtained by the
differential equation. However, by the study at wave front we have
learned that the results (5.14) and (5.9a) are true only for infinites-
imal discontinuities. Then the next problem will be to study whether
there 1is a possibility of the discontinuity being finite. As a first
step toward the study the variation of discontinuity during the propa-

gation of the wave will be studied in the next section.
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(111) Veriation of Discontinuity During the
Propagation of the Wave

By differentiating Eq.(5.11) along the line of propagation
of the wave in the x-direction, one

uc% (A1) +uc'Aﬁ+*Z—é-Aﬁ= - AN -%—AN (5.15)
From Eq. (5.7) one can write that

AN' = paid (5.16a)

AN = A(EAG') (5.16b)
Eq.(5.16b) can then be written as

AN = A -g%,- a'au’ o+ p,ceAﬁ' (5.17)

This equation is for infinitesimal waves only. Further, from Eq.(5.9a)
one has
u"

2ce!' =

2cé =

Ti> Ei»

4aE
du’
SE
du’

' (5.18)

I

By substituting (5.16a), (5.17), and (5.18) in Eq.(5.15), the following
equation is cobtained:

2uc % (&a) + ':—c% (u" + % a)ah +

25}

%d,\'x'Au'=0

g

Then, by using Eq.(5.12) this equation can be simplified to the follow-
ing form

2 (an) + a_:?' (- 2ananaso (5.19)
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Thie is a differential equation in A4 . It will be used in the next
sub-section to study the effect of variation of discontinuity as the
wave propagates into the bar. It should be noted that this equation is
valid only for infinitesimal waves.

(1v) Case of Unloading Wave

Let us consider a bar prestressed to N=P . Let a stress-

discontinuity of the magnitude
N(0,t) = - PI(t)

be sent through the bar from the end x = O . In this equation I(t)
represents the unit step function, i.e., the force P 1s suddenly
released at the end x = O . Further, it is assumed that the discon-
tinuity - P is made up of elementary waves of magnitude - AP which
propagate successively through the bar.

At first u(x,t), G(x,t) are equal to zero throughout the bar.
Then, the second term in Eq.(5.19) is zero. Therefore, Al 1s constant
throughout the bar; i.e., as the first elementary wave propagates through
the bar, the wave creates a state of constant velocity and constant stress
behind the wave. Then, one can conclude that u" and 4' are zero
behind the wave. Thus, for the second elementary wave of magnitude -AP,
the second term of the Eq.(5.19) is again zero. The Eq.(5.19) again yields
the same result, i.e., Al = constant throughout the bar. That is, the
propegation of the second elementary wave through the bar also creates a
state of constant stress and constant velocity behind the wave.

Thus, one can see that all elementary waves spread through the bar,
similar to the linearly elastic waves. However, they propagate with
different speeds as given by Eq.(5.9a). It means that after the nth
elementary wave has passed through an arbltrary point Xy of the bar,
the stress at the point is P - nAP . The speed of propagation of the
nth elementary wave is

E A
n

e (5.20)
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where En is the slope of the stress-strain curve evaluated at

i.e.,
R
n dt =0
0 xn
From Fig.5.1
Eel
En = 3G 1if Ox > l—-—Q—V
Eel
= E if Ux < T—T\)

Also, 3G > E . Then, one can see that the unloading wave falls apart
into two waves with speeds VSG?p and E/p .

Further, according to Eq.(5.11) the elementary waves add a con-
tribution

A’l‘l.s-g
pe

to the velocity U . Therefore, the particle velocity at a point
allowing an axial force P - AP 1s

AP

nAP
A do
a(x,t) = % f E% - -;[ ?(3{7 (5.21)

(o]

>

From Eq.(5.21) it is evident that u(x,t) 1s a function of the stress

Oy only. Thus it does not depend on the stress distribution along the

length of the bar.

If one considers the upper limit of the integral in Eq.(5.21) as

DAP = P
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one obtains the velocity at the end of the bar immediately after the
application of the discontinuity.

(v) Case of the Loading Wave

Let us now consider the unloaded bar x >0 . Let a stress
discontinuity of intensity

N = PI(t)

be sent through the bar from the end x = 0 . Again, one can consider
the stress discontinuity to be made of elementary waves of intensity
AP . The first of these waves travels with a speed c¢ = c¢(0) while
the final elementary wave travels with a speed

c = c(P/A)

(see Fig.5.la), which 1s greater than that of the first wave, i.e., the
last wave catches up with the first at a certain point. Similarly, all
the elementary waves introduced at a later time can catch up with those
introduced when nAP < Eel/l-ev . However, when the two waves catch up
with each other they cannot pass one another as two waves approaching
from opposite directions, in an elastic bar. In this case the wave that
overtakes passes from a domain of higher stress to a lower stress.

