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ABSTRACT

In this report, expressions are derived for the response of simple

vibrating systems, from which criteria have been deducted to indicate the

effectiveness of a damping treatment in attenuating the response. The

criteria include factors by which the treatment increases the mass and

stiffness of the system, together with the loss factor increment. The

response quantities considered include bending stresses, accelerations,

inertia forces and sound transmission associated with 2imtle vibrating

plates under harmonic and random excitation. Coincidence sound transmission

is also briefly considered. It is shown that whereas the mass and loss

factor increase is always advantageous, a stiffness increase in some

instances is detrimental.

As an example, three different commercial treatments are compared on

the basis of some of the criteria. With low treatment weights, the

treatment providing the highest loss factor is superior judged by each

criterion, but at higher weights according to some criteria a treatment

having a lower stiffness, density and loss factor is more effective. The

existence of optimum treatment weights for maximum effect upon the response

is also shown by some criteria.
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LIST OF SYMBOLS

B flexural stiffness per unit width of untreated plate

c speed of sound in medium surrounding plate

CIC2,C3, constants associated with the pressure distribution: due to
boundary layer turbulence

D initial viscous damping coefficient

Dcrit critical viscous damping coefficient of untreated system

F(t) random generalized force

iP
kw, ke symbols defined in text (equations 111.8 and 111.9)

L length of side of square plate

K initial generalized stiffness of system

m mass per unit area of plate, before treatment

M generalized mass of system

AmPtM mass per unit area and generalized mass after treatment

P amplitude of harmonic generalized force

Pi amplitude of harmonic incident pressure

<p 2> mean square random incident pressure

<p 2> mean square random radiation pressure

Pt amplitude of harmonic transmitted pressure
I I!

q, q, q, generalized displacement, velocity and acceleration

qamplitudce of harmonic displaaement

qrms root mean square value of random displacement

<q 2 > mean square value of random displacement

t time

v transverse bending displacement of plate

v amplitude of harmonic bending displacement

wf(w),wq(W) power spectral density of generalized force and generalized
displacement respectively
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LIST OF SYMBOLS (Conttd)

wf(Hn) power spectral der~sity of generalized force at the frequency wn"

x lengthwise co-ordinate along plate

y distance between neutral surface of plate and free surface
before treatment

y distance between neutral surface of plate and free surface
after treatment

Z complex mechanical impedance

factor by which treatment increases the distance between plate
neutral surface add free surface

£ phase angle

loss factor of system before treatment (=2.D/Dcrit)

e inclination of plane wave-fronts to plate surface

wavelength of incident sound waves

% t trace wavelength of incident sound waves on plate

/I- factor by which treatment increases the mass of the system

p density of medium surrounding plate

aB(l + iq) complex flexural stiffness of plate after treatment
(per unit Width)

a K(l + iq) complex generalized stiffness of system after treatment

W circular frequency

""n frequency of displacement resonance

" frequency at which coincidence transmission occurs

c
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INTRODUCTION

The development of vibration damping treatments in recent years has led to

treatments which greatly increase not only the damping of the structure to which

they are applied, but also the overall stiffness of the structure. Formerly,

the materials used were relatively soft and the stiffness increase was neglible.

The amount by which the treatment increased the "damping ratio " or "loss factor"

of the system was then a sufficient criterion by which to compare the effects of

different treatments upon the response of the structure to the exciting forces.

The treatment giving the greatest increase in the damping ratio would then also

give the most attenuation of response, and the efficiency of the treatment could be

judged by the "loss factor increment per given weight of treatment."

More recently, aircraft manufacturers have been considering the use of

damping treatments as a means of attenuating acoustically excited vibration and

consequent sound transmission and structural fatigue damage. Here, the basic

structures to which the treatments are added consist of thin aluminium skins

and sections, of which the Young's Modulus of elasticity is about one third of

that of steel. The damping treatments give very large damping ratio increments

together with very appreciable stiffness increases. Furthermore, the mass of the

treatment may no longer be considered as negligible compared with that of the

structure. Now the amplitude of the displacement of the structure under external

harmonic excitation at resonance, is dependent not only upon the damping ratio of

the system but also upon the stiffness. The amplitude of some of the other

important response quantities (e.g. acceleration, velocity, etc.) are dependent

in different ways upon the damping ratio , the mass and the stiffness of the system.

When the excitation is of a random character (e.g. pressure fluctuations on an

aeroplane structure due to a jet-efflux), these response quantities depend in yet

Manuscript released by the author December 1960 for publication as a WADD
Technical Report.
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further different ways upon the system characteristics. It follows, therefore,

that the damping treatment will affect the response in several different ways

by virtue of the stiffness and mass increase, as well as by virtue of the damping

increase. Since the efficiency of a damping treatment must ultimately be judged

by the effect the treatment has upon the response,it is evident that the damping

ratio increment alone is an insufficient criterion by which to judge.

A theoretical investigation has already been carried out (ref.l) into the

effect of a commercial damping treatment on structural vibrations (and the

associated response quantities) excited by a jet-efflux. Allowance was made for

the contributions of the treatment to the mass, stiffness and damping of the

structure, but particular structural configurations were considered with

particular initial conditions (e.g. the damping of the structure before treatment.)

