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ON THE NECESSARY CONDITION FOR OPTIMAL CONTROL OF

NONLINEAR SYSTEMS

by

Hubert Halkin

Introduction.

Words such as "system," "control," "optimal control," etc., have

recently become very popular among a large group of engineers, partic-

ularly in aero-astronautics and electronics, as well as among many

social science researchers in economics and psychology. The use of

the same vocabulary in totally unrelated fields of study should not

surprise us when we realize that they refer to problems which have the

same mathematical structures. Among these mathematical structures, two

are of particular importance: the dynamical system and the control

system which are defined as follows:

A dynamical system is a pair (Y,R) where Y is an arbitrary

space, called the event space, and where R is a binary relation on Y

such that

(i) aRa for all a e Y, i.e., R is reflexive

(ii) aRb and bRc implies aRc, i.e., R is transitive

(iii) aRb and bRa implies a = b, i.e., R is antisymnmetric

(iv) aRb and aRc implies either bRc or cRb

These properties of the relation R correspond to the usual con-

cepts of causality and determinism. We may think of the formula aRb
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as meaning: the event b follows the event a. This correspondence

will be seen clearly in the examples given later.

A control system is a triple (Y,F,R(.)) where F is an arbitrary

space, called the strategy space, and where (YR(c)) is a dynamical

system for every 1 in F. To clarify these ideas let us consider a

particular type of dynamical system and the control system corresponding

to it.

First we shall consider the dynamical system associated with a

system of ordinary differential equations. In such a case the space Y

is the Cartesian product of the real time axis T with elements t

and of the n-dimensional Euclidean space X, called the state space,

with elements x = (x , ... , Xn). A function f(x,t) from X X T

into X is given. A binary relation R over T X X is then defined

by

(tlxl) R(t 2 ,x 2 ) iff x(t 2 ,xl,tl) = x2  and tj S t2

where x(t;x*,t*) is the solution of the differential system

x = f(x,t) a.e. t

satisfying the initial condition

x(t*;x*,t*) =x

We shall say that this binary relation R is generated over

T X X by the differential system k u f(x,t). We easily see that the

relation R satisfies the conditions (i) to (iv) given earlier, which
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implies that (T X X,R) is a dynamical system. More generally, the

relation R could be generated by a system of difference equations, of

differential-difference equations, of integral equations, etc. The

relation R could even be defined explicitly by an appropriate subset

of T XXX TX X.

Let us now consider the control system associated with a class of

systems of ordinary differential equations. The space Y is again the

Cartesian product of the real time axis T and of the state space X.

The strategy space F is given and for each a e F a function

f(x,t;a) from X X T into X is given. The binary relation R(a) is

then generated over T X X by the differential system

x = f(x,t;Q)

according to the previous definition. The triple kT X X,F,R(")) is

therefore a control system. We shall say that (t 2 ,x 2 ) is reachable

from (tlx 1 ) if (tlx 1 )R(a)(t 2 ,x 2 ) for some a E F.

Physics, as most descriptive sciences, is concerned with the study

of dynamical systems, whereas engineering, economics and the other

normative sciences are concerned with the study of control systems.

Classical mechanics offers a simple example of a dynamical system:

the set Y in classical mechanics is the Cartesian product of the time

axis and of the state space, and the relation R is generated by the

laws of mechanics, which are given in most cases under the form of a

set of differential equations. However, the whole field of physics

cannot be reduced to a scheme of such simplicity; no Laplace's observer



could help. Quantum mechanics, for instance, is a dynamical system

where the set Y is the Cartesian product of the time axis and of

function spaces of probability distributions.

As an example of a control system, let us consider a rocket. A

rocket is a mechanical system equipped with regulatory devices such as

rudders, thrust modifiers, etc. The variables describing the position

of these regulatory devices are called control variables. If these

control variables are given functions of the time and of the state

variables, i.e., position, velocity, etc., then we have a dynamical

system. If, however, we are allowed to choose the functions describing

the control variables in a certain given class of functions called the

strategy space, then we have a control system.

It is not difficult to imagine many examples of control systems

in other areas of engineering and economics. It should be noted that

a control system could be stochastic: in many problems the set Y

will be, as in quantum mechanics, the Cartesian product of the time

axis and function spaces of probability distributions.

When dealing with a dynamical system the essential question which

one should ask is: how does it behave, i.e., given a c Y which are

the properties of the set (b : aRb)? This question has been the object

of extensive studies, especially the theory of stability and oscilla-

tion of dynamical systems described by ordinary differential equations.

In the case of a control system a new type of question may be

asked: what is the "best" element of the strategy space? For example:

given a rocket and initial and terminal points in the state space, how

should we choose the control variables so that the rocket will pass

from the initial to the terminal point in the minimum amount of time?



Generally, we shall define an optimal control problem as follows:

Given

(1) a control system (Y,F,R(.))

(2) a subset D of YX Y

(3) a real function g on G = ((a,b,f): (a,b,f) e D X F, aR(f)b)

where (a,b,f) = (c : aR(f)c and cR(f)b)

Find an element (a,b,f) c G such that g((a,b,f)) is maximum. This

optimal control problem is denoted by the quintuple (Y,F,R(.),D,g).

In the theory of optimal control, as in the theory of dynamical

systems, it is possible to obtain very interesting results when we

assume that the relation R is generated by the solutions of a system

of differential equations.

In this work we shall consider control systems (Y,F,R(.)) of

the following type:

Y is the Cartesian product of the real time axis T with elements

t and of an n-dimensional Euclidean space X with elements

x =(x, 1... , xn).

F is the class of measurable r-dimensional functions [u] de-

fined on T and taking their values in a given set 11.

R([u]) for [u] E F is generated by the solutions of the system

i = f(x,u(t),t) a.e. t

where f(xu,t) is a given function.

With this particular type of control system we shall associate an

optimal control Problem (Y,F,R( ),D,g) of the following type:
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D = A X B where A is a set consisting of one point of Y

and where B is the set consisting of one line of Y

nparallel to the axis x

g(((Xa,ta), (xb,tb), [u])) =

In other words, we are given a point A in X X T and a line B

in X X T, parallel to the axis x n; how can we find a function [u]

in a given class F such that starting at A and integrating the

system k = f(x,u(t),t) we would end on B as far as possible in the

positive direction on xn? We call this problem the fundamental

problem of optimal control. This fundamental problem is stated in

greater detail in Section 1.

This work is principally devoted to the study of the necessary

conditions for the solution of the fundamental problem of optimal

control.

We want to stress here the fundamental difference between a clas-

sical problem of calculus of variations and a problem of optimal control.

In an optimal control problem the set n may be quite arbitrary, and

due to technological limitations it is very often a bounded and closed

set: for instance, the thrust of a rocket can only vary on the closed

interval [O,m] where m is the maximum available thrust. If a

classical problem of calculus of variations is put in the form of an

optimal control problem, the corresponding set a is always open.

This explains why the classical techniques of the calculus of varia-

tions do not work for the general case of optimal control problems.

Indeed, one of the most fundamental cancepts of the calculus of varia-

tions is the concept of the arbitrary variation: you compare a nominal
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trajectory corresponding to the strategy f with the trajectory corre-

sponding to a strategy f + 8 and in calculus of variations this is

always possible when 8 is small enough. In optimal control this is

not true anymore: if along a rocket trajectory the thrust has the

maximum available value m at some time, it has no meaning to consider

comparison trajectory where the thrust is augnented by a positive 8,

however small this 8 could be.

The most important result in the theory of optimal control is the

"Maximum Principle of Pontryagin," a generalization of the Weierstrass

E-test of the classical calculus of variations. In this work the

"Maximum Principle" is obtained by a method fundamentally different

from the method of Pontryagin and his associates, in particular we

avoid some unresolved topological difficulties encountered in their

reasoning. It should be remarked also that the assumptions we are

making in the statement of our problem, in particular on the differ-

entiability and boundedness of the function f(x,u,t), are much weaker

than the assumptions made by Pontryagin and his associates. In a

previous publication, [12], using the same method, we obtained the

same results for a more restrictive class of problems.

Any mathematical venture is made up of two parts: geometrical

intuition and analytical machinery. From the chronological point of

view the geometrical intuition always precedes the analytical manipu-

lation in the formation of a theory and the first is of great help to

understand the second. Unfortunately, this duality has a marked

tendency to disappear and the role of geometrical intuition is barely
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noticeable in the final form of a theory. This work is no exception

to this rule: the analytical machinery is easily seen. Besides clas-

sical results of the theory of ordinary differential equations, we

use some extensions of the results of Lyapounov [161 and Blackwell [3S

on the range of a vector integral and an application of Brouwer's

Fixed Point Theorem. Unfortunately, the geometrical motivation is

virtually absent from this work. For this re.son we shall make up for

this deficiency in the introduction. More precisely, we shall gener-

alize the concept of propagation and show that the fundamental problem

of optimal control described above can be viewed as a problem of optimal

propagation in an abstract space X.

A standard problem of classical propagation theory has the

following structure: we are given a medium with a propagation law;

the medium is a rest for t < to, we produce a certain perturbation

at time t and we want to predict what will happen for t > t0 0

This standard problem could be considered on two different

levels. If we want to predict the intensity of the perturbation for

every element in space-time as a function of the intensity of the

initial perturbation at time to, we have what we call a quantitative

propagation problem. In some circumstances, however, it is enough

to predict which elements in space-time could possibly be perturbed

as soon as we know which points are perturbed at the time t o This

is what we call a qualitative propagation problem.

To solve a quantitative propagation problem we need the concept

of intensity of a perturbation and a precise description of the
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space-time variation of this intensity which is usually given by a

partial differential equation.

In this work we shall restrict our interest to qualitative propa-

gation problems and consider the fundamental problem of optimal control

as a generalization of the qualitative propagation problem.

To every element (x,t) c X X T we shall associate the set

w(x,t) = (f(x,u,t) : u e •

The set w(x,t) will be called the "wavelet" at the point x for the

time t. The analogy with optics is clear: whenever a perturbation is

produced at the point x at the time t tban, in first approximation,

all the points of the set

(x + a dt : a e w(x,t))

will be perturbed at thc. .,me t + dt.

If we write x(t -. j) for the solution of

i = f(x,u(t),t)

satisfying the initial condition x(ta; [u]) = xa then

W(t) = Wx(t;[u]) : [u] e F)

is the set of points of X which at the time t could possibly be

affected by a perturbation having taken place at x = xa at the
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time t = ta. In other words, the boundary NW(t) of the set W(t)

is the wavefront at the time t of a perturbation starting at x = xa

at the time t = t a

We define a ray as a solution x(t;[ul) such that

x(t;[u])e NW(t) for all t e [ta, tb]

We then have the following simple but fundamental property: if an

element [u] of F is optimal for the control problem, then x(t;[u])

is a ray of the propagation problem. The proof of this property is

given in a previous paper [13] and may be summarized as follows: if

x(tl;[u]) is an interior point of W(tl) for some tI C [tEatb]

then x(t 2 ;[u]) is an interior point of W(t 2 ) for all t 2 E [tl,tb]

bince the solutions of i = f(x,u(t),t) at the time t2 depend con-

0tnu•,-.2 cn the initial conditions at the time tl; on the other hand,

if [u] is u•-4 iai then x(tb;[U]) is a boundary point of W(tb)

since otherwise ýe-. wo,2a 'he another [(] E F with (x(tb;[Z]),tb)E B

and xn(tb;[•]) > xn'(tb,,> ) conbc2dicting the optimality of [u];

hence x(t;[u]) E )W(t) for all t E it .

The optimal control problem is the: reduced to the study of the

rays of the abstract propagation problem. We -nay generalize to an

abstract propagation problem the Huyghens Principle and the associated

Huyghens construction. The basic facts about such a propagation may

then be stated as follows: if a wavefront has a tangent plane at a

point, then the wavelet leading to this point is entirely located on

one side of this tangent plane. Consequently, we maximize the wave-

front velocity, i.e., if p is the normal to the wavefront at this
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point then, along a ray passing through this point, the element [u] e F

is such that the scalar product of p and f(x,u(t),t) is maximum.

This property is closely related to Pontryagin's Maximum Principle.

In this work we will give a precise analytical formulation of this

scheme. To verify that an element [v) of F is optimal, we adopt

the point of view of an observer riding along the ray x(t;[v]) and

making its observation in a moving frame of coordinates attached to

the wavefront. For such an observer all the missed opportunities, i.e.,

the directions he could have followed but did not, are leading to points

on one side of a hyperplane passing through the origin. This fact can

be described analytically and leads to the mathematical formulation of

the Maximum Principle of Pontryagin. The hyperplane mentioned above is

the tangent hyperplane to the wavefront whenever such tangent hyperplane

exists. It should be noted, however, that our derivation does not re-

quire the existence of such a tangent plane to the wavefront. In most

intuitive derivations of Pontryagin's Maximum Principle the existence

of the tangent plane is implicitly assumed: these derivations are very

unsatisfactory since the real strength of the Maximum Principle of

Pontryagin lies in its applicability to problems where this assumption

cannot be made.

At the end of this introduction we want to compare the geometries

of Finsler, Riemann, and Euclid with the geometry induced on an auton-

omous propagation space by the "wavelets" w(x).

Let F(x,y) be a real-valued function defined on X X X. The

function F(x,y) induces in the space X a geometry for which the

distance ds between two neighboring points x and x + dx is given

by
11



ds = F(x, dx)

This geometry is called a Finsler geometry if

(i) F(x,ky) = kF(x,y) for every k > 0 and all (x,y) e X X X.

(ii) F(x,y) > 0 if y A 0.

(iii) 2 (x,y) exists and is positive definite for all
yy

(x,y) C X x X.

A Riemannian geometry is a Finsler geometry such that

n i

9 (x,y) = ( gi(x) y iyk

i, k=l

and a Euclidean geometry is a Riemannian geometry where

gik(X) = 8ik

or equivalently

S(n (yx)2

i =1

To a Finsler geometry characterized by the function F(x,y) on

X X X we associate the set valued function I(x) on X defined by

I(x) = (y : F(x,y) < 1i

The set I(x) is called the indicatrix at the point x of the

Finsler geometry on X. It follows from the conditions (i) to (iii)

that for a Finsler geometry the set I(x) has, with respect -to the

Euclidean norm, the following properties:
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(a) I(x) is closed and bounded.

(6) The origin is an interior point of I(x).

