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ABSTRACT

In this report, expressions are derived for the response of simple
vibrating systems, from which criteria have been deducted to indicate the
effectiveness of a damping treatment in attenuating the response. The
criteria include factors by which the treatment increases the mass and
stiffness of the system, together with the loss factor increment. The
response quantities considered include bending stresses, accelgrations.
inertia forces and sound tragsmission assoéiated with cimple vibrating
plates under harmmonic and random excitation. Coincidence sound transmission
i3 also briefly considered, It is shown that whereas the mass and loss
factor increase is always advantegeous, a stiffness increase in some
instances is detrimental.

As an example, three different commercial treatments are compared on
the basis of some of the criteria. With low treatment weights, the
treatment providing the highest loss factor is superior judged by each
criterion, but at bigher welghts according to some criteria a treatment
having a lower stiffness, density and loss factor is more effective. The
existence of optimum treatment weights for maximum effect upon the response

is also shown by some criteria.
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1.IST OF SYMBOLS

flexural stiffness per unit width of untreated plate
speed of sound in medium surrounding plate

constants associated with the pressure distribution: due to
boundary layer turbulence

initial viscous damping coefficient
critical viscous damping coefficient of untreated system
random generalized force
/A
symbols defined in text (equations III.8 and III.9)
length of side of square plate
initial generalized stiffness of system‘
mass per unit area of plate, before treatment
generalized mass of system
mass per unit area and generalized mass after treatment
amplitude of harmonic generalized force
amplitude of harmonic incident pressure
mean square random incident pressure
mean square random radiation pressure
amplitude of harmonic transmitted pressure
generalized displacement, velocity and acceleration
amplitude of hammonic displadement
root mean square value of random displacement
mean square value of random displacement
time
transverse bending displacement of plate

amplitude of harmonic bending displacement

power spectral density of generalized force .and generalized
displacement respectively
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LIST OF SYMBOLS (Cont'd)

Wf(Qn) power spectral demsity of generalized force at the frequency Un‘
X lengthwise co-ordinate along plate
y distance betwéen neutral surface of plate and free surface

before treatment

Yy distance between neutral surface of plate and free surface
after treatment

Z complex mechanical impedance

o factor by which treatment increases the distance between plate
neutral surface ard free surface

€ phase angle

Yzi loss factor of system before treatment (=2.Q/Dcrit)

0 inclination of plane wave-fronts to plate surface

A wavelength of incident sound waves

xt trace wavelength of incident sound waves on plate

/~ factor by which treatment increases the mass of the system

P density of medium surrounding plate

0 B(1 + 1in) complex flexural stiffness of plate after treatment
(per unit width)

ogK(1 +1im) complex generalized stiffness of system after treatment

w circular frequency

wn frequency of displacement resonance

wc frequency at which coincidence transmission occurs
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JNTRODUCTION,

The development of vibration damping treatments in recent years has led to
treatments which greatly increase not only the damping of the structure to which
they are applied, but also the overall stiffness of the structure. Formerly,
the materials used were relatively soft and the stiffness increase was neglible.
The amount by which the treatment increased the "damping ratio " or "loss factor"
of the system was then a sufficient criterion by which to compare the effects of
different treatments upon the response of tha structure to the exciting forces.,
The treatment giving the greatest increase in the damping ratio would then also
give the most attenuation of response, and the efficiency of the treatment could be
judged by the "loss factor increment per given weight of treatment."

More recently, alrcraft manufacturers have been considering the use of
damping treatments as a means of attenuating acoustically excited vibration and
consequent sound transmission and structural fatigue damage. Here, the basic
structures to which the treatments are added consist of thin aluminium skins
and sections, of which the Young's Modulus of elasticity is about one third of
that of steel. The damping treatments give very large damping ratio increments
together with very appreciable stiffness increases, Furthermore, the mass of the
treatment may no longer be considered as negligible compared with that of the
structure. Now the amplitude of the displacement of the structure under external
harmonic excitation at resonance, is dependent not orly upon the damping ratio of
the system but also upon the stiffness., The amplitude of some of the other
important response quantities {e.g. acceleration, velocity, etc.) are dependent
in different ways upon the damping ratio , the mass and the stiffness of the system.
When the excitation is of a random character (e.g. pressure fluctuations on an

aeroplane structure due to a jet-efflux), these response quantities depend in yet

Manuscript released by the author December 1960 for publication as a WADD
Technical Report.
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further different ways upon the system characteristics., It follows, therefore,
that the damping treatment will affect the response in several different ways

by virtue of the stiffness and mass increase, as well as by virtue of the damping
increase. Since the efficiency of a damping treatment must ultimately be judged
by the effect the treatment has upon the response,it is evident that the damping
ratio increment alone is an insufficient criterion by which to judge.

A theoretical investigation has already been carried out (ref.l) into the
effect of a commercial damping treatment on structural vibrations (and the
associated response quantities) excited by a jet-efflux. Allowance was made for
the contributions of the treatment to the mass, stiffness and damping of the
structure, but particular structural configurations were considered with
particular initial conditions {e.g. the damping of the structure before treatment.)