This paper seeks in a more general way to derive criteria which provide a

valid basis for assessing and comparing the effects of different treatments on a

wider variety of response quantities than considered hitherto. Expressions are

therefore derived (or quoted) for various response quantities of simple linear

systems in terms of the mass, stiffness and damping of the systems. Both random

and harmonic excitations of the systems are considered. From the expressions

for the response, the combined effect of the mass, damping and stiffness of a

damping treatment is readily determined and a corresponding criterion for comparing

the effectiveness of different treatments may be deduced. For the systems under

harmonic excitation the expressions derived relate to resonant conditions, and a

comparison is sought between their magnitudes before and after the damping

treatment is added. It must be recognised that, in general, the damping treatment

will change the resonant frequency of the system. If the frequency of the harmonic

exciting source does not change,then a system initially at resonance will be

"de-tuned" and the resultant attenuation of the response will not necessarily be

2



due to the damping of the treatment. However, in most systems to which damping

treatments are likely to be applied the frequency of excitation changes with changes

of operating conditions, and there is bound to be some operating condition at

which resonance of the treated system will occur. The response at this new

condition should therefore be compared with the response at the untreated resonant

condition, under the assumption that the amplitude of the ýxciting foi-e is the

same at both frequencies. This is, in effect, what is done in section II of this

paper, where consideration is given to the amplitudes of harmonic displacement,

velocity, acceleration, inertia force and the surface bending stresses of a

vibrating plate. In all cases, the response in one mode of vibration only is

considered, it being further assumed that the damping treatment does not change

the mode.

Section III considers damping treatments in relation to harmonic sound

transmission through simple structures. Once again, resonant conditions are

assumed to pertain both before and after the treatment is applied, it being

assumed that changing the operating conditions can always restore the system to a

resonant state. Coincidence transmission through platesof infinite length is alsd

considered, the change in the operating conditions required to restore coincidence

after the treatment has been added being explained in the text.

In section IV random excitation of the system is considered and further

criteria relating to displacement~accelerationinertia force and bending stress are

investigated. Here there is no need to consider changing operating conditions when

the treatment is added to the system. The only assumption that is necessary is that

the power spectral density of the exciting force is the same at the resonant

frequencies of both the untreated and treated systems, and, furthermore, does not

vary appreciably in the region of the resonant frequencies. This section also

deals with the effect of a damping treatment upon the sound.pressure transmitted
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through two simple plate structures subjected to random pressure fluctuations.

Finally, in section V, a comparison is made between the effectiveness of

three different commercial damping treatments, on the basis of the criteria

deduced in the previous sections. The comparison is made assuming that equal

weights of the treatments are used on a simple vibrating plate.

II CRITERIA APPLICABLE TO HARMONIC VIBRATIONS

II.A. Characteristics of the Mechanical System

Here we consider the effect of a damping treatment on the response of a

system vibrating in a single natural mode of vibration under the action of a

harmonic exciting force. Before the damping treatment is added, the generalized

mass and stiffness of the system are M and K respectively. Suppose also that

there exists a viscous damping mechanism, giving a generalized damping coefficient

D. Denoting the exciting force by R.e ýt the equation of motion of the system

(in terms of the generalized displacement, q) is

The damping treatment increases the mass and stiffness coefficients to M/X

and Kcr(l+[)respectively, the, imaginary part of the complex stiffness being

contributed by the "hysteretic" damping action of the treatment. If the vibrating

system is a uniform flat plate attached to a rigid structure, and the damping

treatment is in the form of a uniform layer over the plate, then/A is the factor

by which the treatment increases the mass per unit area, and a- is the factor by

which it increasec the flexural stiffness of the plate. The equation of motion

after treatment is therefore

S+ + RK + i.Pe
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II.B. The effect of the treatment on the resonant displacement amplitude.

Provided the initial damping (represented by D) is small compared with the

added damping, the maximum amplitude of q (denoted by q max) occurs at the frequency

-= (-. .. i 3

Then -MU TV KTo)=-Y **)

Now the maximum displacement of the system in its untreated condition can be

expressed in the form P/kY? where 1ý is twice the damping ratio (D/Dcrit)

corresponding to the initial damping. The effect of the damping treatment has

therefore been to divide the initial resonant displacement amplitude by ' //
/̂ U

The effectiveness, and hence the efficiency, of a treatment used to attenuate

vibration displacements is evidently measured by the value of the product a- .

In general, this product increases monotonically with the quantity of treatment

added, whereas cl approaches an asymptotic value. Ko-YI is of course a true

measure of the damping added to the system, whereas y) is a function of the

damping and stiffness. The criterion by which different treatments should be

judged when used to attenuate harmonic vibration displacements is therefore the

value of u- per given weight of treatment. Similarly, when the effect of

increasing the amount of a given treatment is considered, the values of ar7

for the different amounts should be compared. The value of itself is an

insufficient criterion.

II.C. The effect of the treatment on the surface bending stresses of a

vibrating plate.