(7) I(x) is strictly convex and has a continuously varying

tangent hyperplane at each of its boundary points. In particti`lar, I(x)

is an ellipsoid in the case of a Riemannian geometry and the unit sphere

in the case of the Euclidean geometry.

Conversely, if we are given a space X and a set valued function

I(x) defined over X and satisfying the conditions (a), (P) and (7)

then there is a unique function F(x,y) such that

I(x) = (y : F(x,y) < 1)

Moreover, this function F(x,y) satisfies the conditions (i), (ii)

and (iii) of the definition of a Finsler geometry.

From that follows that a Finsler geometry can be equivalently

represented by the function F(x,y) or by the indicatrix I(x). We

see immediately that the geodesics of the Finsler geometry characterized

by the indicatrix I(x) are the rays of the abstract autonomous propa-

gation space characterized by the wavelets w(x) = I(x).

More generally, we could start with a space X, an arbitrary set

valued function I(x) defined on X, and study the geometry induced

on X by the indicatrix I(x), i.e., the geometry for which the

distance ds between two neighboring points x and x + dx is the

smallest nonnegative real number a such that

dx I(x)

13



In that case the rays of the abstract autonomous propagation space

characterized by the wavelets w(x) are the geodesics of the geometry

induced on X by the indicatrix I(x) = w(x).

We remark that the class of wavelets obtained by the definition

w(x) = (f(x,u) : u e n)

in the case of an abstract autonomous propagation space is much larger

than the class of indicatrices defined by

I(x) = (y : F(x,y) < 1)

in the case of a Finsler geometry.

For instance, we could obtain wavelets for which the origin is no

more an interior point, which are not closed, which are not strictly

convex or even with a lower dimension than the space itself. The

geometry obtained by taking these wavelets as indicatrices can have

some surprising properties: between two different points arbitrarily

close to each other with respect to the Euclidean norm, we could have

more than one geodesics or even no geodesics at all. Hence the geometry

induced on the space X by the wavelets w(x) is much more general

than any Finsler geometry defined on the same space X.
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A GUIDE TO THE READER

In Section 1 we give a precise statement of the fundamental prob-

lem of optimal control mentioned in the introduction. In Sections 2

and 3 we introduce some new concepts, perform some transformations,

prove a few propositions in order to be able to state precisely the

series of theorems given in Section 4. In this Section 4 are assembled

all the results of this work: the necessary condition for the optimal

control of a nonlinear iynamical system. In Sections 5 to 9 we estab-

lish some intermediary results on which are based the proofs of the

theorems of Section 4. These proofs are given in Section 10.

Although this work is entirely devoted to the theory of the

general nonlinear dynamical system defined in Section 1, we shall

make frequent references to the theory of certain linear systems intro-

duced at the end of Section 2. We do it for the following reasons:

(i) Many concepts and results which are necessary to the study

of nonlinear systems but which are elaborate and difficult when dealing

with these nonlinear systems become particularly clear when they are

applied to the study of linear systems.

(ii) The methods developed here for nonlinear systems furnish

a very simple theory for the linear systems.
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SECTION 1

Statement of the Problem

In this section we shall give a precise formulation to the funda-

mental problem of optimal control described in the introduction.

We assume that we are given the following elements:

(i) a point

A = (x't i (xa, 2 Xan t ) e X X T (1.1)
S( a) a a a a

where X, called tne state space, is the Euclidean n-dimensional space

with elements x = (x 1 ... , xn) and where T is the real line with

elements t. T is usually interpreted as the time axis. The space

X X T is called the event space.

(ii) a line B in X X T, parallel to the xn-axis and deter-
i

mined by its projections Xb, i = 1, ... , n-l and t on the other
Xb1 tb

axis. More precisely, B is the set

((x,t) : xi =% no -l .,-~ (1.2)

((x~t) Xb for i = 1, .. ,n-1, x ne R, t = tb) (12

where R is the real line.

(iii) a set

C(u (1.3)

where U, called the control space, is the Euclidean r-dimensional
1I r

space with elements u = (u , ... , u )

(iv) an n-dimensional vector valued function

f(x,u,t) = (fl(x,u,t), f 2 (x,u,t), ... , fn(X,U,t)) (1.4)
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(v) the class F of all bounded measurable [r-dimensional]

vector valued functions Eu] = ((u(t),t) : t e [ta tb]] satisfying

the condition

u(t) e n for all t e [tatb] (1.5)

Given all these data we define E as the set of all [n-dimensional]

vector valued functions [x] = ((x(t),t) : t e [t ,t b] such that

(1) [x] is continuous and a.e. differentiable (1.6)

(2) x(ta) = X (1.7)

(3) there exists a [v] e F with the property

k(t) = f(x(t).,v(t),t) a.e. t e [t a't b] (1.8)

(4) there exists an E > 0 such that f(x,u,t) and fx(Xu,t)

are defined, measurable with respect to u and t, uniformly equi-

continuous with respect to x, and uniformly bounded for all

(x,t,u) c N([x],e) X S* (1.9)

where

N([x],E) = [(x,i) : 'xxt1+l-1<2 t, tb]) (i.I0)

and where Q* is any bounded subset--of fl.-

The fundamental problem of optimal control is then to find an

element [x] in E such that

(a) (x(tb),tb) r B (B.11)

(G) for any [] in E such that

17



(-x(t),tb) e B (1.12)

shall hold the relation

;n(tb) _5 xn(th) (1.13)

The problem as formulated above does not yet exhibit the charac-

teristic structure of an optimal control problem: we have still to

introduce the strategy space. One could be tempted to consider as

strategy space for this problem the totality of the function space F

introduced earlier. This can be done indeed but at great cost: we

must make strong assumptions on the function f(x,u,t) in order to

insure for every [u] in F the existence and uniqueness of the solu-

tion to the differential system

i = f(x,u(t),t) a.e. t e [ta, tb] (1.14)

with the initial conditions

x(t) a xa (1.15)

In this work we prefer to avoid making any further assumption on

the function f(x,u,t). Instead we shall restrict the strategy space

to an appropriate subset F* of F defined as the set of all [v] e F

for which there exists an Ex] e E with the property (1.8).

According to the following proposition, the set F* has now all

the properties of a strategy space in the sense of the introduction.

18



Prcpcsition 1.1. If [v] e F* then there is a unique [xl e E satis-

fying the property (1.8).

Proof of Proposition 1.1. By definition there exists at least one such

[x] e E; let us assume that there is another such [xl e E with

[x] A [x]. Let T sup (t : 7(0) = x(e) for e < t) such a T
t E[t ,tb]

exists since x(ta) =7(ta) = xa- Moreover, i(c) = x(T) since [71

and [x] are continuous and T A tb since [`] A [x]. Let e and

Sbe two positive real numbers corresponding to [x] and [3] in the

definition of E. Let = min( E, •j. By assumption the functions

f(x,v(t),t) and fx(x,v(t),t) are then bounded and measurable with

respect to t in the e" neighborhood of the point (x(r),'). Hence,

from the theory of ordinary differential equations, there is a 5 > 0

such that x(t) = 3(t) for t e [r,r + 8). This contradicts the

definition of T and concludes the proof of Proposition 1.1.

Proposition 1.1 allows us to make the following definition: If

[v] e F*, let [x([v])] = ((x(t;[v]),t) : t e [ta tb]) be the unique

element in E with the property (1.8).

We are now in a proper position to state the problem in terms of

the strategy space F* as follows:

Find an element [v] e F* such that

(a) (x(tb;[VD),tb) e B (1.16)

(0) for any [w] e F* with the property

(x(tb;[w]),th) e B (1.17)
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shall hold the relation

xn(tb;[w]) < xn(tc;[v]) (1.18)

The function [v] satisfying the conditions (a) and (P) shall be

called an optimal control function and the corresponding function

[x([v])] shall be called an optimal trajectory.

Remarks on the structure of the function f(x.ut)

We should mention here two differences between the statement of

the fundamental problem in optimal control given above and the funda-

mental problem treated by Pontryagin and his associates.

In our formulation we allow the function f(x,u,t) to be depend-

ent of the variable xn to be maximized at time tb. We are allowing

this dependence for practical and esthetical reasons: to make the

assumption that f(x,u,t) is independent of xn would lead to very

little simplification of the subsequent developnents but would never-

theless break the synmmetry among the state variables. Moreover, many

practical problems show a natural dependence of the differential

equations on the variable to be maximized: in the classical problem

of the maximization of the payload of a rocket, the evolution of the

rocket depends on its mass at every intermediate instant of time.

Also, in contradistinction to Pontryagin's formulation, we do not

require the differential system to be time independent.

However, by an appropriate introduction of new artificial variables

we may transform our problem into the problem treated by Pontryagin and

his associates. But the new problem obtained by this introduction of
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artificial variables is always degenerate in the following sense: any

element [u] of F* satisfies Pontryagin's Maximum Principle. In

order to obtain nontrivial necessary conditions for an element [u) of

F* to be optimal we must, in such a case, use the so-called

"transversality conditions." The methods developed in this work lead

to a very clear geometric interpretation of this type of degeneracy

which will be discussed in detail in Section 4.

Moreover, because of the assumption on the continuous dependence

.of the system of differential equations on the state variables, this

transformation cannot be done if the time dependence of the differential

equations is not continuous; this is to be contrasted with our very

weak assumption on the time dependence of the differential equations:

we require only measurability with respect to time.

We want to make another remark closely related to the introduction

of new artificial variables and on the necessity to consider transver-

sality conditions in such cases. The statement of the problem given

here is made up of two parts: we define a control system with initial

conditions by (1.1), (1.3), (1.4) and (1.5) and for this control system

with initial conditions we define an optimal control problem by (1.2),

(1.11), (1.12) and (1.13).

Most of the developments made in the following sections depend

only on the control system with initial conditions but not on the

particular optimal control problem. In fact, as we shall see in

Section 4, our results are directly applicable to a large class of

optimal control problems: this will allow us to dispense with the

formal transformations required in order to apply the Maximum Principle

21



of Pontryagin and with the consideration of transversality conditions

which, after such transformations, are strictly needed If we want to

obtain a nontrivial set of necessary conditions for an optimal solution.
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SECTION 2

Comoving Coordinate Space along a Given Trajectory

In the introduction we wrote: "To verify that an element [v] of

F* is optimal we adopt the point of view of an observer riding along

the trajectory [x([v])) and making his observations in a moving frame

of coordinates attached to the wavefront." In this section we intend

to carry out this scheme: for an arbitrary element (v] of F* we

shall define a moving frame of coordinates Y([v]) by an appropriate

transformation from X X [t at a nd for each

[u] in F* we shall study the trajectory [y([u],[v])] =

[(y(t;u],[v]),t) : t e [t, tb]) which is the transformation in

Y([v]) X [ta tbI of the trajectory [x([u])] in X X [t atb]. The

space Y([v]) X [tat] is called the comoving coordinate space along

the trajectory [x([v])].

We introduce the space Y(fv]) X (ta t b] and the trajectories

[y([ul,[v])] in that space for the following reasons: in the space

Y(tv]) X [tatb] there is a very natural way to associate with every

trajectory [y([u],[v])] an approximate trajectory [y([u],fv])]

((Y(t;[u],[v]),t) : t e fta tb]) having a particularly simple structure.

According to our previous analogy the trajectory [y([u],[v])] could be

considered as the most reasonable approximation of the trajectory

[y([ul,fv])J made by the observer riding on the trajectory [x([vI)]

and knowing the function f(x,u,t) for only those values of x and

t which are in the neighborhood of his own trajectory.
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The consideration of these various types of trajectories will be

of great help to derive the necessary conditions for the optimality of

the trajectory [x([vB)]; the guiding idea of this derivation, given in

Section 4, could be summarized as follows: assuming that [y( [u],[(v))

is the exact expression of [y([u],[v])] we derive easily a set of

necessary conditions for the optimality of [x([v])], then we prove

that our conclusions are still valid when [y([u],[v])] is a close

enough approximation of [y([u],[vI)].

After these commentaries we shall now proceed with the precise

definitions of the entities mentioned above.

For any [v] e F* we define an n X n matrix D(t;[vl) as

follows:

D•;vl f(x.v(t).t) t E (ta~b (2.1)a t;v)=x=x(t; [v]) t]

More precisely, D(t;(v)) is the n X n matrix with elements

Di (t;[v]); i,j = 1,2, ... , n; defined by

D ift;rl - 6fi(x.v(t),t) t E (tat] (2.2)

jIv) = xj x=x(t;(v]))

It is much more convenient to use these relations in the form

(2.1) than in the form (2.2). Such a convention and its obvious gen-

eralizations will be used throughout this work.

From our assumptions we know that D(t;[v]) is bounded and

measurable over [tatb].
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Let G(t;[v3) be an n X n matrix, continuous with respect to t,

defined over [ta tb 1, satisfying the matrix differential equation

a(t;bv])= -G(t;bv]) D(t;[v]) a.e. t b [ta tb] (2.3)

and such that

G(tb;I[v])= I (2.4)

where I is the identity n X n matrix.

Proposition 2.1. The matrix valued function G(t;[v]) exists, is

unique and bounded over [t a,tb.

Proposition(2.1)is an immediate consequence of the properties of

D(t;Ivl) and of the theory of ordinary differential equations.

We shall now introduce a Euclidean n-dimensional space Y( [vD)

with elements y = (y 1 ... , y n) by the mapping

X([v]) : X [ta,tb] -*Y([vI) x [ta'tb] (2.5)

where

(y,t) = O(x,t;[vl) (2.6)

is defined by

y = G(t;[vl)(x - x(t;[vl)) (2.7)

Under the mapping 0([v]) the trajectory
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[x(u])) = ((x(t;[u]),t) : t C [tatb]) with [u) e F* (2.8)

will be transformed into the trajectory

[y(u],[v])] = {(y(t;[(u],v]),t) : t e [t a, tb] (2 .9)

defined by the relation

y(t;[u],[vl) = G(t;[v])(x(t;[ul)-x(t;[vl)) for all t e [ta, tb]

(2.10)

Proposition 2.2. For every [v] and [u] in F* the function

[y([u],[v])] exists, is unique and continuous.

Proposition (2.2)follows directly from the relation (2.10) since we

already know that G(t;[v]),x(t;[u]) and x(t;[v]) exist separately,

are unique and continuous over [t at b] for [v] and [u) e F*.

