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Abstract

The propagation of torsional waves in tapered solid elastic rods
has been studied both theoretically and experimentally from the viewpoint
of acoustic horn theory. Such tapered rods in torsional vibration have
been dubbed "torsional horns," Two differential equations are derived
which describe the propagation of torsional waves. One of these is an
"exact" wave equation which can be readily solved only when the horn
boundaries fit a separable coordinate system. The other is an approxi-
mate wave equation based on the assumption that the wavefronts are plane
cross sections of the horn. This equation is very similar to Webster's
plane-wave equation for compressional waves in an acoustic horn,

For purposes of analysis, torsional horns are divided into three
categories: those having smooth contours fitting separable coordinates,
those having smooth contours not fitting separable coordinates, and
those having piecewise-smooth contours. Experimental apparatus was
devised and built for the measurement of the standing-wave patterns and

,resonance frequencies of experimental torsional horns made of brass or
mild steel. The experimental data are compared with the solutions of
the two wave equations for selected horn contours from each category.

A quantitative estimate of the error introduced by the plane-wave
approximation is obtained for the exponential horn.
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PREFACE

Acoustic horns have been in use since primitive man first dis-

covered that his voice could be heard at a greater distance if he cupped

his hands around his mouth while shouting. The development of horns as

impedance transformers progressed empirically from that day to the early

twentieth century, when A. G. Webster did his pioneering work on acoustic

horns. In the period between the two World Wars, the use of Webster's

plane-wave horn equation was extended to the analysis of horns of several

types of contour for guiding sound waves in air. During World War II,

W. P. Mason conceived of using tapered solid rods as impedance changers

for compressional elastic waves, and he successfully adapted existing

horn theory to these solid horns. Such devices found use in the new art

of ultrasonic machining and impact grinding.

Mason's work suggested to Professor Frederick V. Hunt a new twist

in solid horns: the possibility of torsional excitation. The research

reported here was initiated when Prof. Hunt proposed that I undertake to

find out whether tapered solid rods display typical "horn-like" behavior

for torsional waves.

I would like to acknowledge the guidance of Prof. Hunt in the

execution of this research project. His ready availability and willing-

ness to discuss problems both large and small have been of no little

help. I wish to thank collectively the staff of the Acoustics, Research

Laboratory for many fruitful discussions and helpful suggestions. I am

particularly grateful to Fudlow Abdelahad for his expert machine work

in the construction of the mechanical apparatus and the experimental

horns, and to Miss Constance Demos for her tireless assistance with the
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mechanics of manuscript production. Finally, I should like to acknowl-

edge the partial support of this research by the Office of Naval

Research, under Task Order 24 of Nonr-1866.
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SYNOPSIS

This report and the research described herein is the author's

answer to a query as to whether solid tapered rods display horn-like

behavior for torsional waves as they do for compressional waves. The

text of this report consists of seven chapters and two appendices.

Chapter I is an introduction giving some historical background of

the present research and an outline indicating the main features of the

remainder of the text.

Chapter II contains derivations of the differential equations and

boundary conditions necessary for the mathematical description of tor-

sional-wave propagation in solid horns. Torsional waves are defined in

this chapter as rotationally symmetric shear waves, a definition which

leads to the requirement that the boundary of a torsional horn must be

a surface of revolution if torsional waves are to propagate in the horn

without partial conversion to compressional waves.

Two wave equations are derived. One of these is "exact," a special-

ization of the general equations of small-amplitude motion in an elastic

medium. It can be readily solved, however, only for horns whose bounda-

ries fit coordinate surfaces in circular cylindrical or spherical coordi-

nate systems. For the analysis of horns whose contours do not fit a sepa-

rable coordinate system, such as the exponential horn, an approximate

wave equation is derived based on the assumption that the wavefronts of

the torsional waves are plane cross sections of the horn. This plane-

wave equation for torsional horns is similar in form to the plane-wave

equation for compressional-wave horns first derived* by Webster.3 The

* Numbers refer to the list of references at the end of the text.
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difference between the two is that the moment of the cross section of

the horn appears in the torsional plane-wave equation where the area

appears in the compressional plane-wave equation. The close relation-

ship between the plane-wave equation for torsional and compressional

waves was pointed out by the author8 in a paper delivered before the

Acoustical Society of America and was subsequently also noted by

Kharitonovi?

The boundary condition that the normal derivative of the angular

displacement wust vanish at a free surface is also derived in Chapter II.

In Chapter III is a description of the techniques and apparatus

developed for the experimental investigation of the properties of tor-

sional horns. The goals of the experimental program were the measure-

ment of the resonance frequencies and standing-wave patterns at reso-

nance of finite solid horns, To measure a standing-wave pattern, the

specimen horn is excited at the corresponding resonance frequency and

the amplitude of vibration at a movable measurement point is compared

with the amplitude at a fixed reference point. Conventional phonograph

pickups are used as the vibration-sensing elements. Torque is exerted

on the specimen horn by an eddy-current driver developed for the purpose.

This driver has no mechanical connection to the specimen horn. It

exerts torque on the specimen horn at two frequencies which are the sum

and difference of the frequencies of the currents in its two field wind-

ings. An approximate analysis of the driver operation indicates that

Os
approximately twice as much torque is exerted on ferrous tkimr on non-

ferrous specimen horns. This was verified experimentally. The'fact

that the torque is induced at frequencies other than the driving-current

frequencies permits isolation of desired signal from interference coupled
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magnetically directly from driver to phonograph pickup, The horn under

study is used as the frequency-determining element in a self-excited

oscillator to insure that the drive is applied to the specimen horn at

the resonance frequency.

The, 0 ftof a resonance of a specimen horn can be calculated

from the resonance frequency and the measured decay rate of free vibra-

tions at that frequency.

Using the methods covered in Chapters II and III, Chapters IV, V,

and VI are devoted to the theoretical and experimental study of three

different classes of horns.

Chapter IV deals with horns which fit separable coordinate systems,

The exact wave equation is separated and solved for the normal modes of

vibration of cylinders and cones. Of special interest are the one-

parameter modes which are functions of only one space coordinate.

Appendix A contains a demonstration that no coordinate systems other

than cylindrical and spherical allow one-parameter solutions. The com-

pound modes, for which the angular displacement is a function of two

space coordinates, are analyzed for both cylinder and cone. Results of

numerical computations are presented in graphical form showing the

relation between the dimensions of a cone and the resonance frequency of

its lowest mode. This information is believed to be unavailable else-

where. The numerical method for finding the resonance frequencies is

outlined in Appendix B. Resonance frequencies and standing-wave pat-

terns were measured for both conical and cylindrical horns. The results

are presented in graphical and tabular form in Chapter IV. The agree-

ment between theory and experiment is very good to excellent in all

cases.
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Chapter V is concerned with horns, such as the exponential, whose

contours are smooth but do not fit separable coordinate systems. The

plane-wave equation derived in Chapter II is solved for cylindrical,

conical, and exponential horns. The first two shapes were included to

show that the plane-wave equation gives the same solution as the exact

wave equation in the cases for which axially directed true one-parameter

waves can exist. A torsional-wave impedance is defined as the ratio of

torque to angular velocity and its value is found to vary as the moment

of the cross section (proportional to the fourth power of the radius) as

compared with the analogous mechanical impedance in compressional-wave

horns, which varies as the area of the cross section (proportional to

the square of the radius). A quantitative estimate of the error incurred

by the use of the approximate plane-wave equation for the exponential

horn was obtained from the discrepancy between the observed resonance

frequencies and the predicted values. This discrepancy was interpreted

in terms of an effective length based on the assumption that the observed

resonance frequencies could be described by the approximate plane-wave

frequency equation if the length of the horn were taken to be different

from its physical length. This approach when applied to exponential

horns gave consistent results, and it was found that the length correc-

tion, the difference between the effective length and the physical

length, could be decomposed into the sum of two end corrections, each of

which is proportional to the product of the radius of the horn and the

slope of its contour at the end in question. The plane-wave frequency

equation for an exponential horn could therefore be modified by the

incorporation of end-correction terms in order to improve its accuracy

in predicting the resonance frequencies of a horn of given dimensions.



xiii

However, it was discovered that in practice this would be of little

avail since small errors in the contour of the horn cause far greater

departures from the predicted resonance frequencies than does the inac-

curacy inherent in the assumption of plane waves.

Chapter VI contains an extension of the plane-wave analysis to

include the effects of discontinuities in the horn contour or its slope.

Attention is focused on horns composed of cylinders of different diam-

eters and lengths. Equations are derived for the resonance frequencies

of double and triple cylinders. Experimental results are presented

showing reasonably good agreement with the predicted values of gain and

resonance frequencies. The presence of a step causes the greatest

departure from the assumed plane wavefronts when the step is at a node

of angular displacement. Measured resonance frequencies for modes of

this type were quite perceptibly lower than the values predicted using

the plane-wave assumption. The discrepancy is qualitatively explained

in terms of mode conversion at the boundary.

Chapter VII is a summary of the results of the investigation and

an indication of some possible applications for torsional horns. There

is also a brief discussion of some areas for further investigation.



Chapter I

INTRODUCTION

"The horn, the horn, the lusty horn
Is not a thing to laugh to scorn."

As You Like It
Shakespeare

This report and the research described therein is the author's

answer to a query as to whether tapered solid rods display horn-like

behavior for torsional waves as well as compressional waves.

1.1 Historical background

The theory of solid horns as concentrators of elastic energy or

impedance transformers is a comparatively recent development in acous-

tics. Although G. W. PierceI had used tapered solid couplers for the

transfer of acoustic energy as early as 1933, Warren P. Mason2 of Bell

Laboratories seems to have been the first to conceive of a tapered solid

rod as a horn. He successfully adapted Webster's theory3 of horns for

compressional waves in air to compressional elastic waves in a solid.

In the years since the Second World War, such solid horns have

found applications in ultrasonic machining and welding, and in fatigue

1. U. S. Patent No. 2,044,807, issued June 23, 1936, to Atherton Noyes,
Jr., assignor to G. W. Pierce. Application filed on June 30, 1933.

2. U. S. Patent No. 2,514,080, issued July 4, 1950, to W. P. Mason.
Application filed on January 10, 1945.

3. A. G. Webster, Proc. Natl. Acad. Sci. U. S. 5 (1919), p. 275.
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4
and wear testing of materials. Work in this field has by no means been

confined to the United States. Merkulov5 in the Soviet Union and

Neppiras6,7 in England have been particularly active in the development

of the theory of solid compressional-wave horns.

In their analysis of solid horns, all of the above authors have

ignored the ability of a solid to sustain a shear stress, that property

which differentiates it from a fluid. The existence of shear stresses is

implicitly acknowledged through the use of Young's modulus for the calcu-

lation of the compressional-wave propagation speed, but nowhere do the

shear stresses enter explicitly into the analysis. One might well ask,

therefore, whether it is possible to find modes of vibration for solid

horns in which the shear stresses predominate. Such an approach then

leads quite naturally to consideration of the torsionaivibrations which

form the subject of this report.

This research project was undertaken in the belief that no one had

previously approached torsional vibrations from the standpoint of acous-

tic horn theory. This writer delivered a paper before the Acoustical

Society of America in 1960 reporting preliminary results of his investi-
8

gations. In the audience was Warren P. Mason, who later remarked that

he had a patent application pending on torsional horns! Dr. Mason was

4. Mason, W. P., Physical Acoustics and the Properties of Solids (Van
Nostrand, New York, 1958), Chapter VI, See also W. P. Mason and
R. F. Wick, J. Acoust, Soc. Am. 25 (1951), p. 209.

5. L. G. Merkulov, Soviet Phys. - Acoustics 3 (1957), p. 246.

6. E. A. Neppiras, Brit. J. Appl. Phys. 11 (1960), p. 143.

7. E. A. Neppiras and R. D. Foskett, Philips Tech. Rev, 18 (1956-57),
p. 325. See also E. A. Neppiras, J. Sci. Inst. 30 (1953), p. 72.

8. R. W. Pyle Jr., "Torsional Horns," paper 19, Sixtieth Meeting of the
Acoustical Society of America, October 20-22, 1960. An abstract of
this paper appears in J. Acousto Soc. Am, 32 (1960), p. 1504,
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kind enough to lend the author a copy of this patent application which

deals almost exclusively with applications of torsional horns and very

little with the analysis of their vibratory properties. A later conver-

sation with Mr. E. A. Neppiras of Mullard Laboratories, England, revealed

that he also had engaged in some unpublished research on torsional horns.

He too was concerned more with practical applications than with theory.

Recently, at least two papers on torsional horns have come from the

Soviet Union.9'I0 Kharitonov points out the same analogy between tor-

sional horn theory and normal acoustic horn theory which this writer had

shown previously in the paper cited above. Marakov's paper is chiefly

concerned with an approximate analysis of exponential and double cylin-

drical horns.

1.2 The present investigation

The study of the propagation of torsional waves in solid horns,

like most problems in the physical sciences, may be approached in two

ways, theoretically and experimentally. The theoretical approach con-

sists of mathematical analysis based on the linear theory of elasticity.

The experimental approach consists of the construction of solid horns and

the measurement of their pertinent properties. Both avenues have been

explored and have proven complementary: Experimental results have served

not only to verify the theoretical analysis, but also to indicate fruit-

ful directions in which to extend the analysis.

The following exposition is divided into three main sections. The

first, consisting of Chapters II and III, deals with the tools, both

9. A. V. Kharttonov, Soviet Phys. - Acoustics 7 (1962), p. 310.

10. L. 0. Marakov, Soviet Phys. - Acoustics 7 (1962), p. 364.
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theoretical and experimental, which are necessary for the investigation

of torsional horns. The second section, Chapters IV, V, and VI, presents

both analytical and experimental results for various specific types of

horn contour. Chapter VII is the third section, a discussion of the sig-

nificance of the results and of possible fruitful paths for further

investigation.

Two differential equations which describe the propagation of tor-

sional waves are derived in Chapter II. The first of these is "exact,"

a specialization of the small-signal equations of elastic motion. This

equation can be solved easily if at all only for cylindrical and conical

horns, however. The second equation is only approximate but it can be

solved for a wide variety of horn contours. These two types of mathema-

tical description led to the classification of horns into three catego-

ries: those whose contours fit separable coordinate systems (cylinder,

cone); those whose contours are continuous and smooth but do not fit

separable coordinates (e.g., exponential, catenoidal horns); and those

whose contours, though piecewise belonging to one or the other of the

first two categories, are characterized by one or more discontinuities of

the contour or its derivative (e.g., coupled cylinders, coupled exponen-

tial horns). Selected examples from each category have been studied in

detail. Chapter IV deals with cylinders and cones, Chapter V with the

exponential horn, and Chapter VI with coupled cylinders. Fig. 1-1 is a

photograph of some representative samples from each group which were fab-

ricated for experimental purposes.

A horn is often analyzed in terms of the change in amplitude and

phase of a progressive wave transmitted along the horn. However, for

reasons discussed in Chapter III, it was found more convenient experi-
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mentally to deal with standing waves rather than with progressive waves.

Chapter III is a discussion of experimental technique and a description

of the apparatus developed for measuring the torsional standing-wave

patterns and resonance frequencies of the normal modes of finite horns.

As a consequence of the selection of this type of experiment, the major

object of the theoretical analysis in Chapters IV, V, and VI has been to

delineate the essential features of torsional standing waves, although

some attention has been paid to the behavior of progressive waves.

Chapter VII contains an evaluation of the validity of the approxi-

mate mathematical method used for the theoretical analysis in Chapters V

and VI, and provides a summary of the results obtained in this investiga-

tion. Also in this chapter is a discussion of some further problems

suggested by the work reported here and some speculation about possible

applications of torsional horps.
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Chapter II

WAVE EQUATIONS AND BOUNDARY CONDITIONS

2.1 Definition of torsional vibrations

Before proceeding to the wave equations and their associated

boundary conditions which constitute the major topic of this chapter, we

must first define torsional vibrations. Hereafter, the term torsional

vibrations refers to rotationally symmetric vibrations of an elastic body

for which the only particle displacement is oscillatory rotation about

the axis of rotational symmetry. This can be concisely phrased in mathe-

matical terms. Let the axis of rotation be the z-axis of a circular

cylindrical coordinate system (rz,V), and let u= (ur, u u ) be the

instantaneous particle displacement vector. Then torsional vibrations

are those for which
ýu

u = u =0 and • = 0
r z

i.e.,

u = u (r,z,t) . (2-1)

It is possible to deduce some further properties of torsional

vibrations directly from the deftixition (2-1).

In cylindrical coordinates, *the dilatation, div u, a measure of

the relative volume change within the medium due to the vibration, is

div u = (rur) + 1u ýu
d u = --- "+9 (2-2)

From Eq. (2-1), it is obvious that div u = 0 for any torsional vibration;

i.e., torsional vibrations are equivoluminal.
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If the displacement is small enough so that the usual small-signal

relations between strain and displacement are valid, then we find that

for torsional vibrations only two of the six independent components of

strain are nonzero, the shear strains

1 ýu u
e = ý - P-'-
rc 2 r r

and (2-3)

If we assume that the relationship between stress and strain is linear

(generalized Hooke's law) and that the elastic medium is isotropic,

homogeneous, and lossless, it follows that the only nonvanishing compo-

nents of stress are the corresponding shear stresses*

ýu u

= 2pe e ( - P )

and (2-4)
6u

TzC = 2pe = p

where p is the shear modulus.

2.2 The exact wave equation

2.2.1 Derivation from the general equation of motion

The small-signal equation of motion12 in a lossless, isotropic

homogeneous, elastic medium is

11. Sokolnikoff, I. S., Mathematical Theory of Elasticity (McGraw-Hill,
New York, 1956), p. 183.

* p. 180 of Ref. 11, cited above.

12. Kolsky, H., Stress Waves in Solids (Oxford U. Press, London, 1953),
p. 199.
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211(+ 2p) grad div u - p curl curl =u (2-5)

where u is the particle displacement vector and p the shear modulus, as

before, and p is the density of the medium.

It can readily be shown that torsional waves can exist, satisfying

both the differential equation of motion (2-5) and the defining condi-

tions for torsional vibrations (2-1). Since it follows from Eq. (2-1)

that the dilatation div u vanishes identically, the first term on the

left-hand side of (2-5) is zero. Applying the curl operator twice, sub-

ject to the conditions (2-1), we obtain after some routine manipulation

the torsional wave equation for the particle displacement u (a scalar

equation since u r u= 0),

62. ýu ý2u u2u
+ -- + T _2 -- T = 0(2-6)

6r2 r 6r z 2  r 2  c 2  t2 (

where c 2 = ; c is the shear-wave propagation speed for the medium.
13

This equation was apparently first stated by Pochhammer in 1876.

It will prove preferable later to work with the angular displace-

ment 1- = u / r rather than with the particle displacement u .

Equation (2-6), rewritten with 4r as the dependent variable, becomes

3+ + c½_ tt0 (2-7)•rr r r Zz -C2z

where subscripts on • denote partial derivatives.

13. L. Pochhammer, J. reine angew. Math. 81 (1876), p. 324. For a more
readily obtainable account of Pochhammer's work, see Chapter III of
Ref. 12, cited on p. 8.
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Since Fourier showed that an arbitrary time-variation can be repre-

sented as the superposition of simple-harmonic terms, we can assume

sinusoidal time dependence through the definition *(r,z)ejwt = T(r,z,t)

with no loss of generality because of the linearity of Eq. (2-7). Making

this substitution in (2-7), we obtain the Helmholtz form of the wave

equation,

+ + + k2 * = 0 (2-8)

where the subscripts again denote partial derivatives.

2.2.2 Derivation from Hamilton's principle

We can also derive Eq. (2-7) from Hamilton's principle, using the

calculus of variations. Hamilton's principle states that the dynamical

behavior of a conservative system will be such that the integral

J = It 2 Ldt = jt 2 (T-V)dt (2-9)

t tt1

is extremized, where L, the Lagrangian, is equal to the difference of T,

the kinetic energy of the system, and V, the potential energy of the

system.

The kinetic energy may be written as the volume integral over the

domain of the system, G, of a kinetic energy density; that is,

T = y . p P (rTt) 2rdcpdrdz
G2

(2-10)
= ,Pi .I(rYt) 2rdrdz

Gw

where G' is the reduced domain in r and z, the integration over y having
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been carried out explicitly since by Eq. (2-1) the integrand is not a

function of cp.

Assuming adiabatic vibration, the potential energy will be the

volume integral over G of the volume density of strain energy* W; in

this case,

W =T e + T e (-1
rp rp zCP z(2

We can express the two nonzero components of strain in terms of the

angular displacement as
I-- 1 r

rcp 2 r

and (2-12)

zcp 2 z

where subscripts on e denote the component of strain and the subscripts

on t indicate partial derivatives, as before.

Combining Eqs. (2-4), (2-11), and (2-12), we can write

W (r rtz) 2 + ) 2 . (2-13)

Hence the total potential energy is

V = SYS Wrdcpdrdz = pK SS(rtr) 2 + (rtz)) 27rdrdz . (2-14)
G G'

The integral, J, to be extremized now can be written in terms of

Sas

* p. 81 ff. of Ref. 11, cited on p. 8.
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J it S 2 (p( r ) 2 -- p[( 1j-)
2 + (rz)2 rdrdz dt

tI G'

(2-15)
t -fPt f'(jj 2 +-I!2 2)] r3 drdzd

t1 G'

We have not hitherto specified anything about conditions at the
S..... ... s o~w 14, 15 ý,.

bounary. It h-as been shown... that the type of boundary conditions

does not affect the necessity for satisfying within the domain the Euler

differential equation for the problem. (A discussion of boundary condi-

tions follows in section 2.3.)

The integrand of J is

F(kr _)It r, z, t) =r 3[pt2 _- u(tr2 + Tz2)] (2-16)

For an integrand of this form, the Euler equation (which must be satis-

fied in order to extremize J) is*

( ýF )+ ( F)+ ý

r z t
(2-17)

= (-2pr 3 -k ) + • (-2pr3- ) + • (2pr 3 t

3Completing the indicated differentiations and dividing by pr , we obtain

Irr r r-r zTýz P tt

which is, as we expected, the same as Eq. (2-7).

14. Courant, R., and D. Hilbert, Methods of Mathematical Physics (Inter-
science, New York, 1953), vol. I, pp. 208-11.

15. Forsyth, A. R., Calculus of Variations (Dover, New York, 1960), p. 606.

* p. 606 of Ref. 15, cited above.
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2.3 Boundary conditions

2.3.1 At a free surface

Another way of saying that a boundary surface is free from external

constraint is to require that the traction across the surface vanish.

In cylindrical coordinates, we can express this requirement through the

three equations*

rr cos(n,r) + r rz cos(n,z) + Tr cos(n,p) = T r 0 0

T cos(n,r) + Tr cos(n,z) + Tr cos(n,cp) = T = 0 , (2-19)rz zz zcp z

r cos(n,r) + r cos(n,z) + T" cos(n,qp) = T = 0rcp zcp cq C

where T, Tz, and T are the three components of the traction, and (n,r),

(n,z), and (n,cp) represent the angles between the outward-directed normal

to the surface and the r-, z-, and 9-directions, respectively.

