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DRAG COEFFICIENTS OF SUPERCAVITATING BODIES OF REVOLUTION
AT VARIOUS ANGLES OF YAW

Introduction

One phase of a study of the drag of supercavitating bodies of
revolution consisted of collecting the drag data already available in
the literature. In order to supplement the limited data so discovered,
the evaluation of the drag coefficients of various head forms under cavi-
tating conditions at various angles of yaw, from the measured values of

the pressure distribution, was undertaken.

The aforementioned pressure distributions for zero angle of
yaw were published by the Iowa Institute of Hydraulic Research, in
1948 [1)*. Eight of the head forms included in these first tests were
selected for a further study of pressure distribution under cavitating
conditions at angles of yaw and the results were published in 1962 [2].
The latter also included pressure distribution measurements at zero angle
of yaw. The results obtained for the drag coefficients of the various
head forms at several yaw angles will be presented and compared with the
directly measured values for the drag at zero angle of yaw available in
the literature. No data on direct measurements of drag at angles of yaw

have been found.

This work was supported by BuShips, Code 421, under Contract
Nonr 1509(05), Task NR 062-271.

»
Numbers in [ ) indicate references at the end of this report.
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Nomenclature

d diameter of the body

g acceleration of gravity

h pressure head at a point of the body surface

hO pressure head of undisturbed flow

hc cavity-pressure head

hv vapor-pressure head

?, 3, k unit vectors in the x, y, z directions

l, my n direction cosines of the normal vector n

n unit vector normal to the surface of the body

Py constant pressure of the undisturbed flow

pc pressure in cavity

r radius of transverse section of a body of revolution

8 arc length measured from nose along a meridian section

81, Sy arc lengths on the lee (6 = 0) and windward (@ = 1) sides
measured to the points at which cavitation begins

uo axial component of incident flow

ug velocity component tangent to the arc of a meridian section

Uy velocity component tangent to the circle of a transverse section

Yo transverse component of incident velocity

X ¥, 2 Cartnsian coordinates

X, r, © cylindrical coordinates

Xg abscissa of the stagnation point

>

maximum or base area of section of the body

area of transverse section at 52
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drag coefficient

drag coefficients due to pressures on various zones of body

pressure coefficient

pressure coefficients on the lee and windward sides of the body
drag |
force acting on the body

equation of the body, r“ = G(x)
cavitation number based on cavity pressure
cavitation number based on vapor pressure
magnitude of incident velocity

angle of yaw

a coefficient‘

angle defined by sinY = dr/ds

difference between pressure on the surface of the body and
that in the undisturbed flow

difference between the cavity pressure and that in the undise
turbed flow

azimithal angle at which cavitation begins

mass density



Analysis of Pressure Data at Zero Angle of Yaw

We will employ cylindrical coordinates (x, r, 9) with the x-axis
along the axis of symmetry and the origin at the nose of the body. The
bodies for which the drag coefficients are analyzed consist of heads of
the shape of a body of revolution. The equations of these surfaces are
expressible in the form ‘

y = n(x) ros 6 : Z = /L(?A)Mg

These equations also relate the cylindrical with the rectangular coordi-
nates (x, ¥, 2z) which will be convenient to use in some parts of this re-
port. The slope at any point of the surface is given by

AQD?D )’ = £iﬁ;_
dx
See Figs. 1 and 2.

In reference [1), the cavitation number, Kv s wag based on vapor
pressure,

Kv = ba;—kz‘ (1)
Vi /2q

where ho is the pressure head of the undisturbed flow, - hv is the vapor-
pressure head, Vo is the velocity of the undisturbed flow, and g 18 the
acceleration of gravity. It was found, however, that the cavity pressure
wvas always higher than the vapor pressure, probably because of the presence
of air in the cavity. Therefore, in evaluating the drag coefficient, it
seems to be more reasonable to use a cavitation number which is based on

the cavity pressure, K, (3]

ho - h
|¢: © C (2)
¢ \43/235}

in which hc is the cavity-pressure head.



