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ON THE NECESSARY CONDITION FOR OPTIMAL CONTROL OF
NONLINEAR SYSTEMS
by
Hubert Halkin

Introduction.

1o LI 1} 1"

Words such as "system, control, optimal control,” etc., have
recently become very popular among a large group of engineers, partic-
ularly in sero-astronautics and electronics, as well as among many
social science researchers in economics and psychology. The use of
the same vocabulary in totally unrelated fields of study should not
surprise us when we realize that they refer to problems which have the
same mathematical structures. Among these mathematical structures, two
are of particular importance: the dynamical system and the control
system which are defined as follows:

A dynamical system is a pair (Y,R) where Y is an arbitrary
space, called the event space, and where R is a binary relation on Y
such that

(i) aRa for all a €Y, i.e., R 1s reflexive
(i1) aRb and bRc implies aRc, 1i.e., R is transitive
(111) aRb and bRe implies & =b, 1i.e., R 1is antisymmetric

(iv) aRb and aRc implies either bRc or cRb

These properties of the relation R correspond to the usual con-

cepts of causality and determinism. We may think of the formula aRb



as meaning: the event b follows the event a. This correspondence
will be seen clearly in the examples given later.

A control system is a triple (Y,F,R(-)) where F 1is an arbitrary
space, called the strategy space, and where (Y,R(a)) is a dynamical
system for every & in F. To clarify these ldeas let us consider a
rarticular type of dynamical system and the control system corresponding
to it.

First we shall consider the dynamical system associated with a
system of ordinary differential equations. In such a case the space Y
is the Cartesian product of the real time axis T with elements ¢t
and of the n-dimensional Euclidean space X, called the state space,
with elements x = (xl, cer , X). A function f(x,t) from XX T
into X 1is given. A binary relation R over T X X 1is then defined

by
(tl,xl) R(t2,x2) ire x(tz,xl,tl) =x, and t <t,

vhere x(t;x*,t¥) 4s the solution of the differential system

x = f{x,t) a.e. t
satisfying the initial condition
X(t*;x*’t*) = x*

We shall say that this binary relation R 1is generated over
T X X by the differential system x = f(x,t). We easily see that the

relation R satisfies the conditions (1) to (iv) given earlier, which



implies that (T X X,R) is a dynamical system. More generally, the
relation R could be generated by a system of difference equations, of
differentisl-difference equations, of integral equations, etc. The
relation R could even be defined explicitly by an appropriate subset
of TXXXTXX.

Let us now consider the control system associated with a class of
systems of ordinary differential equations. The space Y 1is again the
Carteslian product of the real time axis T and of the state space X.
The strategy space F 1s given and for each @ ¢ F a function
f(x,t;@) from X X T into X 1is given. The binaery relation R(a) is

then generated over T X X by the differential system
x = f(x,t;q)

according to the previous definition. The triple T X X,F,R(*)) 1is

therefore a control system. We shall say that (t } 1is reachable

2%
from (tl,xl) if (tl’xl)R(a)(tZ’x2) for some a ¢ F.

Physics, as most descriptive sciences, is concerned with the study
of dynamical systems, whereas engineering, economics and the other
normative sciences are concerned with the study of control systems.

Classical mechanics offers a simple example of a dynamical system:
the set Y 1in classical mechanics is the Cartesian product of the time
axis and of the state space, and the relation R 1s generated by the
laws of mechanics, which are given in most cases under the form of a

set of differential equations. However, the whole field of physics

cannot be reduced to a scheme of such simplicity; no Laplace's observer



could help. Quantum mechanics, for instance, is a dynamical system
vhere the set Y 1is the Cartesian product of the time axis and of
function spaces of probability distributions.

As an example of a control system, let us consider a rocket. A
rocket is a mechanical system equipped with regulatory devices such as
rudders, thrust modifiers, etec. The variables describing the position

of these regulatory devices are called control variables. If these

control variables are given functions of the time and of the state
variables, i.e., position, velocity, etc., then we have a dynamical
system. If, however, we are allowed to choose the functions describing
the control varisbles in a certain given class of functlons called the
strategy space, then we have a control system.

It is not difficult to imagine many examples of control systems
in other areas of engineering and economics. It should be noted that
2 control system could be stochastic: in many problems the set Y
will be, as in quantum mechanics, the Cartesian product of the time
axis and function spaces of probability distributions.

When dealing with a dynamical system the essential question which
one should ask is: how does it behave, 1.e., given & ¢ Y which are
the properties of the set (b : aRb}? This question has been the object
of extensive studles, especially the theory of stability and oscilla-
tion of dynamical systems described by ordinary differential equations.

In the case of a control system a new type of question may be
asked: what is the "best" element of the strategy space? For example:
given a rocket and initial and terminal points in the state space, how
should we choose the control variables so that the rocket will pass
from the initial to the terminal point in the minimum amount of time?

4



Generally, we shall define an optimal control problem as follows:
Given

(1) a control system (Y,F,R(-))

(2) a subset D of ¥YXY

(3) & real function g on G = ({a,b,f): (a,b,f) ¢ DX F, aR(f)b)

vhere (a,b,f) = {c : aR(f)c and cR(f)b}

Find an element (a,b,f) ¢ G such that g({a,b,f)) is maximum. This
optimal control problem is denoted by the quintuple (Y,F,R(-),D,g).

In the theory of optimal control, as in the theory of dynamical
systems, it is possible to obtain very interesting results when we
assume that the relation R 1s generated by the solutions of a system
of differential equations.

In this work we shall consider control systems (Y,F,R(:)) of
the following type:

Y 1is the Cartesian product of the real time axis T with elements
t and of an n-dimensional Euclidean space X with elements
X = (xl, cee , X,

F 1is the class of meassurasble r-dimensionel functions [u] de-
fined on T and taking their values in a given set Q.

R({u)) for [u] e F is generated by the solutions of the system

x = £(x,u(t),t) a.e. t

where f(x,u,t) 1s a given function.
With this particular type of control system we shall assoclate an

optimal control problem (Y,F,R(-),D,g) of the following type:



D=AXB where A 1is a set consisting of one point of Y
and where B 1s the set consisting of one line of Y

parallel to the axis %",

S(((xa)ta>) (xb’tb)’ [u]>) = x-l; .

In other words, we are given a point A in X X T and a line B
in X X T, parallel to the axis x°; how can we find a function [u]
in a given class F such that starting at A and integrating the
system x = f(x,u(t),t) we would end on B as far as possible in the
poslitive direction on x"? We call this problem the fundamental

problem of optimal controi. This fundamental problem is stated in

greater detail in Section 1.

This work is principally devoted to the study of the necessary
conditions for the solution of the fundamental problem of optimal
control.

We want to stress here the fundamental difference between a clas-
sical problem of calculus of variations and a problem of optimal control.
In an optimal control problem the set Q may be quite arbitrary, and
due to technological limitations it is very often a bounded and closed
set: for instance, the thrust of a rocket can only vary on the closed
interval [O,m] where m is the maximum available thrust. If a
classical problem of calculus of variations 1s put in the form of an
optimal control problem, the corresponding set Q 1is always open.

This explains why the classical techniques of the calculus of varia-
tions do not work for the general case of optimal control problems.
Indeed, one of the most fundamental cancepts of the calculus of varila-
tions 1s the concept of the arbitrary variation: you compare a nominal

6



trajectory corresponding to the strategy f with the trajectory corre-
sponding to a strategy f + & and in calculus of variations this is
always possible when & 1s small enough. In optimal control this is
not true anymore; if along a rocket trajectory the thrust has the
maximum available value m at some time, it has no meaning to consider
comparison trajectory where the thrust is augmented by a positive B8,
however small this & could be.

The most important result in the theory of optimal control is the
"Maximum Principle of Pontryagin,' a generalization of the Weierstrass
E-test of the classical calculus of variations. In this work the
"Maximum Principle"” is obtained by a method fundamentally different
from the method of Pontryagin and his associates, in particular we
avoid some unresolved topological difficulties encountered in their
reasoning. It should be remarked also that the assumptions we are
making in the statement of our problem, in particular on the differ-
entiability and boundedness of the function f(x,u,t), are much weaker
than the assumptions made by Pontryagin and his associates. In a
previous publication, [12], using the same method, we cobtained the
same results for a more restrictive class of problems.

Any mathematical venture 1s made up of two parts: geometrical
intuition and analytical machinery. From the chronological point of
view the geometrical intuition always precedes the analytical manipu-
lation in the formation of a theory and the first is of great help to
understand the second. Unfortunately, this duality has a marked

tendency to disappear and the role of geometrical intuition is barely



noticeable in the final form of a theory. This work is no exception
to this rule: the analytical machinery is easily seen. Besides clas-
sical results of the theory of ordinary differential equations, we
use some extensions of the results of Lyapounov [16] and Blackwell [3]
on the range of a vector integral and an application of Brouwer's
Fixed Point Theorem. Unfortunately, the geometrical motivation is
virtually absent from this work. For this resson we shall make up for
this deficiency in the introduction. More precisely, we shall gener-
alize the concept of propagation and show that the fundamental problem
of optimal control described above cen be viewed as a problem of optimal
propagation in an abstract space X.

A standard problem of classical propagation theory has the
following structure: we are given a medium with a propegation law;
the medium is a rest for t < to’ we produce a certain perturbation
at time to and we want to predict what will happen for t > to.

This standard problem could be considered on two different
levels. If we want to predict the intensity of the perturbation for
every element 1ln space-time as a function of the intensity of the
initial perturbation at time to, we have what we call a quantitative
propagation problem. In some clrcumstances, however, it is enough
to predict which elements in space-time could possibly be perturbed
as soon as we know which points are perturbed at the time to' This
is what we call a qualitative propeagation problem.

To solve a quantitative propagation problem we need the concept

of intensity of a perturbation and a precise description of the



space-time variation of this intensity which is usually given by a
partial differential equation.

In this work we shall restrict our interest to qualitative prope-
gation problems and consider the fundamental problem of optimal control
as & generalization of the qualitative propagation problem.

To every element (x,t) ¢ X X T we shall assoclate the set

w(x,t) = {f(x,u,t) : u e Q)

The set w(x,t) will be called the "wavelet" at the point x for the
time t. The analogy with optics 1s clear: whenever s perturbation is
produced at the point x at the time + +*b:n, in first approximation,

all the points of the set

(x +acat : aewlixt))

will be perturbed at the -.me t + dt.

If we write x(t .a}) for the solution of
x = £(x,u(t),t)
satisfying the initial condition x(ta; {ul]) = Xy then
W(t) = {x(t;[ul) : [u]l e F)

i1s the set of points of X which at the time t could possibly be

affected by a perturbation having taken place at x = Xg at the

9



time t =t . In other words, the boundary M(t) of the set W(t)
is the wavefront at the time t of a perturbation starting at x = Xg
at the time t = ta'

We define a ray as a solution x(t;[u}) such that
x(t;[ul)e W(t) forall t e [ta,tb]

We then have the following simple but fundamental property: if an
element [u] of F is optimal for the control problem, then x(t;[u])
is a ray of the propagation problem. The proof of this property is
given in a previous paper [13] and may be summarized as follows: 1if
x(tl;[u]) is an interior point of W(tl) for some t, e [ta’tb]

then x(t2;[u]) is an interior point of W(te) for all t, e [tl,tb]
since the solutions of x = f(x,u(t),t) at the time t, depend con-

2
tinuct#ly on the initial conditions at the time +t.; on the other hand,

13
if [u] s optimal *hen x(tb;[u]) is a boundary point of w(tb)

since otherwise ..er woula be another [u) € F with (x(tb;[ﬁ]),tb)e B
and xn(tb;[ﬁ]) > xn(tb,fnjﬁ, contr>dicting the optimality of [ul;
hence x(t;[u}]) € OW(t) for alli t ¢ 1t&’°;]'

The optimal control problem is ther reduced to the study of the
rays of the asbstract propagation problem. We may generalize to an
abstract propagation problem the Huyghens Principle and the associated
Huyghens construction. The basic facts about such a propagation may
then be stated as follows: if a wavefront has a tangeht plane at a
point, then the wavelet leading to this point is entirely located on
one side of this tangent plane. Consequently, we maximize the wave-

front velocity, i.e., if p 1is the normal to the wavefront at this

10



point then, along a ray pessing through this point, the element [u] ¢ F
is such that the scelar product of p and f(x,u(t),t) is maximum.
This property is closely related to Pontryegin's Maximum Principle.

In this work we will give a precise analytical formulation of this
scheme. To verify that an element [v] of F 4is optimal, we adopt
the point of view of an observer riding along the ray x{t;[v]) and
making its observation in a moving frame of coordinates attached to
the wavefront. For such an observer all the missed opportunities, i.e.,
the directions he could have followed but did not, are leading to points
on one side of a hyperplane passing through the origin. This fact can
be described analytically and leads to the mathematical formulation of
the Maximum Principle of Pontryagin. The hyperplane mentioned above is
the tangent hyperplane to the wavefront whenever such tangent hyperplane
exists. It should be noted, however, that ocur derivation does not re-
quire the existence of such a tangent plane to the wavefront. In most
intuitive derivations of Pontryagin's Maximum Principle the existence
of the tangent plane is implicitly assumed: these derivations are very
unsatisfectory since the real strength of the Maximum Principle of
Pontryagin lies in its applicability to problems where this assumption
cannot be made.

At the end of this introduction we want to compare the geometries
of Finsler, Riemann, and Buclid with the geometry induced on an auton-
omous propegation space by the "wavelets" w(x).

Let F(x,y) be a real-valued function defined on X X X. The
function F(x,y) induces in the space X a geometry for which the
distance ds between two neighboring points x end x + dx 1is given

by
11



ds = F(x,dx)

This geometry is called a Finsler geometry if
(1) F(x,ky) = kF(x,y) for every k > 0 and all (x,y) € X X X.
(11) F(x,y) >0 1if y #0.

(111) Fiy(x,y) exists and is positive definite for all

(%,¥) € X X X.
A Riemannian geometry is a Finsler geometry such that

n

Fa(,)= () 1k
X,y 1,§=1 g, (¥) ¥y

and & Euclidean geometry is a Riemannian geometry where

(x) =5

8ix 1k

or equivalently

n
P(x,y) = 2 (v9)°
i=1

To a Finsler geometry characterized by the function F(x,y) on

X X X we associate the set valued function I(x) on X defined by
I(x) = {y : F(x,y) <1}

The set I(x) is called the indicatrix at the point x of the
Finsler geometry on X. It follows from the conditions (i) to (1ii)
that for a Finsler geometry the set‘ I(x) has, with respect to the

Euclidean norm, the following properties:

12



() I(x) 4s closed and bounded.

(B) The origin is an interior point of I(x).

(7) I(x) 1s strictly convex and has a continuously vaerying
tangent hyperplane at each of its boundary points. In particutiar, I(x)
is an ellipsoid in the case of a Riemannian geometry and the unit sphere
in the case of the Euclidean geometry.