The first two of Eqs. (2-19) lead to an interesting restriction on

the shape of the boundary. It is well known that the reflection of a

shear wave at a free boundary is in general accompanied by a partial (or

in some cases, total) conversion of the incident energy to longitudinal

wave motion.** We desire here that torsional waves propagate as such,

without mode conversion. We saw in section 2.1 that this implied the

vanishing of all stress components except the shear stresses Try and Tz °

If we set Trr = T = T = 0 in the first two of Eqs. (2-19), we obtainrr rz zz

cos(n,cp) = 0 . (2-20)

In other words, the normal to the surface is perpendicular to the

* p. 181 of Ref. 11, cited on p. 8.

** pp. 24-31 of Ref. 12, cited on p. 9.
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p-direction, implying that the boundary is a surface of revolution. In

order that torsional waves may propagate as torsional waves, therefore,

it is necessary that any free boundaries be parallel to the direction of

particle displacement; this same requirement must be met if plane shear

waves are to be reflected from a plane boundary as shear waves.*

Combining Eq. (2-20) and the third of Eqs. (2-19) we obtain

IT cos(nr) + Ti cos(n.z) = 0 (2-21)

which, by the use of Eqs. (2-4) and (2-12), becomes

"I cos(n,r) + _E cos(n,z) = 0 (2-22)

The left-hand side of (2-22), however, is just the normal derivative of

-,kr, since cos(n,cp) =0. Thus the boundary condition for use with the

wave equation (2-7) at a free surface is simply that the normal deriva-

tive of _' vanish at the surface. Obviously, the same boundary condition

applies to t of (2-8), the waiýe func~ctlon wiýfl Lie t rLiu deei&d:nc, ,o

2.3.2 On the axis of rotation

Everywhere in an elastic medium undergoing oscillatory vibration

the particle displacement must be bounded and continuous; violation of

these conditions would imply either infinite energy or fracture of the

medium. The stress must be continuous if we are not to permit infinite

localized forces. If the elastic medium is homogeneous and isotropic,

it follows from Hooke's law that the stress is also bounded (and the

particle displacement is then twice differentiable). We can utilize

these facts to derive a condition on P at the "boundary" r=0.

* p. 30 of Ref. 12, cited on p. 9.
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In any rotational coordinate system, the axis of rotation is a

singular line since the unique correspondence between coordinate values

and points described breaks down there16 (the azimuthal angle cp may take

on any value, yet the point described is still the same). We shall hence

have an easier time if we transform from cylindrical to cartesian coordi-

nates through the relations

x = r cos cp , y = r sin cp , z = z. (2-23)

Let u, v, and w be the x-, y-, and z-components of the particle displace-

ment in the cartesian system. We can then write the cartesian version of

Eq. (2-1),

u = -u sin cp , v = u cos (P , w = 0 . (2-24)

We have from (2-23) and (2-24)

( R - u. (2-25)
r y x

and, from the chain rule for partial derivatives, the differential opera-

tor relationship

S= cos c0 + sin p0- (2-26)

Using Eqs. (2-4), (2-12), (2-23), (2-25), and (2-26), we can write

T
r =rcoscp1 - +sin cpVy

r x y

=x•>+y =X~ y
x y

6-- ýy + u v -- 6v -- 2• (2-27)

7X Fy y x 7X_

16. Kaplan, W., Advanced Calculus (Addison-Wesley, Cambridge, Mass.,
1953), p. 157.



-16-

Invoking the conditions in the first paragraph of this section, we

can now see from (2-27) that t is bounded. This, together with the

boundedness and continuity of Tr( •r~rr, implies that t is bounded
rp r r

and continuous; hence, trr must be bounded. By a similar argument, zz

is bounded. Barring infinite accelerations (or frequencies) means that

-1-tt must also be bounded. We can rewrite the torsional wave equation as

•rr 1,1 -z z c-• - tt -- r -r ,.- = 3 (2-28)

Since each term on the left-hand side of (2-28) is bounded everywhere,

including the axis, r =0, we see that as r approaches zero, -r must

approach zero in such a way that 1r remains bounded. Thus the

"boundary" on the axis is very much like a free surface.

2.4 An approximate wave e2_uation for horns of arbitrary contour

The exact wave equation (2-7) can be easily solved only when the

boundaries of the horn are coordinate surfaces of a separable coordinate

system. The relatively few horn shapes which meet this criterion are

discussed in Chapter IV and Appendix A. We can, however, derive an

approximate wave equation which will be comparatively easy to solve for

a wide. range of horn contours.

In order to gain some insight into the nature of the approximation

to be used, we shall begin by examining the boundary condition at a free

surface, Eq. (2-22), which we write again here:

lr cos(n,r) + i'lz cos(n,z) = 0 . (2-22)

If the slope of the horn contour is small, then cos(n,z)<<cos(n,r) and it

follows that 1-J>> 1r at the surface. If the length of the horn is

much greater than -its diameter, then it is likely that the frequency range
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of interest will be the range for which the wavelength is comparable to

the length, and thus the diameter will be much less than a wavelength.

In this case will not vary appreciably over a cross section, and we

see that everywhere within the horn. These conditions on

the geometry of the horn are met by most typical horns vibrating in their

lower modes.

We therefore assume thatf 0, i.e., that any plane cross section
r

of the horn rotates as a whole (since I is not a function of r). This

assumption permits us to derive a simplified wave equation whose solu-

tions will not quite satisfy boundary condition (2-22), except for the

case of a cylinder, discussed in Chapter IV. If the conditions given in

the preceding paragraph hold, the solutions will presumably be not far

different from the actual vibrations of the horn under study. Chapter

VII contains a discussion of the range of validity of the plane-wave

assumption.

This assumption of plane wavefronts is essentially the same as the

plane-wave assumption frequently used in the analysis of horns designed

17
to guide sound waves in air, first suggested by Webster* in a paper

read in 1914 (but not published until 1919).

By incorporating the constraint t = 0 in the integrand for ther

Lagrangian, we can derive the approximate wave equation from a variational

integral in a manner similar to that used for the derivation of the exact

wave equation in section 2.2.2.

17. See for example P. M. Morse, Vibration and Sound (McGraw-Hill, New

York, 1948), 2nd ed., pp. 265-88.

* Ref. 3, cited on p. 1.
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We wish, then, to extremize the integral

yt2  z 2 dR(z) dr 21t[lý pr.\1-)2. _ I )u(r%) 2 ]rdcp (2-29)

t zI 0 1 0 0

where the horn now extends from z1 to z 2 and is bounded laterally by the

contour r = R(z). Since -' is not a function of either r or cp, we can

explicitly integrate over these two variables and obtain

J= ft2dt fz2 Is(z) Pt 2 z 2] dz ,(2-30)

t I Zl 1 z ,(-0

where
R(z) 2 1r3  4

s(z) = f fr drpdr R4(z) (2-31)
s 0 0 2

The quantity Is (z) is the moment of the cross section at z. Invoking

Eq. (2-17), we see that the Euler equation for (2-30) is

7 "t (z)lt - [I(z)k = 01,0(2-32)

or, after performing the indicated operationsi

+ T ) -z t 2-- = 0, (2-33)zz Is(z) Z c 2  t

where I '(z) is the derivative of I (z) with respect to its argument z5 5

and c 2 = pip, as before. The time' dependence may be removed from

Eq. (2-33) by assuming sinusoidal time variation, just as for the wave

equation. This gives the plane-wave Helmholtz equation

Is5 (z) k ,

zz+ is(z + k =0 (2-34)•ZZ+ Is(z) "z
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The boundary condition at a free end, z =zl, is that tzl) = 0

for Eq. (2-33) and .z(zl) = 0 for Eq. (2-34), since -z and *z are the.

appropriate normal derivatives.

Equation (2-34) is of exactly the same form as Webster's original

plane-wave equation, save that the moment of the cross section of the

horn has been substituted for the area of the cross section. Hence, all

the results obtained for horns for acoustic pressure waves can be adapted

to torsional horns by choosing the moment of the cross section of a tor-

sional horn so that it varies with distance along the axis in the same

manner as the cross-sectional area of the corresponding pressure horn.*
A

Equation (2-33) was derived by constraining the form of the wave

function -k, which is equivalent to stiffening the medium. Hence we

know from Rayleigh's principle18 that any resonance frequencies calcu-

lated from (2-33) (or (2-34), for that matter) will be upper bounds on

the true resonance frequencies.

* Ref. 8, cited on p. 2, and Ref. 9, cited on p. 3.

18. Temple, G,, and W. G. Bickley, Rayleigh's Principle (Dover, New
York, 1956).



Chapter III

EXPERIMENTAL TECHNIQUES AND APPARATUS

3.1 Objectives of the experiment

The apparatus necessary for any experimental study of the propaga-

tion of torsional waves in a solid horn will consist of three parts: a

driver for exciting the horn torsionally, a mechanical system for sup-

porting and loading the horn, and a means for sensing and measuring the

vibrations of the horn. If we think of the system in terms of the driver

transmitting energy through the horn to the load, then for analytical

purposes it is often convenient to divide the total vibration of the horn

into a transmitted wave traveling from driver to load and a reflected

wave traveling from load to driver. The relation between the transmitted

and reflected waves depends upon conditions at the boundaries of the

horn; e.g., the percentage of the incident energy absorbed by the load,

the reaction of driver and load upon the horn, and the like. We desire

here to study the properties of the horn, in which case we must know the

relation between the transmitted and reflected waves since we cannot

measure them independently. We must isolate the behavior of the horn

from the behavior of the driver and load,

There are two ways often used to accomplish this, The first is to

terminate the horn with a load which absorbs all the transmitted wave,

thus eliminating the reflected wave. The total vibration of the horn is

then a progressive wave propagating from driver to load. The second

method is to terminate the horn in such a way that the transmitted wave

is totally reflected. In the absence of elastic losses in the horn

itself, this would give rise to a stationary wave, since the transmitted
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and reflected waves would have equal intensity at any given point along

the horn. If the driving torque is suitably applied at the natural

frequency of one of the normal modes of the horn, the amplitude of vibra-

tion will rise to a value limited only by the energy losses in the horn.

At such a resonance, if the losses are low, far less driving power is

required to maintain a given amplitude of vibration in a standing-wave

than is needed to produce the same amplitude in a progressive wave.

However, the driver must not react appreciably on the horn if the normal

modes of the combination are to be essentially the same as the normal

modes of the horn alone.

The second method was adopted for this investigation. Since the

axis of rotation is always a nodal line for torsional vibrations, the

specimen horns are supported at the ends of the axis, leaving them essen-

tially unconstrained (for torsional vibrations). With "nothing to twist

against," waves propagating within the horn are completely reflected at

the boundaries. The experimental horns are made of metals with low

internal elastic losses. This insures that excitation at a resonance

frequency of the horn produces vibrations of adequate amplitude for

observation with relatively small driving torque.

The experimental scheme is then to simulate the normal modes of

free vibration of a lossless horn by supplying enough energy to make up

for that dissipated within the specimen horn and at its supports, thus

maintaining a steady vibration. The standing-wave patterns and resonance

frequencies of the normal modes are then measured and compared with

theoretical results calculated from the wave equations derived in Chapter

IiL This experimental approach is feasible because it is possible to
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construct solid horns with very low internal energy loss and to mount

them so that very little torsional-wave energy is lost to the supports.

3.2 The driver

Having decided what type of experiment to perform, we can state

some specific design criteria for the driver. The driver should be able

to excite all the normal modes within the frequency range of the measure-

ments. The driver should function only to supply the energy dissipated

in the vibratory system; that is, it should not appreciably alter the

standing-wave patterns and resonance frequencies of the normal modes of

the horn. The driver should not interfere with the measurement process

either through its physical presence or through the generation of intense

electric or magnetic fields which might adversely affect associated

electronic apparatus.

First we shall decide where on the specimen horn the driving torque

should be applied in order that all the normal modes can be excited. We

can adapt some results of Morse* to the present situation. Suppose we

drive the horn with a simple-harmonic torque distribution, T(r,z)ejut.

The spatial distribution T(r,z) can always be expanded in a series of the

characteristic functions of the normal modes of the horn. A given normal

mode cannot be excited if its characteristic function is missing from the

expansion of T(r,z), even if the frequency of the driving torque is

exactly the natural frequency of that mode, since there would be no cou-

pling between the driving torque and the normal mode. In particular, if

the drive is applied at a "point" (ro,z0) which is a node of angular

velocity for a normal mode, that mode cannot be excited. A normal mode

pp. 415-17 of Ref. 17, cited on p. 17.
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will be maximally excited if the driving point (roz 0 ) is an antinode of

angular velocity. The frequency of maximum excitation is very close to

the natural frequency of the mode, provided the losses are small. Being

an extremity of both the longitudinal and lateral dimensions of a horn,

the edge of a free end is an antinode of angular velocity for all normal

modes. A driving torque applied there will be well coupled to all modes.

In practice, of course, the drive cannot be applied at only one point,

but will be distributed over a small region. If this region is centered

on the edge of the end of the horn, then all modes whose wavelengths are

long compared with the width of the region can be easily excited.

If the frequencies of maximum amplitude of vibration are to be

taken as the natural frequencies of the horn, then it is clear that the

applied torque should be independent of the amplitude of vibration.

Drawing an analogy between torque and voltage and between angular

19
velocity and current, we see that this means that the driver should

approximate an ideal torque source, i.e., a source whose output torque

is independent of load.

A driver has been developed which satisfies the above design cri-

teria. It is a form of induction motor which produces torsional drive by

means of the interaction with externally applied magnetic fields of eddy

currents induced in the specimen horn by the magnetic fields. This

arrangement has the advantage that it requires no mechanical coupling of

horn and driver.

The conventional induction motor has field windings and a magnetic

structure which produce a rotating magnetic field. An electrically

19. Olson, H. F., Acoustical Engineering (Van Nostrand, New York, 1957),
Chapter 4.
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conducting rotor is placed in the magnetic field so that its axis of

rotation coincides with the axis of rotation of the magnetic field. If

the rotor is not rotating in synchronism with the field, the relative

velocity of rotor and field will cause eddy currents to be induced in the

rotor. The interaction of the eddy currents and the magnetic field

exerts a torque on the rotor which tries to make it follow the inducing

field. If now the field windings and pole pieces are arranged to produce

a magnetic field whose rotation is oscillatory rather than continuous, an

oscillating torque suitable for exciting torsional vibrations will be

developed.

Four such eddy-current drivers have been constructed and used in

this investigation of torsional horns. The geometric structure of the

first two was essentially the same as that of the common four-pole two-

phase induction motor (one pole pair per phase). The two pole pairs,

each with its own field winding, were symmetrically arranged about the

rotor (now a solid horn) so that their magnetic fields crossed orthogo-

nally in the region occupied by the rotor. One field winding was excited

with direct current and the other with alternating current of angular

frequency w; thus, the total magnetic field oscillated in direction and

magnitude at that frequency.

This simple scheme gave adequate drive, but suffered from several

weaknesses. The driver pole pieces enclosed one end of the horn, making

it impossible to measure the amplitude of vibration there. The alter-

nating driving currenlt produced a large magnetic field which induced an

interfering signal in the amplitude-measurement circuitry of the same

order of magnitude as the desired signal. Since the frequency of th.:
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interfering signal was the same as that of the desired signal (hereafter

called signal frequency), the desired signal was effectively masked.

The problem of the interfering magnetic field was solved by the

use of a different mode of operation of the same basic type of driver.

In this mode, both windings are excited with alternating current. Two

distinct frequencies are used, one for each winding. The resulting

total magnetic field can be decomposed into two components which oscil-

late rotationally at two other frequencies which are the sum and differ-

ence of the driving current frequencies. Either the sum or difference

frequency can be tuned to the desired resonance of the specimen horn.

Although driving torque is applied at two frequencies, the sharpness of

the resonances is such that only one frequency component is observed in

the vibration of the horn. Interfering signals are still present in the

amplitude-measurement apparatus, but not at signal frequency, so that

frequency-selective circuitry can adequately discriminate against them.

The geometry of the field structure was redesigned to allow access

to the side of the horn all the way to the end. The poles, instead of

encircling the side of the horn, are placed close to the end face of the

specimen horn. Fig. 3-1 is a photograph of the two drivers of this type.

The magnetic structure is composed of coils of magnet wire wound on

ferrite cores assembled from the cores of burned-out television flyback

transformers obtained from a cooperative serviceman. Pieces of ferrite

were ground to the proper size and shape and cemented together with epoxy

adhesive. The two coils on opposite legs form one field winding and are

connected in series or parallel aiding. The drivers are mounted on four-

inch squares of hardboard for interchangeable installation at the end of
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the specimen horn, (Details of the mechanical system are discussed later

in this chapter.)

The change in structure produces two unfavorable effects, neither

of which has proven harmful in practice. First, the output torque is

not as great for given field currents as it was in the original design.

Second, there is a possibility of exciting longitudinal vibrations in

ferromagnetic specimen horns by variable reluctance drive at twice the

exciting frequencies. (Note the resemblance to a bipolar moving-armature

transducer. 20) Such undesired vibrations were never observed.

An exact general theoretical analysis of the eddy-current driver

is not practicable, particularly since the ratio of horn end diameter to

driver pole spacing varied over a range of more than four to one due to

the wide variety of horns tested. An analysis based on an idealization

of the geometry can yield information about the effect of changes in the

conductivity and permeability of the horn material upon the induced

torque, however. Let us assume an infinite solid cylinder of radius a,

relative permeability K, and volume conductivity y, whose axis is the

z-axis of a system of cartesian coordinates. Let us also assume uniform

driving fields, an x-directed field of magnetic flux density BI Cos Wit,

and a y-directed field of flux density B2 cosu 2 t. We can now calculate

the torque per unit length induced in the cylinder, assuming the cylin-

der is kept from moving, by calculating the eddy currents induced by each

driving field and the stresses produced by their interaction with the

magnetic field within the cylinder.

20. Hunt, F. V., Electroacoustics (Wiley, New York, 1954), p. 213.
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Smythe21 gives the magnetic vector potential within an infinite

cylinder immersed in a uniform x-directed alternating magnetic field.

Adapting his result to our notation and expressing it in cylindrical

coordinates r,cp, z (defined by x= rcosw0, y=r sincp, z.=z), we have for

the z-component of the vector potential

4BIK ll(qlr) eJ•lt sinq,

1I = R ql[(K+ l)1 0 (qia) - (K+ l)1 2 (qia)] (3-1)

where Re indicates real part, ql =(jwlypoK) 1/2, po is the permeability

of free space, and I0, IV, and 12 are modified Bessel functions of the

first kind. The x- and y-components of A are zero by symmetry. The

z-component of the vector potential due to the y-directed field, A2 , is

exactly the same as A1 except that -coscp is substituted for sincp, w 2

for w1 , and q2 = (jw 2yPoK)1/2 for ql.

Using the standard electromagnetic relations*

B = curl A

dB= = -curl E (3-2)dt

J=yE

we can write the current density in terms of the vector potential:

dAJ. = - T= t-. (3-3)

The induced torque per unit length, denoted by T , can now be expressed

21. Smythe, W. R., Static and Dynamic Electricity (McGraw-Hill, New
York, 1950), p. 418.

* p. 390 of Ref. 21, cited above.
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as an integral over the cross section of the cylinder of the electromag-,

netically induced stress times the "lever arm" r:

a 2v 2[

T = 0dr I0 dcpr IJxBj•, (3-4)
0 0

where the subscript cp denotes the component of the vector in the cp-direc-

tion, i.e., the tangential component. If now Eqs. (3-1) through (3-4)

are combined, the resulting integral, though terrifying in appearance,

will succumb to attack with a variety of Bessel function identities. 2 2

The result$, reduced to a symmetric and moderately simple form, is

T 41a2B BK G(WI1 )eJ Wlt Re

Ia 2 [ K+G(t0 1) K [+G(w- 2 )]

eJ•It F ReG(w2 )ejiW2t1?

ReF (3-R5)SK+G(w)I) L K+G(w2 ) 4 (5

where the function G(w) is defined by

G(w) = a -L In ll[(joyTuoK)I/2a]

d (3-6)
- a d n Il(qa)

Some idea of the behavior of the G(w) is obviously necessary for

deeper understanding of Eq. (3-5). We can rewrite the argument in terms

of the skin depth,

qa - (jwp0 oK) /2a = (2j)/2 a (3-7)

22. Morse, P. M., and H. Feshbach, Methods of Theoretical Physics
(McGraw-Hill, New York, 1953), p. 1322-3.
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where 8 = (2/wrpoK)l/2 is the skin depth as usually defined.*

Let us assume wI is the lower of the two driving-current frequen-

cies. In actual operation of the eddy-current driver, the lower

frequency fl = wI/2ic was placed between 50 and 100 c/s. The higher

frequency f 2 = u2/2v was then in the same range as the resonance frequen-

cies of the horns under study, from 2.5 kc/s to 50 kc/s. The driven

ends of nearly all the specimen horns were one inch or more in diameter.

Consultation of tables23 of skin depth for various materials shows that

for aluminum, brass, and iron, the skin depth 82 at frequency f 2 is

always much less than the radius, so that the argument of the Bessel

function in G(u 2 ) is sufficiently large to warrant use of the asymptotic

formula given by Morse and Feshbach** for the Bessel function Ill

--. 1 (3-8)
z-- (2irz)

At the lower frequency f1 the skin depth 51 is unfortunately

neither much greater nor much less than the radius a. However, fI is

always sufficiently smaller than f 2 that b1 is at least five times

greater than 52 (and usually more than ten times greater). This means

that the eddy currents and magnetic field within the cylinder at f 2 are

concentrated in the region near the surface where the magnetic field at

f is essentially uniform for variations in r. We shall thus incur

small error by assuming that the field at fl, throughout the range of

* p. 393 of Ref. 21, cited on p. 28.

23. Gray, D. E., editor, American Institute of Physics Handbook (McGraw-
Hill, New York, 1957) p. 5-90.

**p. 1323 of Ref. 22, cited on p. 29.
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integration over r, is constant at its value just within the surface.

We can now readily find that approximate values for G are

G(wI) = 1

and

G(W2 ) = (jw 2yPoK) 1/2 a

= (2j)1/2 a (3-9)

52

Inserting these values in Eq. (3-5), and noting that G(w2 )>>K, we

obtain

2na 2 B B
T -A 0 2 [ K ] [c sw-w1 )t + cos(w + Wl)t] (3-10)

Equation (3-10) is based on such an unrealistic physical situation

that it is useless as a means of actually calculating induced torque.

However, we can reasonably expect that it correctly gives the form of

the dependence of the torque upon the strength of the inducing fields

and upon the electromagnetic constants of the horn material. We note

that the conductivity of the cylinder does not explicitly enter into

Eq. (3-10). This is due to the fact that the skin depth at f2 is a

small fraction of the radius. The induced torque does depend on the per-

meability, however. We can group metals used for the construction of

horns into two categories: ferromagnetic (K>>I), and nonferromagnetic

(K= 1). We see that ferromagnetic substances such as iron and steel

should have twice the induced torque which nonferromagnetic metals such

as brass and aluminum have. We also note that the induced torque is pro-

portional to the product of the magnitudes of the inducing fields. If
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the currents in the driver field coils are small enough that the magnetic

core of the driver is not saturated, then we expect the magnetic field

strengths to be proportional to the driving currents, and hence the

induced torque to be proportional to the product of the amplitudes of

the driving currents. Assuming a 'linear elastic system, the amplitude

of vibration should be proportional to the induced torque (all other fac-

tors being constant), and hence proportional to the product of the driving-

current amplitudes. This was observed to be the case in practice.