To first order, the effect of the treatment on the displacement amplitude is

the same as that on the amplitude of the stress within the system. However, the

bending stress at the surface of a treated vibrating plate is proportional
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to the product of the amplitude of curvature and the distance from the plate surface

to the effective neutral surface of the section. The curvature is directly

proportional to the displacement and therefore varies in inverse proportion to a'

Suppose the distance between the free plate surface and the neutral

surface is initially y, and after treatment is oy. Since the amplitude of the

oscillating curvature is proportional to the displacement amplitude, the surface

bending stress of the system in its initial state is proportional to y P/K%

and in its final state to c)yP/K a* The final stress is therefore equal to

the Initial stress divided by 0v o- 7/1. . The factor - therefore

represents the effect of the damping treatment, the larger it is the smaller

being the bending stress. o-Yoa-I is then the criterion by which different

treatments should be judged when considering their effects upon surface bending

stresses due to harmonic vibration at resonance.

Since the distance between the free surface and the plate neutral surface

increases as the treatment thickness is increased, it obviously implies that

the stresses do not decrease as rapidly as the displacement.

II.D. The effect on the resonant velocity amplitude.

The amplitude of the generalized velocity of the system is given by Ict

where r is the displacement amplitude at the frequency w. This may easily be

shown to have a maximum value at the frequency Wn(' + V?)+ when the assumption

is made that the viscous damping is small compared with the hysteretic damping.

At this frequency the velocity amplitude is given by

""P / K M + [ 2 ... 11.5

which, for small values of reduces to

1;1 . .. I .h1.6
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The maximum attenuation of harmonic velocity amplitude is obviously obtained when

teproduct is as large as possible. The mass of the treatment

(included in the factor A ) is now important, but when comparing the effectiveness

of equal weights of different treatments the significant parameter is the product

O(T1  . The criterion by which different treatments should be judged when used

to attenuate vibration velocity amplitudes is therefore the value of cr

per given weight of treatment. When judging the effect of different quantities

of the same treatment the complete expression 0Qh* must be used as the

criterion.

II.E. The effect on the resonant acceleration and inertia force

amplitudes.

Acceleration amplitudes are of importance in connection with the effect on,

say, items of electronic equipment mounted on a vibrating structure. Mal-

functioning and failure of such equipment is caused by prolonged exposure to

acceleration amplitudes above a certain level. Inertia force amplitudes are of

importance in connection with acoustically excited aeroplane structures. Large

harmonic inertia forces are reacted at the boundaries of the side panels of a

fuselage in the vicinity of a propellor, and these may cause fatigue failures of

rivets attaching the panels to the reinforcing structure. The effect of a

damping treatment upon these quantities is therefore considered in this section.

The generalized acceleration amplitude under harmonic excitation is

given by W ,• . This has a maximum value at the frequency uOn + 1

making the same assumption as before with regard to the magnitude of the viscous

damping. At this frequency the acceleration amplitude is given by

14 1 -m~w ,..II .7

reducing to
"1_-- / . . .II.8
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for small values of v . This is minimized by making j as large as possible.

Considering equal weights of different treatments, the significant parameter is

evidently ý itself. Its value is therefore a sufficient criterion by which to

judge the efficiency of a given quantity of treatment used to attenuate

acceleration amplitudes.

The inertia force amplitude is directly proportional to the product of

the generalized mass and the generalized acceleration amplitude. Its maximum

value therefore occurs at the same frequency as the maximum acceleration, and is

proportional to

reducing to P/1 for small ý . Again, the value of ý for a given weight of

treatment is a sufficient criterion by which to judge the efficiency when

attenuating inertia force amplitudes.

It should be noted that as I becomes large, the term • (• +12)-/2

approaches unity. Any attempt to increase the value of 1 provided by a given

treatment when is already large, is not then accompanied by a worth-while

reduction of acceleration or inertia force amplitude. It is probable, however,

that when ' is large enough for this effect to be important, the problems

arising from the accelerations and inertia forces will have already been solved.

The criteria developed in the whole of section I are summarized in table I.

III CRITERIA APPLICABLE TO HARMONIC SOUND TRANSMISSION THROUGH SIMPLE STRUCTURES,

As the addition of damping to a system has little effect upon forced

vibrations apart from those occurring at resonance, this section will deal only with

sound transmitted under structural resonant conditions and "coincidence" conditions.

Two special cases only will be considered but these will serve to show the

8



different ways in which the mass, stiffness and damping properties of the treatment

affect the transmitted sound pressure. This implies, of course, that different

efficiency criteria are required for Judging the merits of different treatments,

depending on the nature of the transmission.

Two very simple transmission mechanisms will be considered:

(a) The sound transmitted through a finite flexible plate set

in an otherwise rigid and infinite wall (or baffle).

An incident field of plane harmonic sound waves impinges on

one side of the plate causing resonance in one of its natural

modes. The sound wavelength is assumed to be large compared with

the plate dimensions.

(b) The sound transmitted through an infinite flexible plate when

an infinite field of plane harmonic waves impinges on one side,

causing "coincidence" transmission to exist.