This paper seeks in a more general way to derive criteria which provide a
valid bhasis for assessing and comparing the effects of different treatments on a
wider variety of response quantities than considered hitherto. Expressions are
therefore derived (or quoted) for various response quantities of simple linear
systems in terms of the mass, stiffness and damping of the systems. Both random
and harmonic excitations of the systems are considered., From the expressions
for the response, the combined effect of the mass, damping and stiffness of a
damping treatment is readily determined and a corresponding criterion for comparing
the effectiveness of different treatments may be deduced. For the systems under
harmonic excitation the expressions derived relate to resonant conditions, and a
comparison is sought between their magnitudes before and after the damping
treatment is added. It must be recognised that, in general, the damping treatment
will change the resonant frequency of the system. If the frequency of the harmonic
exciting source does not change,then a system lnitially at resonance will be

"de-tuned" and the resultant attenuation of the response will not necessarily be



due to the damping of the treatment. However, in most systems to which damping
treatments are likely to be applied the frequency of excitation changes with changes
of operating conditions, and there is bound to be some cperating condition at
which resonance of the treated system will occur. The response at this new
condition should therefore be compared with the response at the untreated resonant
condition, under the assumption that the amplitude of the exciting foi-e is the
same at both frequencies. This is, in effect, what is done in section II of this
paper, where consideration is given to the amplitudes of harmonic displacement,
velocity, acceleration, inertia force and the surface bending stresses of a
vibrating plate. 1In all cases, the response in one mode of vibration only is
considered, it being further assumed that the damping treatment does not change
the mode.

Section III considers damping treatments in relation to harmonic sound
transmission through simple structures., Once again, resonant conditions are
assumed to pertain both before and after the treatment is applied, it being
assumed that changing the operating conditions can always restore the system to a
resonant state. Coincidence transmission through platesof infinite length is also
considered, the change in the operating conditions required to restore coincidence
after the treatment has been added being explained in the text.

In section IV random excitation of the system is considered and further
criteria relating to displacement,acceleration,inertia force and bending stress are
investigated. Here there is no need to consider changing operating conditions when
the treatment is added to the system. The only assumption that is necessary is that
the power spectral density of the exciting force is the same at the resonant
frequencies of both the untreated and treated systems, and, furthermore, does not
vary appreciably in the region of the resonant frequencies. This section also

deals with the effect of a damping treatment upon the sound.pressure transmitted



through two simple plate structures subjected to random pressure fluctuations.
Finally, in section V, a comparison is made between the effectiveness of

three different commercial damping treatments, on the basis of the criteria

deduced in the previous sections. The comparison is made assuming that equal

weights of the treatments are used on a simple vibrating plate.

II CRITERIA APPLICABLE TO HARMONIC VIBRATIONS

II.A., Characteristics of the Mechanical System

Here we consider the effect of a damping treatment on the response of a
system vibrating in a single natural mode of vibration under the action of a
harmonic exciting force. Before the damping treatment is added, the generalized
mass and stiffness of the system are M and K respectively. Suppose also that
there exists a viscous damping mechanism, giving a generalized damping coefficient
D. Denoting the exciting force by P, eiwt the equation of motion of the system

(in terms of the generalized displacement, q) is

MSL +Dc't + KCL = P e, L I

The damping treatment increases the mass and stiffness coefficients to Pq/u

and P(a'(|+iv)respectively, the imaginary part of the complex stiffness being
contributed by the "hysteretic" damping action of the treatment. If the vibrating
system is a uniform flat plate attached to a rigid structure, and the damping
treatment is in the form of a uniform layer over the plate, then/u is the factor
by which the treatment increaseS the mass per unit area, and o is the factor by
which it increase: the flexural stiffness of the plate. The equation of motion

after treatment is therefore

M/A?L + Dc'L + K0'(|+‘nz)ct= P.e.wt . & )



I1.B, IThe effect of the treatment on the resonant displacement amplitude,
Provided the initial damping {represented by D) is small compared with the

added damping, the maximum amplitude of g {denoted by aﬁax) occurs at the frequency
Vs

w, = (I<o—/M/M.Y2, ...I1.3

Then q,. = P/(Dw,+ Koyg) = P/Kov . ...11.4

Now the maximum displacement of the system in its untreated condition can be
expressed in the form-FV%ﬁh where qi is twice the damping ratio (D/Dcrit)
corresponding to the initial damping. The effect of the damping treatment has
therefore been to divide the initial resonant displacement amplitude by G”Q/AEL .
The effectiveness, and hence the efficiency, of a treatment used to attenuate
vibration displacements is evidently measured by the value of the product O‘q .
In general, this product increases monotonically with the quantity of treatment
added, whereas Q approaches an asymptotic value. chz 1s of course a true
measure of the damping added to the system, whereas y) is a function of the
damping and stiffness. The criterion by which different treatments should be
judged when used to attenuate harmonic vibration displacements is therefore the
value of A per given weight of treatment, Similarly, when the effect of
Increasing the amount of a given treatment is considered, the values of xyq
for the different amounts should be compared. The value of 7 itself is an

insufficlent criterion.

.G he effect of t atrent o surface bend stresses of a
vibrating plate.
To first order, the effect of the treatment on the displacement amplitude is
the same as that on the amplitude of the stress within the system. However, the

bending stress at the surface of a treated vibrating plate is proportional



to the product of the amplitude of curvature and the distance from the plate surface
to the effective neutral surface of the section. The curvature is directly
proportional to the displacement and therefore varies in inverse proportion to o’vl.
Suppose the distance between the free plate surface and the neutral
surface is initially y, and after treatment is o(y. Since the amplitude of the
oscillating curvature is proportional to the displacement amplitude, the surface
bending stress of the system in its initial state is proportional to yP/szL.
and in its final state to o(yP/K crv? . The final stress is therefore equal to
the Initial stress divided by O"Y? O("/Q'L . The factor U'vlol—l therefore
represents the effect of the damping treatment, the larger it is the smaller
being the bending stress. O’Ylo(-’ is then the criterion by which different
treatments sheuld be judged when considering their effects upon surface bending
stresses due to harmonic vibration at resonance.
Since the distance between the free surface and the plate neutral surface
increases as the treatment thickness is increased, it obviously implies that
the stresses do not decrease as rapidly as the displacement.