Conversely, if we are glven a space X and a set valued function
I(x) defined over X and satisfying the conditions (), (B) and (7)

then there is & unique function F(x,y) such that

I(x) = {y : F(x,y) <1}

Moreover, this function PF(x,y) satisfies the conditions (i), (ii)
and (1ii) of the definition of a Finsler geometry.

From that follows that a Finsler geometry can be equivalently
represented by the function TF(x,y) or by the indicatrix I(x). We
see immediately that the geodesics of the Finsler geometry characterized
by the indicatrix I(x) are the rays of the sbstract autonomous propa-
gation space characterized by the wavelets w(x) = I(x).

More generally, we could start with a space X, an arbitrary set
velued function I(x) defined on X, and study the geometry induced
on X by the indicatrix 1I(x), i.e., the geometry for which the
distance ds between two neighboring points x and x + dx 1s the
smallest nonnegative real number @ such that

dx

o € I(x)

13



In that case the rays of the abstract autonomous propagation space

characterized by the wavelets w(x) are the geodesics of the geometry
induced on X by the indicatrix I(x) = w(x).

We remark that the class of wavelets obtained by the definition

w(x) = (f(x,u) : u € 9)

in the case of an abstract autonomous propagation spece is much larger

than the class of indicatrices defined by

I(x) = (y : F(x,y) <1}

in the case of a Finsler geometry.

For instance, we could obtain wavelets for which the origin is no
more an interior point, which are not closed, which are not strictly
convex or even with a lower dimension than the space itself. The
geometry obtained by taking these wavelets as indicatrices can have
some surprising properties: between two different points arbitrarily
close to each other with respect to the Buclidean norm, we could have
more thean one geodesics or even no geodesics at all. Hence the geometry
induced on the space X by the wavelets w(x) 1is much more general

than any Finsler geometry defined on the same space X.
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A GUIDE TO THE READER

In Section 1 we give a precise statement of the fundamental prob-
lem of optimal control mentioned in the introduction. 1In Sections 2
and 3 we introduce some new concepts, perform some transformations,
prove a few propositions in order to be able to state precisely the
series of theorems given in Section 4. In this Section I are assembled
ell the results of this work: the necessary condition for the optimal
control of a nonlinear uynamical system. In Sections 5 to 9 we estab-
lish some intermediary results on which are based the proofs of the
theorems of Section 4. These proofs are given in Section 10.

Although this work is entirely devoted to the theory of the
general nonlinear dynamicel system defined in Section 1, we shall
make frequent references to the theory of certain linear systems intro-
duced at the end of Section 2. We do it for the following reasons:

(1) Many concepts and results which are necessary to the study
of nonlinear systems but which are elaborate and difficult when dealing
with these nonlinear systems become particularly clear when they are
applied to the study of linear systems.

(i1) The methods developed here for nonlinear systems furnish

8 very simple theory for the linear systems.

15



SECTION 1

Statement of the Problem

In this section we shall give a precise formulation to the funda-
mental problem of optimal control described in the introduction.
We assume that we are given the following elements:

(1) a point
1 2 n
A= (xa.’ta.) = (xa) Xg2 0 X ta) €eXXT (1.1)

vhere X, called tne state space, 1s the Fuclidean n-dimensional space
with elements x = (xl, .ot , x) and where T 4is the real line with
elements t. T 1s usually interpreted as the time axis. The spece
XX T 1is called the event space.

(11) a line B in X x T, parallel to the xn-axis and deter-
mined by its projections x%, i=1, ... , n-1 and tb on the other

axis. More precisely, B 1s the set
i i n "
((x,t) :x" =x  for 1=1, ...,n1, x eR t=¢]) (12)

where R 1s the real line.
(ii1) a set

aCvu (1.3)
vhere U, called the control space, is the Buclidean r-dimensional
space with elements u = (ul, cee u)

(iv) an n-dimensional vector valued function
n
f(x,u,t) = (fl(x:u;t)’ fz(x:u:t): coey T(x,u,t)) (1.L)

16



(v) the class F of all bounded measursble [r-dimensional)
vector valued functions [u] = ((u(t),t) : t e [ta,tb]] satisfying

the condition
u(t) e @ forall te [ta,tb] (1.5)
Given all these data we define E as the set of all [n-dimensional]

vector valued functions [x] = {(x(t),t) : t € [ta,tb]} such that

(1) [x] 1is contimuous and a.e. differentiable (1.6)
(2) x(t)) = x, (1.7)

(3) there exists a [v] € F with the property
x(t) = £(x(t),v(t),t) a.e. t e [ta,tb] (1.8)

(4) there exists an &€> 0 such that f£(x,u,t) and fx(x,u,t)
are defined, measurable with respect to u and %, uniformly equi-

continuous with respect to x, and uniformly bounded for all

(x,t,u) € N([x],e) x a* (1.9)

where

Nix],€) = ((%,8) : |x-x(t)|%+ |E-t|%< €2, ¢ ¢ [t,,t,)) (1.10)

and vhere Q% 1is any bounded subset-of Q. -
The fundamental problem of optimal control ié then to find an
element [x] in E such that
(@) (x(t),t,) B (1.11)
(B) for any [X] in E such that

17



(X(t,),t,) € B (1.12)
ghall hold the relation

x(ty) < x(t,) (1.13)

The problem as formulated above does not yet exhibit the charac~
teristic structure of an optimal control problem: we have still to
introduce the strategy space. One could be tempted to consider as
strategy space for this problem the totality of the function space F
introduced earlier. This can be done indeed but at great cost: we
must make strong assumptions on the function f(x,u,t) in order to
insure for every [u] in F the existence and uniqueness of the solu-

tion to the differential system

x = f(x,u(t),t) a.e. te [ta,t.b] (1.1%)
with the initial conditions
x(ta) =X, (1.15)
In this work we prefer to avoid meking any further assumption on
the function f(x,u,t). Instead we shall restrict the strategy space
to an appropriate subset F* of F defined as the set of all [v] ¢ F
for which there exists an [x] € E with the property (1.8).

According to the following proposition, the set F* has now all

the properties of a strategy space in the sense of the introduction.
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Prepesition 1.1. If [v] ¢ F¥ then there is a unique [x] ¢ E satis-

fying the property (1.8).

Proof of Proposition 1.1. By definition there exists at least one such

[x] € E; let us assume that there is another such [X] € E with

(%] £ [x). Let 7 = sup {(t : x(8) = x(6) for 6 <t} sucha =
te [ta’tb]

exists since x(ta) =3c'(ta) = x_. Moreover, %(t) = x(¥) since [X]
and [x] are continuous and 7T £ ty since [X] £ [x]. Let & and
€ be two positive real numbers corresponding to [x] and ([X] in the
definition of E. Let &% = min( €, £). By assumption the functions
£(x,v(t),t) and fx( x,v(t),t) are then bounded and measurable with
respect to t in the €&* neighborhood of the point (x(T),t). Hence,
from the theory of ordinary differentisl equations, there is a 8 > O
such that x(t) =x(t) for t € [t,T + 8]. This contradicts the

definition of 1 and concludes the proof of Proposition 1.1.

Proposition 1.1 allows us to make the following definition: If
(vl e F*, 1let [x([v])] = {(x(t;[v]),t) : t e [ta,tb]} be the unique
element in E with the property (1.8).

We are now in a proper position to state the problem in terms of
the strategy space F* as follows:

Find an element [v] € F* such that

(@) (x(ty50v]),t,) € B (1.16)

(B) for any [w] ¢ F* with the property

(x(t;(v]),t,) e B (1.17)
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shall hold the relation
K(tp3lw]) < %t 50v1) (1.18)

The function [v] satisfying the conditions (&) and (8) shall be
called an optimal control function and the corresponding function

[x([v])] shall be called an optimal trajectory.

Remarks on the structure of the function f(x,u,t)

We should mention here two differences between the statement of
the fundamental problem in optimal control given above and the funda-
mental problem treated by Pontryagin and his associates.

In our formulation we allow the function f(x,u,t) to be depend-
ent of the variasble x° to be maximized at time tb. We are allowing
this dependence for practical and esthetical reasons: to make the
assumption that f(x,u,t) is independent of x" would lead to very
little simplification of the subsequent developments but would never-
theless break the symmetry among the state variables. Moreover, many
practical problems show a natural dependence of the differential
equations on the variable to be maximized: in the classical problem
of the maximization of the payload of a rocket, the evolution of the
rocket depends on its mass at every intermediate instant of time.

Also, in contradistinction to Pontryagin's formulation, we do not
require the differential system to be time independent.

However, by an appropriate introduction of new artificial variables
we may transform our problem into the problem treated by Pontryagin and

his associates. But the new problem cbteined by this introduction of

20



artificial varlables is always degenerate in the following sense: any
element [u] of F* satisfles Pontryagin's Maximum Principle. In
order to obtein nontrivial necessary conditions for an element [u] of
F* to be optimal we must, in such a case, use the so-called
"transversality conditions." The methods developed in this work lead
to a very clear geometric interpretation of this type of degeneracy
which will be discussed in detail in Section L.

Moreover, because of the assumption on the continuous dependence
.of the system of differential equations on the state variables, this
transformation cannot be done if the time dependence of the differential
equations is not continuous; this is to be contrasted with our very
weak assumption on the time dependence of the differential equations:
we require only measurability with respect to time.

We want to make another remark closely related to the introduction
of new artificial variables and on the necessity to consider transver-
sality conditions 1n such cases. The statement of the problem given

here is made up of two parts: we define a control system with initial

conditions by (1.1), {1.3), (1.4) and (1.5) and for this control system

with initial conditions we define an optimal control problem by (1.2),

(1.11), (1.12) and (1.13).
Most of the developments made in the following sections depend

only on the control system with initial conditions but not on the

particular optimal control problem. In fact, as we shall see in
Section 4, our results are directly applicable to a large class of
optimal control problems: this will allow us to dispense with the

formel transformations required in order to apply the Maximum Principle

2l



of Pontryagin and with the consideration of transversality conditione
which, after such transformations, are strictly needed if we want to

obtain a nontrivial set of necessary conditions for an optimal solution.
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SECTION 2

Comoving Coordinate Space along & Given Trajectory

In the introduction we wrote: "To verify that an element ([v] of
F* 1is optimal we adopt the point of view of an observer riding along
the trajectory [x({v])] and making his observations in a moving frame
of coordinates attached to the wavefront.” 1In thils section we intend
to carry out this scheme: for an arbitrary element {v] of F* we
shall define a moving frame of coordinates Y({v]) by an appropriate
transformation from X X [ta,tb] to Y([v]) x [ta,tb] and for each
[u] in F* we shall study the trajectory [y([ul,[v])] =
((y(t3lul,[v]),t) : t e [ta,tb]} which is the transformation in
Y([v]) x [ta,tb] of the trajectory [x([u])] in X X [ta,tb]. The
space Y([v]) x [ta,tb] is called the comoving coordinate space along
the trajectory [x([v])].

We introduce the space Y([v]) X [ta,tb] and the trajectories
(y([ul,[v])] 1in that space for the following reasons: in the space
Y([v]) % [ta,tb] there is a very natural way to associate with every
trajectory [y([ul,[v])] an approximate trajectory [;([u],[v])] =
[(;(t;[u],[v]),t) t toe [ta,tb]} having a particularly simple structure.
According to our previocus analogy the trajectory [;([u],[v])] could be
considered as the most reasonable approximation of the trajectory
{y({ul,{v])] made by the observer riding on the trajectory [x([v])]
and knowing the function f(x,u,t) for only those values of x &and

t which are in the neighborhood of his own trajectory.
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The consideration of these various types of trajectories will be
of great help to derive the necessary conditions for the optimality of
the trajectory [(x([{v])]; the guiding idea of this derivation, given in
Section 4, could be summarized as follows: assuming that [;([u],[v])]
is the exact expression of [y([u],[v])] we derive easily a set of
necessary conditions for the optimality of ([x([v])], then we prove
that our conclusions are still valid when [;([u],[v])] is a close
enough approximation of [y([ul,[v])].

After these commentaries we shall now proceed with the precise
definitions of the entitles mentioned above.

For any [v]) € F* we define an n X n matrix D(t;[v]) es

follows:

Dt;[v]) = bf(x,vft),t)

More precisely, D(t;[(v]) 1s the n X n matrix with elements

t e [t ,t ] (2.1)
x=x(t;[v]) £ e

DiJ(t;[v]); i,J = 1,2, ..., n; defined by

i art t),t
(1) = SEalahe) telt,y) (2:2)

X x=x(t;[v])

It is much more convenient to use these relations in the form
(2.1) than in the form {(2.2). Such a convention and its obvious gen-
eralizations will be used throughout this work.

From our assumptions we know that D(t;[v]) 1s bounded and

measurable over [ta’tb]'
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Let G(t;[v]) be an n X n matrix, continuous with respect to t,

defined over [ta,tb], satisfying the matrix differentisl equation
G(t3[v))= -6(t;[v]) D(t5[v]) m.e. t e [t,t)] (2.3)
and such that
6(ty; (VD)= 1 (2.4)

where I 1is the identity n X n matrix.

Proposition 2.1. The matrix valued function G(t;[v]) exists, is

unique and bounded over {ta,tb].

Proposition(2.1) is an immediate consequence of the properties of
D(t;{v]) eand of the theory of ordinary differential equations.
We shall now introduce a Euclidean n-dimensional space Y([v])

with elements y = (yl, ooy yn) by the mapping

o([v]) + X X [t ,t. 1 > ¥([v]) X [t ,t,] (2.5)
where
(y,t) = o(x,t;5(v]) (2.6)
1s defined by
y = 6(t;[vD(x - x(t;[v])) (2.7)

Under the mapping ¢([v]) the trajectory
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[x([ul)) = ((x(t;[ul),t) & t'e [t,t]) with [u] e F*  (2.8)
will be transformed into the.trajecéory
[y(lul, [vD] = ((y(t50ul, [v]),t) & ¢ e [t ,t 1) (2.9)

defined by the relation

y(t;0ul, [v]) = 6(e;[vD)(x(t;[ul)-x(t;[v])) for all t e [t ,t)]

(2.10)

Proposition 2.2. For every [v] and [u] in F* the function

[y({ul,[v])) exists, is unique and continuous.

Proposition (2.2)follows directly from the relation (2.10) since we
already know that G(t;[v]),x(t;[u]) and =x(t;[v]) exist separately,
are unique and continuous over [ta,tb] for [v] and [u] € F*.

Let us now define the approximate trajectory

(), [vD] = (5 1ul, [vD),t) ¢ e [t,t,]) (2.11)

by the relation

. t
$ts0ul, [v]) f 6(v3 (v (£(x( 3 [v]) yu( 1), 8)-2(x( 75 [v]),¥(7),7)) ar

t
a

for all t € [ta,tb] (2.12)
Proposition 2.3. For every [v] ¢ F* and every [u] € F the function
[;( [ul,[v])] exists, is unique and contimuous.

