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SUMMARY

The purpose of the theoretical and experimental study reported herein

was to investigate the flow characteristics of circular uniform jets imping-
ing normally on a ground plane in order to further the understanding of

the aerodynamic procésses associated with ground particle entrainment

in the impinging downwash of VTOL aircraft. Particular emphasis was
placed on the flow properties in the ground-plane boundary layer where
entrainment occurs. On the basis of the investigation that was conducted,

the following general conclusions were drawn.

Experimental

The effect of the ground on the jet exit velocity profile for a circular
uniform jet impinging normally on the ground is negligible for jet exits
more than 1. 5to 2.0 nozzle diameters above the ground plane. For

jet heights of more than 2. 0 nozzle diameters above the ground plane,
changes in the jet flow characteristics with height are primarily associ-

ated with the effects of viscous mixing.

Three distinct boundary layer regions occur in the ground-plane flow.

A laminar boundary layer exists for 0 {r/D £0. 8; a transition region

of mixed turbulent and laminar boundary layer flow occurs for
0.85r/D£2.0; beyond r/D = 2.0 for values of the nozzle height-to-
diameter ratio, H/D, less than or equal to 4, the ground flow is of the
turbulent radial wall-jet type. Characteristics and extent of the transi-
tion boundary layer region vary with H/D. For the larger values of H/D,
the transition to turbulent flow appears to be forced by interaction of

the mixing region of the jet with the boundary layer. The start of the
fully developed wall-jet flow occurs at values of r/D which decrease as

"H/D decreases.
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Theoretical

Currently available methods of predicting the inviscid three-dimensional
impinging jet flow suffer from the lack of an accurate method of predicting
the shape and position of the free-stream surface. A plausible iterative .
technique is proposed for doing this, but numerical results using this '
technique have not yet been obtained. Calculations of ground-plane pres-
. sure-distribution based on a jet boundary derived by Schach (Reference 8)
for the infinite impinging jet and using the vortex sheet formulation for
the jet developed during the present research resulted in relatively good

agreement with experiment.

An approximate three-dimensional boundary layer analysis accurately
predicts the laminar portion of the boundary layer, using experimentally
derived pressure gradients, but fails to predict the experimental transi-
tion point at all H/D's. This failure is apparently a result of the effect
of the jet mixing region interacting with the boundary layer prior to
natural transition for H/D.21. 0. Glauert's wall-jet theory is directly
applicable to the ground-plane flow for the r/D> 2.0 for all H/D's
tested. A semiempirical method was developed for predicting boundary
layer characteristics in the transition region. This method in conjunc-
tion with the Glauert theory allows prediction of velocities and boundary
layer thickness to within about 10 percent of experimental values in

the wall-jet flow regime of the ground flow.
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CONCLUSIONS

On the basis of the results obtained, the following conclusions can be

drawn regarding the experimental flow properties of uniform, circular,

normal impinging jets, and regarding the theoretical analyses conducted:

L.

The effect of the ground on the jet-exit velocity profile is neg-
ligible for jet exits more than one and one-half to two nozzle

diameters above the ground plane.

Changes in the jet flow characteristics with jet nozzle height
are primarily associated with the effects of viscous mixing for
nozzle heights greater than two nozzle diameters above the

ground plane.

For values of H/D <2 the pressure distribution on the ground
under a viscous impinging jet is essentially that obtained with

an inviscid jet.

Transition from laminar to turbulent flow in the ground-plane
boundary layer is considerably affected by interaction of the

jet mixing region with the ground boundary layer.

The start of a radial wall-jet flow occurs at radial distances
from the ground-plane stagnation point which decreases with
decreasing jet nozzle height. For small nozzle-to-ground dis-
tances (H/D 2), this decrease is primarily associated with

the reduction in mean velocity in the nozzle as H/D decreases.

Approximate boundary layer analyses resulted in good to excel-
lent agreement with experimental data, except in the small
region between the radius where transition to turbulent flow
occurs and the radius at which the velocity profiles first

approach the form predicted by Glauert, for which region

there is no applicable theory.
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RECOMMENDATIONS

On the basis of the experimental results obtained and the analyses con-

ducted, the following recommendations are made: .

1.

An experimental investigation of the jet flow characteristics

-and boundary layer flow characteristics should be made of a

normally impinging nonuniform jet representative of the down-

wash of helicopter roters and ducted fans.

Theoretical calculations of the flow field of the inviscid uniform
impinging jet should be- made for the range of jet nozzle height-

to-diameter ratios of practical interest.

Experimental measurements should be made of the aerodynamic
forces on objects in flows representative of the ground flows

generated by jets, ducted fans, and rotors.
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I "INTRODUCTION

Of the many VTOL/STOL operational problems, one of the more serious
is that of particle entrainment in jet or rotor downwash during near-
ground hovering or slow-speed flight. Such entrainment can lead to

loss of visibility for the pilot, loss of concealment for the aircraft, and
damage to powerplant and structure. A considerable body of literature
has grown over the past few years concerning various aspects of this
problem. References 1, 2, and 3 are typical of the experimental
studies of impinging downwash from jets, ducted fans and rotors; data
have been obtained on both particle entrainment and the associated

flow field.

Vidal, in Reference 4, reviewed the impinging-downwash, particle-
entrainment problem from the point of view of available experimental
data and theory in order to determine mechanisms for entrainment. A
drag criterion for particle entrainment has been proposed (Reference 1),
based on the drag required to start a particle moving while in contact
with the ground. Particles are entrained in the flow by bouncing off
projections on the ground. Vidal proposed, in addition, a lift criterion
for entrainment, based on the lift required to pick up a particle clear

of the ground. The lift on the particle is dependent on the velocity
gradient in the ground boundary layer, as well as on the mean dynamic
pressure of the flow at the particle. On the basis of the drag and lift
criteria for entrainment, and using certain simplifying assumptions,
Vidal showed qualitative agreement between calculated areas of particle
entrainment under an impinging downwash and areas estimated from
available experimental data. The relative importance of the two cri-
teria depends prirﬁarily on the size of the particle compared to the

boundary layer thickness.

5 63-11
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A quantitative under sta)nding of the entrainment mechanism may well
lead to effective means of preventing or at least reducing the severity

of the particle entrainment problem in impinging downwash flows. Inas-
much as entrainment occurs in the flow along the ground and as the
boundary layer appears to play an important, if not dominant, part in
this process, the need for accurate experimental data for the ground-
flow boundary layer is apparent. Although there is a considerable body
of experimental data for both impinging jets and rotor downwash flows,
to the authors' knowledge there is none in.which a detailed study of the
boundary layer in the flow along the ground has been made. The experi-
mental and theoretical results obtained from this and further research
should provide the basis for the development of an accurate analytical
technique for predicting areas under the impinging downwash of VTOL-
type aircraft where ground particles can be entrained. It is believed
that the development of effective and practical methods of preventing

or at least alleviating the serious consequences of particle entrain-

ment would be materially advanced thereby.

The research described in this paper was an experimental and analytical
program to study the flow processes in a uniform impinging jet. Ana-
lytical methods for predicting the flow in such a jet, with particular
emphasis on the boundary layer flow, were the primary aim. Experi-
mental data on the flow in the uniform impinging jet and in the ground
boundary layer are presented, as are the results of the theoretical

studieé obtained thus far.
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II EXPERIMENTAL PRbGRAM

Experimental Setup

The CAlL.-Air Force One-Foot High-Speed Wind Tunnel was used during
the experimental research. The transonic-supersonic test section was
completely removed. A 12-inch-diameter molded Fiberglas nozzle,
designed to produce a uniform and parallel flow at the exit, was mounted
to an adapter plate, The plate was attached to the test-section fage’ of the
wind tunnel settling chamber. The ground board was 8 feet x 8 feet
square and could be set at varying distances from the jet nozzle. Fig-
ures 2 and 3 show the experimental setup. A pattern of static pressure

taps was located in the ground board (Figure 4).