I1.D. The effect on the resonant velocity amplitude.

The amplitude of the generalized velocity of the system is given by wE'L

where EL is the displacement amplitude at the frequency w . This may easily be

"
shown to have a maximum value at the frequency wn.(i + ‘?2) * when the assumption

is made that the viscous damping is small compared with the hysteretic damping.

At this frequency the velocity amplitude is given by

[} [ - [ }
la | = ‘P/If(yzf"l/2 02)*/2[‘2(l+vf)y2 -2]/2’ .. I1.5

rnax

which, for small values of \ reduces to

lg,l
Y ax

i} bk b
P/K2M T Mo v I1.6



The maximum attenuation of harmonic velocity amplitude is obviously obtained when
the product Uzyiﬁq 1s as large as possible. The mass of the treatment

(included in the factor M ) is now important, but when comparing the effectiveness
of equal weights of different treatments the significant parameter is the product
OJé « The criterion by which different treatments should be judged when used
to attenuate vibration velocity amplitudes is therefore the value of (T}iv

per given weight of treatment. When judglng the effect of different quantities

¥
of the same treatment the complete expression UX7A1Y must be used as the

criterion.
I1.E The effect o e resona ccelera d jinertia force
amplitudes.

Acceleration amplitudes are of lmportance in connection with the effect on,
say, items of electronic equipment mounted on a vibrating structure. Mal-
functioning and failure of such equipment is caused by proclonged exposure to
acceleration amplitudes above a certain level. Inertia force amplitudes are of
importance in connection with acoustically excited aeroplane structures. Large
harmonic inertjia forces are reacted at the boundaries of the side panels of a
fuselage in the vicinity of a propellor, and these may cause fatigue failures of
rivets attaching the panels to the reinforcing structure. The effect of a
damping treatment upon these quantities is therefore considered in this section.

The generalized acceleration amplitude under harmonic excitation is
given by wfzé « This has a maximum value at the frequency (v, (‘l +\q9')’/2
making the same assumption as before with regard to the magnitude of the viscous

damping. At this frequency the acceleration amplitude is given by
gl = P/Muy (1442
max pp e

|'q‘/] = p/M/”? .. 11,8

Mmook

-
) 2 veell7

reducing to



for small values of v - This is minimized by making PY as large as possible.
Considering equal weights of different treatments, the significant parameter is
evidently vz itself. Its value is therefore a sufficient criterion by which to
judge the efficiency of a given quantity of treatment used to attenuate
acceleration amplitudes,

The inertia force amplitude is directly proportional to the product of
the generalized mass and the generalized acceleration amplitude. Its maximum
value therefore occurs at the same frequency as the maximum acceleration, and is

proportional to

-P/W(I+vf)—'/2 ... 11.9

reducing to Ti/q for small q . Again, the value of V7 for a given weight of
treatment is a sufficient criterion by which to judge the efficiency when
attenuating inertia force amplitudes. '

It should be noted that as vl becomes large, the term vz(g +_qz)"ﬁ
approaches unity. Any attempt to increase the value of Y provided by a given
treatment when Y 1s already large, is not then accompanied by a worth-while
reduction of acceleration or inertia force amplitude. It is probable, however,
that when q‘ is large enough for this effect to be important, the problems

arising from the accelerations and inertia forces will have already been solved.

The criteria developed in the whole of section I are summarized in table I.

IIT  CRITERIA LICABLE TC HARMONIC SOUND TRANSMISSION THROUGH SIMPLE STRUCTURES
As the addition of damping to a system has little effect upon forced

vibrations apart from those occurring at resonance, this section will deal only with

sound transmitted under structural resonant conditions and "coincidence" conditions.

Two special cases only will be considered but these wil)l serve to show the



different ways in which the mass, stiffness and damping properties of the treatment
affect the transmitted sound pressure, This implies, of course, that different
efficiency criteria are required for judging the merits of different treatments,
depending on the nature of the transmission.

Two very simple transmission mechanisms will be considered:

(a) The sound transmitted through a finite flexible plate set
in an otherwise rigid and infinite wall (or baffle).
An incident field of plane harmonic sound waves impinges on
one side of the plate causing resonance in one of its natural
modes. The sound wavelength is assumed to be large compared with
the plate dimensions,

(b) The sound transmitted through an infinite flexible plate when
an infinite field of plane harmonic waves impinges on one side,
causing "coincidence" transmission to exist,

III,A The sound transmitted through a finite plate,

As stated above, the plate is considered to be mounted in an .infinite rigid
wall. Firstly it is assumed that. free field conditions exist on both sides of the
wall, and on one side the incident field exerts an oscillating pressure on the
plate. It is further assumed that the wavelength of the sound radiated by the
motion of the plate is large compared with the plate dimensions. (This is
inevitable if the incident sound wavelength is large, as already assumed). Insofar
as the transmitted sound pressure in the far field is concerned, the oscillating
plate may now be regarded as a simple source having a strength given by twice the
product of the plate area and the average plate velocity amplitude. Now the sound
pressure at a large distance from a simple source is proportional to the product
of the source strength and the frequency, i.e. to W times the plate generalized

velocity amplitude, which is the same as the amplitude of the generalized



acceleration of the plate. The latter is given by equations II.7 and II.8 in
which P is now to be interpreted as the generalized force corresponding to
the‘incident sound pressure, and M/M.as the generalized mass of the plate
corresponding to the given mode. Then the maximum transmitted pressure is

proportional to
-k
-P/I"l//u-vz (14 vtl) .