Propoeition(2.3) follows directly from the definition (2.12) since
we already know that G(t;[v]),f(x(t,[v]),u(t),t) and £(x(t;[v]),v(t),t)
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are measurable and bounded over [ta,tb] for all [v] ¢ F* and all
[u] e F.

As we mentioned at the beginning of this section, the trajectory
[;([u],[v])] can be considered as an approximation of the trajectory
[¥([ul,[¥])]. In Section 7 we shall define precisely in what sense
the word "approximaetion" should be understood and what conclusions we

may draw from it. We already see at this point that
+
y(t;Iv], Iv]) = y(t50vh,[v]) =0 all t e [t,t,] (2.13)

The proximity of [y([ul],[v])] and [;([u],[v])] is particularly
apparent in the case of a particular class of linear systems, defined

in the following paragraph, since we then have
[¥([ul,(v])] = [(¥([ul,[v])] for all [u] and [v] e F  (2.14)

Application to a Linear System

We assume here that f£(x,u,t) has the form

f(x,u,t) = A(u,t)x + @(u,t) (2.15)
or the form

f(x,u,t) = A(t)x + @(u,t) (2.16)

When the function f(x,u,t) has the form (2.15) we shall speak of &
linear system and when it has the form (2.16) we shall speak of a
linear® system. From the definition it follows that a linear® system

is a particular type of linear system. In the relations (2.15) and
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(2.16) the expressions A(u,t) and A(t) are n X n matrices, and
®(u,t) 4is an n-dimensional vector. We assume that A(u,t), A(t) and
¢(u,t) are measurable with respect to their arguments and uniformly
bounded over 0% x [ta,tb] for sny bounded set 0¥ subset of Q.

In the case of a linear system we have
D(t;{v]) = A(v(t),t) for all t ¢ [ta,tb] (2.17)

and G(t;[v]) 1is the continuous solution of the matrix differential

equation
G(t;[v])) = -6(t;[v]) A(v(t),t)  a.e. t e[t ,t] (2.18)

with the terminal condition
G(t, ;[v]) = I (2.19)

Such a solution is usually written under the symbolic form

t.

&(6;1v]) = expl] ® A(v(7),7) ar) (2.20)
We then have
y(t5(ul,[v]) = G(t;[vI)(x(t;[ul)-x(t;[v])) for all t e [t ,t ] (2.21)
and
¥(t;lul,[v]) = {t 6(7; v (A(u(7), 7)x(7;[v])+o(u(T),T)

e
= A(v(7),7)x(7;[v])-0(v(7),7)) dar (2.22)

for all t e [t ,t,]
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We shall now compare the two trajectories [y([ul,{v])]
(¥ [ul, (v])].
We know already that
y(tgslul, (v]) = H(t 5 ul, [v])

since from the relation (2.21) we have

y(tgslul, [v]) = 6t ;v (x(t ;ul)-x(t;[v]))

= 6(t ;[v])(x,-x) =0
and since from the relation (2.22) we have

¥(tslul,(v]) =0

Let us now consider ;'(t; [ul,[v]) and y(t;[ul,[v]).

immediately

T (tslul, [v]) = G(t5IvD)(A(u(t), t)x(t; [v])+p(u(t),t)

and

(2.23)

(2.24)

(2.25)

We have

-A(v(t),t)x(t;[v])-o(v(t),t)) dt

for a.e. t e [ta,tb]

and
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¥(t;[ul, [v])
= (G(t;[v])(x(t;{u))-x(t;([v])))"

= G(t; [v])(x(t; [u])=x(t; [v]1))+G(t; [v]) (%(t; [ul)-%(t; [v]))

-G(t; [vDA(v(t),t)(x(t;[ul)-x(t;[v]))

+G(ts[vI)(Alult),t)x(t; [ul)+p(u(t),t)-A(v(t), t)x(t; [v])-o(v(t),t))

+G(t;[v])(A(u(t),t)-A(v(t),t) ) (x(t; [ul)-x(t;[v]))

+6( 15 [v])(A(u(t),t)-A(v(t),£))6 2 (t; [v])y(t; [ul, [v])

a.e. t e [ta,tb]

The relations (2.26) and (2.27) imply

¥(t;lul, [v]) =¥ (£ [ul, [v])
= G(t; {v])(A(u(t),t)-A(v(t),£))6 1 (t; [vDy(t; [ul, [v])

a.e. te [ta,tb]
We see immediately that in the case where

A(u,t) = A(v,t) a.e. t e [ta,tb]
we have

F(tslul, v = ¥ (t;{ul,(v]) s.e. te [tgrty]
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(2.28)

(2.29)
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The relations (2.23) and (2.30) then implies
y(ts(ul,v]) = Je5lul,(v])  all toe [t ,t] (2.31)

We can then state the following result:

Proposition 2.4. For a linear® system

[y([ul,[v])] = [¥([ul,[v])] for all [u] and [v] e F (2.%)

On the other hand, we see that, even for a linear system,
[;([u],[v])] is in general different from [y([ul,{v])] and only an
approximation of [y([u],[v])] in a sense which will be defined in
Section 7.

The identity of [y([ul,[v])] and [¥([ul,[v])] in the case of
a linear® system is particularly helpful to obtain gquickly, for a
linear*® system, the necessary conditions stated in Section 4 since
Theorem III, the most difficult theorem of Section 4 is, as we shall

see, trivially true in that case.
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SECTION 3

Set of Reachable Events

In this section we shall introduce the important concept of the
set of reachable events. Given a control system, we shall say that a

point (xB’tB) in XX T is reachable from the point ( ,ta) in

*a
XX T if tB'z t, and if there exists a control function [u] in

the strategy space F* such that the solution of the system
x = f(x,u(t),t) a.e. te [ta,tB] (3.1)

x(ta) = x, (3.2)

satisfies the terminal condition

X(tB) = xB (5’5)

In other words, following the terminology used in the introduection,

we say that (xB’tB) is reachsble from (xa,ta) if and only if

(ta,xa)R([u])(ts,xB) for some [u] in F* (3.4)

We shall consider specially the set H, intersection by the hyper-
plane t = tb of the set of all events reachable from the initial
event A by the trajectories [x([u])] with [u] € F*. In the sub-
sequent analytical developments we shall also use the set H([v]) which
is the intersection by the hyperplane +t = tb of the set of all events

reachable from the initial event y = O by the trajectories [y([u],[v])]
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with [u] e F¥. Similarly, we shall consider the set ﬁ([v]) which is
the intersection by the hyperplane ¢t = tb of the set of all events
reachable from the initial event y = O by the approximate trajectories
[;([u],[v])] with [u) € F. According to our previcus analogy, the

set E([v]) may be considered as the most reasonsble approximation of
the set H([v]) made by an observer riding along the trajectory
[x([v])] but knowing the function #f(x,u,t) for only those values of
x and t which are in the neighborhood of his own trajectory.

Formally, we then have

H

(x(t3[ul) & [ul € F*)
H([v])

(y(ty;(ul,{v]) : [u] e F*} for eny [v] e F¥

+
H([v])

(F(t,;0ul,[v])) : [ul e F)  for amy [v] e F*
We immediately have the relation
H([v]) = {a@-x(t;(v]) : @ H)

The study of these sets and particularly of their boundaries will

be made in the next section.
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SECTION &

Necessary Condition for the Optimal Control of a

Dynamical System

In this section we give a series of seven theorems. These theorems
sumnarize the whole content of this work. 1In the remaining sections we
shall be concerned, directly or indirectly, with the proof of these
theorems. More precisely, we shall establish in Sections 5 to 9 some
preliminary results which will be used in Section 10 in the explicit

proof of the seven theorems.

Theorem I. If an element [v] of F* is optimal then the point

X = x(tb;[v]) is a boundary point of the set H.

Theorem II. 1If the point x = x(tb;[v]) is a boundary point of the

set H then the point y = O 1is a boundary point of the set H([v]).

Theorem III. If the point y = O 1is a boundary point of the set

+
H([v]) then y = O is a boundary point of the set H([v]).

+
Theorem IV. If the point y = O is & boundary point of the set H([v])
then there exists a nonzero constant vector a({v]) such that for all

(u] in F:

(r(IvD)6(t; [v])(£(x(t;1v])u(t),t)-£(x(t;[v]),v(t),t))) <O

a.e. te [ta,tb] (4.1)




By (alﬁ) we mean the scalaer product of @ and B.

Theorem V. If there is a nonzero constant vector x([v]) such that
the condition (4.1) is satisfied for all [u] in F then there is a

vector p(t;[v]) continuous and nonidentically zero over [ta,tb]

such that:

(1) (t30v]) = G (t;[v])n([v]) all telt,t]  (h2)
a’ b

(i1) for 21l [u] in F

(p(t;IvD) [(B(x(t;1v]),ult),t)-£(x(t;[v]),v(t),t))) <O
a.e. te [ta,tb] (4.3)

(111) B(830v]) = - D(;[v])n(ts[v]) ae. b lt,6]  (hb)

The superscript T indicates the transposition of a matrix.

Theorem VI. If the point x = x(tb;[v]) is a boundary point of the
set H then there exists a vector p(t;[v]), continuous and non-
identically zero on [ta,tb], such that the conditions (4.3) and (4.4)

are satisfied.

Theorem VII. If an element [v] of F* 1s optimal then there exists
a vector p(t;[v]), continuocus and nonidentically zero on [ta,tb],
such that the conditions (4.3) and (4.4) are satisfied.

As we mentioned earlier, the demonstrations of these theorems are
given in Section 9. The demonstrations of Theorems I, II, V, VI and
VII are almost immediate. The proofs of Theorems III and IV are based

on the results established in Sections 5 to 10.

35



If we define
H(x,u,t,p) = (plf(x,u,t)) (k.5)

then Theorem VII could be equivalently formulated as follows:

*

If an element [v] of F° 1is optimal then there exists a vector

p(t;[v]), continuous and nonidentically zero on [ta,tb] such that

OH(x(t:[v]),v(t),t

(1) x(t;v]) = ) ‘ (t3[v])
p=p(t;lv

a.e. te [ta,tb] (4.6)

2(t;{v]) = £(x(t;[v]),v(t),t) a.e. t e [ta,tb] (4.7)

AH(x,v(t),t,p(t:[v

(11) p(t;v]) = - -

|x=x(t;[V])

a.e. te [ta,tb] (4.8)

(141)  H(x(t;{v]),v(t),t,p(t:[v]) > H(x(t;[v]),u(t),t,p(t;[v]))

for all [u] in F and a.e. te€ [ta,tb] (4.9)

This equivalent formulation of Theorem VII is the well-known
Meximum Principle of Pontryagin.
Let us make some comments on the logical structure of the series

of theorems given earlier.



In Theorem I we associate two different notions: the concept of
optimality for the particular optimal control problem under ccnsideration
and a topological property of the set H, which set depends only on the
given control system with initial conditions but not on any particular
optimal control problem.

In Theorems II to V we give a series of implications concerning
certain properties of the sets H, H([v]) and ﬁ([v]).

In Theorem VI we give the combined result of all the implications
contained in Theorems II to V.

In Theorem VII we use Theorem I as an intermediary in order to
obtain from the topological results of Theorem VI the necessary con-
dition for an optimal solution of the particular optimal control problem
under consideration.

Theorem VI is the most important result in the theory of control
systems. This theorem, we said earlier, depends only on the given
control system with initial conditions but not on any particular optimal
control problem. Hence, when a particular optimal control problem is
given, we need only to verify that Theorem I is valld in order to
derive from Theorem VI the appropriate necessary conditions for an
optimal control. The verification of Theorem I is particularly simple
in the case of the fundamental optimsl control problem considered in
this work but could also be easily done for a large class of different
optimael control problems.

In contradistinction the method of Pontryagin and his assoclates
is the following: when confronted with a particular optimal control

problem they introduce new artificial variables which transform the
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control system itself, and hence the set H in such a way that, for
the new control system, the particular optimal control problem has the
form of the fundamental optimal control problem. Unfortunately, the
new set H, obtained after introduction of these artificial variables
has, with respect to the new event space, a lower dimensionality than
before. In this case, Pontryegin's Maximum Principle, in the form
glven above, can be trivially satisfied for any control, not necessarily
optimal, as we shall show in a later peragraph. For such case Pontryagin
and his assoclates have given a stronger form of the Maximum Principle,
including some auxiliary conditions similar to the transversality con-
ditions in calculus of variations.

Finally, let us underline how closely these theorems correspond to
the intuitive procedure stated in the introduction: "To verify that an

element [v] of F*

is optimal we adopt the point of view of an ob-
server riding along the trajectory [x([v])] and making his observations
in a moving frame of coordinates attached to the wavefront. For such an
observer all the missed opportunities, i.e., the directions he could have
followed but did not, are leading to points on one side of a hyperplane
passing through the origin."

By Theorem II we identify the moving frame of coordinates attached
to the wavefront with the comoving coordinate system Y([v]) X [tﬁ’tb]
along the treajectory [x([v])].

By Theorem III we show that for our purposes the set ﬁ([v]) is
as good as the set H([v]). In our analogy the set ﬁ([v]) is the

most reasonable approximation of the set H([v]) made by the observer

riding along the trajectory [x([v])] but knowing the function f£(x,u,t)
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for only those values of x and t which are in the neighborhood of
his own trajectory. In other words, Theorem III states that the most
reasonable approximation made by the moving observer is good enough as
far as the derivation of necessary conditions is concerned.

In Theorem IV we identify the vector x([v]) with the normsl to
the hyperplane passing through the origin and such that all missed
opportunities are directions leading to points located on one of its
sides only.

Theorem V describes the same property as Theorem IV but from the
point of view of an observer fixed in the space X X T instead of the

moving observer considered earlier.

Remarks on the dimensionality of the set H

By construction the set H 1s a subset of the n-dimensional
Buclidean space X. In Theorems II to VI we have derived some proper-
ties of the elements [u] € F* for which x(tb;[u]) is a boundary
point of the set H. In other words, we have given some necessary con-
ditions on [u] 4in order that x(t;{u]) be a boundary point of the
set H. If the dimension of the set H 1s less than n then all the
previous results become trivial since for any [u] ¢ F* the point
x(tb;[u]) will be a boundary point of the set H. This happens, for
instance, when the set H 1s a subset of a sufficiently smooth n-l
dimensional manifold H* nontangent to the line B' projection on X
of the 1ine B in X X T. In such a case the set H(\B' has only
isolated points and therefore all [u] € F* with (x(tb;[u]),tb) €B

are locally optimal. This explains why the necessary conditions for
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an optimal solution can be trivially satisfied in such a case for any
control, not necessarily optimal. This example shows the need of
stronger necessary conditions. This need is partially satisfied by

the consideration of the so-called "transversality conditions."