Velocities and static pressures in the jet were measured with a Pitot-
static probe mounted on a traverse mechanism. Ground flow measure-
ments were obtained from static and total head probes mounted in a
second traverse mechanism so made that positioning of the probe rela-

tive to the ground board could be made with accuracy (Figure 5).

The ground-bodard static pressure lines were connected to an inclined
manometer board. The boundary layer probes, of 0. 0l4-inch outside
diameter hypodermic tubing with a tip tapered to 0. 009 inch, were
attached to a small U-tube manometer mounted on the reverse side of
the ground board. Pressure data from the larger jet flow Pitot-static
probe were read either from a micromanometer or from the inc¢lined

manometer.

Experimental Results

Test data were obtained at five ground-board locations corresponding

to nozzle height-to-nozzle diameter ratios, H/D of 4, 2, 1, 0.5, and 0. 25,
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Data were obtained for two mass flows corresponding to jet nozzle veloci-
ties of 121 ft. /sec. and 191 ft. /sec. At each H/D, velocity surveys ‘
were made at the jet nozzle and at various distances in the jet above the
ground board. Static pressure distributions were measured along the
- jet centerline between the ground beard and the jet nozzle and also
‘along the ground board. Measurements of velocity in the flow along the
ground were obtained at various radial distances from the stagnation

point between = 6 inches and. 7 = 48 inches.

Dynamic pressure profiles, where dynamic pressure is normalized by
the total pressure in the jet, are shown in Figure 6 for the jet exhaust-
ing into essentially free air. To obtain these data, the ground beard was
moved as far as possible from the nozzle (H/D = 7.3), The results
shown are for U, = 121 fps. There was no measurable difference
between these profiles and corresponding data obtained for (4, = 191 fps.
The figure shows that the mixing region surrounding the potential core
of the jet grew in width with increasing nondimensional distance from

the nozzle, t/D. The potential core vanished completely at't/D = 4. 1.

Figure 7 shows the nondimensional dynamic pressure profiles in the jet
obtained with the ground board set at H/D = 4. There was, again, no
difference between profiles obtained with (/, = 121 and 191 fps. Free-
jet dynamic pressure profiles corresponding to the same values of t/D
are shown for comparison. Note that the two sets of data are identical
for measurements made at distances greater than about two diameters
from the ground (z/D)> 2). Even at z/D = 1. 08, the impinging jet corre-
sponds closely to the free jet except in the vicinity of the jet centerline.
Deceleration of the impinging flow near the jet centerline at small
values of z/D is. to be expected; the symmetry of the flow requifes,tha.t

there be a stagnation point at r/D = 2/D = 0.

Figure 8 shows the velocity distributions at the nozzle for H/D = 4, 2,

1, 0.5 and 0. 25; the velocities are normalized by the jet reference -
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velocity, Us . The velocity distribution for H/D = 2. 0 was essentially
identical to that for H/D = 4. 0. The increasing effect of the ground
board on the jet flow at the nozzle is quite evident in the H/D = 1, 0.5,
and 0. 25 velocity distributions. At H/D = 1.0 the velocity is no longer
uniform and is reduced at the center of the nozzle to 0.96 Us . The
velocity distribution is increasingly nonuniform for H/D = 0. 5-and 0. 25;

at H/D = 0.25 the velocity at the center is down to 0.35 (e .

The static pressure distributions on the ground are presented in Figures
9(a) through 9(f) for the different values of H/D tested. Static pressures
are here made nondimensional by the static pressure difference between
the wind tunnel settling chamber and atmospheric pressure, which is
equivalent to the total pressure in the jet. The data at each H/D for
tests at Uyp = 191 and 121 fps are nearly identical; hence, these pressure
distributions are independent of mass flow. Although not all points are
plotted, the data shown represent the maximum amount of scatter between
measurements made along two perpendicular lines through the stagnation
point.and, also, between measurements made at six evenly spaced pres-
sure taps on 6-inch and 12-inch radii centered on the stagnation point.
The excellent symmetry of the flow in each case is demonstrated by

the very small scatter.

Figure 10 shows static pressure distributions along the jet centerline.
It can be seen that the data, up to H/D = 2, lie along one curve,. at lé“a.st
up to z/D's fairly close to the nozzle. The pressure distribution for
H/D = 4 is somewhat below the curve. Static pressure is essentially
the ambient pressure for z/D2 1.5 at H/D ) 2. Note that pressure data
were obtained a short distance inside the nozzle for H/D = 0. 25 and
H/D = 0. 50.

Figure 11 shows nondimensionalized velocity distributions derived from

the experimental static pressure distributions measured on the ground

9 63-11



board for various values of H/D. These velocity distributions were com-
puted by assuming that there were no losses in the flow. The velocity
distributions for H/D = 1.0 and 2.0 are identical within experimental
error, while for H/D = 0.5 and 0. 25 the distributions show the increas-

ing effect of proximity of the nozzle to the ground.

Figures 12, 13, 14, and 15 present the boundary layer velocity profiles
obtained at several radial stations between r/D = 0.5 and r/D = 1. 33

for H/D = 0.5, 1, 2, and 4, respectively. No measurements were made
in this range of r/D for H/D = 0.25. The velocity has been divided by
the maximum velocity in the flow above the boundary layer at each sta-
tion. The height above the board has been nondimensionalized by the
nozzle diameter and multiplied by the square root of the nozzle Reynolds
number. Data for both Un = 191 and (g = 121 fps are included.. Up to

r/D=0.8, in all cases, the boundary layers appear.to béokapinaesikitiess

the shape of the profiles and the fact that data for both mass flows
normalize to one curve with Reynolds number. The change in shape of
the bouﬁdary layer velocity profiles between r/D = 0.83 and r/D = 1. 17
suggests that transition to turbulent flow has occurred in the intervening
region, although not necessarily at exactly the same radius for each
value of H/D. Note the excellent repeatability demonstrated by the data
of Figures 12(f) and 13(f) and the slightly poorer, although acceptable,
repeatability of the data in Figures 14(f) and 15(f). The repeat data

. were obtained after the ground board had been moved and then reposi-
tioned to the H/D desired. ' '

The differences between original and repeat data in Figures 14(f) and
15(f) can be attributed to a change in displacement effect of the boundary
layer probe near the ground plane; for both cases these differences were
of the order of 0. 001 inch in terms of distancel from the ground plane.

Apparently, at the start of the tests, the boundary layer probe had an

10 63-11
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inner coating of oil which, as the tests proceeded, collected lint and
dust; as a result, about halfway through the tests, the probe became
completely blocked. The probe was then cleaned out with alcohol and
a fine wire, and tests were resumed. The tests which had been com-
pleted prior to the cleaning were those at H/D=4and H/D =2, All
data for H/D =1, 0.5, and 0.25, and all repeat data, were obtained
after the cleaning. It is believed that the lint and dust were deposited
asymmetrically on the inside of the probe in such a manner that the
effective center of the opening in the probe was moved closer to the
board than the geometric center. Consequently, the velocity profiles
calculated from the data with the geometric center of the probe as a
reference would necessarily be displaced away from the board. In
confirmation, the theoretical laminar boundary layer profiles at r/D =
0.5 and 0. 667 check quite well with the experiments for tests run after
the probe was cleaned and are displaced below the experimental profiles
by about the same amount as the difference between the original and

repeat runs at H/D = 4 and 2.

