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THE APPLICATION OF OCCULTATIONS TO GEODESY
PART 1: GENERAL THEORY

Introduction

The sun and the moon have apparent daily motions across
the sky, rising in the east and setting in the west, These
motions are apparent in that they are presumably not motions
of the sun and moon proper, but are the result of the earth's
rotation., Hence these motions are shared by all the rest of
the heavenly bodies -- the stars and the planets, That the
sun and moon have other motions which are not related to the
earth's rotation is shown by the different positions of these
two from day to day with respect to the stars, This is
especially obvious in the case of the moon, which can be seen
tc shift its position eastward with respect to the stars by a
distance equal to its own diameter every hour. Jince the
moon has an angular diameter of about half a deyree, in one
day of 2L hours the moon will have moved 12° eastward with
respect to the background stars, and hence will be observed to
rise the time equivalent of 129, or L8 minutes, later every
day. A complete circuit of the star field takes about 27.3
days,

In its eastward motion among the stars, it is to be
expected that the moon will pass in front of and hide such
luminous bodies as may be along its path, Except where the
body is our own sun, in which case an eclipse is said to
occur, the passage of the moon across The EIne of sight
between a star or planet and an cbserver.is called an
occultation of the star or planet by the moon. An eclipse
of one sort or another seldom occurs more than twice a year;
an occultation, on the other hand, can be observed almost
every night with a pair of binoculars,

Both eclipses and occultations have been observed in
order to find the geographic location of the observer (ref-
erences 12, 13, 14). That such use can be made of eclipses
and occultations stems basically from three circumstances:

(1) The moon is so close to the earth that a
shift in the observert!s position produces an appreciable
change in the apparent position of the moon with respect
to the surrounding stars (or the sun). At the sub-lunar
point, a shift of 1000 meters in the observer!s position
produces a shift of about one-half second of arc in the
position of the moon,



(2) The directions of the brighter stars occulted
by the moon are well known, so that a bright star occultation
gives an accurate space direction for that portion of the
edge of the moon (at the instant of occiltation) at which the
occultation occurs,

(3) The position of the moon with respect to the
earth is known from the exhaustive studies of E, W. Brown
(reference 1) and others, as a result of many years of precise
observations at observatories, At the instant of occultation
there is established in space a fixed line on which the observer
is known to lie, Since the occultation takes place at the edge
of the moon and not at the center, to fix the line would require
not only the coordinates of the center of the moon, but also the
direction and distance from the center of the moon to that point
on the edge at which the occultation was observed to take place
(Figure 1),

In practice, the direction (from the moon's center to its
edge) at which the occultation occurs cannot be measured
accurately, and no attempt is made to measure it, so that there
is actually a set of parallel lines determined, all pointing
toward the same star and on any one of which the observer could
lie, The intersection of this set of lines with the spheroid
(taken to be the earth's surface) is an arc, a short segment of
which is called a "1ine of position®"(LOP). The direction from
the center is always known well enough that on a map the IOP is
practically a straight line., Two occultations give two lines
of position, and the observation site lles at the intersection
of these two lines,

Another deviation of practice from theory occurs because
the lunar profile is not a perfect circle, but is highly irregular;
that point on the edge of the moon at which the occultation occurs
is at a different' distance from the lunar center for each occulta-
tion and this distance is not accurately known. Hence, every
occultation occurs at a different distance from the optical center
of the moon; every additional occultation introduces another and
different radius of the moon, and the ensuing set of equations
always contains more unknowns than there are knowns, To remove
this difficulty each occultation can be cbserved by two different
observers; if the occultation occurs at the same point on the limb
for b th, one of these observations may be used to determine the
radius of the moon for that occultation., When this is done, the
situation is like that in the preceding paragraph where only the
position angle (direction from the moon's center) in addition to
the observer's position, was unknown, and the problem is again
solvable,



FIGURE 1

The star at effectively infinite distance, is the center for projection of the
profile of an irregularly-shaped body, the Moon, onto an irregularly-shaped
surface, the Earth. The Moon's surface is approximated by a sphere, its
profile by’a circle and the Earth’s surface by an elfipsoid of revolution.
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I. Mathematical Formulation of the Problem

Mathematically, the simplest approach to the problem
would be to go directly to the solution by determining the
intersection of the spheroid surface with the set of lines
tangent to the moon's edge and extending in the direction of the
occulted star. Such an approach would, however, be very diffi-
cult to handle, since it would entail the solution of a complex
system of simultaneous fourth-degres equations., Hence a less
direct foute to the solution was adopted long ago by astronomers
and has been retained ever since. This indirect route permits
most of the computations to be carried out as if the occultation
occurred in a plane, and then brimgs the results from the plane
up to the surface of the spheroid as a last step.

As was mentioned in the Introduction, the two major unknowns,
other than the geodetic ones, occurring in the occultatioam problem
are the position angle to the occultation and the distance from
the center of the mosn to the point on the edge at which the
occultation occurs. After the basic occultation equations have
been set up, as in section B below, two distinct ways of removing
thess two unknowns are possible. One, which is called the Single-
Site Method, requires that occultations be observed from one site
over as great a range of position angles as possible. When the
geodetic unknowns and as many as possible of the systematic
astronomical unknowns are solved for by the method of least
squares, and the variations in the radius of the moon are ignored,
it is expected that variations in the moon's radius will act in
the solution as if they were randomly distributed with respect
to the various obsarvations, and hence will not appear in the
values found for the geodetic unknowns. This method is discussed
only briefly in section C below, because although it is of comn-
siderable interest in its own right, as well as closely related in
theory to the Equal-Limb-Line Method, it has already been treated
at length in a previous paper by Pamelia A, Henriksen (reference 2).
It is included here largely for the sake of completeness and to
throw additional light on the less obvious problems associated
with occultation survey by the Equal-Limb-Line Method.

The Equal-Limb~Line Method, as stated in the Iatroductionm,
removes the uncertainty in the radius of the moon by using a second
observer to determine the radius for the same occultation as that
being viewed by the first observer. Since no reliance is placed
on statistics to produce results, the accuracy of this method is
inherently greater than that of the Single-Site Method. Section
D below covers the Equal-Limb-Line Method in detail.



FIGURE 2

Geodetic and topocentric coordinates of the observer (\¢,h, and 3 systems)



Before sanything is done toward setting up the equations
describing the occultation phenomenon, however, a clear statemant
must be made concerning the frames of reference in which the
equations will be used. This {s not a simple subject, since the
data which come from the observations, from the ephemeris of the
moon, and from the star catalogs are referred to many distinct
frames of reference which are related to each other in a complex
fashion. Also, because the computation procedure is indirect, a
chain of intermediate reference systems is introduced which must
be distinguished from the primary reference systems. Section A
below will discuss simply the frames of reference used in the
theory.

A, Frames of Reference.

1. The observer's coordinates (Figure 2) are given
first with respect to some standaxrd spheroid as:

2 0, h.

The spheroid is assumed to be defined (Bomford, reference 3)

so that its minor axis is parallel to the earth's axis of
rotation; a major axis is assigned the value A= 0, and is
parallel to the meridian of Greemwich,and the perpendicular at
the datum point A,, @, is defined to coincide with the vertical
(the direction of "gravity) there at a depth h, below the surface
of the earth. Usually, h will be given initially not with
respect to the reference spheroid but with respect to mean sea
level -- essentially, the co-geoid. The height of the co-geoid
above the spheroid, Ah, must be added to the given hy to get
the height, h, above the spheroid.

Most computations are carried out using the International
spheroid ( a = 6,378,388 meters, 1/f & 297)as the reference
surface, When, as oftan happens, the survey data on the occultation
site are with reference to some other reference surface, a transfor-
mation between the two spheroids is necessary. The procedure used
is given in Appendix D.

2. A rectangular coordinate system with origin at
the center of the spheroid is used in preference to the geographic
system for computations (Figure 3); this system is defined by the
equations:

x1 s (N+h) cos A cos @
x2 = (wh) sin A cos @ )
3

X° = [N(l-e?) + 1J sin @.



N is the radius of curvature in the prime vertical and can be
computed from

N=a [l-e2 sin? G]:J, (2)
& is the semi-major axis of the spheroid.

3. A topocentric rectangular coordinate system with
origin near or at the observer is used to relate the occultation
data directly to the geodetic coordinates of the observer, This

Iaten (Figure 2), designated the pl.g stem, 18 related to the
X -system by the equations:

B e ryract - xh 3)
- sin A + cos A 0
R =[-cos A - sin A 0 )
| 0 0 1
1 0 0
R = |0 +8infg - cos ¥ (5)
’ 0 +cos § +sin g

The xi are the Xi-aysten coordinates of the topocentric system origin,

4, Most of the computations are carried out in an inter-
mediate reference system whose origin is also at the center of the
spheroid (see below), but whose orientation is with reference to the
moon's and star's coordinates rather than with reference to earth-
fixed coordinates (referencel 11, 12, 13)._ This system will be denoted
by lower-case letters (xl, x2, xj) The x3-axis is parallel to' the
line joining the star and the center of the moon and is positive in the
direction of the star; the x2-axis 1ies in the plane of x3 and the
spheroid's minor-axis and is positive to the North; the xl-axis 1is
perpendicular to x3 and is positive towards the East (Figure 4). The
x-system 18 therefore related to the Xi-system by the equations:

[xq - [ s*] [R};.*][xi] . (6)
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FIGURE 3
Rectangular coordinates, Earth-fixed (the X'-system)
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FIGURE 4

Rectangular coordinates (the xi-system)



Here

— -
+ sin Py + cos }L* 0
Rye= | -cos jh, +sin oy 0 @)
0 0 1
1 0 0
RS, = 0 +sin § + cos S @)
0 -cos &, +sin §,
e ——
s is the Greenwich hour angle of the star.
M = csT - L 9)

GST = GST, + (time of observation)

If the (x/-system is referred to some space-fixed system
instead of to an earth-fixed system, the relation between the two
can be expressed as a rotation:

cos © sin © 0
lied7 = |-8in @ cos @ 0
Y 0 1

Here the [ X 7 system has rotated through the angle @ since

zero time when it made the angle 0, with the space-fixed systems,
and &,, % are the right ascension and declination of the star
(GST is the Greenwich hour angle of the star at the instant
considered),

In observing an occultation, the optical axis of the
telescope is kept pointed at the star, and the time at which
the star disappears (or reappears if an emersion is being observed)
is recorded, The optical axis is therefore constantly parallel to
to the x3-axis, and no distinction is made between eveats occurring
at different points along this axis. As far the observer is
concerned, his world of events lies in the x! x4 plane., Hence it
is customary to further gign%ify the mathematics by doing most of
the computations im the x! x4 plane, which is called the
"fundamental plane" after Bessel, vho first introgduced it.
Coordinates in this plane are often denoted by £°, gz,

org,7.
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These four systems are basic to the mathematics of occultations,
There are a few others, principally those associated with the motion
of the moon and with the lunar surface, but except for the above four,
none plays any great role in the reduction of the observation data,
Considerable care must be taken, however, in the use of these four .
systems, In the first place, the observations give data which are or
can be referred to systems with origin at the center of the reference
spheroid. The equations of the moon's motion, on the other hand, are
set up in a geocentric system -- i,e,, a system with origin at the
earth's center of gravity; at theipresent time, the position of the
earth's center of gravity with respect to any reference spheroid is .
known to better than + 100 meters. Hence a certain amount of error
is introduced; a more detailed study of this point is made in Part II,
In the second place, if more than one observing site is used, and if
the sites are on different datums, there will be a separate xi-, xi.,
E"-cylten for each site, The systems for the separate sites will be
designated by subscripts,

B, Basic Equations

1. General:

There are four physical bodies which enter into the
occultation equations; these are the star, the moon, the earth, and
the observer, They are all tied together by one parameter -- the time,
The star's position is given by the vector:

*'(Q: &k’ Ta))

where &,, & are the star's apparent place coordinates, but since
-3‘ distance rx 18 of :no interest to occultations, the unit vector
tx( Ay, Sx), which gives the direction of the star, can be used
instead, r, is gotten in the usual manner from a catalog of star
directions; the occulted stars lie within 30° of the celestial
equator, In the above vectors, O‘*, % and ry, are all functions of
the time t, but since the period of time over which a particular
occultation can be usefully observed is less than three hours
(usually less than 1,5 hours), «(t) for such stars is practically
constant,

The moon's position is given by the vector:

-t’. (%’ gn’ rn)’

where &, S and r, are also time dependent., The elements of the
vector are noat easily gotten from one of the published lunar
ephemerides (reference 6). They, of course, change appreciably within
a period of three hours, and could be written explicitly as

rm [am(t)n Sm(t)s rm(t)]

11



or, since ephemerides give the horizoatal equatorial parallax
instead of the distance, as

.%Eﬁnﬁgmmﬂﬂ

In the ephemerides the slements givem refer to a poimt which is
called the cemter of mass of the moom, and mot to the cemter of
the visible disk. Hence account must be takem, im correlating
observatioms with the ephemeris predictioms, of the displacement
of the optical center from the aphemeris cemter. The equatiom
of a spheroid im a space-fixed system is

T8 =1 (10)
where § is a dyadic with elements which are functioms of time.