Application to linear systems
We saw at the end of Section 2 that, for the linear* system (2.16)

we have
F(lul,Iv])] = [y([ul,[v])] for all [u) and [v] in F (4.10)
In particular, this implies

(30l [v]) = y(t;lul,(v])  for ell [u] € F (b.11)

i.e.,

H([v]) = B([v]) (4.12)

The relation (4.12) simplifies greatly the derivation of the
necessary condition for the optimal control of a linear® system. Indeed,
Theorem III is trivially true for a linear® system and since none of the
other theorems are particularly difficult, as we shall seein Section 10,
we may now consider the entire theory for the optimal control of a
linear® system as very simple.

In the case of the linear system (2.15), the relation (4.8) takes
the simple form:

B(t;[v]) = - AT(v(t),t) p(t;Lv]) (4.13)
Lo



SECTION 5

Norms for the Spece of Control Functions and for the

Spaces of Trajectories

In this section we define various norms for the space F of con-
trol functions and for the spaces of trajectories. These norms will be
extensively used in the remaining sections of this work.

Let us consider an arbitrary collection G of functions from
[ta,tb] to a Buclidean space. An element ((z(t),t) : t e [ta’tb]}
in that collection will be denoted by [z].

Let us define

a(lz],[z)) = ess sup |z(t) - 2(t)l (5.1)
t e[ta,tb]
and
o([2],[2]) = B({t s 2(t) # 2(t) and t e [t,t, 1)) (5.2)

for every [z] and (z] in G.

By the symbol "ess sup" we mean the essential supremum, i.e.,

ess sup |z(t) - z(t)| = 1inf sup |z(t)- z(t)| (5.3)
te[ta,tb] ael% tea
where
B
B, = ([t,t)~ B : uB) =0 (5.4)
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It is easy to prove that d(.,.) and o(.,.) are norms for a
space of continuous functions and semi-norms for a space of measurable
functions.

In thie work we shall use d(.,.) over the spaces of trajectories,
continuous by definition, and we shall use d(.,.) and o(.,.) over
F, the space of control functions, measurable by definition.

If we define the equivalence relation = on F by
[u] = [v] iff wu(t) =v(t) for wsa.e. t e [ta’tb] (5.5)

then d(.,.) and o.,.) are norms for the quotient space F = F/=.
In order to simplify the notatlons we shall talk of the set F
even where we should talk strictly of the set F of equlivalence classes

of F under =, and we shall simply write

(ul = [v] (5.6)

even where we should write strictly

[u] = [v] (5.7)

It should be stressed that the two norms o(.,.) and d(.,.)
are not equivalent: they give rise to two completely different to-
pologies on F.

To simplify the notation d([z],0) shall be written d([z]) and

similarly o([2],0) shall be written o([z]).



A subset ¥ of F such that there exists & k with
a(ful]) <k for all [u] ¢F (5.8)

is called a d-bounded subset of F.
In particular, we shall denote by Fk the set of all elements in

F such that 4([u)) <k, {i.e.,

F, = {[ul : [u] € F, a([u]) < k] (5.9)

Similarly, F; will be the set

Fe = ([ul : [u] e F*, a([u]) < ¥} (5.10)
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SECTION 6

Curvilinear Coordinate Space along a Given Trajectory

In Section 2 we have associated to every element [v] of the
function space F* a space Y([v]) X {ta,tb] called the comoving co-
ordinate space along the trajectory [x([v])]. 1In this section we
shall associate to every element [v] of the function space F* an-
other space denoted by Z{[v]) X [ta,tb] and called the curvilinear
coordinate space along the trajectory [x({v]}]. The consideration of
the spaces Z([v]) X [ta,tb] is a very convenient tool in the study
of the existence and uniform convergence of trajectories corresponding
to control functions in a d-bounded subset of F in terms of the norm
0 defined in Section 5 over the space F of control functions.

In the case of the linear system introduced in the last paragraph
of Section 2, we shall prove that 2Z([v]) = Y([v]) and we shall show
that for a linear system the results given in this section take a much
simpler form. Moreover, if the system is & linear* system we proved
already in Section 2 that we have the relation [y([ul,{v])] =
[;([u],[v])]. This will enable us to show that for a linear® system
the results given in this section could be easily derived from the
classical theory of nonhomogeneous linear differential equations. 1In
the last paragraph of this section we shall consider briefly the case
of linear and linear® systems.

If [w] ¢ F* and (X%,T) € X x [ta,tb] let

[x([w),X,t)] = ((x(t;[w],X,%),t) : t € [ta’tb]) (6.1)
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be a continuous vector-valued solution of the differential equation
x(t3[w],%,t) = £(x(t;[w],X,%),w(t),t) a.e. te [t,t,) (6.2)
satisfying the initial condition
x(F; W), %,8) = x(F;[w])+ % (6.3)

For every [w] € F* we shall now introduce a Euclidean

n-dimensionsl space 2([w]) with elements z = (2, ... , 2°) by
the mapping
WW)) + XX (6t ] »2([v]) x [t 4] (6.1)
for which
(z,t) = ¥(x,t;(v]) (6.5)
is determined by the relation
z = x(t;[w],x-x(t;[w]),t) - x(t,;(v]) (6.6)
or equivalently the inverse mapping
YD) ¢ ZW)) X [8,t,] =X X [t,t,] (6.7)
for which
(x,t) = ¥ 1(z,t5[w)) (6.8)
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is determined by the relation
X = x(t;[w],z,tb) (6.9)

In other words, the mapping Y¥([w]) associates to an element
(x,t) of XX [ta,tb] an element (z,t) in 2Z([w]) X [ta,tb] deter-
mined as follows: 2z is the difference of the projections on the
terminal hyperplane, i.e., the hyperplane X X [tb), of the points
(x,t) and (x(t;[w]),t) of the hyperplane X X {t} where the pro-
Jecting lines are the solutions of the differential system with the
control function [w]. Conversely, the inverse mapping Y-l([w])
assoclates to an element (z,t) in 2Z([w]) X [ta,tb] an element
(x,t) in X X [ta,tb] determined as follows: x 1s the projection
on the hyperplane X X (t} of th: point (x(tb;[w]) + z,tb) of the
terminal hyperplane X X [tb]. The projecting iines are as before the
solutions of the differential system with the control function [w].

In the following propositions we shall prove some results con-
cerning the existence, uniqueness and boundedness of the mappings

¥([w]) and their inverses Y-l([w]).

Definition: If ([v] € F¥, k is a positive number and € 1is the
positive number associated to [vl] in the definition of E, 1let us

define F*([v],k) to be the set

(] : (W] € F*, a([w],[v]) <&, a((x([«])],[x([v])]) <&} (6.10)



It should be remarked that we do not know at this point if the set
F¥([v],k) conteins any other elements besides [v]. In Proposition (6.10)
we shall exhibit a large class of elements in F which also belong to
F*([v],k) and a fortiori to F*. The set F*([v],k) plays a very im-
portant role in this work: the necessary condition for the optimality
of the element [v] of F* will be derived from the comparison of [v]

with only those elements in F¥ which also belong to F*([v],k).

Proposition 6.1. If (w] e F*([v],k) and €& is the positive number

associated to {[v] in the definition of E then % can be used as

the positive number associated to [w] 1in the definition of E.

Proof of Proposition 6.1. From the definition of E we know that

f(x,u,t) and fx(x,u,t) satisfies certain conditions for all

(x,t,u) € N([x([v])],€) X o* where @* 1is any bounded subset of Q.
But a([x((w))], Ix([v])] <& tmpites N([x([v])],5)CM[x([v])],€)
hence f(x,u,t) and fx(x,u,t) will a fortiori satisfy the same con-
ditions for all (x,t,u) € N([([w])], -g) X 0*. This concludes the

proof of Proposition (6.1).

Proposition 6.2. If [v] € F¥, € 1s the positive number associated
to [v] 1in the definition of E and k is an arbitrary positive
number, then there exists an M > O such that for all |§| < -2% ’

all t e [ta’tb] and all [w] e F*([v],k) we have
(1) [x([¥],X,t)] and [fo:M)- ] exist and are unique (6.11)

(1)  a([x([v1,%,%)1,[x([v])]) < |XIM (6.12)
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Proof of Proposition 6.2. From our assumption we know that

(1) [x([w])] exists (6.13)
(i1) f(x,w(t),t) and m‘g}m exlst and are
uniformly bounded for all (x,t) € N([x([w])], §) (6.14)

By definition ([x([w])) and ([x([w},X,%)] are solutions of the

same differential equation
x = £{x,w(t),t) a.e. t¢ [ta,tb] (6.15)

but corresponding to different initial values. Hence from the theorem
on the continuous dependence of the solution of a differential equation,
we know that there exists a constant M{[w]) such that for all
x| < 2_M(%]_) and all T ¢ [ta,tb] the functions [x([w),X,t)] and
[Ml-;%]_-‘z‘i)- ] exist and are unique. It remains to show that we can

X

find a constant M such that M([w]) <M for all [w] e F¥[v],k).

éﬁ%f‘-‘ﬂ denote the norm of the matrix _B_f%},cgﬁ)_ .

This norm is defined as usual by the relation

Let

f(x,u,t) l su | of{x,u,t
= sup —lg;—'—)' y (6.16)
l & lyl<1 l
Let
R = sup |a—f(-’é‘;‘-‘-'-ﬂ l (6.17)
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over all values of (x,t) € N([x([v]))], €) and all values of u with
[u] < a(lv]) + k.

Let
M=2e & (6.18)

We shall now show that this constant M satisfies our require-
ments.
Let [71,12] be the supremum of all closed intervals

[91,92](:[ta,tb] such that

(1) =x(t;[wl,X,T) exists and is unique on (6,,6,] (6.19)

(11)  |x(t;[wl,%X,T)-x(t;Iw])] < |XIM for all t e [6,,6,] (6.20)

The previous definition makes sense since the class of closed in-
tervals satisfying the conditions (6.19) and (6.20) is not empty: it
contains the closed interval [%,%].

We then have
£ x5 0915, B)-x(6; [vD) | < RIx(e;[w],%,8)-x(t5[w])]
for a.e. t ¢ [11,12] (6.21)

and

|2(%; [w1,%,8)-x(E; WD) | = % (6.22)

This implies

R(tb-ta) ~ M

Ix(t3 w1, %,%)-x(t;w])] < |x] e = x| 3 (6.23)
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Hence [11,12] = [ta,tb] because otherwise there would be a closed
*
interval [9;,9;] with [Tl,rg]g; [91,6;](:[ta,tb] for which the con-

ditions (6.19) and (6.10) would be satisfied, contradicting the definition
of [71,12].

The relation (6.23) now becomes
A [x( (), %), () ) < I3 ¥ (6.24)

This concludes the proof of Proposition (6.2).

Proposition (6.2) leads immediately to the following result:

Proposition 6.3. If [v] € F¥, € is the positive number associated

to [v] in the definition of E, k 1is an arbitrary positive number,
and M 1is the positive constant introduced in Proposition (6.2), then
for every [w] ¢ F¥([v],k) the mapping ¥([w]) : X X [ta,tb]—+Z([w]) X
[ta,tb] described by the relation (6.6) is well defined for all (x,t)
in XX [t,t,] such that |x=x(t;[w])} 5-2% and the resulting (z,t)
in 2Z([w]) x [ta,tb] is such that |z| <M |x-x(t;[w])|. Conversely,
the mapping Y-l([w]) : 2([w]) X [ta,tb] X X [ta,tb] described by
the relation (6.9) is well defined for all (z,t) in 2Z([w]) X [ta,tb]
such that |z| < 5% and the resulting (x,t) in X X [t ty] 1s
such that |x - x(t;[w])| < M|z|.

Convention 1. We shall write x(t;[w],x) for x(t;[w],§,tb)

2. In the remaining part of this work [v] will always be
an element in F*, € will be the positive number assoclated to [v]
in the definition of E, k will be an arbitrary positive number and

M will be the positive number introduced Proposition (6.2).
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Definition. For [w] € F¥([v],k) end |z| <

D(t;[wl,z) = MA%{}_LQ.

let

Xim

for all t e [t ,tb] (6.25)
x=x(t;[w],2) 2

Proposition 6.4. The matrix valued function D(t;[w],z) is measurable

with respect to t and uniformly bounded for all ¢t € [ta,tb], all

(v] € F*([v],k) and all |z| < ﬁ

Proof of Proposition 6.4. From [w] € F¥([v],k) and |z| < Egz

we know that

(1) (x(t;[w],2),t) e N([x([v])],€) for ell t e [t ,t.] (6.26)

(11) |w(t)| < a(lv]) + k for all t e [t ,t,) (6.27)
hence
ID(t;{w),z)| <R for all t e [t ,t ] (6.28)

vwhere N 1is the positive constant introduced in the proof of

Proposition (6.2). This concludes the proof of Proposition (6.k4).

Definition. For ([w] € F*([vl,k), |z| < 5% let G(t;[wl,z) be the

continuous solution of the matrix differential equation
G(t;3(w),2) = -G(t;[wl,z) D(t;[wl,z) =a.e. telt,t] (6.29)

with the terminal condition

6(ty;lwl,z) =1 (6.30)
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where I 1is the identity matrix.

Proposition 6.5. The matrix G(t;[w]l,z) exists, is uniformly contin-

uous with respect to t and uniformly bounded for all t € [ta,tb],
all (w] € F([v],k) andall |z| < -2%

Proof of Proposition 6.5. Immediate from Proposition (6.4) and the

theory of linear differential equatiocns with bounded measurable coef-

ficients. Moreover,

N(t -t )
la(t;(w),z)l<e © & <m (6.31)

ELM » vhere

M 1is the positive constant introduced in the proof of Proposition (6.2).

for all te [t ,t. ], all [v] e F*([v],k) and all |z| <

This concludes the proof of Proposition (6.5).

Proposition 6.6. The matrix G-l(t;[w],z), inverse of the matrix

G(t;[wl,z), exists, is uniformly continuous with respect to t and
uniformly bounded for all t e [t_,t, ], all [v] e F*([v],k) and all

£
|ZI5 2M'

Proof of Proposition 6.6. Let G*(t;[w],z) be the continuous solution

of the matrix differential equation
é*(t;[w],z) = D(t;[wl,z) G¥(t;[wl,z) a.e. te [ta,tb] (6.32)
with the terminal condition
M(ty5lvl,2) = 1
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For the same reasons as in Proposition (6.5), we know that the matrix
6*(t;[w],z) exists, is uniformly continuous with respect to t and
uniformly bounded for all t € [ta,tb], all [w]) € F¥([v],k) and all

lz| < 'é&ﬁ .  We will now prove that

G(t;lwl,z) 6¥(t;(w),z) =1 for all t € [ta,tb] (6.34)

G*(tslwl,z) = 6 N(t30wl,2)  forall te [t,t] (635
We already know that
6(t;[w],2) GX(ty5(w],2) =11 =1 (6.36)

and that G(t;{w],z) 6*(t;[w],z) is continuous over [t ,t ]. It

remains to verify that
(6(t;lwl,2) G*(t;(wl,z))" =0 a.ce. toe [t %] (6.37)
This last relation is immediate since

(3w, 2) G*(t;Iw],z)+a(t;[w],2) G*(t;[w],z)

-6(t;[w],z)D(t;[w],z)6*(t; [w],2)+a(t;[w],z)D(t;[w],2)6*(t;[w],z)

=0 a.e. te€ [ta,tb] (6.38)

This concludes the proof of Proposition (6.6).

