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THE DYNAMIC VISCOPLASTIC EXPANSION

OF A CYLINDRICAL TUBE

by

Edmund J. Appleby

ABSTRACT

The viscoplastic flow of a long thick-wanled tube is in-

vestigated. The tube is subjected to internal pressure and has its
ends restrained from motion in the axial direction. The material

of the tube is rigid-viscoplastic and incompressible. The pressure
required. to produce a specified expansion of the, tube is calculated
for two examples. In the former the effect of different viscosity
coefficients is observed. In the latter example a comparison is
made of the effects of perfect plasticity. viscosity and inertia.
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1. INTRODUCTION

A study is made of the mechanical behavior of a long hollow circular

cylinder, with its end restrained from motion in the axial direction, when

it is subjected to internal pressure. The basic problem of plane strain

with rotational symmetry, being one of those which most readily yield to

treatment in plasticity, is a standard problem in this field, and has been

studied by investigators in a variety of different ways for the ideally

plastic and the elastic plastic material. Reviews of such solutions have

been given by Hill [ 1] a and Prager and Hodge [ 2]. The present paper

considers an ideal material, a viscoplastic Bingham solid [ 31 , which

is undeformable until the stresses reach their yielding values, and then

under stresses which are in excess of their yielding values, has strain

velocities dependent on this stress excess or overstress. The material

does not exhibit work hardening, and as it is known that in the fully

plastic state volume changes are negligible, it is assumed to beincom-

pressible.

The solution is obtained by using the viscoplastic constitutive

equations due to Hohenemser and Prager [ 4] . The analysis is valid for

a general plastic yield condition. An approach by means of a linearized

theory of viscoplasticity, in which the flow is specified by Prager's constitu-

tive equation ( 51 , is equivalent.

A general solution is formulated, but in order to simplify the numeri-

cal calculations a specific expansion is imposed on the tube in which the

interior boundary has a uniform radial acceleration. The pressure-time

variations required to maintain this flow for different viscosity coefficients

are compared. A different expansion is then imposed, in which the inner
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radius of the tube expands to one and one half its initial size, beginning

and ending with zero velocity. Comparison is made of the effects of

perfect plasticity, viscosity and inertia. If the expansion takes place

slowly, the effect of inertia on the required pressure is negligible,

and the effects of perfect plasticity and viscosity are comparable. On

the other hand if the expansion occurs very quickly the effect of inertia

becomes comparable with that of viscosity, and the perfectly plastic

contribution to the pressure is negligible.



2. BASIC EQUATIONS

Let the space variables be a system of cylindrical co-ordinates

r, 0, z in which the z-axis coincides with the axis of symmetry, then

the tube is bounded by the cylinders r = a and r =b, where a < b.

As the pressure inside the tube increases, the stresses in the material

nearest the interior boundary will be the first to reach the yield limit.

With further increase of pressure the plastic region will extend until

its outer boundary coincides with the tube's outer surface. Until this

state is reached, the flow of the plastic innermost region of the tube

is restricted by a surrounding rigid region and by the conditions of axi-

ally symmetric plane strain on the incompressible material. The whole

tube therefore remains rigid, and hence the stresses in the innermost

plastic region reach but do not exceed the yield limit. When the whole of

the tube becomes plastic, the material is about to flow in an unrestricted

manner, since any further increase in the internal pressure will then

produce overstress in the material of the tube. The time t is measured

from this instant, and the values of a and b for t : 0 are denoted by

a0 and bO.

It is assumed that the tube is sufficiently long to make the stresses

and strains independent of the axial co-ordinate, and that at any instant of

the flow process each particle of the tube is moving radially outward

with a velocity u which depends only onthe radial co-ordinate r. The

velocity components at a point distance r from the axis at time t are

then

ur u(r t), u =0 , uz =0. (1)
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The strain rates are
Z Ou u t 0= ,

tr r Zo
(2)

0z =08 Vzr=0 I r=
0zzr t9 =O

where the dot denotes differentiation with respect to the time.