Hence it becomes the slowest wave. Therefore, one can see that the waves
do not separate after they catch up with each other. They move together
with a common speed, i.e., the discontinuity at the wave front starts
accumulating and becomes finite. One can no longer apply the formulae
derived on the assumption of an infinitesimal discontinuity. In order
to find the speed of propagation of the wave carrying a finite discon-
tinuity, one must use Eq.(5.13) which is applicable for finite
discontinuities, i.e.,

2 NN 9= O,

1
¢ = u!ui- ués = p €~ €

n

(5.22)

N

In this equation and in further analysis, the subscript x of o, and
€, has been dropped.
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In coneluding, one can see that the case of loading produces a
phenomenon which is quite different from that of unloading. Stress and
velocity discontinuities in the case of loading do not fall apart as in
the case of unloading. They move together as & finite wave (called the
shock wave). The speed of this wave at any point is given by Eq.(5.22).

(vi) Impossibility of an Unloading Shock

The relationships (5.13) and (5.22) are valid whether the
load increases or decreases. The concept of loading shock has been
explained on the basis of these equations. Then, one may ask the
question whether an unloading shock exists? If not, what are the reasons
preventing the existence of an unloading shock? This can be explained

by energy considerations.

Let us consider the loading wave. When the stress changes from

o to % and the velocity from ﬁl to ﬁ2 , the change in kinetic
energy is
1 2 o2
Ul =3 pwdx (uz- ul)

The increase in elastic energy during the same process is

N
U, = dx [ N(u')adu’
1

Net work done during the process is

U, = - (N N5, )at

3 %1

Then one can define the energy loss U as

U = 1increase in kinetic energy + increase in elastic
energy - work done

i.e. ,
N,

l .2‘ l2 ] | i (] - °
Udx = = udx(ua ul) + dx 4 N(u')au' + c(Nlu1 Naua)dx (5.23)
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The o-€ curve is of the shape shown in Fig.5.4

Fig. 5.h4.

When the curvature 1s concave upwards the integral can be estimated
in the following wey:

N, %

4{ N(u')du' = A L/‘ gde = % (al+ 02)(52- el) -C (5.24%)
1 %

where C 1s the shaded area in the figure. Turther, C 1s a positive
quantity.

Also, from Eq.(5.22) one can write

uc2 = nA
where
. :1: :2
1 2
il.e.,
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Therefore,

Further, from the figure one can write

[+

1 = Tl(el' eo)

o, = nley- &)
Then, the energy loss U 1s

_nA (2 .2y L A (2 2y A .y
U (2 u1)+2n(02 ol)+c(ou 0.4.) - C

2
u'+-?l-€o) + (+u2'+?-eo)] -C (5.25)

The terms in the square brackets cancel each other because of continuity

of displacements. Then

U=-¢C (5.26)

This means that there is more energy than needed which makes the process
possible. :

For an unloading wave the signs of all energy terms are reversed,
including that of the contribution C derived from the nonlinearity of
the stress-strain relationship. Instead of a loss we would then have
mechanical energy produced from nothing. This shows that upon unloading
the wave front disperses; a shock is not possible.

(vii) Interaction of two Waves Approaching
from Opposite Directions

Iet us consider two waves A and B approaching from
opposite directions. The wave A 1is carrying a stress discontinuity
and velocity discontinuity v

o The wave B 1s carrying a stress

10
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discontinuity and the velocity discontinuity v Further, it is

9% 5 ¢
assumed that
0. € 0, & —2— ¢ (5.27)
1 27 1-2v ¢ *
but
E
0+ %> 15y &

Then the waves A and B are elastic waves moving with the elastic

wvave speed c = M— . Further, it is assumed that the region through
which neither of the waves has passed is stress free. Then from Eq.(5.10)
one can write the following relationships between stress and velocity
discontinuities

g, = pevy
(5.28)
02 = pevy,
g
o o Eel
T 1-2v
oM—
0,y =V
1l 1 P ¢ (] 02, Vo
x
y.
Fig. 5.5.
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D E
o 34 O30 V3 "
e
01, -Vl 02, V2
Fig. 5.6.
t

Fig. 5.7.
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The x -t diagram for the propagation of the wave has been indi-
cated in Fig.5.7. At a certain point x = Xy, t = tl the two waves
meet. Then two different waves D and E moving with speeds Cz
and ¢, emerge from the point as indicated in Figs.5.6 and 5.7. The
stress and velocity discontinuities carried by these waves can be cal-
culated in the following way.

By applying Eq.(5.10) to the waves D and E one obtains

05 - 0; = - pcs(vl+ va)
(5.2%)
o5 = 0 = pey(vy- vy)
By using Eqs.(5.28), these equations can be written as
05 - eV, = - pcs(vl+ VS)
(5.29)

0y - pcv, = pch(ve- VS)
Further, from Eq.(5.22)

g, -0

2. 1%
3 pel-es
2. 1%27%
4 PEy-€g

But from Eq.(5.4) and Hooke's law

m
]
"’-'II’OQ m'Hq

m

)
4l?

+
ull_"'
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Then

2.1 "% A
RS

E "% "3

> (5.30)

2 1 % "%
¢y =353 o €

P2_’3__t

E "% "3 J

Equations (5.29) and (5.30) are four equations for four unknowns, Ogs Vg

c and ch.