It will be assumed that the pressure distribution over the por-
tion of the supercavitating body immersed in the cavity is constant and

equal to the caviiy pressure. The drag D is then given by

D= jAp(LAb-AbAp’ (3)
S

where A p 1s the difference vetween the pressure on the surface of the
body and that in the undisturbed flow, QO p' is the difference between the
cavity pressure and that in the undisturbed flow, D 1s the drag of the
body, Ab is the area of the body projected on & plane perpendicular to
its axis of symmetry, and the integral in (3) extends over the surface of
the body.

Defining the drag coefficient C., and the pressure coefficient

D‘
C_ b
P M

— D C = —kl—:—hiL— (4)
° T UR)pVEA, " W/2g

where h is the pressure head at a point of the body surface, we readily

obtain from (3)

&
Co = 4] G algf +K )

in which r 4is the radius of the body at a transverse section and db the

maximum diameter of the body.
In (5), the integral can be evaluated by graphical integration

c
and (r/db) were obtained from references [1] and [2], and the area was

over the area under the Cp - vs - (r/db)2 curve. Values of Cp , K

measured both by means of a planimeter and numerically by using Simpson's

quadrature rule.
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Analysis of Pressure Data at Angles of

Yaw

If the flow is assumed to be
and incompressible, and if a stream of
of revolution at an angle of incidence
may be obtained by superposition of an

v =V

transverse flow o 0

sin  ; see

The force acting on the body
face of the body

f': = -ISP'VLdS

vhere n is the unit vector normal to

m" =
expressed in terms of unit vectors i,
and 2z axes.

tion of the flow, we have

‘.D:: f-(z COS«OC'%'I/MM(X.) :J
S

irrotational and the fluid inviscid
velocity VO is incident on a body
o¢ wvith the x-axis, the velocity field
axial flow u, =V

0 0 cos o¢ and a
Fig. 3.

is given by the integral over the sur-

the surface of the body

z‘E+jm+En
J, k¥ in the direction of the x, y,
Defining the drag D as the component of F in the direc-

p(leoso +msina)dS

From the equation of the body of revolution

2t - Gx) =0

‘/ZZ=,gZ+ZZ (6)

one obtains the direction cosines of the normal vector =

’

G
'J G +422
in which G' = dG/dx .

dS = nd6ds

Also we have

)

2%y

‘/ G+ 4an

2Z

s AaoJ‘ dx

Hence the expression for the drag becomes

G'eoso -2 sm

46 de

D =[fer

VG'2 +4nr?



On introduction of G' = 2r tan x , the following expression for D 18
obtained

D =H/LP(mIm_ac - cosysimucot) o6 ds (7)
The force on the body due to a constant pressure Py is zero:

0 = [[np, (4imy cosu - cosy simot cos 6) o6 s

Subtracting this equation from D and dividing by 1/259 VozAb yield the
following expression for CD :
Cy =Alf]/tC,,(M)‘wa-mX‘Mum9) d.6ds (8)

. )

If the pressure distribution were known over the entire surface of
the body, the drag could be obtained from (8). Unfortunately, the only pres-
sure measurements available [2] are for a single meridian plane, for @ =0
and T . Nevertheless, by introducing a reasonable but approximate assumption,
it has been possible to evaluate the drag coefficient from the integral (8).

The nature of this assumption will be better comprehended by first
recalling certain relations between the velocity components for fully wetted
potential flow about a body of revolution. Denote the velocity distribution
along the surface of the body, corresponding to the axial flow Uy s by -
uof(x) . In accordance with the theory of transverse flows on a body of revoe
lution [4], the velocity distribution corresponding to Yo consists of the
components vog(x) cos @ along the arc of the meridian section and voh(x)
sin @ in the direction of increasing © . The resultant velocity components
at a point (x, r, ©) of the body are then of the form

Uy = VoU(t)moch(ac)moLme] (9)

Up= VY, h(x) bim o am© (20)



-6

where, by (4], g(x) and h(x) are related by

ORES %[ahtﬂ] (11)

Here ug is the resultant velocity component tangent‘to the arc of a merid-
ian section and u9 is the velocity component tangent to the circle of a
transverse section; see Fig. 4.