This assumes that the acoustic radiation damping is small compared with the
damping arising from the treatment, an assumption which is justifiable for any
conceivable plate. It is evident therefore that for a given weight of damping
treatment, the transmitted pressure is inversely proportional to i (|+_W2)*5§

The value of Q is then a sufficient criterion by which to judge the effectiveness
of equal weights of different treatments.

Now if one side of the plate is enclosed by a reverberant chamber, the natural
modes of the plate will couple with standing waves within the chamber. There are,
in fact, an infinite number of standing waves with which any one plate mocde may
couple, implying that there is an infinite set of natural frequencies at which
the mode may resonate. (See, for example, refs., 2,3). It is required to
establish, therefore, the relationship between the resonant pressure amplitude
within the chamber, corresponding to any one of the standing wave systems, and the
generalized plate characteristics (including ,/&,a' and ) ). A preliminary
investigation has been carried out by the author (the work to be publiched later)
considering a rectangular chamber, one wall of which consisits of the flexible
plate assumed to have simply supported edges. The other walls were considered to
be rigid. The results of the analysis suggest the following effects of increasing
MyT and W ¢

The sound pressure at each of the standing wave resonances is inversely

10



proportional to q . The effect of increasing annd o may be combined by
considering the effect they have on the uncoupled natural frequency of the

plate, and then examining the effect of change of frequency. If the coupled
standing wave - plate natural frequency 1s much less than that of the uncoupled
plate, then an increase of the plate frequency tends to increase the resonant sound
pressure. If, on the other hand, the coupled frequency is considerably greater
than the plate frequency, then increasing the plate frequency decreases the
resonant sound pressure. When the coupled frequency is close to the plate
frequency, no such generalisation may be made and each case must be considered

on its own merits.

II1,B. The sound transmitted by cojncidenc rough an_jnfinite plate.

We now consider the effect of a damping treatment on the sound pressure
transmitted through an infinite plate (or beam), on one side of which is an incident
sound field of plane harmonic waves whose wave~fronts are inclined at an angle
0 to the plate surface., Before the treatment is added, coincidence transmission
exists, the trace velocity of the incident field coinciding exactly with the phase
velocity of the flexural wave in the plate excited by the incident field. The
transmitted pressure is then equal to the incident sound pressure. The mass
and stiffness of the damping treatment changes the phase velocity of the
flexural wave, and if the incident sound field remains the same, a de-tuning
effect will reduce the transmitted pressure. The reduction due to the de-tuning may

be considerably greater than that due to the additional damping. If, however, the

11



inclination or the frequency of the incident field is changed (the incident
pressure remaining constant) and coincidence conditions are restored, then a
measure of the effectiveness of the damping treatment may be found by comparing the
transmitted sound pressure under these new coincidence conditions with the
pressure under the initial conditions.

In the subsequent analysis, a unit width of the treated plate need only be
considered., This has a complex flexural stiffness O‘I3(I-+l¥7) and
a mass per unit length /AHT . The imaginary part of the complex stiffness
represents the internai damping due to the damping treatment, B and M are the
flexural stiffness and mass per unit length before the treatment is added,

o &'fL are the stiffness and mass factors representing the effect of the

treatment.

Let the incident pressure amplitude be Py * Due to reflection of the
incident wave and consequent pressure doubling, the incident pressure acting on

the plate is given by

2pi-exp L{wt + an/)\t') . .. II1.1

(See figure 1 for explanation of undefined symbols). If it is assumed already
that the flexural wave in the plate is of harmonic form, and of wavelength Xt ’
it may be shown that the transmitted (or re-radiated) pressure, p, » acting on the

plate surface is

pc.cosB. av/at cWIIIL2

where v is the local transverse bending displacement of the plate. As this
re-radiation occurs from each side of the plate, the net re-radiation pressure

acting on the plate is '2,0(:. cos B, B'V/at.

12



The equation for the forced motion of the strip may now be written

B+ Lq).a+v/ax4 + /um_alv/axz = —2p,. exp wt +-2Tr></)\,~ -2 av/c\,t lbc.cos(?

. .. 111.3
Putting v = v exp ¢ (wt 4 an/)\t+ 6) , equating the real and imaginary

parts on both sides and eliminating €, it is found that

22 -%
¢ = 2p [{eBlan)) - pnw’}’ F{oBam/y ) + 2pec cos )7
...111.4

For small M it is sufficiently accurate to consider coincidence transmission

occurring at the frequency W, , given by
4+ 2
eB(2m/\e) - pmw, = O | .. I11.5

The local plate velocity and the incident sound pressure are then exactly in
phase and the transmitted sound pressure is close to its m.aximum value, which
actually occurs at a slightly greater frequency,

At the frequency w¢e, the transmitted sound pressure amplitude is VIOC.ccsb

Substitution for v and rearrangement ylelds

-1
Pe = Pt {' t ﬂ(@l"/ltﬁ‘?] . .. II1.6
2pcwecos b

Now the trace wavelength >‘t 1s related to W, by

N
Ae sin O = A = 2nm c/o\)c
and also by Ve o I11.7
4
w: = (G':B/}AM)('ZTT/Xt> +  (from III.5.)