3
In the special case when 0, = 02 and v1 = Vy the right-hand

sides of Eq. (5.30) become equal, indicating that Cz = =Cp The minus

sign has been chosen because the waves D and E are moving in opposite

directions. Equations (5.29) can then be written in the following way:

0y - pcv) = - p;cs(vl + VS)

1

g5 - pcv, = pcu(vl - VS)
whence
V3 =0
o (5.30a)
3
-cs = + ch = —v- -
41

Then, from Egs. (5.30) and (5.29a)

2 Ca(vy+vy)
Cq = ot

.t
3

&l

g
E
By using Eqs. (5.30a) this equation becomes
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1
cg = o 5 (5.30p)
Fv- -5 (e-e3)- 3y

1 1

However, from Eq.(5.28)

is the wave velocity inside the locked region and ¢ = E/p is the

elastic wave velocity. If 3 is determined by solving the quadratic
equation, o; can be obtained from Eq.(5.30a). However, the quadratic
equation has two roots. We should investigate to see which of the two

roots is the correct answer.

¢, can be expressed as

3

c, = g b < T + (.:2 (5.30¢c)

where

Now
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Also, we have

Eei
9 fF TToy
i.e.,
Ul < Eez
3pvl 3pvl(l-2v)
i.e.,
€ _1-2v
. ° T3e
1
or
¢ 2
£ _1-2v 3
4 . c
v, 3 2(1+v)

Then the minimum value of « 1is

ozmin

Therefore
a =

The equal
locking.

value of

sponds to
while Cy
Then the c¢
Eq.(5.30c)

1-2 3
= ¢ (l + 2(l+v;' y 2(1+v5) =0

0 .

sign is applicable where = Ee‘/l-Ev i.e., in incipient

o
1
Therefore, the plus sign of the radical in Eq.(5.30c) gives a

c, higher than ¢ . This is not possible because ¢ corre-

3
the slope of the straight line AB 1in Fig.5.1 or Fig.5.k4,
is the slope of one of the secants such as DE or OC .

orrect ¢ corresponds to the minus sign of the radical in

3
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If in particular

c, becomes equal to ,/5G7p because « = 0 . Then

3

oz = Vl(cp + 3Gp) .

(vii) Interaction of Two Waves Moving in the Same Direction

Now, let us consider two waves A and B as shown in
Fig.5.8a and moving in the same direction. The wave B propagates

into the undisturbed, stress free bar. It carries a stress discontinuity

and a velocity discontinuity vy o

The wave A 1is assumed to carry a stress discontinuity of the
and to move with a velocity c¢, . The value of ¢

1 2
Then one can write the following

magnitude o.- 0

2 1

is assumed to be greater than 0y -+
relationships between stresses and velocities (see Eq.(5.10))

g, = pcvy

o, -0, pcl(va- vl)

where ¢ 1is the elastic wave speed and ¢, can be calculated from the
formla (5.22).
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o
Ee
g% = 1
l1-2v
o¥* \ A
- pC1
90 =¥ B
v p ¢
Fig. 5.8a.
o
E D
c] 4 (
‘ Oz0 ~V3
02, -Ve
&
Fig. 5.80.
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E_ O3 V3 _D
.\. ./0
t ... %2 e . —3
. 1 1 |
[¢§ ]
- t
9y -V ! 0,0
b X
*
Fig. 5.8c.

The x,t dlagram is as shown in Fig.5.8¢. The wave A meets the wave

B at a certain point x = X1 t= tl « Then two waves D and E

emerge from the point. The stress discontinuities 05 -0

2and 03

carried by these waves will now be calculated.

By applying Eq.(5.10) at the wave fronts D and E , one can
write

O3 = PCzVs

gg-0, = pch(vz- v3)
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Further, from the equation (5.22)

2 1 %
¢z = 5 G €
e R
3G 3
(5.32)
2 1 % "% 3G 2 =2
c = - = e—= c =
L p (op-05) 1 P 1
3G
Eqs.(5.31) and (5.32) can be rewritten as
05 = PCgVs (5.33a)
0y -0, = (v2- v3) J% (5.33b)
3G
2 1%
cy 5 a3 o, (5.33c)

Egs.(5.33) are three equations for three unknowns 0z Vg and Cz »
which can then be determined. Then we know the stress discontinuity,
the velocity discontinuity and the speed of the wave after intersection.

From Eqs.(5.33a) and (5.33c)

2
2.5 1 9%
3 p2v§ o) 03+ Ge‘
i.e.,
. 3Gpv§
3 O +Ge‘



From Eq.(5.33b) and this equation

0 + 0,0c, = (0g- 0, - \/5Gpv)2

3 37 3 2 2
i.e.,

2 2
95 +:'>(}pv,2 + ZVZagSGp

Gez+202+2v2 v'3Gp

O3

The right-hand side of this equation contains known quantities. Hence,
oy can be calculated. Then ¢
Egs.(5.33c) and (5.33a).