A series of measurements was made specifically to determine the

properties of the eddy-current driver. Three cylinders, each one inch

in diameter, were constructed of brass, soft: iron, and aluminum, respec-

tively. The length of the iron cylinder was ten inches, and the lengths

of the others were chosen so that the resonance frequencies of all three

were nearly equal. Each cylinder was excited at its fundamental reso-

nance frequency with one ampere used in each winding of the driver. The

amplitude of vibration was measured at the end of the test cylinder, and

the Q of the resonance was measured by the method described in section

3.3.4 of this chapter. The energy stored in the cylinder was calculated

from the observed amplitude of vibration and the characteristic function

for the fundamental mode of a cylinder. The power input was then calcu-

lated from the stored energy and the Q, and then the torque input was

found as the ratio of power input to angular velocity. The results of

this series of measurements are presented as Table 3-1.

The torque exerted on the iron was indeed approximately twice that

exerted on the brass and aluminum. The greater power input to the alumi-

num cylinder is due to the fact that its characteristic impedance is

lower than that of iron or brass; hence for aluminum there is a better
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impedance match between driver and cylinder. (Torsional-wave impedance

is discussed in Chapter V.)

Table 3-1

Torque and power input from the eddy-current driver
to cylinders of various metals

Metal Resonance frequency Power input Torque input
kc/s nanowatts micro-ounce-inches

Soft iron 6.357 1.07 0.414

Aluminum 6.553 7.56 0.238

Brass 6.379 0.438 0.235

The eddy-current driver is very inefficient. The electrical power

input during these tests was several watts; thus the efficiency is of

the order 10 to 10-. This driver must be a prime candidate for a

prize for the least efficient transducer ever to find a practical use!

A necessary property of the driver is that it react very little on

the specimen horn so that the observed frequencies of maximum amplitude

of vibration will be essentially the free resonance frequencies of the

horn. Two experiments were performed to check this. The first consisted

of a series of measurements of the frequency of maximum (forced) vibra-

tion of a steel cylinder for various spacings between the driver pole

faces and.the cylinder. This was based on the premise that varying the

driver-cylinder spacing would vary the coupling between driver and

cylinder, and as a result vary the magnitude of any effect which the

driver had on the observed resonance frequencies. The observed frequen-

cies were constant to within +0.1 c/s, the precision of measurement

(the frequency was about 7 kc/s). The second experiment was a direct
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comparison of the frequency of free vibration with the frequency of maxi-

mum forced vibration. The aluminum cylinder used in the experiments

described above to measure the torque and power was found to have a very

high Q. It was maximally excited at its fundamental resonance, and the

frequency of free vibration was measured as the vibration died away,

The high Q of the resonance gave a long enough decay time that the fre-

quency could be measured with high precision before the amplitude of

vibration fell below the minimum detectable level. No difference was

observed between the forced and free resonance frequencies.

The eddy-current driver thus appears satisfactory for its intended

use.

3.3 The measurement of torsional standing-wave patterns

A simple approach to the measurement of a torsional standing-wave

pattern of a solid horn would be to measure the amplitude of vibration at

various points along the horn while holding the driving torque constant.

This presupposes that the device used for the measurement of vibration

would not alter the amplitude of vibration. For operation at a resonance

of high Q, as contemplated here, it would not be surprising if the meas-

urement process introduced sufficient damping to lower the Q noticeably

and hence the amplitude as well.

The next degree of sophistication is to monitor the amplitude at a

fixed point so that it can be set to the same value for all measurements.

This arrangement was tried but it was found to be limited in accuracy.

The amplitude at various points was measured by reading a voltmeter;

hence, the accuracy can be no better than the calibration of the volt-
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meter. Some difficulty was also experienced in holding the amplitude at

the reference point sufficiently constant.

Since the standing-wave pattern is only the relative amplitude as

a function of position, we need not measure the absolute amplitude of

vibration as in the first two methods described above. If we again

monitor the amplitude at a reference point, the ratio of the amplitude

at any other point may be found by attenuating the larger of the signals

from the two points until it is just equal to the smaller. The attenua-

tion required is independent of the absolute amplitude and can be deter-

mined with great precision since it depends only on the ratios of resis-

tors. The voltmeter used for the amplitude measurement in the second

method above now serves only to indicate the equality of two signals;

its calibration errors do not therefore degrade the attainable accuracy.

The amplitude of vibration must be stable only for sufficient time to

make the balance between the two signals. This imposes a requirement on

the frequency stability of the drive, however, since the torsional reso-

nances of solid horns are very sharp.

Suppose we decide that we shall be satisfied if we can measure the

relative amplitude along the horn to an accuracy of :2 percent. If the

magnitude of the driving torque does not change with time, then we can

tolerate a frequency drift over the range between the points where the

resonance curve of the horn is 4 percent down from its peak value. Most

of the experimental horns were made of mild steel and their resonances

had Q's of approximately 20 000. Assuming the resonance curve is essen-

tially the same as that of a single RLC tuned circuit, we can calculate 24

24. Westman, H. P., editor, Reference Data for Radio Engineers, 4th ed.
(International Telephone and Telegraph Corp., New York, 1956), p. 242.
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that

Af/f = 1.5x10-5  (3-11)

where Af is the permissible frequency drift in the time required for

amplitude measurement at one point and f is the frequency of vibration.

This is a moderately stiff requirement on frequency stability, but it

can be met by a high-quality oscillator which is allowed to run continu-

ously so that the problem of warmup drift is eliminated. Surprisingly,

however, the resonance frequencies of the specimen horns are not stable

enough. The shear modulus in metals decreases with increasing tempera-

ture, which causes the shear-wave speed and hence the resonance frequen-

cies to decrease with temperature also. The problem is compounded by

the longer time required to make the amplitude balance between the two

signals when the amplitude is noticeably drifting. The troublesome tem-

perature change is caused by the Joule heating due to the eddy currents

induced by the driver. One solution to this problem is to make the

driving torque vary in frequency with the resonance frequency of the

horn by using the horn as the frequency-determining element in a self-

excited oscillator. The reference signal used for the amplitude compari-

son can be (and was) the feedback signal. This method was successfully

used.

Since the frequencies of the currents in the driver coils are such

that it is their sum or difference which is the same as the resonance

frequency under investigation, the circuitry necessary for the self-

excited oscillator is unusually complex. Fig. 3-2 is a block diagram of

the system and Fig. 3-3 is a photograph of the apparatus.
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Fig. 3-3. Photograph of the experimental apparatus, showing the
carrier source (A), the oscillator control unit (B),
the voltage comparison unit (C), the voltage divider
(D), the power amplifiers and their metering panel (E),
the decade condenser (F), the frequency meter (G), the
wave analyzer (H), and the mechanical system (J).
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Now we shall see how the circuit oscillates at a resonance fre-

quency of the specimen horn. As above, let f1 be the lesser and f2 the

greater of the frequencies of the currents in the driver coils, The

current at f 2 is obtained from a high-frequency power amplifier driven

by a General Radio Co. Type 1304-B Audio Generator tuned to f2 and desig-

nated as carrier source on the block diagram, Fig. 3-2. The current at

f is obtained from a low-frequency power amplifier driven by the feed-

back signal. Suppose that f 2"fl is tuned to the resonance frequency of

the horn. The driver exerts torques at frequencies f 2-f and f 2+f on

the horn, but due to the resonance of the horn, it may be considered to

vibrate only at f 2 -f lV The amplified reference signal (point A of Fig.

3-2) is then at frequency f 2 -f 1 . It is shifted in phase and then mixed

with a signal at the carrier frequency f 2 (point B) in the balanced

modulator. The output of the balanced modulator (point C) consists of

the two modulation products at frequencies f 2 - (f 2-"f) = f1 and

f 2 +(f 2-f 1 ) = 2f 2-f The low-pass filter attenuates the upper compo-

nent of frequency 2f2-fl, so that the signal at point D is of frequency

f V The clipper acts to regulate the amplitude of oscillation, and the

clipped signal at frequency fI drives the low-frequency power amplifier,

thus completing the loop. The phase shifter is used to adjust for zero

phase shift around the loop at the resonance frequency of the specimen

horn.

The frequency stability of the carrier source need not be particu-

larly good in this system. Small drifts in f2 are automatically compen-

sated for by the same frequency shift in f Of course, f must lie in

the passband of the low-pass filter (<500 c/s), and the phase shift

introduced by the change in fI must not be great enough to kill the
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oscillation. In practice, changes of as much as 50 c/s in fI and f2 are

without substantial effect on the oscillation. (This is 5 parts in 103

for a resonance at 10 kc/s).

Conventional lateral phonograph pickups were used to detect the

vibrations of the specimen horn. One of these, the reference pickup, is

fixed in position near the opposite end of the horn from the driver.

The other, the traveling pickup, may be placed in contact with any point

along the side of the horn by means of the mechanism described in sec-

tion 3.4. Phonograph pickups were used as the vibration-sensing elements

because the particle displacement at the surface is parallel to the sur-

face and not normal to it, and because of their ready availability. In

order to minimize stray coupling to the magnetic field of the driver,

ceramic pickups (Weathers Stereoramic C-501, wired as lateral pickups)

were used in preference to magnetic pickups. Tests with a high-quality

magnetic pickup, reputedly one of the best-shielded ones on the market,

showed that the unwanted signal was some 40 dB greater, relative to the

desired signal, for the magnetic pickup than for the ceramic pickups.

The electrical signals from the two pickups are amplified by two

identical amplifiers of 60 dB gain. If the signal from the traveling

pickup is larger than that from the reference pickup, it is reduced in

steps of 10 percent of full gain until it is less. Then the precision

voltage divider, General Radio Co. Type 1454-A, is used to reduce the

reference signal until it is just equal to the signal from the traveling

pickup. The ratio of gains in the two channels is then the inverted

ratio of the amplitudes of the two ý00uis.0

The voltage comparison is made by switching the signals alternately

to a Hewlett-Packard Model 302A wave analyzer which serves as a tuned
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voltmeter. The selectivity of the wave analyzer is great enough so that

it successfully discriminates against large interfering signals only 50

to 100 c/s away from the frequency of the resonance under study. An

isolation amplifier with a gain of unity and a very high input impedance

follows the voltage-comparison switch and serves to keep the capacitance

of the cable to the wave analyzer from loading the precision voltage

divider and thus impairing its accuracy at the higher frequencies in use,

3.3.1 The voltage comparison unit

Fig. 3-4 is a schematic diagram of the voltage comparison unit.

The unit consists of the two matched 60-dB amplifiers, the decade gain

switch, the voltage comparison switch, and the unity-gain isolation

amplifier, which, together with a common power supply, are all mounted
3

behind a standard 19-inch rack panel 82 inches in height (see Fig. 3-2).
4

Each 60-dB amplifier consists of three stages: two cascaded resist-

ance-capacitance coupled pentodes and a triode cathode follower direct-

coupled to the second pentode. A large amount of negative feedback is

used to stabilize the gain against changes in supply voltages or tube

characteristics. It is obtained by cathode-to-cathode feedback from V3

to V1. The feedback ratio is 1/1001 and the loop gain is approximately

22; hence, the gain is predominantly determined by the feedback ratio

and is approximately 1000, or 60 dB. The two resistors which determine

the percentage of the output voltage fed back, the 10-kn and 10-Cl

resistors in the cathode circuit of V3, are wirewound to insure good

voltage linearity and good stability with time. The 10-0 resistor is a

precision unit and the 10-kfl resistor is carefully matched to the cor-

responding resistor in the other 60-dB amplifier.
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The operating points of V2 and V3 are stabilized by the dc negative

feedback obtained by returning the 47-kO screen dropping resistor of V2

to the cathode of V3.

Because of the large amount of feedback, special precautions were

observed to insure againstunwanted oscillations. The high-frequency

cut-offs of Vl and V2 are staggered and there is a step network incorpo-

rated in the plate load of V2. No instability was observed, although it

was found advisable to increase the screen bypass capacitors of Vl and

V2 from 0.22 pF to their present value of 2 pF to eliminate a peak in the

response at 7 c/s.

The 60-dB amplifiers were tested for relative gain stability by

driving both with a common input signal, balancing the outputs using the

decade switch and the voltage divider, and checking the balance from

time to time over a 24-hour period starting when the amplifiers were

first turned on. No change in the relative gains was detected.

The decade gain switch is a General Radio Co. Type 510 precision

resistor decade of l-kfl per step, wired as a potentiometer. This pre-

sents the same load to the traveling-pickup amplifier that the voltage

divider presents to the reference-pickup amplifier. The gain of the

traveling-pickup channel may thus be accurately adjusted in steps of

10 percent of full gain.

The isolation amplifier following the voltage comparison switch

serves primarily to present a very high impedance to the outputs of the

decade gain switch and the voltage divider, in order that errors intro-

duced by loading be minimized. The amplifier is a two-stage feedback

pair with all the output voltage fed back from the plate of the second

stage, a triode, to the cathode of the first stage, a pentode. The
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cathode resistor of the first stage is large so that it does not load

the second stage unduly. The 100 percent feedback is coupled through

the screen bypass capacitor of V4 (the screen is tied directly to the

plate of V5). For stability, the low-frequency cutoff of the gain from

the plate of V4 to the plate of V5 should be at a higher frequency than

the low-frequency cutoff of the gain from the plate of V5 to the cathode

of V4. This follows because the feedback to the screen of V4 is posi-

tive, as in the feedback connection of a multivibrator. The interstage

coupling capacitor and the screen bypass capacitor were chosen with this

in mind and no instability was experienced,

The cathode resistor of V4 is tapped at about 4/5 of its resist-

ance from the ground end and the voltage at this point is used to drive

the shields on the cables connecting the decade gain switch and the

voltage divider to the voltage comparison switch. This reduces the

effective cable capacitance by a factor of 5, approximately. If the

shields were driven directly from the cathode of V4, in theory the effec-

tive cable capacitance could be reduced very nearly to zero. However,

should the gain from input to cathode of V4 ever have exceeded unity,

then the isolation amplifier would have had a negative input resistance

for the shields and instability would have resulted. It was thought

preferable to compromise on a capacitance reduction factor of only 5 in

order to insure complete stability.

The power supply common to the three amplifiers in the voltage com-

parison unit is quite conventional except that each amplifier has its

own individual filter choke to minimize possible interaction due to

coupling through the power supply.
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3.3.2 The oscillator control unit

Fig. 3-5 is a schematic diagram of the oscillator control unit.

This unit consists of the phase shifter, the balanced modulator, the low-

pass filter, the clipper, and a common power supply. All are mounted

behind a standard 19-inch rack panel 7 inches in height (see Fig. 3-2).

The phase shifter is the well-known "phase doubler"'2 5 driven by a

split-load phase inverter, Via. The output of the phase shifter is

direct-coupled to the grid of Vlb, another split-load phase inverter.

The coarse phase control is a four-position switch which selects one of

four capacitors for use in the phase-shifting circuit. The four capaci-

tors are chosen to give 900 phase shift at half rotation of the fine

phase control at frequencies of approximately 3.5, 9, 18, and 35 kc/s,

respectively. The second phase inverter, Vlb, is followed by the three-

position phase-reversing switch which reverses phase or cuts the phase

shifter out of the circuit entirely.

It was originally thought that it might be more convenient to

place the phase shifter in the low-frequency part of the circuitry

between the balanced modulator and the low-frequency power amplifier.

The frequency fl is always placed between 50 c/s and 100 c/s; hence the

phase shifter would not have to work over such a wide frequency range

and it would not need a four-position coarse phase control. However, a

drift in the resonance frequency of the specimen horn or the carrier fre-

quency f 2 would cause a change in fl of the same number of cycles per

second. Even though the drift were a small percentage of f2 ) it would be

a much larger percentage change in f since f is so much smaller than

25. Langford-Smith, F., editor, Radiotron Designer's Handbook (RCA,
Harrison, New Jersey, 1953), p. 170,
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f2" A given frequency drift, then, would cause a greater change in

phase shift around the loop if the phase shifter were located in the

low-frequency part of the loop rather than in its present location.

The balanced modulator functions as a synchronous switch operated

at the carrier frequency f2" Tubes V5a, an amplifier, and V5b, an anode-

follower phase inverter, provide a large push-pull signal at carrier

frequency to drive the grids of V3b and V4b. Consider the operation of

V3. On the positive half cycle of the carrier signal at the grid of V3b,

V3b functions as a cathode follower and drives the cathode of V3a suf-

ficiently positive with respect to its grid that it is cut off for very

nearly the entire half cycle. On the negative half cycle of the carrier,

V3a serves to hold the cathode voltage of V3b near +110 volts and V3b is

cut off by the negative-going swing at its grid. While V3b is cut off,

V3a is free to function as a normal amplifier for the signal at its grid,

albeit a low-gain amplifier because of the large cathode resistor. If

the carrier signal is large, V3a will be switched on and off by V3b at

the axis crossings of the signal at the grid of V3b, due to the symmet-

rical clipping properties of the cathode-coupled clipper26 from which

this circuit was derived. The operation of V4 is exactly the same as

that of V3 except reversed in phase with respect to the carrier signal.

The output current of the modulator is the sum of the plate currents of

V3a and V4a; hence, the output signal is derived alternately from the

signals at the grids of V3a and V4a. But these grids are driven in

push-pull by the modulating signal (the output of the phase shifter,

amplified and inverted in phase by V2) so that the output signal of the

26. L. A. Goldmuntz and H. L. Krauss, Proc. IRE 36 (1948), p. 1172.
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balanced modulator is just the modulating signal, periodically reversed

in phase at the carrier frequency f2,

In order that the carrier be suppressed at the output, it is neces-

sary that the currents through V3a and V4a in the absence of a modulating

signal exactly complement each other, so that their sum, the total plate

current at the modulator output, is constant. This means that the cur-

rents through the tubes must be just equal in magnitude and opposite in

phase. The carrier balance control, a l-kO potentiometer, adjusts the

relative magnitudes of the currents by altering the relative sizes of

the cathode resistors of V3 and V4. The two lO0-kO resistors which form

the principal parts of these cathode resistors were carefully matched so

that the carrier balance control is "right in the middle." If the trim-

mer capacitor were not between the plate of V5a and the grid of V5b, the

anode-follower phase inverter would introduce a slight phase lag in the

signal driving V4b. Consequently V3a and V4a would not turn on and off

at precisely the same time and a small component at the carrier frequency

would appear in the output in phase quadrature to the. component balanced

out with the carrier balance control. The trimmer capacitor acts as a

phase-lead network and can be adjusted to compensate for the phase lag

at all frequencies, thus restoring the voltages at the grids of V3b and

V4b to exact phase opposition. The maximum capacity of the trimmer is

larger than need be, but the unit used was the smallest available at the

time of construction.

The signal balance control in the grid circuit of V2b serves to

equalize the magnitude of the modulating signals applied to the grids of

V3a and V4a, so that the modulating signal does not noticeably appear in

the output of the modulator. A small component remains due to the phase
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lag of the anode follower, V2b, which could be canceled with a phase-

lead network like that described above in connection with the carrier

phase inverter. Such compensation was not incorporated here since ade-

quate suppression of the modulating signal was achieved without it.

It can be readily seen from the foregoing discussion, assuming per-

fect balance in the modulator for suppression of both carrier and modu-

lating signal, that the operation which the modulator performs on the

modulating signal is equivalent to multiplication by a square wave at

the carrier frequency. If w and w2 are the angular frequencies of modu-

lating signal and carrier, respectively, then we can write the output

current of the modulator as

- sin(2n + 1) w2 t

i 2 gc Esin (Wt++) sin2n+ 1
n=O 2n+I

cos[(2n+l) 2t-wt- ] C cos[(2n+l)w2t+ut+p]
= gc -- c E 2_

n=O 2n + 1 g 2n + I
n=O n=O

(3-12)

where Esin(wt+ P) is the modulating voltage and gc is a mutual conduct-

ance relating input voltage and output current. We have used here the

well-known Fourier expansion for a square-wave of peak amplitude V/4

which switches from negative to positive at t =0.

We assumed in the discussion of the operation of the self-excited

system that the output of the modulator contained only two frequencies,

the sum and difference of modulating and carrier frequencies. This

would be the case if the modulator multiplied the modulating signal by a

sine wave at the carrier frequency. In the usual mode of operation, the

frequency of the modululating signal is f= /2T=f2-fl, where f2 was
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identified above as the carrier frequency and f1 (<<f 2 ) is the lower

field-current frequency of the eddy-current driver. Under these circum-

stances, we can see from inspection of Eq. (3-12) that the only component

of the output current whose frequency is less than the carrier frequency

is the first term of the first summation on the right-hand side. We

shall name this component i

i =gc E cos[(w2 -W)t- ]

= c E cos[(w2 -u 2 +ul)t-P]

= c E cos(w it- P) , (3-13)

where w= 21cf and w 2 = 21cf2' as before. Since the carrier frequency

lies well above the cutoff frequency of the low-pass filter which follows

the balanced modulator, i1 is the only component of i which will produce

a substantial signal at the output of the filter. The introduction of

extra terms by the use of square-wave multiplication has thus not altered

the essential properties of the system. We also note that gc is the

ratio of the magnitude of the output current at the desired sideband

frequency to the magnitude of the input voltage at the modulating

frequency. It is therefore the conversion transductance as usually

defined. 27

A test-operate switch was incorporated in the oscillator control

unit to permit examination of the unfiltered output of the balanced

modulator or the injection of a testsignal at the input of the low-pass

filter for testing and trouble-shooting. The various balance controls

in the modulator were adjusted with the aid of a wave analyzer attached

27. Terman, F. E., Electronic and Radio Engineering, 4th ed. (McGraw-
Hill, New York, 1955), p. 574.
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to the modulator test point. With careful balancing, the carrier sup-

pression of the modulator could be made as high as 57 dB. The various

frequency components in the modulator output were found to be nearly in

the relation-predicted by Eq. (3-12); however, various departures were

noted. The sidebands about the harmonics of the carrier frequency [n> 1

in Eq. (3-12)] decreased in amplitude somewhat faster with increasing

frequency than predicted, indicating that V3a and V4a were not switched

on and off instantaneously by V3b and V4b, respectively. Also, there

were some very weak sidebands centered about the even harmonics of the

carrier frequency, showing that the axis crossings of the signals at the

grids of V3b and V4b were not uniformly spaced due to second-harmonic

distortion of the carrier signal.

In actual operation, the modulating signal contains unwanted com-

ponents at frequencies f and f as mentioned above in the discussion

of the eddy-current driver in section 3.2. It can be seen from Eq. (3-12)

that these will produce components in the modulator output at zero fre-

quency and at frequencies above the passband of the low-pass filter.

Since the low-pass filter does not actually transmit dc, despite its

name, these interfering signals do not affect the operation of the self-

excited oscillator system.

The low-pass filter is of the resistance-capacitance active type.