Since the material is assumed incompressible

Su + = 0. (3)

This differential equation has the solution

u= (t_ •4

in which i(t) is an arbitrary function of the time. Expressing the

velocity u of a particle, distance r from the axis at time t as

dr/dt, and integrating (4), we find that a particle initially at distance

r0 from the axis is at distance Jr 0 Z + 2*(t) after a time t.

The radial and circumferential strain rates can now be written

£r=-9 . (5)
r r

By the rotational symmetry of the flow field, the shearing

stresses with respect to the cylindrical co-ordinates are zero, so

the only equation of motion which is not identically satisfied is

Doa- du(6
•r +, rr D ru

where D is the density of the material. When u is replaced by the

expression in (4), the above equation can be written



+ *Z r M -r (7)

The boundary conditions throughout the yielding process are

ar = - p at r = a, (s)
ar = o at r =b;

it being assumed that there is no pressure on the external boundary.

The analysis so far is independent of the constitutive equations,

and is the same for all materials.

For any incompressible isotropic material in plane strain Geiringer

[6] has shown that a general yield condition can be expressed as a

function of the single variable 01 - a2; aI and a. being the principle

stresses in the plane z = const. For the rotationally symmetric pro-

blem the principle stresses are ar and a , so that the yield function

F can always be written in the form

F= 2k ,rIZk (9)

where k is.the yield stress in shear. In particular if ae'-qr

an assumption which may be verified a posterior, (9) can be replaced

by

F =a ar -2k (10)

The viscoplastic flow rule of Hohenemser and Prager can be written in

the general form

8FAj C <F>. 1-% 9 (11)

where the notation is defined by:
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(F> = F If F • 0,

<F> W 0 if F <0.

X is the viscosity coefficient of the material, and F is the yield

function. For the yield function (10), therefore, the only nonvanish-

ing strain rate components for t > 0 are given by

x r "(O* ar - 2k), X& -as "ar - Zk. (12)

It is interesting to note that since (10) is a linear function. (12)

may also be obtained as a special case of the piecewise-linear visco-

plastic flow law proposed by Prager 5] .



3. SOLUTION

Equations (12) can alternatively be written

A = O0"- ar - 2k. (13)
r

The substitution of equation (13) into the equation of motion (7) gives

r Zk + X +- (14)
rT~ r r 3 +r

Integrating this equation with respect to re and employing the bound-

ary condition, ar = 0 when r = b, to evaluate the arbitrary function

of time furnishes the stress components:

kr l_ r r 1rD I

[=kl 'r *I liF1 "F D i'i 1 1
ro ' '+og +D >ilo~i++.p - " L 1 " "
ae. = 2kj+ log ~+Di log r + A =~. I - .4].

(15)

Since a and b can be expressed in terms of their initial values

a0 and b0 and the function * (t), equations(15) furnish the stress

distribution at any instant in terms of * and its first and second

derivatives. The functions * and p must satisfy the boundary con-

dition ar = - p on r = a. Hence, by using the expression

r I-r0 Z + 2,



2 22 2
aDol a0 + 2•* x-i(a20 b b0) VD 2(b20"- a2-0)

*Dlog 71 + Z* - b *ZD O abo + 2* (a o + 2*) (bZ + 2*) (ao + 2*) (b o+ 2*)

=-2p - 2klog a0 + 
(16)

b 0 + 2*

the conditions at t = 0 being = 0 and *-0, that is 04 2r 0 +2*

is initially r. and the initial radial velocity is zero.

If the effects of inertia and viscosity had been neglected,

the left hand side of equation (16) would be zero, and hence p = k log

[ 1 + (b 20 - a 20 )a]a 2 which is the internal pressure required in the

case of an ideally plastic tube to maintain it in a state of unrestricted

flow (cf. [2] , page 118). If, on the other hand, the inertia term alone

is neglected and p is regarded as a constant internal pressure,

equation (16) gives a formula for 9 in terms of * which does not

contain t explicitly, namely

2(a 0 +2*)(b o+*) P + log a2 + (17)

S(b 0 - a2 0 ) L[b0 + J

Integration of equation (17) by means of several substitutions yields

b 22
b 0 - a 0 exp (x)