Simce the occultatioa occurs at the edge of the moom, as
viewed from the earth, the equatiom of the lime om which the
observer and star lie is:

L A p+%, (11)

where is the vector from the ceater of the mooa to the
point on the surface at ch the occultation occurs, and 3 is
a variable, The vector ‘?; is a complicated fumction of the
time simce the moon's motion 1s compounded from many imde-
peadent motions such as libratioms, etc,

& -fm{[m(t), b, (t), ,"-(tj . a12)

Here f‘(t), ba(t), f’n(t) are the selemographic coordinates of
that point oa the moon at which the line observer-to-star ¥R

is tangent when the occultation occurs. Our kmowledge of the :
shape of the surface (s insufficient to permit prediction oflm,
b., and /’m, and as mentiomed before, certain assumptioas or
procedures must be adopted to get aroumd this difficulty., Taking
it for gramted that this has beem dome, the solutiom is gottea
by solving simultaneously the equatioms:

2R = Zy+ Oy + Ts 3)

%1 =Bes 2 (14)

12



Because of the indeterminacy in Fm, the first equation will

be not that of a single line, but will define a set of gener-
ating elements of a cylinder; the common solution of these two
equations will give a curve instead of a point. If n occultations
are observed, the vectors in these equations become 3 x n matrices,
and we have

2[r] = ] * [’D“‘] + [r*] | (15)
2 -@w3T [0 (16)

When n > 2, the solution obviously becomes indeterminate since the
rank of the matrix is then less than the order, and recourse must
be had to least squares.

2. The Fundamental Plane Equations:

The general approach given above has not been used
for computations because of the difficulty of solving the equations
with small mechanical computers. Instead, as much of the compu-
tation as possible is done on the fundamental plame, xl x2 6 When

the equations are formulated in x}, x2 coordinates, a tremendous
simplification takes place., r, disappears formally, since r=

is parallel to x3; [, projected onto x! x2 becomes identical with
the observed radius of the moon, and rp, projected onto ;T_;é shrinks
approximately to the size of the earth's radius or less. The radius
vector from the spheroid center to the observer is also projected

onto x! xz, and the combination of the two equations (15) and (16)
on the fundamental plane is then very simple.

.—7
Let ? be the projection of Pm onto the plane x1 x2, and
let e3 be the vector along the x3-axis. Then

- -
. AP #]
which mapa—?m into OF. So,
7 [ow S rm]"’[ém(t)}
% (o S r > 0 a8)

Z,: (o Pn Pa)> YF]
r Y7\’ g, h]"‘?[&(t)}.

¥
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The simultameous solutiom of (14) amd (18) is givem by
T - |1 - 160 "D - ). 9)

This is a second-degree equation. To make it easier to work
with, it can be lineurized by taking the differemtial of both
sides, to give the first-degree equatiom in [A£]| and [Afm]

AT - [[é] - EJ] T[[Aﬂ - [Af ‘]l (20)

From here on, the treatmeat is either by the simgle-site
method or by the equal-limb-lime method. The former will be
treated first.

C. Single-Site Method of Survey

The equation (20) above is so simple in form that it
gives a misleading idea of the number of important quantities
which actually influence the results. In the equal-limb-line
method this is not too important, since most of these influencing
factors are removed by the control observations; in the single-
site method it is very important to identify every influencing factor
and to evaluate its sige in order to be able to decide whether the
factor can be ignored or must be solved for along with the geodetic
unknowns. To emphasize the presence of these factors, equation (20)
is rewritten as:

AT = %-‘{&13 ) [gﬂ]r [—:i%]
e -
(6] [ew] - [ ][]

The [ﬁk] are the factors whose influence on the re¢aults is to be
determined. A large part of the evaluation is of a quantitative
nature and will be covered in Part I1I, Error Analysis. At this
point, only a general discussion of the particular factors involved
is needed.

where

'
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The most obvious factors are the geodetic corrections:
AEl = AR, the correction to the easting
AEZ = AN, the correction to the northing (22)

aed = DH, the correction to the heigﬁt sbove the
spheroid,

vhich enter into the variables Y_Aﬂ The [Afm] give, of course,
the factors:

a
am

A§ (23)

m
Ar
m

defining the corrections to the position of the center of the
moon, and

A,Zm
AN bm (24)

Afn

which define corrections involved in locating the occulting
feature,

Implicit in the equation, however, and not literally
present are a number of other quantities., First, there are
the quantities
A
Oc*
A, (25)
which were used to define the space-fixed directions of the

x -system, Next, there are the quantities

axt (26)
mo

vhich enter into the analysis because the equation was set
up as if everything were referred to the observer's reference

15



spheroid and datum at P, whereas, in fact, the position

]of the moon is taken from the Brown's Tables of the

tion of the Moon (reference 4)( or from an ephemeris based
on these tables, reference 6), and these tables refer|X
to a system which is at least approximately geocentric --
that is, which has its origin at the center of gravity of
the earth. The vector {kxxi is therefore the displace-
ment between the spheroidoc¥ftric system and the putative
geocentric system origins,

Another quanity which must be considered is AT, the
error in the recorded time of occultation, which enters not
only into [€ but also, through [RO] , into [£]. The
time error is of two kinds: instrumental and astronomical.
The former arises from errors in the mechanical equipment
used in recording and reading the time associated with the
occultation, while the latter arises principally from the
difference between the time scale in which the observations
are carried out (U.T.) and the "time" scale associated with
the xm] given in Brown's Tables (E.T.). This difference in
scales arises, as is well known, from the irregular rotation
of the earth (which rotation measures U.T.) as compared with
the revolution of the moon about the earth (which measures
E.T.), and from the failure of Brown's tables to represent
the motion of the moon. The former effect is apparently very
much greater than the latter.

In addition, there is a quantity [AP _\analogous to
the [Agm:} which represents the diaplacement of the visible
or geocentric center of the moon, which is what is observed,
from the center of mass of the moon, which is given as [Xm
in Brown's tables. Very little is known regarding the actual
value of [APnL); only the Aby component (i.e., the latitude
component) 18 known well enough to be given a value in
computations.

The distance O itself contains several different types of
error which, however, cannot be solved for but must either be
eliminated by a least-squares adjustment, or allowed fdr in the
reduction by use of the best available information. The most
important of these is the quantity hy, which is the height
of the occulting feature above the lunar mean datum. hy is
different for each occultation, hence cannot be found from the
analysis; it can be estimated to within 200 meters from Hayn's
charts (reference 5) or from the charts of Dr. Watts of the
U.S. Naval Observatory (reference 6). Only the latter charts
can be considered to be accurate to t+ 200 meters, although
Hayn's charts are contoured at 0'2 or 300-meter intervalea.

16



When the list of factors is further invegtigated, it is
found that the [Aox,, A§,] ,[dcc , AS , Ar ) can be broken
down still farther. The[4 oy, A§ 4] wiTl, 1¥%e h,, vary from
occultation to occultation, In addition, because of the nature
of occultztions, they cannot be separated from the gross values
of ﬂﬁ,, ASm] . Hence in the solution they will be lumped
vith [Ady, Ag‘m,ﬁl“n]‘ The sorrections [4a_, A, Ary] to
the moon's position are themselves influenced by the errors
in the parameters of the moon's motion, These parameters may
be variously chosen; the paper (reference 2) by Pamelia A,
Henriksen selects the following correction factors:

Ar = correction to the longitude of perigee

Aﬂ = correction to the longitude of the node

Ae = correction to the eccentricity of the moon's orbit 27)
A1 = correction to the angle between lunar and stellar axes

Aé s correction to the obliquity of the ecliptic

A9 = correction to the position of the equinox,

The AT could also be included in the group of factors involved
in the moon's motion, :

Taking all the above correction factors as a set Lauk ] ,
the equation (21) can then be used to determine the [auk]
if sufficient values of AJ are available, If there are
J observations (§ = 1 to J, J> K), the observation equations are

BTy RRCIES)
[o) - e [252] (]
«Lag (67 ] [ )14 e

In order for the least squares adjustment to give reasonable
values for [ auk ] , there must be sufficient observations to
provide an approximately Gaussian distribution for the ary
and the hm; i.e,, JI®»K,

(28)

17



Then

T_ 4T T 34
[l ] [9) [ w1
[ - &™) o)

-

or, in abbreviated form,

2 - [3) 53]
[xljnml - [x] + [2x] -

The [X_] are related to the [E] and the [A}_t] to the [:AEJ by
equations 3, 4, 5 and the partials of these equations. However,
the

d [52-] and 9 [R%]
>[x] 2[x]

are zero, so that

[agf = [=g] [x,]fe]

The problem cannot be considered solved by this equation since
it {s the position [x] of the observer with respect to a geo-
centric system of axes which has been found, and this is of no
value by itself, What is wanted is the relation of E{ﬂ Final

to the [x_] of some standard datum and spheroid as, for

example, North American Datum and the International spheroid, or
British Datum and the Airy spheroid. In order to get this
relation, a similar series of observations would have to be
carried out independently on the standard reference datum and
spheroid.

Let [x Z—J be the geocentric coordinatgs of a point in
a reference §ystem different from that of [Xj|, and let [x,z]
be the coordinates of this same point referred to the reference
datum and spheroid of that system. Then

Kl = [+ [a%,]
and the [_Ax,] are found as before from the equation
Lak) = (9] [2%]-

and equation (31.2).
18
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(31.1)

(31.2)

(32)
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Since

aAu’ = Auk
1 n

when two or more datums are involved it is best to solve all the
observation equations simultaneously, except for the geodetic
variables,

D. Equal-Limb-Line Method of- Survey

Return now to the equation (20) of section B,

[

cac-[[€] - [am]] [[AE]- ¢ ] (34)
The A @ can be separated into two parts:

AT = AT AT 35)
A a'*’s is that part of the error in A which arises from errors
in the geodetic coordinates of the observer, while A o"m is that
part of the error in AQ which arises from errors in the observed

- - .

lunar radius (and hence includes error in ;;, f%f and r*).

If the occultation is observed at two different sites, Pl and P2"

c o -[€,- €1] [k, el

36)
o 0 '[[g] 2 [fmJ 2_] ! L@ejz ) [Aem] 2_]
First, point P2 will be so chosen that v
al€] , = O @a7)

This assumption will be more fully discussed in Part II, in the
section .on geodetic errors. For the present, it will be justified
by the rather obvious statement that any datum and spheroid can be
chosen as the basic datum and spheroid to which all positions are to
be referred, in which case, points already geodetically connected to
that datum can be coneidered as having.gg geodetic error. There will
actually be some error associated with 20 and hence with [g:]z, and
we could write:

T = T 7%, G7)

2 02 2

but at the moment it is enough to state that the datum and
spheroid on which P, is located are the datum and spheroid taken
as known, Then P, can usually be located anywhere within a
fairly large area without violating the assumption, and:
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d;zus;-[[é]l ] [5..]1]1[[55}1' [“5;];]\ (39.1)
o [ R P T .

Note that [.é] and \'_&] and hence '469 and [Aé refer to

the observing htu‘ coordinatea vhile it"is the corrections E eP ld
and [2 &] to the datum coordinatu which are sought . The
'rclltiouhipdbcwom [_A&] and [A£€]) | 1s not easily expressed in

the Ei-system, where the rigidity o the geodetic net requires that

[ag]- [ax], (40)
Secondly, P, is chosen in such a manner that, at the time tz.

A o
and therefore

2= %

This is in'practice an extremely restrictive condition. Lack of
accurate knowledge of the shape of the moon's surface makes it

erative that the occultations as obsgrved from P, and P, have
(?Z , b ) as close as possible to ( s b g). and are
the oeleonographic longitude and latitude of the point on the moon
at vwhich the occultation is seen to occur, When the moon's librations
in latitude and longitude are resolved into components with axes paral-
lel to x> and =x2, it is seen that only that part whose axis is parallel
to x3 can be accounted for. This component is a rotation in position
angle {/. Using a theorem discovered by O'Keefe,

dx = 277
I

where T, 18 the moon's sidereal period; if is the inclination of
the moon's axis of rotation to the fundamental plane; andf/ is
the position angle (reference 7). Usé of this equation helps
determine the coordinates of P, since’

.1n1¢ -.52_._.5_2.!.__.; coa}b-_g.l__-___g.l.!_. 43)

(42)

8in ig

Once the coordinates [é] are fixed, [&] becomes a function
of the time:
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T f
m + (44)

. [ ¢ -
2 W

E]z' 51“%1“‘5'; 2. gin i
1

m
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cos’f’ +( 2 3;zzfsin i
1 T f
L
t -
1
This (second) condition therefore limits the choice of points

vailgble to P, to a line which is the locus of the projection of
ml { Zml» bml) onto the fundamental plane.

Once P, has been chosen to satisfy the second condition, the
final equation is derived by subtracting equation (39.2) from
equation (39.1). Then

o o8- b1 T

1 .72

-

(& £ T
) (g - l€.) 1 (5*:‘ ”
L o -r -l
[ E] 2 S
+; [ ‘53[ ] 2.1 A[g:g 2
+£):
i "
o
e . AN R '
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But at tl and tz, beaause of the choice of the coordinates of Pz
Gt = Ty (46)
AT () | = A0 ;)

Hence as can also be seen immediately from the diagram,
T

I. T ) -
..l]l - q[én] 1 A[E,J 1 . [eu:li?z [.tm] 2 A [gm] (47)

-A40. = A
AG{ 2 ”;1

Az, - | [6]1'6_ [_gm]l ' AL 48)

This is the basic equation for the equal-limb-line method of survey
giving the geodetic corrections [g]I as a function of the difference

[AG‘J between the observed radii of the moon at sites P, and By.