Due to their large unbypassed cathode resistors, tubes V3a and V4a in

the balanced modulator have very high effective plate resistances. As a

result, the output impedance of the modulator is essentially just the

resistance of the common plate load resistor of V3a and V4a, and this

resistor was used as the first element in the low-pass filter. A capaci-

tor from the grid of V6 to ground forms with this resistor a single RC
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low-pass section whose transfer function has a pole on the negative real

axis of the complex frequency plane. Two active filter sections follow

cathode follower V6, each of which contributes a pair of complex-conjugate

poles to the over-all filter transfer function. An internal-external

filter switch provides for the use of an external 600-4 filter in place

of these two sections. As noted above in connection with the balanced

modulator, the passband of the low-pass filter does not extend down to

zero frequency. The input is coupled to the grid of V6 through a capaci-

tor which is necessary for proper biasing of V6.

Each of the active filter sections is of the form shown in Fig.

3-6, below. The amplifiers are cathode followers V7a and V7b; hence the

C

R Jm 2 R

e.n2c 1 Kl

Fig. 3-6. Diagram of Active Low-Pass Filter Section.

gain A is positive but less than unity. Assuming the input admittance

and the output impedance of the amplifier are both zero, the transfer

function of the filter may be readily calculated and is found to be

eoA A
G(p) = n 1-A2 (3-14)Sp2 + p(mn+l+'+-A) + 1 p2 + 1SQe

where e and eo are the voltages at the input and the output of the filter,

respectively, and p=mnRCs is the normalized complex frequency variable.

The quantity Qe is analogous to the Q of a single RIC tuned circuit.
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The transfer function of the filter as a whole was rather arbi-

trarily chosen to be a fifth-order Butterworth approximation to a con-

stant-time-delay low-pass filter with a cutoff frequency of 500 c/s.

The transfer function is the reciprocal of a fifth-degree polynomial in

28
s, which was constructed by standard methods. The roots of the poly-

nomial were found; they consisted of one real root and two complex-

conjugate pairs. The two quadratic factors for the complex-conjugate

root pairs were normalized to the form of the denominator of the right-

hand side of Eq. (3-14), and the necessary circuit constants were deter-

mined for the two active filter sections.

This was not a unique procedure, since three constants--m, n, and

A--were available for the determination of the one parameter Qe. The

design of the cathode follower determined A, and m was chosen unity

because small variations in m are least critical at this value. This

left a quadratic in n; the larger solution was chosen in both cases

because it was more nearly unity (it was felt that it was advisable to

have the circuit-element values neither too large nor too small). The

resistor values for both filter sections were then chosen to be 100 ko

since that is a readily obtainable value and its choice led to reasonable

sizes for the capacitors. Those resistors marked with asterisks on the

schematic diagram, Fig. 3-5, were carefully matched and are one-watt

units in order to be less susceptible to permanent change in value from

the heat of soldering. The five capacitors marked with asterisks were

either selected units or composed of smaller units connected in parallel

28. Guillemin, E. A., Synthesis of Passive Networks (Wiley, New York,
1957), p. 632 ff.
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to achieve the design values. A General Radio Co. Type 1650-A impedance

bridge was used to pick the capacitors.

If an external filter is used, V6 is heavily loaded but must still

be able to handle the maximum output signal of the balanced modulator.

It must therefore possess greater power-handling capability than V7a or

29
V7b, For this reason V6 is really two triodes in parallel (both halves

of a 12AT7) and is operated with more than twice the quiescent current

of V7a and V7b.

The ultimate high-frequency attenuation attainable with these

active filter sections is limited by the non-zero output impedance of

the cathode followers V7a and V7b. At frequencies high enough so that

the capacitors effectively behave like short circuits, the input filter

resistor and the output impedance of the cathode follower will act as a

voltage divider (see Fig. 3-6). The output impedance of V7a or V7b is

about 300 0; hence the maximum attenuation in each section is about

50 dB. The frequency response of the filter was measured and did indeed

depart from the design figures for frequencies above 2.75 kc/s (attenua-

tion > 70 dB). This was of no consequence in the use of the filter.

The diode clipper which follows the low-pass filter controls the

level of oscillation by making the loop gain a decreasing function of

signal level. A hard clipper was used rather than a "slow" nonlinearity

which would operate only on the envelope of the signal because the time

delay associated with a slow nonlinearity frequently leads to difficul-

ties with envelope instability. Since the bandwidth around the oscil-

lating loop is severely limited by the high-Q resonance of the specimen

29. T. J. Schultz, Trans. IRE AU-3 (1955), p. 28.
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I*", the extra frequency components introduced by a hard clipper do not

materially affect the operation of the feedback loop; the important

quantity is the loop gain for the fundamental component of the clipped

30
wave form.

The clipping is symmetric and the clipping level is adjustable on

the front panel of the oscillator control unit from 0.3 to 8 volts peak-

to-peak. Diodes DI and D2 (Fig. 3-5) are back-biased by a voltage E,

say, from the clipping level control. If we assume that the diodes are

identical, the voltage at their junction will be E/2. If now a sinus-

oidal signal of peak amplitude greater than E/2 is applied to the clipper

from the cathode of V7b, then when the positive signal peak exceeds

+E/2, diode Dl will be forward-biased and a certain amount of charge

will be carried through it. On the negative peak, diode D2 will be for-

ward-biased and some charge will be transported through it. In the

steady state, the average forward currents of Dl and D2 must be equal.

since all the net charge which moves through Dl must have come through

D2 (it cannot have come through the 2-pF and 4-pF blocking capacitors).

Thus, the same amount-of current flows through DI on each positive peak

as flows through D2 on each negative peak and the clipping is perforce

symýetric. Since the junction of the two diodes is clamped to E volts

on positive peaks and to ground on negative peaks, the clipping level is

clearly E volts peak-to-peak. The 0.3-volt peak-to-peak minimum clipping

level is due to the forward voltage drop across the semiconductor diodes

(knee voltage).

30. Truxal, J. G., Control System Synthesis (McGraw-Hill, New York,
1955), Chapter 10.
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In normal operation, the various gain controls around the loop and

the clipping level control are adjusted so that there is fairly heavyý

clipping for steady oscillations, This means that the small-signal loop

gain is considerably in excess of unity and the oscillations build up

rapidly after the loop is closed. No trouble with envelope instability

has been experienced.

3.3.3 Power amplifiers

Two power amplifiers are used to supply the excitation for the

eddy-current driver.

The low-frequency amplifier is an H. H. Scott, Inc., Type 250-BRL

Laboratory Power Amplifier. It has a rated power output of 50 watts.

Although any amplifier with sufficient output power in the 50-100 c/s

range could have been used, this unit proved particularly convenient

because its wide range of output impedances (0.7 0 to 600 0) permitted

the use of eddy-current drivers with field windings of various impedance

levels.

The high-frequency power amplifier was constructed specifically

for this apparatus. its circuit is sufficiently straightforward that a

short description will explain it adequately. The four tubes in the

amplifier are two 12AT7's and two 6L6-GC's. The first 12AT7 is an ampli-

fier direct-coupled to a split-load phase inverter. The second 12AT7 is

a push-pull driver for the two 6L6-GC's, which form the push-pull output

stage. There is push-pull feedback from the plates of the output tubes

to the cathodes of the driver tube. The feedback reduces the gain by

approximately a factor of 10 and raises the damping factor to 2. The

output transformer is a United Transformer Co. CGU'-3, nominally rated at
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5 kQ plate-to-plate, 100 watts, 10 to 50 kc/s. The amplifier will

deliver 40 watts into its rated (resistive) load from 8 kc/s to 60 kc/s.

The output transformer has four identical secondaries which can be con-

nected to work into rated load impedances of 19, 75, 170, and 300 Q.

It is possible to use the amplifier at full power output at a

single frequency below the normal low-frequency limit of 8 kc/s by shunt-

ing a capacitor across the load of the appropriate size to resonate with

the inductive reactance of the transformer at that frequency. When a

load, such as the eddy-current driver, is inductive, then the capacitor

can be adjusted to resonate with the parallel combination of output

transformer and load.

The outputs of the two power amplifiers are connected to the

driver through a metering and switching panel. Two thermocouple-type

ammeters measure the currents in the windings of the driver. A tele-

phone-type lever switch is used to disconnect the two amplifiers from

the driver and to disconnect the input signal from the high-frequency

power amplifier. Another switch substitutes for the low-frequency power

amplifier a filament transformer whose output is adjustable by means of

a variable autotransformer in its primary circuit. Thus one winding of

the driver can be excited at power-line frequency.

3.3.4 Other apparatus not shown in a block diagram

Several pieces of commercial equipment which do not appear in the

block diagram, Fig. 3-2, were used from time to time.

An oscilloscope was always available. During the measurement of a

standing-wave pattern it was used to determine the sign of the character-

istic function at the measurement point by observing the relative phase
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of the signals from the reference and traveling pickups. It was also

used to check waveforms at various points around the loop to determine

whether the system was oscillating properly. A Tektronix 536 X-Y oscil-

loscope was in use for some time but it was superseded by a Hewlett-

Packard Co. Model 130C which was better suited to these measurements

(i.e., it had more gain and less bandwidth than the Tektronix).

Two instruments were employed for the measurement of frequency. A

Hewlett-Packard Co. Model 523B electronic counter was used when high pre-

cision was needed since it could be read to 0.1 c/s. When a precision

of E 0.2 percent was deemed adequate, a General Radio Co. Type 1142-A

frequency meter was often substituted for the counter.

In connection with the study of the properties of the driver

(section 3.2, above), it was necessary to measure the Q's of the reso-

nances of specimen-horns. This was accomplished by measuring the decay

rate of free vibrations with a Bruel and Kjaer Type 2301 level recorder,

and by then calculating the Q from the decay rate and the resonance fre-

quency (discussed in section 3.5).

3.4 The mechanical system

The mechanical system comprises supports for the driver, the speci-

men horn, and the reference and traveling pickups, as well as a means

for positioning the traveling pickup. Fig. 3-7 is a photograph of this

part of the apparatus. Two towers (A and B; letters refer to Fig. 3-7)

are mounted on a base plate (C). Tower A supports the reference pickup

(D) and the top of the solid horn (E). Tower B supports the traveling

pickup (F) and the mechanism for positioning it. Its vertical traverse

can be driven by an electric motor (G). The'eddy-current driver (H) is

located beneath the bottom end of the horn.
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3
The base plate is a brass panel of dimensions 12xl4x2 inches.

It is provided with three brass feet, two of which are adjustable in

height so that the apparatus may be leveled. The two adjustable feet

may be locked in position once the base plate has been leveled.

The specimen horn is mounted on hardened steel point bearings

which ride in small dimples centered in the end faces of the horn. The

lower bearing, which supports all the weight of the horn, is quite

rugged and is screwed firmly to the base plate. The top bearing must

withstand only the small lateral forces due to imperfect leveling of the

apparatus. It is spring-loaded against the upper end of the horn and is

mounted on a sled which can be clamped to tower A at various heights

above the base plate. In this manner, specimen horns of lengths 5 to

18 inches can easily be accommodated.

As noted in section 3.2, the eddy-current driver is constructed on

a 4-inch square of hardboard. A hole in the center of the hardboard

clears the bottom bearing of the horn, and four holes in the corners

slip over threaded studs rising from the base plate. The hardboard

driver base rests on four coil springs around the studs. Knurled nuts

on the studs bear against the top surface of the driver base, thus com-

pressing the coil springs and permitting adjustment of the spacing

between the poles of the driver and the end face of the horn.

The traveling pickup can be moved vertically, parallel to the axis

of the horn, and laterally, along the extended radius of the cross sec-

tion of the horn. The pickup is attached to a mechanical stage for a

microscope, which provides a lateral movement of approximately 2 inches

and a vertical movement of a little more than an inch. The major verti-

cal movement of the pickup is supplied by the motion of a carriage to
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Fig. 3-7. Photograph of the mechanical system.
The specimen horn (E) is 18 inches long.
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3
which the mechanical stage is attached. A motor-driven 2 -16 stainless-

8

steel lead screw moves the carriage vertically over an 18-inch range. A

turns-counting dial for indicating the position of the carriage is driven

directly by the end of the lead-screw shaft.

To insure that the traveling-pickup carriage moves accurately in a

straight line, its motion is controlled according to kinematic prin-

ciples.31,32 The carriage has three spherical feet which ride in two

grooves or ways in a bed which forms the major structural member of

tower B (Fig. 3-7). The bed is a rectangular bar of cold-rolled steel,

1 1
2-x- inches in cross section and some 22 inches long. The ways co2-

prise one vee groove and one groove of rectangular cross section. In

order to insure that they were accurately parallel, the ways were milled

into the bed in one series of operations on the milling machine, without

removing the bed from the milling table. Two of the spherical feet on

the carriage ride in the vee groove, the third on the bottom of the rec-

tangular groove. As long as the feet are maintained in contact with the

ways in this manner, the carriage is constrained to move in a straight

line.* Since the ways are vertical, gravity cannot be used to hold the

carriage to the ways. Three spring-loaded feet push the carriage against

the ways by pressing on a "back-up" bar approximately parallel to the

ways and on the opposite side of the carriage from the ways. The back-

up bar is a rectangular bar of cold-rolled steel of smaller cross

31. Whitehead, T. N., Instruments and Accurate Mechanism (Dover, New
York, 1954).

32. Elliott, A., and J. H. Dickson, Laboratory Instruments, 2nd ed.

(Chemical Publishing Co., New York, 1960), Chapter 6.

* p. 81 of Ref. 32, cited above.
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section than the bed but of the same length. It is bolted to the bed

through brass spacers at the top and bottom of the ways.

The lead screw which moves the carriage passes through a threaded

hole centered in the carriage. This hole has about five complete threads

and is elsewhere relieved in order that any warp in the lead screw will

not cause binding. The lower end of the lead screw is left free; the

upper end passes through the upper spacer between the bed and the back-

up bar. A brass collar on the screw shaft bears on the top surface of

this spacer and supports the weight of the screw and the carriage. This

arrangement insures that the screw exerts no sizable lateral forces

which might unseat the carriage from the ways. The lead screw is driven

by a geared-down two-phase induction motor (G in Fig. 3-7) coupled to

the screw with two pulleys and a rubber O-ring used as a belt. The belt

slips when the carriage hits one of its limits, thus preventing damage

to the lead screw. A small aluminum box (visible at the left rear of

the base plate in Fig. 3-7) contains the phase-shifting capacitor and

reversing switch for the motor.

Tower A (Fig. 3-7) is another bed with two parallel ways milled

into it. Both ways are vee grooves here. The upper bearing for the

horn and the support for the reference pickup are attached to a sled

with two cylindrical runners which slide in the ways. The runners are

1
pieces of -!-inch drill rod, milled flat along the sides which are

4.

against the body of the sled. When the sled was assembled, each runner

was sandwiched between the sled body and its vee groove so that it cen-

tered itself in the groove before permanent attachment to the sled body.

Thus the runners were made parallel and were spaced the same distance

apart as the vee grooves in the bed. When a specimen horn is
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installed in the apparatus, the sled is clamped to tower A at the appro-

priate height by two bolts which pass through a long slot milled through'

the bed along its center line.

The dimensions are so chosen that the reference pickup always makes

contact with the specimen horn about 1/4 inch below the upper end of the

horn. At all frequencies and for all materials used experimentally, 1/4

inch is sufficiently smaller than a wavelength that all modes are coupled

well to tho- reference pickup. A rack and pinion allows adjustment of

the distance between the reference pickup and the horn axis, so that

horns of different diameters can be used.

Tower A and tower B are mounted on the base plate with rugged

steel brackets. The bottom faces of the brackets and towers were milled

plane after the brackets were attached to the towers so that the towers

would be normal to the base plate.

The sensitivity of the phonograph pickups is unfortunately a pro-

nounced function of tracking force. A rise of about 30 percent in out-

put voltage is observed between first contact with a vibrating horn and

maximum tracking force (the force at which the stylus, has just retreated

into the pickup housing). In order to obtain consistent results, then,

it is necessary to support the pickups in a manqer which permits good

reproducibility of tracking force and accurate positioning of the stylus

on the surface of the horn as well.

Fig. 3-8 is a photograph which shows in some detail the mounting

of the traveling pickup. We can see portions of some of the items dis-

cussed above: the bed (A), the lead screw (B), the back-up bar (C), the

mechanical stage (D), and the specimen horn (E). The traveling pickup

(F) is mounted on a counterbalanced piece of brass which pivots about a
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horizontal axis (G). A pointer (H), threaded to receive a drilled and

tapped counterweight, if desired, indicates the correct operating posi-

tion when its tip is directly opposite the end of a wire (J), used as a

fiducial point.

Since the axis (G) passes through the center of gravity of the

pickup and its brass mounting block, all the tracking force is contrib-

uted by the weight of the pointer and the counterweight. Because of the

pivot, small errors in the horizontal positioning of the pickup produce

small angular variations in the position of the pointer. When the

pointer is nearly horizontal, however, the tracking force is essentially

independent of such small variations. The pointer can be rotated with

respect to the pickup so that the angle between the horn contour and the

pickup can be adjusted. If at each measurement point the pointer tip is

aligned with the end of the wire (J), the stylus will always be in the

same geometrical relation to the lead screw and the position of the lead

screw can be used to indicate the vertical position of the stylus.

The reference pickup is mounted in exactly the same manner as the

traveling pickup.

3.5 Experimental technique

3.5.1 Measurement of resonance frequencies

A normal mode of a torsional horn is specified by its resonance

frequency and characteristic function. Because the resonance frequencies

of torsional horns can be easily and precisely measured, they provide a

very useful means of checking the agreement between the physical facts

and theoretical predictions based on the solution of the equations

derived in Chapter II. In Chapter V, the measured resonance frequencies
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of exponential horns are used to estimate quantitatively the errors

introduced by the assumption of plane wavefronts.

Since at the outset of an experiment the shear-wave speed in the

horn material is not known exactly, the resonance frequencies themselves

are of little interest; it is rather the ratios of resonance frequencies

which are important. Thus a constant percentage error in the frequency

measurements would not affect the quality of the experimental results.

It was noted above in section 3.3 that the resonance frequencies

of the experimental horns decreased with rising temperature for all

metals used. In order to achieve consistent results it was necessary to

try to keep the temperature constant during a run of measurements, and

in particular to avoid appreciable heating of the specimen horns by the

eddy currents induced by the driver. The electronic gear necessary for

the measurements was turned on several days in advance of the run so that

the room temperature would be stable. (There was a steady-state d-ffer-

ence of about 50 C between equipment off and equipment on.) Induction

heating by the driver was minimized by operating at as low a signal

level as feasible. The self-oscillating system was not used. Instead,

one winding of the driver was excited with direct current so that the

frequency of the current in the other winding was the frequency of the

induced torque. The wave analyzer was operated in its BFO mode, in

which it delivers a sinusoidal signal at the frequency to which it is

tuned. This signal drove the high-frequency power amplifier which in

turn drove the second winding on the driver. The input signal to the

wave analyzer was the amplified output of one of the pickup3, usually

the traveling pickup, placed just at the upper end of the horn so that

it was sensitive to all the normal modes. The wave analyzer was then
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slowly swept in frequency while its voltmeter was scrutinized for indi-

cations of resonances.

As stated in section 3.3, this single-frequency drive produces a

spurious component at signal frequency in the output of the phonograph

pickup. This interference prevents accurate measurement of the ampli-

tude of vibration, but it does not obscure the presence of resonances.

The fact that the rate of change of phase with frequency is a maximum at

a resonance frequency can be used to locate the resonance even when the

desired signal is as small as one-tenth the interfering signal. For

most horns, it proved possible in practice to locate all the resonance

frequencies within the frequency range of the wave analyzer (< 50 kc/s).

When a resonance is located, the wave analyzer is tuned as nearly

as possible to the center of the resonance and the frequency is then

measured with the Hewlett-Packard Model 523B electronic counter. The

counter operates by counting the number of cycles of its input signal

during a standard length of time determined by a built-in frequency

standard. The longest available gate time is 10 seconds; thus, fre-

quency may be measured to a precision of 0.1 c/s. Since only the ratios

of resonance frequencies are important, a fixed error in the internally

generated standard frequency will not affect the significance of the

results. However, drift in the standard frequency during a measurement

run would introduce errors. The manufacturer specifies that drift in

the frequency standard is less than 2 parts in 106 per week. Thus for

short-term measurements over a few hours, the accuracy of measurement is

limited by the 0.1 c/s precision for frequencies less than 50 kc/s. How-

ever, the resonance frequencies can rarely be located to within 0.1 c/s.

Tests for reproducibility showed that with care the resonances can be
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repeatedly found to approximately 2 parts in 105, Since comparison of

the resonance frequencies of two or several different horns turned from

the same (presumably homogeneous) piece of stock requires knowledge of

their dimensions, and the accuracy with which thedimensions can be meas-

ured is at least an order of magnitude worse than 2 parts in 105, we can

see that the accuracy attainable in frequency measurements is more than

adequate.

3.5.2 Measurement of Q

As a part of the investigation of the properties of the eddy-

current driver, it was found necessary to measure the Q's of the reso-

nances of several horns.

A common method for measuring the Q of a resonant system is to

measure the bandwidth of the driven system and compute the Q from the

formula

fQ = ,- (3-15)

where f is the resonance frequency and Af is the bandwidth between the

frequencies where the response is 3 dB less than the maximum. If the Q

is high, it may be difficult to measure Af with the desired accuracy.

However, for high enough Q, the decay rate of free vibrations is slow

enough so that it can be measured and the Q calculated.

The time dependence of a normal mode of free vibration is the same

as that of a simple resonator;* hence, if only one normal mode is

excited, the envelope of the vibrations after the excitation is removed

will decay as e"wt/2Q, where w and Q are the natural frequency and the

* Chapter VII of Ref. 17, cited on p. 17.
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quality factor of the normal mode, respectively.33 The resonances of

solid torsional horns were found to be sharp enough that the determina-

tion of Q through measurement of the decay rate of free vibrations was

much the better method.

A Bruel and Kjaer Type 2301 level recorder was employed for the

measurement of decay rate. The specimen horn was excited by the self-

oscillating method and the recorder was driven by the amplified signal

from one of the pickups. The oscillating loop was then broken by discon-

necting the driver from the two power amplifiers. The logarithm of the

ensuing envelope decay was recorded at an appropriate chart drive speed.

The decay rate in dB/sec was then calculated from the slope of the

recorded decay and the chart speed. Let H be the decay rate in dB/sec.

We can easily find Q from H and u) through the following relation:

20 logl 0 [e w/2Q -H

which leads to (3-16)

f
Q = 27.25 ,

where f = w/2v.

Several decay rates were averaged for each case in order to gain

some idea of the reproducibility of the measurements. The spread in

decay rates was approximately :E2 percent.

In addition to the investigation of the properties of the driver,

a further object of the measurements of Q was to find out what part of

the total damping was contributed by the pickups. For one-inch diameter

cylinders of brass and mild steel, the Q was found to be 15 000 to 20 000

33. Guillemin, E. A., Introductory Circuit Theory (Wiley, New York,
1953), pp. 247-9).
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and was reasonably independent of frequency. The presence of a second

pickup in contact with a cylinder lowered the Q by no more than 5 percent.

Thus the pickups introduce a noticeable but not significant fraction of

the damping for brass and mild steel. However, the Q of the lowest mode

of an aluminum cylinder was higher and was limited to approximately

100 000 by the pickup damping with the stylus contact close to the end

of the cylinder. In order to reduce the effect of the pickup damping,

the point of contact was moved closer to the node at the center of the

cylinder. Positioning the contact point anywhere from 1/16 to 1/4 inch

from the node always gave essentially the same Q, 304 000; it was there-

fore felt that the effect of the pickup had been reduced until the

losseswere predominantly due to other factors.