2
=~1exp (xt)]+x2 b 0

where x exp (kt•A)] + exp (kt/A) log . (18)
a 0

The fields of radial velocity and radial and circumferential

strain rate can now be written down from equations (4) and (5). The

stress field is obtained by substituting for * and 4 as functions of

the time in the following equations:



2'"mk I + log
(bZo +.. (b00 + 2')

(b~o + 2•) (b~ 19)



4. COMPARISON OF THE VISCOUS EFFECT FOR DIFFERENT

VISCOSITY COEFFICIENTS

It will now be assumed that p varying with the time, is the

internal pressure required to keep the expanding tube flowing un-

restrictedly in a certain manner. In order to simplify the problem

the condition that the interior boundary of the tube expands with a un-

iformly increasing speed is imposed. The pressure p(t) which is

required to produce this effect is found. The expansion of a is of

the form

a = ao + ct 2 (20)

where c is a positive constant. The function *(t) is found to

satisfy

2* = c 2t 4 + 2 0 ct2,

giving =2ct (% + ct 2 ) (21)

and 2c (a0 + 3ct 2)o

Omitting details of the calculation, we find that equation (16) now

furnishes

1I ( R F(3h 2+1) [ (.10- 1)1
P(h) - log + (. 1 + - log 1+ 2 2 I2 +

L0 h + 2 h ) h2] lh

(I - % 0 )h2  (1-8 0 )h

(22)

where @0 =bo/aO,

h = t (cI%)ft a dimensionless time,

10
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and P (h) - p(t)/Zk , the dimensionless pressure. Also R and B

are two dimensionless parameters analogous to the Reynolds number

and the Bingham number and defined by

D a 0 C kR=B = 'A M

For the present purpose it will be more convenient to utilize less signi-

ficant parameters defined by

R D a,~c B=(23)

The pressure can then be written

(.' 1 (32F1 (2ý 1)
"P(h)- log + 2  + R h log I+- +

20 +h V (1 + hZ )1

(I -c, 0
2 )h 2  1 B (l-gCZl)h

(at0+ h +2h7 B (SC +h0 + 2h 2 )0 +h 2

(24)

Equation (24) gives the dimensionless pressure required to produce an

unrestricted flow of the tube in which the interior boundary has a uniform

acceleration. The stress field is then given by:

r 1 log 1 +(P0 0 +R h 1) o( _c F 3 2+ g + (P(2-_,,2 )

"I (P O)]+ n +l2ho (PQO+ +2hO)

-h 2 (h2 +1 (z_ +p)(°o-''+hf ('0'O "
(25)

+B,, (h + ,h) (Oo2- ao2)

(~ ~+h +Zh I pO + h +Z
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(h h)P h4 2h2

I 1 log I + (p2(2o + RI3h+lozr ~ ~ NO +h + Zh)lo

uK(p 2  a0) h (h(+l)26( 0  )
+ P0 0-

2 4 4hh21

(p c0+ h + h) o h+h

+B,)ih(I+h 2 )(p' 0+ato+ 2h+4

(of 0+h04 + 2h) (p" +0 4 + 2h2 ) .(25)

and the velocity field u is found to satisfy

U = 4(1+ a Och 2  (26)

(P + h +2Zh)

where Po = r0 /a0.

As estimate of the effect of viscosity on plastic flow of the

type specified above was obtained from equation (24). The numeri-

cal values used in the investigation were as follows in c. g. s. units:

a0= 5,ao0= 2, c = 0. 1; D = 8.5; and k = 23.5 x 981 x 105, appropri-

ate for a thick walled brass (Zn 30 percent, Cu 70 percent) tube. The

viscosity coefficient of the metal in these units would be of order 1010.