In Figures 16(a) through 16(e), u,/u,,, is plott‘evd‘ versus 9/,7!5, for the

flow near the ground for r/D > 1.17 and {, = 191 fps at all values of
H/D tested; Y% is the distance to the point outside the boundary layer

at which «=%«,,(see Figure 1). In general, the data falls essentially on

a single curve for 1.33¢r/D£ 4.0. At H/D = 4, the lower limit becomes
1.67< r/D. The accuracy of measurements made at r/D = 1.67 is
doubtful. To obtain the data at r/D = 1. 67 required a modification of the

traversing mechanism which decreased its rigidity.

In Figures 17(a) through 17(e), the boundary layer region for the data of
' Figures 16 is plotted on a greatiy expanded scale. The comments made

-above apply here as well. Velocity profiles in this range of r/D were
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also measured with U, = 121 fps. The data obtained indica.ted that these
profiles, when normalized as in Figures 16 and 17, are independent of

Ux , at least over the range tested. A typical set of data is presented
for U =121 fpsrand H/D = 0.5 in Figures 18(a) and 18(b). These figures

can be compared with the corresponding profiles for (U = 191 fps.
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III THEORETICAL ANALYSES

Basic Approach

The classical approach to the theoretical analysis of boundary layers is
first to compute the outer inviscid flow ignoring the effect of the boundary
layer on that flow. The boundary layer is then computed assurning that
the flow conditions on the outer edge of the boundary layer are those pre-
dicted at the surface by the inviscid flow analysis. This is basically

the approach adopted in the theory reported in this paper. Itis assumed
that the effects of viscous mixing in the impinging jet flow do not mate-
rially affect the static pressure distribution on the ground plane. The
boundary layer in the outer ground flow region, where the ground-plane
static pressure is essentially zero and where viscous mixing is a basic

part of the flow processes, is treated separately.

Uniform Inviscid Impinging Jet Theory

An inviscid jet in fluid otherwise at rest is in the class of free stream-
line flows. The essential difficulty in treating such flows analytically
lies in the fact that even though there are well defined boundary condi-
tions on the free streamlines in such flows, the location of the free
streamline is not known in advance and mugt be determined as part of

the solution.

There is a considerable body of literature concerning the theory of invis- -
cid and viscous jet flows, as noted in Reference 5. Exact éolutions for
"two-dimensional inviscid impinging jet flows using hodograph techniques
have been obtained (References 6 and 7), .but the available theoretical

treatments of inviscid uniform three-dimensional impinging jets are

’
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limited to approximate or numerical methods. Of these, the approaches
of Schach (Reference 8), Leclerc (Reference 9), and Shen (Reference 10)
are worthy of note because the flow model on which they based their
analyses (Figure 19) is a good approximation to the infinite impinging
jet, and they obtain results which are in reasonable qualitative agree-

ment with available experimental data.

Schach (Reference 8) used an integral equation method developed by
Trefftz and solved numerically for the jet boundary (BC in Figure 19)

. by successive approximations. A shape for the unknown boundary was
assumed. On the basis of the known behavior of the velocity potential
on the assumed free boundary BC (because of the boundary condition
that the velocity is a constant) and the boundary conditions on AF and
EF, it is possible to compute numerical values along the assumed
boundary BC of a function which is zero if the boundary is the correct
one for the flow. If this function is not zero, a new jet boundary was
then assumed, and the process was repeated. The primary difficulty
with this technique was that no rational basis was derived or shown for
correcting the boundary shape. In Schach's analysis, the ratio-#r'H/D =
1.5and I =2 in Figure 19. '

Leclerc's approach (Reference 9) is of particular interest. He used an
electrolytic analog to experimentally determine the shape of the free
streamline boundary. The internal flow was then computed numerically
using relaxation techniques. If carefully done, one would expect the
experimental analog results to be equivalent to an "exact'' solution for

the assumed model of the impinging jet.

Shen (Reference 10) obtained an approximate solution for the model of
Figure 19, using spherical coordinates, by expanding the velocity poten-

tial ?‘(7;’ 6) in series involving spherical harmonics. A finite number
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of terms in the series is used; boundary conditions are not satisfied
identically on the boundaries, but in an average or weighted‘ sense. For
example, along boundary BC in Figure 19, the boundary condition is
(51’/35)5(!"‘/90 » where 8 is tangent to curve BC. Shen satisfies the
condition

/ec(ﬁf) wg/e)d9=0,/9°wz (6)d6

6s ‘93¢ 6s

where w; is a weighting function. If » terms in the series for ¢ are
considered, there are , constants to be determined and, hence, n
equations like the one above are required. As many equations are
obtained as needed by considering different weighting functions, .
On boundary BC, only the condition that the tangential velocity equals
(/,x, is used; for a given assumed boundary BC, the solution obtained is
checked by computing the weighted velocity component normal to the
boundary. If this condition is satisfied, within the limits of the method,
the solution has been obtained. If this condition is not satisfied, a new
boundary must be assumed and the process repeated. Shen indicates a
possible iterative technique for obtaining the "exact' boundary for the
flared jet which involves the solution of simultaneous nonlinear algebraic
equations, but gives numerical results only for the successive approxi-

mations type of analysis,

All of the above authors used trial and error techniques to determine

the free streamline boundaries of the impinging jet flow, although Shen
does suggest a possible iterative technique. In addition, the effects on
the jet flow of a ground plane in proximity toia jet exit cannot be deter-
mined from these approaches without modifications in the assumed model.
As the jet exit approaches the ground plane, there is a back-pressure
which is reflected at the exit in terms of reduced dynamic pressure in
the center of the jet, and the jet exit velocity profile is no longer uni-

form (Figure 8).
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The analysis of the inviscid impinging jet performed during the current
research was motivated by a need for a theory which would account for
the effect of the ground on the exit velocify distribution of a jet nozzle.
A systematic iterative method to determine the free jet boundary was
sought. A formulation of the inviscid jet flow has been derived in terms
of a vortex sheet representation for the jet boundaries, and a plausible
iterative technique was determined for deriving the free jet boundary.
These are presented in Appendix I. An IBM 704 program has been
written and is currently being checked out. At this writing, conclusive
final results have not been obtained; however, the results so far obtained
are encouraging. The method of analysis derived during this research
may well be applicable to a much broader .¢liss. of inviscid three-
dimensional free-streamline flows than merely the uniform inviscid

impinging jet.

Certain basic properties of the flow of an inviscid impinging uniform jet
can be inferred without actually solving for the flow. Call [/ the equiva-
lent uniform \‘reldcity in the tube. At some distance along the ground
plane from the stagnation point, where the pressure has fallen to near
ambient pressure, u,,ﬁ'(/q, for Osﬁg( )@(r)“, where )'g.(r) 'is the height

of the free stream surface above the ground plane. Reich (Reference 11)
showed experimentally that this is true for r/D21.5. Conservation of
mass requires that

npR*T =~ 2rnprVs Un
- ERITT
or 2REU
' Yo &)~ 27l
Hence, for a given H/D (and, hence, _-a/(/w Y, Y3 varies hyperbolically
with # . This fact was utilized by Schach and Shen (References 8 and 10)
in their work, and Leclerc (Reference 9) used this result as part of a

check on the accuracy of the results of his electrolytic analog ekperiment.
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Boundary Layer Analysis

The boundary layer on the ground plane created by an impinging jet can
be divided into two distinct regions separated by a transition zone. In
the vici;u'ty‘ of the stagnation point, the boundary layer will be laminar
and its properties will be determined by the static pressure distribution
on the ground. At radial distances from the stagnation point sufficiently
large to approximate a zero static pressure gradient at the ground, the
flow will assume the form of a radial wall jet which has been analytically
described by Glauert (Reference 12). In the following analysis, the two
regions have been considered separately, and an assumption about the
loss in momentum flux in the transition zone has heen used to estimate

the initial radius of the wall-jet flow and its properties at that radius.