All of the experimental horns except the one aluminum cylinder

were made of brass or mild steel. For virtually all the experimental

work performed, then, the damping due to the pickups was not significant.

3.5.3 Measurement of torsional standing-wave patterns

Most aspects of the method used for the measurement of standing-

wave patterns have been discussed piecemeal in conjunction with the

description in sections 3.2, 3.3, and 3.4 of the equipment constructed

for making the measurements. A description of the normal sequence of

events in the measurement of a standing-wave pattern follows.

The horn is at first separately excited, not self-excited. The

two driver field currents are at the carrier frequency (from the carrier

source and the high-frequency power amplifier) and at the power-line

frequency, 60 c/s (from the transformer on the metering panel). The

carrier frequency is then slowly varied until some indication of resonance
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is observed on the oscilloscope, which is monitoring the output of the

reference pickup. The circuitry is then reconnected for self-excited

oscillation by driving the low-frequency winding of the driver from the

low-frequency power amplifier, as indicated in the block diagram, Fig.

3.2. The phase-shifter controls are then adjusted until oscillation

commences. The carrier is now slightly changed to place the lower

driving current frequency somewhere other than at 60 c/s. Then the

phase shifter is readjusted to maximize the amplitude of oscillation.

The shunt capacitor across the high-frequency coil of the driver is made

to resonate with the inductance of the driver and the output impedance

of the high-frequency power amplifier at the carrier frequency. In

order that the clipper be the only component limiting the amplitude of

oscillation through nonlinearity, the gain controls on the two power

amplifiers and the signal gain control and clipping-level control on the

oscillator control unit are set to obtain the desired signal levels

around the loop.

Now the wave analyzer is tuned to the frequency of vibration of

the horn under test. The traveling pickup is moved from point to point,

placed in contact with the horn at each point, and the decade gain

switch and voltage divider are adjusted until the signals from the two

pickups are equal as shown on the wave analyzer. While the traveling

pickup is being moved to the next measurement point, the oscillating

loop is broken by removing excitation from the driver so that unneces-

sary induction heating of the specimen horn is minimized.

The settings of the precision voltage divider and the decade gain

switch are recorded at each measurement point. Their ratio is the

particle displacement on the surface at the measurement point relative
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to that at the reference pickup. After the measurement run, these num-

bers are divided by the radius of the cross section at the measurement

point to obtain the relative angular displacement. This result is of

course arbitrary to within a multiplicative constant since it corresponds

mathematically to the solution of a homogeneous equation. The theoreti-

cal standing-wave patterns computed in Chapters IV, V, and VI, with which

the experimental results were compared, were always normalized so as to

have the value +1 at the top end of the horn. (The top end was always

the smaller end wherever the two ends were of different diameter.) A

least-squares method was used to find a constant k by which the experi-

mental results could be scaled so that they could be directly compared

with the normalized theoretical standing-wave patterns. This method was

chosen because it was simple, systematic, and seemed to display the

experimental results to best advantage.

This least squares normalization of the experimental data was

accomplished in the following way: Let an be the non-normalized measured

value of the angular displacement at the nth measurement point, and let

b be the (normalized) theoretical value at the same point. We wish ton

find the value of k which will minimize the total squared error E given

by the equation

E = _7Z(bn- kan) 2  (3-17)
n

Differentiating with respect to k and equating the derivative to zero,

in order to minimize E, we have

dE "
dk 2 a bn- kan 2 = 0n , (3-18a)

n
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or,

Zanbn

= • an 2  (3-18b)

n

Having calculated k, we next find all the An =kan, the normalized experi-

mental data, which we then plot to the same scale as the bn in order to

compare experiment and theory (see, for example, Fig. 4-1).

The precision with which the balance between the reference signal

and the traveling-pickup signal can be found depends on the signal-to-

noise ratios of the two channels. The noise is of two types. The first

is the interfering signal induced by the magnetic fields of the driver.

This consists of components at discrete frequencies relatively far

removed from the passband of the wave analyzer; hence they are not

troublesome. The second is broadband noise contributed in part by the

amplifiers following the pickups and in part by seismic excitation of

the pickups. This type of noise manifests itself as random fluctuations

in the voltmeter indication of the wave analyzer. Unless the signal is

a great deal stronger than the noise, these fluctuations are the limit-

ing.factor in determining the experimental precision. The noise level

is quite constant with frequency over the range 5 kc/s to 50 kc/s and

rises slowly at frequencies below 5 kc/s.

The signal strength at the terminals of one of the pickups depends

on the effectiveness of the coupling between driver' and horn, the gain

of the horn from the driven end to the pickup, and the sensitivity of the

pickup. These factors may be lumped together into the conversion trans-

impedance t, defined as the ratio of the terminal voltage of the pickup

at the signal frequency (= horn resonance frequency) to the low-frequency
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feedback current in the driver. The signal-to-noise ratio will be pro-

portional to t since the noise level is essentially constant over the

frequency range of interest.

Since the driver approximates an ideal torque source, t will vary

inversely with the driving-point impedance of the horn. The driving-

point impedance at an end of a torsional horn rises sharply with diameter;

thus, the thicker specimen horns are considerably harder to drive than

the thinner ones. The shape of the horn and the mode of vibration deter-

mine the gain of the horn. This varies widely among the specimen horns

from about 0.3 to about 30. The phonograph pickups were basically "dis-

placement pickups"; that is, within the normal frequency range of the

pickup, the output voltage was proportional to the displacement of the

stylus, not the velocity as with magnetic pickups, for instance. Since

the angular velocity of the horn is proportional to the driving current,

all other things being equal, we can see that t decreases with increasing

frequency at a 6 dB/octave rate from this cause alone. In addition, the

pickups' displacement sensitivity decreases rapidly above 15 kc/s. Thus,

we can say in general that the standing-wave patterns of the higher

modes of thick horns cannot be measured with as much precision as those

of the lower modes of thin horns.

The precision attained, as indicated by the distribution of

repeated measurements, varied from better than 1 percent of maximum angu-

lar displacement to some 4 percent. The accuracy was not as good as the

precision, primarily due to the fact that the pickup sensitivity depends

on temperature. When the traveling pickup is near the bottom of the

horn, it is generally warmer than when near the top. The voltage compar-

ison balance between reference and traveling pickups can still be made,
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but the variations in pickup sensitivity will in essence have varied the

relative gain of the two channels slightly to an unknown degree. The

effect is fortunately not too large, and it is believed to introduce no

more than 2 percent error.

Any error in the lead screw can cause the measurements to be made

at points other than those intended, and consequently can introduce

errors in the experimental data. Since other considerations limit the

attainable accuracy to about I percent of maximum angular displacement,

the additional error due to the lead screw must be of at least that

order of magnitude to be objectionable. The shortest wavelength in any

measured standing-wave pattern was about 4.5 inches. The greatest error

will be introduced near the nodes, where the angular displacement is

changing most rapidly with distance. Assuming an approximately sinus-

oidal standing-wave pattern, we can readily calculate with the aid of

trigonometric tables that an error in the traveling-pickup placement of

.008 inches will cause about a 1-percent error in the measured angular

displacement if the wavelength is 4.5 inches. For longer wavelengths,

a proportionately greater error in the positioning of the traveling

pickup would be tolerable.

The lead screw was checked against an accurate steel scale for

large distances and against a traveling microscope for small. The

errors observed were considerably less than .008 inches. Thus the lead

screw is more than sufficiently accurate for its use.



Chapter IV

HORNS FITTING SEPARABLE COORDINATE SYSTEMS

The "exact" torsional wave equation derived in Chapter I1 can be

solved by the method of separation of variables in some cases. These

are cases for which the horn is bounded by coordinate surfaces of a coor-

dinate system in which the Laplacian is separable. This may be shown in

the following way.

The torsional wave equation for *, assuming sinusoidal time depend-

ence, is, in cylindrical coordinates (r,z,tp),

+ + +ki = 0, (4-1)

where k-w/c is the wave number, subscripts denote partial derivatives,

and * is now the angular displacement with the time dependence factored

out. We recall that *r =0, and, after some routine crank-turning, we

find that (4-1) can be rewritten as

rV2(r*) + (k -_ ) # = 0 . (4-2)
r

Since torsional waves and torsional horns, as defined here, always

possess rotational symmetry, any coordinate system which bounds a tor-

sional horn can always be constructed so that one of the coordinates is

an angle m, the angle of rotation about the axis of the horn. In cylin-

drical coordinates, the coordinate r is the scale factor h for the

angle y; that is, rdp = h dy is an infinitesimal displacement in the

p-direction. Since the Laplacian is invariant under coordinate transfor-

mation, we can generalize Eq. (4-2) to all rotationally symmetric coordi-

nates by substituting h for r. We obtain thus
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1 7 2 (h #) + (k 2 " 2 4 0 (4-3)

(The subscript on h identifies only the coordinate, it does not denote

a derivative.)

It is obvious that Eq. (4-3) can be separated if the Laplacian is

separable and if h is factorable into functions of one codrdinate only.

Of the eleven coordinate systems for which the Laplacian is separable,
five possess rotational symmetry.* For each of these systems, h is

suitably factorable. The five systems are cylindrical, spherical, para-

bolic, oblate spheroidal, and prolate spheroidal coordinates.

Now let (v,w,p) be the coordinates of a point expressed in one of

these systems, and let the separated solution of (4-3) be 4 = V(v)W(w).

Only in cylindrical and spherical coordinates can a solution of this

form be readily found; in the remaining three systems the situation is

complicated by the fact that the separation constant introduced by the

separation depends on both V and W. In other words, the solution is

separable for the coordinates but not for the separation constant.**

Only cylindrical and spherical coordinates will be treated here. The

wave equations and the separated ordinary differential equations for the

other three systems are given in Appendix A.

Of particular interest are one-parameter solutions, i.e., solutions

where 4 is a function of only one space coordinate. As might be expected

from the remarks in the preceding paragraph, only in cylindrical and

spherical coordinates are there one-parameter solutions. In Appendix A

* p. 655 ff. of Ref. 22, cited on p. 29.

** pp. 517-8 of Ref. 22, cited on p. 29.



-78-

is a demonstration that in parabolic, prolate spheroidal, and oblate

spheroidal coordinates there are no one-parameter solutions.

4.1 Cylindrical coordinates (r,z,cp)

4.1.1 Mathematical analysis

The horn shape fitting cylindrical coordinates which will receive

the most attention in this section is the solid right circular cylinder,

although some attention will be given to the hollow right circular

cylinder.

The wave equation in cylindrical coordinates has already been

given as (4-1). If we take

S= V(r)W(z) , (4-4)

we readily obtain the two separated ordinary differential equations,

V"(r) + V V' (r) + 72 V(r) 0 (4-5)

and

W"(z) + (k2-t72 )W(z) = 0 , (4-6)

where primes denote differentiation with respect to the argument and i7

is a separation constant to be determined by the boundary conditions.

If we define P by means of the relation

2 = k 2 _ ?772 , (4-7)

we can rewrite (4-6) in the more familiar form

W"+ 2W = 0 . (4-6a)

The boundary condition for a free surface requires that the normal

derivative of * vanish and leads to the condition
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V'(r) = 0 (4-8)

at surfaces of constant r, and

W'(z) = 0 (4-9)

at surfaces of constant z.

Case 1: Plane waves

The simplest solution is found when 77 0. In this case, P =k and

V(r) = constant, so that

* = A exp(±jkz) , (4-10)

where A is the amplitude of the wave. The plus sign denotes a wave

traveling in the negative z-direction and the minus sign a wave traveling

in the positive z-direction.

This solution, a one-parameter solution which is a function only

of z, is valid for both solid and hollow-cylinders. The wavefronts,

surfaces on which the phase and amplitude of * are constant, are plane

cross sections normal to the axis of the horn. The waves propagate in

the z-direction with constant amplitude and velocity.

If the horn is a finite cylinder (solid or hollow) of length 1,

with free ends at z =0 and z= 1, then the standing-wave patterns of the

natural modes of free vibration are given by

*n = A cos(nxz/1) , n = 1, 2, 3, (4-11)

The corresponding resonance frequencies are

fn = (nc/21) , n = 1, 2, 3, (4-12)

This simple relationship between the resonance frequencies, the shear-
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wave speed, and the length of the cylinder provides a convenient means

for the experimental determination of the shear-wave speed in an elastic

material, since the cylinder is a geometric form which can be readily

and precisely generated on a lathe.

Case 2: Cylindrical waves

If 77 = k, there is another one-parameter solution, this one a

function of r only. In this situation, •=0; therefore, W = constant is

a solution of (4-6a) which also satisfies boundary condition (4-9) for

any boundary z = constant.
34

Equation (4-5) is now a form of Bessel equation which yields

* = A[Jl(kr) + BNl(kr)]/kr , (4-13)

where J and NI are Bessel functions of the first and second kinds,

respectively, A is the wave amplitude, and B is a constant to be deter-

mined by the boundary conditions. The wave fronts in this case are con-

centric cylinders centered on the z-axis,

If the horn is a hollow cylinder, B and k must be chosen to satisfy

simultaneously boundary conditions of the form (4-8) on the inner and

outer surfaces.

If the horn is'a solid cylinder, B must be zero in order that * be

finite on the axis, since N increases without bound for vanishingly

small argument. If the radius of the horn is a, then the boundary condi-

tion (4-8) is equivalent to the requirement that ka be one of the roots of

d (x)/x 0 , (x = ka) . (4-14)

34. Jahnke, E., &F. Emde, Tables of Functions (Dover, N. Y., 1945), p. 146.
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Using a differential formula given by Jahnke and Emde,* we find

that the roots of (4-14) are just the zeros of J 2(x). These are tabu-

lated in Jahnke and Emde and elsewhere. The approximate values of the

first few are given in (4-15), below:

J 2 (kna) = 02 (4-15)
---- kna = 0, 5.136, 8.417, 11.620, 14.796, ... -- >(n+ (ic,

where n is an integer, the number of the mode. The first root, k a = 0,n

is a degenerate case and corresponds to uniform continuous rigid-body

rotation of the entire horn.

Case 3: Compound modes

If neither P nor 77 is zero', then neither V nor W can be a constant,

and 4 must therefore be a function of both r and z. The functions V(r)

and W(z) have the same form which they had in cases 2 and 1, respec-

tively, except for the changed values of P and 7. The wave function

is thus given by

S= A exp(±Jpz) J 1 (77r)/?7r (4-16)

for the solid cylinder of radius a. The plus and minus again denote

propagation toward negative and positive z, respectively. The allowed

values for ý are determined in the same way as. those for k for the

purely cylindrical modes. That is, 7a must have one of the values given

in (4-15). The propagation constant for the z-direction, P, is then

related to t7 and the frequency through the equation

P2 = (u/c)2 - 72 (4-17)

which is a slightly modified form of (4-7).

* p. 145 of Ref. 34, cited on p. 80..
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Consider first a cylinder of infinite length in the z-direction

(and of radius a). The most notable property of these two-parameter

modes is that there is a lower cutoff frequency associated with each

of them. In other words, if the frequency of vibration is below the

cutoff frequency for a particular mode, that mode will not propagate

in the z-direction. The cutoff frequency for a mode with radial eigen-

value 77 is

7c c . (4-18)

This is the frequency of the corresponding cylindrical resonance-(case

2), at which P = 0. For lower frequencies, (4-17) shows that P is

imaginary; hence, the amplitude of the wave diminishes exponentially in

the z-direction, and the phase is everywhere constant. For higher

frequencies P is real, corresponding to true wave motion in the

z-direction. However, since p is a function of frequency, these modes

are dispersive. If the phase velocity cp is defined by

P = W/Cp (4-19)

then, by combining (4-17) and (4-19), we can easily find that

c 2  c 2 / [1 - ( 77/k)2] = c 2 / [1- (Wc/W)2] (4-20)

If we prescribe the angular displacement as a function of r over

a plane cross section of the cylinder and ask how this displacement will

propagate along the cylinder, we can expand the prescribed distribution

in a Fourier-Bessel series in the usual manner, and * elsewhere in the
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cylinder will be given by a series of terms each of which is of the form

of the right-hand side of (4-16).3

If the cylinder is not infinite in length, but of length I (from

z = 0 to z = 1), then for free vibrations P can assume only values allowed

by the boundary conditions (4-9) at the ends. The standing-wave pattern

for the mnth mode as a function of the space coordinates z and r is

then

4mn = A cos(mi~z/2) J (W cnr/c)/(w cn/C) , (4-21)

where m = 1, 2, 3,...

and wcn = cutoff frequency for the nth compound mode of the infinite

cylinder. Each of these normal modes has associated with it a resonance

frequency

Wmn = (mvc/)2 + Wcn 2 (4-22)

Case 1 and case 2, plane waves and cylindrical waves, now appear

as specializations of case 3 to n=0 and m=0, respectively.

The behavior of torsional waves in an elastic cylinder has much

in common with the behavior of sound waves in air enclosed by a rigid

cylindrical tube.36 In both systems, there exist plane waves, purely

cylindrical waves, and higher modes which are functions of both r and z.

The plane waves can propagate in'the z-direction without dispersion and

at all frequencies, whereas each of the higher modes, characterized by a

cutoff frequency, propagates dispersively and only at frequencies higher

35. E. A. Flinn, J. Acoust, Soc. Am. 33 (May 1961), pp. 623-7. See
also pp. 48-9 of Ref. 4, cited on p. 2.

36. Lord Rayleigh, Theory of Sound, Vol. II (Dover, New York, 1945),
pp. 297-301.
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than its cutoff frequency. However, the differential equations describ-

ing the behavior of these two systems in the r-direction are different,

and as a result, the characteristic functions of r are different.

4.1.2 Experimental verification

In the course of experimentally investigating other shapes of

torsional horn, the plane-wave resonance frequencies of many cylinders

were measured as a means of determining the shear-wave speed. There was

always excellent agreement with the prediction of Eq. (4-12) that the

resonance frequencies would be integral multiples of the lowest. A

typical case is summarized in Table 4-1, below. By using Eq. (4-12),

values of c were calculated from the observed resonance frequencies.

The average of these values was used in Eq. (4-12) to find the theoreti-

cal resonance frequencies.

Table 4-1

Plane-wave resonance frequencies of a mild steel cylinder
radius 0.750 inches, length 9.000 inches

Mode number Theoretical fn Experimental f. Exp fn
n kc/s kc/s Theor fn

1 7.0839 7.0864 1.00035

2 14.1677 14.1679 1.00001

3 21.2516 21.2527 1.00005

4 28.3354 28.3344 0.99996

5 35.4193 35.4159 0.99990

6 42.5032 42.4956 0.99982

7 49.5870 49.5814 0.99989

The standing-wave patterns for the first three plane-wave modes of

an 18-inch long brass cylinder one-half inch in radius were measured.
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These are compared with the corresponding theoretically predicted

cosinusoids in Fig. 4-1.

The measurement of the frequencies of cylindrical resonances was

not as easy as for the plane-wave resonances. The experimental appara-

tus could handle specimens of maximum radius 2 inches. The lowest

cylindrical resonance in a steel cylinder of this size is at approxi-

mately 52 kc/s, just out of range of the wave analyzer. However, brass

has a lower shear-wave speed than steel. A brass cylinder 2.000 inches

in radius and 5.838 inches in length (and some 23 pounds in weight) was

obtained and some of its resonance frequencies were measured. The shear-

wave speed was calculated from the length and the measured resonance

frequencies of the lowest five plane-wave modes. This was used to pre-

dict the resonance frequencies of the cylindrical and compound modes.

The first cylindrical mode and the first four of its associated compound

modes had resonance frequencies below 50 kc/s. A comparison of pre-

dicted and observed resonance frequencies follows in Table 4-2.

Table 4-2

Compound resonances of a brass cylinder
radius 2.000 inches, length 5.838 inches

Mode number Theoretical fmn Experimental fmn Exp fmn
mn kc/s kc/s Theor fmn

01 35.430 35.461 1.00087

11 36.199 36.249 1.00138

21 38.416 38.160 0.99334

31 41.855 41.820 0.99916

41 46.232 46.199 0.99929
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It is not absolutely certain that the observed resonances belonged

to the modes in question. Brass is not as easy to excite as steel, as

pointed out in Chapter III, and the large diameter of the specimen would

have made it difficult to excite in any event; thus the output from the

phonograp4h pickup was at best not greatly above the noise in this fre-

quency range. The usual method for determining mode number is to count

the nodes. The nodes are located by damping the vibrating specimen by

touching it with a finger. When the damping is minimal, the finger is

on or near a node. This scheme did not work satisfactorily on this

thick cylinder, even for the lower plane-wave modes.

The agreement between the predicted and observed resonance frequen-

cies tabulated in Table 4-2 is good enough so that it seems highly prob-

able that these are the first few compound modes. However, it will be

observed that the agreement, although good, is an order of magnitude

worse than for the plane-wave modes (see Table 4-1).

4.2, Spherical coordinates (r,O,ýp)

4.2.1 Mathematical analysis

Spherical coordinates are suitable for studying conical horns.

The side of such a cone is a surface of constant 0, and the ends are

spherical caps, surfaces on which r is a constant. Throughout this sec-

tion, r=a will be taken as the small end of the horn and r=b as the

large end. The half-angle of the cone will be denoted by a.

In spherical coordinates,

h = r sine . (4-23)

Making this substitution in (4-3), we can expand the Laplacian and
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obtain the torsional wave equation,

2 4 2

r ( + 4 + k2*) + *ee + 3cotO 4* =0. (4-24)

By assuming

= V(r)W(O) , (4-25)

we can easily separate (4-24) into the two ordinary differential

equations

V"(r) + r V'(r) + [k2 _ (77+2) 7- l) ]v(r) = 0 (4-26)r2

and

W"(0) + 3 cot 8 W'(0) + (77+2)(?7- 1) W(8) = 0 , (4-27)

where 17 is a separation constant and is introduced in this form for

reasons which will become apparent later.

The boundary condition at a free surface now leads to the follow-

ing conditions on V and W:

V'(a) = V'(b) = 0 , (4-28)

and

W'(0) = W'(a) = 0 . (4-29)

(The "boundary" condition on the axis of the horn, in this case 6=0, is

discussed in Chapter II.)

Case 1: Spherical torsional waves

If 17=1, then W = constant is a solution of (4-27) which satisfies

boundary condition (4-29) for all a; hence, * is a function only of r.

Equation (4-26) is another form of the Bessel equation;* 4*is given by

* p. 146 of Ref. 34, cited on p. 80.
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A()~ (r 3 /2 [J3/2 (kr) + BJ-3 /2(kr)] (4-30)

where A is the amplitude of the wave and B is a constant determined by

the boundary conditions.

It is well known that a Bessel function whose order is half an odd
37

integer is expressible in terms of elementary functions. It is there-

fore possible to rewrite (4-30) in the nmore useful form

4(r) C (1 1) ei-kr + D 1 )eJkr (4-31)

C jkr (kr)

The first term in Eq. (4-31) represents a wave of amplitude C traveling

outward away from the origin r=0, and the second term a wave of ampli-

tude D traveling toward the origin. The wavefronts are concentric

spherical surfaces of constant r.