1
The [Aé] must, of course, be related to the [AEJ] which
are the corrections to the datum of Pl on the surface of the earth,

The relations are provided by the equations

(8- g) Pl Eall*ed lad [ 117 ]
€ - [nad (pd 0+ (gl B 5] (517 (=]

Here [XJ and [Xm] refer to the usual astronomic. coordinate system

3

with center at-the center of spheroid, X”-axis along the polar axis,

and xl parallel to the meridian 'of Greenwich. LE] and [_Enl are

topocentric sydtems with origin at the observer's local reference
point, 83, along the normal at that pofnt, and [Bl] tangent to

a parallel of latitude. The [R] 's are the obvious rotation
matrices which rotate from the [_X] and [E] systems to the

fundamental p'line system as indicated by subscripts.
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Writing

(=] = [* s [ pmd (50)
e - (6] (A" (g

and differemtiating,

BE]. (4] [ag] + [x][ad

(51)
52200 e o (286 Do)
where [u'__] - [S, ®, A, @, h_]T forn=1, 2,3, L 5 in
that order,
The quantity &u? can be separated into two parts:
Auz - Au21 + Au22
(52)

Ay = A(P - A&*

*

vhere ©1is the G.§5.T., A is certainly less than 0501 or 5 meters,
and can be neglected in the computations. It wuld, in any case, be
random in character and would therefore be among the quantities -
appearing in the r, m, s, error after the least squares adjustment,

The errors AA, AQ, and Ah are survey correctioms; these could
presumably be found if enough observations were available, For

most sites, however, the total mumber of equal-limb-lines canmnot

be expected to be more tham six or seven in number, and it would not
be desirable to include AN\ and A among the unknowns to be found.
Sincé the two quantities are certainly not greater than A©, these also
will be igmored in the solution. This leaves the unknowns A&, and A,
and here again an analysis of the expected magnitudes shows that the
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errors contributed by each will not exceed a few meters., The

total error caused by dropping [Auﬂ altogether -- i.e,, assuming

] - o] e
is less than 10 meters, which can be tolerated. Equation (Si)
therefore becomes

[48-[e]&d + [&] [ax] (54)
all quantities being evaluated at point P; (and therefm'"e at time t;).
The quantities [Aa and [Aﬂ both represent corrections to the
position of P;; the latter, however, is the error in an arbitrarily
selected quantity, the assigned coordinates of the origin of the
system at lﬁ, and hence

[ax] = o. (55.1)
The final relationship is therefore
[AE] - [¢] [af] (55.2)
and the elements of [PJ are the direction cosines
cos ("13 EJ).

When this is substituted back into the basic equation (48), there

Al - [5]1;?.,]1] ' &][AEJ (56)

ag, = (a3,

results:

or

where [AJ is a vector.
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If j observations are made from P, and P, , the coordinate
corrections to E, are given by thi equatfon:

0 -{ Y T g
The variances [s:‘] associated with the [Aalj are glven by:

[al] [a 31] [s;] - s[gme]

where thf S is the variance of the observation error distribution.
These [S ] are referred to the Ei-system by rotation of the axes;
the off-giagonal variances can be reduced to zero, since the [S&:}
matrix is symmetrical, Hence, in the two-dimensional case, it is

possible to find a matrix Vk such that

//
vkl' - s‘% v,

The rotation @ 1is givem by

(78 - () [s) (8]

where

. cos (1) sin ()
(=] -sin@cos@

or, whea the variance [AE3_] is explicitly included,
cos ® sin @ O
R = |-8in ® cos @ O
0 0 1

, and the semi-minor

These squationa define the semi-major axis, Vl
(@ bvetween the semi-

axis,V,, of the ellipae, as well as the anglo.-.1
major &xis and the E'~axis.
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These equations are easily gesmeralized to the n-dimensional
case, which is covered briefly in Appemdix E.

Because of the few observatioms available from amy ome
site, it is highly desirable to restrict the solutiomsat first
to those unkmowms whose errors are greatest. The compomeat is
hence usually set arbitrarily equal to zero: -

AE3 = 0,

and the solutien limited to the determimatiom of ABI and ABZ,
or, vhat is the same thimg for the purpose of computatiom, A A cos
and A @ ., 1In this conmectiom it is worth poimtimg eut again

that the occultation data cam provide mo informatiom about  the x3-
comporent of evemts. Im occultatioms imvolvimg poiat P; amd P,
which are 2000 km or more apart, the mamy practical restrictioms
on the observation comditiems -- per cent illumimatiom eof the moonm,
time after evemimg twilight or before woraing twilight, etc, --
often combime to force the observatioms at P, to be made either
mear the herizem or mear the zemith. Im the first case the El-
compenent will be poorly determimed by the selutiom, and im the
second case the 83-co-ponent would be peorly determined.

Up te mow it has beem assumed that the correctionms are
being applied directly to the site coordinates, For a proper
solution the correctioms should be applied to the datum |
coordinates, simce it is assumed in the derivatiom of the equatioms
that the site ceordinate errors result from the datum coordinate
errors (survey errors being meglected, as explaimed earlier).
Where the obsarvatiom sites are ornly a hundred kilometers apart,
no significjnt error is imtroduced by meglecting the differemce

between EBi observer and EEinatu-. At distamces much greater

than this, such a simplifyimg assumptiom canmot be made, and a

i i .
transformation from [E ] observer to [; ]datu- is mecessary

This tramsformation cam be made by using the formulas of
Hristow (referemce 8) commectimg the change im positiom of a
point P. to the chamge of positiom of a point'Pz. These formulas
can be put imto the form:
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_ - = 1

dA cos P dA cos @

ad - ¢

d A ( d A

(61.4.

dS = T ds

d a d a

df - -J d £

— —J obs, — -~ datum
where [’ ]is a function of the separation AQ§ AA between P, and P .
For all practical purposes, df and da, the changes in the flat%ening
and in the semi-major axis of the spheroid, can be set equal to
zero when only a small number of observations are available. When
many observations are available, covering a large area of the world,
a solution iacluding df and da could be significant. This is not
the case at present.

Since P, is tied to P; by geodetic survey, it may be assumed
that dg and Di are not to be changed by the translation., The
resulting equntfon is therefore:

[AEL ] (] "AEIT
ae? - | | a2 (61.5)
3 3
g | Les
observer - -~ datum

where [Tl_]ia the matrix [T]suitably modified (see Appendix F).
This transformation cam now be introduced into (57) to give:

T
A 0;1 - [A] [T]..] [Aé] datum 1 (61.6)
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el R BR @

analogously to (58).

The above equations '/(57) - (61.7)_/ have been formulated
for the case where anly two points, P, and P, were imvolved, and
where P; was the "umkaowa" point aand } the Zontr'ol poiat. In an
occultation survey program covering a Iarge area, the distinction
between "unkmown'" and 'control' poinmts will become largely artificial,
with a particular site Py being referred sometimes to am "unknown",
sometimes to a "comtrol" datum. A metwork of occultation sites will
therefore be set up im the area béing surveyed, and the equatiom
(61.7) must be medified accordimgly. 1Im the light of the discussiem
im Sectien C of the Simgle-Site Method Survey, it is obvious that
an adjustment of am equal-limb-lime_metwork im which mo ome point
is held fixed (i.e., for which Aﬂ- 0, will mot have any meaning.)
Some peint Py im the metwork must be assumed kmown, so that for it

Bé]- o (62)

The occultatiom equations will then be _/_;eferring back to equation (57)_7:

AGK . AR At

J i

) (63)
AE = 0

k

and the solutiom will be given by:
1 7 ) " e 1T
A A 64
aEt u LAﬁ] [’J [jij [AO‘J] (64)
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or the suitable variation according to (61.7). The variances
are then found as before, by an obvious extemnsion of the previous
equations.

Suppose D distinct datums are involved, and let these datums
be mumbered d =1, 2, 3, .,... D. Each datum is to be fixed em
the basis of observations from s sites, referred to that datum,
so that

2,3

d, d, s o et e e Sd

ad - ld’

Furthermore, each site will have observed q 4 occultations
8

-1 2 3 L B N BN ] .
qsd sd ' "sd’ Tsd’ Qsd
To simplify the notation, this can be written:
d =1,2,3, ....D

sd = 1d, 2d, 3d, .... sd

qsd = lsd, 2sd, 3sd, .... Qsd.
Then
[Ad;de] ) [A:sd} [Azid] ' [B:sd][“it% (64.1)
where

t,e ¥ s, d.

From (61.5) and (61.7) and the above equatiom (64.1), it then
follows that the final set of equations can be writtem as:
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10 ' ,
4y L { 4 1 .
- A T A + E 64.2
AO’qede qsd sd Ed qud a e (. )
f - L
1 A i
h ae* | +| v || AE
qsdf | %4 asd |} 25,

-

or, enlarging the vectors and matrices and inmverting,

AT el e e

where the [AE] vector now contains all the datum corrections.

When more than two sites lie on the same equal-limb-~line,
and only two sites are involved, it is obvious that the total
addition to the geodetic information is not equal to the number
of permutations available, but is actually a good deal less.

These cases can be taken care of by weighting the observations.
For example, the most common case, where two observations are made
from one end of a line and one observation from the other,

could lead to three equations involving.

Ag 12° AG' 3 A G.';l
where P, and P; are on one datum and Py on another. The quantity
OO iz.a of no importance to the adjustment scheme; a ¢12 and

A 3] are of importance in relating the two datums and the single
observation there and give two equations. The point P} is, however,
common to both equations. Whereas, if the equations were being
solved by the method of individual occultations (Part II), there
would be three equations corresponding to the three values & G‘

Ag 82 AG—3, as opposed to the four equations if there were %our
independent gbeetvations. Hence each of the two 4 O 14 equations is
to be weighted by 3/4 for a total of 3/2. A table for relative
weighting of observation equations referring to the same equal-limb-
line can be drawn up in the following manner to take care of the most
common cases,

30



RELATIVE WELGHTING

No. of Sites on Line Weight
- No. of per Total
Datum 1 Datum 2 Equations Equation Weight
1 1 1 1 1
1 2 2 0.75 1.5
1 ‘ 3 3 0.5 1.5

2 2 3 0.75 2.25

E. Other Forms of the Occultation Equations

The fundamental relation between [EJ and [Em] can also be

[55) = (&) [s) [ M)
o] =[a -ag ] [sin)
+ [é‘j-fijT[cos"/j Aﬁj]

(since x2 = % -1').

(65)

Going through the same procedure as before, it is easy to show that
the final equations are, formally,

[Adj’] - [Asj] + [Asj]T[A‘ij (66)

vhere [a0;] has the usual meaning. [AS;]is the x! x2-plane
component Of the correction to [E], smd[sj 1 [ak] is the

x! x2-plane component perpendicular thereto, The equations can

be cansidered as giving the correction components [AE] or [a é]
in still another sysiem, the sl-system, where the axes are designated
as

81 = 8
N & (67)
83 = 23
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The s-axis makes an angle ?‘-1 with the ‘l-axio, and the
x-axis makes an angle X with the g -axis. Then

[Ar] - [R] [E] ¥ [’][E]
= [ Ls]

The rotation matricu[ Rl ) [r) and [Q] then create vectors

» > - -?
R, r, and Q, whose sumis A , which can itself be considered

(68)

as a component of a 3-vector [ch whose components 4 2 and @3

are identically zero. The rest of the solution can be carried out
just as before and is no different mathematically from the previous
methods. The interest lies in the fact that [A 63] can be transformed

into a correction in the El Ez-plane,

b [a] - [l - edle] [o]

where Ar and AP are the radial and tangential components,
respectively, of the corrections. If only one of these is solved
and the other is ignored, then the question is whether to set

Ot or AP equal tozzero for a particular occultation., If
AP = 0, equation (69) defines lines

1 = (EI-A Ar sin Q) sin © (70)
i 3 J

and the corrected position of the point P, i{s obtained by solving
these equations for the intersection of tl]ie straight lines. If,

on the other hand, Ar = 0, equation (69) defines circles of radius
B, AP, and the corrected El and EZ 1ie at the common intersection

of these circles,.

F. Relative Position Method

The equations and methods described heretofore are
satisfactory if a set of related geodetic positions referred to
one particular datum is being built up. This is especially true
vhen the set is global, so that the positions can all be referred
to an "absolute" coordinate system (in this case that system to
which the lunar orbit is referred). Where no such unified set
is envisioned or possible, however, the previous equations are
open to the objection that they contain implicitly the assumption
that an "absolute" coordinate system Ls involved when it is postulated
that
axt =0
2 32



for one of a pair of occultation sites, the implication is present
that the lunar orbit is also fully defined for that site., This is
not so, and the resulting error will not be removed unless a global
set of positions is involved.