Laminar Boundary Layer

An approximate method devised by Smith (Reference 13) was used to
calculate the properties of the laminar boundary: layer in the vicinity

of the stagnation point. This method was selected because of its
accurate prediction of velocity profiles in regions of accelerating flows,
such as exist in the present application, and because of its simplicity.
The experimental pressure distributions on the ground were used in
these calculations for each H/D. The potential velocity distributions
associated with the pressure distributions have been presented in Figure
11. Boundary layer velocity profiles predicted for various values of

H/D are shown in Figures 12 through 15.

The location of transition from laminar to turbulent flow in the boundary
layer was investigated by consideration of boundary: layer stability
theory. Two-dimensional stability criteria were applicable to this

work (Reference 4), These criteria were used to determine the radius
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for neutral stability of the laminar boundary layer, (r/D)‘Crit

following manner. The critical Reynolds number, UmO~ | was obtained

from Reference 14 as a function of Pohlhausen's form parameter,

A relation between .A. and the included wedge angle for flow over a
wedge was taken from Reference 15. The equivalent wedge angle, llm/(/w
and J*/D' had already been obtained as functions of r/D in the applica-
tion of Smith's method, so these results were combined fo calculate
curves of nozzle Reynolds number g%-D— versus (r/D) .. -
20 shows the final result of these calculations for various nozzle-to-

Figure

ground distances.

In view of the large amount of turbulence in the mixing region of the
impinging jet, the stable region in Figure 20 should be interpreted as

an indication of the maximum radial distance that the boundary layer
will remain laminar for a given nozzle Reynolds number. Also, because
of the steepness of the curves in the region r/D{ 1, it can be inferred
that turbulence feeding into the laminar boundary layer at values of r/D
only slightly less than (r/D)_ ;¢

curves should provide a relatively good criterion for estimating the

will be highly damped. Hence, the

radius of transition from laminar to turbulent boundary layer flow.

< 1.

This criterion should be especially accurate when (r/D)crit

Wall Jet

At values of r/D2 2, the pressure gradient along the ground was found
to be essentially zero for all values of H/D tested. In this region,
Glauert's analysis (Reference-12) of the radial wall jet should apply.
The turbulent flow solution'is the one of interest for the present inves-
tigation. The shape of the theoretical velocity profiles was prescribed
by a paramete:, - , which in turn depended weakly on the Reynolds

U,
number, _;7)_‘2 , where &, is the local peak velocity in the radial
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wall flow and 6\t is the distance between the point at which «4-=w,and the
point at which a.-*'%u,,, (see Figure 1). A free constant, #£° , was used
to determine a quantitative relation between a—'f”)ét and & . The value
of A was found to be @, 013 in Reference 16. This value of 4, rather
than the value A = 0.012 suggested by Glauert, was used in the current

analysis.

It is desirable to obtain an estimate of & from the properties of the
jet before impingement. Because of thg weak dependence of & on %_t,
this can be accomplished with considerable accuracy even if some rela-
tively broad assumptions are made. It was assumed that Glauert's
theory applies at r/D=1. 5, that Um/U.pzl at this radius, and that the
loss in radial momentum flux due to the wall shear stress is negligible.
On this basis @ = 1.16 for 0.50 { H/D4.0 and o =1.17 for H/D =
0.25 are predicted. These values compare favorably with the value

& = 1.16 which was derived from the experimental measurements of
i;",_él for 0.25< H/D4.0. A numerical example of this calculation
is presented in Appendix II,

Once the shape of the velocity profiles in the wall-jet portion of the flow
has been determined by o, the functional dependence of 4g and Um

on ”is giver.l‘ by

where the exponents & and b depend on the value of &, and the con-
stants {, and {; may be functions of H/D, The determination of (;

and (3 forms the remaining portion of the analysis.

As noted in Equation (1), the height of the free-stream surface of the

inviscid impinging jet above the ground plane is, for r/D2 1.5,

%= (7o)
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R
whete U’%/wrd"f"
[}
in the nozzle.

The radial momentum flux A4, is givén by

Mp=2 reor ijs (r) =mpR*Us U (3)

provided that r/D is large enough so that the pressure gradient at the

wé.ll is approximately zerc. This relation must necessarily be applicable
to the direct impact of two equ;al viscous jets, where there is no mechanism
for a'loss in momentum flux, even though the mass flow may be greatly
increased between the nozzle and the radial station in question. The jet
impinging on the ground, on the other hand, will suffer a loss in momentum
flux due to the presence of the wall shear stress, 7T, . This loss can

be calculated for the laminar portion of the boundary layer. With an
assumption about the additional losses in the transition region, a momen-
tum flux relation can be derived to obtain one equation for the propof—
tionality constants in Equation (2). This relation will have the form of
Equation (3) with a term added to account for losses due to the wall

shear stress. It can be written

- where M,, is the radial momentum flux at radius r» and AM,, is the loss

in radial momentum flux up to 7 .

An additional relation is required to obtain the two unknowns in Equation
{(2). This relation was obtained empirically. It was observed that experi-
mentally the quantity. Y 4m g independent of the mass flow entrain-
ment process occurring in the jet before impingement. This result
suggested that the radial mass flow could be combined with U/Uw to

obtain a universal curve of radial mass flow, @, , versus 7?”. Now the
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radial momentum flux Mp~u) Y%7 and the mass flow {p~U,), Yy 7

If AMp is either negligible or roughly constant for all H/D's at the start

of the wall-jet flow, then FRL-é -~ (L and UZ y/? will be propor-

tional to /(7/(/a)x where X is a constant, Hence, the quantity

ft’,o/?‘(/ (?7)

would be independent of H/D, The collapse of the experimental data
with X = 0.65 is illustrated in Figure 21. This normalization appears
to be quite satisfactory except, possibly, for the data obtained at H/D =
1.0. At values of r/R£ 4, the pressure gradient is not zero, so that

the wall-jet solution does not apply in this region.

The variation of Qs with 7 is prescribed by the form parameter @ .
From Reference 12 the exponents @ and & in Equation (2) are -1.075

A S

and 1.008, respectively, for & =1.16. Hence, Qr~u,,2y"r~(r}-g'.;?%%2i‘;-

The effect of varying nozzle size and ‘(/m on the exponent should be neg-
ligible over quite a large range of these parameters because of the

insensitivity of & ‘to nozzle Reynolds number. The relation

7900 RZ/U)’O“‘ /R)0933

seems to give the best fit to the experimental data.

Equations (4) and (5) provide a means of finding the unknown constants
C; and ¢ . The loss in momentum flux, AM; , was estimated by
assuming that the boundary layer is completely laminar up to the transi-
tion point predicted in Figure 20.and that the lbss in momentum flux
varies with # in accordance with Glauert's solution for the radial wall

jet beyond this radius.
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After computing* that

Q M, 7
—_—r 146 ____r _[“Yo
PR oo »# 7 PR Uy )

in the wall jet for @ = 1.16, one can obtain

5 [ ] (O] ()
Voo PR, I ,,, R

where M’it is the loss in momentum flux in the laminar boundary

layer up to the predicted transition radius, 7z . Both of these quantities
are available from the laminar boundary layer calculations. Hence,
AM 0 035 7 0.4
C,=3.78| 7- e ( ) (—‘) (6)
PR U J\ Un R '
0.933 *
Finally, since® — & = 222¢,0, (L) for- @ = 1.16%,
PR Us R
we have
Q.R_O7 (U |65 ‘
C’z,= ————— % . (7)
G s

These relations for (; and Cp were used in conjunction with Equation (2)
to predict the variation of (L,,,/(/q, and Yy /R with r/R in the wall-
()

jet region. The results are presented in Figures 22 and 23.