. The assumption can now be stated, that over the fully wetted por-
tion of a supercavitating body of revolution at an angle of yaw, the varia-
0 with the aximuthal angle ©
is in accordance with (9), (10) and (11). This assumption is not exact,

tion of the velocity components u_ and u

since the total stream surface bounded by the head form and the free stream=-
lines is not a surface of revolution. Nevertheless, it appears reasonable
to conclude that the deviation from the assumed law will be small over the
wetted portion of the body, which is actually a surface of revolution.

The functions f{x) and g(x) can now be obtained from the meas-
ured values of the pressure distribution on the upper and lower parté of the
vertical meridian. Let

S T - P
C;P; - ('/Z)f Voz CPz (|/2)f) Voz

denote the pressure coefficients on the upper and lower parts respectivély.

Then, from the Bernoulli equation, we have

CP.‘=1 _J&%‘_@_ = | — (f(x)cosoc q(x)u}ncx}z (12)
o
end similarly

Cp, = p(mlma-%mmql . (13)

Then

f(x) ws,oc+ta(x) s = ‘/ f- Cf,\, | (14)



and

+\J1—sz , X3 X

]C(x) w&d—%(n)&/n/u: (*5)
- ,1 - C4,2 ,XE %

where Xg is the abscissa of the stagnation point. Hence we obtain

,U(X)oos,o(=%[,/t-cﬂ £ -G ) (16)
%(x) Am K = _'2‘_[]1_._" F m] (17)

At x =0 we obtain from (11)

WV

9(0) = - [ndk | hgm )= -he (18)
For other values of x , we have
$
h(x) = - 'TL 9(x) ds (19)

In terms of the functions f, g, and h, the pressure coefficient at any

point (x, r, ©) of the body according to (9) and (10), is given by

QP - |- [f(x)cosowg(x)ma m@]‘z_[h(x)Moc MB_]Z (20)

It will be convenient to subdivide the surface of the body into
four parts. Let 8y denote the arc length, measured from the nose of the
body to the point at which the free streamline separates from the upper or
lee side of the body, and 8, that at which the free streamline separates
from the lower or windward side. Then, from s =0 to 8 s the surface is

fully wetted at each section. From 8y to S5 5 the body sections are part-
ly wetted, lying in the cavity in the upper part and wetted in the lower; i.e.,
if Oc(s) defines the line of separation of the cavity, the surface is in
the cavity for |0} & Qc(s) and wetted for values Oc(s) & 0£&T. For s>s

the body sections lie entirely within the cavity.

o



For two of these four zones the pressure distribution is either
immediately known or readily cbtained. Thus, in the fourth zone (s > sz) ,
we have Cp = -KC » and for the first zone CP is given by (20) ip terms
of the values of f and g from (16) and (17). For the third and fourth
zones (s < 8«68 ) the only data available are the values of Cp »
it is necessary to make an additional assumption in order to determ%ne the
pressure distribution. When the interval 5y to 8, is small, as was the
case for the bodies which were analyzed in the present work, the error due
to the additional assumption, introduced in the following, should also be

and

small.
Substituting in (8) the expression (20) for Cp yields for the
integrél over the wetted parts of the surface

G=L “4[1 (Cwsauam«aﬁ) - (hsim d aun 6) j(mfw« cos[mxwﬂded,s (21)

which can be integrated with respect to ©. This gives for CDl and CD2
4. . . N .
_ . o0l ity (0% b i)t P aim2 '

Gy = A'L'L{Mﬁz 2f o'l - (§¥R)oime]+ e[ smixcas )} noosacds (22)