Let us now define the approximate trajectory

[Y([u],[v])]= 1(((t;[u],[v]),t) : t e [t atb]} (2.11)

by the relation

+(t;[u],[V]) f G(T;[v])(f(x(l;(v]),u(¶),t)-f(x(¶l[v]),v(T),T)) dT

t
a

for all t e [t atb] (2.12)

ProPosition 2.3. For every (v] e F* and every [ul E F the function

[y([u],(vl)1 exists, is unique and continuous.

Proposition(2.3)follows directly from the definition (2.12) since

we already know that G(t;[v]),f(x(t,(v]),u(t),t) and f(x(t;[v]),v(t),t)
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are measurable and bounded over [t ,t b for all [v] e F* and all

fu] e F.

As we mentioned at the beginning of this section, the trajectory

[y([u],fv])] can be considered as an approximation of the trajectory

[y([uI,[v])]. In Section 7 we shall define precisely in what sense

the word "approximation" should be understood and what conclusions we

may draw from it. We already see at this point that

y(t;[v],[v]) a y(t;[v],[v]) a 0 all t e [ta, tb] (2.13)

The proximity of [y([u],[vJ)] and [y([u],[v])] is particularly

apparent in the case of a particular class of linear systems, defined

in the following paragraph, since we then have

[y([u],[v])] = [y([u],[v])] for all [u] and [v] e F (2.14)

Application to a Linear System

We assume here that f(x,ut) has the form

f(x,u,t) = A(u,t)x + q(u,t) (2.15)

or the form

f(x,u,t) = A(t)x + p(u,t) (2.16)

When the function f(x,u,t) has the form (2.15) we shall speak of a

linear system and when it has the form (2.16) we shall speak of a

linear* system. From the definition it follows that a linear* system

is a particular type of linear system. In the relations (2.15) and
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(2.16) the expressions A(ut) and A(t) are n X n matrices, and

q(ut) is an n-dimensional vector. We assume that A(u,t), A(t) and

q(u,t) are measurable with respect to their arguments and uniformly

bounded over X" X [t a,tb I for any bounded set 0* subset of n.

In the case of a linear system we have

D(t;[vl) = A(v(t),t) for all t e [t a,t b (2.17)

and G(t;[v]) is the continuous solution of the matrix differential

equation

G(t;[v]) = -G(tl[v]) A(v(t),t) a-eo t e [t a't b] (2.18)

with the terminal condition

G(tb;[v]) = I (2.19)

Such a solution is usually written under the symbolic form

tb
G(t;[v]) = exp(f A(v(¶),¶) dT) (2.20)

t

We then have

y(t;[u],[v]) = G(t;[v])(x(t;[u])-x(t;[v])) for all t E [ta, tb] (2.21)

and

t
y(t;[u],[v]) = f G(¶;[v])(A(u(T),T)x(¶;[v])+4(u('r),T)

t
a

- A(v(T),¶)x(T;[v])-q(v(T),T)) d¶ (2.22)

for all t e [ta,tb]
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We shall now compare the two trajectories (y([u],(v])3 and

We know already that

y(ta ;[u],(v] = (t a;lu],[v]) (2.23)

since from the relation (2.21) we have

y(ta;tuI,[vI) = G(t a;[v))(x(ta ;tu])-X(ta;[vD))

= G(t ;[v])(xa- x) a 0 (2.241)

and since from the relation (2.22) we have

Y(t ;tu),[v]) = 0 (2.25)

Let us now consider y (t; [u],tvI) and k'(t;Cu],[vI). We have

ixmmediately

(t;ulvl)= G(t;[v])(A(u(t),t)x(t;[vD+-ý(u(t),t)

for a.e. t e [t a,t 1 (2.26)

and
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= (G(t;[v])(x(t;[uI)-x(t;[V])))'

= -G(t;[v])A(v(t),t)(x(t;[ul)-x(t;[v]))

a.e. t E [t atb] (2.27)

The relations (2.26) and (2.27) imply

a.e. t e [t ,tb] (2.28)

We see immnediately that in the case where

A(u,t) Av)a.e. t e (t ,ltb] (2.29)

we have

X'tdIu],[v])- (t;[u],[v]) a.e. t e [t at*b] (2.30)
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The relations (2.23) and (2.30) then implies

y(t;[u],[v]) = •(t;[u],[v1) all t e [tajtb] (2.31)

We can then state the following result:

Proposition 2.4. For a linear* system

[y([u],[vD)] = [y([u],[v])] for all [u] and [v] e F (2.32)

On the other hand, we see that, even for a linear system,

[y([ul,[v])] is in general different from [y([u],[v])] and only an

approximation of [y([u],[v])] in a sense which will be defined in

Section 7.

The identity of [y([u],[v])l and [•((u],[v])] in the case of

a linear* system is particularly helpful to obtain quickly, for a

linear* system, the necessary conditions stated in Section 4 since

Theorem III, the most difficult theorem of Section 4 is, as we shall

see, trivially true in that case.
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SECTION 3

Set of Reachable Events

In this section we shall introduce the important concept of the

set of reachable events. Given a control system, we shall say that a

point (x•,t ) in X X T is reachable from the point (xoatcl) in

X X T if t 2 t and if there exists a control function [u] in

the strategy space F* such that the solution of the system

ýc - f(x,u(t),t) a.e. t e (to,, t P (3.1)

x(ta) -- xo (3.2)

satisfies the terminal condition

x(t) =X (3-3)

In other words, following the terminology used in the introduction,

we say that (x ,tP) is reachable from (xa,ta) if and only if

(ta,,xaC)R([uI)(t ,xP) for some [u] in F* (3.4)

We shall consider specially the set H, intersection by the hyper-

plane t = th of the set of all events reachable from the initial

event A by the trajectories [x([u])] with Cul e F*. In the sub-

sequent analytical developments we shall also use the set H([v]) which

is the intersection by the hyperplane t = th of the set of all events

reachable from the initial event y - 0 by the trajectories [y([u], (v])]
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with Eu] e F*. Similarly, we shall consider the set H((v]) which is

the intersection by the hyperplane t = tb of the set of all events

reachable from the initial event y = 0 by the approximate trajectories

[y([ul,[vl)] with Eu] e F. According to our previous analogy, the
+

set H([v]) may be considered as the most reasonable approximation of

the set H([v]) made by an observer riding along the trajectory

[x([v])I but knowing the function f(x,u,t) for only those values of

x and t which are in the neighborhood of his own trajectory.

Formally, we then have

H = (x(tb;[u]) : Eu] e F*)

H(Cv]) = y(t b;[u],[v]) : (u] E F*) for any (v] e F*

H([v]) = M•(tb;Eu],[v]) :u] c F ) for any [v] e

We immediately have the relation

H([vI) = Ca-x(tb;[v]) : a c H)

The study of these sets and particularly of their boundaries will

be made in the next section.
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SECTION 4

Necessary Condition for the Optimal Control of a

Dynamical System

In this section we give a series of seven theorems. These theorems

summarize the whole content of this work. In the remaining sections we

shall be concerned, directly or indirectly, with the proof of these

theorems. More precisely, we shall establish in Sections 5 to 9 some

preliminary results which will be used in Section 10 in the explicit

proof of the seven theorems.

Theorem I. If an element [v] of F* is optimal then the point

x = x(tb;[vl) is a boundary point of the set H.

Theorem II. If the point x = x(tb;[vl) is a boundary point of the

set H then the point y = 0 is a boundary point of the set H([v]).

Theorem III. If the point y = 0 is a boundary point of the set
+

H([v]) then y = 0 is a boundary point of the set H([vl).

Theorem IV. If the point y = 0 is a boundary point of the set H([vl)

then there exists a nonzero constant vector 0([vJ) such that for all

[u] in F:

(n([v])IG(t;[vl)(f(x(t;[vl),u(t),t)-f(x(t;[v]),v(t),t))) 5 0

a.e. t e [t 'tb] (4.1)



By (aIp) we mean the scalar product of a and 0.

Theorem V. If there is a nonzero constant vector x([v]) such that

the condition (4.1) is satisfied for all [u] in F then there is a

vector p(t;[v]) continuous and nonidentically zero over [ta,tb]

such that:

(i) p(t;[v]) = GT (t;[v])g([v]) all t e [t atb] (4.2)

(ii) for all [u] in F

(p(t;[v]) l(f(x(t;[v]),u(t),t)-f(x(t;[v]),v(t),t))) • 0

a.e. t e [ta, tb]1 (4.3)

(iii) b(t;[v]) = - DT(t;[vl)p(t;[vl) a.e. t e [tatb] (44)

The superscript T indicates the transposition of a matrix.

Theorem VI. If the point x = x(tb;[vl) is a boundary point of the

set H then there exists a vector p(t;[vl), continuous and non-

identically zero on [ta tb], such that the conditions (4.3) and (4.4)

are satisfied.

Theorem VII. If an element [vl of F* is optimal then there exists

a vector p(t;[vl), continuous and nonidentically zero on [tatbh],

such that the conditions (4.3) and (4.4) are satisfied.

As we mentioned earlier, the demonstrations of these theorems are

given in Section 9. The demonstrations of Theorems I, II, V, VI and

VII are almost imediate. The proofs of Theorems III and IV are based

on the results established in Sections 5 to 10.
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If we define

H(x,u,t,p) = (plf(x,u,t)) (4.5)

then Theorem VII could be equivalently formulated as follows:

If an element [v] of F* is optimal then there exists a vector

p(t;[v]), continuous and nonidentically zero on [t at b] such that

WI ý(t;[v]) 6H(x(t:Fv]),v(t),tP)I

8P Ip=p(t; [v])

a.e. t e [ta, tb] (4.6)

i.e.,

k(t;[vl) = f(x(t;[v]),v(t),t) a.e. t c [t a tb] (4.7)

(ii) b(t;[v]) = " H(x'v(t),t'p(t:[v])) xx-xt [ ]

ax Ix=x(t; [v])

a.e. t e [tatb] (4.8)

(iii) H(x(t;[v]),v(t),t,p(t;[v]).2: H(x(t;[v]),u(t),t,p(t;[v]))

for all [u] in F and a.e. t e (t atb] (4.9)

This equivalent formulation of Theorem VII is the well-known

Maximum Principle of Pontryagin.

Let us make some comments on the logical structure of the series

of theorems given earlier.



In Theorem I we associate two different notions: the concept of

optimality for the particular optimal control problem under ccnsideration

and a topological property of the set H, which set depends only on the

given control system with initial conditions but not on any particular

optimal control problem.

In Theorems II to V we give a series of implications concerning

certain properties of the sets H, H([v]) and H([v]).

In Theorem VI we give the combined result of all the implications

contained in Theorems II to V.

In Theorem VII we use Theorem I as an intermediary in order to

obtain from the topological results of Theorem VI the necessary con-

dition for an optimal solution of the particular optimal control problem

under consideration.

Theorem VI is the most important result in the theory of control

systems. This theorem, we said earlier, depends only on the given

control system with initial conditions but not on any particular optimal

control problem. Hence, when a particular optimal control problem is

given, we need only to verify that Theorem I is valid in order to

derive from Theorem VI the appropriate necessary conditions for an

optimal control. The verification of Theorem I is particularly simple

in the case of the fundamental optimal control problem considered in

this work but could also be easily done for a large class of different

optimal control problems.

In contradistinction the method of Pontryagin and his associates

is the following: when confronted with a particular optimal control

problem they introduce new artificial variables which transform the
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control system itself, and hence the set H in such a way that, for

the new control system, the particular optimal control problem has the

form of the fundamental optimal control problem. Unfortunately, the

new set H, obtained after introduction of these artificial variables

has, with respect to the new event space, a lower dimensionality than

before. In this case, Pontryagin's Maximum Principle, in the form

given above, can be trivially satisfied for any control, not necessarily

optimal, as we shall show in a later paragraph. For such case Pontryagin

and his associates have given a stronger form of the Maximum Principle,

including some auxiliary conditions similar to the transversality con-

ditions in calculus of variations.

Finally, let us underline how closely these theorems correspond to

the intuitive procedure stated in the introduction: "To verify that an

element (v] of F* is optimal we adopt the point of view of an ob-

server riding along the trajectory [x([v])] and making his observations

in a moving frame of coordinates attached to the wavefront. For such an

observer all the missed opportunities, i.e., the directions he could have

followed but did not, are leading to points on one side of a hyperplane

passing through the origin."

By Theorem II we identify the moving frame of coordinates attached

to the wavefront with the combving coordinate system Y([vl) X [t a th]

along the trajectory [x([v])].

+
By Theorem III we show that for our purposes the set H([v]) is

as good as the set H((v]). In our analogy the set H([vJ) is the

most reasonable approximation of the set H([v]) made by the observer

riding along the trajectory [x([v])] but knowing the function f(x,ut)
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for only those values of x and t which are in the neighborhood of

his own trajectory. In other words, Theorem III states that the most

reasonable approximation made by the moving obse-rver is good enough as

far as the derivation of necessary conditions is concerned.

In Theorem IV we identify the vector n([v]) with the normal to

the hyperplane passing through the origin and such that all missed

opportunities are directions leading to points located on one of its

sides only.

Theorem V describes the same property as Theorem IV but from the

point of view of an observer fixed in the space X X T instead of the

moving observer considered earlier.

Remarks on the dimensionality of the set H

By construction the set H is a subset of the n-dimensional

Euclidean space X. In Theorems II to VI we have derived some proper-

ties of the elements [u] e F* for which x(tb;[u]) is a boundary

point of the set H. In other words, we have given some necessary con-

ditions on [u] in order that x(t;[uI) be a boundary point of the

set H. If the dimension of the set H is less than n then all the

previous results become trivial since for any [u] e F* the point

x(tb;[u]) will be a boundary point of the set H. This happens, for

instance, when the set H is a subset of a sufficiently smooth n-l

dimensional manifold H* nontangent to the line B' projection on X

of the line B in X X T. In such a case the set H n B' has only

isolated points and therefore all [u] e F* with (x(tb;[u]),tb) e B

are locally optimal. This explains why the necessary conditions for
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an optimal solution can be trivially satisfied in such a case for any

control, not necessarily optimal. This example shows the need of

stronger necessary conditions. This need is partially satisfied by

the consideration of the so-called "transversality conditions."

Application to linear systems

We saw at the end of Section 2 that, for the linear* system (2.16)

we have

[y([u],(vl)] = [y([ul,[vl)l for all [u) and (v] in F (4.10)

In particular, this implies

y(tb;[u],[v]) = y(tb;[ul,[vl) for all [u] e F (4.11)

i.e.,

+

H([v]) = H([v]) (4.12)

The relation (4.12) simplifies greatly the derivation of the

necessary condition for the optimal control of a linear* system. Indeed,

Theorem III is trivially true for a linear* system and since none of the

other theorems are particularly difficult, as we shall see in Section 10,

we may now consider the entire theory for the optimal control of a

linear* system as very simple.