The numerical constants in these equations and Equation 8 on the follow-
ing page were obtained by integration of the theoretical velocity profiles.

That is,
Qr-Zn,o,T/!.Zdyf ana,,,g% 7/05/-&:—)1 ;9—

9 _ _ “m 4 T 2/ ) o (&)= -
W—ZZZ w R F’ where. 2'[ 6‘/)7 d(yz)—Z.ZZ a-7.76

and
Mymmor] iy = 2rmplun) /[ (o ()
o A m %

a=7.76
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Transition Zone

In the zone between the laminar boundary layer region and the wall-jet
region, the ground flow was assumed to follow Glauert's velocity pre-
file with the condition that “m/[/ao = constant = value of a,,,/(/,,, at
predicted transition. This assumption and the one pertaining to the loss
in momentum flux used in the wall-jet analysis allowed an estimation

of g& /R in the transition zone. With ad = 1. 16, the result was

y,‘/ﬁz“;‘,_ (7_75/0275%)( )0"*2 t)é?).’ )

where a”’t is the peak velocity at predicted transition (0. 98(%— <€0.99
for all values of H/D considered in the present work). The ground flow
predicted in this manner cannot apply immediately downstream of the
transition radius because a finite distance is required to establish some
sort of equilibrium between the jet mixing zone and the ground boundary
layer. 1t is plausible, however, that this distance may be considerably
less than that required to establish a pure wall-jet flow. Hence, the
above relation is proposed to bridge a portion of the gap between the

wall-jet flow and the laminar boundary layer.
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IV COMPARISON OF THEORY AND EXPERIMENT,
AND DISCUSSION OF RESULTS

Free-Jet Flow

Points of constant dynamic pressure in the mixing region of the jet
exhausting into free air are shown in Figure 24. These points were
cross-plotted from the dynamic pressure profiles of Figure 6. The
data appear to be well represented by straight lines radiating from a
virtual origin, ¢, /D~ -0.50 and /;,/D ~ 1,04, except for stations ve.ry
close.to the nozzle exit. In the range of t/D where this radial straight
line representation is applicable, the dynamic pressure distributions
will be similar, that is, Q/(Zz/O(/mz) will be a unique function of
(r—ra)’/ét-to) . As shown in Figure 25, the dynamic pressure dis-
tributions in the mixing regio\n are at least approximately similar when
plotted versus (r—r;,) /(t-to) , proQided that the distance from the nozzle
exit is greater than ‘_t/D’—-" 7. The function |

[6—55 =+ 0 097)2]2
provides an excellent empirical fit to the data. The velocity distribu-

tion is given simply by the squre root of this function:

7=, 2
-56 (—-’- o. 097)
T 'to +

o,
where Un

To _ Zo - _ 0.5 z

D = 7.04, D =-0.50 for D >7-

Kuethe (Reference 17) has derived theoretically the velocity distribu-
tion in the mixing region surrounding the core of an axially symmetric
circular jet. The theoretical constant velocity curves are compared:

with the current data in Figure 26. The agreement between theory and
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experiment is satisfactory except, possibly, near the outer edge of the
mixing region where the velocity is almost zero. Velocity distribu-

tions derivéd from the theory should be more accurate than the above
empirical formula in the region 0 \(bt- ¥ , whereas the empirical
expression provides a simple and probably quite accurate method of finding
velocity distributions when t/D)/.

Imipinging Jet Flow

Although the theoretical analysis of the inviscid impinging jet has, as
yet, not been completed, some calculations have been made. The
results of calculations of ground-plane and jet-centerline pressure
distributions based on the vortex sheet model of the present theory

and using the curve for the free jet boundary computed by Schach are
presented in Figures 27 and 28. The corresponding pressure distribu-
tions computed by Schach, Leclerc, and Shen (References 8, 9, and 10)
and the experimental pressure distributions for H/D = 1 and 2 are

shown for comparison.

At distances greater than some fixed height, say /{r , from the plane,
the infinite inviscid jet il;npinging nermally on a ground plane has
essentially a constant diameter and uniform velocity distribution with .
the velocity equal to [l , the free streamline velocity at the jet
boundary. Hence, for a uniform inviscid jet igsuing from a nozzle
-at height ) Ay above the ground plane, there would be no difference. in
‘the impinging flow from that of an infinite inviscid jet. Schach (Ref-
erence 18) found this H/D to be approximately 2 from experiments on
water jets in air, which is consistent with the present results (Figure
10). For an actual jet of air into air at rest, viscous mixing occurs.
For such a viscous jet, at H/D's large enough that the jet is a fully

. developed turbulent jet prior to impinge!ment, it is clear that all of
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the impinging flow is influenced by the viscous mixing in the jet, and
that the concept of an "infinite inviscid jet" no longer is relevant. For
H/D«1.0, it is reasonable to expect that, in the neighborhood of the
stagnation point, the flow along the ground is not materially influenced
by the mixing. Therefore, there must be some intermediate H/D at '
which the effect of the mixing in the jet prior to impingement is first
felt in the flow along the ground plane, as reflected in the ground-

plane pressure distribution near the stagnation point.

It is inferred from the present data and frcm the results obtained by
Leclerc (Reference 9) that the effects of jet mixing on the pressure
distribution on the ground are important only for H/D)» 2. Since the
velocity at the nozzle was uniform and equal to (), for H/D) 2, the
effect of the ground on the flow at the nozzle was negligible (Figure 8).
Hence, any differences in the pressure distributions measured at
values of H/D > 2 can only be due to mixing in the jet prior to impinge-
ment. The measured pressure distributions on the ground were iden-
tical for H/D = 1 and 2 (Figure 11).and agreed extremely well with the
results obtained by Leclerc for an inviscid jet at essentially an infinite
value of H/D (Figure 27). The pressure distribution obtained at

H/D = 4, however, differed substantially from those measured at

H/D = 1 and 2, even in the neighborhood of the stagnation point. There
is a possibility that the effects of mixing and of ground proximity can-
cel each other for 1$ H/DX2 and, hence, lead to agreement with the
inviscid results of Leclerc. However, since the effect of ground prox-
imity is negligible at the nozzle for H/D2 2, with or without mixing
.(cf. previous paragraph), one must conclude that the effect of mixing
in the jet is negligible for H/D 2. It should be noted that the effects
of mixing for H/D = 4 were evident in the vicinity of the stagnation

point even though measurements showed that there was still a potential
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core in the jet just prior to impingement. (Potential core diameter was

approximately 0. 35D at one nozzle diameter above the ground. )

Because mixing in the jet prior to impingement affects the ground pres-
sure distribution for H/D ) 2, it appears that theoretical solutions for
the inviscid jet will be useful only for H/D<-2. Any theory for H/D
much larger than 2 must, somehow, account for viscous mixing in the
jet if it is to result in accurate predictions of the ground plane pressure
distribution. The starting point for such a theory could be taken at

two to three jet diameters above the ground, where the velocity profile
was found to be identical to that of the corresponding free jet (cf. Sec-

tion II and Figure 7).

Ground Flow

Comparisons between the theoretical laminar boundary layer profiles
and experimental boundary layer profiles are presented in Figures 12
through 15 for H/D = 0.5, 1, 2, and 4. It is evident that the exper-i-‘
mental results are predicted quite satisfactorily for r/D 0.7, if allow-
ance is made for the uncertainty in specifying the correction for the
distance of the effective center of the probe from the ground. These
"zero errors'' have been discussed in Section II. As the radial distances
increase above r/D = 0.7, the agreement between experiment and the
laminar theory deteriorates progressively from the outer edge of the
boundary layer inward. For the particular case presented in Figure 12
(H/D = 0.5), the calculated critical radius for transition of the boundary
layer was r/D = 1. 08 for Us =191 fps and r/D = 1.17 for Uy = 121 fps.
This result suggests that in the subcritical range of r/D, the irregulari-
ties at the outer edge of the boundary layer are due to the diffusion of

turbulence from the jet mixing region intc the laminar boundary layer.
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As r/D is increased, this turbulence is able to penetrate deeper into
the boundary layer by virtue of the decreased stability until, at the
critical radius, the boundary layer becomes completely turbulent.