23



Proposition 6.7. For all t e [t,,t,], all (w] € F¥([v],k) and all
[z 5-& we have

G-l(t;[w],z) = éﬁi&ggﬂl*zl (6.39)

Proof of Proposition 6.7. Let

at) = a7 (t50w),2) - leglulie) (6.40)
we have

A(tb) =I-1I=0 (6.41)
and

At) = D(t50v),2) 67 H(t;wl,2) - = £(x(£50w],2),w(t), t)

Bt;0v],2) 07H(t; [0l 2) - Dt (v, 2) Leglelaz)

= D(t;[wl,z) A(t) s.e. toe [t ,t] (6.42)

From the relstions (6.41) and (6.42), we cobtain

alt) =0 all t e [t ,t.] (6.43)

This concludes the proof of Proposition (6.7).

Under the mapping

Y(Iv]) £ XX [t,t ] > 2([W]) X [t,,t] (6.44)
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the trajectory

[x([u])] = ((x(t;[ul),t) : t ¢ [tgt 1) with [u] e F*  (6.45)

will be transformed into the trajectory

(], D)) = ((a(85Tu], IvD)8) : & e (6,5 1) (6.46)

according to the relation

2(t;(ul, (w]) = x(t; W), x(t;[ul) - x(t;[w]),t) - x(ty;[w])

for all t e [t ,t,]  (6.47)
Conversely, under the mapping
FHIW)  2([9) X [, ] =X x [t,,t ] (6.48)

the trajectory [z([u],[w])] will be transformed into the trajectory

(x([u])] according to the relation
x(t3(ul) = x(t;0vl,2(¢5(ul, (v]))  all t e [t ,t] (6.49)

In other words, the mapping Y¥([w]) associates to a trajectory
[x([u])] in XX [ta,tb] a trajectory [z({ul],[w])] in Z([w]) X
[ta,tb] determined as follows: 2z{t;[u],[w]) 4is the difference of the
projections on the terminal hyperplane X X {tb] of the points
(x(t;[ul),t) and (x(t;[w]),t) of the hyperplane X X {t} where the

projecting lines are the solutions of the differential system with the
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control function [w]. Conversely, the inverse mapping ?’l([w]) asso-
clates to a trajectory [z([u],[(w])] in Z([w]) X [ta’tb] a trajectory
[x([u])] in X X [ta,tb] determined as follows: x(t;[u]) is the
projection on the hyperplane X X {t] of the point (x(tb;[w]) +
x(tb;[u]),tb) of the terminal hyperplane X X [tb]- The projecting
lines are as before the solutions of the differential system with the

control function [w].

Proposition 6.8. If [u] and [w] € F¥([v],k) then

(1) z(t;ul,(w])
= 6(t;[wl,z(t; [ul, (W) (£(x(t; [ul),u(t),t)-£(x(t;[ul),w(t),t))

for a.e. t ¢ [ta,tb] (6.50)

(11) z(t ;Mul,lv]) =0 (6.51)

Proof of Proposition 6.8. If [u] and [w] € F*([v],k) then

[z([ul,[w]))] exists and we have the relation
x(t;[ul) = x(t;(wl,z(t;[ul,[w])) for all t ¢ [ta,tb] (6.52)
By differentiation of (6.52) with respect to t we obtain

£(x(t;[ul),u(t),t)

= f(x(t;[u]),w(t),t)+G'l(t;[wl,Z(t;[u],IVI))i(t;[u],[w])

for a.e. t € [ta’tb] (6.53)
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since
ox(tiluloz) o 7450w, 2) (6.54)

as was proved in Proposition (6.7). From the relation (6.53), we obtain
the relation (6.50).

If we let t = ta in relation (6.47), we have

2(t ;s (ul, [v]) = x(t;(w],0,t ) - x(t,;[v])

= x(ty;[w]) - x(t;[w]) = 0 (6.55)

This concludes the proof of Proposition (6.8).

Proposition 6.9. There are positive constants P and Q such that

for all [w,] e F*([v],k) and all [w,] € F with

(1) &(lw],[w,)) <k (6.56)

(11) o(lw;T,[w,]) <@ (6.57)
we have

(1) (w,] e F* (6.58)

(11) a(lx({w D1, [x([w, 1)) < & (6.59)

(111)  a([x([w; 1)1, [x([w,1)]) £ Po (w1, 1w,)) (6.60)

Proof of Proposition 6.9. Let

L = sup |£(x,u,t)] (6.61)
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over all (x,t) e N([x([v])],€), all |u] <a([v]) +2k. Let M be
the positive constent introduced in Proposition (6.2). We shall prove
that the relations (6.58), (6.59) and (6.60) are valid when the constant

P and Q are determined by

P = 2M°L (6.62)
Q= "5 (6.63)
8ML

Let T be the supremum of all times 6 € [ta,tb] such that

(1) x(t;[Wé]) exists and is unique on {ta,e] (6.64)
(11)  Ix(t300,]) - (e300 D] < £ for all te [t,0] (6.65)
(1i1) z(t;[Wé],[Wl]) exists and 1s unique on [ta,G] (6.66)
(1v) Iz(t;[wé],[wl])l < g% for all t ¢ [ta,e] (6.67)

This definition makes sense since the set of all times 6 such that
the relations (6.64) to (6.67) are satisfied on [ta,O] is not empty:
it contains the time ta.

From (6.65) and (6.61) we have

l2(x(t50wy1),wy(1),8) = £(x(t;[w,1),w (£),8)| < 2L

for all t € [ta,T] (6.68)
From the relation (6.67) and Proposition (6.5), we have

|G(t;[wl],z(t;[wé],[wll))|.5 M forall te [ta,T] (6.69)
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By definition, we have

“([tff(x(ti [Val))"e(t))t) 'f(x(ti[wzl);wl(t):t) k 0, te [ta)"']})

Sollul b)) (6.70)

From the relations (6.68), (6.69) and (6.70), and from the differ-

ential equation (6.50) with initial condition (6.51), we obtain
Iz(t;[wa],[wll)l <2LMo([w;],[w,]) forall t e [t,,7] (6.71)

With the help of relations (6.57) and (6.63), the inequality

(6.71) becomes

|2(t50w,1, (v 1)1 < )1—32— for all t e [t_,7] (6.72)

Applying Proposition (6.3) to relations (6.71) and (6.72), we

obtain the two relations:

Ix(t;0w,1) = x( 30w, 1)| < 2LMPo([w, ], [v,])

for all t e [t ,7] (6.73)

|x( 5 0wy0) = x(£50w, 1) < fﬁ for all t e [t ,7] (6.74)
From (6.72) and (6.74) we conclude that

T = tb (6-75)
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because otherwise there would be & 6% ¢ (r,tb] for which all the con-
ditions (6.64) to (6.67) would be satisfied, in contradiction with the

definition of 7T. Hence )

(v,] € F* (6.76)
and the expression (6.74) can now be written

|x( 5 0w, 1) - x(850w, 1) | < f% for all t e [t,t ] (6.77)

1.e.,
alx(y D1, Ix(be DY) < (6.78)
and a fortiori
a([x( [y, [x([w, D1) < £ (6.79)

From relations (6.62), (6.73) and (6.75), we have
|x(t509,0) = x(t5 [, D] < Po ([w)],w,]) for a1l ¢ e [t ,t,] (6.80)
1.e.,
a([x([wy 1)1, x( [w; 1)1) < Pa (w1, [w,)) (6.81)

Relations (6.76), (6.79) and (6.81) are the required relations (6.58),

(6.59) and (6.60). This concludes the proof of Proposition (6.9).



Proposition 6.10. If Q is the positive constant introduced in
Proposition (6.9), then for all ([u] ¢ P with d([u),[v]) <k and

o([ul,[v]) £Q, we have [u] e F*([v],k).

Proof of Proposition 6.10. By applying Proposition (6.9) to

[wl] = [v] and [wz] = [u], we obtain

(1) [u] e F* (6.82)

(11) a(lx((vD], [x([u])]) < & (6.83)

From relations (6.82) and (6.83) and from the assumption d{[ul,[v]) <k,

we then have
(ul € F*([v],k) (6.84)

This concludes the proof of Proposition (6.10).

Proposition 6.11. If Q and P ar‘e the positive constants introduced

in Proposition (6.9), then for all [ul] and [u2] e F with

d([u,1,[v]) <k, a(lu,l,[v]) <k, o([u],[v]) <Q and of [uzl'[\r]) <Q

we have d([x([u; D], [x([u,1)]) < Po([u,;1,[u,]).

Proof of Proposition 6.11. By applying Proposition (6.10) to {u] = [ul]

we obtain [u1] e F*([v],k), and by applying Proposition (6.9) to
[w;] = [w,] and [w,] = [u,] we obtain d([x([u,1)],[x([u,])]) <

Pc([ul],[uzl). This concludes the proof of Proposition (6.11).
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Proposition 6.12. If Q 4is the positive constant introduced in
Proposition (6.9), then there is & positive number X such that for
all [ul] and [ua] e F with d([ul],[v])_s k, d([ue],[v]).s k,

c([ul],[v])‘s Q and c([u2],[v]) < Q, we have

a(ly(luy 1, 0v1) 1, Iy [uy 1, IvD)1) < Ko [uy),luy])  (6.85)

Proof of Proposition 6.12. By definition (see (2.8)), we have

y(t;lul,[v]) = G(t; [v])(x(t;[ul)- x(t;[v]))

for all t e [ta,tb] (6.86)
From Proposition (6.5), we have
[G(t;[v])| = |6(t;[v],0)] <M for all te (t,,t,] (6.87)
From relation (6.86), we have

y(ts0uy 1, [v]) = y(t5Tuy 1, [vD) = 6(e; v (x(t5[u, 1) = x(t51u,1))

for all t ¢ [ta,tb] (6.88)

From relations (6.87) and (6.88), we have

a([y((u 1, (vD 1, [3(Tuy 1, [vD)]) < Ma([x(lu; 1)1, [x(Tu,1)]1) (6.89)
But by Proposition (6.11), we have
a([x([u; N1, [x([u1)1) < Po(fuy],(u,]) (6.90)

62



From (6.89) and (6.90), we then have

a({y(luy 1, (vD ], [¥([u,1,(vD)])

< PMo(lu;)s{uyl) = Ko(lu;l,[u,]1) (6.91)

This concludes the proof of Proposition (6.12).
All the results of this section which we shall need later on can be

summarized as follows:

Proposition 6.13. If [v] € F*, € is the positive number associated

to [v] in the definition of E, k 1is an arbitrary positive number,
then there exist two positive numbers K and @ such that for all

[ul] and [u2] € F with

(1) a(fu;1,[v]) and a([uw,],[v]) <k (6.92)

(11) o(lu ],[v]) and o(lu,],[v]) <Q (6.93)
we have

(1) [ul] and [u2] e F* (6.94)

(11)  a(ly(lu 1, [vD 1, [v( (w1, [vD)]) < Ko (lu;1,(u,1) (6.95)

Application to & linear system
We shall assume that f£(x,u,t) has the particular form given in

relation (2.15), nemely

£(x,u,t) = A(u,t)x + o(u,t) (6.96)
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The results obtained in this section in the case of a nonlinear
system can a fortiorl be applied to a linear system. We want to show
here how these results could be obtained directly in the case of a
linear system.

Since for any [u] € F the coefficients of Equation (6.96) are
measurable and bounded, we know that a solution [x([u])] will always

exist, i.e., [u] € F*. 1In other words, we have
F = F* (6‘97)

Hence the question of existence of a solution for a particular
[u)l ¢ F vwhich was the main difficulty in the treatment of the general
nonlinear system, given in the beginning of this section, is trivially
solved in the case of a linear system. To complete this direct study
of a linear system, we shall perform some algebraic manipulations and
prove the existence of uniform bounds for some constants associated to
each element of F.

The study of a linear system is particulerly simple because the

matrix

Af(x,w(t),t)
X

A(w(t),t) for all t [ta,tb] (6.98)

D(t;(wl,z)

x=x(t;[w],z)

is independent of 2. From there follows that the matrix G(t;[w},z)
will also be independent of z and we shall write G(t;[w]) instead

of G(t;[wl,z). Proposition (6.7) can now be stated
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¢ H;0u]) - Axgluliz)

and from the relation
x = x(t;[w],z)
defining the mapping
-1
V(W) 8 2([W]) X (bt ) XX [t ,t,]

it follows that

x = x(t;[w],0) + & 2(t;[w])z

But by definition

x(t;[w],0) = x(t;[w])
hence

x = x(t3[w]) + 67L(¢;[w))z

z = G(t;[w])(x -x(t;[w]))
If we compare relation (6.104) with the relation
¥y = 6(t;{wl)(x - x(t;[w])

defining the mapping (see Section 2)
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B(Iv]) £ X X [t,8,] =+ ¥([w]) X [t,,t)] (6.107)

we obtain

¥([w])

o([w]) (6.108)

i.e.,

2((w]) X [t,t,] = ¥([w]) X [t_,t,] (6.109)

and in particular

(z([u],[w])] = [¥([u],[w])] (6.110)

For a linear system Propositions (6.9), (6.10), (6.11) and (6.12)

are combined into the following result:

Proposition 6.14. For any positive number k, there is a number P

such that for all {u] and ([w] € Fk we have

a([y([ul,[w])]) < Po( [u],[w]) (6.111)

Proof of Proposition 6.1k. For any positive number k there exist

uniform bounds for each of the expressions on the right side of the

differential equation (2.26), hence there exists a P such that
l¥(t5tul, [w))| <P

for a.e. t € [ta,tb], all [u]) and ([w] € F (6.112)
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Moreover,

¥(t ;5[u],[v]) =0 (6.113)
and

¥(t;lul,[w]) =0
for all t € [ta,tb] such that u(t) = w(t) (6.114)

From relations (6.112), (6.113) and (6.114) we immediately have

a([y((ul,[v]}]) < Po ([ul,[v]) (6.115)

This completes the proof of Proposition (6.1k4).

Application to a linear* system

If we assume that the system is linear*, i.e., if the function

f(x,u,t) has the particular form given in relation (2.16):
P(x,u,t) = A(t)x + o(u,t) (6.116)

the treatment given above for linear systems can be further simplified,
since the matrices D{t;[w]) and G(t;[w]) are independent of [w]

in the case of a linear® system. We shall write G(t) dinstead of
6(t;[v]).

