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DRAG COEFFICIENTS OF SUPERCAVITATING BODIES OF REVOLUTION

AT VARIOUS ANGLES OF YAW

Introduction

One phase of a study of the drag of supercavitating bodies of

revolution consisted of collecting the drag data already available in

the literature. In order to supplement the limited data so discovered,

the evaluation of the drag coefficients of various head forms under cavi-

tating conditions at various angles of yaw, from the measured values of

the pressure distribution, was undertaken.

The aforementioned pressure distributions for zero angle of

yaw were published by the Iowa Institute of Hydraulic Research, in

1948 [1]*. Eight of the head forms included in these first tests were

selected for a further study of pressure distribution under cavitating

conditions at angles of yaw and the results were published in 1962 [21.

The latter also included pressure distribution measurements at zero angle

of yaw. The results obtained for the drag coefficients of the various

head forms at several yaw angles will be presented and compared with the

directly measured values for the drag at zero angle of yaw available in

the literature. No data on direct measurements of drag at angles of yaw

have been found.

This work was supported by Bu3hips, Code 421, under Contract

Nonr 1509(05), Task NB 062-271.

Numbers in [ ] indicate references at the end of this report.
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Nomenclature

d diameter of the body

g acceleration of gravity

h pressure head at a point of the body surface

h0 pressure head of undisturbed flow

h cavity-pressure head

h vapor-pressure headV

i, J, k unit vectors in the x, y, z directions

1, m, n direction cosines of the normal vector n

n unit vector normal to the surface of the body

P0  constant pressure of the undisturbed flow

Pc pressure in cavity

r radius of transverse section of a body of revolution

s arc length measured from nose along a meridian section

Sl) S2 arc lengths on the lee (9 = 0) and windward (9 = ir) sides
measured to the points at which cavitation begins

U0  axial component of incident flow

u velocity component tangent to the arc of a meridian section

u9 velocity component tangent to the circle of a transverse section

v0 transverse component of incident velocity

x, y, z Cartesian coordinates

x, r, 9 cylindrical coordinates

x 8abscissa of the stagnation point

Ab maximum or base area of section of the body

A area of transverse section at s2
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CD drag coefficient

CD1

CDD2 drag coefficients due to pressures on various zones of bodyC D3

CD4

C pressure coefficient
P

C C pressure coefficients on the lee and windward sides of the body

D drag

F force acting on the body

2G(x) equation of the body, r = G(x)

K cavitation number based on cavity pressurec

K cavitation number based on vapor pressurev

V0 magnitude of incident velocity

S.angle of yaw

a coefficient

angle defined by sin = dr/ds

difference between pressure on the surface of the body and
that in the undisturbed flow

difference between the cavity pressure and that in the undis-
turbed flow

9 C(s) azimuthal angle at which cavitation begins

mass density
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Analysis of Pressure Data at Zero Angle of Yaw

We will employ cylindrical coordinates (x, r, 9) with the x-axis

along the axis of symmetry and the origin at the nose of the body. The

bodies for which the drag coefficients are analyzed consist of heads of

the shape of a body of revolution. The equations of these surfaces are

expressible in the form

These equations also relate the cylindrical with the rectangular coordi-

nates (x, y, z) which will be convenient to use in some parts of this re-

port. The slope at any point of the surface is given by

See Figs. 1 and 2.

In reference [11, the cavitation number, Kv p was based on vapor

pressure,

K hkyo- 2 12(1)

where h0  is the pressure head of the undisturbed flow,, hv is the vapor-

pressure head, V0 is the velocity of the undisturbed flow, and g is the

acceleration of gravity. It was found, however, that the cavity pressure

was always higher than the vapor pressure, probably because of the presence

of air in the cavit3. Therefore, in evaluating the drag coefficient, it

seems to be more reasonable to use a cavitation number which is based on

the cavity pressure, Kc [3]

_ , (2)

V - /2
in which hc is the cavity-pressure head.



It will be assumed that the pressure distribution over the por-

tion of the supercavitating body immersed in the cavity is constant and

equal to the cavity pressure. The drag D is then given by

D = IJAp dAb - A6P' (3)

where A p is the difference between the pressure on the surface of the

body and that in the undisturbed flow, 6 p' is the difference between the

cavity pressure and that in the undisturbed flow, D is the drag of the

body, Ab is the area of the body projected on a plane perpendicular to

its axis of symmetry, and the integral in (3) extends over the surface of

the body.