3 and v:5 can be obtained from

v.2 GSpherical Wave Propagation under Volumetric Locking

(1) Equations of Motion and the Speed of the Wave

In this section the dynemic response problem of an infinite,
homogeneous, isotropic and volumetrically locking medium will be
studied under spherically symmetric conditions. One can write the
following equations governing the problem. In these equations

0. Er , U are the normal stress, normal strain and displacement in

the redial direction r . 59 » Ee are the normal stress and normal
strain in any direction in the plane perpendicular to r-direction.

The following equations govern the motion:

a) Newton's Law

3. 20_ o 2-
R (5.34)

ot

b) The Stress-Strain Law: The material is assumed to be
capable of non-ideal locking. The results for ideal locking will be
derived as a limiting case. From Eq.(2.36) and distortional elasticity



0. +20, = SKez+k(er+2ee-et) » € 428, 2 ¢,

- - - - (5.35a)
Or - 09 = 2G(€r' ee)
These equations can be solved for Er and 59
- A N+bG - 2n-4e -
o o(k3) ¢+ T L BFE G
N N (5.35b)
- R _N A-2G - 2N +2G =
% = ‘1( 3) Y TE St T %
¢) Kinematics
ou ﬁ
¢ = S5, € = o (5.36)

From Eqs.(5.34) to (5.36) the following differential equation can be

derived

2- - - 2-
d°u . 2 du u u

2YTd& 23 ° N4k -2 (5.37)
or r dt

If one introduces a potential V¥ such that

.

Eq.(5.37) can be rewritten in the following way

i.e.,
2
SRy - L (5.38)
at
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and

#3273

r

1s the Laplacean operator under spherically symmetric conditions.

Now, one can see that Eq.(5.38) represents a wave equation with

the wave speed

(5.39)

One must remember that the speed of the wave is given by this equation
only if the wave 1s propageting in a medium which is already locked.

If the material is an ideally locking material, A becomes infinity.
Then the speed of the wave becomes infinity.

Alternately, one can derive the equations governing the problem by
considering the discontinuities at the wave front. By applying the

impulse-momentum theorem one can arrive at the rollowing relationship

(Fig.5.9):

A

Fig. 5.9.
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(In this figure AOB 1s a cone with vertex at the origin, end vertex
angle being equal to d6 . The wave CD sweeps through the radial
distance r,-r) = dr in time dt )

rFers
T —5— ae dr(ul- u2) (5.40)

(N2- Nl)dt

where N1 and N2 are the resultant forces and ul and u2 are the

radial velocities on sides (1) and (2) of the element shown in Fig.5.9.
Further,

2.2
Nl = orlvrlde

2..2
Né = °r2"r2d9

Then Eq.(5.40) can be rewritten as

2. 2 2 .22
(o o arl) rde“at + orav(zrldrde +dr©ae°)at

. o 2.2 . .
(ul- 2)pwr1d6 dr(ul- u2)

<+

2. 2 dr .
pmde dr (rli'ir)(ﬁl- u2)

By dividing this equation by ﬂrladezdt and by considering the limit as

dr and d6 tend to zero, this equation becomes

-0 = pc(ﬁl- ﬁe) (5.41)

0r2 rl

where

ar
at

Further, the displacements are continuous at the wave front. Then
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By differentiating this equation along the wave front in r-direction
one can write
(ui-ul) +3 (@-4) = O
1 "2 c 1 "2
where ( )' denotes partial differentiation with respect to r and (.)
denotes partial differentiation with respect to t . Then, from Eq.(5.41)

one has

2 ¢ -0

e % €r2 -Erl (5.42)
r2 rl ,

if both the sides (1) and (2) are in the locked region and the locking

is nonideal. One can derive the following value of the wave speed from

Eq.(5.42), the stress-strain relationship (5.35) and the displacement

continuity relationship, namely:

This is the same value as that obtained in Eq.(5.39). Further, as in
the case of one-dimensional wave propagation, when region (2) 1is elastic
and region (1) is locked, it can be shown that the loading waves catch
up with each other and move as a shock wave with finite amplitude, while
the unloading waves fall apart. Then that wave which brings the material
to a state of incipient unloading propagates with the speed Just given,
and it is followed by an elastic wave of speed m .

(11) Infinite Medium with Pressure Suddenly Applied

at the Edge of a Spherical Cavity

In this section we shall consider an infinite medium (made
of a volumetrically locking material) with a spherical cavity of radius
a as indicated in Fig. 5.10. The stresses, strains and displace-
ments in the medium due to a pressure p suddenly applied at the cavity
surface will be studied. Further, it is assumed that the pressure p
is maintained at the cavity surface for all times, 1.e.,
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[} = -p for t>0.
r=8

When the pressure p 1is suddenly applied at the cavity surface
a wave starts spreading into the medium. At a certain time t this
wave front will be at a certain radius r = k(t) . Then, the region
asrs k(t) will be a volumetrically locked region if

(a) the pressure p is of sufficient magnitude to cause
volumetric locking,

(b) the strains in the region O s r s k(t) are nowhere
of a magnitude which would cause unlocking.

r=k(t)

r=k(t)

Fig. 5.10.
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The preceding requirements will be checked later.