IIIA The sound transmitted throuah a finite plate,

As stated above, the plate is considered to be mounted in an infinite rigid

wall. Firstly it is assumed that, free field conditions exist on both sides of the

wall, and on one side the incident field exerts an oscillating pressure on the

plate. It is further assumed that the wavelength of the sound radiated by the

motion of the plate is large compared with the plate dimensions. (This is

inevitable if the incident sound wavelength is large, as already assumed). Insofar

as the transmitted sound pressure in the far field is concerned, the oscillating

plate may now be regarded as a simple source having a strength given by twice the

product of the plate area and the average plate velocity amplitude. Now the sound

pressure at a large distance from a simple source is proportional to the product

of the source strength and the frequency, i.e. to L times the plate generalized

velocity amplitude, which is the same as the amplitude of the generalized

9



acceleration of the plate. The latter is given by equations 11.7 and 11.8 in

which P is now to be interpreted as the generalized force corresponding to

the incident sound pressure, and Mk. as the generalized mass of the plate

corresponding to the given mode. Then the maximum transmitted pressure is

proportional to

This assumes that the acoustic radiation damping is small compared with the

damping arising from the treatment, an assumption which is justifiable for any

conceivable plate. It is evident therefore that for a given weight of damping

treatment, the transmitted pressure is inversely proportional to (t + 2)!/2

The value of ý is then a sufficient criterion by which to judge the effectiveness

of equal weights of different treatments.

Now if one side of the plate is enclosed by a reverberant chamber, the natural

modes of the plate will couple with standing waves within the chamber. There are,

in fact, an infinite number of standing waves with which any one plate mode may

couple, implying that there is an infinite set of natural frequencies at which

the mode may resonate. (See, for example, refs. 2,3). It is required to

establish, therefore, the relationship between the resonant pressure amplitude

within the chamber, corresponding to any one of the standing wave systems, and the

generalized plate characteristics (including /a- and %ý ). A preliminary

investigation has been carried out by the author (the work to be published later)

considering a rectangular chamber, one wall of which consisits of the flexible

plate assumed to have simply supported edges. The other walls were considered to

be rigid. The results of the analysis suggest the following effects of increasing

and ý :

The sound pressure at each of the standing wave resonances is inversely

i0



proportional to 7 . The effect of increasing r and T may be combined by

considering the effect they have on the uncoupled natural frequency of the

plate, and then examtning the effect of change of frequency. If the coupled

standing wave - plate natural frequency is much less than that of the uncoupled

plate, then an increase of the plate frequency tends to increase the resonant sound

pressure. If, on the other hand, the coupled frequency is considerably greater

than the plate frequency, then increasing the plate frequency decreases the

resonant sound pressure. When the coupled frequency is close to the plate

frequency, no such generalisation may be made and each case must be considered

on its own merits.

III.B. The sound transmitted by coincidence throuah an infinite plate.

We now consider the effect of a damping treatment on the sound pressure

transmitted through an infinite plate (or beam), on one side of which is an incident

sound field of plane harmonic waves whose wave-fronts are inclined at an angle

e to the plate surface. Before the treatment is added, coincidence transmission

exists, the trace velocity of the incident field coinciding exactly with the phase

velocity of the flexural wave in the plate excited by the incident field. The

transmitted pressure is then equal to the incident sound pressure. The mass

and stiffness of the damping treatment changes the phase velocity of the

flexural wave, and if the incident sound field remains the same, a de-tuning

effect will reduce the transmitted pressure. The reduction due to the de-tuning may

be considerably greater than that due to the additional damping. If, however, the
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inclination or the frequency of the incident field is changed (the incident

pressure remaining constant) and coincidence conditions are restored, then a

measure of the effectiveness of the damping treatment may be found by comparing the

transmitted sound pressure under these new coincidence conditions with the

pressure under the initial conditions.

In the subsequent analysis, a unit width of the treated plate need only be

considered. This has a complex flexural stiffness TB (i1+ iv) and

a mass per unit length 4m . The imaginary part of the complex stiffness

represents the internal damping due to the damping treatment. B and M are the

flexural stiffness and mass per unit length before the treatment is added.

a- & are the stiffness and mass factors representing the effect of the

treatment.

Let the incident pressure amplitude be p.. Due to reflection of the

incident wave and consequent pressure doubling, the incident pressure acting on

the plate is given by

P . Qxp L (Wt + 2JTx/Xt . .. 1III1

(See figure I for explanation of undefined symbols). If it is assumed already

that the flexural wave in the plate is of harmonic form, and of wavelength Xt
it may be shown that the transmitted (or re-radiated) pressure, p. , acting on the

plate surface is

loc.o m

where v is the local transverse bending displacement of the plate. As this

re-radiation occurs from each side of the plate, the net re-radiation pressure

acting on the plate is 2 pc. cos 9. •v/c) t

12



The equation for the forced motion of the strip may now 'be written

rrB (I + )Mv/4 + , .n x = - 2 p,. exr ýL(t +4 r/x,)- Z • t ,c.ct -

•.111.3
Putting v v • exp L (W- + 2ITX/ t + E: ,equating the real and imaginary

parts on both sides and eliminating e , it is found that

= ~ ~ n-/ 2+. 2 +{-(r/~ 4v + ' e C. os6)]
... III .4

For small q , it is sufficiently accurate to consider coincidence transmission

occurring at the frequency W. , given by

0-2 (1Tr/xt) - 0 ... 111.5

The local plate velocity and the incident sound pressure are then exactly in

phase and the transmitted sound pressure is close to its maximum value, which

actually occurs at a slightly greater frequency.

At the frequency Wc , the transmitted sound pressure amplitude is Wc€ Pg.CsS

Substitution for v and rearrangement yields

S= PL + a-B(2T ... 111.6
2

0 CW'~COS )

Now the trace wavelength Xt is related to W, by

Xtsno = = 2rc/c

and also by ,..111.7

UWC (c /m)9 It . (from.I111.5.)