Defining the drag coefficient CD and the pressure coefficient

C by
p

D C = k-ko (4)

(,12) FoVO2Ab

where h is the pressure head at a point of the body surface, we readily

obtain from (3)

CD + CclV skc (5)

in which r is the radius of the body at a transverse section and db the

maximum diameter of the body.

In (5), the integral can be evaluated by graphical integration

over the area under the Cp - vs - (r/db) 2  curve. Values of C Y Kp p Kc

and (r/db) were obtained from references [1] and [2], and the area was

measured both by means of a planimeter and numerically by using Simpson's

quadrature rule.
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Analysis of Pressure Data at Aungles of Yaw

If the flow is assumed to be irrotational and the fluid inviscid
and incompressible, and if a stream of velocity V0 is incident on a body

of revolution at an angle of incidence ov with the x-axis, the velocity field

may be obtained by superposition of an axial flow u0 = V0 cos xd and a

transverse flow v0 = V0  sin o( ; see Fig. 3.

The force acting on the body is given by the integral over the sur-

face of the body

F
S

where n is the unit vector normal to the surface of the body

expressed in terms of unit vectors i, J, k in the direction of the x, y,

and z axes. Defining the drag D as the component of F in the direc-

tion of the flow, we have

D=F.(zc m jýnc 5' tW cc +M

From the equation of the body of revolution

CT 2 22

•z • ) 0 • =(6)

one obtains the direction cosines of~the normal vector i

in which G' = dG/dx . Also we have

Hence the expression for the drag becomes

D f GC -2 Cie,
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On introduction of G' = 2r tan • , the following expression for D is

obtained

D = (7)

The force on the body due to a constant pressure Po is zero:

0 f ffAP,(4ý CC-C&"MO - Mo 9oi )" C0
Subtracting this equation from D and dividing by 1/2 F VO2Ab yield the

following expression for CD:

C., I~f A(~&ýKt~c-Csit t~ci) d 9OJ4(8

If the pressure distribution were known over the entire surface of

the body, the drag could be obtained from (8). Unfortunately, the only pres-

sure measurements available [2] are for a single meridian plane, for Q = 0

andlT . Nevertheless, by introducing a reasonable but approximate assumption,

it has been possible to evaluate the drag coefficient from the integral (8).

The nature of this assumption will be better comprehended by first

recalling certain relations between the velocity components for fully wetted

potential flow about a body of revolution. Denote the velocity distribution

along the surface of the body, corresponding to the axial flow u0 , by

u0f(x) . In accordance with the theory of transverse flows on a body of revo-

lution [41, the velocity distribution corresponding to v0  consists of the

components v0 g(x) cos 9 along the arc of the meridian section and v0h(x)

sin 0 in the direction of increasing @ . The resultant velocity components

at a point (x, r, 0) of the body are then of the form

us \ (. ý&0 4=u9 (10)
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where, by [4], g(x) and h(x) are related by

A -± ILk (ii)

Here u5  is the resultant velocity component tangent to the arc of a merid-

ian section and u is the velocity component tangent to the circle of a

transverse section; see Fig. 4.

The assumption can now be stated, that over the fully wetted por-

tion of a supercavitating body of revolution at an angle of yaw, the varia-

tion of the velocity components us and u@ with the aximuthal angle 9

is in accordance with (9), (10) and (11). This assumption is not exact,

since the total stream surface bounded by the head form and the free stream-

lines is not a surface of revolution. Nevertheless, it appears reasonable

to conclude that the deviation from the assumed law will be small over the

wetted portion of the body, which is actually a surface of revolution.

The functions f(x) and g(x) can now be obtained from the meas-

ured values of the pressure distribution on the upper and lower parts of the

vertical meridian. Let

_ P,- po." _ P- pO

"(112) (,2) f V2 2

denote the pressure coefficients on the upper and lower parts respectively.