In the case of the linear system (2.15), the relation (4.8) takes

the simple form:

(t;[v] - AT(v(t),t) p(t;[v]) (4.13)
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SECTION 5

Norms for the Space of Control Functions and for the

Spaces of Trajectories

In this section we define various norms for the space F of con-

trol functions and for the spaces of trajectories. These norms will be

extensively used in the remaining sections of this work.

Let us consider an arbitrary collection G of functions from

[ta, tb] to a Euclidean space. An element ((z(t),t) : t C [ta,tb])

in that collection will be denoted by [z].

Let us define

d([z],[z]) = ess sup Iz(t) - z(t)l (5.1)
t e [t atb]

and

([z],[-z]) = i((t z(t) A i(t) and t e [taptb])) (5.2)

for every [z] and [zi in G.

By the symbol "ess sup" we mean the essential supremum, i.e.,

ess sup Iz(t) - z(t)l - inf sup Iz(t)- z(t)I (5.3)

ab EotC .t [a, tb] 0€° c

where

-o = Uta'tbI- B : •(B) = O) (5.4)
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It is easy to prove that d(.,.) and a(.,.) are norms for a

space of continuous functions and semi-norms for a space of measurable

functions.

In this work we shall use d(.,.) over the spaces of trajectories,

continuous by definition, and we shall use d(.,.) and a(.,.) over

F, the space of control functions, measurable by definition.

If we define the equivalence relation - on F by

[u] -[VI iff u(t) = v(t) for a.e. t c [ta, tb] (5.5)

then d(.,.) and a(.,.) are norms for the quotient space T = F/'.

In order to simplify the notations we shall talk of the set F

even where we should talk strictly of the set F of equivalence classes

of F under ", and we shall simply write

[u] = [vI (5.6)

even where we should write strictly

[u] [ [vI (5.7)

It should be stressed that the two norms a(.,.) and d(.,.)

are not equivalent: they give rise to two completely different to-

pologies on F.

To simplify the notation d([z],O) shall be written d([z]) and

similarly a([z],O) shall be written a([z]).
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A subset V of F such that there exists a k with

d([u])<k for all (u] e (5.8)

is called a d-bounded subset of F.

In particular, we shall denote by Fk the set of all elements in

F such that d([u]) 5 k, i.e.,

Fk = ([u] un] e F, d([u]) _< k) (5.9)

Similarly, Fk will be the set

k
Fk [[u] [u] 4 F*, d([u])_< k) (5.10)
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SECTION 6

Curvilinear Coordinate Space along a Given Trajectory

In Section 2 we have associated to every element [v] of the

function space F* a space Y([v]) X [t ,t ] called the comoving co-ta b

ordinate space along the trajectory [x([v]l)]. In this section we

shall associate to every element [v] of the function space F* an-

other space denoted by Z([v]) X [t at bI and called the curvilinear

coordinate space along the trajectory [x([v])]. The consideration of

the spaces Z([v]) X [t a,t b] is a very convenient tool in the study

of the existence and uniform convergence of trajectories corresponding

to control functions in a d-bounded subset of F in terms of the norm

a defined in Section 5 over the space F of control functions.

In the case of the linear system introduced in the last paragraph

of Section 2, we shall prove that Z([v]) = Y([v]) and we shall show

that for a linear system the results given in this section take a much

simpler form. Moreover, if the system is a linear* system we proved

already in Section 2 that we have the relation [y([u],[v])] =

[y([u],[v])]. This will enable us to show that for a linear* system

the results given in this section could be easily derived from the

classical theory of nonhomogeneous linear differential equations. In

the last paragraph of this section we shall consider briefly the case

of linear and linear* systems.

If [w) e F* and (7,-) XX [t tb] let

[X([W],•,•)]1 = ((x(t;[w],-X,T),t) : t e [t a,•]h) (6.1)



be a continuous vector-valued solution of the differential equation

ý(t;[w],-,•) = f(x(t;[w],•,t),w(t),t) a.e. t e (ta tb] (6.2)

satisfying the initial condition

S= x(T;w]+ (6.3)

For every [w] e F* we shall now introduce a Euclidean

n-dimensional space Z([w]) with elements z = (z z n) by

the mapping

T(w] : X x [tatb] -'ZC[w]) X (ta,'t] (6.4)

for which

(z,t) - '(x,t;[w]) (6.5)

is determined by the relation

z = x(tb;[w],x-x(t;[w]),t) - x(tb;[w]) (6.6)

or equivalently the inverse mapping

Yl ([w)) : Z([w]) x [ta,tb]-XX [ta,] (6.7)

for which

(x,t) = T- (z,t;[w]) (6.8)
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is determined by the relation

x = x(t;[w],z,tb) (6.9)

In other words, the mapping T([w]) associates to an element

(x,t) of X X [ta tb] an element (z,t) in Z([w]) x [tatb) deter-

mined as follows: z is the difference of the projections on the

terminal hyperplane, i.e., the hyperplane X X (tb), of the points

(x,t) and (x(t;[w]),t) of the hyperplane X X (t) where the pro-

jecting lines are the solutions of the differential system with the

control function [w]. Conversely, the inverse mapping T'l([w])

associates to an element (z,t) in Z([w]) x [ta, tbI an element

(x,t) in X X [ta tb] determined as follows: x is the projection

on the hyperplane X X (t) of th. point (x(tb;[w]) + ztb) of the

terminal hyperplane X X (tb). The projecting lines are as before the

solutions of the differential system with the control function [w].

In the following propositions we shall prove some results con-

cerning the existence, uniqueness and boundedness of the mappings

T([wI) and their inverses T1 ([w]).

Definition: If [v) e F*, k is a positive number and E is the

positive number associated to [v] in the definition of E, let us

define F*([v],k) to be the set

([w] : [w] e F*, d([w]Av]) < k, d([x([w])],[x([v])]) 52) (6.10)

46



It should be remarked that we do not know at this point if the set

F*([v],k) contains any other elements besides [v). In Proposition (6.10)

we shall exhibit a large class of elements in F which also belong to

F*([v],k) and a fortiori to F*. The set F*([v],k) plays a very im-

portant role in this work: the necessary condition for the optimality

of the element [v] of F* will be derived from the comparison of [v]

with only those elements in F* which also belong to F*([v],k).

Proposition 6.1. If [w] e F*([v],k) and C is the positive number

associated to fv] in the definition of E then L can be used as

the positive number associated to [w] in the definition of E.

Proof of Proposition 6.1. From the definition of E we know that

f(x,u,t) and fx(x,u,t) satisfies certain conditions for all

(x,t,u) E N([x([v])],6)) X n* where Q* is any bounded subset of 11.

But d([x([w])],[x([vi)I . iplies N([x-2wl)1,6)CN([x([v])

hence f(x,u,t) and fx(x,u,t) will a fortiori satisfy the same con-

ditions for all (x,t,u) e N([([w])], 1) X a*. This concludes the

proof of Proposition (6.1).

Proposition 6.2. If [v] c F*, & is the positive number associated

to [v] in the definition of E and k is an arbitrary positive

number, then there exists an M > O such that for all 115 < -2'

all T e [taptb] and all [w] e F*([v],k) we have

Mi) [x((wlx,-t) and [ax(rw1.') ] exist and are unique (6.11)

(ii) d([x([w],7,T)1,(x([w])]) I I1M (6.12)
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Proof of Proposition 6.2. From our assumption we know that

(i) [X([W])] exists (6.13)

(ii) f(xw(t),t) and exist and are

uniformly bounded for all (x,t) E N([x([w])], 2) (6.14)

By definition [x([w])] and [x([w]$ý,T)] are solutions of the

same differential equation

k = f(x,w(t),t) a.e. t e [ta, tb] (6.15)

but corresponding to different initial values. Hence from the theorem

on the continuous dependence of the solution of a differential equation,

we know that there exists a constant M([w]) such that for all

"171 < F[ and all T • [ta tb] the functions [x([w],ý,Z)] and

[ýx([w].•,M) I exist and are unique. It remains to show that we can

find a constant M such that M([w]) <M for all [w] e F*([v],k).

Let I '--'t denote the norm of the matrix 6f(x.t)

This norm is defined as usual by the relation

6f(x.u.t) = SUpi y (6.16)

Let

I •f(x~u.t) I

R = sup a x (6.17)
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over all values of (x,t) E N([x([v])] e) and all values of u with

juj _ d(Cv]) + k.

Let

M = 2 e R(tb ta) (6.18)

We shall now show that this constant M satisfies our require-

ments.

Let [T1,T2] be the supremum of all closed intervals

[e9, e2 3C [ta )t] such that

(i) x(t;[w],3,Z) exists and is unique on [e0,e 2) (6.19)

(ii) Ix(t;[w],•,Z)-x(t;[wI)l 5< lIM for all t e [e1 ,12 1 (6.20)

The previous definition makes sense since the class of closed in-

tervals satisfying the conditions (6.19) and (6.20) is not empty: it

contains the closed interval [tt].

We then have

_d jx(t;[w1,x,Z)-x(t;[w])j. < Rjx(t;[w],3ý,Z)-x(t;[w])j
dt_

for a.e. t e [Ti,•2] (6.21)

and

(6.22)

This implies

Ix(t;[wlX,•,)-x(t;[w]l P•I e R(th-ta)-- =mI a(6.23)
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Hence [¶Vl, 2 ] = [ta,tb I because otherwise there would be a closed

interval O with [iT' 2 ]) q [fee]C (ta tbI for which the con-

ditions (6.19) and (6.10) would be satisfied, contradicting the definition

of [,r'V21'

The relation (6.23) now becomes

d( [x( [w],,t) ],[x([w])]) < I M(6.24)
2

This concludes the proof of Proposition (6.2).

Proposition (6.2) leads immediately to the following result:

Proposition 6.3. If [v] e F*, F is the positive number associated

to [v] in the definition of E, k is an arbitrary positive number,

and M is the positive constant introduced in Proposition (6.2), then

for every [w] e F*([v],k) the mapping i([w]) : x x [ta, tb]- Z([w]) x

[ta, tb] described by the relation (6.6) is well defined for all (x,t)

in X X [tatbI such that Ix-x(t;[wI)l < -L- and the resulting (z,t)
a'b -2M

in Z([w]) x ft t b] is such that Izi <M Ix-x(t;[w])l. Conversely,

the mapping T 1 ([w]) : Z([w]) X [tatb] -*X X[tatb] described by

the relation (6.9) is well defined for all (z,t) in Z([w]) x [tatb]

such that Izi <&L and the resulting (xt) in X x [ttb] is

such that Ix - x(t;[w])I _<MizI.

Convention 1. We shall write x(t;[w],p) for x(t;[w],•,tb)

2. In the remaining part of this work [v] will always be

an element in F*, E will be the positive number associated to [v]

in the definition of E, k will be an arbitrary positive number and

M will be the positive number introduced Proposition (6.2).
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Definition. For [w] e F*([v],k) and Iz- : let

D(t;[w],z) = tf(x[w(t),t) for all t e [tat t (6.25)a- x x--x(t; [w],z)ab

Proposition 6.4. The matrix valued function D(t;[w],z) is measurable

with respect to t and uniformly bounded for all t e [ttatb], all

[w] e F*([v],k) and all IzI < E
2M'

Proof of Proposition 6.4. From [w] c F*([v],k) and Izi <.
2M

we know that

(i) (x(t;[w],z),t) e N([x([v])],6) for all t E [ta tb] (6.26)

(ii) jw(t)l _< d([v]) + k for all t e [ta tb] (6.27)

hence

ID(t;[w],z)l < R for all t c [tatb] (6.28)

where N is the positive constant introduced in the proof of

Proposition (6.2). This concludes the proof of Proposition (6.4).

Definition. For [w) E F*([v],k), IzI -< let G(t;[w],z) be the

continuous solution of the matrix differential equation

G(t;[w],z) = -G(t;[w],z) D(t;[w],z) a.e. t e [ta tb] (6.29)

with the terminal condition

G(tb;[W],z) = I (6.30)
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where I is the identity matrix.

Proposition 6.5. The matrix G(t;[wl,z) exists, is uniformly contin-

uous with respect to t and uniformly bounded for all t [t a,t b],

all [w) e F*((v],k) and all Izi 5 &2M"

Proof of Proposition 6.5. Immediate from Proposition (6.4) and the

theory of linear differential equations with bounded measurable coef-

ficients. Moreover,

IG(t;[w],z)i. e N(t ta) < M (6.31)

for all t e [ta,tb], all [w] E F*([v],k) and all Izl < _LO where
abM

M is the positive constant introduced in the proof of Proposition (6.2).

This concludes the proof of Proposition (6.5).

Proposition 6.6. The matrix G-l(t;[w],z), inverse of the matrix

G(t;[w],z), exists, is uniformly continuous with respect to t and

uniformly bounded for all t ta ,t b], all [w) e F*([v],k) and all

- 2M

Proof of Proposition 6.6. Let G*(t;[w],z) be the continuous solution

of the matrix differential equation

G*(t;[w],z) = D(t;[w],z) G*(t;[w],z) a.e. t r [t,tb] (6.32)

with the terminal condition

G*(tb;[wl,z) = I
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For the same reasons as in Proposition (6.5), we know that the matrix

G*(t;[w],z) exists, is uniformly continuous with respect to t and

uniformly bounded for all t e t a,t b, all [w] E F*([v],k) and all

Izi < . We will now prove that-- 2M"

G(t;[w],z) G*(t;[w],z) = I for all t e [t a,t b] (6.34)

i.e.,

G*(t;[w],z) = G1 (t;[w],z) for all t e [t a,tb (6.35)

We already know that

G(tb;[w],z) G*(tb;[w],z) = II = I (6.36)

and that G(t;[w],z) G*(t;[w],z) is continuous over [t ,tb ]. It

remains to verify that

(G(t;[w],z) G*(t;[w],z))" = 0 a.e. t E [ta, tb] (6.37)

This last relation is immediate since

G(t;[w],z) G*(t;[w],z)+G(t;[w],z) G*(t;[w],z)

= -G(t;[w],z)D(t;[w],z)G*(t;[w],z)+G(t;[w],z)D(t;[w],z)G*(t;[wl,z)

= 0 a.e. t e [tatb] (6.38)

This concludes the proof of Proposition (6.6).
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Proposition 6.7. For all t e [ta tb], all [w] e F*([vlk) and all

SI zj we have

G -(t;[w],z) = 6x(t:[w].z)

Proof of Proposition 6.7. Let

AMt = G-1l(t;[w],z) -xWt:[w].z) (.o

we have

t(tb) = I - I = 0 (6.41)

and

&(t) = D(t;[w],z) G1 (t;[w],z)- z f(x(t;[w),z),w(t),t)

= D(t;[w],z) G1l(t;[w],z) -D(t;[w],z) C-z

- D(t;[w],z) A(t) a.e. t e [ta tb ] (6.42)

From the relations (6.41) and (6.42), we obtain

A(t) = 0 all t e ta,th] (6.43)

This concludes the proof of Proposition (6.7).