To make the equations useable for relative position deter-
mination, there is no change required in the equations other than
to drop the condition

i
AX2 = 0,

and to substitute for it some relation which does not involve
knowledge of the absolute coordinate system. The required
relation is arrived at through the opvious, and,k simply proven,
considerations that the vectors AX: and 4X3 must, if they
represent relative shifts, be equal In magnitude but opposite
in signs; the unknown relation between the lunar orbit coordi-
nate system and the local geodetic systems is the same at both
places. The resulting equation is therefore:

[aik] * [aik] [Axi] - %o

which is solved for the [AX‘:E] by the same method as before,

There is no reason why this equation cannot also be used
in setting up a global, connected set of positions. From the
relative nature of the AXl, it is obvious, of course, that
the gnd product will be "fioating' in the sense that two (if

AX2 is involved) or three parameters must be arbitrarily

specified unless the connection is closed,

The preceding discussion has covered principally the data
analysis aspect of occultations, For the prediction of occulta-
tions, the same equations would, of course, apply. However,
additional work must be done to select the stars, compute the
"equal-limb-line positions, and so on., The procedures have been
put into a form suitable for mechanical calculation by the
Department of Geodesy, Army Map Service; these procedures
will be published in a forthcoming report entitled "Mechanical
Procedures for Occultation Prediction.”

33



PART II. ERROR ANALYSIS

Introduction

The equations which govern the use of occultations
for surveying are incomplete as they are given in Part I
of this report. since they do not state the range of errors
which can affect the results, These errors in the results
arise from errors in the constants and original data, and
their sizes are decided by both the sizes of the input
errors and the equations themselves, An analysis of the
errors therefore concerns itself first with the sources
of errors in the input, and secondly with the growth of
these errors as they pass through the occultation equation..

As 18 seen from the equations in Part I, the sources
of error are:

. Star positions

. Moon positions

. Geodetic coordinates of the observer
. Timing of the occultation,

N -

Errors in star position and moon position combine with the
(unknown) lunar radius at the point of occultatioam to pro-

duce an apparent lunar radius which is greater than or less

than the standard assumed radius of the moon. Errors in
geodetic position, by moving the observers off the "equal-
limb-1line" positions, affect the results by amounts Ag which are
approximately,

- Shm
be oP ‘&qb

vhere 2h g the average slope in the vicinity of the

P
occultation feature on the moon, and AP {is the error in
latitude, Errors in timing are transformed into errors in
position correction which are approximately equal to the.
time error multiplied by the average velocity of the moon's
projection onto the observer's horizon plane.
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II. Error Analysis

A, Error Sources

l., Star Position Uncertainties:

The occultation survey method, using two independent
observers, is not sensitive to reasonably sized errors in the star
coordinates. Such errors, practically inseparable from errors in
the moon's position, cancel out almost completely in the first-
order approximation to the exact occultation equations, Sample
computations used in the prediction star, positions differing by
1", have given paths differing by only 1 or 2 meters over a 1000~
kilometer length. However, it is obviously desirable to reduce
all errors to a minimum consistent with computational ability so
as to produce the number of unknowns that must be accounted for.

The source of the star positions used is of major importance
here, Since only stars occulted by the moon need be considered,
attention can be restricted to the zodiacal zone, Furthermore, it
is desirable to have as homogeneous a set of stars as possible,

The requirements of (a) high precision, (b) zodiacal zone, (c) homo-
geneity, and (d) adequate coverage to 9th magnitude, effectively
1limit the choice of sets to (1) the Robertson Zodiacal Catalog

(ref. 17) and (2) the Yale Zone Catalogs between +30° and -30° (ref, 18)
The FKL contains too few stars to be useful as does the N30; the

Boss General Catalog is inaccurate (one second of arc or more r.,m.s.
error), Hence, all stars used have been from either the Robertson
or Yale Zone catalogs, with corrections being made where necessary
for the systematic differences between the two. The necessary
corrections are made by using the conversion tables given in the

Yale Zone and Robertson catalogs, going in each case from the system
in question to the Boss General Catalog and thence to the appropriate
second systenm,

Table I, Star Position Error

Catalog Absolute Value of p, e,
Yale Zone (1) < 0%5
Zodiacal (2)(3) < 015

(1) Evaluated from Yale Zone Catalogs for Zones between
+30° and ~30° declination, See Table II,

(2) Approximate evaluation from 50 random samples in
catalog.

(3) Systematic differences between the Zodiacal Catalog
and the General Catalog run from about +O%L45 to -0922 in right
ascension and from #0926 to +0%07 in declination,
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TABLE II. Probable Errors im Directiom
Yale Zome Catalogs

Zonme occ .} da/dt d é/de ngﬁ
-30 to =27 0.105 .| £0.005 | +0.011 | £0.010 [t 0.41
-22 to -27 0.105 | £ 0.105 | % 0.011 | £ 0.010 |t 0.41
-20 to -22 0.105 | +0.105 |- £ 0;011 | % 0.009 |t 0.41
-18 to -20 0,120 | £0.105 | % 0.011 | + 0.009 |t 0.43
14 to -18 0.120 | +0.105 | £0.012 | £ 0.009 [t 0.43
-10 to -14 0.120 | +0,105 | + 0.011 | % 0.011 |t 0.46
- 6 to -10 0,105 | +0,105 | % 0.008 | +0.008 |t 0.32
-2to-6 0.105 | +0.%05 | + 0.008 | £ 0.008 |+ 0.32
#1to-2 | 0115 | £0.135 | +0.006 | %0007 |:o0.2
+5to+1 0.115 | % 0.115 | % 0.007 | £ 0.007 |t 0.27
+10 to + 5 0.115 | £0.115 | +0.008 | #0.007 |t 0.27
+15 to +10 0.115 | % 0.115 : 0.008 | + 0.006 |t 0.26
+20 to +15 0.115 | +0.115 | % 0.005 | + 0.006 [t 0.23
+25 to +20 0.095 | +'0.095 | £0.005 | +0.005 [:0.26
+30 to 0.095 | £0.095 | £0.007 | £0.005 |t0.31

+25
!
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From an analysis of the errors introduced by each of
the two catalogs, as summarized in Tables I and II, it
appears that there is no significant difference between the
errors of the two catalogs (proper motions being taken into
account). Except for systematic differences between the two
catalogs, there is no hindrance to the simultaneous use of
both catalogs in the reduction of occultations., The different
backgrounds of the two catalogs (the Robertson Catalog is
*fundamental" and relates to an earth-fixed system, while the
Yale Zone Catalog is differential and hence more "absolute"
in nature) have no significance as far as the use of the
catalogs for occultations is concerned.

In summary, then, it can be assumed that the probable
errors in right ascension and declination of the directions
of the stars used are less than 0%5, and hence that the
standard deviations are less than 0%"75. The corresponding
error introduced into the computed geodetic position is less
than 2 meters.

2. Moon Position Uncertainties

The phrase "center of the moon® is inadequate for
defining a point since the definition used is operational and
actually varies with the method being studied, There are
thres kinds of lunar centers which are of interest:

a, The center of mass, or, more precisely, the
center of gravity.

b, The optical center.
¢. The operational center.

The center of gravity of the moon is at present defined by
Brown's equations for the motion of the moon (ref. L) as
modified in the Improved Lunar Ephemeris (ref, 19). It is

a set of coordinates (latitude, longitude, and parallax) to which
the center of the moon is said to belong, and which are computable
as a function of time alone, These coordinates, established by
the equations of motion, do not correspond to any point that can
be located by observation, because (a) the theory is based on
values of basic parameters, such as the size and shape of the
earth, whose errors are not known; and (b) the theory refers

its predictions to the gravitational center of the earth
approximately, while actual observations do not have access

to this center,
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The right ascensiom and declimation of the moon are
given in the Improved Lunar Ephemeris (ref, 19), and in
national ephemerides of 1960 and following, to:

0Y015 right ascension
0v0l declination,

These were obtained, however, by imterpolatioa im the computed
longitude and latitude of the moom as given by Brown's equations,
and are really limited im precisiom only by the abilities of the
computing machine used to evaluate the equatioms, amd could be
carried out to amy number of figures, The comstamnts emterinmg
into the computation are good to 10"° secomds of arc, amd this
together with neglect of terms, machine rouadimg-off error, etc.,
limits computed positional precision to about + 0V001. As {is
discussed further under Time Umcertaimties, the precision is
here also the accuracy. The reason for this is that at the
present time all discrepancies betweenrn the computed coordinates
and coordimates obtained from observations are assumed to be .
caused by irregularities in the observatioms, and primarily in
the real time. As far as occultatioms amd most other obser-
vational techniques are concerned, the positiomal umcertainty

ia the gravitational cemter of the moon can be taken as:

(a) From published ephemerides < 0%02
(b) Prom special ephemerides < 0v002
(c) From specific computations —~~ 0OV

b. The only center for the moon which is '"directly"
observable is the optical center, Even the gravitational center
of the moon is not free of optical influences, since the constants
entering into the equatjions of motion were determined from optical
observations. It is true that the ¢onnection is tenuous, since
a vcry.large aumber of optical observations enter imto the con-
stant determinatioms, so that random variations could be expected
to be averaged out. Systematic effects do appear and must be
accounted for; the initial work by Brown (ref. 1, 4) gives a
value of -0'5 for. the difference in latitude between the optical
center and the gravitational center. This value accounts explicitly
for all residuals in the latitude equation not otherwise accounted
for, and hence is not entirely satisfactory. Furthermore, there is
an asymmetry between the eastern and western portioms of the lumar
limb, as is showm by existimg profile measurements. This asymmetry
does mot show up in the equatioms of motiom.

38



A more direct way of finding the optical center is to fit
circular or elliptical arcs to lunar profiles and to resect from
these, Or, what is the same thing, to fit a circle or ellipse to
profile measurements to give best fit in the least squares sense,
The latest and probably best measurement of the relation between
center of figure and center of gravity is that of Watts and Scott
(ref, 23), which gives - 0%60 + 0"08 for the difference in
latitude, -

The value given in the American Ephemeris and Nautical
Almanac to be used for the calculation of eclipses is - 075,

c. The definition of the moon's center is that in which
the observations (occultations, eclipses, etc,) themselves
provide the center., In this way, centers peculiar to each method
arise, For example, a careful statistical analysis in 195é
by Mr. G. Reuning of some 2000 visually observed occultations
gave an optiéal center minus ephemeris center value ofad$ = O%L
(ref. 24), Similarly, eclipse reductions provide temporary
centers pertaining to the eclipse.

TABLE III. Lunar Position Uncertainties

Uncertainty in: Absolute Relative
Difference between Optical and on ~ Ov
Gravitational Centers
Orbit (2) < oro2 ~ "
Right Ascension < 09015 ~ Q"
Declination < 0%ol ~ On
Radius (3) 0 0
Height (L) 012 (& 0109

To compare a theoretical position of the moon, as defined
by the Improved Lunar Ephemeris, with the actual position of the
moon as defined by, say, transit or moon camera observations, is
not very easy, since instrumental errors must be also accounted
for., A simpler and almost as valid method of comparison is to
compute the difference between the Improved Lunar Ephemeris
position and a position based on the same equations but with more
"modern" values for some of the fundamenhtal constants,
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If we take the following values as possible values,

a 6,378,150 meters
£ 1/298.3

&g 978.036 cm/sec?
M/E 1/81.32

for the semi-major axis of the earth-fitting spheroid, the
flattening, the mean gravitational acceleration at the
equator, and the ratio of lunar to terrene mass, then the
moon's horitontal equatorial parallax as given by Brown's
equations requires corrsction by a factor

1 - 6.72 X 10_50

while the lunar ephemeris computed by the various observations
from these equations requires a correcting factor:

1 - 2,05 x 10'5.

Furthermore, all terms with the coefficient %, which contain
M/E and a, must be multiplied by the correction factor

1 - 1,805 x 103,
A 1ist of those terms which are sufficiently changed to affect
the position by O%001 is given in Table IV. Further changes,
in addition to those in which the dynamical parallax occurs
directly, are required by a change from Brown's value of 1/294
for the flattening to 1/298.3. These changes are of the size
1 - 2.92517 x 1072,

Terms affected to the extent of OT001 are listed in Table V.
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TABLE IV. List of Terms Affected by Changes in Major
and Minor Axes Dimensions of Ellipsoid

Number Value Change ‘ Af;ected
21 - 125.154 +0.250 Long{ tude
55 - 8,466 +0.017 Longi tude
56 + 18.609 - 0.037 Loagitude
57 + 3,215 - 0.006 Longi tude
61 + 18,023 - 0.036 Longi tude
62 + 0,560 - 0.001 Longitude

118 - 0.986° + 0.001 Longi tude
119 + 1,750 - 0,003 Longi tude
120 + 1,225 - 0.002 Longi tude
123 + 1.267 - 0.002 Longi tude
129 - 1,089 + 0,002 Longi tude
138 + 0,584 - 0.001 Longi tude
627 - 0,978 + 0.002 Parallax
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TABLE V,

List of Terms Affected b; C%o of Ratio
of Major to Minor Axis o Pso

Number Change X?!:ct od
1, Arguments
1375 - 0.212 L
1376 - 0,008 L
1401 + 0,061 w
1407 - 2,807 L
1,08 - 0.456 OIL
1409 - 0.054 Ji
2. Periodic Terms
3 - 0,007 Longitude
7 ~ 0,025 Longitude -
8 + 0,019 Longitude
25 + 0,002 Longitude
26 + 0,001 Longitude
33 + 0,001 Longitude
Sl - 0,009 Longitude
31 - 0,007 Latitude
326 + 0,025 Latitude
328 + 0,019 Latitude
339 - 0,002 Latitude
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4. The Radius of the Moon

As stated previously, the principal sources of
information om lunar heights are the charts of Haym, Weimer,
and Watts, Usimg these charts, it becomes a matter of
indifference what the mean surface is, as long as the proper
value is used with each chart, From the method of comstructiom
of Watts' profile, the major error is imtroduced in the process
of finding the wmean surface, The various errors cam be
summarized as:

actual surface to mean surface t 0Y07
mean surface to cemter (optical) + 0.2
optical center to mass ceater * 0.1

Total £ 0%23

Although the computatioms for equal-limb-line
occultations presume that the occulting feature is located
precisely, the actual situation 18 quite different. A major
uncertainty arisas through the lack of ability to accoumt for
(a) the uncertaimty in profile caused by uncertainty im ground
position, and (b) the unmcertaimty im profile on the moon's
edge because of libration im lomgitude between occultations at
the two or more ground stationms.