A' .
Cop= & | A{(m-a cose simy (1-floshc -]

s md,[(l-{'lcos}o(—hzmloC)C«ﬂf‘*’zF% costoc MX]

+am« co&o([z{:? wa[-(gz-l\f)mz‘} UL;%'- - z"—MZBc,)

2,2y - 3 . 1 .
"((j -h)md(MUQc-‘g‘ dm,59c)mx}d¢ (23)
Since the value Cp = -K, is assumed within the cavity, the surface integral

(8) yields for the third and fourth zones



0=

)
Coy = ZAK°I/L(G¢ Coval pim f -pim €, $imo cos ) ds (24)
b 4, :
Gy = Ac. K, cos« (25)

Ap

where Ac is the area of transverse section at s The total drag coef-

2 *
ficient is now given by

CD = CD1 +CDZ +C93 + CD‘! (26)

The additional assumption mentioned above is needed for the eval-
uation of the functions f(x), g(x), and h(x) 1in the interval slé 5 & 8oy
on which cDZ depends. The assumption introduced is that Qc , the aximuthal
angle at which cavitation begins, changes linearly from O to % with arc

length s, as 8 changes from 8y to 8, ; i.e.,
A-A o
B = T =———L (27)
42"4‘]

We also have from (20) and (15)

(F 0 covar +G09 4im o 038"+ e sima sin8, = 14K, (28)

{cz)oasoufj(%)wmoc = f1 - sz (15)
. \

and from (19),

i« h(i) -y L"(Xq) = - I:% (%) dé/

where r; = r(xl) , end x, corresponds to s; . Evaluating the integral
by the trapezoidal rule, assuming the interval s, to s, tobe small, ve
obtain

he = i/z' he) = 5(8-8,) {90 +3(1.))} (29)

A
(A
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The variation of g, and h with x or & can now be readily deter-

f’
mined from (15), (27), (28), and (29).

An alternative assumption, that was also used; employed values of
f(x) extrapolated from its known curve for the wetted portiop 0Oss8s = 8y s
instead of (27). 7he values of I g{x) and h(x) were then obtained
from (15), (28) and (29). The difference between the values of CDz in (23)
obtained by these alternative procedures was negligible.

Results

Curves of. CD Vs Kc for various head forms at zero angle of yaw

are shown in.Fig. 6.

Values of Cpl and sz were obtained from reference [2] and the
drag coefficient was computed for the cases in which the data showed that a
steady cavitation vubble was present. It appeared to be possible to evaluate
CD for only the following forms: the hemispherical, the 2~caliber ogival,

the 45%conical and 2:). ellipsoidal heads.

The above-described method was applied to the hemispherical and
ogival heads. For the conical and ellipsoidal heads, no partly cavitating
zone needed to be considered. Typical curves for f, g, and h are plotted
againsf s/d for the hemispherical head in Fig. 5. The calculations for

CD were performed by an IBM 7070 computer.

The resulting values of the drag coefficients are presented in the
following table where the values for o = 0 are also listed for comparison.

The data are also graphed in Fig. 15.
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Drag Coefficients of Supercavitating
Bodies at Angles of Yaw

o in deg. K c CD
hemispherical head 0 0.078 0.349
0 0.210 0.424
0 0.300 " 0.463
6 .. ..0.105 0.359 .
6 0.280 0.470
15 0.100 0.353
conical head 0 0.085 0.282
0 - 0.155 0.324
0 0.240 0.377
6 0.100 0.301
6 0.300 0.435
15 . 0.085 0.294
15 0,250 0.415
2:1 ellipsoidal head 0 0.105 0.226
0.215 0.280
6 0.105 0.277
* 2-caliber ogival head | 6  0.105 7 0.195
0.175 0.218
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Discussion