The stresses, strains and displacements in the region O S r s k(t)
are governed by the following equations; (equation of motion, distor-
tional elasticity, locking condition and kinematics)

o7 g-d _

r: + 2 rr 6 = p éu—a (5.’43)
ot

G, -0 = 2G(Er- gy) (5.44)

Er +28,= - €, (5.45)

: = P}

r ~ dr

s (5.46)

€e = "1'.'

The locking is assumed to be ideal. Further, it is assumed to take
place in compression only. Then the locking condition (5.45) holds
throughout the locked region. Egs.(5.45) and (5.46) then yield the
following differential equation for u.

du , 24
SetTF te ¢ o

with the general solution

€
ao- ML, (5.47)
r

where f(t) is an arbitrary function of time., Then,

€
q - -t (5.48¢)
r
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€
7, - Hu 2 (5.48)
r

Then, from distortional elasticity one obtains the following relationship

- - f(t
G, -Tg = - 6G -igl (5.49)

The equilibrium equation and this equation then yield the following
differential equation for 0.

o5 3
r _ fit fgtz
> - &¢ ‘iﬁl tPT3
r r
A simple integration ylelds the following expression for the stress:

- £(t £t

5, = -ue HE o B, gy (5.490)
r

Egs.(5.47), (5.48) and (5.49) constitute the general solution in the

region O = r s k(t) . The solution is determined if the functions

f(t), g(t) and k(t) are determined. Therefore, the investigation

in the next section will be concerned with determining these functions.

(111) Functions f(t), g(t) and k(t)

For t > 0 the boundary condition at the cavity surface

r=a 1is

(-7 = =P (5'50)

At the wave front the displacements are continuous. Further, it
is assumed that, for the time t < O , the infinite medium is at rest
and is stress free. The pressure p 1is applied at time ¢t = O . Then
the region ahead of the wave front r = k(t) is at rest and is stress
free, i.e., at r = k(t)

u =0 (5.51)
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and hence

€e=0

Further, the region 0 < r < k(t) is in a state of ideal locking and,
therefore at r = k(t)

er + 269 = -el
whence
er = - el (5'52)

, ()
co g3 o
1
ioe"
2
- dk
R (&) (5.53)

The conditions (5.50), (5.51) and (5.53) will be used to determine
the functions f(t), g(t), and k(t). From Egs. (5.50) and (5.49), one

has

g(t) = "—Gﬂsﬂ +p %ﬂ -p (5-538)
a
Then
5 - th(t)(-J-'g . %) + of (—i— - %) -1 (5.54)
a r

From Egs. (5.51) and (5.47) one obtains

1 3
£=3 elk (5.56a)
Then,
€ 3
- t [x7(t
Q=4 (.:é_l . r) (5.560)
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€ 3

- 1 2 k(t

€r=--—3---3€l—r§—-z (5.56(’2)
€ 3

- ! ! !

€e = - T + % Gl k St (5'566')

- e 3 1 1 1 1 2« .2
(4] =3_€lk (t) (;-:3) +p€[ (;-;) (kk+2kk )-p (5-56&)
Then from Egs. (5.53) and (5.56e) the following differential equation
for k(t) can be obtained:

3

k(%-)ii+ (2%-1)1'(2+-)*3§(-:—3-1)-5%;=0 (5.57)

If the function k(t) 1s obtained by integrating this equation, the
functions f(t) and g(t) can be determined from Eqs. (5.56a) and (5.53a).
The initial conditions for the differential equation (5.57) are

k(0) = a

02 _ _
-0, (k%) 4 = (o) o rea = P (5.58)

Before proceeding to integrate the differential equation, the condition
under which the region 0 <r < k(t) could be a locked region will be

investigated in the next sub-section.

(1v) The Conditions Under Which the Locked Region 0 < r < k(t) Exists

The region O < r < k(t) can be a locked region if the stresses
satisfy the inequality

-(Gr + 266) > 3Ke, (5.59)

where 3K 1s the bulk modulus
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From the distortional elasticity oy 1s related to o (see Eq. 5.49).

)
Then
- - 66£(t)
oe-or-zc(er-ee)_or+ >

r

Then the inequality (5.59) can be written in the following way (see
Eq. 5.54)

3p - Bpf (% - %) -126 5> 3Ke, (5.60)
a

In order that the locked region a <r< k(t) does exist, the inequality
must hold at least for r=k=1a, t =0, i.e.,

P2—3—c¢, (5.60a)
for Vv = 0.25, 3K = 5G. Then this inequality becomes p/Ge[ > 3. Also,

from the inequality (5.60), one~can see that the material will unlock
if, at any place,

3p - 3P (% - %) - Ke, (5.60b)

This will occur first where r 1is maximum, i.e., at r = k(t).

Further, from Eq. (5.42) and the incipient locking conditions, the
following value for dk/dt at the instant of unlocking can be derived

& _ %2 "% 2

at e1'2 T P
Material ahead of the wave is at rest and stressfree. Then 9.0 = €r2 =0.
Therefore

& _ /%1

dt perl
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At the instant of unlocking o, and €r are related by the elastic

1 1
law. Then
a1 xe(erl-+2egl)-+2Gerl
dt ~ |l p

erl
vhere N is Iamé's constant. Also at r = k(t)

=0

u
e . =2
r

el
Then

Ek_=u
dat P

which is the speed of the elastic irrotational wave.