Under the mapping

([w]) : x x ttb] ' Z([w]) X [tatb] (6.44)
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the trajectory

[x([u])] = ((x(t;[u]),t) : t e (ta,t b ]) with [u] c F* (6.45)

will be transformed into the trajectory

jz([u],[w])] = t(z(t;[u],[v]),t) : t e [tajtb]) (6.46)

according to the relation

z(t;[u],[w]) = x(tb;[w],x(t;[u])-x(t;tw]),t)- x(tb;[w])

for all t e (ta tb] (6.47)

Conversely, under the mapping

T'I([ww]) ]Z[w) X [ta ,tb I -*X x [ta tb] (6.t8)

the trajectory [z([u],[w])] will be transformed into the trajectory

[x([u])] according to the relation

x(t;[u]) = x(t;(v],z(t;[uJ,[v])) all t e [tatb ] (6.49)

In other words, the mapping T([w]) associates to a trajectory

[x([u])] in X× [taatb] a trajectory [z([u],[wl)] in Z([w]) X

[tap t] determined as follows: z(t;[u],[w]) is the difference of the

projections on the terminal hyperplane X X (%) of the points

(x(t;[u]),t) and (x(t;[w]),t) of the hyperplane X X (t) where the

projecting lines are the solutions of the differential system with the
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control function [w]. Conversely, the inverse mapping T-( [w]) asso-

ciates to a trajectory [z([u],[w])] in Z([w]) X [ta.,t] a trajectory

[x([u])] in XX [t at] determined as follows: x(t;[u]) is the

projection on the hyperplane X X (t) of the point (x(tb;[w]) +

x(tb;[u]),tb) of the terminal hyperplane X X (tb). The projecting

lines are as before the solutions of the differential system with the

control function [w].

Proposition 6.8. If [u] and [w] e F*([v],k) then

M (1)[u],[wD)

= G(t;[w],z(t;[uJ,[w]))(f(x(t;[u]),u(t),t)-f(x(t;[uI),w(t),t))

for a.e. t c (tath] (6.50)

(ii) Z(ta;[u1,[v]) = 0 (6.51)

Proof of Proposition 6.8. If [u] and [w] e F*([v],k) then

[z([u],[w])] exists and we have the relation

x(t;[u]) = x(t;[w],z(t;[u],[w])) for all t e [ta, tb (6.52)

By differentiation of (6.52) with respect to t we obtain

fx Wt; [u]I ),u(t),t)

=f(x(t; [u]),w(t),t)+G'l (t; [w], z(t;[u], [v]))i(t; [U], w])

for a.e. t e [t ath] (6.53)
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since

ýx(t:[w.z)= G_-1 (t;[wl,z) (6.54)
Oz

as was proved in Proposition (6.7). From the relation (6.53), we obtain

the relation (6.50).

If we let t = ta in relation (6.47), we have

Z(ta;[u],[v]) = x(tb;[W],Ota) -x(tb;w))

= x(tb;[w])- x(tb;[w]) = 0 (6.55)

This concludes the proof of Proposition (6.8).

Proposition 6.9. There are positive constants P and Q such that

for all [wI] e F*([v],k) and all [w2 ] e F with

(i) d([wl],[w2 ]) < k (6.56)

(ii) a([wl],[w2 ]) <Q (6.57)

we have

(i) [w2] e F* (6.58)

(ii) d([x([wl 1])],[x([w2 1)])_< (6.59)

(iii) d([x([wl])],[x([w2 ])]) < Pa([w],[w2 1) (6.60)

Proof of Proposition 6.9. Let

L = sup If(x,u,t)l (6.61)
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over all (x,t) e N([x([vl)],E), all lul < d(v]) + 2k. Let M be

the positive constant introduced in Proposition (6.2). We shall prove

that the relations (6.58), (6.59) and (6.60) are valid when the constant

P and Q are determined by

P = 2 M2 L (6.62)

Q = F- (6.63)
8 M3L

Let T be the supremum of all times e E [t a,t ] such that

(i) x(t;[w2 ]) exists and is unique on [tale] (6.64)

(ii) Ix(t;[w2 ])-x(t;[wl])I <- for all t e [ta,e] (6.65)

(iii) z(t;[w2 ],[wl]) exists and is unique on [tae] (6.66)

(iv) Iz(t;[w2 ],[W]) -< for all t e [ta,e] (6.67)

This definition makes sense since the set of all times e such that

the relations (6.64) to (6.67) are satisfied on [ta,e] is not empty:

it contains the time t
a

From (6.65) and (6.61) we have

lf(x(t;[w2]),w2(t),t) - f(x(t; [w2]),wl(t),t)1 _< 2 L

for all t e [ta ,r] (6.68)

From the relation (6.67) and Proposition (6.5), we have

IG(t;[w1],z(t;[w2],[Wl]))i M< for all t e [tar] (6.69)
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By definition, we have

IL((t:f(x(t;[w2]),w2(t),t) -f(x(t;[w2]),wl(t),t) A 01 t-E Its, T]D)

< a([wl],[w2]) (6.70)

From the relations (6.68), (6.69) and (6.70), and from the differ-

ential equation (6.50) with initial condition (6.51), we obtain

Iz(t;(w2 ],[w1 ])I <21LMa([w1 ],[w 2 ]) for all t e [t aT] (6.71)

With the help of relations (6.57) and (6.63), the inequality

(6.71) becomes

Iz(t;[w2],[w9])<- i for all t e [ta,'] (6.72)

Applying Proposition (6.3) to relations (6.71) and (6.72), we

obtain the two relations:

Ix(t; (w2 ]) - x(t;[W])I <2 2.5 2 (W], 2w 2 ])

for all t e [ta, T] (6.73)

Ix(t;[w2])-x(t;Kw]) < 4 for all t e [t ar] (6.74)

From (6.72) and (6.74) we conclude that

t- b (6.75)
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because otherwise there would be a e" e (T,tb] for which all the con-

ditions (6.64) to (6.67) would be satisfied, in contradiction with the

definition of T. Hence

[w2] e F* (6.76)

and the expression (6.74) can now be written

Ix(t;[w2 ])- x(t;[wl]) -< for all t e [ta tb] (6.77)

i.e.,

d([x([w2])],[x([wl])]) _< (6.78)

and a fortiori

d([x([w2])],[x([wl])]) _< A(6.79)

From relations (6.62), (6.73) and (6.75), we have

Ix(t;[w2 ])-x(t;[w1 l) <Pa ([wll,[w 2]) for all t E [tatb] (6.80)

i.e.,

d([x([w2 1)],[x([wl])]) .< Pa([wl],[w2 ]) (6.81)

Relations (6.76), (6.79) and (6.81) are the required relations (6.58),

(6.59) and (6.60). This concludes the proof of Proposition (6.9).
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Proposition 6.10. If Q is the positive constant introduced in

Proposition (6.9), then for all (u] e F with d([u],[vl) < k and

a([u],[v]) _ Q, we have (u] e F*([v],k).

Proof of Proposition 6.10. By applying Proposition (6.9) to

[w1 1 = [v] and [w2 = [u], we obtain

(i) [u] e F* (6.82)

(ii) d([x([v])],[x([u])]) & (6.83)' -- 2

From relations (6.82) and (6.83) and from the assumption d([u],[v]) < k,

we then have

[u] e F*([v],k) (6.84)

This concludes the proof of Proposition (6.10).

Proposition 6.11. If Q and P are the positive constants introduced

in Proposition (6.9), then for all [u11 and [u2 ] E F with

d([u1],[v]) _< k, d([u2 ],[v]) < k, a( [ul], [v]) < Q and a([u2 1.[v]) < Q,

we have d([x([u1 ])],[x([u2 ])]) _< PO([Ul],[u 2 ]).

Proof of Proposition 6.11. By applying Proposition (6.10) to [u] = [uI]

we obtain [u1 ] e F*([v],k), and by applying Proposition (6.9) to

[wl] = [u2] and [w2] = [u2] we obtain d([x([u 1 ])],[x([u2 ])]) <

P ([Ul],[u 21). This concludes the proof of Proposition (6.11).
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Proposition 6.12. If Q is the positive constant introduced in

Proposition (6.9), then there is a positive number K such that for

all [u1 ] and [u12] e F with d([u1 ],(v]) < k, d([u2l,[v]) < k,

C(Ul],[v]) < Q and a([u 2],[v]) < Q, we have

d([y([u1],[v])],[y([u 2 I,[v])]) < K( [Ul],[u2]) (6.85)

Proof of Proposition 6.12. By definition (see (2.8)), we have

y(t;[u],[v]) = G(t;[v])(x(t;[u])- x(t;[v]))

for all t E [ta, tb] (6.86)

From Proposition (6.5), we have

IG(t;[v])l = IG(t;[v],O)I <M for all t e [tatb] (6.87)

From relation (6.86), we have

y(t;[ul],[v])- y(t;[u2 ],Iv]) = G(t;[v])(x(t;[u1 ]) -x(t;[u 2 ]))

for all t e [ta,tb] (6.88)

From relations (6.87) and (6.88), we have

d([y([u 1 ],[v])],[y((u 2],[vI)]) < Md( [x([ul])],[x([u2])]) (6.89)

But by Proposition (6.11), we have

d([x(fu 1 ])], x([u 2 ])]) _< Pao(Ul],[u 2 ]) (6.90)
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From (6.89) and (6.90), we then have

d( [y([ul], [v])],[y([u2 ], v])])

_< PM0([U 1 ],[u 2 ]) = K a(Eull,Eu 2 ]) (6.91)

This concludes the proof of Proposition (6.12).

All the results of this section which we shall need later on can be

summarized as follows:

Proposition 6.13. If [vI E F*, E is the positive number associated

to [v] in the definition of E, k is an arbitrary positive number,

then there exist two positive numbers K and Q such that for all

[U1 ] and [u2 ] c F with

(i) d([ul],[v]) and d([uu2 ],[v]) <k (6.92)

(ii) a([ul],[v]) and a([u 2],[v]) < Q (6.93)

we have

(i) [uI] and [u2] e F* (6.94)

(ii) d([y([u 1 ],[v])],[y([u2 ],[v])]) < K([u 1 ],[u2 ]) (6.95)

Application to a linear system

We shall assume that f(x,u,t) has the particular form given in

relation (2.15), namely

f(x,u,t) = A(u,t)x + p(u,t) (6.96)
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The results obtained in this section in the case of a nonlinear

system can a fortiori be applied to a linear system. We want to show

here how these results could be obtained directly in the case of a

linear system.

Since for any [u) e F the coefficients of Equation (6.96) are

measurable and bounded, we know that a solution [x([u])] will always

exist, i.e., [u) E F*. In other words, we have

F = F* (6.97)

Hence the question of existence of a solution for a particular

[u) e F which was the main difficulty in the treatment of the general

nonlinear system, given in the beginning of this section, is trivially

solved in the case of a linear system. To complete this direct study

of a linear system, we shall perform scme algebraic manipulations and

prove the existence of uniform bounds for some constants associated to

each element of F.

The study of a linear system is particularly simple because the

matrix

D(t;[w],z) = af(x.w(t),t)
x x=x(t;[w],z)

= A(w(t),t) for all t [tatb] (6.98)

is independent of z. From there follows that the matrix G(t;[w],z)

will also be independent of z and we shall write G(t;[w]) instead

of G(t;[w],z). Proposition (6.7) can now be stated
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G z(t;(w]) .(lfl.L) (6.99)

and from the relation

x = x(t;[w],z) (6.100)

defining the mapping

Tl :W Z([w]) X [tatb] -lX X [tatb] (6.101)

it follows that

x = x(t;[w],O) + G' (t;[w])z (6.102)

But by definition

x(t;[w],O) = x(t;[w]) (6.103)

hence

x = x(t;[w]) + G'l(t;[w])z (6.104)

i.e.,

z = G(t;[w])(x -x(t;[wl)) (6.105)

If we compare relation (6.104) with the relation

y = G(t;(w])(x - x(t;[w]) (6.106)

defining the mapping (see Section 2)
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(w]) : X X (ta,lt) -+Y([w]) X (tath] (6.107)

we obtain

([w] -Uw (6.108)

i.e.,

Z([w]) x [tatb] = Y([w]) x [tatb] (6.109)

and in particular

(z([u],[wD)] - y([u],[w]) (6.110)

For a linear system Propositions (6.9), (6.10), (6.11) and (6.12)

are combined into the following result:

Proposition 6.14. For any positive number k, there is a number P

such that for all [u] and (w) e Fk we have

d([y([u],[w])]) _< Pa( [u],[w]) (6.111)

Proof of Proposition 6.14. For any positive number k there exist

uniform bounds for each of the expressions on the right side of the

differential equation (2.26), hence there exists a P such that

ly~t;[u],[w]l _< P

for a.e. t e [tatb], all [u] and (w] e Fk (6.112)
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Moreover,

Y(ta;(u],(w]) = 0 (6.113)

and

X(t;[u],[1w) = 0

for all t e [ta t b] such that u(t) = w(t) (6.114)

From relations (6.112), (6.113) and (6.114) we immediately have

d([y([uI,[w])]) _ Pa ([ul,[w]) (6.115)

This completes the proof of Proposition (6.14).

Application to a linear* system

If we assume that the system is linear*, i.e., if the function

f(xu,t) has the particular form given in relation (2.16):

f(x,u,t) = A(t)x + q(u,t) (6.116)

the treatment given above for linear systems can be further simplified,

since the matrices D(t;[w]) and G(t;[w]) are independent of [w]

in the case of a linear* system. We shall write G(t) instead of

G(t;[w]).