The differemce betweea the assumed position of a ground
point and its position referred to the lumar orbit referemce system
will, in all cases except where initial survey was grossly inadequate,
be less than 3 km,, measured along the reference ellipsoid. The
greatest uncertainty will occur when this distance is along the lunar
edge and when the slope of the profile in that region is maximal,

The radial uncertainty would then be

‘srmmx = + 1500 meters

with respect to the radius at the other ground sites. Since
statian locations are changed from occultation to occultatiom to
dimimish the differemce between assumed ''true' positioms, after
ome or two occultations the radial uncertaimty would be reduced
to correspond approximately to the uncertainty im the occultation
imethdd itself, PFurthermore, occultatioms are selected which
occur at maria or similarly flat areas in which the maximum

slope is clogser to £ 5°. A realistic estimate of the radial
uncertainty maxinum arising from station position uncertainty
would then be

AT = 30 meters.
max
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Since the maximum time between occultatioms on an equal-limb survey is

less than 2 hours, the radial umcertainty is the sum of the uncertainties
from the lomgitudimal libratiom positiom at the differemt occultation times
In 2 hours the lomgitudimal libratiom is less tham 9', amd the maximum
radial umcertainty attributable to imtroductiom of a new feature by
longitudimal libration would be betweem t 15 meters certaimty, amd most

of the time, therefore, much less,

5. Observer's Position Umcertainties

In theory, the latitude, lomgitude, and height of an observer
are clearly defimed quantities, Im the simplest case, a spheroid
(ellipsoid with two equal axes) of size amd shape approximately that of
the earth is selected. A poimt om this spheroid is chosenm to represeat
a givea latitude and lomgitude om the earth, the positioam usually being
chosen so that its geodetic coordimates coimcide with or are close to
the actually measured coordinates of the physical poimt oa the earth,

The spheroid i{s them oriemted (im theory) umtil its minor axis is.pairallel
to the earth's mean axis of rotatiom amd its major axis, labelled X',
points parallel to the plame of the Greemwich meridiam. Again,in theory,
the spheroid is tramslated bodily umtil the chosem poimnt om it lies om
the vertical through the selected point om the earth, amd it {s them
further tramslated, always without rotatiom, umtil the separatiom of the
two points is equal to some pre-selected distamce, The point on the
earth's surface is referred to as the datum poimt, and its latitude,
longitude, and height above or below the spheroid, together with the size
and shape of the spheroid, are sufficiemt to defime the geodatic system.
Subsequent poimts located om the earth's surface, with respect to the
datum poimnt, are tramsferred to the corresponding points om the spheroid,

In the case of a large area such as North America, the process of
transferring poimts from the earth's surface to the spheroid surface
can imtroduce large errors. These errors arise because, at great
distances from the datum poimt, the triamgulatiom errors which imcrease
with distamce become larger., Furthermore, the distamce betweem the
surface of the earth, om which the measurements are made, and the
surface of the spheroid, to which positions are referred, becomes less
well known with imcreasing distarce from the datum poimt, at which
the spheroid-earth differemce is defined.

Where there is mo comtimuous chaim of survey from the datum poimt
to a givea poimt om the earth's surface, another source of error enters.
This is the unknown amount of tramslation meeded to bring the spheréid
proper to the first system into coincidence (at the origin) with that proper
to the second point.

44



The majority of occultations observed so far by the equal-
limb-line method have been such that one of the two cbservation
points lies within 10 lm of the datum point. However, a sub-
stantial number have the observation points at considerable
distances from the datum point, and hence this distance must
be considered,

Where extensive triangulation networks exist, the survey
is of high-order accuracy, and an error of 1 cm/km in the distance
between points on the network itself can be assumed. Points not
on the network are located to within + 1 meter horizontally, with
respect to the nearest points in the metwork. For a point 1000 km
from the datum point, the error will therefore be approximately
+ 10 meters, horizontally, the local error being insignificant.
This error is usually that in distance along a sea-level surface,
Because of the not-very-well-known separation between the sea-
level surface and the spheroid, an additional amount must be added
to show this, There are no universally valid data on the error thus
introduced; there are, however, excellent approximations available,
based on assumptions regarding the size and shape of the sea-level
surface, which make a value of + meters in 1000 meters a reasonable
upper bound, -

Although even a very long triangulation chain represents a
high order of accuracy as far as distance is concerned, the accuracy
of the coordinates at the end of the chain would be very low unless
independent means were available for controlling the direction of the
chain, This control, generally afforded by other chains orthogonal
to the first, and by periodic determinations of astronomic azimuth
along the chain, can be assumed for the purposes of the analysis
to be present. It may be noted that, in almost all cases where
occultations have been observed, the observation sites have been
well within 1000 km of the datum point and usually within 100 km
of the datum point,

These errors or uncertainties, together with a number of
others of much less importance arising from errors in the geoid
above spheroid and other values, are all considered as lying
within one datum system., Another large error arises from the
unknown relationship between positions measured on spheroids
which are located in different, unrelated datum systems, Because
of the definition of the spheroid and datum or because of the
mathematical procedures used in computation of coordinates, all
spheroids are similarly oriented, The errors therefore arise
from the errors in measurement of the distance between spheroid
centers, There is, of course, no value knowr: for the error in
this distance in any case of interest; only the precision is known.
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Furthermore, simce occultation surveys depemd om a kmowledge of
the lumar orbit to some extemt, the error im the distamce betweea
the spheroid cemter and gravity cemter is of importamce., A value
of + 200 meters is adopted here for the quantity. This value is
probably greater tham necessary, but mot umreasomably so. By the
very mature of occultatiom surveyimg, this particular error
appears emtirely im the unkmown site coordimates, which have to
e corrected im any case, The effect of the error, together with
the errors within the datum, is to cause a displacemeat of the
unknown site alomg the lumar limb and perpemdicular thereto,
which means that the umkmown site is going to obtaim a fimal
corraction vhose error is proportiomal to the amouat by which the
actual feature observed om the moon differed from that predicted
by the equal-limb-lime calculatioms. This was discussed earlier
in the sectiom on lumar-positiom umcertaimties.

6. Time Uncertainties.

The primcipal sources of time umcertainties are listed
in Table VI, together with estimates of the umcertaiaty magaitudes,
The uncertainties arise from:

a. The mature of time itself and its defimitionm.

b. The determimatiom of time and its propagatiom
to the receiver,

¢, The receptiom, amplification, and recording of time,
d. The propagatioa of the light sigmal.

e. Receptiom, amplification, and recordiag.

f. Measuremeat of the record.

Total time umcertainty is foumd to be less tham 0%01. 1In spite

of the many still umanswered questioms im a check of the above
list, this value of 0201 is comsidered reliable and probably close
to am upper bound. The reasoam is that the largest part of this
uncertaiaty arises from the measurement reselutiom limit, which

vas takem as 0.5 mm upper bound, amd vhich is accessible to veri-
ficatiom, and from the radio propagatiom time umcertaimty of 0%3002,
vwhich also can be evaluated, although with slightly less comfidemce,
The unkmowns in the time problem are at least am order of magmitude
smaller tham this,
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TABLE VI. Time Uncertainty Estimates

Absolute Relative
Delay ( ILS) Uncertailty(ﬂ‘_

1, Delay in Electronic Circuitry 1)
a, Photomultiplier 2 0.1 0.004
b. Cable, photomultiplier 7000 2
to amplifier
c. Amplifier

d. Cable, amplifier-recorder < 500 < 10
e, Recorder
f. Radio recevier < 500 < 10

g. Filter, 1000-cps band pass

2. Delay in Mechanical Components L

a. Recorder pen lengths < 1000
b, Galvanometer inertia (3) 10,000 < 1000
c. Chart speed < 1000 < 1000
3. Optical Uncertainties
a. Light travel time 1,000,000 =< 0.1
b. Diffraction edge position &) 700 < 100
4, Radio Propagation Uncertainties
Radio propagation time 30,000 < 2000
5, Direct Time Errors
a, Emission time correction (5) 50 <1
b, Ephemeris Time correction (6) 10,000 < 1
c. Polar motion: rotation
of earth (5) 500 < 5600
6. Measurement Errors
a, Resolution (0.5 mm) 4000 1
b, Cross-chart correction
(0.1 mm) 800 1100
TOTAL < 8400
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(1) Tests have been made to measure the time delays present
in the equipment between signal (light or radio) reception and recording.
The system paths considered are shown in the following diagram:

SICNA
RADIO 1000 CPS AMPLIFIER RECORDER
FILTER PART I
RECORDER
J UNIT
PHOTOCELL 4_%47 AMPLIFIER RECORDER
PART II

[szamr ]

The amplifiers are of the same type; the recorder units (galvanometer and
pens) are of the same type, housed together, and with common chart drive
and chart., Figures 5 and 6 show the two test methods. Variants of these
methods were also used, with individual components of the systems being
tested as well.

(2) The trangit time in nine- or ten-stage photomultiplier tube
is around 10-¢ tn 10-° seconds, but the variation in this is many orders of
magnitude less, Engstrom (ref, 28) and Karolus {(ref 7<), among others,
give values for the trangit times. There is some cautiern necessary in
the svaluation of transit times., 2 single electron at the input to an
eleven-stage tube will, according tn the literature, produce a pulse
of 10-8-second width at half amplitude. The signal transit time is the
time cf start of the pulse, but the measurad time will depend upon the
sensitivity, averaging properties, etc., of the measuring instrument, and
could be the pulse half-width point,

(3) The galvanometer response time was evaluated sepdrately
and as part of the over-all system. Appendix A gives the derivation
of the penresponse equations,

(4) The moon acts as a diffracting plane to produce a
diffraction pattern. The effect of this on the shape of the occulta-
tion curve and on the time determination is discussed in Appendix B,

(5) The radio signals are, for obvicus technical reasons,
seldomly emitted at the instant which they are supposed to indicate,
The actual times of emission are determined by monitoring of station
broadcasts by time centers such as Greenwich (bservatory; the
necessary corrections are published periodically in time bulletins,
The major source for such corrections has been the U. S, Naval
Observatory Time Bulletins, The bulletin values must, of course,
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TEST SET-UP FOR MEASURING
DELAY IN TIME-SIGNAL CIRCUIT
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be corrected for time of transmission from the station to the
observatory; since only the difference in time of reception by
two equal-limb-line time observers is involved, this transit.-
time correction is of no importance where the same radio-station
signals are used.

Further corrections must be made for the variation of
latitude caused by the motion of the pole and for the seasonal
variation in the rotation of the earth. The necessary correction
constants are computed by the Bureau International de 1l'Heure
(ref, 27); preliminary values are provided in the time bulletins,

(6) The observations of occultations are related to time
through radio signals sent out by radio stations, or to locally
generated time signals from a clock which is calibrated against
the radio signals, The problem of accounting for the difference
between the time recorded by the occultation equipment and the
time - Universal Time - at which the time signal should have been
emitted is complex, but the individual steps necessary to the
solution are well understood. This is not the case with the relation
between Ephemeris Time and Universal Time. Universal Time and its
variants Universal Time-l and Universal Time-2 lend themselves to
precise operational definition; Bphemeris Time, on the other hand,
has no physical existence, is defined theoretically in terms of an
unrecoverable unit, and can be related to other time standards
only through empirical methods. There is no theoretical relation-
ship, for instance, between the Ephemeris Time second and the
second defined by an atomic molecular oscillator,

The unit of Ephemeris Time (ref. 19) is the tropical year
defined by the mean motion of the sun in longitude at Januvary O, 1
1900, 128" B.T. The ephemeris second is defined as (31, 556,925.9747)"
times the topical year at the above epoch., Since Ephemeris Time
is designed explicitly to give positions of the major solar system
bodies which agree with observations, the relation of Ephemeris Time
to other kinds of time must be through observation of these bodies,

The body easiest to observe is the moon, and therefore the relation
between Ephemeris Time and Universal Time is gotten at present
through the lunar motion. The principal techniques utilized are
occultations, transit observations, and photography of the moon
against g star background [the moon-camera method of Markowitz

(ref., 32)] . Although from the standpoint of operational definition
there is a different kind of Ephemeris Time for every member of

the solar system, these fine distinctions are quite lost in the
observational errors associated with measurement of:

AT = E.T. - U.T.