Using these relationships., and LJ , or ýt and e may be

eliminated from equation III 6. We then have2 _"
=t = E l + 2. Coe ~(tpm)~ t4L = ... 111.8

'0 pc. c.os 0

13



or

P.~• b- + /]-IA T

2 pc

Equation 111.8 may be used to indicate the effect of ,iq and T on

the transmitted pressure when the inclination of the incident field is kept

constant while the frequency is varied to restore coincidence, Equation 111.9

may be used to indicate the effect when the frequency is kept constant and the

inclination is changed. It is implied here that coincidence transmission may

indeed be restored. This may not always be possible, as suggested, for example,

by the term I- (c/L.j , A 2  in equation 111.9. If /is such as to make

this term vanish, or to be imaginary, coincidence transmission cannot occur at

the particular frequency O" .

Now when i is zero (no internal damping), pt = pi. The pressure

amplitude transmitted under damped conditions is therefore 1/ kt or l/k W

times that transmitted under undamped conditions. The significant factors

involved in kA and k. which must be made as great as possible in order

to produce the greatest attenuation of pressure are:

... III.lO

and ... lll.

It is evident that should be as great as possible for the greatest

attenuation. Furthermore, both expressions indicate that it is desirable for

T to be as small as possible. An increase of stiffness counteracts, in some

measure, the effect of the increased damping.

It may be noted that the term (OB/,) is proportional to the resonant

t14



frequency of a treated finite plate, when vibrating in a flexural mode of

wavelength kt. This frequency is usually determined in an assessment test

of the treatment. Each of the expressions III.10 and III.11 are reduced

when this term increases, indicating that it is undesirable for the

damping treatment to increase the resonant frequency of the system if

transmitted sound pressure is to be minimized. If two different damping

treatments provide equal loss factors, I , the most effective treatment

will be that giving the lowest frequency increase (or highest decrease).

IV. CRITERIA APPLICABLETO RANDOM VIBRATIONS.

IV.A. Random Mechanical Response Quantities

Once again, the response of a single degree of freedom system

only will be considered. The system is excited by a force which varies

randomly with time, and it is assumed that the power spectrum of the

corresponding generalised force does not vary appreciably in the region

of the natural frequency of the system. The equation of motion of the

system, in terms of the generalised disolacement, q, is

M+ 4 KT(I - = F(.0 ... IV.1

where F(t) represents the random exciting force. If the power spectral

density of F(t) is denoted by wf( ), then it is well known that the

power spectral density of the generalised displacement, w q(w), is given

by

W($ ) W- ( ty Z 2 ... IV.2
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IZ1I is the square of the modulus of the mechanical impedance,

i.e. (Kv - )M 2  + (uj'D + ÷ K ?- . 0 .IV.3

The mean square value of the generalised displacement, ýci> is given by jw (w) CkW'

Under the restriction quoted above upon the variation of wf((W), and assuming

small total damping, the integral yields

< ) = +

where n = KX /M/'. ... IV.5

Assuming again that the initial viscous damping is very much smaller

than the added hysteretic damping, we may write for the root mean square

displacement

• . ... IV.6-i _
9r~ms W, [wt ,) (r/2)] •4U 3rI I.

Thus the r.m.s. displacement is inversely proportional to Cr-'+ 4-,

and the corresponding efficiency criterion for a damping treatment is the value

of (a4  per given weight of treatment. It follows, by direct comparison with

section II.C, that the criterion relating to the surface bending stress of a

treated plate is T 41 ok per given weight of treatment.

Under the same assumptions, the root mean square value of the generalised

random velocity is given by ujnqrms i.e.

q. W11 i,,ws = ( -/z •...v.7

The r.m.s. velocity is therefore inversely proportional to Cr /, and the

corresponding efficiency criterion is the value of 0412 per given weight of

treatment.

Consider now the mean square value of the random generalised acceleration.
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The power spectral density of the acceleration is given by W4 times the power

spectral density of the generalised displacement. Integrating this from LA):= 0

to w =0), and making the same restrictions as above upon the variation of the power

spectrum in the region of the natural frequency, the mean square value of the

generalised acceleration is found to be

(" ) = [ 2 2Tv jM+ F /,LAIV....

The first of the two components of this expression may be said to derive from

the resonant response of the system, and is therefore dependent upon the

damping. The second component is associated with the inertia reaction of the system,

depending only upon the mass of the system. The relative magnitudes of the two

components are obviously critically dependent upon the shape of the spectrum

of the generalised force. If the resonant component is small compared with the

other, the effect of the damping treatment will be mainly that of its mass,

i.e. mass law- attenuation will pertain. If the resonant component forms an

appreciable part of the total response ,then the criterion -?! (I-ý)may be

used to compare the effects on random acceleration of equal weights of different

treatments. It is convenient to take the square root of this criterion and

since ý is usually very much less than one, it becomes 4 11 . The

force exerted by a randomly excited system on its supports consists of the sum of

the exciting forces and the inertia forces corresponding to the response of the

system. If the system is responding primarily in one mode, this total force will

be proportional to the product of the displacement of the system and the modulus

of the generalised complex stiffness of the mode. The r.m.s. value of the force

will therefore be proportional to

1< 7 +
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Using equation IV.6, this becomes

L ,f (w,)• (,T,)1'. E Pl'+ K- - ( • -] . . .