The differential equation for [y([u],[w])D becomes

for a.e. t e (tat] (6.117)
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and may be directly integrated to give

y(t;(u],[w)) f ft G(T) (~(u(¶),r) -V(W('), T))d¶
t

a
all t e [ta'tb] (6.118)

which implies

x(t;[u])-x(t;[w]) =G-l t) t a(,r) (((u(T), T) -((w(T), T))dT

t
a

all t e [t atba (6.119)

The results of Proposition (6.17) may then be immediately read off from

relation (6.118).

Relation (6.119) could have been immediately derived from the

theory of nonhomogeneous linear differential equations. Indeed, we

have

(x(t;[u])-x(t;[w]))'= A(t)(x(t,[u])-x(t;[w]))+•p(ul~t),t)-V(w(t),t)

for a.e. t e (t,tb ] (6.120)

and relation (6.119) is the well-known solution of the differential

equation (6.120) for the initial condition

x(ta;[ul)-x(ta;[wI) = 0 (6.121)
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SECTION 7

Approximation of the Comparison Trajectories in the

Comoving Space along a Given Trajectory

In '([v]) X [ta tb], the comoving coordinate space along the

trajectory [x([v])], we have for every [u] e F* a trajectory

[y([u],[v])] which is the image of the trajectory [x([u])] and a

trajectory [y([u],[v])] which is a certain approximation of the tra-

jectory [y([u],[v])]. In this section we shall study the properties

of this approximation. More precisely, this section will be devoted to

the proof of Proposition (7.3) in which we give an upper bound for the

uniform distance between [y([u],[v])] and [y([u],[v])] as a function

of the distance between the two control functions [u] and [v] when

this distance is measured with respect to the norm a.

We remind the reader that the results of this section are highly

trivial when the system is linear*, since in that case we already know

that [y([ul,[v])] a [y([u],[v])] (see Section 2). When the system

is linear the situation is not trivial but nevertheless very simple as

is shown in a paragraph at the end of this section.

Proposition 7.1. Let F(t,x) be an n-dimensional vector-valued function

defined for all t e [ta tb] and all n-dimensional vectors x with

lxi < n, where n is a fixed positive number, such that

(i) F(t,x) is measurable with respect to t for all Ixi n ,

uniformly equicontinuous with respect to x and uniformly

bounded for all t e [ta tb] and all lxl_< q (7.1)
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(ii) lim IF(t.x)l = 0 uniformly for t e (tatb] (7.2)( ii) -xi 0 1Ix

then there exists a function G(r) defined, continuous and nondecreasing

over [0,q] such that

(i) lim G(r) = 0 (7.3)
r-*O r

(ii) f th IF(t,a(t))Idt < G(d([a])) (7.4)
t

a

for all bounded measurable n-dimensional vector-valued functions [a]

such that d((a]) < 'i.

Proof of Proposition 7.1. Let

G(r) sup IF(t,x)l for all r e [0,n] (7.5)
(tb- ta) Ixl <r

t 6 [ta, tb]

By construction G(r) is continuous and nondecreasing over [0,11].

We also have

lim G(r) = 0 (7.6)
r-, 0 r

since we have assumed that

lira IF(tx)l = 0 uniformly for t e [tatb] (7.7)
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Moreover,

f IF(t,a(t))Idt < (tb- ta) sup IF(t,a(t))l
ta ta [ta,tb]

S(tb a ta) sup IF(tx)l
t E (ta,tb]Ixl_< d([a])

< G(d([a])) (7.8)

This concludes the proof of Proposition (7.1).

Proposition 7.2. Let K(tx,u) be an n-dimensional vector-valued

function defined for all t c [t ,t b, all n-dimensional vectors x

with lxi < in, all r-dimensional vectors u with Jul < 8, where n

and 8 are fixed positive numbers, such that

(i) K(t,x,u) is measurable with respect to t and u,

uniformly equicontinuous with respect to x and uni-

formly bounded for all t e [ta, tb], all JxJ <

and all lul <8 (7.9)

(ii) K(t,O,a) = 0 all t e [ta, tb], all Jul _< B (7.10)

(iii) K(t,xO) = 0 all t e [ta, t], all lxi _< n (7.11)

then there exists a function H(r) defined, continuous and nondecreasing

over [0,ni] such that

(i) H(o) = 0 (7.12)

(ii) f th IK(tx(t),u(t))Idt <G(d([x])) a([u]) (7.13)
t

a
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Proof of Proposition 7.2. Let

H(r) = sup IK(t,x,u)i (7.14)
t4 [tatb]

Ixl_< r
Jul <_ 8

Then H(r) is continuous and nondecreasing over [0,T1] since K(t,x,u)

is uniformly equicontinuous with respect to x for all t e [ta, tb]

and all lul < 5. We also have

H(O) = 0 (7.15)

since we have assumed K(t,Ou) = 0. Moreover,

fb IK(t,x(t),u(t)Idt< f• b IK(t,x(t),u(t))Idt

t ta a
u(t) •o

< ftb sup IK(t,r,v)Idt
S t [t,th]

u(t)A 0 Irl.:d([x])

IvlI•

_< b H(d([x]))dt

t a

u(t) ýo

<H(d((x])) a ((u]) (7.16)

This concludes the proof of Proposition (7.2).
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Proposition 7.3. If (v] 4E F'* and if Q is the positive constant

introduced in Proposition (6.9)p then there exists a function g(r)

defined, continuous and nondecreasing over [0,Q] such that

(i) lr ELK = 0 (7.17)
r-0 r

(ii) for all (u] e F*([vi,k) with a([u],(v]). <Q, we have

d(y(uj(v)][Y1u'1D <ý g(C([u],[v])) (7.18)

Proof of Proposition 7.3. By definition, we have

y(t;[u],[vi)= G(t;tvfl(x(t;[ui)-x(t;[vl)) all t e [t altb] (7.19)

By differentiation with respect to t of relation (7.19), we obtain

- c(t;[v])(x(t;[u])-x(t;(vl)))

+ G(t;[v])(i(t;[u])-k(t;[v]))

-- G(t;[v))D(t;[vi)(x(t;[u])-x(t;[vl))

+ G(t;(v])(f(x(t;[v)),u(t),t)-f(x(t; [vi),v(t),t))

+ F(t;x(t; [uI)-x(t; [v]))

+ K(t;x(t;[u])-x(t;[v]),u(t)-v(t)) a.e. t 4E [t atb] (7.20)

where the functions F and K are defined by
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F(t;x) = -G(t;(v])D(t;(v])x+G(t;[V])(f(x(t;[V])+ x,v(t),t)

- f(x(t;[v3),v(t),t) (7.21)

K(t;x,s) =G(t;[v])(f(x(t;[v])+ x,v(t) +s,t) -f(x(t;(v]I),v(t) +s,t)

+ f(x(t;[v]),v(t),t) -f(x(t;[vl)+ x,v(t),t)) (7.22)

By definition we have

for a.e. t e [t atb] (7.23)

From relations (7.20) and (7.23), we obtain

ý(t;(LIVD-y (t;[u],[vI)

-F(t;x(t;[u]) -x(t;[v]))+ K(t;x(t;[uI)- x(t;[v]),u(t)- v(t)) (7.24)

By definition we also have

y(ta;[u],(v]) = Y(t a;tu],[V]) = 0 (7.25)

Hence, fromn relations (7.24) and (7.25), we may write:

d( y( fu],[v])], (y( (u][v])]

t ta a
(7.26)
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Let us first estimate the integral

tbf b IF(t;x(t;[u])-x(t;tvl))ldt (7.27)

t
a

From the definition of F(t;x) we have

F(t;O) = 0 (7.28)

and

Fx(t;0) G(t;[v])D(t;[v]) +G(t;[v])D(t;[v]) 0 (7.29)

From relations (7.28) and (7.29), we then have

lim IF(t.x)l = 0 (7.30)

1XL-40 lxi

By Proposition (7.1) there then exists a function G(r) defined, con-

tinuous and nondecreasing over [0, 2•] such that
'2

(i) 1im G(r) =0 (7.31)
r-+O r

(ii) fb IF(t;x(t;[u])- x(t;[vI))Idt < G(d([x((u])],[x([v])])
t a

(7.32)

From Proposition (6.11) we know that

d( (x( [u])],[x([v])]) _< Pa ([u],[v]) (7.33)
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If we define G (r) = G(Pr), relations (7.32) and (7.33) may then

be written

f bIF(tlx(tl[u])- x(t;[v]))Idt < GI(cr([u],[v])) (7.34)

t
a

By definition G (r) is continuous, nondecreasing over [O,Q] and

such that

Jim Gl(r) = o (7.35)
r

Let us now estimate the integral

fb IK(t;x(t;(u])- x(t;[vI),u(t)- v(t))Idt (7.36)

t
a

From the definition of K(t,r,s) we have

K(t,x,0) =0 for all te ta tb] and all x with IxI.S (7.37)

and

K(t,Os) =0 for all te [ta tb) and all s with IsI < k (7.38)

Hence by Proposition (7.2), there is a function H(r) defined,

continuous and nondecreasing over [0, 1 ] such that
2

(i) H(o) = 0 (7.39)
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(ii) f IK(t;x(t;[ul)-x(t;Iv]),u(t)-v(t))Idt
t
a

< (( [x([u])], x([v])])a([u],[v]) (7 .4.o)

From Proposition (6.11), we know that

d( [x([ul)],[x([v])])_< Pa ([u],[v]) (7.41)

If we define G2 (r) = r H(Pr) then relations (7.40) and (7.41)

may be written:

tfb IK(tlx(tl[u])-x(tl[v]),u(t)-v(t))Idt•<G 2 (a([u],[v])) (7.42)

t
a

By definition G2 (r) is continuous, nondecreasing over (0,Q] and

such that

G2 r

m-- 2(r) = 0 (7.43)
r-+ 0 r

Combining relations (7.26), (7.34) and (7.42), we obtain

d([y([u],[v])],[Y([u],[vl)])S G< Gl(([u],Cvl)) +G2(a([u],[vl)) (7.44)

We define

g(r) = G1 (r) + G2 (r) (7.45)

From (7.35) and (7.43) it follows that the function g(r) is contin-

uous, nondecreasing over [0,Q] and such that
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1 rn~r = 0 (7.46)r-.O r

Moreover, combining relations (7.44) and (7.45), we obtain

d( [y([u], [v]) 1, [Y( [u], Iv])]) _< g(CF([u], Iv])) (7.47)

This concludes the proof of Proposition (7.3).

Application to a linear system

We shall again consider the linear system

f(x,u,t) = A(u,t)x + cp(u,t) (7.48)

introduced in Section 2 and show how the results of this section could

be obtained directly for a linear system.

In Section 2 we have derived the following relations:

Y(t;[u],[v]) -*'(t;[ul,[v])

= G(t;[v])(A(u(t),t) -A(v(t),t))G l(t;fv])y(t;[u],(v])

for a.e. t e [ta,tb] (7.49)

Y(ta;tub'v) = Y(ta;[uI,[v) = 0 (7.50)

We know that the coefficient G(t;[v])(A(u(t),t)-A(v(t),t))G l(t;[v]),

occurring in the right side of Equation (7.49), is uniformly bounded by

some constant V for all [u] and [v] e Fk, and we have proved in

Proposition (6.14) that there exists a positive constant P such that
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d([y([u], [w)w ) P P( (u],[w]) (7.51)

From relations (7.49) and (7.51), it follows that

IY(t;[u]. [v)) - y'(t;[u], [v]) 5 VP a(Cu],[v])

for a.e. t c [ta,tb] (7.52)

Moreover, we immediately see from relation (7.49) that

X(t;[u,[v]) -y (t;[u],[v]) = 0

for all t e [t at bI such that u(t) = v(t) (7.53)

If we write

P* =PV (7.54)

then from relations (7.50), (7.52), (7.53) and (7.54), we immediately

obtain the following result:

Proposition 7.4. If k is a positive real number, then there is a

positive constant P* such that

+ 2d([y([u], [v]) 1, [y([u], [v])]) P*(a( [u],[v]))

for all (u] and [vl eFk (7.55)

In the case of a linear system, Proposition (7.4) implies

Proposition (7.3) since the function g(r) = P*r 2  satisfies the con-

ditions of Proposition (7.3): P*r 2  is continuous, nondecreasing for
p*r2

positive r and lim - - 0.
r -0 r

79



SECTION 8

The Range of a Vector Integral over Borel Sets

+

In this section we shall derive some properties of the set H([v]).

In Proposition (8.11) we shall prove that the set H([v]) is convex.

This result will be used later in the proof of Theorem IV. Let
+

r : F -*H([v]) be the mapping which maps an element [u] of F into
+ +

the element Y(tb;[u],[v]) of H([v]). In Proposition (8.13) we shall

prove that if 0 is an interior point of the set H([vI) then there

is a subset F([v]) of F such that 0 is also an interior point of

the image of F([vI) under the mapping r and such that the restric-

tion to F([v]) of the mapping r has a continuous inverse. We shall

need Proposition (8.13) in the proof of Theorem III.

We shall assume that the reader knows the basic elements of the

theory of measure which can be found in Halmos' book, "Measure Theory".

First let us recall some classical notations and definitions:

1. If A is a set, 62 a a-algebra of subsets of A, ý± a non-

negative measured defined on 6q with p(A) < +w, then (A, C7,4) is

called a measure a-algebra.

2. An element B e a is called an atom of the measure a-algebra

(A, a ,4) if 4(B) A 0 and if DC B with D e 6? implies either

g(D) = (8.1)

or

4(D) - L(B) (8.2)
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3. A measure a-algebra (A, 6 i) is called nonatomic if it has

no atom.

Proposition 8.1. If (A, 4 ±) is a nonatomic measure a-algebra,

B c a, qB = (D: DE 6?, DCB) then (B,QB,;4 ) is a nonatomic

measure a-algebra.

Proof of Proposition 8.1. Let 6 B D IB be the minimal a-algebra

containing aZB We have by construction ?B C 61, moreover,

D E LB implies DC B, hence B C ?B. In other words,

6? B = LB and (B, 6? ,B ) is a measure a-algebra. Finally,

(B, aBt) is nonatomic since any atom of (B, a lB,) is also an

atom of (A, a,4). This concludes the proof of Proposition (8.1).

Proposition 8.2. If (A, L,4) is a nonatomic measure a-algebra,

Lja = (B : B '1, e 4(B) = a4(iA)), then there exists a nest •C Lz

such that (Thci for all a E [0,11.