Then, from the Bernoulli equation, we have

9,= + _ 14 +n cc _ q -y.) "C (12)

and similarly

CP= - (Too, ).&ra O- L•-.),'C,- (13)

Then

f ~C01 ' t ( CC-+C?7 (14)
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and

W to's,0((- 05)

where x is the abscissa of the stagnation point. Hence we obtain

s!

f(x ) cO; { CC( fi~ (16)

[ - f, (17)

At x 0 we obtain from (11)

+ k4i ) =-kco) (18)

For other values of x , we have

In terms of the functions f, g, and h, the pressure coefficient at any

point (x, r, 9) of the body according to (9) and (10), is given by

e. f (x( cýo± + )•4 Lx 2)Ma 4km oY (20)

It will be convenient to subdivide the surface of the body into

four parts. Let sl denote the arc length, measured from the nose of the

body to the point at which the free streamline separates from the upper or

lee side of the body, and s2 that at which the free streamline separates

from the lover or windward side. Then, from s = 0 to sl , the surface is

fully wetted at each section. From s1  to s2 the body sections are part-

ly wetted, lying in the cavity in the upper part and wetted in the lower; i.e.,

if c (s) defines the line of separation of the cavity, the surface is in

the cavity for jq19 @c(s) and wetted for values Qc (s) 94It. For s>s 2

the body sections lie entirely within the cavity.
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For two of these four zones the pressure distribution is either

immediately known or readily obtained. Thus, in the fourth zone (s > s '

we have Cp = -Kc , and for the first zone C is given by (20) in terms
p p

of the values of f and g from (16) and (17). For the third and fourth

zones (s1< 8 < s2) the only data available are the values of C , and
it is necessary to make an additional assumption in order to determine the

pressure distribution. When the interval s1 to s2 is small, as was the

case for the bodies which were analyzed in the present work, the error due

to the additional assumption, introduced in the following, should also be

small.

Substituting in (8) the expression (20) for C yields for the
p

integral over the wetted parts of the surface

c,= i ft C4& ý *9)'-5i A0 (21)

which can be integrated with respect to 9 . This gives for CDl and CD 2

J- jt,,Att 2 M V CC(22)

AL

(V )4M 0(4Jc 3 d (23)

Since the value Cp = -Kc is assumed within the cavity, the surface integral

(8) yields for the third and fourth zones



-9-

2K -A(A4~C ~ ) S (24Ab '

C" -Ž~C oci (25)
Ab

where Ac is the area of transverse section at s2 * The total drag coef-

ficient is now given by

CD = CDi +CP2 *CD3 + CDd (26)

The additional assumption mentioned above is needed for the eval-

uation of the functions f(x), g(x), and h(x) in the interval s1 sB 2 )

on which CD2  depends. The assumption introduced is that 9c , the aximuthal

angle at which cavitation begins, changes linearly from 0 to Ir with arc

length s , as s changes from al to s2 ; i.e.,

ec = '- (27)

We also have from (20) and (15)

Co IL -Y)4**c (15)

and from (19),

4- .L()- /, k(%,)=- , c)A

where rI = r(xl) , and x corresponds to sI . Evaluating the integral

by the trapezoidal rule, assuming the interval s to s2 to be small, we

obtain

- -~.-~) c)+~()} (29.)



The variation of f, g, and h with x or s can now be readily deter-

mined from (15), (27), (28), and (29).

An alternative assumption, that was also used, employed values of

f(x) extrapolated from its known curve for the wetted portion 0 4 s i s,

instead of (27). The values of Q - g(x) and h(x) were then obtained

from (15), (28) and (29). The difference between the values of C in (23)

obtained by these alternative procedures was negligible.

Results

Curves of CD vs Kc for various head, forms at zero angle of yaw

are showm inFig. 6.

Values of C and C P .were obtained from reference (2] and thePl P 2
drag coefficient was computed for the cases in which the data showed that a

steady cavitation bubble was present. It appeared to be possible to evaluate

CD for only the following forms: the hemispherical, the 2-caliber ogival,

the 450-conical and 2:1 ellipsoidal heads.

The above-described method was applied to the hemispherical and

ogival heads. For the conical and ellipsoidal heads, no partly cavitating

zone needed to be considered. Typical curves for f, g, and h are plotted

against s/d for the hemispherical head in Fig. 5. The calculations for

CD were performed by an IBM 7070 computer.

The resulting values of the drag coefficients are presented in the

following table where the values for o6 0 are also listed for comparison.