This is true also of the difference between E,T. as defined by
Brown's theory and l}LT. as defined by a numerically correct theory.
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(7) The UTo time of emission of the signal is not the
same as the time stated by the signal, but may differ from it
by many milliseconds even if the radio station is operating
properly. The U. 5. Naval Observatory monitors the time signals
from a large number of time-transmitting stations, as do Greenwich;
Tokyo Astronomical Observatory, et al., and the times of receptions
are published as UT, times, Since the monitoring station whose
published reception times are used in the reduction is usually
within a hundred miles of the transmitting station whose signals
are used for timing the occultations, the transmission time error
from this source is certainly less then 100, ... 7ikewise, the
monitoring errors themselves should be less than 100 8, and,
in fact, the times of reception are for most stations given to
0.1 ms.

(8) In most cases, the occultation observing site is within
LOOO km of a time-transmitting station, and one-hop propagation
may be assumed. Giving the F2 layer a height of LOO km, the
maximum difference in transmission times are given by:

Straight-line: 13,3 ms 0.3
One-hop: 13,6 ms 0.8
Two-hop: UL ws

The maximum error is therefore less than 1 ms, and will in fact
usually be less than 0.5 ms,

(9) There are no good theoretical values for the time
delay involved in the movement of the signal from the antenna
to the recorder input. The maximum delay occurs in the 1000 cps
UTC band pass filter, and direct measurements of the time delay
show that this is about 1.3 ms.

7. Aberration

Aberration, the apparent displacement in position of an
object, caused by the finite velocity of light, is not of any great
importance in the equal~limb-line method. The reason for this is
that the observations are paired in such a manner as to cancel the
effects of aberration on the results, First, since at a particular
point on the earth, an occultation consists of the alinement of
star, lunar feature, and observer, the star and lunar aberration
effects are exactly equal. Second, the time difference between
observations of an occultation from two different sites is so
small that annual aberration is insignificant, Since the interval
between the observations in an equal-limb-line occultation is
almost always less than 2% hours, the difference in the annual
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aberration at the two points in the orbit must be less than:
L2
A~ cos '4 =+ k sin(s-A) A (s-2A)
Azﬁ = - k gin ﬂcos(a-?) A(s=-A).

Since (8= \), over a period of 3 hours, is less than 3 x 10"3 the
aberration differences are less than 0Y06, and the maximum difference

is therefore less than 0'l, This is insignificant when even a rough
approximation to the aberration correction is made; an error of 10 km in
estimating the amount of ccrrection necessary would introduce less

than 0Y005 error,

The diurnal aberration, 0!32 cos (P ie somewhat more important.
The changes in right ascension and declination are given by

A XK= -0"32 coslp cos H sec?
A 8= 4+ 0v32 cos (P sin H sin &
(Reference 11), Latitudes are generally restricted to  60°, the

declination to t 30°, the hour angles H can extend almost to +90°,
The diurnal variation limits are therefore

Max. Min.
A X . 0y37 0
A &=t 016 0

From the equal-limb-line view, the difference between the values of
diurnal variation at the two places is of primary importance. Here

Max. Min.
Af = 0 0
AH = 85° 0
A = £30° 0

and the variation in aberration is as great as for the single-site type
of observation., The error in the estimate of the aberration is compounded
of the errors in
(1) radius of the earth ( < 1:10%
5
(2) velocity of light ( < 1:107)

(3) cosine of latitude of 4
observer ( < 1:107).

It is therefore less than 070001 and can be ignored.
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From what is8 gtated at the beginning of this sectiomn, it
is safe to neglect the errors arising from aberrationm effects in
the lumar orbit., Imn the Improved Lunar Ephemeris, page x, it is
mentioned that terms depending om the eccentricity of the lunmar
orbit are omitted (= periodic terms of 09009 size). Rules for
inclusion are given in Transactions of the International
Astromomical Umion, No, VII, page 175 (1950),

B. Error Effects

At this point it is well to summarize the comclusioms
of the sectiom just preceding. That sectiom gave, as reasonable
values for the errors im the various physical quamtities affecting
ar occultation, the following:

Star Position Errors ———- <£0v8
Moon Position Errors ———— £0"3
Observer's Position Errors
known datum —--- Z 10
unknown datum ———— <6Q."
Time Error ——— < 0801
Abérration Error ---- < 07Y005

The combined effects of these errors are given by the equation:

- - - ASa |
Iy Oy TE 3K, 2l 9E2 553 OF ag,
Ag? = | 0g2 32 azzazzégi_ DE2 > E2 DE? A“;

. 7 83

AE a&n 3, ag*sa; an 2, 9E) Ot AE
2E° 2E 2E 3r° 2’ 28’ €’ 3’| | ax?
3§ d0. 35 0d ogl 9l g3 Ot °
m m % % ° o o 3
AE
_— 8 1o
At

.

where the matrix elements have the obvious interpretation. The
aberration error is preseat in the equatiom, but combined with the
star and moom errors,
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Now the quantities LAE{]enter into the theory through!

the equation
47 = ad 17,
[ac®] = [&)] [a¥]

The A3 are the "observed" differences in the lunar radii at
the occultation equal-limb-line points for occultation j, while
the a are the corresponding coefficients. In order that AE

mav bé determined, it is essential that three or more values of
AGJ be available. That 1is,

ael = aArl( acl, ag?, 803,

and the equation ia:

] - (1217001} (41717

For convenience, let us define

u = § u = o
m m
3 4 .
v S* " a@
W = gl = R
[o] [o]
u8 = t u7 = E3

Then the successive derivatives of the (<AE ), when strung together
in a Taylor's series, give

= T 2 (aEl) (A
A 4

k
Au
Tx 2 (a a¥) o uk
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s coty] -{Lell 1] [ofT 125200

This equation is merely the mathematical way of saying that the
errors preseat im the occultation results are to be found from
the errors im the radius of the mooa measured on the fumdamental
plane, magnified by inverse projection of these latter errors
from the fundamental plame back onto the surface of the earth
(back into the observer's local horizon),

There are several ways of comtimuing the solutiom of the
error-analysis problem. Ome, which is the simplest whem there is
comvemnieat access to am automatic computer, is to compute, for
various combinatioms of values of the uk's, values of & for umit
variations (for each combimation of uK'values) im each of the
uk successively, {.e,, compute

0 = O'(ul, u? R u3, ua, u5, u6, u’)
(f+4(5—1 = 0“(\:1 +Au1, u?, u3, ul‘, u’, u6, u’)
and so om, se that, approximately,

(0 + Ad’k)-é—% 30~

Auk du

(Because, as will be remembered from the defimitions im Part I,
A0 is defimed as

40s 7o g

where GE and O, are the radii of the moom as observed at
peints 2°amd 1, respectively, the quamtity

RN 203 _ a0l
2 uk “ auk Suk
The limearity of the precedimg equatioms hemce allows the problem

to be worked for 0™~ and separately, This separatiom is
assumed immediately above and following,)
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The Coefficients haviag beeam evaluated, it remsime only
to compute, for each k,

(acz- 359 K
& P
ou U

and to sum over k. The result will, of course, be applicable
only to the situatien as defimed by the set of uk's chesen,
but it would met be toe difficult te (a) repeat the precedure
for mere sets of uk's; (b) select a represemtative u® im the
first place; or (c) select the uk for maximm $(AS),

A represemtative case is provided by am occultatiom of date

d
t; 1957 Jume 14 7% 25 026774
A, 119° 03' 361000 W.
U1 34° 13' 00v000 N,

hy 0 meters

Star 28 896 (AMS cataleg me.)

e, 1957 Jume 149 8% 02® 242000

A, 102° 16' 37v619 W.
J, 36° 12' 00.585 N,

hz 0 meters

The 1ndividut1 variatiomns are givem im Table VII, {The comaversiom
betweern AE* and AA, AP 1is givea closely emough by the relationms

AEl = Tpeen %8 § AA

2
AR® = Tnean ad

although more precise values cax be obtaimed from the usual
formilae or frem ome of the well~kmewn tables of fumctioms oa
the Intermatiomal ellipseid.)
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Table VII. Parameter Variations

ACT AG;Z
Ad, - 205.9 - 205.2
Aa, - 1604,5 - 1605.4
AS, 212.8 200,0
A% 1631,1 1631.3
o - 3.8 - 3.0
A, - 6.4 - 0.5
An, 7.3 - 5.3
At 664.2 676.0
arr, 265.9 - 1414.6

The rule for propagatiom of errors gives

(s:d)? = (z.\ 35° Auk)z-

Bh) %) =aiE

site 2 site 2 ou

where

Attemtion must be paid te the mon-equal time errors, but when we are
through, we get, using the values given at the start of this sectionm,

(s-d ) = 23.87295
AT partial

To this r.m.s8 0 we may add the r.m.s. error arising from the mom-
equal-limb-lime observation circumstances. If it is assumed that
the Watts limb prefiles, altheugh good absolutely to omly 180 meters,
are good relatively to much better - say 60 meters, them corrections
can be made to & om this basis., That is, although height

r.m.s.e, (hB,Watt;s " hB’True) i 100 meters

r.m,8.e, ~ 180 meters

(hA,Watts ) hA,True)
r.ms.e  (hy yaees - DA Watets =~ 30 meters,
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Heace
o

= 23.874952 4 3600 meters
Total

= 570,0132375+ 3600 = 4170,0132315 meters

Taking as before the worst case, we shall bring this value up
to the surface of the earth for am ebservation at an altitude
of 10° (the usual limit im selecting am occultatiom is 15°),
Hence

rm,s.e, d= sec? 80° X O~
= 33
= 33 x 64.578

= 2131.074. meters

A moment will be takem here for a short digressionm te
discuss the reles of "mumerical" error amalysis amd "algebraic"
errer amalysis. Umtil fairly recemtly, the derivatiem of a
parameter of a function from computed values of the fumctiom
at differeat peints im its domaim, rather tham by computatiea
from am amalytic expressiom for the parameter has been frewned
upon by mathematicians as being "ummathematical' amd less
desirable. This attitude, uafertumately, has beem adepted .
teo eftem in the ether sciemces where mathematics is applied,
and there is very little justificatiom any mere for the
attitude, The validity ef a methed is determimed largely by
its correctmess and by its esase of application. Umtil the last
decade. the latter comsideratiem made it feasible te spemd a
loeng time derivimg a fermula if the fermula ceuld shortea the
cemputing time; mew, im mest cases, a computatiem cam be carried
eut much mere rapidly than cam the derivatiem of a fermulas,
Realization is gradually grewing that algebra is eamly a.toel
to be used in getting te an end, and is not an end in itself,
and that amalytic fermulatiems must be justified by the emd
for vhich they are used, met by the cultural emviromment im
which they are used.

After this digressiom, we can go on te look at the
analytic fermulatiem of the errer amalysis. As was seem, the
major predblem remaining is that ef fimding, for each ebservation
peint

C L
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This is fortunately quite simple, The basic equation to be

used is that given in Part 1:

0_2- é(éibs i éi t)z

1 moo

so that
1 1 _ g1 1 1
4T - 2 [(g mE)@E -a€))

+ogE- £i><A€z -Agfg]

The basic equations are

{1 1 1 0 0 W
(¢]
£ | = 0 cos §, - sin §,
0
3 0 sin§ _~ cos §
=3 0 - . -
cos h 0 sin h ]
0 1 0
-sin h 0 cos h
[ 1 0 0 9
0 ce ¢! sin Gl
0 -singl cos Gl
and correspondingly N d
r~ 1 - - "r
’gm 1 o 0 cos ( Q%)
2 = -
fm 0 cos f* sin S* 0
fg_j Lo sin§,  cos § || -sin(ag- 4)
-
1 0 0 0
0 cos. Sm sin § o 0
0 -sin §, ¢°°o° Sn r
-
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wheare

. L

sim TU_

i
The Jacebian [’0—3:5_] is simply derived frem these formulae since

if we denete the succesaive retatien matrices im the equatioems

for [e‘-] by By R, Ry P, wa have

5[]

94,

S f - IL1.3‘29‘3
a[£,
3T lezna

.
o o o - .
ét
0 0 -1 [
0 i 0
| ]
0 0 0
0 0 0 RzkaP
1 0 0
C -
0 0 0
0 0 1 R3P
—0 -1 O_h
!
0 }
d
0 :
!
1 ;
.
A J
r— 0
0
| -~ cot'ﬂ:



Expansiens of particular terms are givem belew:

2%
2 &,

262
2%

1
aéo

o a,

- locan' ces h

-Jo[ah D' simn S, + cos @' ces S, ces h]

Fcos R sin §, simn h

- f.h G sin h

‘D ces @' ces h

f[coaq" ces § + sin ¢ sin §* cos h ]

P ces ¢' sin S, sinh

[D[cos S‘* ain @' - sin §_ ces ¢f cos h]

-/D ces §, ces @' sim h

F[lil S* Ces G' - ces S* sing"' ces h

- ‘0 ces S* ces @' sim h

- f c.sg* ces q’ sin h

61



1
>é0
2 t

30
ot

fcos ¢' ces h

(Dcu @' sin &, sin h

Similarly, the ceefficiemts for the meen's pesitien errers
may be derived.

€.
5 S *
22
o8,
o€l

- P {81. S* sin g. + cos g* ces S’- cos (" q*)-x

8in ‘I'T.

o m

ag:
ag-

2£!