Proof of Proposition 8.2. Let I be a maximal nest in 61. Such a

next exists by the Hausdorff Maximal Principle. Let ýý= r (q.

U ?a ýl ' %=U 7, then since
0 a<a a< a< 1

6 ' similarly•: 0 since A e Let N+= ()B+,
a BeI

N = U B . Since is a maximal nest over the a-algebra ,

then NN a', Ne €N, (N) <a, p(N%)> a, NCN+ and there

is no N e such that Np N N y 4+ N N. Moreover,

a' N 
-L C N 

Mr
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we have ýi(NQ) + g(Na) 0 a. Otherwise, from the nonatomicity of

(A, C.q L), there would be a subset K of Na Na such that 4(K) A 0

and 4(K) A 4.(N+ N;) 4 (N+) - 4Nl-), i.e., such that Na;UlK A Na
Sa a a

-N U K A +~ and NC Na U K C +~ which contradicts our previousa a Na aa

results. For every a e [0,1] we have exhibited elements Na and N+
Na a

"in ýa = 1? n a This concludes the proof of Proposition (8.2).

Proposition 8.3. If (A, alP) is a nonatomic measure a-algebra, then

there exists a set 6 = (Da :a e [0,1]) such that

Wi) a e • all a e [0,1] (8.3)

(ii) p(Da) a p (A) (8.4)

(iii) D C D if and only if ae <a 2 (8.5)a1  a2 -2

Proof of Proposition 8.3. For every a e [0,1] let D. be an element

of the nonempty set ?e" Such D. exists by the axiom of choice.

The conditions (i), (ii) and (iii) are then satisfied by construction.

This concludes the proof of Proposition (8.3).

Proposition 8.4. If (A, q ,,) is a nonatomic measure a-algebra,

(a i = l, ... , k) a finite set of nonnegative real numbers, tlen

there exists a set (Ai : = , ... , k) such that

(i) Ai 1E q for i = 1, ... , k (8.6)

(ii) Ai 'A = A for i = 1, ... , k; j = 1, ... , k

and i• (8.7)
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k
(iii) U._ A = A (8.8)

(iv) p(A) = k 4(A) (8.9)
E aj

J=l

Proof of Proposition 8.4. Let

a1i a 1  for 1. 1, ... , k (8.10)

E a~J~i

By Proposition (8.3) there is a A1 e C such that

4(A1 ) = alp(A) (8.11)

Let

AM = A ~A 1  (8.12)

and

(8.13)

By Proposition (8.1), (A(M), •i 1 •) is a nonatomic measure a-algebra

and by Proposition (8.2) there is a A2 e ql such that

=(A2) a24(A(I)) (8.14)

Let
A(2) = (1) - A2 (8.15)

and

2= A (2) (8.16)
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By Proposition (8.1), (A(2), q 2,p) is a nonatomic measure a-algebra

and by Proposition (8.2) there is a A3 e 672  such that

p(A5 ) = a 3i(A(2)) (8.17)

By repeating k - 1 times the same process, we obtain a set

(A i i, ... , k). It is a trivial matter to verify that the set

(A : , ... , k) satisfies conditions (i) to (iv). This concludes

the proof of Proposition (8.4).

Proposition 8.5. If (A, 5 ,4) is a nonatcmic measure a-algebra, f

a bounded and 5 measurable function over A, there is a set D c

with p(D) = 4(A), f f d4 = if f dc.
D A

Proof of Proposition 8.5. From Proposition (8.2) there is a subset

-- (D• : a e [0,11) of such that

a
(i) i( ) a at( A )

(ii) D C D iff a, <a 2o1  a.

Let Ba = DCa,- Daa all a e [},lI, hence B. e V and

I.(Ba) = jD,- (Dj =a-a-

We shall assume temporarily that f f dcis A 0.
A

Let

ffdý
O(s) -

A
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We then have

O(B 1 ) + O()= 1 (8.18)

since (C(DI)- O(D+))+ (O(Dj) - (D0 )) =(1- J)+ ( 0-O) = 1. Moreover,

O(Ba) is continuous over a . [,1] (8.19)

since

_<MIa- a21 +MI (.- 4.)- (a2- J)I = 2MI a,- a2l

From (8.19) we know that O(B[½,1 ]) = (t(Ba) a E [½,1]) is a segment.

Moreover, (B(il,1 ]) contains O(B1 ) and O(BI)= 1- 1 (Bl), from

(8.18), hence O(B[ ½,1) contains

O(Bl) + 0(B O(B 1 )+ (1- O(B 1))

2 = 2

since a segnent is a convex set.

Let d e [,1] be such that O(B&) =j then D = B& is the

requested set.
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If f f du=- 0 let 0(s) f f fd then

A s

O(, 1)+ O(, W 0 (8.20)

and

O(B.) is continuous for a e [½,1] (8.21)

for the same reasons as (8.18) and (8.19).

From (8.20) and (8.21), we conclude as before that there is a

c [(ý,l] such that O(B-) = 0. This ends the proof of Proposition (8.5).

Proposition 8.6. If (A, 5,p) is a nonatcmic measure a-algebra, f a

uniformly bounded and 5 measurable function over A, C the minimal

a-algebra over & = [Di : i = 0, 1, 2, ... , ) where the sets Di

have the following properties:

Do = A (8.22)

D n e (8.23)

D2n+l n D2n+2 = (8.24)

D 2 U D2n+2 = Dn (8.25)

iý(D2 n+l) - i(D2 n+2 ) = ½ i4D) (8.26)

f fdCUL=f f C14 f f CIP (8.27)

2n+l 2 n+2

then

Sffd= Df f d4 for all D e q (8.28)
D ýTA' A
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Proof of Proposition 8.6. Let

x D) = D)ffd (8.29)

X2 (D) = f f d (8.30)
D

We then have to prove that X1(D) = X2 (D) for all D E .• We

may assume without loss of generality that f f d4 _> 0. Indeed, the
A

case f f d4 < 0 can be reduced to the case f f 4± > 0 by intro-
A A

ducing the function f* = -f.

1. The Proposition is true for each Dk iLn

If k is a nonnegative integer then there is a unique sequence of

nonnegative integers ko, kl, ... , kn with

ko = 0 (8.31)

ki+1 = 2ki+l or ki+1 = 2ki+ 2, i= 0, l, .. ,n-1 (8.32)

k = k (8.33)n

hence

f f d• = f f (8.34)
D ki+1

and

g( l = ½ g(Dk i for all i = 0,..., n-l (8.35)

Relations (8.34) and (8.35) imply
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•¢Dk)

f fdC= i+ ff d all i =0,..., n-1 (8.36)

D i+l ýLDki Dki

i.e.,

f d (. = D r f fd (8.37)
Dk 0oDk

n 0

or

ffu= p k) all D C (8.38)

D A

and

X2 (D k) = Xl(D k) all D k 6E (3-39)

Hence the proposition is true for each D k e

2. The proposition is true for each D in the minimal algebra C:

ove._r ,

If

D e 01 (8.4o)

then
k

D= U D (8.41)
i=l ni

with

D n D n for i J (8.42)
ni n
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From definition (8.29) and relations (8.41) and (8.42), we obtain

k
X = 1 x (D) ) (8.43)

Similarly, from definition (8.30) and relations (8.41) and (8.42), we

obtain

k
=2(D) = X2 (D ) (8.44)

From relations (8.39), (8.43) and (8.44), it follows that

X 1(D) =- X2(D) (8.45)

Hence the proposition is true for each D e C,

3. The proposition is true for each D c

The position is the following:

(a) X1  and '2 are two set-valued functions defined over the

a-algebra Vo

(b) X1  is a measure over B since P is a measure over

(c) X1(D) = x2 (D) for all D ei, where t is a subalgebra

of 6.

Since q , the a-algebra generated by the algebra J , is by

construction a subalgebra of the a-algebra 8 , it follows from the

theorem on the uniqueness of the extension of a measure that

X1 (D) = X2 (D) for each D e 6(. (See Halmos, Measure Theory, page 54).

This concludes the proof of Proposition (8.6).
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Proposition 8.7. If (A,65,P) is a nonatomic measure a-algebra, f

a bounded and 6 measurable function over A, then there is a non-

atomic measure a-algebra (A, q,4) with •C 1 such that

f f = g f f (%I for all D e a (8.46)
D T A

Proof of Proposition 8.7. Let us call Do = A and -D= D " Let

P be the following procedure:n

If (Dn D '4 ) is a nonatamic measure a-algebra, then by
n

Proposition (6.1) there are sets D2n+l and D2n+2 E ZD

such that

D11~ D(ThD =0 (8.47)2n~l °2n+2 -

D2n+1 U D2n+2 = D (8.48)

4(D2 = I4(D2 n+2 ) = ½.(D) (8.49)

f fd d -f f 4 = J f f (8.50)
D D2 ~2n+l nn+2

and (D 2n 1 , 5D ,) and (D2 n, , ±) are nonatcmic

D2n~ n )2n2
measure a-algebras by Proposition (8.1).

Let us apply recurrently P to (Dn, aD ' P) for n 0 =0 , 2,....
n

This is possible since D and 5Do are given. Let a be the mini-

mal a-algebra generated by (Di : i = 0, 1, 2, ... ). By construction,

(A,Q ,) is a nonatomic measure a-algebra and 6Z0 C8 Moreover, L

satisfies the assumptions of Proposition (8.6), hence
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f di= a., f f di. for allD e (8.51)

D ý(A A

This concludes the proof of Proposition (8.7).

Proposition 8.8. If (A,,I.L) is a nonatomic measure a-algebra,

f = (fl , ... . fn) an n-dimensional vector-valued, bounded and

6 measurable function over A, there is a nonatomic measure a-algebra

(A, ap), a C 8 such that

f f d± = - f f dp for all D e (852)
D ( A

Proof of Proposition 8.8. Let us apply Proposition (8.7) to fl over

(A,13,t) and let (A,L'I?,I), CiC 6 be the nonatomic measure

a-algebra so obtained. More generally, let us apply for

i = 1, 2, ... , n-l, Proposition (8.7) to fi+l over (ApZi,0) and

let (A, L+i,±), Li+l C 6Z be the nonatomic measure a-algebra so

obtained.

Let 6?= . We then haven

Si d• = g f fi d•, i=l, ... ,n for all D e 6 (8.53)

D77 A

i.e.,

f f CA = v(.) f f dýL for all D e CZ (8.54)

D A A

This concludes the proof of Proposition (8.8).
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Proposition 8.9. (Lyapounov's Theorem) If (A,6,p) is a nonatomic

measure a-algebra, f= (f1,f2 , ... , fn) an n-dimensional vector-

valued, bounded and 1 measurable function over A, then

R = (f f dL : B e 8) (8.55)
B

is convex.

Proof of Proposition 8.9. It is enough to prove that if bI and

b2 e R, then

(abl+ (1 - a)b2 : a E [O,1]C R (8.56)

If b and b2 e R, then there are B and B2 e 8 such that

f f d• = bi for i = 1, 2 (8.57)
Bi

Let

fi = fX(Bi) for i = l, 2 (8.58)

and

(f1,f, ... I '" f) (8.59)

If we apply Proposition (8.8) to f* over (A,&,), we obtain

a nonatcmic measure a-algebra (A,ap), aC B. Let

(Da : X e [0,1]) be a subset of a such that
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4(Da) = ± (A) all a E (0,1] (8.60)

s exists by Proposition (8.3). We then have

RD(f f dA : X = (Dar) BI]U[(A-Da) ()B 2 ], a E [0,i]) (8.61)
X

=(f f 1 dg + f f2 d1 : a e [0,i]} (8.62)

p(Da) IL(A- Da)

-Y f f~ 1 J + - ±(A) f f2ci : aec [0, 1) (8.63)

- tab1 + (1-a)b2 : a C [oi]) (8.64)

This concludes the proof of Proposition (8.9).

Proposition 8.10. If (A,Z3,p) is a nonatomic finite measure a-algebra,

X is an n-dimensional Euclidean space, S is a class of bounded 5

measurable functions from A to X such that f and g e S implies

fX(B) + gX(A - B) e S for all B e c (8.65)

then

L(S) = (f f 4d : f c 3) (8.66)
A

is convex.

Proof of Proposition 8.10. Let f and g e S. We shall prove that

there is a set L(fg) such that

93



(.) L(f,g) is convex (8.67)

(ii) L(f,g) C L(S) (8.68)

(iii) I f dj± and f g dg e L(f,g) (8.69)
A A

The existence of such a set L(f,g) is a sufficient condition for

the convexity of the set L(S).

Let

L(f,g) = (f (fX(B) + gX(A-B))dl : B E (8.70)
A

and

L*(f,g) = (-1 g ci. + a : a e L(f,g)) (8.71)
A

We may write L*(f,g)= (f (f-g)X(B)di±: B es), hence L*(f,g) is
A

convex by Proposition (8.9). The convexity of L(f,g) then follows

from the convexity of L*(f,g). This proves relation (i).

Relation (ii) is an immediate consequence of the definitions of

L(S) and L(f,g). Moreover, for B = A e 2 we have f f dA e L(f,g)
A

and for B= c & we have f g dg e L(f,g). This proves
A

relation (iii) and concludes the proof of Proposition (8.10).

+
Proposition 8.11. The set H[v]) is convex.

+

Proof of Proposition 8.11. From the definition of H([v]) we have

+ tb
H([v]) = (f W(t,u(t);[v])dt : [u] E F) (8.72)

t
a
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where

(p(t,u(t); Iv]) -G(t;Iv] )(f(x(t; Iv] ),u(t),t) - f(x(t; Iv] ),v(t), t))dt

(8.73)

From the definition of the class F we know that if [uI] and

[u2 ] e F and if B is a measurable subset of [tatb] there exists

an element [u) e F such that

u(t) = u (t) for all t e B

= u2 (t) for all t c [t atb]~ B (8.74)

Hence the class S* of all functions (p(t,u(t);[v]) with [u] e F

satisfies condition (8.65), and we may apply Proposition (8.10). This

concludes the proof of Proposition (8.11).

Notations: If f and g are elements of the class S introduced in

Proposition (8.10), we shall write

o(f,g) = ýi((t:f(t) A g(t), t e A)) (8.75)

and

d(fg) = ess sup If(t)- g(t)l (8.76)
teA

The remarks made in Section 5 also apply to these norms.