The differentisl equation for [y([ul],[w])] becomes

¥(t;(ul, [w]) = 6(t)(p(u(t),t)-o(w(t),t))

for a.e. t ¢ [ta,tb] (6.117)
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and may be directly integrated to give

y(t;lul, (v]) = {" (1) (p(u(t),7)-0(w(7),7))ds

a
all t ¢ [ta,tb] (6.118)

which implies

x(t;[u))-x(t;[w]) =c'1<t>{t a(*) (@(ulx),7)-p(w(7),7))ds

a
all t e [ta,tb] (6.119)

The results of Proposition (6.17) may then be immediately read off from
relation (6.118).

Relation (6.119) could have been immediately derived from the
theory of nonhomogeneous linear differential equations. Indeed, we

have

(x(t;0u])=x(t;[w])) = ACt)(x(t, [u])-x(t;[w]))+p(ult),t)-p(w(t),t)

for a.e. t ¢ [ta,tb] (6.120)

and relation (6.119) is the well-known solution of the differential

equation (6.120) for the initial condition

x(ta;[u])-x(ta;[w]) =0 (6.121)



SECTION 7

Approximation of the Comperison Trajectories in the

Comoving Space along & Given Trajectory

In “([v]) x [ta,tb], the comoving coordinate space along the
trajectory [x([v])], we have for every [u] ¢ F* =& trajectory
[y([ul,[v])] which is the imageiof the trajectory [x([u])] and a
trajectory [;([u],[v])] which is a certain approximastion of the tra-
Jectory [y([ul,[v])]. In this section we shall study the properties
of this approximation. More precisely, this section will be devoted to
the proof of Proposition (7.3) in which we give an upper bound for the
uniform distance between [y([ul,[v])] and [¥([ul,[v])] as a function
of the distance between the two control functions [u] and [v] when
this distance is measured with respect to the norm o.

We remind the reader that the results of this section are highly
trivial when the system is linear®, since in that case we already know
that [y([ul,[v])] = [}([u],[v])] (see Section 2). When the system
is linear the situation is not trivial but nevertheless very simple as

is shown in a paragraph at the end of this section.

Proposition 7.1. Let F(t,x} be an n-dimensional vector-velued function
defined for all t e [ta,tb] and all n-dimensional vectors x with

x| <n, where 0 is a fixed positive number, such that

(1) F(t,x) 1is measurable with respect to t for all |x| <n,
uniformly equicontinucus with respect to x and uniformly

bounded for all t € [ta,tb] and all |x| <17 (7.1)
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(i1)  1lim 1x(e,x)] uniformly for t e [t_,t. ] (7.2)
Ix|- 0  Ixl &%

then there exists a function G(r) defined, continuous and nondecreasing

over {0,n] such that

(1) um &2l (7.3)
r- 0

HU{%W&MHHMSMdM» (7.4)
a8

for all bounded measurable n-dimensional vector-valued functions [a]

such that d([a]) <n.

Proof of Proposition 7.1. Let

6(r) =(t -t ) sup |F(t,x)| for all r ¢ [0,n] (7.5)
P a x| <r

te [ta.’tb]

By construction G(r) is continuous and nondecreasing over [0,7].

We also have

11m—G—(f-)- =0 (7.6)

r- 0

since we have assumed that

1im 1E(tax) | =0 uniformly for t e [t ,tb] (7.7)
Ix|-0 Il a
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Moreover,

ftb IF(t,a(t))lat < (4 -t)  sup  |F(t,a(t))]
ta te [ta’tb]
<(t -t
S t) o1 F00
Ix|< a(lal)
< 6(a((al)) (7.8)

This concludes the proof of Proposition (7.1).

Proposition 7.2. Let K(t,x,u) be an n-dimensionsl vector-valued
function defined for all t ¢ [ta,tb], all n-dimensional vectors x
with [x| <n, all r-dimensional vectors u with [u] <8, where 1

and & are fixed positive numbers, such that

(1) K(t,x,u) 1is measurable with respect to t and u,
uniformly equicontinuous with respect to x and uni-

formly bounded for all t e [t_,t.], all x| <n

and all |u|l <& (7-9)
(11) K(t,0,a) =0 all ¢t ¢ [ta,tb], all |u|l <& (7.10)
(141) K(t,x,0) =0 all t ¢ [t,st,], all x| <n (7.11)

then there exists a function H(r) defined, continuous and nondecreasing

over [O,n] such that

(1) H(O) =0 (7.12)
(u){tbmumuhmwﬂuscwuﬂnauﬂ) (7.13)
a
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Proof of Proposition 7.2. Let

H(r) = sup IK(t,x,u)|
te[ta,tb]

|x|§_r

lul< @

(7.1k)

Then H(r) is continuous and nondecressing over [0,n] since K(t,x,u)

is uniformiy equicontinuous with respect to x for all t ¢ [ta,tb]

and all |u| < 8. We also have
H(0) =0

since we have assumed K(t,0,u) = O. Moreover,

t t.
I P IR(t,x(e),ult)at < f P IK(t,x(t),u(t))]at

t t
a a

u(t)£0

< ftb sup |k(t,r,v)|at
t te [ta,tb]

a8
w(t)f o Irl<allx])
Ivl<®

t.

< P ma(lx]))at
t

a

u(t) £0

< H(d([x])) o ([ul)

This concludes the proof of Proposition (7.2).
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Proposition 7.3. If ([v] ¢ F¥ and if Q 4s the positive constant

introduced in Proposition (6.9), then there exists a function g(r)
defined, continuous and nondecreasing over [0,Q] such that
(1) 1lim sﬁzl =0 (7.17)
r-90
(i1) for all [u] e F¥([vl,k) with o([u),[v]) <Q, we have

a(Ly(lul, v 1, 7 [ud, [v1) 1) < g(o(lul,[v])) (7.18)

Proof of Proposition 7.3. By definition, we have

y(t3ul, [v]) = 6l [v D) (x( 5 [ul)=x(£;(v]))  all t e [t,t]  (7.19)
By differentiation with respect to t of relation (7.19), we obtain

¥(t5[ul, [v])
= G(t; IvD)(x(t;[ul)-x(t;(v]))
+ G(t;[v])(%(t;[ul)-x(t;[v]))

= Gt (v)D(t; [vD)(x(t;[ul)-x(t;[v]))

+ G(t; (v (e(x(ts(ul),u(t),t)-t(x(t;(v]),v(t),t))

G5 [v])(B(x(t;[v]), u(t),t) -£(x(t;[v]),v(t),t))

]

+ F(t;x(t;[u])-x(t;[v]))

+ K(t;x(t;[u])=x(t;[v]),u(t)-v(t)) a.e. te [ta’tb] (7.20)

where the functions F and K are defined by
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F(t;x) = =G(t;[v])D(t;{v])x +G(t; [v])(£(x(t;[v])+ x,v(t),t)

- £(x(t;[v]),v(t),t) (7.21)

K(tsx,8) =G(t;[v])(£(x(t;[v]) + x,v(t) +8,t) - £(x(t;[v]),v(t) +s,t)

+ £(x(t;0v]),v(t),t) - £(x(t;5[v]) + x,v(t),t))  (7.22)

By definition we have

¥ (t31ul, [v]) =65 [vD) (£(x(t31v]),u(t),t) - £(x(t; [v]),v(t),t))

for a.e. t e [ta,tb] (7.23)
From relations (7.20) and (7.23), we obtain

¥(t5lul, [v]) = ¥ (¢5[ul, [v])

= F(t5x(t5ul) - x(t5{v])) + K(t5x(t;[ul) - x(t;0v]),u(t) - v(t))  (7.24)
By definition we also have
y(t3lul, (v]) = Ht 30ul,0v]) = 0 (7.25)
Hence, from relations (7.24) and (7.25), we may write:

a([y( (ul, [vD) 1, (3([ul, [v])])

t t
< J PIR(tsx(t; [ul)=x(t;[v])) Idt+£ PIR(t5x( 65 [u])=x(t;[v]),u(t)-v(t))]at
t
a a

(7.26)
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Let us first estimate the integral

t
J 8 IR(t5x(t3lul) - x(t35(v]))|at (7.27)
t
a

From the definition of F(t;x) we have

F(t;0) =0 (7.28)

F (£;0) = - G(t;[v])D(t;[v]) +G(t;(v])D(t;(v]) =0 (7.29)
From relations (7.28) and (7.29), we then have

um JEGEx) - o (7.30)

|x|-> 0 le
By Proposition (7.1) there then exists a function G(r) defined, con-

tinuous and nondecreasing over [O, gﬂ such that

(1) 1lim Gr) _ o (7.31)

r
r-0

t
(11) [ ° |F(t;x(t;Tul) - x(t;0v])) |at < o(a([x((u])],[x([v])])

t
a

(7.32)

From Proposition (6.11) we know that

a([x([u])], [x([v])]) < Pa ([u],[v]) (7.33)

(&



If we define Gl(r) = G(Pr), relations (7.32) and (7.33) may then

be written

t
[P IRt ) - x(t50vD)) ]t < Gy (o(ful, VD)) (7.34)

t
a

By definition Gl(r) is continuous, nondecreasing over [0,Q] and

such that
G, (r)
limn —— =0 (7.35)
r-0
Let us now estimate the integral
tb
[0 IKCesx(e5lul) = x(£50v]),u(t) - v(t))[at (7.36)
t
a

From the definition of K(t,r,s) we have

K(t,x,0) =0 for all te[ta,t

b] and all x with |x|_<_-g‘ (7.37)

and

K(t,0,8) =0 for all te [t,,t,] endall s with s|<x (7.38)

Hence by Proposition (7.2), there is a function H(r) defined,

continuous and nondecreasing over [O, -g-] such that

(1) H(0) =0 (7.39)
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(11) £t" [K(tsx(t;(ul) = x(t50v]),u(t) -v(t))|at
a

< B(a([x([u])], (x({v]) Do([ul,[v]) (7.40)

From Proposition (6.11), we know that

a([x([ul)],[x([v])]) < Po([ul,[v]) (7.41)

If we define G2(r) = r H(Pr) then relations (7.40) and (7.41)

may be written:

t
/P [K(t5x(t5[ul) - x(t;v]),u(t) - v(t))|at < Gy(o(lul,(v])) (7.42)

t
a

By definition G2(r) is continuous, nondecreasing over [0,Q] and

such that

lim
r—- 0

=0 (7.43)

Combining relations (7.26), (7.34) and (7.42), we obtain

a([y(fu), v])1, [¥([ul, [v])]) < G, (o([ul,[v])) +Gy(o(ul, [v]))  (7.44)

We define

g(r) = G (r) + Gy(r) (7.45)

From (7.35) and (7.43) it follows that the function g(r) 1s contin-

uous, nondecreasing over [0,Q] and such that
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1im &r) | 0 (7.46)

r
r-0

Moreover, combining relations (7.44) and (7.45), we obtain

a( [y((ul, (vD)1, [¥((ul, (v])]) < &lo(lul, (v])) (7.47)

This concludes the proof of Proposition (7.3).

Application to a linear system

We shall again consider the linear system
f(x,u,t) = A(u,t)x + o(u,t) (7.48)

introduced in Section 2 and show how the results of this section could
be obtained directly for a linear system.

In Section 2 we have derived the following relations:

F(t5[ul, [v]) =¥ (t;(ud, [v])
= G(t; [v])(A(u(t),t) - A(v(t),£))6 (t; [v])y(t; [ul, [v])

for a.e. te [t ,t] (7.49)
y(t s [ul,[v]) = ¥(ty;(ul,v]) =0 (7.50)

We know that the coefficient G(t;[v])(A(u(t),t)-A(v(t),t))G-l(t;[v]),
oceurring in the right side of Equation (7.49), is uniformly bounded by
some constant V for all [u] and ([v] € Fk’ and we have proved in
Proposition (6.14) that there exists & positive constant P such that
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a([y([ul,[w])]) < Po( [u),[w]) (7.51)
From relations (7.49) and (7.51), it follows that

|30t (ul [v]) = ¥ (e [ul, [v]) | < VP o([ul,(v])

for a.e. t ¢ [ta,tb] (7.52)
Moreover, we immediately see from relation (7.49) that

y(t3lul, [v]) =¥ (t50ul,[v]) =0

for all t ¢ [ta,tb] such that u{t) = v(t) (7.53)
If we write
P* = PV (7.54)

then from relations (7.50), (7.52), (7.53) and (7.54), we immediately

obtain the following result:

Proposition 7.4. If k 1is a positive real number, then there is a

positive constant P* such that

a( [y([ul, [v]) 1, [F( tul, [v]) 1) < P*(o([ul,[v1))?

for all (u] end {v] €F (7.55)

In the case of a linear system, Proposition (7.4) implies
Proposition (7.3) since the function g(r) = P*r2 satisfies the con-

ditions of Proposition (7.3): P*r2 is continuous, nondecreasing for

positive r and 1lim E:EE = Q.

r-0
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SECTION 8

The Range of a Vector Integral over Borel Sets

In this section we shall derive some properties of the set ﬁ([v]).
In Proposition (8.11) we shall prove that the set E([v]) is convex.
This result will be used later in the proof of Theorem IV. Let
r: F ->§([v]) be the mapping which maps an element [u] of F into
the element ;(tb;[u],[v]) of ﬁ([v]). In Proposition (8.13) we shall
prove that if O 1is an interior point of the set E([v]) then there
is a subset F([v]) of F such that O 1is also an interior point of
the image of F({v]) wunder the mapping I and such that the restric-
tion to F([v]) of the mapping ' has & continuous inverse. We shall
need Proposition (8.13) in the proof of Theorem III.

We shall assume that the reader knows the basic elements of the

theory of measure which can be found in Halmos' book, "Measure Theory".

First let us recall some classical notations and definitions:

1. It A 1is a set, ({ & g-algebra of subsets of A, u & non-

negative measured defined on { with u(A) < +w, then (A, A,n) 1is
called a measure o-algebra.

2. An element B ¢ {{ 1s called an atom of the measure c-algebra

(A, d ,u) 32 u(B) #0 and if DU B with D e { implies either

u(b) =0 (8.1)

or

w(D) = u(B) | (8.2)
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3. A measure o-algebra (A,  u) is called nonatomic if it has

no atom.

Proposition 8.1. If (A, d u) 1is a nonatomic measure g-algebra,

Be &, CZB =(D: De 4, DCB} then (B, QB,u) is a nonatomic

measure g-algebra.

Proof of Proposition 8.1. Let d B D 413 be the minimal o-algebra

containing dB" We have by construction a BC d, moreover,
De QB implies pC B, Thence d BC dB. In other words,
413 = aB and (B, dB,u) is a measure o-algebra. Finally,

(B, aB,u) is nonatomic since any atom of (B, 4B,u) is also an

atom of (A, & ,u). This concludes the proof of Proposition (8.1).