Assuming once again that I , the efficiency criterion derived from this expression

is evidently r 12 per given weight of treatment (N.B. for convenience the resultant

of the inertia and exciting forces will be referred to simply as the inertia force

from now on).

It may be noted that the last term IV.9 may be written (i /c •- (if 4

Since this quantity must be as large as possible to minimize the random force, W.

should obviously be as small as possible. It is therefore disadvantageous for a

damping treatment to increase the natural frequency of the system, as far as these

inertia forces are concerned, as this increase counteracts, in some measure, the

benefits arising from the increased damping.

The criteria and related response expressions derived in this section

are summarized in Table II.

IV.B. Sound Transmission throuah a sinale olate under random excitation.

Now suppose that the finite plate of section III.A is subjected on one side

to random pressure fluctuations which give rise to a generalized force having a

spectrum which is flat (or nearly flat), as before. The r.m.s. sound pressure

transmitted by one of the plate modes of vibration to the far field on the other side

will be proportional to the generalized r.m.s. acceleration of the plate mode. The

effectiveness of a damping treatment in attenuating the resonant component of the

transmitted pressure is therefore represented by the same expression as derived above

for the r.m.s. acceleration. The corresponding efficiency criterion is again the

value of 3ý+Y per given weight of treatment.
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IV.C. Random Sound Transmission throuah an array of olates sjbjected

to boundary laver oressure fluctuations.

As a further example of the different criteria which must be used for

different systems and response quantities, reference will now be made to the work

of Kraichnan (ref.4). This considers the acoustic radiation from an array of thin,

independent, square plates on one side of which a moving airstream exerts convected

boundary layer pressure fluctuations. After certain simplifying assumptions have been

made, expressions are developed for the mean square radiated sound pressure (i.e.

transmitted pressure) in terms of the mean square incident pressure and plate parameters.

Many different modes of plate vibration contribute to the total radiation.

Under longitudinal dipole excitation, having a distributed convection

velocity, the mean square radiation pressure is found to be of the form

< < )C[(nnB)"z (to)ý2ý(M/ + .2 BT.] I...vuPr Lý

<2) is the mean square incident pressure, and C1 and C2 are constants relating

to the pressure distribution only. L is the length of the plate, Mr the mass per

unit area, and Bo the real part of the flexural rigidity of the plate. The

expression is valid only for small values of * . The criterion for Judging the

efficiency of a damping treatment in attenuating the radiated r.m.s. sound pressure

is now the value of [•It k 4 0- per given value of /. . (The power

K is introduced to allow for the root mean square value. Clearly for the sake of

indicating which is the best of a number of treatments, the square root need not in

fact be taken).

When the Incident pressure fluctuations derive from transverse dipole

excitation and a sharp convection velocity, the mean square radiation pressure is of

the form

< ) <9 ... IV.1
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the corresponding efficiency criterion for a damping treatment in relation to the

r.m.s. pressure being the value of a 1 !/ per given weight.

One of the assumptions made in the derivation of the above expressions is

that the damping (or loss) factor, ', is the same for each of the modes contributing

to the radiation. When the damping derives from a visco-elastic damping treatment,

this assumption is invalid for two reasons:

(a) The visco-elastic properties of the damping medium are considerably

frequency dependent, and will therefore cause variations in

from mode to mode on account of the different natural frequencies

involved.

(b)Constrained layer damping treatments give loss factors and flexural

stiffnesses which depend on the wavelength of the flexural vibration.

The treatments are designed to give optimum damping under certain

conditions of geometry and wavelength. These conditions cannot be

satisfied by all possible modes. The extension of Kraichnan's

analysis to cover variations of damping factor and flexural stiffness

with frequency is undoubtedly beset with great difficultiles.

31. AN EXAMPLE OF THE USE OF THE CRITERIA.

In order to demonstrate the use of the criteria deduced in the preceding

sections, a comparison will be made between three different treatments applied

uniformly to one side of an aluminium plate (or strip) undergoing flexural vibrations.

It will be shown that whereas one treatment may be superior in its effect when judged

by one of the criteria, another treatment may be superior when judged by another

criterion. Furthermore, one of the criteria may indicate that a given treatment is

most effective when a certain optimum quantity is used, whereas another criterion may

indicate that a different optimum quantity is required.
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V.A. A Comoarison of different treatments.

The treatments considered are two different grades of a commercial

"unconstrained layer" type of treatment (referred to as treatment A and treatment B)

and a commercial damping tape (treatment C). A and B consist of filled resins,

different fillers being used in each material. The properties of the materials, as

deduced from laboratory tests on simple treated specimens at a fixed temperature, are:

Treatment A Treatment B

Young's Modulus (real part) 860,000 lb/in. 2  1,080,000 lb/in. 2

Loss Factor 0"193 0"33

Specific Gravity 1"20 1"68

From these values curves have been obtained for the loss factor and

stiffness ratio•r, of a uniform plate, covered uniformly with different quantities

of the treatments (using expressions for I and 9- first derived by Oberst, ref.5.).