Using these relationships )‘t and W, , or )‘t and @ may be

eliminated from equation III 6. We then have

2 Y% -%]-!
Pt - Pl[1 + C.COSeC29 Y?(,.A.m)?"ﬂ"B> ] = Pl/ke «e o 111.8

2 pc. cos (]

13



or

-% -1

o= pi+ e {1- (Cl/wc)(/*"ﬂ/vﬁ)/’l} ./mm?] =p [k, ---eI11.9
cpPe ’

Equation III.8 may be used to indicate the effect of vaAand g~ on
the transmitted pressure when the inclination of the incident field is kept
constant while the fregquency is varied to restore coincidence. Equation III.O
may be used to indicate the effect when the frequency is kept constant and the
inclination is changed. It is implied here that coincidence transmission may
indeed be restored. This may not always be possible, as suggested, for example,
by the term {1 - (:z/w.;)(/pm/qB\j/zj/z in equation III,9., If /A/O_is such as to make
this term vanish, or to be imaginary, coincidence transmission cannot occur at
the particular frequency We .

Now when v) is zero (no internal damping), Py = p;+ The pressure
amplitude transmitted under damped conditions is therefore 1/ ke or l/ka,
times that transmitted under undamped conditions. The significant factors

involved in ke and k, which must be made as great as possible in order

[/

to produce the greatest attenuation of pressure are:

b
B ...I11.10

Wpe |
) LA
and ‘H*Li - ("’./wc)(m/]%)/z('}*/o-yz] ) ..WII1.1
It is evident that 1 should be as great as possible for the greatest
attenuation. Furthermore, both expressions indicate that it is desirable for
g to be as small as possible. An increase of stiffness counteracts, in some
measure, the effect of the increased damping.

%
It may be noted that the term (<r§4lﬂ‘) is proportional to the resonant

1y



frequency of a treated finite plate, when vibrating in a flexural mode of
wavelength Xt' This frequency is usually determined in an assessment test
of the treatment. Each of the expressions III,10 and III,1l are reduced
when this term increases, indicating that it is undesirable for the
damping treatment to increase the résonant frequency of the system if
transmitted sound pressure is to be minimized. If two different damping
treatments provide equal loss factors,q s the most effective treatment

will be that glving the lowest frequency incresse {or highest decrease).

1v. CRITERIA APPLICABLE TO RANDOM VIBRATIONS.
IV,A Random M C ons

Once again, the response of a single degree of freedom system
only will be considered. The system is excited by a force which varies
randomly with time, and it is assumed that the power spectrum of the
corresponding generalised force does not vary appreciably in the region
of the natural frequency of the system., The equation of motion of the

system, in terms of the generalised displacement, g, is
[ J ; .
M/.).cL +Dqg + Ko(l + uz)q = F (&) IVl

where F(t) represents the random exciting force, If the power spectral
density of F(t) is denoted by wag), then it is well known that the
power spectral density of the generalised displacement, wq(u), is given

by

W (W) = w‘(w%zlz .. IV.2

15



2
|Z1" is the square of the modulus of the mechanical impedance,
; 2 2
te. (Ko ~w1M/~&) + (wD + Ka'vl). ... IV.3

[¢1]
The mean square value of the generalised displacement, (q?) is given by J W, (w) dw.,
. oo

Under the restriction quoted above upon the variation of wf(w), and assuming

small total damping, the integral yields

<Qv’2> = w1¢(w“)'(ﬁ/2)/Kcr('D + Ko*q/wn)‘ s .. IV.2

where w2 = K ,J./M/v\ . ... IV.5

Assuming again that the initial viscous damping is very much smaller
than the added hysteretic damping, we may write for the root mean square

displacement

~1

3 }‘c‘] IV

q’r‘ms = [W; (wn) (TT/'Z)] /2 [ Ml/A— K3/+/J~|/4 0_4‘1

% Y%
Thus the r.m.s. displacement is inversely proportional to o +/A YI N
and the corresponding efficiency criterion for a damping treatment is the value
EA
of 0'4Q2 per given weight of treatment. It follows, by direct comparison with
section II.C, that the criterion relating to the surface bending stress of a
3/41/2—1
treated plate is « | ol per given weight of treatment.

Under the same assumptions, the root mean square value of the generalised

random velocity is given by “hqrms i.e.
; r % 3, L3 4 [Pt
%, % 4 % QJ
Bems = Wn-9., = wa(wn)(w/?-ﬂ -[l\’l KK I B Y

: % % %
The r.m.s. velocity is therefore inversely proportional to o ar N and the

Y
corresponding efficiency criterion is the value of c‘qz per given weight of
treatment.

Consider now the mean sguare value of the random generalised acceleration.

16



The power spectral density of the acceleration is given by cu+ times the power
spectral density of the generalised displacement. Integrating this from w = O
to w =™, and making the same restrictions as above upon the variation of the power
spectrum in the region of the natural frequency, the mean square value of the

»

generalised acceleration is found to be

-

!
2

(3%) = we (w,) (w/2) (1= ) [M%K /-4\5/20:"2‘{?] 1+ <F2(t\>/M2/u2. oo V.8

The first of the two components of this expression may be said to derive from

the resonant response of the system, and is therefore dependent upon the

damping. The second component is ‘associated with the inertia reaction of the system,
depending only upon the mass of the system., The relative magnitudes of the two
components are obviously critically dependent upon the shape of the spectrum

of the generalised force. If the resonant component is small compared with the
other, the effect of the damping treatment will be mainly that of its mass,

i.e, mass law attenuation will pertain. If the resonant component forms an
appreciable part of the total response ,then the criterion O:JéY?/(l~Vf) may be
used to compare the effects on random acceleration of equal weights of different

treatments., It is convenient to take the square root of this criterion and

|
4 W2

Y] . The

force exerted by a randomly excited system cn its supports consists of the sum of

since q is usually very much less than one, it becomes a

the exciting forces and the inertia forces corresponding to the response of the

system. If the system is responding primarily in one mode, this total force will
be proportional to the product of the displacement of the system and the modulus
of the generalised complex stiffness of the mode, The r.m.s. value of the foxrce

will therefore be proportional to

‘ %
Drms - Ko (1 4)7" .
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Using equation IV.6, this becomes