(v) Solution of the Differential Equation (5.57)

Equation (5.57) is an ordinary, nonlinear differential equation
for k(t). Tt may be solved by numerical integration. However, before
any numerical procedure cen be started, it is necessary to clarify the
behavior of the solution at k = a. This will be done first, and then
Milne's method will be used for numerical integration. Also, to prepare
the equation for numerical work it is non-dimensionalized by introducing

the following new variables

2
k _ _ §Ea
a ¢ - g T

In this notation, Eq. (5.57) reads as follows.

2 2
dle- 03+ a-n) () + (@0 -0 (5.61)
vwhere
3
d2=1:(-}§;

The initial conditions for this differential equation are
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T=0 g===1 (5.62)

)
dg a2 1 ak
T=0 a - Ee'e"t aax - ¢@ (5.63)

The power series solution 1s assumed in the following form.

q=1+aT + b2T2 + b1 + bu’l‘h + b5T5 (5.64)

Because this power series will be used to evaluate the values of q and
its derivatives for T < 0.003, it is reasonable to expect that the first
few terms of the series should be sufficient to evaluate dzq/dt2 to
the accuracy of three decimal places. Therefore, the coefficients of

16 and higher powers are neglected in the series.

Then by keeping only terms up to the fifth and lower powers of T,
one can evaluate the individual terms of the differential equation (5.61).
By equating like powers of T the coefficients b2 oo b5 can be
calculated.

For a particular value of p/Gat = 4 the coefficients are as fol-
lows (From Eq. 5.60a, for v = 0.25, one can see that the value of
p/Gel creates a locked region.)

b= 3
b2='§
b, = I3
bh=-5.6
b5=8.09

The expression for q can then be written in the following way
q=1+ 5T-§1‘2+4'3"T5-5.6T’*+8.09T5
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This power series has been used to start the numerical integration.

The typical numerical solutions for p/Get = 4 1is shown in the follow-
ing table. Unlocking takes place at q = 1.142 and T = 0.088. The
stresses, strains and displacements have been plotted in Fig. 5.12.

Fig. 5.11 shows the position of wave front and wave velocity.

0.0

0.01
0.02
0.03
0.0k
0.05
0.06
0.07
0.08

0.09

-3.0

-2.899
-2.809
-2.714
-2.650
-2.57h
-2.505
-2.441
-2.381

-2.328

*
Unlocks at q = 1.142

q
1.73206
1.70257
1.6T4Ok4
1.64649
1.61962
1.59353
1.56813
1.54341

1.51930

1.49577

q=1.5

q
1.0

1.01717
1.03405
1.05066
1.06700
1.08305
1.09887
1.11441

1.12974

1.14480

unlocks*

In the next sub-section the problem after unlocking will be

studied.
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vi®8 problem After Unlocking

It has been shown ( see p. 140 ) that unlocking begins at the wave
front at point A (Fig. 5.13) where k(tl) =T
reached this point, 1ts velocity has the value c¢ of elastic waves,

When the wave has

as everywhere on the wave front u = O, and the stress at A 1is
dr = pc2€r- From here on the wave continues as an elastic wave going

outward, as shown in Fig. 5.12.

The region behind the elastic wave may contain a locked region (2)
and an elastic region (3), as indicated in the figure. The wave front
AB 1is a stralght line, its slope corresponds to the elastic wave speed
c. The problem is now to obtain the stresses, strains and displacements
in the elastic and locked regions such that they match on the interface
AD which is still unknown. Further, the solution must satisfy the
appropriate boundary and initial conditions.

The general solution in the locked region is still given by
Eqs. (5.47), (5.48) and (5.49). The general solution in the elastic :'.
region will be derived in the next section.

(vii) General Solution in the Elastic Region

The dynamic response in the elastic region is governed by
the following equations:
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(a) Equation of Motion (see Eq.(5.3L)

d¢ g.~0 2
sE+2 I . o Ou

(b) Stress-Strain Relationship

o. = ke(er-¥aee) + 2Ge

oy = xe(er +2e6) + 2Geg

where ke is Lam8's constant and 2G 1s the shear modulus of the
material,

(c) Kinematics

du

u
& T 3 ? % * T

From these equations the following differential equation in u can be

derived
ihﬁ“%“=ﬁ?%
d ror e 20 3¢

As explained in p.128, this equation can be rewritten in the following
form by introducing the potential function ¥ such that u = Bv/ar :

23 3 (22 3 2%
S ARE: 3y - 2%y

where

. - e +2G
P

Integration of this equation yields
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1 3 (2 3 1 P
Eaf 8 - Fde

where C. 1s a constant. This equation can also be written as

1
2 2
( S35 - g (5.66)

The general solution of this equation is

3
C,r
ry = fl(r +ot) + fe(r -ct) + —%— (5.67)

Once V¥ 1is known, the displacement u and hence the stresses and

strains can be calculated.