Invoking boundary condition (4-28) at the small end, r=a, leads

to the standing-wave pattern

*(r) = A o[krQ(ka)J- sinkr-Q(ka)] (4-32)S(kr)2 kr II

where r>a (the cone does not exist for r<a) and the function Q is

defined by the equation

Q(x) = x - tan-I 3x/ (3 - x 2 ) . (4-33)

Equation (4-32) holds even in the limiting case a = 0, when the cone is

complete to its vertex, although the vertex is a singular point in this

37. Whittaker, E. T., and r. N. Watson, Modern Analysis (Cambridge
University Press, Cambridge, 1927), 4th ed., p. 364.
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case. At a free resonance, the wave number k must be such that 4 as

given by (4-32) satisfies boundary condition (4-28) at r=b. To find

these allowed values of k, we differentiate (4-32) with respect to r,

set the derivative equal to zero at r=b, manipulate the resulting

equation with the aid of some trigonometric identities, and obtain the

frequency equation

Q(knb) - Q(kna) = nit , n = 1, 2, 3, ... (4-34)

where, as usual, n is the mode number.

Before looking for so~tions of (4-34), we shall prepare ourselves

by examining the behavior of the function Q for various ranges of its

argument.

We can evaluate the argument of the arctangent in Eq. (4-33) by

long division to obtain the power series

3x = x + 2S3 + + x + (4-35)
3-2 3 9 27(45

The first two terms of (4-35) are the same as the first two terms of the

power series of tanx. This means that 3x/(3-x 2 ) is a third-order Pade

approximant38 to tan x (third order because their power series agree

through terms in x3 , and the sum of the degrees of numerator and denomi-

nator of the rational fraction 3x/(3 -x 2 ) is three). Such Pade approxi-

mants are unique; that is, there is no other rational fraction of first

degree in the numerator and second degree in the denominator whose power

series will-agree with the series for tan x through the first two terms.

38. Storer, J. E., Passive Network Synthesis (McGraw-Hill, New York,
1957), p. 272 ff.
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Thus the arctangent in (4-33) is very nearly equal to x for small x, and

as a result the function Q(x) is very small for x<l; e.g., Q(l) - 0.017,

In order to look more closely at the behavior of Q for small argu-

ment we can repeatedly differentiate Eq. (4-33) and obtain the Taylor

series

x, x7 + xl+ X13 + x 6m-1 -
6m+1

Q(x) =.45 189 2673 9477 "'"= 3m- TmS~m=l _6m-l).3ml (6re+l) 3'mj

(4-36)

At the other extreme, for x>>l, 3x/(3-x 2 ) is a Pad6 approximant
3

to tan(n- ), so that an asymptotic formula for large argument is

Q(x) = x + 3 - It, X>> (4-37)

Now we are in a position to obtain some information from Eq. (4-34).

If the cone is complete to the vertex, Q(kna) is identically zero, and

(4-34) becomes

Q(knb) = 0 , n = 1, 2, 3, ... (4-38)

which has the solutions

knb = 5.763, 9.095, 12.323, 15.515, 18.689, 21.854, ... (n+l)it - 3
(n+1) ir

(4-39)

The asymptotic solution at the right-hand end of (4-39) is obtained from

(4-37) and yields answers good to three or more decimal places for n_> 7.

If the cone is almost complete, i.e., if a<<b, then a will be

less than a wavelength for the first few resonances, kna will conse-

quently be less than 1, and Q(kna) will be very small. Therefore, the

solutions of Eq. (4-34) will differ very little from those of (4-38).

That is, the lower resonance frequencies will be very nearly. the same as
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those for the complete cone of the same outer dimension b. This can

also be argued on physical grounds. Cutting uff a piece from the tip of

a complete cone will remove only a very small moment of inertia from the

end (if the piece is smaller than a wavelength), a loss which can hardly

cause great change in the resonance frequencies.

On the other hand, if a is large or if the frequency is very high,

so that kna >> 1, then Eq. (4-34) approaches

kn(b -a) = nn , n = 1, 2, 3, ... , (4-40)

which is the same frequency equation as for the plane-wave resonances in

a cylinder of length (b- a). In other words, spherical torsional waves

many wavelengths from the origin behave in some ways like plane torsional

waves; the relationship is similar to that between spherical and plane

longitudinal (compressional) sound waves in air.

Case 2: Compound modes

For 77 4 1, neither V nor W can be constant, save for the trivial

case when k=0. Equation (4-26) is still a Bessel equation* and (4-27)

becomes a standard form of the Legendre equation39 with P as dependent

variable upon the substitution W(O) = P(G)/sin G. The general solution

for t is

AP7lI(cos 0) [J( kr) BJt÷±•(kr)] , (4-41)
*(r,O) (kr)3/2 sine + 77

where 7 is determined by the boundary conditions on e, k and B are

* p. 146 of Ref. 34, cited on p. 80.

39. Erdelyi, A., editor, Higher. Transcendental Functions (McGraw-Hill,
New York,t1953), Vol. I, p. 120.
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determined by t7 and the boundary conditions on r, P (cos 9) is an

associated Legendre function of the first kind, and J(,÷•) and J(,÷_)

are Bessel functions of the first kind. A second solution of Eq. (4-24)

could be obtained by substitution of the Legendre function of the second

kind, Q l(cos 9), for P i(cos 9) in Eq. (4-41), but this solution would

not satisfy the boundary condition at G= 0, since Q l(cos 0) "blows up1

at that point. However, P I(cos @)/sin0 satisfies the boundary condi-

tion at 0 = 0 for all values of 77. We can show this from the derivative

relation*

)(cos 8 dPn(cos 8)
W() sin 9 d(cos 9) ' (4-42)

which, when differentiated with respect to 9, becomes

W' () = -sin0 d2p(cos )(4-43)
d(cos 0)2

Smythe** gives a series expansion for P which is valid for all 77 and

which shows that the second derivative of PlT? is bounded at 0 =0; thus

W'(0) = 0 due to the vanishing of sin 6.

Since J 0+1) increases without bound for vanishingly small argu-

ment, B must be zero for a cone which is complete to the vertex in order

to insure that t is bounded everywhere. For the sake of simplicity, the

following discussion will be restricted to the case of a complete cone.

Let us first find out how 71 depends on a, the half-angle of the

cone. We shall arbitrarily define our cone to have a central angle

* p. 148 of Ref. 39 (Vol. I), cited on p. 92,

** p. 147 of Ref. 21, cited on p. 28.
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a<_it/2. For larger a, the "horn," if such it could be called, would be

a sphere with a conical hole in it.

In the limiting case for which a = g/2, our "cone" becomes a hemi-

sphere, and the allowed values of 17 are the odd integers, as we shall

now see. Using Eq. (4-43), we see that the boundary condition at

e =x = sv/2, Eq. (4-29), turns into

d2 pn(x) = 0 x = cos 0 =0 (4-44)

dx 2  it
2

Assuming that 77 is an integer, we can make use of Rodrigues'

formula* to write

d2 p 7(x) -1 d77+2 2 1)77

dx (2 ?7 - dx7+- (x •7 = 1, 2, 3 .....

The quantity (x2- 1) 7 is a polynomial containing only even powers of x;

differentiating this polynomial an even or odd number of times will

yield a polynomial containing only even or odd powers, respectively.

Therefore, we can see from inspection of the right-hand side of (4-45)
d2P~x

that -_Pn(x) is even or odd** in x according as 77 is even or odd. All
dx

2

the zeros of Legendre polynomials [P77(x) where 77 is an integer] are

simple and lie in the range -l<x<+l.* By the law of the mean we can

* p. 151 of Ref. 39 (Vol. I), cited on p. 92.

** Definition: F(x) is even or symmetric if F(x) = F(-x); F(x) is odd
or antisymmetric if F(x) = -F(-x).

Theorem: The zeros of a function F(x) are symmetric about x = 0 if
F(x) is even or odd. The proof follows immediately from the definition
of even and odd functions: F(x)=+F(-x); if F(x) =0, then F(-x) =0.
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see that the zeros of all the derivatives of a Legendre polynomial will

also be simple and lie in the range -l<x<+l. Since by (4-44) d2pn(-"
dx2

is to vanish at x=0, and since it has only simple zeros, we can see

that it must be an odd function; consequently 71 must be an odd integer.

Thus we have now shown that for a = o/2, the odd integers are proper

values for 77. We must now rule out the possibility of non-integral

allowed values of 77 (for a = g/2) since at the outset we restricted our-

selves to integer 7. We can see from (4-42) and (4-45) that if 77 is an

odd integer, W(e) is an even polynomial in cos e of degree 7 -1. We saw

above that all the zeros of any derivative not identically zero of a

Legendre polynomial P77(x) are simple and lie in -1< x<+l. By the sym-

metry properties of W(e), then, half its zeros must lie in 0<cosO <+1,

or 0<O<Gt/2. That is, W(e) has (77-1)/2 zeros or nodes in the funda-

mental domain of the problem, 0<O< i/2. But for 77 = 1,3,5,7,9, ... )

we have m = (77-1)/2 = 0, 1, 2, 3, 4, ... , and it follows from the unique

relation* bwtween the eigenfunctions and the number of nodes for a Sturm-

Liouville system such as this [Eq. (4-27)] and its boundary conditions

[(4-29)) that we have found all the eigenvalues and eigenfunctions for

the case a = A/2. We shall henceforth denote by Wm(e) the particular

eigenfunction associated with 17m, the mth allowed value of 77.

We have just seen that for a =/2,

7m - 2m + 1 , m 0, 1, 2, 3, ... (4-46)

and

P2 1m1l(Cos 0) dP2m+l(x)
WM(e) = sin e - dx xcos9 (447)

* p. 454 of Ref. 14 (Vol. I), cited on p. 12.
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For a <i(/2, the allowed values of 17 must change so that the boundary

condition at 0 = a is still satisfied, and so that W(6) has m zeros in

0 <G<a. The lowest eigenfunction, W0 (0) = 1, does not depend on 17, and

hence is the same for all a; it is, in fact, the case which gave rise to

the spherical torsional waves treated earlier in this section. For the

higher values of m with which we are concerned here, we can see that as

a decreases from v/2, the zeros of Wm(0) must also decrease in order to

remain in O< G<a. We can invoke another theorem* of Sturm-Liouville

theory which states that the eigenvalues must increase for the zeros to

decrease. Thus, 17m > 2m+l for a < v/2.

Values of rm as a function of a and m were calculated (partly on a

Univac I and partly on an IBM 7090) for m = 1, 2, and 3, and for a vary-

ing from 10 to 90 degrees in steps of 10 degrees. The numerical method

used is outlined in Appendix B. The results are judged accurate to

within 1 or 2 in the fourth significant figure for m = 2 and 3, and accu-

rate to four decimal places (five or six significant figures) for m = 1.

We now derive an asymptotic formula for t7, valid for small a,

whose results we can compare with the results of the machine computa-

tions. First we define a new variable s = 0/a. Next we rewrite (4-27)

with s as the independent variable and note that because 0 is small, l/e

may be substituted for cot 0. This yields the equation

3,

W"(s) + 2 W (s) + a2(t7+ 2) (7- 1) W(s) = 0 , (4-48)

where the primes now denote differentiation with respect to s. The

boundary condition (4-29) becomes

* p. 454 of Ref. 14, cited on p. 12.
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W'(O) - W'(l) = 0 (4-49)

Equation (4-48) is of the same form as Eq. (4-5), and boundary

condition (4-49) is of the same form as (4-8). Equations (4-5) and

(4-8) led to cylindrical waves. We should not find this surprising; far

from the vertex, a cone of small included angle is hard to distinguish

from a cylinder. We can adapt the results of the treatment of Eq. (4-5)

and (4-8) in section 4.1.1 and apply them to the present case, obtaining

thus
3

a (77m+l2) (m 1) = 5.136, 8.417, .... (m+ )t, m- 1, 2, 3.....
(4-50)

Solving by completing the square, we have

5.136 2 9M- 1 (.84172 9' 1

% -- ( ) + -• ____ 2 9 1 (4-51)
ma 4 2 ae 2 4-1

The angle a is in radians in Eqs. (4-50) and (4-51).

Although Eq. (4-51) was derived using the assumption that a is

small, a comparison with the values of ?7 obtained numerically shows that

for a as great as.iT/2 Eq. (4-51) yields answers in error by not more than

4 percent in the worst case. This suggests the possibility of adding a

small correction term to the right-hand side of (4-51) to improve its

accuracy. For the case m=l, examination of the discrepancies between

the values tjm given by (4-51) and the more precise values given by the

IBM 7090 showed that this was indeed possible. The improved formula is

1 5.1356)2 I
5 + - (9 + 0.0984 sin a) , (4-52)

where a is in radians. Equation (4-52) is more accurate for small a

than large. ;The error in t7l is never more than 0.0015. This represents
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a fractional error of 0.05 percent for a = -/2 and the error would be

even smaller for smaller a. Presumably similar correction terms could

be found for higher values of m.

Having now a means for finding appropriate values for t7 in terms

of a, we need to find the values of k for which the r-dependent part of

S[as given by Eq. (5-41)] satisfies boundary condition (4-28). It is

possible to show that for the complete cone, the allowed values of k are

always greater than 7/b.40 The only way to get actual values for k

seems to be by a direct numerical attack.

The IBM 7090 of the Harvard Computing Center was programmed to

calculate kb as a function of a for the lowest compound mode of the com-

plete cone, using the numerical method described in Appendix B to

extract the eigenvalues directly from Eqs. (4-26) and (4-27) with their

respective boundary conditions (4-28) and (4-29). The computations were

performed for a ranging from 5 to 90 degrees in steps of 5 degrees. The

results are shown in Fig. 4-2. The lower spherical-wave modes (case 1

for spherical coordinates), which are of course independent of a, are

indicated for comparison.

An interesting feature of the compound modes for the complete cone

is that the vertex is a node of *. [This can be easily seen upon exami-

nation of the series expansion* of J( +•)(kr)/(kr)3/2, whose leading

term is (kr)-lo.] One normally expects an increase in the amplitude of

vibration toward the small end of a horn, and for the radial modes this

does occur. The compound modes, however, all have some wave motion in

40. Watson, G. N., Bessel Functions (Cambridge, 1944), p. 468.

* See, for example, p. 4 of ref 39 (Vol. II), cited on p. 92.
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the transverse direction, across the axis of the horn, and when the

transverse dimensions of the horn become comparable with or less than

a wavelength, such wave motion cannot be sustained.

4.2.2 Experimental verification

A cone, designated no. 15, was turned from mild (hot-rolled) steel;

its dimensions are a = 0.540 inch, b = 8.114 inches, a = 13.00 degrees.

The resonance frequencies of the first five spherical-wave modes lie

below 50 kc/s. These were measured and are compared in Table 4-3 with

predicted values based on Eq. (4-34). The value of c used in finding

the resonance frequencies from the roots of (4-34) was the average of

the five values calculated from the observed resonance frequencies for

these five modes.

Table 4-3

Comparison of the measured and predicted resonance frequencies
for radial modes of cone 15

Mode number Theoretical fn Experimental fn Exp fn
n kc/s kc/s Theor fn

1 14.425 14.417 0.99944

2 22.751 22.746 0.99978

3 30.828 30.826 0.99993

4 38.804 38.820 1.00041

5 46.793 46.814 1.00044

Although there is excellent agreement between the calculated and

measured frequencies, it is not an impressive as in the case of plane

torsional waves in a cylinder. The errors are probably due to inaccu-

racies in the machining of the cone and in the measurement of its
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dimensions. It is more difficult to determine accurately the dimensions

of a cone than the length of a cylinder whose ends are plane and parallel.

The standing-wave patterns as functions of r were measured for the

first two radial modes. The measured distributions are compared with

the predictions of Eq. (4-32) in Fig. 4-3. The agreement here is also

very good.

The ratio b/a for cone 15 is approximately 15; thus the cone is

close enough to complete so that we can estimate the frequency of the

lowest compound mode from Fig. 4-2 and Table 4-3. It is near 60 kc/s

and is therefore out of range of the experimental apparatus.

4.3 Conclusions

This chapter has served two purposes. First, we have found all

the interesting solutions to the exact torsional wave equation. These

solutions reveal that torsional waves in a horn of some particular

geometry behave very much like sound waves in air confined by boundaries

of the same geometry, except that the order of the characteristic func-

tions is typically one degree higher for the torsional waves. That is,

where sound waves in air would be described by a J 0 (kr) or J1/2(kr),

torsional waves are described by Jl(kr) and J 3 / 2 (kr), respectively.

Second, and probably more important, we have seen that the results

of experiments upon cylinders and cones agree very well with the predic-

tions of the mathematical analysis. We have then verified that the type

of motion predicted by small-signal elastic theory does exist.
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Chapter V

HORNS OF 'SMOOTH CONTOUR NOT FITTING SEPARABLE COORDfNkTES

5.1 Review of plane-wave horn theory

In Chapter II we derived an approximate wave equation based upon

the assumption that the wavefronts were plane and normal to the axis of

the horn (the z-axis of cylindrical coordinates). The Helmholtz form

of this plane-wave equation is

Is' (z) , k2

*"(z) + ' (z) + k*(z) - 0 (5-1)

where Is(z) is the polar moment of inertia of the cross section of the

horn and primes denote differentiation with respect to z, the argument

of. # and I . Solutions of (5-1) should be good approximations to the

true wave motion where the slope of the horn contour is small and where

the diameter is small compared with a wavelength.

As we noted in Chapter II, this equation is of exactly the same

form as the plane-wave horn equation for compressional waves in a fluid

or solid, except that the moment of the cross section appears in the

torsional-wave equation where the area appears in the compressional-wave

equation. Thus we could easily adapt the results obtained for compres-

sional horns by Webster,* Morse,** Mawardi,41 Beranek,42 Olson,***

* Ref. 3, cited on p. 1.

** pp. 265-88 of Ref. 17, cited on p. 17.

41. 0. K. Mawardi, Tech. Memo. No. 4, Acoustics Research Lab., Harvard
Univ., 1949; see also 0. K. Mawardi, J. Acoust. Soc. Am. 21 (1949),
p. 323.

42. Beranek, L. L., Acoustics (McGraw-Hill, New York, 1954), pp. 268-78.

pp. 100-15 of Ref. 19, cited on p. 23.
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Mason,* and others to the torsional-wave case. The Webster (compres-

sional-wave) horn equation has been solved for a wide variety of horn

shapes: cylindrical and conical horns, exponential and catenoidal horns,

the so-called Bessel horns (whose contours are powers of z), and others.

In this chapter we shall examine in detail only one type of horn contour,

the exponential, in an attempt to obtain a quantitative estimate of the

degree of approximation afforded by the solutions of the plane-wave

equation (5-1). Before moving on to the exponential horn, however, we

shall discuss the concept of torsional-wave impedance.

5.2 Torsional-wave impedance

In Chapter III an analogy was drawn between voltage and torque and

between current and angular velocity. A logical extension is the defini-

tion of impedance for torsional waves as the ratio of torque to angular

velocity. Assuming plane wavefronts, so that * is a function only of z,

we can write the torque4 3 transmitted through the plane z =z0 in the

direction of increasing z as

T = -p I(zo) '(Zo) - (5-2)

The angular velocity at the same point is jw*(zo), so that we have for

the torsional-wave impedance

z= - i Is(z 0 ) '(z°) jpc Is(zo) *'(zo) (5-3)
Jw*(Zo) k*(zo) )

where k = w/c and c 2 = p/p, as before. From Eq, (2-31) we can write Is(z)

* pp. 156-61 of Ref. 4, cited on p. 2.

43. McLachlan, N. W., Theory of Vibrations (Dover, New York, 1951),
p. 106.
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for solid, i.e., not hollow, horns in terms of the horn contour, R(z),

and obtain thus

jnpcR4 (zo) 4'(zO)

Z = 2k * (Zo) (5-4)

It will be instructive to find the driving-point impedance at the

end of a cylinder in the two cases where the cylinder is either semi-

infinite in extent or of length 1.

As we saw in Chapter IV, section 4.1, true plane waves can propa-

gate in a cylinder. Since the cross section is constant, the plane-wave

horn equation reduces to

S+ k2 0 (5-5)

which is just the same as the exact wave equation reduced to the special

case of plane waves, Eq. (4-6a). Suppose the cylinder is of radius a

and extends along the positive z-axis from z =0 to infinity. If we

drive at the end z= 0, the wave motion will be a single progressive wave

propagating in the direction of increasing z; that is, from Eq. (4-10),

* = A e-jkz (5-6)

Using this equation for * and performing the necessary differentia-

tion, we obtain for the driving-point impedance

Zin =fi a PC (5-7)

Thus the input impedance of the semi-infinite cylinder is resistive and

constant at all frequencies.
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If the cylinder extends only from z = 0 to z = 2, and the end at

z = X is free, then the angular displacement is

*= A cos k(A-z) , (5-8)

and the input impedance at the end of the finite cylinder is

Zin j 1 a 4 pc tanki . (5-9)2

This is purely reactive, as we should expect since we have made no pro-

visions for loss. We note that the input impedance is zero at the natu-

ral resonance frequencies of the cylinder [see Eq. (4-12)].

We can also find the input impedance of a conical horn of small

included angle using the results obtained in Chapter IV for spherical

torsional waves. Let the horn contour be R(z) = mz. The plane-wave

equation then becomes

•" + + k2 . (5-10)

Here we have the same equation as the exact wave equation reduced for the

case of spherical waves, except that the independent variable is now z,

(in cylindrical coordinates) instead of r (in spherical coordinates).

If the horn extends from z =a/m (so that the radius at the small end is

a) to infinity in the direction of increasing z, we know that if the

horn is driven at the end, the wave motion will be a progressive wave

traveling in the positive z-direction, just as was the case for the semi-

infinite cylinder. From (4-31) we have the angular displacement

A (1 + ekz ) (5-11)
(kz) 2 jkz
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From (5-4) and (5-11), we obtain the input impedance

Zin = • a4pc [ + + Jka (5-12)

±t1e
At high frequencies (large k) Ainput impedance approaches a pure

resistance Ira4pc, which is just the input impedance of the semi-infinite
2

cylinder of the same diameter as the small end of the cone.

These results for cylinder and cone are qualitatively very much the

same as those for compressional waves of the same geometry,* except

that the resistive component of the input impedance of the conical horn

decreases more rapidly with decreasing frequency for torsional than for

compressional waves.

The torsional-wave impedance defined here is akin to the mechani-

cal impedance (defined as the ratio of force to particle velocity)

often used in the analysis of compressional-wave horns. The specific

acoustic impedance (defined as the ratio of pressure to particle velocity),

which in a compressional-wave horn is the mechanical impedance divided by

the area of the cross section of the horn, is also frequently encountered.

We can define an analogous specific torsional impedance as the ratio of

stress to particle velocity in a torsional wave. A derivation similar

to that shown above [Eqs. (5-2) to (5-4)] yields the result that the

specific torsional impedance is just the torsional-wave impedance

divided by the moment of the cross section, Thus once again *the moment

of the cross section plays the same role for torsional horns as the area

does for compressional-wave horns.

* p. 238 of Ref. 17, cited on p. 17,
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Elsewhere in this report, the term impedance applied to torsional

waves always means the ratio of torque to angular velocity.