P

[y (o) (/)] [ M3 R H05 0780 (5ot 2] L v

Assuming once again that ~i2<s< 1, the efficiency criterion derived from this expression
is evidently dﬂqﬂ% per given weight of treatment (N.B. for convenience the resultant
of the inertia and exciting forces will be referred to simply as the”inertia force“
from now on).
- -

It may be noted that the last term IV.9 may be written (Yl /wn) 2\ (if M &L 1),
Since this quantity must be as large as possible to minimize the random force, wj,
should obviously be as small as possible. It is therefore disadvantageous for a
damping treatment to increase the natural frequency of the system, as far as these
inertia forces are concerned, as this increase counteracts, in some measure, the
benefits arising from the increased damping.

The criteria and related response expressions derived in this section
are summarized in Table II.

V,B Sound Transmissjon through a s la der random excitation.

Now suppose that the finite plate of section III.A is subjected on one side
to random pressure fluctuations which give rise to a generalized force having a
spectrum which is flat (or nearly flat), as before. The r.m.s. sound pressure
transmitted by one of the plate modes of vibration to the far field on the other side
will be proportional to the generalized r.m.s. acceleration of the plate mode. The
effectiveness of a damping treatment in attenuating the resonant component of the
transmitted pressure is therefore represented by the same expression as derived above

for the r.m.s. acceleration. The corresponding efficiency criterion is again the

Y,

-k
value of 674Y?2 per given weight of treatment.
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Iv,.C, Random Sound Transmission through an array of plates subiected

dary laver press fluctua .

As a further example of the different criteria which must be used for .
different systems and response quantities, reference will now be made to the work
of Kraichnan (ref.4). This considers the acoustic radiation from an array of thin,
independent, square plates on one side of which a moving airstream exerts convected
boundary layer pressure fluctuations. After certain simplifying assumptions have been
made, expressions are developed for the mean square radiated sound pressure (i.e.
transmitted pressure) in terms of the mean square incident pressure and plate parameters.
Many different modes of plate vibration contribute to the total radiation.

Under longitudinal dipole excitation, having a distributed convection

velocity, the mean square radiation pressure <F;> is found to be of the form
-1
K3 ? i Y % "
<Pr> = <P>'C1~{(mB)2(/*7)2Yi(m/u +%‘;L.Ba')]_ «..Iv.10

2 ,
<p ) is the mean square incident pressure, and C, and 02 are constants relating

1
to the pressure distribution only. L is the length of the plate, hwp.the mass per
unit area, and Be the real part of the flexural rigidity of the plate. The
expression is valid only for small values of q » The criterion for judging the
efficiency of a damping treatment in attenuating the radiated r.m.s. sound pressure
is now the value of [U&WI(# + _%_ %g_)]"é per glven value of /‘\ . (The pcwer
9@ 1s introduced to allow for the roof mean square value, Clearly for the sake of
indicating which {s the best of a number of treatments, the squars root need not in
fact be taken).

When the incident pressure fluctuations derive from transverse dipole

excitation and s sharp convection velocity, the mean square radiation pressure is of

the form
1

<P:-z> - <P2)C3[m7/"3&/u?r‘o'&vz]- , LIval
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the corresponding efficiency criterion for a damping treatment in relation to the
r.m.s, pressure being the value of O"/gv'(i/?' per given weight.

One of the assumptions made in the derivation of the above expressions is
that the damping (or less) facter, Yl, is‘the same for each of the modes contributing
to the radiation. When the damping derives from a visco-elastic damping treatment,
this assumption is invalid for two reasons:

(a) The visco-elastic properties of the damping medium are considerably
frequency dependent, and will therefore cause variations in Q
from mode to mode on account of the different natural frequencies
involved.

(b)Constrained layer damping treatments give loss factors and flexural
stiffnesses which depend on the wavelength of the flexural vibration.
The treatments are designed to give optimum damping under certain
conditions of geometry and wavelength. These conditions cannot be
satisfied by all possible modes. The extension of Kraichnan's
analysis to cover variations of damping factor and flexural stiffness

with frequency is undoubtedly beset with great difficulties.

Y. AN_EXAMPLE OF THE USE OF THE CRITERIA,

In order to demonstrate the use of the criteria deduced in the preceding
sections, a comparison will be made between three different treatments applied
uniformly to one side of an aluminium plate (or strip) undergoing flexural vibrations.
It will be shown that whereas one treatment may be superior in its effect when judged
by one of the criteria, another treatment may be superior when judged by another
criterion. Furthermore, one of the criteria may indicate that a given treatment is
most effeéctive when a certain optimum quantity is used, whereas another criterion may

indicate that a different optimum quantity is required.
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V.A, A Comparison of different treatments.

The treatments considered are two different grades of a commercial
"unconstrained layer" type of treatment (referred to as treatment A and treatment B)
and a commercial damping tape (treatment C). A and B consist of filled resins,

different fillers being used in each material. The properties of the materials, as

deduced from laboratory tests on simple treated specimens at a fixed temperature, are:

Treatment A Treatment B
Young's Modulus {real part) 860,000 1b/in.? 1,080,000 1b/in.2
Loss Factor 0°193 0°+33
Specific Gravity 1+20 1+68

From these values curves have been obtained for the loss factor q and
stiffness ratio, o, of a uniform plate, covered uniformly with different quantities
of the treatments (using expressions for q and ¢ first derived by Oberst, ref.5.).
An aluminium plate has been considered, having a Young's Modu}us of 10.8 x 1061b/inu2
and a specific gravity of 2,84. ¢ and rl have been plotted in figs. 2 and 3, the
abscissa being the weight of the treatment as a fraction‘of the weight of the plate.