’;-Pﬂ_‘ [ sin S- sin( X - a.*)}

sin 1T [“3 8y cos S_ + sin §, sin § cos( o - a.*)]

8@.
2
Bf!

sinﬁ'ﬂ'. [ cos Sp c02(Cy - a*)-]

aa.-

Y 5

ﬂ [ sin f* cos 6} sin( O - 0"*)]

sin lT".

- P

aa: B sinTl'-[ cos §, cos( o - “*)]

‘aié i ;ifv_- sin §, cos Sy sin( - (x*)]
:.’f_é = - coetTTy él

;‘_éé = - cot TT é:
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n f) [cu g* sinm 5- - sin S‘ cos S" cos (X, - *)]

2 S« sin

i F [ sin §, ces ¥ - CO8 E* sin &, cos (&, - q*))

n
35‘- sin 17‘-

# _p &m g cos S, sta( %" a,,)}

- ') lilT’;

3¢l P

aa: - eyl [cu S* ces 5‘- sin( O, - “*)]
of3
3
—a_ﬁ': = - cot rl" g-
>¢3
L - 'h‘f;_ [{sin 5, coag- - ces §, cos S- cos (o - a*)} _aa_s-t_-
n

y 7T -
- ces S; ces S- sin( 0(- - Oc*) a‘:‘] - secTr- 23 A
2

>, L

St - lil')‘f'-[ - sia S'- sin(ay, - )

o8,

st

24

+ ces S-cu( ay - %) e

-] - sec 1T e: —-aa—-];"-

2
ai.! - P [G.; S cos §_ + sin \S.k sin §, ces(x, - *)) Sfm

2t  siam, ot

2
+ 8in §, ces 5, sim(a, - a,) gi-] - sec T f- ‘:17;.
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The §, and % are here assumed to be constant; as far as the
three-hour or less interval, which is all that concerns occultations,
such an assumption is certainly valid.

In addition to the above quantities, there must be taken
account of the natural errors which creep directly into 45 through
our lack of complete knowledge of the moon's profile shape, Since
these errors are directly additive to A ¢, and, furthermore, have
been discussed in preceding sections, there will be no further
investigation here of the error, but it will be included after
evaluation of the other errors. Note that this same addition must
be made to the §(45°) determined previously by computation,

Evaluation of the above expressions for typicsl values,
ranges of values, or for values leading to a maximum for §(4 )
is not difficult, but is time consuming. The values of the derivates
of the types

af_, oA, _3
a v >t a v

are gotten from any lunar ephemeris. The variable @' in these
equations is the geocentric latitude, not the geodetic latitude,

The difference be%ween the two latitudes is no% significant for

error evaluation, Some simplification can be achieved by making

a number of approximations, First of all, &, and § » do not

change appreciably between occultations at points 1 and 2, and,

in fact, it is customary in the analyses of the data to use for

both points an o, and ) x computed for a time half-way between

the times at 1 and 2, Hence we can use the same X, and 84 for

1 and 2. Secondly, o, and § change at rates of OY5 per

second and 0%18 per second, Ofer the three-hour maximum interval
between paired observations, this involves only about 195 change

indy and 0955 change in §,. Hence we can use the same values for

O\, andd; at both ends, merely adding on a small correction for

the change, Furthermore, if a reasonable limit is being sought,

rather than an exact (but obviously not accurate) limit, then the
coefficients of the X and§ variations can themselves be approximated,
This is all the more possible since & and §, will not differ greatly
from X4 and &, at occultation time, For example, the correction to

_a_if_
ER M

is then 2 :
A (_g_é_f ) = 5 -1 m[s:l.n $, co8 5, ~cos &, 8ind, cos(ﬂ(m—d*ilA Sm

- cos S"* coaS‘m sin (& - &) A,

=1
~ 3inm, sin§, cos & (1 - cos (A, 'a*)ASm
- 0082 &* sin( Km XA L
6l



~~ [/ r
me 10 = 01745

A o~ 1%5 .0262F

--3/4X64,5%X107% (-1 )
gin 7T m

- - 3.3X107% x ( d SR
' sin 7T

6 -6

= -3,3%10%x6.378 X 10° X 57 X 10

= 0.6 meters per secemmd of arc.

This quantity is them te multiply the A g;, since the ether parts
of

o &2
S S

will cancel each other, The rest of the differential cerrections
can be gone through im the same manrer. The major differences enter
throuih the portions which depend upon the observer's coordinates
since the coefficients here cannot be equated, the one to the other.
The ebserver's coordinates may differ by 30° te 60° or more in
latitude; the local hour angle h may differ by 90° er more at the
two poiats. It is to be expacted that the majer errers will creep
in at this peimt, As can be seen from the equations, the maximum
for amy ene 9 will be abeut 30 meters per second of arc.

du :
The following partials,are based on expected maximum variations:
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PARTIAL DERIVATIVES -

o &

auE
g/b / 4 ‘ / 2, éa
N
uf % éo éo ém em ”
$, 0 - 14,67 17.56 0 - 1822.15 0.08
a, 3.92| 11.10 -19.23 | -1577.9%| - 13.81 23,92
@' |-22.21 21.49 7.89 - -] -
A 3.92 11.10 - 19.23 . - -
t 3,92 11.10 - 19,23 52.39 26.87 - 1.81
dm - - - - 15,95 mzz.zt.+ 0.08
A - - - 1577.9% 13.81 -23,92
T a - - - - 1582.16 - 4.521-104390.92
All values expressed im meters/secead of arc,
4 #
w AA;v-#b lfas UL AL&erZjb /LLzr W
S« .500 .866
@ .707 .707
Om . 500 .866
0 R a .0175 9999
T, .0175 9999 57.29 1.0002
h .985 174
2
g; = 660" /7. 6.378 x 106
2t 36008
o “.. - 1800" 377: - 30"
at “36008 >t 36008
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APPENDIX A: COMPENSATED GALVANOMETER EQUATIONS

The d'Arsonval galvanometer system can be shown schematically

Pen

|
Wire 2

Coil

Wire Ol

FTTrITTrTTI7T7]

where Iy and I, are the moments of inertia of the coil and pen,
respectively, and k01 and k12 are the torsional stiffness of the
anchoring wire and pen-coil wire, respectively. The flux density
of the (permanent magnetic field is B, the effective .ength of the
coil wire is L, and the current in the coil is i. If the back
e.m.f. of the coil and drag are neglected,

i =ER
where E is the signal voltage. To start with, E will be assumed to
have the form E-Eol(t), so that i = iol(t)° The differential

equations of motion are therefore (references 15, 16)

2
a2 o .
o) 21 _ky, (0 = 0p) + Ky O BLI
dt (1)
2
I, 4?20, +k, (0-0) = 0
atl

where Oland Ozare deflections of the coil and of the pen, respective-

1y from the rest, or "no current" position.
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Rearranging,

2

H{%;L.+(h1+ﬁgol-ﬁz% = -BLI (2)
2

H2 9% * 5 -E-gz- TR =0
dt

The Laplace transform of these equations gives,

I P2 gy - I) P2 gy + (ko) + Kyp) Py - Kyp B = -BLI

(3)
ot +L, P8 - LPPgotk,Pf =0
k 2 k01 + Ky
(T) P+ k) @y - ko fp = Ty P2 fiyg = _BLI W
kyp B+ (Ip P2 + kyp) fp - I, 2§, =0
Assume also fi0 - 0=gy
I P2 + x - BLI
Th
> g, = | k0 0 (%)
L Pe+k -k
-k I, P2 + kyp
or g, = T B (6)

I) Ip P4+ P2(Ik + Tjkyp) + (k = kyp)ky,

=kq, ELI

-1
12 )

pb 4 p2 (K_+ K2y k2
n L I



-ky, BLI

Lh I, (8)

P4 4 dy P2, do
The roots of the expression in the denominator are

tiry, tirp,
so that the transform of @, is

(9)
6, = -k BLI ( 1 )(l-coshrlt _1-coshr2t)
I Ip r% - rg ;% rg

If the back e.m.fs of the coil is taken into account, together with

the drag of the pen across the paper, then several new terms are

introduced.
We have
ao
R, +BL "1 . ¢ (10)
3 T
E BLr 4
1 = E 9 11
S (1)
E = Eyl(t) (12)
o - BIE B22r
) O - kyp(0-0y) *+ ko3 = —y — 1 )

.. 2 BIIE
o- 32-1-—1‘ L 0y + (kyy + ko) O - kyp@p = ~ =

. (k)
Ip &2 +n 8y + kyp (02 - 01) =0
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/ 1,(P%) - P20y - P byp) - 32}1{2: (P @) - P o))

! + (ko + k12) fh) - kyp Fp = -BLE,/R (15)
To(P2Pp = P20s0 = P Gpp) + u(P Fy = P Gog)
k tkyjp P ko) = O
Let k = ¥ + ki, (16)
950 = 890 = 0 = &19 = 0y (a7)
So that
11P2+P( R)"!‘] ¢1-k12¢2-- Ro
(18)
(Isz +nP + klz @ - klZ) ¢1 = 0
These equations, solved for #r, give
2:2 BLE
.2 - BLr poag - %
1 7 + —
*, 0
¢2 - > (19)
I, . DL 5oy -
1 = k12
"1 L2 + nP + iy
which can be written
R (P-ay)(P-a,)(P-a3)(P-a})

where the aj are the roots of the quartic in the denominator of
(19) hence
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® _ . k.BIE __>: . ( ) 8 ()
5 =+ £ 12°% , \ 858y + 1) °
R =}1,2,3 L= -
gycii::l;? II(ay - a3+1)

Equation (21) gives the response of the galvanometer pen to a step
function, and shows that the system is doubly resonant, with
dampened oscillations because of the pen-drag and back-e.m.f, (Proper
choice of the values of Il, 12, k01 and k12 removes the double
resonance,) A somewhat more representative form for E would have

been the ramp function,
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APPENDIX B: THE LIGHT CURVE

To an observer looking at an occultation with a telescope, the event
appears to be instantaneous; in fact, it is even possible for physiologi-
cal reasons for the observer to "see" the event before or after it actually
occurs. A recording of the light intensity, however, shows that the event
is far from instantaneous; a noise-free record would show a curve which
is similar to that of a Fresnel diffraction curve for a straight edge.

The slight (but important) differences are caused by:

1) the finite angular size of the source, which makes the influence
of non-uniform light distribution over the star's surface felt;

2) the failure of the lunar surface to act like a straight edge.
These two differences permit, in some eases, the reconstruction of the stel-
lar structure or the micro-analysis of the form of the lunar profile
(References 20, 21). As far as the geodetic use is concerned, these details
are of no significance and are neglected.

The diffraction pattern in its gross appearance can be constructed by

evaluating the Fresnel integral

3 2 2
I = cos 133 dv + ainT:ﬁ dv
© 2 o) 2 ) 1)

The variable v is related to the distance along the diffraction pattern

by the formula

e @)
2

Evaluating the integral for A = 550 nm, 4 = 380,000 km, the intensity at

13



the line observer at the instant of the occultation, (when observer,

moon's edge, and star are collinear) is

Iobg = Iaverage 3)
b

where Igyergge 18 the average intensity before the immersion (or
after the emersion)., From the observer to the first maximum is
approximately 12 meters.

These values must be modified to take account of the difference
between the physical situation and the simplifying assumptions which
were made above, These differences include:

a. the superposition of diffraction patterns from a range of
wavelengths

b. the different response of the photomultiplier tube at
different wavelengths

¢. the varying brightness of the source at different wave-
lengths

d, the filtering action of the atmosphere and optics on the

radiation from the source. At a particular distance y from the
diffracting edece, the‘intensity a8 recorded would the;;fore be

represented by the formula

I - KJM F(A) G(A) HQA) x (Lcos ne? ([mgfd,, aA

where F(}) is the spectral response of the photomultiplier tube,
G(A) is the source relative brightness

H()\) is the atmospheric filtering function

and K is a scaling factor.
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The RCA 1P21 photomultiplier tube, widely used in astronomical
photometry and used in the Army Map Service occultation surveys, has
an S-l spectral response. This scaled to a value of 1.00 at the
LOO m maximum, the values are given at 50 m (50 nanometer) inter-
vals in Table B-1l. The source function can be represented by the

Planck formla (reference 29)

L= %A
N
where Cp = L.992 x 107 erg-cm
Co = 1.L38 cm-deg
or, to a sufficient approximation, by a numerical table for the sun,
a G O star. In Table B-2 is given a set of values combining G(A)
and H(A), being the solar radiation at sea-level.