Proposition 8.2. If (A, a,u) is a nonatomic measure g-algebra,

da ={B:Be 4, u(B) = apn(A)}, then there exists a nest %C 4

such that 7/ N ## for all ae [0,1].

Proof of Proposition 8.2. Let 4? be a maximal nest in d Such a

next exists by the Hausdorff Maximsl Principle. Let ﬁa = 7[0 QG,

72; - Y 7Za’ ’7?; = U 72(,: then ?]& # P since

0<a<a a< a<l

+ +
fe WO’ similarlyﬁa;élé since A € Wla Let N, = ﬁB+,

B e?]a

N; = UB . Since 7? is a maximal nest over the o-algebra d ’
Be 72;

- + - + - +
then K e 7], N, € 7], W) <a, wN)>a, NaC N, end there

18 no Ne ( such that N#N(;, N#NC:, E'T;CNCN;. Moreover,
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we have u(N;) = u(N; ) = &. Otherwise, from the nonatomicity of

(A, 4 ,u), there would be a subset K of N; ~ N; such that w(K) # 0
+ - + - - -

and u(K) £ w(lNy ~ N, ) = u(N,) - u(N,), 1.e., such thet NaUK # N,

NUKAN and NCNUKCKN which contradicts our previous

a o a > a a

results. For every « ¢ [0,1] we have exhibited elements N end N;

Q
in ?]a = 72(\ da, This concludes the proof of Proposition (8.2).

Proposition 8.3. If (A, a su) 1is a nonatomic measure o-algebra, then

there exists a set ﬁ = {Da : ae [0,1]) such that

(1) Dye g 8l ac[0)1] (8.3)
(11) (D)) =au(a) (8.4)

a if and only if oy < a, (8.5)

(141) DalC D 1

Proof of Proposition 8.2. For every « ¢ [0,1] 1let Da be an element

of the nonempty set Wa' Such Da exists by the axiom of choice.
The conditions (1), (11) and (iii) are then satisfied by construction.

This concludes the proof of Proposition (8.3).

Proposition 8.4. If (A, q ,u) 1is a nonatomic measure g-algebra,

{a, :+ 1 =1, ... , k} & finite set of nonnegative real numbers, then
i s

there exists a set [Ai :1=1, ... , k} such that

(1) A e A for 1=1, ...,k (8.6)
(11) AiﬂAJ =@ for 1 =1, ... ,k; J=1, ...,k
and 14 ) (8.7)



k
(111) U A, =4 (8.8)
1=1

(1) ulAy) = = u(a) (8.9)

Proof of Proposition 8.4. Let

a, = X for 1 =1, ... , k (8.10)

By Proposition (8.3) there is a A e d such that

a(Ay) = ayu(a) (8.11)

Let
A =A~A (8.12)

and
q, = QA(l) (8.13)

By Proposition (8.1), (A(l), al,u) is a nonatomic measure o-algebra

and by Proposition (8.2) there is a A, e ql such that

W(ay) = apu(att)) (8.14)

Let
a® L0 A, (8.15)

and
Qa = 4A(2) (8.16)
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By Proposition (8.1), (A(a), qa,u) is a nonatomic measure ¢-algebra

and by Proposition (8.2) there is a ,l*.3 € a2 such that
u(A,) = a3u(A(2)) (8.17)

By repeating k - 1 <times the same process, we obtain a set
(A, : 1 =1, ... , k}. It is a trivial matter to verify that the set
(A, : 1 =1, ..., k] satisfies conditions (1) to (iv). This concludes

the proof of Proposition (8.4).

Proposition 8.5. If (A, 8 ,u) 1is a nonstomic measure o-algebra, f

a bounded and B measurable function over A, there 1s a set D € B

with u(D) = #u(A), ]_gf dy = J‘e{ f au.

Proof of Proposition 8.5. From Proposition (8.2) there is a subset

D= (Da : ae [0,1]) of B such that

(1) u(Da) =au(A)

(11) D°‘1C DQ‘2 irf o <aq

Let B, =D, ~ Da—% all a ¢ [4,1], hence B, € B ana

H(By) = (D) - u(Dyy) = a- (ax-4%) = %

We shall assume temporarily that [ £ du 4 O.
' A

Let

[ £ du

o) =Trw

A
8k



We then have

o(Bl) + O(Bé) =1 (8.18)
since (&(D,)- O(D%))+ (o(D%) -®(Dy)) =(1- 4)+ (4-0) = 1. Moreover,

@(Ba) is continuous over « ¢ [%,1] (8.19)

since

(B, )-®B < |[(e(D, ) -o(D - (e -9
I(a1 (a2)|_| °‘1) (01'5)) ((D“a) (D%_%)H

< |°(Dal) '°(Da2)| + |°(Dal_ %)-o(no?_ %)I

< Mlu(Dal) - “(Da2)| + M'“(Dal-y -w(D, _ %)l

._<. Mlal- a2| +M|(a1.- %)_ (aa" %)I = 2M| al- a2|

From (8.19) we know that O(B[%’l]) = [O(Ba) : @ e [4,1]) is a segment.

Moreover, O(B[%’l]) contains o(Bl) and O(Bé) =1 - O(Bl), from

(8.18), hence O(B[é,l]) contains

o(B,)+ ¢(By)  9(B))+(1-(B)))
2 } 2

since a segment 1s a convex set.
let Te [4,1] be such that ®(Bz)=4% then D =B is the

requested set.
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Ir i‘fduso let o(e) = [ f du then
8

o(B,) + 0(3%) =0 (8.20)
and
O(Ba) is continuous for o e [%,1] (8.21)

for the same reasons as (8.18) and (8.19).
From (8.20) and (8.21), we conclude as before that there is a

@ ¢ [4,1] such that O(Ba) = 0. This ends the proof of Proposition (8.5).

Proposition 8.6. If (A, B,u) 1is a nonatomic measure g-algebra, f a

uniformly bounded and B measurable function over A, d the minimal

o-algebra over £ = {Di :1=0,1,2, ... , } where the sets L,

have the following properties:
DO = A (8.22)
D e B (8.23)
n
Don+1” ) Dopsp = P (8.24)
Done1 Y Donee = Dy (8.25)
W(Dypya) = w(Dy,n) = 4 u(D)) (8.26)
[ fau=[ fau=2] fa (8.27)
D2n+l D2n+2 Dn

then
ffdu=9{—{-nffdu for all De (8.28)
D AY 3



Proof of Proposition 8.6. Let

(8.29)

-
g

W(D) = Tt

(8.30)

£

My(D)

We then have to prove that xl(D) = X2(D) for a1l De { . We

may assume without loss of generality that [ £ du > 0. Indeed, the
A
case [ f du <O can be reduced to the case [ f du >0 by intro-
A A
ducing the function ™*=-r.

1. The proposition is true for each Dk in ,O'

If k is a nonnegative integer then there is a unique sequence of

nonnegative integers ko, kl, cee kn with
kg = 0 (8.31)
ki =2k, +1 or k., =2k +2, 1=0,1, ..., n-1 (8.32)
k =k (8.33)
hence
] fau=% [ fau (8.34)
Dki-!-l Dki
and
p.(Dk ) =% p.(Dk ) foralli=0, ..., n-1 (8.35)
i+l i

Relations (8.34) and (8.35) imply
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] fta
%y,
i.e.,
J £
Dy
n
or
[ £
Dy
and
xa(nk)

A'l( Dk)

all 1 =0,

all D evO'

all Dkeﬁ

Hence the proposition is true for each Dk € 5 .

ese 5 D=1

(8.36)

(8.37)

(8.38)

2. The proposition is true for each D in the minimal algebra o;

over 9@'

It
De
then
D
with
D MD

for 1 £

(8.40)

(8.41)

(8.42)



From definition (8.29) and relations (8.4%1) and (8.42), we obtain

k
A (D) = 121 M (Dni) (8.43)

Similarly, from definition (8.30) and relations (8.41) and (8.42), we

obtain

k
Ao (D) = 1§1 M (Dni) (8.44)

From relations (8.39), (8.43) and (8.44), it follows that
A (D) = 1,(D) (8.45)
Hence the proposition is true for each D € Q;t s

3. The proposition is true for each D € Q

The position is the following:

(a) M and )\, are two set-valued functions defined over the
o-algebra 3 .

(v) M 1s & measure over B since u 1is a measure over B

(¢) A(D) = ay(D) forall D coF, where o 1s a subalgebra

of B

Since CI 5 the o-algebra generated by the algebra J s 1s by
construction a subalgebra of the o-algebra B s 1t follows from the
theorem on the uniqueness of the extension of a measure that
xl( D) = XE(D) for each D ¢ A . (See Halmos, Measure Theory, page 54).

This concludes the proof of Proposition (8.6).
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Proposition 8.7. If (A,8,u) 1is a nonatomic measure o-algebra, f

a bounded and B measurable function over A, then there is a non-

atomic measure o-algebra (A,J si)  with QC 6 such that

ffcm=“-%—}nffdu for a1l De O (8.46)
D wld) 3

Proof of Proposition 8.7. Let us call Do = A and BD = B. Let
o

Pn be the following procedure:

If (Dn’ BD s4) 1is & nonatomic measure o-algebra, then by
n

Proposition (6.1) there are sets D4y 8nd D, o€ BDn

such that
Done1 " Domez = # (8.47)
D2n+lUD2n+2 =D, (8.48)
WDy q) = w(Dy,,) = 4u(D) (8.49)
] fa=] fdu=%/[fau (8.50)
D2n+l D2n+2 Dn

and (D , B » ) and (D , B s, W) are nonatomic
an+l D2n +1 2n+2 D2n +2

measure g-algebras by Proposition (8.1).

Let us apply recurrently P to (Dn’ BD ,B) for n=0, 1,2, ... .
This is possible since Do and BD arengiven. Let d be the mini-
mal o-algebra generated by [D:I. : :|.°= 0, 1, 2, ...}. By construction,
(A, d,u) 1is a nonatomic measure g-algebra and X C 8. Moreover, (¢

satisfies the assumptions of Proposition (8.6), hence
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[t for all De @ (8.51)

This concludes the proof of Proposition (8.7).

Proposition 8.8. If (A,8,u) 1is a nonatomic measure g-algebra,

f = (fl, cee £7) an n-dimensional vector-valued, bounded and

5 measurable function over A, there 1s a nonatomic measure o-algebra

(A, Qou), AC B such that

D
lj;fdu=ﬁ-(%§l{fau for all De ( (8.52)

Proof of Proposition 8.8. Let us apply Proposition (8.7) to et over

(A,8,u) and let (A,dl,u), dlC B ve the nonatomic measure
og-algebra so0 obtained. More generally, let us apply for

$=1,2, ..., n-l, Proposition (8.7) to f£i*%

over (A, di,u) and
let (A, d‘l +1’”’) , a i +1C ai be the nonatomic measure g-algebra so
obtained.

Let 4= dn. We then have

]J;fidu= %‘{fi du, 1=1, ...,n forall Ded (8.53)
i.e.,

[t = E%—}D /£ du for all De (] (8.54)

D wlA) A

This concludes the proof of Proposition (8.8).
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Proposition 8.9. (Lyapounov's Theorem) If (A,8,u) is a nonatomic
measure c-algebra, f= (fl ,f2 s eesy fn) an n-dimensional vector-

valued, bounded and B measurable function over A, then
R={(f/fdu :Bed) (8.55)
B

is convex.

Proof of Proposition 8.9. It is enough to prove that if b, and

b2 € R, then

(@b + (1 -ap, :ae [0,1)CR (8.56)

If bl and b2 € R, then there are Bl and 32 € B such that

/ fdu=0 fort =1, 2 (8.57)
B
i
Let
£, = fX(Bi) fori =1, 2 (8.58)
and
£ = (fi,fi, ) frl‘, fé, cee fg) (8.59)

If we apply Proposition (8.8) to f* over (A,B,u), we obtain
a nonatomic measure g-algebra (A4,{,n), A C 8. Let -
[Da : @e [0,1])] be a subset of a such that
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u.(Da) =au(A) ell o e [0,1] (8.60)
L exists by Proposition (8.3). We then have

RO{[ fau: X=[D,MNB]UA~D )N B,], @ e [0,1]} (8.61)
X

={J £+ [ £, du:ae (0] (8.62)
Dy A~D,,
u(Dy) u(A~D,)
=[m£fldu+ -mr—ifedu:ae[o,l]] (8.63)
= {ab, + (l-a)be : ae [0,1]) (8.64)

This concludes the proof of Proposition (8.9).

Proposition 8.10. If (A, B,u) 1is a nonatomic finite measure o-algebra,

X 1is an n-dimensional Euclidean space, S 1s a class of bounded 8
measurable functions from A to X such that f and g € S implies

fX(B) + gX(A ~ B) € 8 for ell Be B (8.65)
then

L(s) = { (8.66)

>
H
3
H
[}
0
Sl

is convex.

Proof of Proposition 8.10. Let f and g € S. We shall prove that

there is a set L(f,g) such that
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(#) L(f,g) is convex (8.67)
(1) L(£,g) CL(8) (8.68)

(111) [ fau end [ g du € L(f,g) (8.69)
A A

The existence of such a set I(f,g) 1is a sufficient condition for
the convexity of the set L(S).

Let

L(f,g) = {1{ (£X(B) + gX(A~B))au : B ¢ B) (8.70)

and

L*(f,g) = [-1{ gdu+a:ael(f,g) (8.71)

We may write L*(£,g) = (J (£-g)X(B)dp: B e B), hence L*¥(£,g) is
convex by Proposition (8.3). The convexity of L(f,g) then follows
from the convexity of L*(£,g). This proves relation (1).

Relation (ii) 1is an immediate consequence of the definitions of
L(S) and L(f,g). Moreover, for B=A ¢ B we have [ £ du e L(f,g)
and for B=fF ¢ & we have l{ g€ du € L(f,g). This prﬁves

relation (iii) and concludes the proof of Proposition (8.10).
+
Propogition 8.11. The set H([v]) is convex.

+
Proof of Proposition 8.11. From the definition of H([v]) we have

H([v]) = ({tb

a

o(t,u(t);[v])at : [u] e F} (8.72)



vhere

e(tsu(t);[v]) =6(t; (v1)(£(x(t;[v]),ult),t) - £(x(t;[v]),v(t),t))at
(8.73)

From the definition of the class F we know that if [ul] and
[u2] ¢ F and if B 1is a measurable subset of [ta,tb] there exists

an element [u] € F such that

u(t)

ul(t) for all t € B

u,y(t) for all t e [t ,t ]~B (8.74)

Hence the class S* of all functions ¢(t,u(t);[v]) with [u] ¢ F
satisfies condition (8.65), and we may apply Proposition (8.10). This

concludes the proof of Proposition (8.11).