The damping tape consists of a thin aluminium foil adhering to which is a
soft pressure sensitive damping material. The properties of the damping material
alone are insufficient to permit an estimate being made of the loss factor and stiffness
ratio of a treated plate,as the wavelength of the flexural vibration is now an important
parameter in determining these quantities. In view of this, consideration is given only
to the effect of the tape on one configuration, viz. a simply supported aluminium plate
of width 4 inches and thickness 0.036 in., which is long compared with its width.
Laboratory tests on a treated configuration of this type have yielded the following values

for wand o
1 v T
1 layer of tape 0.043 1.42

2 layers of tape 0.043 1.62
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The weight of each layer of tape was 0.166 times that of the untreated
plate. These values of Yz&v'have been superimposed upon the curves of vl and o
for treatments A and B.

From these values of q and o the values have been calculated of certain
selected criteria from the preceding sections, and these are plotted in figs. 2,3, 4
and 5, The criterion relating to harmonic displacement amplitude (‘77 ) is shown in
fig.3, together with the loss factor q s which is the criterion relating to
harmonic sound pressure transmitted at resonance through a finite plate. Fig. 4

3 )
shows the criteria relating to random vibration amplitude (OJQVZ), random inertia

!
force ( 0:/\1% ) and random sound pressure transmitted through an array of plates
subjected to boundary layer turbulence?k Fig, 5 shows the criteria relating to the
bending stress at the free surface of the plate when vibrating under harmonic
resonant or random conditions { U-Yl‘ o(—‘ and q"%’vz‘li o(." respectively).

It will be seen from fig. 2 that treatment A, which has a smaller Young's
Modulus than treatment B, nevertheless provides a higher stiffness ratioc o than
treatment B, This is due to the lower density of treatment A, which therefore has a
greater thickness for a given weight of material and a correspondingly greater
second moment of area about the neutral surface of the composite plate. This has
an important bearing upon the criteria (rq and &};vfé, which are shown in figs. 3 and
4. At low treatment weights the value of each of these criteria is higher for treatment
B (with the superior material loss factor and Young's Modulus) than for A. At higher
treatment weights this superiority is reversed due to treatment A providing the higher
stiffness ratio. At the low treatment weights, where the stiffness ratio is little
greater than unity, the two criteria approach the values of Yz and v{i respectively,
and the treatment providing the highesﬁ l?és factor q is automatically superior.

-2 5
Consider now the criterion G'4Y12(fig.4), by which is judged the effect of

a treatment on random inertia forces, or on the resonant component of random

\

* O,'é \?‘é)
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transmitted sound pressure. Since the stiffness ratio is raised to a negative power
in this criterion, the treatment providing the lower stiffness ratio but the higher
loss factor (treatment B) is inevitably superior over the whole weight range. It may
be seen that equation II1.10,giving the criterion relating to one form of coincidence
-l -V%f -4

transmission, contains q g - L.e.(q'4q ;. The criterion a q may therefore
be used in relation to bhoth random inertia forces and this form of coincidence
transmission.

The criterion U“q (fig. 4) also shows treatment B to be superior
up to, and beyond, a weight ratio of 10 on account of the higher loss factor and the
very small power to which - is raised. A maximum appears to occur at the weight
ratio of about 10, but the curves will inevitably rise at higher (very impracticable)

weight ratios on account of the positive power of ¢~ and the asymptotic nature of 7 :

The criteria relating to the surface bending stresses in a plate are

.
! P

shown in Fig. 5. o‘qci_l relates to harmonic resonant conditions and Giéq’éciu
to random conditions. They follow a generally similar trend to the criteria

relating to vibration displacement amplitudes. Over the lower weight range, treatment
B is superior to A under both random and and harmonic conditions, but treatment A is
superior under random conditioéns above a weight ratio of about 0.5. This superiority
derives from the larger values of ;%ﬁ% for treatment A above this weight, which implies
smaller vibration amplitudes. The superiority of A over B does not, however, become
more marked as the weight intreases in the same manner as exhibited by Giavz%)

This 1s due to the distance between the free plate surface and the composite plate
neutral surface being greater for the lower density treatment A than for B. As the
weight of treatment increases, this distance in the case of treatment A becomes
increasingly greater than that of B. It is this latter effect that causes crq:l-i
for treatment A to be slightly inferior to that for B throughout the weight range,

despite the superiority of av for A above a weight ratio of about 0.75,
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Comparing now the criteria corresponding to treatments B and C, it will be
seen that apart from the value of o, all the criteria for the two layer tape
configuration are inferior to those of treatment B at the same weight. This is due
to the low value of Yl for the two tape layers, The single layer of tape has a
greater value of O , and a very slightly greater value of Vl than has treatment
B at the same weight. This automatically implies that the criteria involving
positive powers of @ have superior values, However, the criterion involving the
negative power of 0_’(0'_14‘1'/2) is found to have a slightly inferior value to that of
treatment B.

It should be emphasized at this stage that the above comparisons may not
be used to formulate generalized statements regarding the relative merits of
unconstrained layer treatments and constrained layer treatments. A particular
example only has been chosen for the constrained layer configuration, and considerably
different vaiues of the criteria would be expected 1f the plate wavelength or tape
thickness were to be changed.

V.B, A_comparison of different amounts of the same treatment.