An aluminium plate has been considered, having a Young's Modulus of 10.8 x 10 61b/in,,2

and a specific gravity of 2.84. 0 and ý have been plotted in figs. 2 and 3, the

abscissa being the weight of the treatment as a fraction of the weight of the plate.

The damping tape consists of a thin aluminium foil adhering to which is a

soft pressure sensitive damping material. The properties of the damping material

alone are insufficient to permit an estimate being made of the loss factor and stiffness

ratio of a treated platelas the wavelength of the flexural vibration is now an important

parameter in determining these quantities. In view of this, consideration is given only

to the effect of the tape on one configuration, viz. a simply supported aluminium plate

of width 4 inches and thickness 0.036 in., which is long compared with its width.

Laboratory tests on a treated configuration of this type have yielded the following values

for 1 and o- :

1 layer of tape 0.043 1.42

2 layers of tape 0.043 1.62
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The weight of each layer of tape was 0.166 times that of the untreated

plate. These values of ý have been superimposed upon the curves of I and o

for treatments A and B.

From these values of I and athe values have been calculated of certain

selected criteria from the preceding sections, and these are plotted in figs. 2,3, 4

and 5. The criterion relating to harmonic displacement amplitude (1 o ) is shown in

fig.3, together with the loss factor I , which is the criterion relating to

harmonic sound pressure transmitted at resonance through a finite plate. Fig. 4

3/41
shows the criteria relating to random vibration amplitude ( 0 X ), random inertia

force ( ) and random sound pressure transmitted through an array of plates

subjected to boundary layer turbulence. Fig. 5 shows the criteria relating to the

bending stress at the free surface of the plate when vibrating under harmonic

resonant or random conditions ( c oLl and a- , respectively).

It will be seen from fig. 2 that treatment A, which has a smaller Young's

Modulus than treatment B, nevertheless provides a higher stiffness ratio a- than

treatment B. This is due to the lower density of treatment A, which therefore has a

greater thickness for a given weight of material and a correspondingly greater

second moment of area about the neutral surface of the composite plate. This has

an important bearing upon the criteria T and / , which are shown in figs. 3 and

4. At low treatment weights the value of each of these criteria is higher for treatment

B (with the superior material loss factor and Young's Modulus) than for A. At higher

treatment weights this superiority is reversed due to treatment A providing the higher

stiffness ratio. At the low treatment weights, where the stiffness ratio is little

greater than unity, the two criteria approach the values of Z and respectively,

and the treatment providing the highest loss factor is automatically superior.

Consider now the criterion Cr (fig.4), by which is judged the effect of

a treatment on random inertia forces, or on the resonant component of random
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transmitted sound pressure. Since the stiffness ratio is raised to a negative power

in this criterion, the treatment providing the lower stiffness ratio but the higher

loss factor (treatment B) is inevitably superior over the whole weight range. It may

be seen that equation III.10,giving the criterion rrelating to one form of coincidence

transmission, contains Y-,. cy- Y, j The criterion may therefore

be used in relation to both random inertia forces and this form of coincidence

transmission.

The criterion TR' (fig. 4) also shows treatment B to be superior

up to, and beyond, a weight ratio of 10 on account of the higher loss factor and the

very small power to which o- is raised. A maximum appears to occur at the weight

ratio of about 10, but the curves will inevitably rise at higher (very impracticable)

weight ratios on account of the pqsitive power of cr and the asymptotic nature of

The criteria relating to the surface bending stresses in a plate are

shown in Fig. 5. c4 relates to harmonic resonant conditions and 'T Cý

to random conditions. They follow a generally similar trend to the criteria

relating to vibration displacement amplitudes. Over the lower weight range, treatment

B is superior to A under both random and and harmonic conditions, but treatment A is

superior under random conditions above a weight ratio of about 0.5. This superiority

3/4. Ai
derives from the larger values of v ý for treatment A above this weight, which implies

smaller vibration amplitudes. The superiority of A over B does not, however, become

more marked as the weight increases in the same manner as exhibited by

This is due to the distance between the free plate surface and the composite plate

neutral surface being greater for the lower density treatment A than for B. As the

weight of treatment increases, this distance in the case of treatment A becomes

increasingly greater than that of B. It Is this latter effect that causes

for treatment A to be slightly inferior to that for B throughout the weight range,

despite the superiority of a- I for A above a weight ratio of about 0.75.
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Comparing now the criteria corresponding to treatments B and C, it will be

seen that apart from the value of c-, all the criteria for the two layer tape

configuration are inferior to those of treatment B at the same weight. This is due

to the low value of for the two tape layers. The single layer of tape has a

greater value of Q , and a very slightly greater value of vi than has treatment

B at the same weight. This automatically implies that the criteria involving

positive powers of a- have superior values. However, the criterion involving the

negative power of o v• ) is found to have a slightly inferior value to that of

treatment B.

It should be emphasized at this stage that the above comparisons may not

be used to formulate generalized statements regarding the relative merits of

unconstrained layer treatments and constrained layer treatments. A particular

example only has been chosen for the constrained layer configuration, and considerably

different vaiues of the criteria would be expected if the plate wavelength or tape

thickness were to be changed.

V.B. A comparison of different amounts of the same treatment.