The data are also graphed in Fig. 15.
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Drag Coefficients of Supercavitating

Bodies at Angles of Yaw

Sin deg. Kc CD

hemispherical head 0 0.078 0.349

0 0.210 0.424

0 0.300 0.463

6 0.105 0.359

6 0.280 0.470

15 0.100 0.359

conical head 0 0.085 0.282

0 0.155 0. 324

0 0.240 0.377

6 0.100 0.301

6 0.300 0.435

15 0.085 0.294

15 0.250 0.415

2:1 ellipsoidal head 0 0.105 0.226

0 0.215 0.280

6 0.105 0.277

2-caliber ogival head 6 0.105 0.195

6 0.175 0.218
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Discussion

Comparison of values of CD at zero angle of yaw obtained from

the Iowa data and the other available data are shown in Figs. 7 to 13,

(5 - 101. However, the Iowa data are for relatively high values of K ,

while most available data are for relatively low values of Kc . Therefore,

a direct comparison of results can only be made between Iowa data and DMT.M.B.

data for the hemisphere, the 2:1 ellipsoid, the 2-caliber ogive, and the

blunt head. From Figs. 7, 9, and 11 it is seen that the Iowa points are

always higher than those from D.T.M.B.; i.e., about 7 percent higher for the

blunt, 15 percent higher for the hemisphere, and about 36 percent higher for

the 2:1 ellipsoid and the 2-caliber ogive. In absolute magnitude, the dif-

ferences are of the same order for the blunt and hemispherical heads and

somewhat greater for the 2:1 ellipsoid and 2-caliber ogive. This discrepancy

.in drag coefficient might be due to the fact that the D.T.M.B. model was sup-

ported by a sting of small diameter in comparison with the maximum diameter

of the head, but the Iowa head was followed %by a cylindrical body (see Fig.

14). As is described in reference (7), for relatively large values of KC
there is a vortex flow of a vapor-water mixture behind the model, when sup-

ported by a sting, and a reentrant jet. The latter, impinging on the base,

would be expected to increase slightly the pressure on it. On the other hand,

this phenomenon would not occur with a cylindrical afterbody. The fact that

the two sets of data converge with decreasing values of Kc is also in accord-

ance with the foregoing argument, since the effect of the reentrant jet would

be expected to diminish with increasing length of cavity. The drag coeffic-

ient for the Reichardt models, Figs. 7, 8, 12, which were sting supported,

are also smaller than the Iowa values. The results for the Convair heads,

which were also attached to cylindrical afterbodies, lie between those for

Iowa and D.T.M.B.

As is seen in Fig. 11, the drag coefficient for a sting-supported

2:1-parabolic head at zero cavitation number, obtained both experimentally

and theoretically by N.A.S.A. [9], is CD = 0.125. This agrees with the

D.T.M.B. result obtained by extending the CD vs Kc curve to Kc = 0

On the other hand, the value obtained by extrapolating the Iowa data is
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higher. It is again suggested that this difference may be attributable to

the mode of support.

The results for the drag coefficient at 60 and 150 angles of yaw

from the data of reference (2], shown in Fig. 15, indicate the following:

1. The drag coefficient CD increases with increasing cavity pressure

Kc , according to a linear law which agrees with that proposed by Eisen-

berg [10],

CD (Kc) = D(0)(+

for bodies on which the point of detachment varies with K p and

CD ~CC) C(0) ( I +Kc

for a fixed point of detachment. The constants for each form were found to

be slightly different from those given by Eisenberg.

2. The drag coefficient, for a given value of the cavitation number,

appears to increase slightly with the angle of yaw.

3. The relative order of increasing drag coefficients for different
head forms for o= 60, shown in Fig. 14d, is as follows: (1) ogive, (2) ellip-

soid, (3) cone, (4) hemisphere.

Conclusions and Recommendations

From the foregoing study of drag coefficients of bodies of revolu-

tion in supercavitating flows at various angles of yaw, the following con-

clusions were reached:

1. The drag coefficients computed from the Iowa pressure data are higher

than the values from other sources. This may depend upon how the head form

was supported. The effect of the mode of support should be studied.

2. A linear relationship between CD and Kc has been confirmed for

all the head forms, even at relatively high cavitation numbers. The slope

of each straight line varies slightly.

3. Only a slight change in the drag coefficient was found when the body

was subjected to angles of yaw of 6 and 15 degrees in supercavitating flows.
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Direct measurements of the drag of cavitating head forms at angles of yaw

are lacking and should be undertaken.
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Fig. 5, Auxiliary functions for calculating velocity distribution at an angle of yaw for

a hemispherical head. a(=60, K,=O.105
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Fig. 14. Sketch of supercovitating flow with different head supports
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