The criteria considered in the previous paragraph do not contain the mass
ratio tgrm /ﬂk . This has been omitted since it is not necessary to include it when
equal weights of different treatments are being compared. It has been pointed out in
the Introduction that a damping treatment may add considerably to the weight of thin
light alloy structures {e.g. aeroplane structures). When considering the effect on the
response of varying the guantity of a given treatment, the mass effect must therefore
be included in the criterion used. Fig. 5 shows some of the criteria considered in
the other figures, but with the appropriate mass ratic term included. /u?% G}éqlé
is the criterion relating to the sound pressure transmitted due to boundary layer
excitation. ff?;%d%relates to r.m.s. {random) sound pressure transmitted through a

Yo -4 Y%
single finite plate, and /Avo vlz relates to r.m.s. (random) inertia forces. The first
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two of these criteria increase steadlly throughout the range of weights considered,
but cumparison with fig. 4 shows that over the upper part of the range the increase
is due mostly (1f not entirely) to the increasing mass. The third criterion shows
that the treatments have a maximum effect upon random inertia forces at optimum
treatment weights of about 0.6 and 0.75 of the weight of the plate for treatments
A and B respectively. These compare with optimum weights of about 1.5 and 2.0
required to give maximum values to YI for these treatments, l.e. giving minimum
harmonic inertia forces. The existence of the maximum for vl is a well known
characteristic of unconstrained layer damping treatments.

The criterion relating to harmonic sound pressure transmitted through a
finite plate (/Avl ) will not exhibit the maximum show by Q alone for these
treatments, but will rise steadily above a relative treatment weight of about 1, roughly
in proportion to /LL .

Equation II.4 shows that the harmonic displacement amplitude, and therefore the

corresponding surface bending stress are independent of/A 3 the relevant curves of
figs. 3 and 5 may therefore be considered in the present discussion., Each of these
curves is monotonically increasing, implying that increasing the amount of the
treatment will always provide a further reduction in the amplitude of resonant
vibration and stress. The r.m.s. (random) displacement and stress are dependent upon

the mass ratio s the corresponding criteria for the damping treatment being

% % R £ 5
/A T and /J T Vz“d.. Since M is raised to a positive power, these expressions

will still increase monoticallly with increasing weight of treatment.

So far, the comparisons have been made between equal weights of different
treatments. This is a valid basis for the aircraft manufacturer who is more concerned
with the welght of the treatment that with the cost. When the cost is of greatest
importance, it is obvious that the comparison should be made as follows:

Suppcse treatment A cost X times that of B (for the same weight). The
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criterion for treatment B at relative weight w should be compared with the criterion

for treatment A at weight w/X. The criterion must include the appropriate term j ’

(i.e./}{'o:‘qv(yz) /AVZ ete.)

VI CONCLUSIONS

In this paper, expressions have been derived for the response of simple
systems which have been treated with damping materials and which are subjected to
harmonic or randomly varying forces, These expressions include the effect of the
mass, stiffness and damping of the treatments, From each of the different expressions
for the response quantities considered, a criterion has been found by which to compare
the effectiveness of different damping treatments and the effect of different
amounts of the same treatment. The importance of including the effect of the mass
and stiffness of the treatment has been emphasized, On the basis of these criteria, it
has been show that for some of the response quantities (e.g. vibration displacement
amplitude) it is an advantage for the treatment to increase the stiffness of the system,
whereas for others {e.g. inertia forces under random excitation or a certain form
of acoustic transmission by the coincidence effect) it is a disadvantage. In no case,
however, is it a disadvantage to increase the mass of the system.

In the example to illustrate the use of the criteria, it has been shown that
with relatively small weights of damping treatment, the treatment giving the greatest
loss factor to the whole system is superior as judged by each of the criteria. This
follows from the fact that at small relative weights the stiffness and mass increases
are negligible for the particular damping configurations considered. The loss factor
is then the only parameter which has been changed appreciably by the addition of the
treatment. At greater relative weights, it has been shown that one treatment having
a lower density, a lower stiffness and a lower material loss factor than another can,
nevertheless, be more efficient (on an equal weight basis) in attenuating vibration

displacement amplitudes and plate surface bending stresses.
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The criteria relating to harmonic and random inertia forces show that there are
optimum quantities of treatment to give the greatest effects, but the optimum quantities
differ for the harmonic and random conditions, If the amount actually used is mid-way
between these two values, the reduction in effectiveness below the maximum realizeable
is very slight. The other criteria considered are all monotically increasing with
increase of treatment weight, implying that increasing the amount of treatment used
will always further reduce the response.

The implications of these results are that when damping treatments are
being considered for use on light aluminium structures, their effectiveness cannot
be sufficiently defined by stating only the loss factor obtainable from a given amount
of the treatment. The factor by which the stiffness of the structure is increased
must also be given. This implies that the results of the standard Geiger test,
whereby the time rate of decay of a treated steel plate is given as the measure of
the effectiveness of the treatment, is also insufficient. This time rate of decay
is (in effect) but an alternative form of presenting the value of the loss factor
(ref. 6).

The fact that a poorer quality treatment has been shown to have a superior
effect, in some instances, than one of higher quality, suggests that the optimum design
or compounding of a treatment will be different depending on the particular vibration
response quantity it is required to attenuate. It may be that damping treatments can be
developed further along these lines, a different treatment being designed and
recommended for different applications.

The inclusion of the mass and stiffness effects into the criteria for
assessing damping treatments will be more than ever important when "“space" damping
techniques are being considered, since these techniques can be expected to give a

very large stiffness increase for relatively small weights of treatment.
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