We are seeking solution in a region which extends to infinity.
Thus, there are no incoming waves. Further the elastic waves start

at time t = tl , and at radius r =r Therefore, the potential

l L]
function V¥ in the elastic region can be written in the following

form:
1 r-ry °1r2
v o= Zfg (t—tl- S ) L (5.68)
In the further analysis the asbbreviation t=t -tl will be used.
Then
r-r r-r C.r
= -2z )y 1 f- 1 R
u o= re fs (t c ) r2 fs ( c ) +3 (5.69)

where ( )' denotes differentiation with respect to the argument of
the function.

(viii) Boundary and Interface Conditions

The general solutions in the locked and elastic regions are
given by Eqs.(5.47) to (5.49) and (5.69). They contain arbitrary func-
tions f(t), g(t) and f, . These functions and the unknown radius
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r= re(E) of the interface can be determined from the following
conditions,

(a) At the wave front the displacement is zero; i.e.,

at r = r1 + ot ;

u = 0 (5.70)

(b) At the surface of the cavity, the radial stress is - p ;
i.e., 8t r=1a:

o, = - P (5.71)

(c) At the interface the radial stress, the particle velocity
and the displacement are continuous; i.e., at r = re(f) :

u = u (5.728)
o, = c':r (5.72v)
o= 4 (5.72¢)

Egs.(5.72b) and (5.72c) are not independent of each other because the
continuity of the radial stress implies the continuity of the particle
velocity across the interface.

(a) Further, the stresses in the locked region are in a state of
incipient locking at the interface; i.e., at r = ra(E)

Er + 289 = - e, (5.73)

From this equation and the condition that the strains in the locked
region satisfy the locking condition (5.45), we have at r = r2(€) :

o.+20, = 3K(€ +2€,) = - 3Ke, (5.74)

Also, from distortional elasticity in the locked region at r = rz(E)

Gr - o= 2G(Er- Ee) (5.75)
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From the fact that the elastic stresses and strains satisfy Hooke's law
we have at r = ré(%)

o, + 20, = .'faK(er +2e6) (5.76a)

o, -0 = 2G(er-ee) (5.76b)

From Eqs.(5.75) and (5.76b) at r = r2(€)

(Gr- °r) - (59 -0,) = 26 [(Er-er) - (Ee—ee)]
From Egs. (5.72a) and (5.72b) this equation becomes at r = r2(€)
Gg - 0p = =26(€ -¢) (5.77)

Similarly from Eqs.(5.74) and (5.76a) at r = rE(E)

5o - 0y = = (E-€,) (5.78)

and then € = Ee because of continuity of the radial displacement u
at the interface. Then at r = ra(t';)

€ + 2e9 = € + 2, = - ¢, (5.79)

This equation can be used in place of one of the equations (5.72a,b ,C)
or (5.73).

From Eq.(5.69) one can write the following expressions for strains
and velocity in the elastic region:
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re re
r-r c
2 rfz- 1 2
+ 3 fs(t S ) + 3 (5.80a)
RS B e\ IS BN Rt | B
€ = T = = fjs(t- S ) "3 fs(t- - + (5.80v)

. 1 . f- T°% N A
Do af D) - aafn .800
Then, from Eqs.(5.79), (5.80a,b)

r.-Tr
" o~ 2 1 - - € 2 - 2
f3 (t-———c ) = PIOMERR X (5.81)
This is a useful relation.

Now let us consider the remaining boundary conditions. From Egs.
(5.69) and (5.70)

1 . £5(0) €
-mfs(O) -mi—-s— (r1+ct) = 0
i.e.,
fé(O) = 0
£,(0) = 0 (5.81s)
C, = 0

1

Then Eq.(5.81) becomes
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wils r2 -rl
fx (t - ) = - elcrg (5.82)

From (5.72a), (5.69), and (5.47) one has

£(#) 1 : 2 .(- ra'ri) 1. (- re'rl)
3 et = - f2\t- + Ftg\E -

rg(t) r2c 3 c r2
(5.83)

Similarly from (5.72¢), (5.80c), (5.47) and (5.81a)

£(%) R re'rl) 1 ,(- Ta~T1

Zz - ';;zfs(t'-—c -4 g (e 22) (5.84)

2 2

From (5.T71) and (5.49a)

g®) - wil, 2B (5.85)

a

Then, as before,

o, = th(E)(-% - -1—3) + pf(t) (% - %) - (5.86)

e r

This equation, distortional elasticity (5.44), Eq.(5.48) and the boundary
condition (5.73) result in the following equation (more simply from
(5.60b)):

uc.fi;l,»p;(%-}l-a-).p . (5.87)
a

Bqs.(5.83), (5.84) and (5.87) are three equations for three unknowns
£,,f, and T, . However, the use of the equation (5.81) simplifies
the analysis.
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From Eqs.(5.82) and (5.84) one obtains

r.(t)-r
-~ 2 1l 2 -
f% ( ...__c__._) = egpry - £(£) (5.88)
Now from this equation and Eq.(5.83) one has the following expression
for f:5
202y 2.3
f:5 = < f(t) -3 €£r2 (5.89)