5.3 The exponential horn

5.3.1 The plane-wave equation and its solutions

Let the driven end of our exponential horn be at z= 0 and let its

radius be a. The horn contour is

R(z) = a eZ/2h (5-13)

where h, the flare constant, is the increase in z in which the cross-

sectional area of the horn increases by a factor of e. Using Eq, (2-31)

again to find Is in terms of R, we can readily obtain the plane-wave

equation for an exponential solid torsional horn:

+ "+Z ' + k = 0 . (5-14)

bz
By assuming a solution of the form * =e , we can verify that the

general solution to (5-14) is

e'z/h(A e]jPz + B e ) , (5-15)

where

p2 = k2 - (1/h) 2  (5-16)

For k 2 > (1/h) 2 , P is real and there is true wave propagation; A and B

represent the amplitude of waves propagating in the positive and nega-

tive z-directions, respectively. For k 2 < (1/h) 2 , P is imaginary, and

the angular displacement is in phase everywhere. (Note the mathematical

similarity to the propagation of compound modes in a cylinder, pp. 81-2.)
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There is, therefore, a cutoff frequency at which p=0, namely,

S= Ic/hl , (5-17)

below which there is no wave propagation.

If we take the horn to extend from z= 0 to infinity in the posi-

tive z-direction, the wave motion above the cutoff frequency will con-

sist of a single progressive wave traveling in the positive z-direction,

so that B=0 in (5-15). We can then find from (5-4) that the input

impedance for h> 0 (diameter increases with z) is

Vt 4 2/).' -
Zin = a pC . (wCe/ ) - Ywc/w)] w> wc (5-18)

At high frequencies, this impedance, like the input impedance of an infi-

nite conical horn, approaches the purely resistive input impedance of a

cylinder of the same end diameter. At zero frequency, the input imped-

ance must be zero (since no torque is required to maintain even an infi-

nite horn in uniform rotation). We therefore choose the appropriate

sign on the square root in (5-18) to fulfill this condition and obtain

the input impedance for frequencies far below the cutoff frequency:

Zin = -J PCa4pc(2-•) WAC (5-19)

If the horn diameter diminishes with z, h< 0, the input impedance

turns out to be just the complex conjugate of the impedance for h> 0.

Let us now consider the problem of reflections from a free end of

an exponential horn. Suppose the end at z =0 is free; then the incident

and reflected waves will have the same amplitude at the end (due to the

total reflection), which means A=B in (5-15). Thus we can write the
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angular displacement in the form

S= A e-z/h cos(Pz- r) , (5-20)

where we must now choose y so that 4'(0) = 0 (boundary condition at a

free end: normal derivative of * vanishes). Taking the derivative and

equating it to zero, we obtain

cot r = h3 = f (w/c) - I (W>W ) (5-21)

The magnitude of the phase shift on reflection depends only on the ratio

W/wc$ but the sign depends on the sign of h, i.e., on whether the end is

larger or smaller in diameter than the rest of the horn.

We see that the phase shifts due to reflections at the two ends of

a freely vibrating finite exponential horn just cancel, so that the natu-

ral frequencies must be those for which the length of the horn is an

integral number of half wavelengths at the phase velocity. That is,

nl = nt , n = 1, 2, 3, ... (5-22)

which can easily be solved for the natural frequencies with the aid of

(5-16) :

W = c[(nv/1)2 + (1/h)2]1/2 , n = 1, 2, 3, ... (5-23)

where I is the length of the horn.

The corresponding standing-wave patterns are of the form of (5-20),

where P and y are restricted to the values allowed by (5-21) and (5-22).

Since for the normal modes PI is an integral multiple of v, then

Icos(-'r)I = Icos(P'-r)I , (5-24)
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and we can see from (5-13) and (5-20) that the "gain" of the horn, the

ratio of the magnitudes of the angular displacement at the two ends, is

the same for all modes, namely,

G = e 1 /hl = (b/a) 2
, (5-25)

where b and a are the radii of the large and the small ends of the horn,

respectively.

Standing-wave patterns were measured for several exponential horns.

Some typical resul~n are presented in Fig. 5-1. The specimen horn in

this case was 18 inches in length and its end diameters were 1 and 4

inches. The agreement between theory and experiment is very good. It

thus appears that, within the limits of experimental error, the plane-

wave approximation is a valid means of predicting the standing-wave pat-

terns for an exponential horn of moderate flare and diameter.

5.3.2 Validity of the plane-wave approximation

Due to the limited accuracy with which standing-wave patterns can

be measured, their measurement is of little use in investigating the

accuracy of analytical results based on the plane-wave assumption.

Fig. 5-1 demonstrates this very well, Resonance frequencies, however,

can be very accurately measured. It was ststed in Chapter II that the

resonance frequencies predicted by using the plane-wave assumption can-

not be lower than the actual resonance frequencies. This fact provides

a means by which we can quantitatively estimate the error incurred by

assuming plane wavefronts.

We shall first define wavefronts a little more carefully than here-

tofore, and then attempt to deduce the qualitative behavior of waves
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propagating along a horn with progressively increasing flare such as an

exponential horn. Wavefronts can be taken to mean surfaces on which the

properties of the wave are constant, that is, surfaces where amplitude

and phase are the same everywhere. This is a very restrictive definition.

If such surfaces exist in a given horn, then a coordinate system could

be constructed in which these wavefront surfaces are coordinate surfaces.

The wave motion could then be exactly described as a function of only

one space coordinate. But in Chapter IV we saw that the only such one-

parameter waves are plane, cylindrical, and spherical waves. Thus in

the general case of a horn of arbitrary contour, there are no surfaces

on which the amplitude and phase of a progressive wave are both constant.

Suppose, however, that the slope of the contour does not change

much in a wavelength [R"(z) is small]. Then any piece of the horn

shorter than a wavelength will not look too different from a truncated

cone. We know that true one-parameter waves (spherical waves) can propa-

gate in a cone, and we therefore suspect that if the diameter is not

much greater than a wavelength, the wave motion in any small section of

the horn will not differ too much from the spherical waves which would

propagate in a cone of the same angle of flare. Thus it seems reason-

able to suppose that in horns meeting the geometrical conditions out-

lined above, there exist "wavefront" surfaces on which the amplitude and

the phase are reasonably constant, and that such surfaces are more or

less spherical so as to be normal to the surface of the horn (see Chap-

ter II for the boundary condition at a free surface).

Let us now consider reflections from the large end (assumed free)

of a typical horn (exponential, say); the horn is terminated in a plane

normal to the axis. This situation is depicted in Fig. 5-2.
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C

z

Fig. 5-2. Reflection from the large end of a horn. The end correction.

Surface A is the last "wavefront" contained within the horn; surface B

is the plane end of the horn. Since this discussion is restricted to

frequencies low enough so that the diameter is never large compared with

a wavelength, the "left-over" region bounded by surfaces A, B, and R(z)

will be much thinner than a wavelength. Being at the end of the horn,

it will vibrate essentially as a rigid body and could be replaced by any

other piece with the same moment of inertia, at least as far as the rest

of the horn is concerned. In particular, we could construct a "wavefront-

shaped" piece, terminating the horn in surface C. This "fits" the

assumed shape of the incident wave and, as can be seen from Fig. 5-2,

effectively lengthens the horn by an amount Al.

The same sort of argument can be employed at the small end of the

horn, resulting in a negative "end correction" (since the small end

should be slightly concave to fit the wavefront). The end correction at

the small end will of course be much smaller than that at the large end,

since the wavefronts are so much more nearly plane at the small end.
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If we could derive an approximate wave equation based on the

assumption that the amplitude and phase are constant on each of some set

of suitable curved surfaces (for an expon6ntial horn they are para-

bolic 44), we would expect that the resonance frequencies of a horn whose

end faces are plane would be very close to the frequencies predicted by

the approximate wave equation for a horn which is longer than the actual

horn by the end corrections.

In the case of the cone, we do not need an approximate wave equa-

tion since spherical waves are an exact solution. A cone was fabricated

with plane end faces and its resonance frequencies measured for the low-

est five modes. Except for the shape of the end faces, this cone, desig-

nated as no. 14, was essentially identical with cone 15, described in

Chapter IV. An "effective length" for this cone was defined as the

length of the cone (of the same included angle but terminated in spheri-

cal caps) which would have had the same resonance frequency. The effec-

tive length was calculated for each of the five modes and then the end

correction found by subtracting the physical length. These values are

compared in Table 5-1 with the end correction calculated from the geo-

metrical considerations of Fig. 5-2. The end correction calculated from

the resonance frequencies is reasonably constant for the different modes

and is in fairly good agreement with the end correction calculated from

the moment of inertia of the end slice bounded by A, B, and R(z) in Fig.

5-2. The physical length of cone 14 was 7.590 inches; thus, the discrep-

ancy in the corrections calculated in these two ways represents some 0.1

percent of the length. An error of only .002 inches in the measurement

44. J. Holtsmark, J. Lothe, S. Tjotta, and W. Romberg, Archiv for
Mathematik og Naturvidenskab 53, no. 8 (1955).
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Table 5-1

End correction for a cone

Mode no. Al, inches

1 0.140 Calculated from

2 0.142 the geometry,

3 0.143 AZ = 0.135 inches

4 0.146

5 0.148

average 0.144

of the diameter at the large end of the cone would waw+d cause this

discrepancy.

However, in general we do not have even an approximate wave equa-

tion based on curved wavefronts. Such an equation could presumably be

constructed for an arbitrary horn contour, though it would be tedious

and it would have to be done separately for each type of contour. We do

have Eq. (5-1), an approximate wave equation based on plane wavefronts,

and, as we have seen, it can be solved for a wide variety of contours.

We now hypothesize that the resonance frequencies of a freely vibrating

horn can be described by a frequency equation derived using the plane-

wave assumption if instead of the physical length of the horn we use an

effective length in this frequency equation. Because the resonance fre-

quencies predicted from the plane-wave assumption are upper bounds on

the actual resonance frequencies, we can see that the effective length

cannot be shorter than the physical length of the horn. In other words,

we assume that by modifying the input data of an admittedly approximate

equation, we can make the equation yield the correct answers.
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An experimental program was undertaken to verify this hypothesis.

Five exponential horns were made of mild (hot-rolled) steel. Their

lower resonance frequencies were carefully measured using the techniques

described in Chapter III. For each mode, an effective length was calcu-

lated by using the measured resonance frequency, shear-wave speed, and

the mode number with a frequency equation based on the plane-wave assump-

tion. Data are presented showing the constancy of the effective length

with frequency. Table 5-2 gives the identification numbers and nominal

dimensions of the experimental horns. (Note that the four physical

dimensions given are not independent. Any three would suffice to

describe an exponential horn completely.)

Table 5-2

Nominal dimensions in inches of experimental exponential horns

Horn Length SfualiI-End Radius Large-End Radius Flare Cons.tant
no. L a b h

16 18,000 0.125 2.000 3.246

17 9.000 0.125 0.500 3.246

18 9.000 0.500 2.000 3.246

19 9.000 0.125 2.000 1.623

22 18.000 0.500 2.000 6.492

The first seven resonance frequencies of the 9-inch horns and the

first fourteen resonance frequencies of the 18-inch horns fell within

the range of measurement (<50 kc/s). A calibration cylinder for deter-

mining the shear-wave speed was turned from each piece of stock used for

the exponential horns. After the resonance frequencies of the exponen-

tial horns and calibration cylinders were measured, the shear-wave speed
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was calculated and used with (5-23) and the nominal value of h to calcu-

late the effective length for each mode from its measured resonance fre-

quency. The results were far from encouraging. The effective lengths

as calculated showed a wide variation with frequency; worse yet, some

were shorter than the physical lengths of the horns, in one case by

nearly 1.5 inches. However, it was noted that the worst offenders were

horns 16, 17, and 19, which were more subject to large percentage errors

in their dimensions since they were of smaller diameter at their small

ends. Careful measurement of the end diameters and the actual lengths

of the five horns revealed departure from the nominal dimensions in the

right directions to account for the observed discrepancies. A means of

correcting the frequency equation to allow for machining error was then

sought.

The following sequence ofoperations takes place in the fabrication

of a specimen horn. A table of radius versus length at 0.2-inch inter-

vals along the horn is made up. Using this table, a step-wise approxi-
I

mation to the horn contour is milled into the edge of a - -inch sheet of
8

brass or aluminum. The steps are then filed down by hand until they just

disappear. The edge of this sheet or template is thus supposed to be

the horn contour. The template is then clamped in a tracing attachment

on a large lathe and a piece of stock, already roughed out to approximate

shape, is mounted between centers in the lathe. The feeler arm of the

tracing attachment moves along the edge of the template' erd guides the

cutting tool along a path parallel to it. On successive cuts the cut-

ting tool is moved toward the axis until the diameter at one end of the

horn is measured to be its designated value. The ends of the horn are

then faced off.
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The contour of the resulting horn can be in error even if the con-

tour of the template is perfect (an unlikely possibility). The cutting

tool might be set at the wrong distance from the axis, giving a constant

error in the horn radius, and the "axis" of the template (the line from

which the contoured edge of the template is measured) might not be paral-

lel to the axis of the lathe, giving a "conical error" in the finished

horn. Assuming no errors in the template, we can then write the actual

contour of the horn in the form

R(z) = a(ez/2h + mz + €)
~ ] (5-26)._a[e (m+ I/2h)z .+ el(5 26

where m and e are the error terms. We can write the second form where m

is essentially incorporated into a modified flare constant because m is

small. If we assume that the value of h has been adjusted to include

the effect of m, we have

R(z) = a(ez/2h + e) (5-27)

We shall use (5-27) to obtain a correction term to the frequency equa-

tion (5-23).

For a horn of contour (5-27), the plane-wave equation is

2 •

h(l+ ees/2h) ' + k2 # = 0 (5-28)

where the small end of the horn (radius a) is at z- 0 and the horn

extends to z -£ in the positive z-direction. This is very much like

(5-14), the plane-wave equation for a true exponential, except that the

flare "constant" is now a slowly varying function of z. Too the degree
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of accuracy contemplated here, we can assume that the solution of (5-28)

is of the form (5-15), where the propagation constant P is now a func-

tion of z found from (5-16) by using h(l+ e z/2h) instead of h. The

phase shifts due to reflections at the two ends z= 0 and z =1 as given

by (5-21) will no longer cancel since P is not constant.

We can find the resonance frequencies of our modified exponential

horn by noting that 0 is the rate of change of phase with distance. If

we integrate P over the length of the horn twice and include the phase

shift due to reflection at the ends, we will have "followed" a wave

through a complete circuit of the horn. Those frequencies for which the

total phase shift is an integral multiple of 2A will be the resonance

frequencies. We obtain thus

n -[-- --) , n = 1, 2, 3, .... (5-29)

where a and b are the radii of the small and large ends of the horn,

respectively. The first two terms within the brackets are the same as

those in Eq. (5-23); the third term incorporazes the correction for the

constant error in the radius, ca. By measuring a, b, and Z, we can cal-

culate e and h for use in (5-29).

Fig. 5-3 shows the effective lenith, le' versus frequency for the

five experimental horns. The effective length was calculated using

(5-29) with the measured resonance frequencies and physical dimensions.

The actual length of each horn is indicated for comparison. Also shown

is the mean of the effective lengths weighted by mode number. This

of
weighted mean was deemed a more reliable estimate length than the average.

Equation (5-29) shows that the effect of any error in the contour is
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less for the higher modes than for the lower. For large n, the first

term within the brackets dominates, and this term depends only on the

length of the horn and the mode number. The variation of Ie shown in

Fig. 5-3 also shows that the higher modes give a more consistent esti-

mate of effective length.

Fig. 5-3 also indicates that there probably are errors in the dimen-

sions of the horns beyond those corrected in Eq. (5-29). The effective

lengths for the first mode of horn 16 and for the second .mode of horn 17

are less than the physical lengths of these horns. Nevertheless, it is

clear from Fig. 5-3 that the concept of effective length is a useful one

for the investigation of the accuracy of the plane-wave assumption. The

horns with smaller flare angles (nos. 17 and 22) have effective lengths

closer to their physical lengths than horns of more pronounced flare

(nos. 16, 18, and 19), thus indicating a closer agreement with plane-

wave theory, as expected.

Having demonstrated the existence of an "end correction" for tor-

sional horns, we would now like to know in what way it depends on the

parameters of the horn. We expect (from Fig. 5-2) that the end correc-

tion is a larger percentage of the radius of the end for horns of large

flare angle than for horns of small flare angle. The simplest assumption

we can make is that the end correction is directly proportional to the

radius of the end and to the slope of the contour at the end. Let us now

see how well the experimental data on exponential horns can be described

under this assumption.

Differentiating (5-13) to find the slope of the contour of an expo-

nential horn, we have

R'(z) =2eZ/2h 1 (5-30)2 Th- 5-0
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If the radius of the large end is b, then we have hypothesized that the

end correction there is proportional to b 2 /2h. The end correction at the

small end (where the radius is a) is similar but negative as discussed

above on p. 114. We wish, then, to find out if the effective length for

a finite exponential horn exceeds the physical length by

I I Al - b2 - a 2  (5-31)
e 2h

In Fig. 5-4, Al (from the weighted mean of the individual le's) is

plotted against (b2-a 2 )/2h for the five horns tested. The vertical bars

mark off :l standard deviation. A straight line can be drawn through the

origin which passes within one standard deviation of the mean effective

length for all five horns. The slope of this line is approximately 0.2

(note the difference in vertical and horizontal scales), so that

AA 02b 2 
- a 2

At _ 0.2 2_--h-(5-32)

In this chapter we have sought and found a measurable discrepancy

between the predictions of resonance frequencies by plane-wave horn

theory and the observed behavior of torsional horns. We have inter-

preted the discrepancy in terms of an effective length which gives a bet-

ter fit between the plane-wave predictions and the observed facts. Since

errors in the radius of a horn of a few thousandths of an inch were

found to cause substantially greater change in the resonance frequencies

than the departure from plane wavefronts, the use of a length correction

[such as Eq. (5-32) for exponential horns] in the prediction of resonance

frequencies will not offer any improvement over the plane-wave theory

unless machining errors can be reduced by an order of magnitude.
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Fig. 5-4. Dependence of length correction upon horn
dimensions for exponential horns. The
weighted mean and standard deviation are
taken from Fig. 5-3.



Chapter VI

HORNS OF PIECE WISE-SMOOTH CONTOUR

6.1 General remarks

We can consider standing waves on a finite (lossless) horn in free

vibration to be composed of two progressive waves traveling in opposite

directions. The two progressive waves are necessarily of equal intensity

at any given point so that there is no net energy flow in either direc-

tion. We have hitherto discussed horns wherein these progressive waves

are reflected only at the boundaries. For axially propagating waves,

the directed energy flux due to one of the progressive waves is then the

same through any cross section, since all the energy in the wave travels

the full length of the horn. The introduction of a discontinuity in the

horn contour or its, slope, however, permits partial reflection from an

internal point. The energy stored in the progressive waves need not be

uniformly distributed over the length of the horn.

We can readily extend the appropriate methods of Chapter V to the

analysis of piecewise-smooth horns. Within each section of the horn,

the wave motion can be found from the wave equation suitable for the con-

tour of that section. The differences in the solution are the result of

the different boundary conditions: one or both ends are not free but are

joined to other sections of the same horn. We can easily see what condi-

tions are to be satisfied at an internal boundary. The angular displace-

ment must be continuous or the horn would fracture, and by Newton's

third law, the torque must be continuous since each section must exert

an equal and opposite torque on the other.
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A plane-wave solution found in this way will not in general satisfy

the boundary condition for a free surface along the side of the horn,

particularly in the vicinity of a discontinuity (infinite slope of con-

tour), but we should expect that it would adequately describe the gross

features of the vibration. Just as with the plane-wave approximation

for smooth horns, the resonance frequencies calculated for piecewise-

smooth horns will be upper bounds on the actual resonance frequencies,

since constraining the wave motion to be a function only of distance

along the horn is equivalent to stiffening the horn material internally

to make the wavefronts plane.

6.2 Coupled cylinders

The experimental investigation of non-smooth horns was restricted

to coupled cylinders of different diameters. These were easy to make

accurately, and their modes of vibration display those features noted

above not found in smooth horns. Furthermore, the plane-wave solution

within each section is an exact solution in this case.

6.2.1 The double cylinder

Suppose we have two coupled cylinders of lengths 11 and 12 and

radii R and R2 , respectively, such that R <R2. Let the axis of this

double cylinder coincide with the positive z-axis of a system of cylin-

drical coordinates and let the smaller end be at z=0. Arbitrarily

choosing the amplitude of the angular displacement at the small end to

be unity (the same normalization we have previously employed), and

assuming that only the plane-wave mode of vibration exists in each

cylindrical part, we can write the standing-wave pattern for free vibra-

tions:
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cos kz , <_ _ '( )

Bcosk(L-z) , 21 _Z<L =1 + 2

where k is the wave number, B is the amplitude in section 2, and L is

the total length of the horn. Continuity of angular displacement at the

step gives us

cos kI = B cos kA2 (6-2)

and continuity of torque gives [using Eq. (5-2)]

sin k11 = -B (R 2 / 1 )4 sin k22  (6-3)

Dividing (6-3) by (6-2) to eliminate B, we obtain the frequency equations

tan kY1 + (R 2/Rl) 4 tan kY2 0 , cos k9 • 0 , (6-4a)

or

cos kI = 0 . (6-4b)

Having solved (6-4) for the values of k, we can find the corresponding

values of B from (6-2) or (6-3).

The case II = Y2 =L/2 is of particular interest. It can be seen by

inspection of (6-4) that the resonance frequencies are the same as those

of the uniform cylinder of the same over-all length, L:

knL = n;

or
nitc

n= n = 1, 2, 3 (6-5)6n L '' ' ' . .

For the odd modes, (6-2) vanishes identically, and (6-3) gives

B=-R1 / R2) 4 n = 1, 3, 5, 7, (6-6)
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For the even modes, (6-3) vanishes, and (6-2) gives

B = 1 , n = 2, 4, 6, 8, (6-7)

The gain of the horn is Il/B!, or (R 2 /RI) 4 for the odd modes and

unity for the even modes. It should be noted that for the same end

diameters the gain of an exponential torsional horn is (R 2 /RI) 2 for all

modes.

In its fundamental mode' of vibration, this type of horn is known

as "double quarter-wave" for obvious reasons. It is widely used for the

longitudinal vibrators used in commercial ultrasonic machining devices.

It has the advantage of greater ease of manufacture and greater gain

than an exponential horn of the same end diameters (or, alternatively,

greater lateral stiffness for a given gain due to its greater thickness).

A disadvantage is that the stress has a relatively large peak at the

step which limits the maximum tip velocity attainable before the elastic

limit of the horn material is exceeded. A torsional double quarter-wave

horn has been used experimentally for ultrasonic welding.*

Three double cylinders were constructed and investigated experi-

mentally; Table 6-1 gives their dimensions as well as a comparison of

the measured and theoretical gains for the first two modes of each. The

measured gains agree with the predicted values within the precision of

measurement.