The diffusion process was more marked at the larger H/D's, where the
jet mixing region before impingement was wider and the rate of change
of pressure gradient with r/D more gradual. Infact, at H/D = 4
(Figure 15), the boundary layer appeared to be almost completely
turbulent at r/D = 1.0, whereas the calculated critical radii occurred
atr/D = 1.2 and 1.36 for Ue = 191 and 121 fps, respectively.

The experimental velocity profiles of the flow near the ground for

r/D» 1.17 are given in nondimensional form in Figures 16(a) through
16(e) along with the velocity profiles predicted by Glauert (Reference 12)
for values of @ = 1.1 and 1.2, If it is recalled that the appropriate
value of @ was found to be 1. 16, the agreement between theory and
experiment can be seen to be generally very good for 1.33<r/D< 4.0,
with the lower limit increasing to 1.67 at H/D = 4. In the range

‘L//yg > 1.2, the experimental data diverge from the theory. This devia-
tion has been noted by other experimenters (References 16, 19) and

is probably due to errors incurred by angularity of the flow with respect
to the probe, or to the decreasing accuracy of the measurements at

the very low velocities encountered.

The boundary layer region of Figure 16 is plotted in Figures 17(a)
through 17(e). The theoretical profile for @ = 1.16 has been added to
these figures. The theory again appears to give an excellent predic-
tion of the flow for r/D » 1. 33, except in the region very close to the
wall, Near the wall the turbulent flow will undergo transition to what
is generally referred to as the laminar sublayer. The outer edge of
this transition region can be estimated from the criterion (g‘/a//b)/}">70
for purely turbulent flow (Reference 14). With the aid of Blasius'
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formula for turbulent pipe flow, this becomes

v 70V [ tpm Y | %/ ,
y ~ V00225 [~ ¥ m) / (tm y5)

for the region of completely turbulent flow in Figures 17(a) through

17(e). This expression is approximately equal to 0. 015 for all values of
H/D tested in the current work. Hence, the experimental data can be
expected to diverge from that predicted by the wall-jet theory when
_(//yx < 0.015. Accordingly, the theoretical profile for & = 1.16 has
been modified by matching the inner portion of the universal velocity
distribution for smooth pipes (Figure 20.4 of Reference 14) to the
theoretical curve at y/gg. = 0.015. The resulting curve now agrees
with the experimental data even in the region where g/yg is small
enough to make the flow primarily dependent on viscous stresses rather

than Reynolds stresses.

The shape of the nondimensional velocity profiles has been shown in
the previous paragraphs to be adequately predicted by theory. The ade-
quacy of the analysis is also dependent on its accuracy in predicting
u.m/(/w and yg /R in the wall-jet region and on whether u,, is
equal to (7 in the laminar region. The theoretical variation of
um/[/cp with r/D for (/oo = 191 fps is compared to its experimental
equivalent in Figures 22(a) through 22(e). In the laminar region the
assumption &, =ty appears to be valid up to the predicted transition
radius for H/D = 0.5 and 1.0. At H/D = 2 and 4, the experimental
value of WUy, begins to fall below W7 at radii less than that for pre-
dicted transition. This behavior is consistent with the appearance of
an apparently forced transition of the laminar boundary layer at radii
less than that for neutral stability. In the wall-jet region, u,m/Uq,
was evaluated from Equations (2) and (6)._ The calculated curves of

Um /Uoo are, in general, about 10 percent higher than the experimental .
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data. Judging from these results, the assumption that the momentum
flux variation with 7* has the same form throughout both the transition
region and the wall-jet region may possibly be inadequate. However,
the errors could also be due, in part, to the occurrence of the above-
mentioned forced transition or to small differences between theory and
experiment in the values of the exponents @ and 4 in Equation (2).
Recalculation of C', with @ ==1.143 and 4 = 1.028 to conform with
the experimental results provided estimates of {; which were, in
general, considerably more accurate over the H/D range tested. The
curves obtained with this modified analysis are also shown in Figures
22. The improved accuracy suggests that the discrepancy between

the analysis and experiment is due primarily to small differences

between predicted and actual values of @ and b .

The variation of yg /R with r/D in the wall-jet region is shown in
Figures 23(a) through 23(e). By virtue of the inverse relation between
C', and Cz in Equation (7), these predictions are too low b}} the same
amount that “m/Uoo is too high. The improvement in the 'a,nalysis
obtained by using the experimental values of @ and b is reflected

here as well as in the calculation of &, /(/ao

In deriving Equation (8) for the value of 5’% /R in the transition

zone, it was assumed that Glauert's theoretical velocity profiles applied,
even though the flow in this region does not actually conform to a true
radial wall jet. Some insight as to the accuracy of this assumption

can be obtained by inspection of the velocity profiles in Figures 16 and
17. At all values of H/D except 4, the profiles are accurately predicted
for r/D» 1.33. At H/D = 4 the boundary layer region of the velocity
profiles is predicted satisfactorily for r/D» 1. 33 and the outer flow
region is given quite well for r/D 3 1. 67. The value of &, /Uq,
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- assumed for the transition region is shown for each H/D in Figures
22(a) through-22(e), and the resulting values of y,s/R are shown in
Figures 23(a) through 23(e). The over-all accuracy of the predictions
in this region is comparable to that for the wall-jet flow provided that
r/D#1.33. The juncture between the theoretical transition and wall-
jet regimes appears to give' a reliable estimate of the radius at which
the experimental data approach the equivalent of a true wall jet. The
region between r/D = 1. 33 and the transition radius cannot be analyzed
by the method presented. Fortunately, this region appears to be very

small,
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APPENDIX I
DERIVATION OF EQUATIONS FOR INVISCID IMPINGING JET FLOW

Basic Formulation

Consider a Cartesian coordinate system with the z-axis directed along
the axis of symmetry of the flow, positive vertically up from the ground
plane, and the x-y plane (z = 0) coincident with the ground plane. Con-
sider an element of volume af'c(x'.y,'z') with vorticity vector f('x;y,’z) .
For vorticity distributed throughout a given volume V , one can write
the vector velocity, 7 , at any point {x, y, z) in the fluid as (Reference

6)

§x,4,2)= ;;;/6/"/:(;/';27”“2_ drld,yiz) (1-1)

where
7 ) A A
d=-2)t{y-y)]*+(2-2) #
AN A D . . . . .
and L,‘/,ﬁ are unit vectors in the x, y, and z directions, respectively.

In the case of axially symmetric flow,

— 2 .
£ = Gl ? CyJ
The transformation to cylindrical coordinates /r; Zs 9), where

X=7rcos 8, Yy=rsinb

and
Ex=C,5in 6, gy:—co cos 6
gives
Exd = go[‘z\,. (z-2') cos G-J: (z-2") cos © + &, (7 cos 9'—7-9]
and

ICZ'3= [(z-z’)‘ +74+(r)* = 2 rr'cos 9']”

35 63-11




AN 2 . . . .
where im g and £, are unit vectors inthe » , € and z directions,
respectively. Because of axial symmetry, only the & = 0 plane need
be considered.