Notations: If f end g are elements of the class S introduced in

Proposition (8.10), we shall write

o(f,8) = u((t:£(t) £ g(t), t € A)) (8.75)
and
a(£,g) = ess sup |£(t) - g(t)] (8.76)
t eA

The remarks made in Section 5 also apply ta.these norms.

Proposition 8.12. Under the assumptions of Proposition (8.10), if
/ £, d 1s an interior point of L(S), then there is a subset S(fo)
A

of S and two positive constants m and k such that
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(1) d(fo,g).s k forall g in S(fo) (8.77)

(11) the mapping S(fo) - L(S(fo)) is one-to-one (8.78)

(111) [ f, du 1s an interior point of L(S(fo)) (8.79)
A

(1v) o(g,h) <m |/ g du-/h au| forall g and
A A
h e 8(£,) (8.80)

Proof of Proposition 8.12.

Notations: If A 1is a set, then int A 1is the set of interior points
of A, coA 1is the convex hull of A, and int co A 1s the set of
interior points of the convex hull of A.

If { £ du € int L(S), then there are functions fl,fa, TREPI S

in S such that £ e int coM vhere M = [li :1=0,1,2, ..., n+l)}

with ¢, = [ f, au for 1=0,1, ..., n+l. Let M,
A
i=0,1,2, ... , ntl. For every L ecoM let A\(Z)

(M~Ui}) for

(Xi(l) : 1=0,1, ... , n+tl} be defined by the following rules:

(1) k 1is the smallest integer such that £ ¢ co M

(11) Xk(l) =0

(111) 2(2) ~ (xk(:)] are the barycentric coordinates of £

with respect to Mk'
By construction there exists a positive constant m such that

n+l
L (8" -2 (") Sm |4'-4"] foreil 4' end £"in coM
1=0

(8.81)




Let

o = (£

> £, e, £2) (8.82)

2 n+l

By BTy e, B

0 "1 1

Let (A,q,u) with Q C B 1ve a nonatomic measure o-algebre

such that
Joau = 2 [foau for all Dea (8.83)
D AT A

Such an ({ exists by Proposition (8.8).

Let [D1 : 1=0,1, ... , n+tl} be such that

(1) D, e (8.84)

(11) DiﬁnJ =0 if 14 (8.85)
n+l

(111) U D, =A (8.86)
1=0

(1v) W(D,) = —i5 u(A) (8.87)

Such set [Di : 1=0,1,2, ... , n+l} exists by Proposition (8.4).

Let ,81 be a nest [Dia s e [0,11) C dD such that
i

(1) a< a' implies DiaC Dia' (8.88)
(11) Dil =D, (8.89)
(111) u(Dia) = au (D) (8.90)

Such a nest 'O;. exists for all 1=0,1,2, ... , n+l by Proposition (8.3).
We shall use the following convention: if « 1is a positive number,
the set Q@ coM is defined by
@coM= (8 +a(s-4): & ecob) (8.91)
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Let

ntl A, ((n+#2)2)\ n+l xi((n+2)l)
=t x(a~U p * >+ £,X <Di >

£
i=1 i=1

£)

1
for all £ ¢ o+ ©° M (8.92)

By construction, we have;

( ) nfjl (2" - 2 (2™
f s £ " = (2 - A2
° 'y (2" d=0 1 1

' " 1
for all £' and £ € —FycoM (8.93)
Let
S(£)) = (£ 4y : ¢ € 755 coM) (8.94)
We have S(fo)C S since f(l) €S forall Le —5 coM

because aD C AC B for a1 1=6,l,2, «+s , ntl by Proposition (8.2).
i

We also have, by construction,

{ f(‘) du = 2 for all £ ¢ nie co M (8.95)
i.e.,
L(8(f,)) = === coM (8.96)
But since
4, € int -E-];E co M (8.97)
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i

then relation (8.96) implies
4, € int L(S(fo)) (8.98)

Relation (8.98) is the required property (8.79). Property (8.78)
is satisfied by virtue of relations (8.9%) and (8.95). Property (8.77)
follows from the fact that the class S( fo) has been constructed from
a finite number of bounded meesurable functions. From relations (8.81)

and (8.93), we have

ot ,t )<ml|e'-2"| forall 4 and 2" e
1" —

(2') (4"

nt o co M

(8.99)
Relation (8.99) is equivalent to property (8.80) by virtue of

definition (8.94%). This concludes the proof of Proposition (8.12).

+
Proposition 8.13. If O 1is an interior point of H([v]) then there

is a subset F({v]) of F and two constants m and k such that

(1) da([ul,[v]) <k for all [ul e F([v]) (8.100)

(11) the mapping: F([v]) - (¥(t,;(ul, [v]): [u] € F([v]))

is one-to-one (8.101)
(iii) 0 1is an interior point of {;(t slul,[v]) : [w] eF([v]))
(8.102)

(1v) o(lu,],[w,)) < mlF(ty 5001, 0v]) = Ftysu, 1, vD)|
for all [ul] and [u2]eF([v]) (8.103)

Proof of Proposition 8.13. Let 8" be the class of functions intro-
duced in Proposition (8.11). By replacing S8 by S* 1n the proof of

Proposition (8.12), we immediately obtain Proposition (8.13).
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SECTION 9

An Application of Brouwer's Fixed Point Theorem

In this section we prove a single proposition which will play a

fundamental role in the proof of Theorem III, given in Section 10.

Proposition 9.1. If f is a continuous mapping of a ball sh =

{x:x € E, |x] <n}, with n >0, of the Fuclidean space E into E
such that there exists a function g(r) defined, continuous and non-

decreasing over [O,m] and having the following properties:

(1) un 2o (9.1)
r-0 . — L e
(11) |a-£(a)| < &(]le|) for all & € 8" (9.2)A

then O 1is an interior point of the set f(Sn) image of the set sh

through the mapping f.

Proof of Proposition 9.1. Let o € (0,n] be such that g(p) < g',

i.e., g5‘§-22-<1. Such a p exists since gsé_g)_ is continuous over

(o,n] and 1lim 2e(e) . 0 by assumption.
o= 0 e

Let h(x) =z+x=-2(x). If z¢ /2 then h, maps sP into

itself since for x € Sp we have

In ()] < |z + |x-2(x)| < 2+ allx]) < B+ap) s S48 =0

(9.3)
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Moreover, the continuity of the mapping f implies the continuity of

the mapping hz, hence by Brouwer's Fixed Point Theorem, there exists

an xl such that
hz(xl) =% (9.4)
i.e.,
z = £(x;) (9.5)
For all =z ¢ S°/2 there exists an Xy such that relation (9.5) holds,
hence
sP/2 C £(s°) C 2(s") (9.6)

The point O 1s then an interior point of the set f(S“). This

concludes the proof of Proposition (9.1).

Remark. A weaker form of this proposition, corresponding to

glr) = Mr2 for some O <M < +», has been introduced without proof
in a previous publication [12]. An elegant proof for the case

g(r) = Mr® bas been communicated to the author by Dr. G. S. Jones of
RIAS. The proof given here for the larger class of functions g
described in the statement of Proposition (9.1) is a generalization

of Dr. G. S. Jones' proof.
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SECTION 10

Proofs of the Theorems of Section U

Proof of Theorem I. If x = x(tb;[v]) is an interior point of the

set H, there is an € > 0 such that
£ = (x (300D, 101D, o2 (s vD), XN 15 (VD) + €) (20.2)

is also a point of the set H, hence there is a [u]l in F* such

that

x(ty;u]) = & (10.2)
We then have
Uty slu)) = (e ;0v]) + €> x(t;50v]) (10.3)
But by construction we also have

(£,t,) € B (20.4)

Relations (10.2), (10.3) and (10.4) contradict the assumed opti-
melity of the element [v] of F¥, hence x = x(tb;[v]) is a boundary

point of the set H. This concludes the proof of Theorem I.

Proof of Theorem II. The mapping H - H([v]) 1is defined by

y o= 6t [vD)(x = x(t;1v])) (10.5)

But G(tb;[v]) is the identity matrix, hence H([v]) 1is a simple trans-

lation of H. This translation conserves the topological properties
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of the points in H; in particular to a boundary point of H corre-

sponds & boundary point of H([v]) and conversely.

: +
Proof of Theorem III. Let us assume that O is interior to H([v])

and show that O is then interior to H([v]).

+
If 0 4s interior to H([v]) then by Proposition (8.13) we know

that there exists a subset F([v]) of F and two constents m and k

such that

(1) 0 1is interior to (;(tb;[u],[v]): [u)] eF([v])]}

(ii) the mepping F([V])~(§(tb;[u],[V]) :[ul eP([v])]}

is one-to-one
(141) d([ul,[v]) <k for all [u] e F([v])

(1) o([u,),luy]) < mIF(e,5Tu; 1, 0v]) - Ftys [uy ), (VD) |

for all [ul] and [u2] e F([{v])

Let F([v],Q) be the subset of F([v]) defined by

F([v],Q) = ([u] : [u) e F([v]),0([ul,[v]) £ Q)

For all [u] e F({v]) such that

1§t tul, VD] < 2
we have, by applying (10.9),
o([ul,[v]) <@

which implies
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[ul e P([v],Q) (10.13)
We may then write

(1) 0 1is interior to (;'(tb;[u],[v]):[u]eF([v],Q)) (10.14)

(11) the mapping F([v],Q) »(¥(ty;(ul,[v]) : [ul e F([v],Q))

is one-to-one
(111) a({ul,[v]) <k for all {u)e F([v],Q) (10.16)

(1v) o([u;),[uy]) < ml¥(ty;0u 1, 0v]) =38, [uy), (VD)

for all [ul] and [u2]eF([v],Q) (10.17)

From Proposition (6.13) we then have

F([v],Q) C F¥([v],k) C F* (10.18)

y(t ;[ul,[v]) exists for all {[uleP([v],Q) (10.19)

We also know that

(1) the mapping from [;'(tb;[u],[v]) : [u) eP([v],Q)} to

F([v],Q) is continuous (see relation (10.17)) (10.20)

(11) the mapping from F([v],Q) to {y(ty;[ul,[v]): [u] eF([v],q)}

is continuous (see Proposition (6.13)) (10.21)

Hence the mapping from (;(tb;[u],[‘l]) : [u] eF([v],Q)) to

(y(t;[ul,[v]): [u] eF([v],Q))} 1is continuous. (10.22)
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From Proposition (7.13) we know that there exists a function g(r),

defined, continuous and nondecreasing over [0,Q] such that

(1) um &£l (10.23)

r-0
(1) |3yl [v]) = vty [ul, [v])] < o [ul, (v]))

for all {u)eP([v],Q) (10.2%4)

We define the function G(r) by the relstion
G(r) = g(mr) (10.25)

From relations (10.17), (10.23) and (10.24), we know that there exists
a function G(r), defined, continuous, nondecreasing over [O, -3] and

such that

(1) 1im ¥x)l .o | (10.26)

r
r- 0

(11) 13ty ul, [v]) = 3t 5 Tul, (VD] < 6(1F(t 5 (ul, (VD) (20.27)

We apply Proposition (9.1) to relations (10.1k4), (10.22), (10.26)
and (10.27) and we obtain
0 1is interior to {y(tb;[u],[v]): ful e F([v]1,Q)]} (10.28)
and a fortiori

0 is interior to H([v]) (10.29)
This concludes the proof of Theorem III.

+
Proof of Theorem IV. By Proposition (8.11), the set H([v]) is convex,

+
hence if y = 0 1s & boundary point of H([v]) there exists a hyperplane
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(n(Iv])|y)

n
o

(10.30)

such that

(x([v])|y) <0 for all y ¢ H([v])  (10.31)

Let us assume that there is a [u] € F such that

(r( v e(es v D (£(x(t5(v]) u(t),t) - £(x(t;[v]),v(t),t)) 2 € >0

(10.32)

for t ¢ E, vwhere E ¢ B witn u(E) > 0, then by introducing the

vector-valued function
w(e) = v(t) + X(E)u(t)-v(t)) all telt,t]  (10.33)
we obtain
(v IF(t,5 (%), [v]) 2 € w(E) >0 (10.34)
We also have
+ * +
¥(ty; ™1, Iv]) e B([v]) (10.35)

since [u*] ¢ F. Relations (10.31), (10.34) and (10.35) are contra-

dictory. This concludes the proof of Theorem IV.

Proof of Theorem V. Let the vector p(t;[v]) be defined by

" relation (4.2). This vector p(t;[v]) 1is nonidentically zero and
continuous over [ta’tb] since G(t;[v]) and G-l(t;[v]) exist and
are bounded over [ta’tb]' Relation (L4.1) may be written under the

form:
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(x([vD)[G(ts IvI)(e(x(t;1v]),ult),t) - 2(x(t;[v]),v(¢t),t))) <O

for all [u] in F and a.e. t ¢ [ta’tb] (10.36)
or, from the definition of a transposed matrix

(6T( 43 [v])x( [v]) 1 2(x(£5[v]),ult),t) - £(x(t;[v]),v(t),t)) <0

for all [u] in F and a.e. t € [ta’tb] (10.37)
i.e., from relation (4.2),
(p(t; v (x(t;0v]),ult),t) - £(x(t;[v]),v(t),t)) <O
for all {u] in F and a.e. t ¢ [ta,tb] (10.38)

This proves relation (4.3). By differentiation with-respect to t of

relation (4.2), we obtain
B(t;0v1) = (6%(t;0v1)) "x([v])
= (Gt I T(IV])  mee. tee[t,t]  (10.39)
but by definition (see relation (2.3)), we have
G(t;5[v]) =-6(t;[v])D(t; [v]) ace. te(t,t] (10.40)

hence

( - 6(t;Iv])D(;[v1)) Tn([v])

B(t;v])

- DT(t;[v])6T(t;[v))n( [v])

= DT (t;[v1)p(t;v]) (10.41)

This proves relation (4.4) and concludes the proof of Theorem V.
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Proof of Theorem VI. This theorem is Just a logical conclusion of
Theorems II, III, IV and V: 1if the point x(tb;[v]) is a boundary
point of the set H, then the point y = 0 1s a boundary point of the
set H([v]) (see Theorem II), then the point y = O is a boundary
point of the set E([v]) (see Theorem III), then there exists a non-
zero constant vector n({v]) such that condition (h.}) is satisfied
for all [u] in F (see Theorem IV), then there exists a vector
p(t;[v]) continuous, nonidentically zero on [ta,tb] and satisfying
conditions (4.%) and (4.4) (see Theorem V). This concludes the proof

of Theorem VI.

Proof_of Theorem VII. This theorem is Just a logical conclusion of

Theorems I and VI; 1if an element [v] of F*

is optimal, then the
point x(tb;[v]) is a boundary point of the set H (see Theorem I},
then there exists a vector p(t;{v]) continuous, nonidentically zero

on [ta,tb] and satisfying conditions (4.3) and (4.%) (see Theorem VI).

This concludes the proof of Theorem VII.
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