The criteria considered in the previous paragraph do not contain the mass

ratio term / . This has been omitted since it is not necessary to include it when

equal weiahts of different treatments are being compared. It has been pointed out in

the Introduction that a damping treatment may add considerably to the weight of thin

light alloy structures (e.g. aeroplane structures). When considering the effect on the

response of varying the quantity of a given treatment, the mass effect must therefore

be included in the criterion used. Fig. 5 shows some of the criteria considered in

the other figures, but with the appropriate mass ratio term included. "- •o

is the criterion relating to the sound pressure transmitted due to boundary layer

excitation. ,- T ' relates to r.m.s. (random) sound pressure transmitted through a

single finite plate, and relates to r.m.s. (random) inertia forces. The first
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two of these criteria increase steadily throughout the range of weights considered,

but comparison with fig. 4 shows that over the upper part of the range the increase

is due mostly (if not entirely) to the increasing mass. The third criterion shows

that the treatments have a maximum effect upon random inertia forces at optimum

treatment weights of about 0.6 and 0.75 of the weight of the plate for treatments

A and B respectively. These compare with optimum weights of about 1.5 and 2.0

required to give maximum values to I for these treatments, i.e. giving minimum

harmonic inertia forces. The existence of the maximum for I is a well known

characteritticof unconstrained layer damping treatments.

The criterion relating to harmonic sound pressure transmitted through a

finite plate (/,Aj ) will not exhibit the maximum shovnby ý alone for these

treatments, but will rise steadily above a relative treatment weight of about 1, roughly

in proportion to I-.

Equation 11.4 shows that the harmonic displacement amplitude, and therefore the

corresponding surface bending stress are independent of/A ; the relevant curves of

figs. 3 and 5 may therefore be considered in the present discussion. Each of these

curves is monotonically increasing, implying that increasing the amount of the

treatment will always provide a further reduction in the amplitude of resonant

vibration and stress. The r.m.s. (random) displacement and stress are dependent upon

the mass ratio , the corresponding criteria for the damping treatment being

l 4 ( and /4 4.1 Since t is raised to a positive power, these expressions

will still increase monoticallly with increasing weight of treatment.

So far, the comparisons have been made between equal weights of different

treatments. This is a valid basis for the aircraft manufacturer who is more concerned

with the weight of the treatment that with the cost. When the cost is of greatest

importance, it is obvious that the comparison should be made as follows:

Suppose treatment A cost X times that of B (for the same weight). The
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criterion for treatment B at relative weight w should be compared with the criterion

for treatment A at weight w/X. The criterion must include the approoriate term in M

(i. e.p cr etc.)~v

Y1 CONCLUSIONS

In this paper, expressions have been derived for the response of simple

systems which have been treated with damping materials and which are subjected to

harmonic or randomly varying forces. These expressions include the effect of the

mass, stiffness and damping of the treatments. From each of the different expressions

for the response quantities considered, a criterion has been found by which to compare

the effectiveness of different damping treatments and the effect of different

amounts of the same treatment. mhe importance of including the effect of the mass

and stiffness of the treatment has been emphasized. On the basis of these criteria, it

has been show that for some of the response quantities (e.g. vibration displacement

amplitude) it is an advantage for the treatment to increase the stiffness of the system,

whereas for others (e.g. inertia forces under random excitation or a certain form

of acoustic transmission by the coincidence effect) it is a disadvantage. In no case,

however, is it a disadvantage to increase the mass of the system.

In the example to illustrate the use of the criteria, it has been shown that

with relatively small weights of damping treatment, the treatment giving the greatest

loss factor to the whole system is superior as judged by each of the criteria. This

follows from the fact that at small relative weights the stiffness and mass increases

are negligible for the particular damping configurations considered. The loss factor

is then the only parameter which has been changed appreciably by the addition of the

treatment. At greater relative weights, it has been shown that one treatment having

a lower density, a lower stiffness and a lower material loss factor than another can,

nevertheless, be more efficient (on an equal weight basis) in attenuating vibration

displacement amplitudes and plate surface bending stresses.
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The criteria relating to harmonic and random inertia forces show that there are

optimum quantities of treatment to give the greatest effects, but the optimum quantities

differ for the harmonic and random conditions. If the amount actually used is mid-way

between these two values, the reduction in effectiveness below the maximum realizeable

is very slight. The other criteria considered are all monotically increasing with

increase of treatment weight, implying that increasing the amount of treatment used

will always further reduce the response.

The implications of these results are that when damping treatments are

being considered for use on light aluminium structures, their effectiveness cannot

be sufficiently defined by stating only the loss factor obtainable from a given amount

of the treatment. The factor by which the stiffness of the structure is increased

must also be given. This implies that the results of the standard Geiger test,

whereby the time rate of decay of a treated steel plate is given as the measure of

the effectiveness of the treatment, is also insufficient. This time rate of decay

is (in effect) but an alternative form of presenting the value of the loss factor

(ref. 6).

The fact that a poorer quality treatment has been shown to have a superior

effect, in some instances, than one of higher quality, suggests that the optimum design

or compounding of a treatment will be different depending on the particular vibration

response quantity it is required to attenuate. It may be that damping treatments can be

developed further along these lines, a different treatment being designed and

recommended for different applications.

The inclusion of the mass and stiffness effects into the criteria for

assessing damping treatments will be more than ever important when "space" damping

techniques are being considered, since these techniques can be expected to give a

very large stiffness increase for relatively small weights of treatment.
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