Comparison of values of C, at zero angle of yaw obtained from

the Iowa data and the other availablg data are shown in Figs. 7 to 13,

(s - 10}. ﬁowever, the Iowa data are for relatively high values of Kc ’
vhile most avallable data are for relatively low values of Kc « Therefore,

a direct comparison of results can only be made between Iowa date and DiT.M.B.
data for the hemisphere, the 2:1 ellipsoid, the 2-caliber ogive, and the
blunt head. From Figs. 7, 9, and 11 it is seen that the Iowa points are
always higher than those from D.T.M.B.; 1l.e., about,7'percent higher for the
blunt, 15 percent higher for the hemisphere, and about 36 percent higher for
the 2:1 ellipsoid and the 2-caliber ogive. In absolute magnitude, the dif-
ferences are of the same order for the blunt and hemispherical heads and
somevhat greater for the 2:1 ellipsoid and 2-caliber ogive. This discrepancy
in drag coefficient might be due tb the fact that the D.T.M.B. model was sup-
ported by a sting of small diameter in compqrison with the maximum diameter
of the head, but the Iowa head was followed by a cylindrical body (see Fig.
14). As is described in reference (7], for félatively large values of K,
there is a vortex flow of a vapor-water mixture behind the model, when sup-
ported by a sting, and a reentrant Jet. The latter, impinging on the base,
would be expected to increase slightly the pressure on it. On the other hand,
this phenomenon would not occur with a cylindrical afterbody. The facﬁ that
the two sets of data converge with éecreasing"values of Kc is also in-accord-
ance with the foregoing argument, since the effect of the reentrant Jet would
be expected to diminish with increasing length of cavity. The drag coeffic-
ient for the Reichardt models, Figs. 7, 8, 12, which were sting supported,
are also smaller than the Iowa values. The results for the Convair heads,
which were also attached to cylindrical afterbodies, lie between those for
Iowa and D.T.M.B. '

As is seen in Fig. 11, the drag coefficient for é sting-supported
Z:l-rarabolic head at zero cavitation number, obtained both experimentally
and theoretically by N.A.S.A. [9], is Cb = 0.125. This agrees with the
D.T.M.B. result obtained by extending the CD vs Kc curve to Kc =0.

On the other hand, the value obtained by extrapolating the Iowa data is
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higher. It is again suggested that this difference may be attributable to
the mode of support.

The results for the drag coefficient at 6° and 15° angles of yaw
from the data of reference [2], shown in Fig. 15, indicate the following:
1. The drag coefficient CD
Kc s according to a linear law which agrees with that proposed by Eisen-
berg [10],

increases with increasing cavity pressure

CyKe) = (0 (t-f-(:)Kc)
tor bodies on which the point of detachment varies with Kc , and

Colke) = Cplo) (1+Ke)
for a fixed point of detachment., The constants for each form were found to
be slightly different from those given by Eisenberg. )

2. The drag coefficlent, for a given value of the cavitation number,

appears to increase slightly with the angle of yaw.

3. The relative order of increasing drag coefficients for different
head forms for o = 6°, shown in Fig. 14d, is as follows: (1) ogive, (2) ellip-
soid, (3) cone, (4) hemisphere.

Conclusions and Recommendations

From the foregoing study of drag coefficients of bodies of revolu-
tion in supercavitating flows at various angles of yaw, the following con-
clusions were reached:

1. The drég coefficients computed from the Iowa pressure data are higher
than the values from other sources. This may depend upon how the head form
was supported. The effect of the mode of support should pe studied.

2. A l#near relationship between CD and Kc has been confirmed for
all the head forms, even at relatively high cavitation numbers. The slope
of each straight line varies slightly.

3. Only a slight change in the drag coefficient was found when the body
was subjected to angles of yaw of 6 and 15 degrees in supercavitating flows.
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Direct measurements of the drag of cavitating head forms at angles of yaw
are lacking and should be undertaken,
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Fig.14. Sketch of supercovitoting flow with different head supports
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Fig I5. Drog coefficients of vorious cavitoting heods at
angles of yaw
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