Substituting in Equation (I-1) and equating vector components, we have

7 [ & (1 2)(2-2) cos 8%dT (72, E)

U= --: /s
1re), lz-z)2+r*+ (r)* - 2rr'cos O
y= L £, ('Z') (r cos 6-1") d (72 &) - (1-2)
#ref, [((z-zP+ 72+ (r)2-2 rr'cos 6] %
Y= 0

where &, W~ are the velocity components paraliel to the r-axis and
the z-axis, respectively, and 7g is the velocity component perpendicu-
lar to the meridian plane. The integration is taken over the volume

V' which includes all the distributed vorticity of intensity ;o ('7‘,2).

Consider now the vorticity distributed in a thin layer on the edge of the
jet. Consider a given element of volume, d 7, of this layer (Figure
- 29) whose projection on the meridian plane is .€ZS , where € is the
. infinitesimal thickness of the layer and ds is the length of the element
along the curve 7=p,(z) which defines the edge of the jet. From
Stoke's Theorem (Reference 6, page 46) for a circuit C in the meridian

plane enclosing the projection of d T, we have

L _ZfdA=zg'-aZ§

where /) is the unit outward normal vector to the surface enclosed by
C, &' is the area enclesed by C, and é is the velocity vector around

C. The integral on the right-hand side is taken in the clockwise direc-

/‘S"‘ﬁ'fdA-’-Co eds

/7-525-* (Z-gg)ds
r

tion. Then
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hence,

fo¢ =4,

where. 9, and g, areas shown in Figure 29. If we let € - O, Co- ©
such that
coé =%, a constant

then

&=,
L,dr= G er,dsd 8’

= &, /z');/7+[d’° /Z)] 4246

Thus, Equation (I-2) can be written

BrIn z) ’1/7 * '[g%z—?.r(z-z’) c0s60’'dz'd &

Also,

(rz) =
ulrz) #r| Lozl rrirln @ =277 (2] cos OT%
; dr, (z') 1 ’ ' (I-3)
&(2)ry(z')1/1+ | =2 [7 cos 6-7; (z%)] dz'd &
vinz)=- ’ [ dz ] ’

4n‘5 [(z-2)* # #* #[ro @)~ 277, () cos 6%

where the integration is carried out over the entire vortex sheet S5 .

The Boundary Conditions for Infinite Impinging Jet

The boundary conditions on the inviscid impinging jet flow are: along
the surface z = 0, 2= 0; along the jet boundary which is a free stream-
line, the velocity is equal to a constant and, therefore, 5 is also con-

stant, as just outside the jet the veiocity is zero.

To satisfy the boundary condition that 2~ = 0 for z = 0, the plane 2= 0
is made a plane of symmetry for the impinging jet and its image. Hence,

the integration over S, Equation (I-3), must be carried out over two
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vortex sheets, that defining the imping jet and that for the image jet.

The jet is assumed to issue frorﬁ a straight tﬁbe of constant diameter
(Figure 30) at finite height, 4 , above the ground. A free-stream sur-
face issues from the edge of the jet exit, B in Figure"30‘, such that the
free streamline velocity vector at B is parallel to the side of the tube.
The flow inside the tube along the side of the tube must be tangential

to the side; but, of course, the streamline along this side is no longer

a free streamline, as a pressure difference can exist and, hence, the
magnitude of the edge velocity may vary. The boundary condition along
the edge of the tube is, then, that the normal component of velocity,

« , is zero. In addition, a4t B in Figure 30, 2~ is continuous. Again,

along the free streamline BC,the velocity and, hence, Z,‘ are constant.

.. Final Form for Velocity Components

Figure 30 illustrates the flow model as thus far developed. The straight
tube of constant diameter, D, centered on the z-axis extends from x = H
toz= . For 0O<z< /, the curve r=7, (Z) defines the edge of the
jet. To insure that ?* is tangential at B in Figure 30, we require that
%2 = 0 at z = H; that is, there is no discontinuity in slope between the
side of the nozzle and the free-stream surface. The sides of the tube
and the jet are represented by a vortex sheet of vorticity E‘[r‘a,z) per
unit area whose r- and z-components are zero. The image of this"
vortex system for O0>Z)-e assures that the boundary condition for no

normal flow across OD is satisfied.
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The integrations with respect to 8' can be done in closed form in
each of the integrals of Equation (I-3). Ifwelet z=2ZR , 2'= ZR,
r=rR, ry=r,R and E=F E(H), there results

2nr

s:m){ “¥(3) 5-3/ [(2—2”)"’»‘ Feps

ulRz)=-— y (Z-Z+(F+1 —(2-2’);'*(7"7)2'

E(%)-K (76,)] dz

E(Z’)(ifi') [(Z""E’) 7 r¢+7 £ (%) ‘/({ﬁz)} A3

'i VG2 G+1)2 |z +2 )+ (F-1]2

[z—z’];/u[d;z(z),] {[’ 24 72+ lr, I

Jiz-z’]z+|r + 7,0 |2 Z]zf-[r -7, (z7)]*

/ [Z'f'?’] 1+ dfo(Z)] [[27‘21 P [7'0(2/)]2 }d }

VTR T (G a7 (2)F £t~ Kk

E(’és)‘ /({Jég)} z

_EW /°° E(z) -2+ 71 .
vir2)= 27 {H V(Z—Z’)"f-/r’ff/‘[fz-'z")" +(F-7)* Elk)-K(Ri) dZ

Q'&) Er 2%+ FR-7 ) )
/ Y(z+3)*+ (F47) ,:(zv‘ ZP + (7-7)* £ Kﬁe")}

drb(')"‘ o024 i (R fsMR
/ ‘/(Z - ] [ (z-2)*+ d (7 (Z)] Fot-Kte)| 4z

)% [r+ ) | E-20**[F-7 (2)]*

c{r,, (z |
az ; @+ 2P+ P70 @ Ly el e
}/(z. + z’)" +[Fr 7, (29]2' { @r2)*r [f -7 (2')] * E{%’) K“’)J 42/}
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where K/i) is the complete elliptic integral of the first kind, and
£ (#) is the complete elliptic integral of the second kind, with modulus

A ; also, * 47 . - . 4F
“r =it W emaE e
3 _ 177, (%) (b= 477 (2) .
&) = (z-2)+[Fr 7 %) Z-Z)% +[F+ % (2)]

These integrals are valid everywhere except on the boundaries, at (/, 2)
for i),g and [r';, (Z),Z for 2 g » where the integrands are singular.
However, even on the boundaries, it can be shown that the Cauchy prin-

cipal values of these integrals exist.

Equations (I-4) enable the velocity at any point in the flow to be com-
puted, once the form of '7_'0 (z) , the curve defining the boundary of the
jet, and 5(1) » the vorticity area density of the vortex sheet on the
boundary of the jet and the tube, are known.

Equations (I-4) with the associated boundary conditions

lim w(72)=0, ZYHR, 71

el ¥ L -
ézmr_ ‘;,?;’g)) = “;.2_(2) ;, 2 S HR, FLF

give rise to simultaneous nonlinear integral equations for E{i) and

Fa (i) , which, as they stand, do not admit of solution in closed form.
However, by means of a high-speed large-capacity digital computer, a
solution may be possible if a convergent iterative process can be derived
which will permit the determination of the jet boundary 7, (2) What
appears to be a rational process for doing this has been derived and
programmed on the IBM 704 computer. - However, the results obtained
as yet are not conclusive because of difficulties with the program.
Therefore, only a brief outline of the computational process is presented

here.
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The general computational procedure adopted is as follows:
1. The initial shape of the free streamline boundary is assumed.

2. - The boundary condition that the flow at the wall of the tube
is parallel to the tube is used to determine the varying area
vorticity density of the vortex sheet representing the tube
and the constant area vorticity density of the free-stream

surface vortex sheet.