The first twenty resonance frequencies for each horn were measured

and compared with values predicted from the resonance frequencies of a

calibration cylinder cut from the same piece of stock. The observed

* Personal communication from Mr. E. A. Neppiras, Mullard Laboratories,
England. See also Ref. 6, citeed on p. 2.
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Table 6-1

Properties of double-cylindrical horns

For all horns: R2 = 0.500 inches, A1 = A2 = L/2 = 9.000 inches

Horn no. RI, inches Mode no. Measured Gain Theoretical Gain

2 0.325 1 85.2 89.6
2 0.952 1

31) 0.500 1 15.7 16.0
2 0.975 1

31 0.700 1 4.23 4.16
2 1.02 1

resonance frequencies for the even modes were in good agreement with the

theoretical frequencies from Eq. (6-5). The odd resonance frequencies

were found to be very nearly in the ratios 1:3:5: etc., but were a con-

stant percentage lower than the theoretical values: 2.4 percent for

horn 2:, 2.0 percent for horn 30, and 1.7 percent for horn 31.

This behavior is not too surprising. It can be explained by refer-

ence to Fig. 6.1. For arbitrary values of k and B, 4 as given by (6-1)

satisfies everywhere except at the step the boundary condition that the

normal derivative of * vanish at the surface. Values of k and B are

found which insure the continuity of torque and angular displacement

across S2 without regard to the fact that the normal derivative of

.~ vanish on the annular ring S, since it is a free surface. For all

the even modes, however, there is an antinode of * at the step so that

V' = dd, the normal derivative on SI, does vanish. The plane-wave

solution for the even modes is then the exact solution since it satis-

fies the exact wave equation and boundary conditions everywhere.
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S2 
S I

Fig. 6-1. The junction of two coupled cylinders.

All the odd modes have a node of * at the step and consequently

the plane-wave solution does not satisfy the boundary condition there.

However, since Mother Nature always sees to it that the boundary condi-

tions are satisfied, there must be compound modes at the step which

"11patch up" the solution there. The frequency range of these measure-

ments is well below the cutoff frequencies for the compound modes; hence,

these modes do not propagate but die away exponentially with distance

(see Chapter IV, section 4.1.1). Thus the presence of these modes will

not appreciably affect the gross features of the standing-wave patterns

(such as the gain) but will alter the resonance frequencies since these

compound modes will change the energy distribution.

The observed fact that the odd resonance frequencies are a fixed

percentage lower than predicted while the even resonance frequencies

show good agreement with theory cannot continue to hold indefinitely for

higher and higher modes since it would eventually lead to the result

that an odd mode had a lower resonance frequency than the next lower

even mode. The pattern of resonance frequencies must change, therefore,



at frequencies high enough so that the wavelength is comparable to the

diameter of the horn, i.e., near or in the range of the cutoff frequen-

cies for the compound modes. The influence of the compound modes would

then not be restricted to the immediate vicinity of the step.

6.2.2 The triple cylinder

Let us now consider the triple cylinder: three cylindrical sec-

tions of lengths 11, .9 V and 1 3 and radii RV R 2 , and R 3 , respectively.

Let us take L = I I + .9 2 +YI 3 and choose *(0) =1. If, as before, the small

end of the horn is at z =0 and the axis of the horn coincides with the

positive z-axis, we can write

cos kz 0 < z <

B cos ( kz - p) 1 (6-8)
2 1:5 z < '81+12

B 3 cos k(L - z) I 1 +1 2< z<L

where the four constants k, p, B 25 and B 3 must be determined by the con-

tinuity of torque and angular displacement at the two internal boundaries

Z = 1 1 and z = I 1 +1 2'

The continuity of angular displacement gives

cos kA I = B 2 cos(ki l_ P) (6-9)

and

B 2 cos[k(,g 1 +'8 2 p] = B 3 cos kY, 3 (6-10)

The continuity of torque gives

R 1 4 sin kh = B 2 R 2 4 sin(ki l_ P) (6-11)

and

-B A 4 sin[k(I 1 +1 2 ) -p] =.B 3R3 4 sin ki 3 (6-12)
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We can divide (6-11) by (6-9) and (6-12) by (6-10) to obtain two equa-

tions from which B2 and B3 have been eliminated. Solving these two

equations for tan(ki 1 -p) and equating the resulting two expressions, we

obtain the frequency equation

RI4 tan kYI + R24 tan k+1 + 4 tan kg = tan k1 tank2 tankY3
11 2 k 2 +R 3  tak 3 =L J 1 2 k 3

(6-13)

Once we have found k from (6-13), we can retrace our steps and ,,c-v-

sequentially for p, B2 , and B3 '

if 12 is one-quarter wavelength, and RIR =R 2 2, so that the imped-

ance in the second section is the geometric mean of the impedances of

the end sections, we have the well-known quarter-wave matching section.*

Under these conditions, there is no net reflection of a wave impinging

on the quarter-wave section.

Five horns were built to test the operation of a quarter-wave

matching section. The dimensions were chosen so that each horn was just

one wavelength long at its second resonance. The matching section was

made one-quarter of the total length. If there is no net internal

reflection by the matching section, then conditions at the ends, in

particular the gain, should not be affected by changes in the position

of the matching section along the horn. The gain was therefore chosen

as a useful index of the performance of the matching section as it was

moved from one end of the horn to the other. Table 6-2 gives the dimen-

sions and a comparison of the measured gain and the theoretical gain.

Since in this mode of vibration the energy reflected from the two

ends is the same, we can use the torsional-wave impedance of a cylinder

* p. 120 of Ref. 19, cited on p. 23.
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Table 6-2

Properties of horns for testing quarter-wave matching section

For all horns: R1 = 0.250, R2 = 0.500, R = 1.000, Y2 = 4.50 inches

Horn no, 1I (inches) 13 (inches) Measured Gain Theoretical Gain

8 13.50 0 15.1 16

9 9.00 4.50 16.1 16

10 6.75 6.75 17.3 16

11 4.50 9.00 16.0 16

12 0 13.50 16.4 16

to find that the gain should be (R 3 /RI) 2
, the same as ma" --if an ei~xponen-

tial horn of the same end diameters.

There is reasonable agreement between theory and experiment.

Since the operation of a quarter-wave matching section depends on mul-

tiple reflections canceling each other, it seems likely that small inac-

curacies in the dimensions of these horns could have a more pronounced

effect on the wave transmission than comparable machining errors in,

say, an exponential horn.

We have in this chapter examined the effects of a discontinuous

contour upon the transmission of torsional waves. Discrepancies between

experimental data and theoretical predictions based on a simplified

analysis have been explained in terms of coupling to more complicated

modes at the boundary. Finally, we have tested the operation of a

torsional-wave analog of the quarter-wave matching section often used to

couple two uniform transmission lines of different impedance.



Chapter VII

SUMMARY AND CONCLUSIONS

7.1 Results of the present investigation

The work reported here has been an attempt to develop the theory

of the propagation"of torsional waves in solid horns and to verify

experimentally the adequacy of the theoretical description of torsional'

wave motion.

The theoretical analysis assumes that the horns are made of a loss-

less, homogeneous, isotropic elastic material. Experimental horns were

made of brass and mild steel, materials which have low internal losses

and whose elastic properties are sensibly homogeneous and isotropic in

the frequency range of the experimental apparatus.

The mathematical tools needed for the analytic study of torsional

horns are derived in Chapter II. These consist of two differential

equations and their associated boundary conditions. One of these wave

equations is "exact," but cannot be readily solved except for cylindri-

cal and conical horns. The other wave equation is approximate since it

is assumed at the outset that the wavefronts are plane cross sections of

the horn, a circxhmstance which is not generally true. This equation,

not surprisingly, is very similar, to the plane-wave horn equation often

used in the analysis of horns for compressional waves in a fluid or a

solid, and, like the compressional wave equation, it can be solved for a

wide variety of horn contours. The boundary condition at a free surface

for use with either wave equation is that the normal derivative of the

angular displacement must vanish there.
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The apparatus and techniques used for the experimental study of

torsional horns form the subject matter of Chapter III. It was found

desirable to measure resonance frequencies and standing-wave patterns

at resonance of finite horns, and thus to simulate the normal modes of

vibration of a freely vibrating lossless horn.

Standing-wave patterns are measured by maintaining the specimen

horn in steady vibration at one of its natural resonance frequencies, by

power supplied by an eddy-current driver, and then comparing the ampli-

tude of vibration at measurement points on the surface of the born to

the amplitude at a fixed reference point. Two conventional phonograph

pickups are used to sense the vibration of the horn: a reference pickup

fixed near one end of the horn and a traveling pickup which can be

placed in contact with any point along the horn contour.

Resonance frequencies are found by varying the frequency of exci-

tation and noting those frequencies at which the amplitude of vibration

of the horn is a maximum. An electronic counter is used for precise

measurement of the frequencies.

The eddy-current driver is a form of induction motor designed for

the excitation of-torsional horns. It exerts an oscillating torque on

the specimen horn, without being mechanically connected to the horn, at

frequencies which are the sum and difference of the two frequencies at

which the drive coils are energized. An approximate analysis of the

driver indicates that it should exert about twice the torque on a fer-

rous specimen horn that it exerts on a nonferrous horn, all other things

being equal. This was tested experimentally and found to be very nearly

correct. The results of the experiment are presented in tabular form in

Chapter III.
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The definition of torsional waves, in Chapter III, as rotatidnally

symmetric shear waves led to the restriction that the boundary of a tor-

sional horn be a surface of revolution. Thus torsional horns can be

classified by their profile contours. It was found convenient to divide

horn contours into three categories: smooth contours fitting separable

coordinates, smooth contours not fitting separable coordinates, and

piecewise-smooth contours characterized by one or more points of discon-

tinuity in the contour or its slope. Chapters IV, V, and VI are devoted

to selected horns of these three types, respectively.

In Chapter IV the exact wave equation is separated and solved for

the normal modes of cylinders and cones. Experimental data in the form

of resonance frequencies and-standing-wave patterns are presented

throughout the chapter in graphical and tabular form and are compared

with theoretical predictions. The agreement between theory and experi-

ment is very good to excellent in all cases. Thus the exact wave equa-

tion provides a good description of the behavior of real torsional waves.

Chapter V deals with plane-wave horn theory. The concept of imped-

ance for torsional waves is presented and the driving point impedances

of infinite cones, cylinders, and exponential horns are worked out and

compared. The impedance is found to vary as the fourth power of the

radius, which can be compared with variation as the square'of the radius

for the analogous mechanical impedance in compressiongl-wave horns. The

exponential horn is singled out for close scrutiny to determine quantita-

tively the errors incurred by use of the plane-wave assumption. Measure-

ments on a family of five exponential horns revealed that solutions of

the plane-wave equation agreed with the observed standing-wave patterns

within the-experimental precision. The predicted resonance frequencies
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were noticeably different from those measured, however, although the

discrepancy is small. The frequency equation derived by use of the plane-

wave assumption can be modified to provide a more accurate description

of the observed facts. The modification consists of 'replacing the physi-

cal length of the horn by an effective length which incorporates a cor-

rection due to the non-infinitesimal flare angle of the horn. The length

correction at each end of the horn is shown to be approximately propor-

tional to the product of the slope of the contour and the radius at that

end. However, it was found that the variation in resonance frequencies

produced by relatively small machining errors far outweighs the change

due to the use of the effective length rather than the physical length.

The concept of effective length is thus not of great utility in predict-

ing resonance frequencies, and the plane-wave horn theory in practice

provides an adequate description of the behavior of exponential horns of

moderate flare and radius.

The introduction of a discontinuity in the horn contour or its

slope can cause partial reflections of progressive waves from an inter-

nal point of the horn. A study of the effect of a discontinuity in con-

tour forms 'the subject of Chapter VI. The plane-wave analysis of Chapter

V is extended to piecewise-smooth horns by imposing the requirements

that torque and angular displacement be continuous across a disconti-

nuity in the contour or its derivative. The results obtained in this

manner are compared with experimental results for double and triple

cylinders. The error in the resonance frequencies predicted by plane-

wave theory is found to be worst when'the step in contour occurs at a

node of angular displacement. This behavior is qualitatively explained

in terms of mode conversion at the step.
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7.2 The future

We have seen that tapered solid rods excited torsionally do indeed

display the characteristics commonly associated with compressional-wave

horns. The methods of analysis developed for compressional waves have

been successfully adapted to torsional horns. In particular, the simpli-

fying assumption of plane wavefronts has provided a means for analyzing

a wide variety of horn contours. We have seen that the accuracy of the

solution thus obtained is good enough so that other factors-- machining

errors and temperature variation-- produce errors of at least the same

order of magnitude as the errors introduced by the plane-wave assumption.

It thus appears that the problem of analysis of torsional horns has been

satisfactorily solved.

The problem of synthesis still remains. Suppose we are given a

set of specifications for gain and/or resonance frequencies and/or

driving-point impedance, how can we synthesize the dimensions of a horn

which will fill the specifications? If, as seems likely, the synthesis

is not unique, how can we decide which of all the solutions is the best?

It would appear that the techniques of electric-circuit synthesis could

probably be adapted to some aspects of the design of distributed systems

such as horns for guiding mechanical energy in one form or another. The

digital computer has found application in the optical industry for the

design of lens systems. Its use for the design of acoustic devices

appears to be an interesting possibility.

Another possible extension of solid-horn theory would be to con-

sider the simultaneous use of two different types of vibration (such as

torsional and longitudinal) to produce particle displacement in three

dimensions instead of in a plane or a line. Such a complex motion could
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prove very useful in certain types of ultrasonic machining. Torsional

horns as such would probably be'limited in application to ultrasonic

spot welding or polishing and burnishing. The design of a horn to

satisfy the requirement that a longitudinal resonance and a torsional

resonance occur at the same frequency would be an interesting problem.

It is the author's hope that the work described in this report can

provide a useful starting point for attack upon problems such as these.



Appendix A

SEPARABLE COORDINATE SYSTEMS NOT PERMITTING ONE-PARAMETER SOLUTIONS

In addition to the cylindrical and spherical coordinates discussed

in Chapter IV, there are three more separable coordinate systems with

rotational symmetry. These are parabolic, prolate spheroidal, and oblate

spheroidal coordinates.

In all three systems, p is the azimuth angle and hence does not

appear in the differential equations for *, since * is not a function of

cp. First we tabulate for the three coordinate systems the differential

line element, ds (in terms of the scale faqtors and differentials of the

coordinat.eR), the torsional wave equation, and the two ordinary differen-

tial equations into which it separates; then we show that none of these

three systems possesses a one-parameter solution for 4. As usual, k=w/c.

Parabolic coordinates: (v,w,cp)

ds 2 = (v 2 + W2 )(dv2 + dw2 ) + v2w2dq, 2  (A-l)

The torsional wave equation for * is

+ v+ +w + k2 (v 2 + w2 ) =0. (A-2)

If 4 = V(v) W(w), we obtain the following separated ordinary differential

equations, wherein X is a separation constant:

d2V .3 dV 2
d+' + (kv 2 ) V = 0 (A-3)
dv2  V dv

d2W + w -~w + (kw2 +X) W = 0 (A-4)dw2 wd
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Prolate spheroidal coordinates: (p,e,cp)

ds2 = D2(cosh2 cosp2)(dp2 + de 2) + D 2sinh 2p sin 2edP2  (A-5)

D is a shape parameter with the dimens.ions of length.

The torsionalwave equation for * is

+ +3coth 4+ to + 3 cot 0 *9 + (kD) 2 (cosh2 Cos 0) 0.
(A-6)

If j - V(p) w(e), we obtain the following separated equations:

d 2V dV + k coh•2 V 0

dP2 + 3coth p [(kD cosh + - (A-7)

d2 W 
2c r• -2

-dW3cot - [(kD cose) -xW =0 (A-8)
dO2 dede2

Oblate spheroidal coordinates: (p,8,cp)

ds2 = D2(sinh 2p + cos 2)(dp2 + dO ) + D 2cosh 2 sin 2 dy2 (A-9)

D is again a shape parameter.

The torsional wave equation for * is

t + 3 tanh + *Oe + 3 cot e *e + (kD) 2(sinh 2+cos 28) * = 0

(A-10)

If * = V(p) W(e), we obtain the following separated equations:

d 2 V+ 3t pdV [(kD sinh p)j2 _ ]V =0 (A-11)

du2

d 2W W 2 o o-+ 3cot e + EI(kD cos e) 2 + ]W = 0 (A-12)

de 2 de
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Both prolate and oblate spheroidal coordinates approach spherical

coordinates as D--> 0.

It is now easily seen that none of these three systems allows a

one-parameter solution for *. Such a solution would require that either

V or W equal a (nonzero) constant. Bearing in mind that k and X are

constants and not functions of position, we see from examination of

Eqs. (A-3), (A-4), (A-7), (A-8), (A-11), and (A-12) that unless both k

and X are zero, none of these equations is satisfied by a constant. The

case k = 0 is a degenerate situation in which the only motion of the

horn is continuous rigid-body rotation. Therefore, there are no one-

parameter solutions.



Appendix B

NUMERICAL CALCULATION OF EIGENVALUES

In Chapter IV, numerical data calculated with the aid of the pro-

grammed digital computer were presented in graphical form. It is the

purpose of this appendix to indicate the major features of the numerical

analysis involved.

The problem was to find the resonance frequencies of the compound

modes of a cone, or, in mathematical terms, to find the eigenvalues of a

differential-equation-plus-boundary-conditions system. The differential

equation in question is Eq. (4-24) and its associated boundary condi-

tions (4-28), which are

V"(r) + A V'(r) + -2 V(r) = 0 (B-l)

and

V'(a) = V'(b) = 0 (B-2)

where k =w/c, the wave number, is the eigenvalue to bb determined, and

X is itself the eigenvalue of Eq. (4-27) and its boundary conditions

(4-29), namely,

W"(e) + 3 cot W'(0)- + %W(O) = 0 (B-3)

and

W'(O) = W'(a) = 0 (B-4)

The cone is bounded by r=a at the small end, r=b at the large end, and

e = a along the sides. In order to keep in touch with the notation of

Chapter IV, we should note that % is an abbreviation for (17 +2)(7- 1).
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In order to find the proper values of X, and hence 17, from Eqs. (B-3)

and (B-4), the continuous domain 0< q<ca was replaced by the N+ I points

0i = ia/N, i = 0, 1, 2, ... , N. The differential equation was replaced

by a difference equation obtained by approximating the derivatives with

the three-point difference formulas

w'(e) ~ Wi+I- WiI
W10(i) a 2h + R , (B-5)

and
WiI- 2Wi W.

W' (0i) = Will = 2  + R2 (B-6)h2

where Wi = Wei), h a a/N = mesh spacing, and the remainder terms R and

R, which are neglected in the formation of the difference equation, are

both 4 5 of the order of h2 . The fact that R1 and R are of order h2 will

prove useful later.

The approximating difference equation is

(1-- h cot 0i) W + (%h2 -2) Wi + (I+- h cot 8i) Wi 0 (B-7)
2 i i-l 2 1 i+l

and the boundary conditions (B-4), using difference formula (B-5), become

W-1 = W+1  and WN-1 = WN+I (B-8)

We now have a difference equation and boundary conditions whose solution

will be a good approximation to the solution of (B-3) and (B-4) if h is

small.

If the boundary conditions (B-8) are used to eliminate the W.I and

W N+ terms from the difference equation (B-7) for i = 0 and i = N, respec-

45. Kunz, K. S., Numerical Analysis (McGraw-Hill, New York, 1957),
Chapters 4 and 7.
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tively, then the set of equations represented by Eq. (B-7) may be con-

veniently cast in the matrix form

B C 0 ....... 0 W0 0

A1  B CI 0 ..... 0 WI 0

0 A2 B C2 0 . . . 0 W2

00 0 (B-9)

0 ..... 0 N1 B C WN_

0 ........ 0 AN B I WN 0

3 2where A, 1 - t n cot 61, i=l, 2, 3, .o., N-i, and AN=2, B=Xh -2,

3
and Di = 1 + h cot ei, i=l, 2, 3, ... , N-i, and C = 2.

2

Now we have a set of linear, homogeneous, simultaneous equations

which can have a nontrivial solution only if the determinant of their

coefficients vanishes. It is now apparent that we seek those values of

X for which the determinant of the square matrix in (B-9) will vanish.

We should note that the determinant is a polynomial of degree N +1 in B

and hence will vanish for at most N +1 different values of X, whereas

the original differential equation has an infinite number of eigenvalues.

The process of substituting the difference equation for the differential

equation is physically equivalent to substituting a lumped mechanical

system with N+ 1 degrees of freedom for the (continuously distributed)

cone. Since we expect the lumped mechanical system to be a good approxi-

mation to the cone only for wave-lengths. "sufficiently greater than a

lump," so also we should expect that the roots of the determinant will
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provide much better approximations to the lower eigenvalues of the dif-

ferential equation than to the higher ones.

Examining the form of the determinant, we see that it is "tri-

diagonal"; that is, the only nonzero terms are on the diagonal and

immediately adjacent to it on either side. This is a direct consequence

of our use of three-point approximations to the derivatives in setting

up the difference equation. A tri-diagonal determinant is quite easy to

evaluate. Denoting by Di the ith upper left-hand principal minor, we

can expand in minors of the ith row or column and obtain

D. B D A CiD (B-10)

Starting with DO = B and DI = B2 - A CO$ we can ap-ply (B-10) repeatedly

until we obtain DN, the value of the whole determinant. This procedure

can be readily adapted to machine calculation.

The errors in the calculated eigenvalues arise from two sources.

The first is the fact that the roots of the determinant are not exactly

equal to the eigenvalues of the differential equation for finite N. The

second is roundoff error in the computer, which limits the accuracy

attainable in finding the roots of the determinant. The first type of

error can be made as small as desired by increasing N; the second, how-

ever, increases as N increases. Therefore, there is some optimum value

of N for which the accuracy is the greatest. This can be determined

experimentally by calculating one or more eigenvalues for various

values of N.
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An IBM 7090 was the computer used for most of the calculations.

The optimum value of N was empirically found to be approximately 100.

The values of the eigenvalue 77 (reminder: X -72 + 7 - 2) were found with

an accuracy of three to four significant figures for N =100. However,

it was possible to gain about two more significant figures in accuracy

by estimating the error and introducing a correction. It was noted

above that the remainder terms in (B-5) and (B-6), the difference-formula

approximations to the first and second derivatives, were both of order

h2. We might suspect that the error in the calculated eigenvalues would

then also be of order h2. Assuming this to be true, we could then cal-

culate an eigenvalue for two different values of h (i.e., two values of

N), plot eigenvalue versus h, and construct a parabola through these two

points which would cross the h-axis normally and at a much more accurate

estimate of the eigenvalue.

This procedure is very difficult to justify on other than empirical

grounds. It was tried in cases for which the answers were known, using

N = 50 and N = 100, and it yielded an improvement in accuracy of approxi-

mately a factor of 100 over N - 50, with an increase of only a factor of

three in computer time used. It was therefore incorporated as a feature

of the program.

Exactly the same method was used to find the eigenvalue k in

Eq. (B-l), except that a new dependent variable G(r) = rI-r V(r) was

introduced to avoid difficulties at the origin r = 0 due to the singu-

larity there, This transformation gives the differential equation

G"(r) + 2( +l) G'(r) + k2 G(r) = 0 . (B-11)
r
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The boundary conditions on G(r) are now mixed:

1 1) G(b) + bG'(b) = 0

and

(1- 1 ) G(a) +aG'(a) = 0 , a A 0

or

G'(0) = 0 , a = 0. (B-12)

The problem was normalized in such a way that the number calculated was

the dimensionless product k(b - a) = kU. The parabolic error-estimating

scheme described above was found to work here, also.

The results of these computations are presented as Fig. 4-2,

Chapter IV.
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