Eq.(5.88) is a differential equation in t which is the independent
variable. If both sides of this equation are differentiated with
respect to t , one obtains the following equation

r.(t)-r dr ar
s 2 1 1 2 2 orr
[iz’(t --——c——-ﬂ E-E aﬂ = 2ezcr2 —(1—€- - £(t) (5.90)
But, from Eq.(5.82)
r.(t)-r
L - ) I
£} (t c ) = €,0T,

Then, from Eq.(5.90) and this equation, one can write the following

expression for f(t) :
dr
o 2 1 72
BB - eny (F2 ) (5.51)
If this expression for f(t) 1is substituted in Eq.(5.87) one obtains

dr
ug TE) | oefzrg (; —2, 1) (i-.l..) = p-Ke,

{'13 cat a T,
i.e.,
3 dr T 3
(@) « 8 -k, (1224 (2-1) 8 (5.92)



Then the following expressions for # and f can be obtained by
dif{erentiating this equation with respect to €

3, dr r,dr d°r dr
- 2 2 2 1 2,1 72
#(t) = - pe,e [:(——) =t e e e = —— 2 S (5.93a)
- eI\ g /) ac T ac G2 © gf2 & dt
. pe lceas 2 clr2 dar2 1 dr2 d2r2 r, <13r2
£(t) = T TG |ac & =2 tac JEF 2 Tac .3
ac atc 8¢ av ggf 8¢ 4¢
1 d3r2 1 <12r2
-1 2,1 2 (5.93b)
a% aE°

By equating the two different expressions, (5.91) and (5.93b), for
f£(t) the following differential equation for r2('E) can be obtained

3 2
drzl(r_zwl) +dr2 (i:.d.x:?.+.]_-) +dr2 (hGrz) ’(hGr2)= o
aidc\ e ate \ac at 'a at aSpc asp

(5.94)

If this equation is solved for r2(1-:), £(f) can be obtained from the
Eq.(5.92). Then, g(t) and f, can be obtained from Egs.(5.85) and
(5.89). The displacements, stresses, and strains can then be determined
in elastic and locked regions.

(1x) Solution of the Differential Equation (5.94)

The differential equation (5.94) can be non-dimensionalized
by introducing the following variables

r
2
-y
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i.e.,

Then the equation can be written in the following form if the value of
the Poisson's ratio is assumed to be equal to 0.25, i.e., 3K = 5G and
(see Eq.(5.66a))

3 2
a°R d“R, / dR dR,
2 2 2 3 9
—2=< (R~ 1 —= (3 =54 = Z{ ~—=— +2 R, = O .
prc (R, )+d_ ( = 2)+ 2 tER (5.95)

The initial conditions for the differential equation can be obtained
from the conditions at the time of initial unlocking at the radius

r=r ,i.e., r=r; and t=t%, or t=0, in the x-t diagram

1°? 1

(Fig.5.13).

For example, one can consider the case when p/Gel = 4 . Then,
from Fig.5.1lla

Ry(0) = 1.142

Now, the values of dR(0)/aT and d2R(O)/dT2 can be obtained from
Eqs.(5.92) and (5.93a) in the non-dimensionalized form, i.e.,

3 R aRr
32 2 2 T2 _
% - (ﬁ'c%'l%) -H(sﬁeggﬂa-s—d@ 1>
2 dq 3 | of9R> @ ®R, dth
q = -7 3(____) +;’i'_ +3 (R2- 1) d-a

at af

Again, the values of dRa/dT and deRa/d'f2 in the case when p/Ge‘ =L

are
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L= 1]
]
o
-

Eig = - 0.2676 —2 . . 25.229
at ) ’ af )

Then, Eq.(5.86) can be integrated numerically. Milne's method is
used for numerical integration. The typical numerical solution has
been illustrated in the following table for the value of p/Ge 2= I

2 3
. aR, a°r, a°R

T R - —— ———

2 aT af® af®
0 1.142 -0.2676 -25.229 9h.133
0.005 1.140k -0.3930 2k.92 29.98
0.01 1.1381 -0.5173 24,93 -33.66
0.015 1.1352 -0.6428 -25.26 -101.63
0.020 1.1317 -0.7705 -25.% -178.76
0.025 1.1275 -0.9031 -27.07 -272.58
0.030 1.1227 -1.0421 -28.73 -393.36
0.035 1.1171 -1.1915 -31.08 -559.25
0.040 1.1108 -1.3546 3445 -801.84

- %

0.0L5 1.1035 -1.5384 -39.31 -1180.07

* unlocking along GH (Fig.5.1h4)
The variations of Ty the stresses, strains and displacements in
the region are illustrated in the Figs.5.1h4 and 5.15. It can be seen
that unlocking takes place throughout the region GH (Fig.5.14) at time
T= 0,0l , or Tm 1.32 . The solution for the problem must be worked
separately for time T & 1.32 .
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Fig. 5.15a
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