3. The flow normal to the free-stream surface is then evaluated;
if there is a velocity normal to the boundary assumed for
the free-stream surface, that assumed boundary is incorrect

and must be adjusted.

4. The iteration proceeds for the adjusted boundary (by going
back to Step 1). o

The process of determining the revised jet boundary in Step 3 is based
on the boundary condition along the jet boundary free streamlines, that
the velocity normal to the boundary is zero. For example, if the com-
puted velocity normal to the jet boundary is directed outward, this
intuitively would suggest that the assumed boundary should be displaced
outward. Let the curve for the assumed free jet boundary BC (Figure
30) for the ith repetition of Steps 1 through 3 be

7l = [7,(®); -
Once the distribution of the vorticity in the vortex sheet is known from
Step 2, above, it is possible to compute the velocity vector anywhere

in the flow, based on (f,)" , the assumed free-stream surface boundary
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using Equations (I-4). The velocity components « (%, 2), v (7, 2)
at the boundary are computed; then [u (fo ,'i)/v' (7, i)] is the slope

of the velocity vector along the ith

assumed boundary. If this slope
is equal to d{ﬁ,)‘;/df all along the assumed boundary, {7}',)" is the
correct curve, as all boundary conditions are then satisfied. If not,.

two possible approaches for deriving a revised boundary are as follows:

i - 3
1. As ;o(z)-f../ 4R(Z) ocz¢ 4
fy dz ! R

a new boundary (7, can be obtained from

ivr
Eluln,.2) dl#E);
5z = - (2 - =/ 1-5
Iz @), =% e, K,/H [7‘(’5;’-2—) o ‘dz (1-5)
where K, is a constant. T}:e slope of ‘_‘[z"o_(i)]‘.*, is then
7@l _ ,,_ o, 4% (E)1: « (7, 2)
Az = (1-4) = 75 (7, 4Z)

2. More simply, we could let

‘ Ua(‘i—b‘ ’ i) - d[?:, (2)[
7"(7-‘01 ’2) dz ?

[73 (2)]‘1,1 = [7-;0 (Z)L' - Ke (1'6_)‘

where K, is a constant.

Either approach (1 or 2), hopefully, provides a ratiovnal basis for an
iterative technique. It should be noted that no theoretical rigor is
claimed for this procedure; it is primarily a systemization of the method
which a computer might use to adjust boundaries in a successive approxi-
mation technique. It is obviously intended for use in an electronic V
digital computer program. Convergence can, thus far, be determined
only by a trial and error process. Several iterations would be made

with a selected value of either of the constants K, or K, depending on

which method is used. If the successive boundaries appear to be
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diverging, then successively smaller values of K, or K, would be

used until convergence is obtained.

Method 1, above, (Equation I-5) for deriving successive jet boundaries
was incorporated in the IBM 704 program with the constant K, = 1.0.
In this program, the distribution of vorticity density £ is determined,
for a given assumed free jet boundary, by a collocation procedure. At
specified points on the tube (boundary AB in Figure 30), the velocity
normal to the tube is computed in terms of E and set equal to zero,
There results a set of linear equations in terms of E (2). As a check
on the integration accuracy, the velocity at the free jet boundary is
computed, once convergence is obtained, to determine whether it is,

in fact, equal to Ve

As noted in the body of this report, calculatiens of velocities aleng the
jet centerline and along the ground plane have been made using as an
assumed curve for the jet boundary, one derived by Schach (Reference
8) by a successive approximations technique. As this boundary cerre-
sponds essentially to that for the infinite impinging jet, the correspond-
ing vorticity area density on the vortex sheet should be constant, and
this was assumed. The ground plane static pressures and jet center-
line static pressures resulting from this calculation are shown in
Figures 27 and 28 and are in relatively good agreement with experi-
mental pressures for H/D = 2. The agreement is better, generally,
than Schach's computed pressures. The difference between -the present
results and those of Schach, based on the same boundary, are probably
a result of the more accurate numerical integration which can be

obtained on a.large digital computer.

Preliminary calculations obtained during partial runs of the complete
program are encouraging and offer hope that, in fact, the process will
converge. It is expected that eventually calculations of the inviscid

_impinging jet flow will be obtained for a range of values of H/D.

43 : 63-11




APPENDIX II
CALCULATION OF GLAUERT'S FORM PARAMETER, 4

The value of the shape parameter < as a function of the Reynolds
number Upy J't/r‘ is shown in Figure 31. This curve was calculated
from the data presented in Table 1 of Reference 12.for K = 0.013.
It is evident that ¢ depends only weakly on u,,,é't/ﬂ'. Thus, only a
rough estimate of the Reynolds number is required if & is. to be
determined with satisfactory accuracy; an error of 10.02 in & will
lead to negligible differences in the predicted characteristics of the

flow at the ground.

It has been generally observed that the flow on the ground under an
impinging jet reaches a maximum \}elocity at 1 £ r/D%$2 and that this
maximum velocity is approximately equal to that corresponding to the
total pressure in the jet before impingement, With these observations as
a guide, it was assumed that a,,,/Ua, =1atr/D=1.5, that Glauert's
theory applies at this radius, and that the loss in momentum flux due

to the wall shear stress is negligible up to this radius.

The radial momentum flux in wall-jet flows is given by

e = ot (S 2 2

720 R* U™ N/ R R
The constant is equal to 1,514 at & = 1.0 and increases gradually to
1.547 at @ = 1.6. Since this range of & is the one most likely to be
encountered in practice, an average value of the constant, equal to
1.53, represents a very good compromise. Hence,

- My . um \* 9y P
—_— 53— == —
153 )RR
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and from Equation (4) in the body of this report

M U

o RA Un* Voo

Combining these two equations and putting —é[j-m— =1latr/D= 1.5 gives
o

umyy T ._(7('_’)(7)
UnR 7.53 Uy, \2/\75/

a,;,)&t; u,;y@(;;) ~ 9,/78 (IZ/I %Q)(% . (1I-1)

- A first approximation, (a), , to the required value of « 1is obtained
by choosing Cft /9;{ = 1 and using Equation (II-1) to find ( a';af)’g “f’ Y%
and, hence, (d,)1 from Figure 31. For example, in the current tests,
at H/D = 0.5and Up =1911ps, %2 equalled 1.22 x 10° and O/l

.“”'_65) =1,12 x 105, which corresponds to d =

if losses are neglected.,

or

was 0.84. This gave
1.16. At this value of (d,), f éz/y% = 0.9 and a second approximation
using (a,;d”i‘ =0.9 u—‘;ﬁ) can be performed. The result, (d,)g =
1.16, is the same as that for (d)‘, . At very much lower Reynolds

numbers, the second approximation will be slightly higher than the

first.

At very large values of H/D, the jet just prior to impingement will be
fully turbulent. In this case, effective values for nozzle radius and

(e should be used. The effective radius could be defined by the radius
of ‘a free vjet, at a distance from the nozzle equal to H, for which the
velocity equals -3 the centerline velocity. The reference velocity Ve

would be taken as the free jet centerline velocity at this same distance.
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BOUNDARY LAYER TRAVERSE MECHANISM

Figure 5.
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Figure 19. FLOW MODEL FOR CIRCULAR IMPINGING UNIFORM JET
USED IN REFERENCES 8, 9, AND 10
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Figure 24. LINES OF CONSTANT DYNAMIC PRESSURE IN MIXING REGION
~ SURROUNDING THE POTENTIAL CORE OF THE FREE JET
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SURROUNDING TH POTENTIAL CORE OF THE FREE JET
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Figure 29. REPRESENTATION OF VORTICITY LAYER ON EDGE OF INVISCID JET
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Figure 30. FLOW MODEL USED IN PRESENT ANALYSIS FOR CIRCULAR
IMPINGING UNIFORM JET
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