Two values X = 5 x I010 and X = 10 were chosen, and the results

compared with that for A = 0 corresponding to zero viscosity. With the

above parameters the second term in (24), the inertia term, becomes

comparable with the other terms only in the final stage of yielding, and

for all practical purposes is negligible. The variations of the dimension-

less pressure with dimensionless time, for the three assigned values

of the viscosity; are shown in Fig. 1. It is seen that the viscosity has

a considerable effect during the initial stages of the yield process, and that

in order to maintain the same yield with greater viscosity, the initial rate
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of loading must be correspondingly increased. The required pressure

attains its maximum and may be allowed to decrease at a rate more

nearly comparable with the rate of unloading in the nonviscous case.

In each case the required pressure approaches zero asymptotically

with increasing time, as might be expected in the absence of fracture,

since the thickness of the tube is steadily decreasing.



5. COMPARISON OF PLASTIC, VISCOUS AND INERTIA EFFECTS

It is also of interest to compare the effects of perfect plasticity,

viscosity, and inertia on the expanding tube. For this purpose an

expansion

a = (a 0 /4) [ 5 + sin (wt - r/2] (27)

of the inner radius of the tube is imposed during the time interval

t 0 to t= r/r When t-0, a=a 0 and da/dt- 0;when t=(7/w),

a 3 a 0/2 and da/dt = 0. See Fig. 2. Hence (27) corresponds to an

expansion of the inner radius to one and a half times its initial value in

a time T-= 7r/ w, starting and finishing with zero velocity. It can then

easily be shown that
22

a 0  a

2 2
* 0----- 5+ sin t- 0n t,

32• sin 2 t- + 32 Cos t - ,

*2 0 2 r 10 a 20 W2

= • Cos 2 t - - ----2 sin t - •

(28)

The pressure variation needed to produce expansion (27) can be written

as

p,(t) = Pp(t) + FI (t) + PV (t) , (29)

2k

where P (t), PI (t) and P v(t) are the contributions due to perfect

plasticity, inertia, and viscosity respectively, and given by

14
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lo , b2, + 21PI) 0
-M f logF1 -(Z

01(t b= La ~ 29  (b z
P, (t) f - log L 0 - (b -=a o) v ,

P>,t) ,N (4,>0 -a oi
2 (a 0 + 29)(b'o + 29)

(30)

The numerical values of a0 , b0o D and k are chosen the same

10as previously. The value of X is now fixed at 5 x 10 . By varying

w the expansion can be made to take place in any desired time. Three

values of w were chosen. These correspond to an expansion of the tube

in 1 sec., 10-6 sec., and 10-7 sec. respectively. The pressure

variation with time required to produce the expansion was calculated

in each case from equations (28) through (30). The dimensionless pres-

sure contributions P., P1, and PV were plotted against t in each case.

When T = 1, corresponding to a slow expansion, inertia has a negligible

effect on the pressure required, but the perfectly plastic and viscous

contributions to this pressure are of the same order. See Fig. 3.

When T = 10-6 the required pressure is considerably increased and

the perfectly plastic contribution is a negligible part, but the inertia ef-

fect begins to be apparent. See Fig. 4. For T = 10-7 the inertia term

in p(t)/2k has a considerably greater effect (see Fig. 5).

It is noted that Figs. 4, 5 show that a negative pressure is re-

quired near the end of the period to produce the required expansion. By

referring to equations (14), (15) and (16) it is seen that p can be replaced

by a pressure (pi - Pe)' where pi and Pe are an internal pressure and
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an external pressure respectively. Thus, imposing a negative value

of the pressure p is exactly equivalent to an application of external

pressure and hence is physically possible.

The order of magnitudes involved in PV and PII is apparent

from equations (28) and (30). When the time of expansion T is altered

by some factor K , the viscous pressure contribution is altered

by a factor KI, and the inertia contribution by a factor K 2; the

perfectly plastic pressure contribution is, of course, independent of

T. For the type of problem considered, this shows an interesting

comparison over the full range of expansion times of the three effects

mentioned. In a slow expansion the flow approximates that of the plastic

quasi-static theory in which the strain rates are very small and the

inertia effects are neglected. As the speed of expansion increases

the viscous effect becomes important and then dominant, whereas

the inertia effect is still negligible. For even faster expansions

the effect of inertia becomes important and finally predominates.
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