Proposition 8.12. Under the assumptions of Proposition (8.10), if

f f0 dL is an interior point of L(S), then there is a subset S(fo)
A
of S and two positive constants m and k such that
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(i) d(fo, g) _< k for all g in S(f 0 ) (8.77)

(ii) the mapping S(f 0 ) -+ L(S(f 0 )) is one-to-one (8.78)

(iii) f 0 dL is an interior point of L(S(f 0 )) (8.79)
A

(iv) o(g,h)_<m If g djA-f h djI forall g and
A A

h e S(f 0 ) (8.80)

Proof of Proposition 8.12.

Notations: If A is a set, then int A is the set of interior points

of A, co A is the convex hull of A, and int co A is the set of

interior points of the convex hull of A.

If f fo d4i E int L(S), then there are functions fl'f 2 I ... ' fn+l
A

in S such that A 0 int co M where M = (A i : i=0,1,2, ... , n+l)

with Ji = fi ds for i=O~l, ... , n+l. Let M, = (M.-(Ai)) for
A

i =0,1,2, ... , n+l. For every A e co M let X(z) =

(Xi(j) : i=0,l, ... , n+l) be defined by the following rules:

(i) k is the smallest integer such that A e co Mk

(ii) Xk(l) = 0

(iii) (J) - (Xk(A) are the barycentric coordinates of I

with respect to Mk.

By construction there exists a positive constant m such that

n+l
E Ix (AW)-X (J")I m IS'- i"I for all I' and I" in co M

mao
(8.81)
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Let

0'' '1f1n 2' n+l (82
Op O ... , P , ... ... ,2f

Let (A,c ,L) with (q C ? be a nonatomic measure a-algebra

such that

I fP= I for al De (8-83)
D A

Such an q exists by Proposition (8.8).

Let (Di : i=O,1, ... , n+l) be such that

(i) Di e Lq (8.84)

(ii) Di () Dj - if i j (8.85)

n+l
(iii) U Di = A (8.86)

i=O

(iv) 4(Di) -n2 g(A) (8.87)

Such set (Di : i =0,1,2, ... , n+l) exists by Proposition (8.4).

Let 06'81 be a nest (Di x [0 C O,1]) C IDi such that

(i) a < a implies DiaC Di (8.88)

(ii) DiI = Di (8.89)

(iii) 4(DiC) = a4 (Di) (8.90)

Such a nest A exists for all i =0,1,2, ... , n+l by Propositicn (8.3).
i

We shall use the following convention: if a is a positive number,

the set at co M is defined by

c co M - (A + 0x(I -10): 1 C co M) (8.91)
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Let
n+ ~n ,(n+1 n~l X(n21

= f~x(A Dii ) 1X (Dixi(+))

for all A e - co M (8.92)
n+ 2

By construction, we have:

n+l
((,), f(Ii)) = o txi(A') " Xi()I

for all I' and I" e - co M (8.93)
n+ 2

Let

S(fo) = (f(•):Ae € coM) (8.94)
0 2) n +2

We have S(f) C S since f eS for all I e co M
o0A n+2

because •Di C OC 8 for all i=0,1,2, ... , n+l by Proposition (8.2).

We also have, by construction,

f for all Je 1 - co M (8.95)

L(S(fo)) - - co M (8.96)0 n+2

But since

A e int n--- co M (8.97)
0 n +2
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I

then relation (8.96) implies

A 0  int L(S(f 0 )) (8.98)

Relation (8.98) is the required property (8.79). Property (8.78)

is satisfied by virtue of relations (8.94) and (8.95). Property (8.77)

follows from the fact that the class S(f o) has been constructed from

a finite number of bounded measurable functions. From relations (8.81)

and (8.93), we have

(f, (,) _5 mI'- J"I for all J' and J" e 1 co M
WJ), (j" n+ 2

(8.99)
Relation (8.99) is equivalent to property (8.80) by virtue of

definition (8.94). This concludes the proof of Proposition (8.12).

+
Proposition 8.13. If 0 is an interior point of H([v]) then there

is a subset F([v]) of F and two constants m and k such that

(i) d([u],[v]) _< k for all (u] eF(v]) (8.100)

(ii) the mapping: F([v])- (y(tb;[u],[v]): [u] E F([v]))

is one-to-one (8.101)
+

(iii) 0 is an interior point of tY(tb;[u],[v]) :[ul eF([v]))

(8.102)

(i,, ,,(u)][u2])._5 ml•,(t';[Ul],[v])- +(tb;[Ul],(v])'

for all [U1 ] and [u2 ]£F([v]) (8.103)

Proof of Proposition 8.13. Let S* be the class of functions intro-

duced in Proposition (8.11). By replacing S by S* in the proof of

Proposition (8.12), we immediately obtain Proposition (8.13).
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SECTION 9

An Application of Brouwer's Fixed Point Theorem

In this section we prove a single proposition which will play a

fundamental role in the proof of Theorem III, given in Section 10.

Proposition 9.1. If f is a continuous mapping of a ball S1 =

(x:x e E, lxi < ), with ij > 0, of the Euclidean space E into E

such that there exists a function g(r) defined, continuous and non-

decreasing over [0,n] and having the following properties:

(i) lin = 0 (9.1)
r-4 0r

(ii) la-f(a)l <Sg(al) for all a e Sn (9.2)

then 0 is an interior point of the set f(S•) image of the set Sy

through the mapping f.

Proof of Proposition 9.1. Let o : (O,n] be such that g(0) < A"2'

i.e., 9 < 1. Such a p exists since &L(•) is continuous over
P P

(0,Ti] and lim -g(D = 0 by assumption.
0-#• 0

Let h z(X) = z + x -f(x). If z 6 Sp/2 then hz maps So into

itself since for x c Sp we have

IhW(x)I<izI + Ix-f(x)I_ P-+g(IxD)< 5-+g(p)< .A+A= P

(9.3)
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Moreover, the continuity of the mapping f implies the continuity of

the mapping hz, hence by Brouwer's Fixed Point Theorem, there exists

an x 1 such that

hz((x) x1  (9.4)

i.e.,

z = f(x (9.5)

For all z e Sp/2 there exists an xI such that relation (9.5) holds,

hence

S /2 C f(So) C f(SI) (9.6)

The point 0 is then an interior point of the set f(Syl). This

concludes the proof of Proposition (9.1).

Remark. A weaker form of this proposition, corresponding to

g(r) = Mr for some 0 < M < +w, has been introduced without proof

in a previous publication [12]. An elegant proof for the case

g(r) = Mr2 has been communicated to the author by Dr. G. S. Jones of

RIAS. The proof given here for the larger class of functions g

described in the statement of Proposition (9.1) is a generalization

of Dr. G. S. Jones' proof.
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SECTION 10

Proofs of the Theorems of Section 4

Proof of Theorem I. If x = x(tb;[v]) is an interior point of the

set H, there is an E > 0 such that

t = (xli(tb; [v]), x 2(tb; [v]).,...,xn'l (tb;[v]).,x n(tb;[v) )(01S[v]) (10.1)

is also a point of the set H, hence there is a [u] in F* such

that

x(tb;[u]) = (10.2)

We then have

xn(tb;[U]) _ xn(tb;[v]) + F> xn(tb;(v]) (10.3)

But by construction we also have

(gtb) e B

Relations (10.2), (10.3) and (10.4) contradict the assumed opti-

mality of the element [v] of F*, hence x = x(tb;[v]) is a boundary

point of the set H. This concludes the proof of Theorem I.

Proof of Theorem II. The mapping H -. H([v]) is defined by

y = G(tb;[vl)(x - x(tb;[v])) (10.5)

But G(tb;[v]) is the identity matrix, hence H([v]) is a simple trans-

lation of H. This translation conserves the topological properties
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of the points in H; in particular to a boundary point of H corre-

sponds a boundary point of H([v]) and conversely.

Proof of Theorem III. Let us assume that 0 is interior to H([v])

and show that 0 is then interior to H([vI).

If 0 is interior to H([v]) then by Proposition (8.13) we know

that there exists a subset F([v]) of F and two constants m and k

such that

+

(i) 0 is interior to (y(tb;[u],[v]): [uS cF([v])) (10.6)

(ii) the mapping F([v])-.(•(tb;[US,[vS)L~~~~~ "~ u, v):[u] e F([v])]

is one-to-one (10.7)

(iii) d([u],[v]) < k for all [u] e F([v]) (10.8)

(iv)c([U],Ku2])5 <mly(tb;[Ul],[v])- +(tb;Eu2B,[v])'

for all [u1] and (u2] e F([v]) (10.9)

Let F([v],Q) be the subset of F([v]) defined by

F([v],Q)= ([u] :[u]eF([v]),c([u],[v]) < Q) (10.10)

For all [u) e F([v]) such that

I [u, [v)l _ -qm(10.11)

we have, by applying (10.9),

a([u],[v]) < Q (10.12)

which implies
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(u] e F([v],Q) (10.13)

We may then write

(i) 0 is interior to (Y(tb;[u],[v]) : [u] eF([v],Q)) (10.14)

(ii) the mapping F([v],Q) C-((tb;[u],[v]) : [u] EF([v],Q))

is one-to-one

(iii) d([u],[v]) < k for all [u]eF([v],Q) (10.16)

(iv) a([Ul],[u2]) < ml(tb;[ul],[v]) -Y(tb;[u2],[v])I

for all [u 1 ] and [u2 ]eF([v],Q) (10.17)

From Proposition (6.13) we then have

F([v],Q) C F*([v],k) C F* (10.18)

i.e.,

y(tb;[u],[v]) exists for all [u]e F([v],Q) (10.19)

We also know that

(i) the mapping from ([(tb;[u],[v]) :[u] eF([v],Q)) to

F([v],Q) is continuous (see relation (10.17)) (10.20)

(ii) the mapping from F([v],Q) to (y(tb;[u],[v]): [u] eF([v],Q))

is continuous (see Proposition (6.13)) (10.21)

Hence the mapping from (y(tb;tu],[v]): [u] F([v],Q)) to

(y(tb;[u],[v]): [u] hF([v],Q)) is continuous. (10.22)
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Fromn Proposition (7.13) we know that there exists a function g(r),

defined, continuous and nondecreasing over [O,Q] such that

(i) lir sL-2 - 0 (10.23)
r-40 r

Sl(th;[U],[v])" Y(tb;[U],[v])' 15 g(a([u],[v]))

for all [u) cF([v],Q) (10.24)

We define the function G(r) by the relation

G(r) = g(mr) (10.25)

From relations (10.17), (10.23) and (10.24), we know that there exists

a function G(r), defined, continuous, nondecreasing over [0, q] and

such that

(i) lim _(r) = 0 (10.26)
r-4 0 r

(ii) I+Y(t;[u],[v~l- y(tb;[ul,[v])1 _< G(I+Y(t;[ul,[vl~l) (10-27)

We apply Proposition (9.1) to relations (10.14), (10.22), (10.26)

and (10.27) and we obtain

0 is interior to (y(tb;[u],[v]): [ucF([v],Q)) (10.28)

and a fortiori

0 is interior to H([v]) (10.29)

This concludes the proof of Theorem III.

+

Proof of Theorem IV. By Proposition (8.11), the set H([v]) is convex,
+

hence if y - 0 is a boundary point of H([v]) there exists a hyperplane
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(n•(v])ly) - 0 (10.30)

such that
+

(1([v])Iy) <0 for all y e H([v]) (10.31)

Let us assume that there is a [u] e F such that

•([(v])IG(t;[v])(f(x(t;[v]),u(t),t) -f(x(t;[v]),v(t),t)) > C > 0

(10.32)

for t e E, where E c E with i(E) > 0, then by introducing the

vector-valued function

u*(t) = v(t) + X(E)(u(t)- v(t)) all t e [tta tb] (10.33)

we obtain

0(([v])I+Y(tb; [u*],[v])) > F j(E) > 0 (10.34)

We also have

+ +
y(tb;[u*],[v]) C H([v]) (10.35)

since [u*] e F. Relations (10.31), (10.34) and (10.35) are contra-

dictory. This concludes the proof of Theorem IV.

Proof of Theorem V. Let the vector p(t;[v]) be defined by

relation (4.2). This vector p(t;[v]) is nonidentically zero and

continuous over (ta,tt] since G(t;[vl) and G' (t;[v]) exist and

are bounded over (t atbI. Relation (4.1) may be written under the

form:
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(E(Iv])IG(t v] )(f(x(t;[v]),u(t),t)- f(x(t;Ev]),v(t),t))) < 0

for all [u] in F and a.e. t e [ta,tb] (10.36)

or, from the definition of a transposed matrix

(GT(t;[v])n([v])If(x(t;[v]),u(t),t) - f(x(t;[v]),v(t),t)) < 0

for all [u] in F and a.e. t e [ta tb] (10.37)

i.e., from relation (4.2),

(p(t;[v])If(x(t;[v]),uMt)t) - f(x(t;Iv]),v(t),t)) < 0

for all [u] in F and a.e. t e [ta, tb] (10.38)

This proves relation (4.3). By differentiation withrespect to t of

relation (4.2), we obtain

b(t;[v]) (G (t;[v]))'x([v])

= (G(t;[v]))Tn( [v]) a.e. t e [ta,t.] (10.39)

but by definition (see relation (2.3)), we have

G(t;[v]) =-G(t;[v])D(t;[v]) a.e. t e [ta tb] (10.40)

hence

b(t;[v]) = ( -G(t;[v])D(t;[v]))T ([vI)

= -D T(t;[v])GT(t;[v])n([v])

= T D(t;[v])p(t;tv]) (10.41)

This proves relation (4.4) and concludes the proof of Theorem V.
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Proof of Theorem VI. This theorem is just a logical conclusion of

Theorems II, III, IV and V: if the point x(tb;[v]) is a boundary

point of the set H, then the point y = 0 is a boundary point of the

set H([v) (see Theorem II), then the point y = 0 is a boundary
+

point of the set H([vl) (see Theorem III), then there exists a non-

zero constant vector v([v]) such that condition (4.1) is satisfied

for all [u] in F (see Theorem IV), then there exists a vector

p(t;[v]) continuous, nonidentically zero on [ta tb] and satisfying

conditions (4.3) and (4.4) (see Theorem V). This concludes the proof

of Theorem VI.

Proof of Theorem VII. This theorem is just a logical conclusion of

Theorems I and VI: if an element [v] of F* is optimal, then the

point x(tb;[vl) is a boundary point of the set H (see Theorem I),

then there exists a vector p(t;[vl) continuous, nonidentically zero

on [ta tb] and satisfying conditions (4.3) and (4.4) (see Theorem VI).

This concludes the proof of Theorem VII.
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