A simple picture of the effect of these various factors can be
gotten by looking back at equation B (2). Taking the derivative of
the function y, and keeping the position of the first maximmm
constant at v_- 1.2 (approximately),

dy | dA

vy, A
The effective ranpe of dA is about I 200 around the 550 nm point,
go that the maximum at different wavelengths varies over about
t 2 meters from the 550 nm point., The close~by maximum and minimum
will be shifted by about the same amount, so that the diffraction
pattern may be expected to be considerably smoothed, in the recording,

from what it would be in a monochromatic recoruing.
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TABLE B-1

A (om) S FmPOE RESPONSE (erg/cm?)
0 0
300 0.0
350 0.90
Loo 1,00
150 0.90
500 0.70
550 0.L0
600 0,10
650 0.03
700 0,00
¥
00 0
SOLAR RADIATION AT 6ggBIEZEN?5§ DISTANCE AND AT SEA LEVEL
A_ (cm) x 107 Q(erg sec™lem™3) x 107 Qy(Quoo = 1)
300 0 o]
350 0.188 0.k4o
400 0,470 1.006
Lso 1.006 2.14
500 1.215 2.58
550 1.190 2,53
600 1,167 2,L8
650 1.173 2,L9
700 1.108 2,35
750 0.867 1.8y
800 0,857 1,82
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APPENDIX C: ANALYSIS OF EQUAL-LIMB~LINE OBSERVATIONS

The equations (‘13,1]) as written enable one, apparently, to solve
for the corrections A—E?] at several sites without the necessity of
making any assumptions about the corrections at one of the sites. The
reason for this apparent paradox is that the equations have hidden the
lunar orbit errors within the geodetic corrections without explicitly
saying so. This is shown by the following analyses.

Eguation (19) can be written in vector form as the difference
between two vectore

5. 7 - (F - Do
>
e
0“'j =

g 2
V
{

> - o

Let the true values of f 4 f jm be Ij ’ ij so that
— - ->
§q = X+ A%y

= =
Eim = Xgp + Oy

Then

- — — — - = 5
0pe O = (Xo +0%p - X, - szgf - (+o% - x50 -Axlm)2
02 o1
= = - - — = —
. Gl Xon? (X - X2, (X - Xop) DX
6:3 — T—-,\ — %2 - = —>
(XI_xm) oﬁl, - (x2-x2m) . A-? 2111 'S (xl-xlm) .Axlm
0 6—2 0—1'

+ 0 (AXy)?

”



lee 0, - 0‘1 = AG (< (rj

Furthermore, by the conditions of equal-limb-line occultation obser-

= - 2 - = 2
vations, (X, - X;,) = (xl - xm) .

We can assume thai, over the (at most) 2-hour imterval between

— —?
occultations AX = AX
: 2m “1m

From these conditions it follows that

@ @

.

> - S 4
&, - X;)2 Xy ~ Xop) Xy - Xp)
Ag=. 1 I oy 2 Ax - e

2 71 2 a
1

> —> T

®, - Xpp) @& - X ~

- | = e — ° AX

% 2! "

The equation actually used explicitly includes only term II without
specifying the disposition of terms I and III. But term I is
obviously the residual error AZJP in the lunar radius /0 while

the term III is approximately the component; of the moon's position
error in the direction o'f the tangent to the limb. Since term ILI
varies from cccultation to occultation, if cannot be solved for,
and must be absorbed in the overall error. Fortunately, since the
two terms in the pre-factor are very nearly equal, differing in
direction only by the libration in latitude and in magnitude by the
small error in the lunar radius, there is no great error incurred.
The residual error AJdpis very small, as follows from breaking

—>
%‘up into components

where AG;m is the vectorial error in position of thz moon's
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center,

()’.1 P is the lunar radius vector

A Oy is the vectorial error in position of the cbserver,

Hence

—~ — \ .,
03 - 07 = (T - Taw v 69 - T
- 5
N
= O o3 T2p - 0ip
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APPENDIX D: SPHERQID-TO-SPHEROID TRANSFORMATIONS

A point P with geodetic coordinates ( )\ 1, ¢1, ) is given, the
coordinates being measured on and from a spheroid sj whose semi-major
axis is aj and vhose semi-minor axis is b;. It i:required to find
the geode:i-c coordinates of P, (Aj, Pos ;;) measured on and from
some other spheroid s, whose semi-major axis is aj, whose semi-minor
axis is by, and which is located in some known relation to sy. The
position of sy with respect to 8, can be defined by means of two

rectangular Cartesian systems created as followss

L] s
(2) The | X3 Z axis coincides with the semi-minor axis of {al

(1) The origin of system (X3 is at the center of spheroidfs,
2
82 J

xgj
and is positive to the north,
(3) The x% axis lies in the plane of the zero meridian of (=)
. I% 0
and is positive in the direction of Greenwich. Then s, is located
with respect to s, as follows, [Il] is translated parallel to itself

until the origins of '[11] and [12] coincide. This translation

Ax , ax, Ax{]

The translated [xl is now rotated counter-clockwise about [x{J
until [x{] 1lies in the plane [x,‘l, s x§] , defining the angle Y.

defines the vector
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This new (translated and once-rotated) system [ X37| is now rotated
counter-clockwise about x%l (into which x} went) until I{l
coincides with Xg, defining the angle Y. Finally, this translated
and twice rotated system is rotated counter-clockwise about xg until
its remaining axes coincide with the corresponding axes of [XQ] ’
defining an angle W3. Denoting these rotations by [ Rl] [Rg:l

respectively, we have

] - [ (e (0] - 50y
" pd - [ - bel)

The solution to the problem is then given by the following stepss

1. P(A1, #1s hy) — P(X%‘_, Xi’ Xi)
thru the equations

—X.‘;'.-W P(Nl + hy) cos P cosAj
X.i = (Ny + thy)cos $ sinA,y (3)
I.i L{Nl(l - e%)thlk sin @,
where
Ny z ay(1 - e% sin® gy) -% (L)
and
2 2
- b
g = 11 (%)
&

2. P| Xy — P [Xg] by tte equations

5] [ (o)

3. PJ 12' —> P(Ay, ¥y, hp) by solving the equations
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xﬂ (Ny + hy) cos @y cos Ap W

Xg - (No + hy) cos @p siniy (7
3 {Ng(l - ed) + hzﬁ sin g,
L ]

for A,y fr, and hy (N; and e) are defined similarly to Ny and ey).
It is step #3 which offers the greatest difficulty, since it involves
the solution of a system of three simultaneous non-linear equations,
The longitude A, can be found immediately from
tan7\2\( X% / X%' 6
g /% ©
The latitude @, and height h, may be found by linearizing the

equations to give (9)

3 3 3g.7 -
ré? "0 [‘(Nj + hy) + M sin ¢J coaAo cog¢3cog7b A

a? N
3 -
Xg " ° [-(NJ +hy) + Hg— eg cos3¢‘_j sin @y sin, cosfysinis,||AP
ao -
3
xg 0 { [Nj(l-e%)*h;)] + }_‘_Jé_ eg(l-eg ein2¢°)} cos¢d sin¢j An

L &

o o ol
and iterating to convergence, using Ay, fh, hy for starting values.
Since the A, @, h will be very close together, the process con-
verges rapidly. It is sometimes simpler to proceed, when an exact

solution is not needed, by solving the equations
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o — — -—

X]é N cosAp cos
Xg =| N sinAr cos § (10)

XQJ N(l—e%) sin ¢
for A, and @, Then

A> A2
¢ - ¢2

s
and hy is computed frou equation D=7, While the latitudes § and

heights h that result are not exact, since @ is for an ellipsoid
homothetic to the el]ipsoid actually wanted, the difference in most
cases is substantially less than 1 meter,

In practice, the angles will either be identically zero by
definition, since it is customary in determining "best® fitting
ellipsoids to enforce the parallelism of that ellipsoid’s axes to
the axes of the "best-fitting" ellipsoid at Greemwich, or so small
that they may be considered zero., Thepnly the translation vector
remains, Furthermore, in many applications, it is merely a case of
from one ellipsoid to another, not completely from one datum to
another. The two ellipsoids are then assumed tangent at the common

datum point, and the transformation vector is given by

JORICRIOR
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APPENDIX E: THE ELLIPSE OF ERRCR

A non-singular symmetric matrix can be brought into the diagonal
canonical form by a similarity transformation. In the present case,
this involves the diagonalization of a series of 2 x 2 submatrices

of OE3 ® 0, Hence the transformation to principal axes is

PRl 0 o LI N ] .OW T r 7 th O L B B N N ] o-
0 R2 . ¢} R2 .
(7] |- . s| |. ..
: . [N Rn-l : s oo Rn-l
4 L

where each rotation submatrix is of the form (61.2) or (61.3), de-
pending on wheter or not the st3 = 0 or not.

The derivation of the ellipse of error equation for the simple
case Ry = 0, 1 22, is given by Grossmann (reference 9). Interpre-
tation of the ellipse in this way is not easy, however, but the
extension of the ellipse of error to an n-dimensional case is quite
easy. A more general presentation is given by Cramer (reference 10),

In dealing with the definition of the n-dimensional ellipsoid
of error, it is simplest to consider the axes of the ellipsoid to be

defined by the eigen-values of the covariance matrix, so that

-1 —
¢ -[og - I# | T [sﬂ [AEi - Aul]
defines the ellipsoid. [Z;if] here denotes the least-squares

estimation of [A ni] , and q2 is the parameter defining the size
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of the ellipsoid (reference 19). The value of q2 is the same as the
value of x2 s this value is chosen to represent the 1l- <X 1level of
confidence,

The confidence ellipsoid, in n-dimensional space, is generally
defined by the axes of the coordinate system in which the measurements
are carried out and by the standard deviation values gotten from the
varimoe matrix. This is not strictly analogous to the ellipse of
error used in 2-dimensional error analysis (reference 4, Grossman).
An extension of the ellipse of error concept is desirable, and is
provided in the same way.

As in the 2-dimensional case, a rotation matrix, this time of
3 or more dimensions, is sought which will convert the existing co-~
ordinate system to one in which the variance matrix is diagonal and
for which the variances are a maximum over any other rotation. The
required rotation matrix [ Rij }2 and the corresponding variance
matrix {Z 13] are derived from the initial variance matrix [0’ ij}

by solving equation

{[O‘ij] - 2y [I]} [Ri] =0

for the eigen vectors [Ri] corresponding to the eigen values Zii
of the original matrix [O‘ 3 J] + The usual method of computation

permits an easy orderirg of the Zii and rotated AXL so that

3

ZJ,,‘ 0 ix)

S > Zia, 1 >0
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APPENDIX F: TRANSFORMATION BETWEEN DATUMS

The problem is to convert corrections to the observation site into
corrections to the corresponding datum, Occultations give corrections

[AE"] to the observation site. These corrections are made up of two

o= - [ #]o+ [*] [o#]a

The [AEiJ g arise from errors in the actual survey connecting the

portions

site to the triangulation system, while the [A Ei_] 4 arise from the
deflection‘ of the vertical at the datum. Since [AE:l] s and [AEi] d
enter into the equations in different ways, the latter being subjected
to a linear transformation, it is theoretically possible to solve for
both. Practically, however, the number of occultations available is
not sufficient to permit solving for a large number of unknowns, and
attention must be focused on the [6 Ei_] ds which are the more important.
[Ei] g can usually be set equal to O, since the occultation sites
are connected to the existing triangulation by third-order survey and
the resulting errcr is less than two meters at the worst,
The formlae of Hristow (reference 8) permit adjustment of a

large number of parameters simultaneously. They can be written as

(42 cos }a ran 812 813 ¢ ¢ o ‘16— 42 cos g ]
d¢ 321 822 823 e o o &26 d¢

ds a31 332 333 e o o .36 da

dA L] L] [ ] L ° [ ) dA

dd *® - L] L] * L] dd

da L [ ) o L * L da

bbs, | 261 #62 363 ¢ - ¢ 86 |a

L d _ J L
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where 8 is the geodetic distance, A is the azimuth (from the datum),
& is the flattening, and a is the semi-major axis of the ellipsoid.
For the present purposes

do = 0

da = O
Furthermore, the fact that P, and P4 are connected through a tri-

angulation net implies that

ds = 0
¥hile the condition dA = O is not necessary, it is desirable
because of the paucity of occultation data., Its enforcement merely
keeps the internal orientation of the net unchangsd. Hence, the

transformation equations can be written as

1
A El 8.11 312 E

A E2 a1 8o E2
obs datum

o

The individual elements of the 2y 5 matrix are

a77 2 cos @y sec fig
ap = sec By ([t 24 nhads (- 72-2¢21?)
DPAN + t(1+2)AgA -% cos2gt(1+42)OA 3] }
a0
a3 = [1—31:(')3 -nbag - Jn 2.42n)af® -
- ;‘_ cos’g (1+t2+r12)A)\2—]
Here AV ® fobs - 9 datum

8y



7‘oba - Adatum
tan ¢

e'2 cos2 §
a2 - b2
bi
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A?PENDIX G: THE ADDITION OF CORRECTIONS FOR LUNAR LIMB

INEQUALITIES

The equal-limb-line method depends for a great deal of its
effect upon the a.luﬁbtion that at points 1 and 2 the occultation
is observed at the 5ame point on the moon or that, at any rate, in
the eqﬁation (th; Taylor Series. expansion with quadrates and higher

terms dropped)

a/)moon a/om6 .a/omo

ah = —ER0 At 4 R AR
moon at A, oV,

on A¢2

( Pn\oon is the lunar radius observed from point 1; 4t, AA'Z A¢2
are the variations in time, longitude, and latitude causing the
occultation point on the moon to change; and Akﬁnon is the
corresponding change in lunar height), the partial derivatives are
small. This allumption may, in cases where the quantitiel At,
A7\2, A¢2 are large, but quite wrong, and a method of correcting
for this error is desirable.

One such method is to use a chart of the lunar limb in the
region being considered, and from the chart to estimate the partials
in the Taylor Series linear terms. The definiti;e charts produced.
by Dr, C. B. Watts of the U.S. Naval Observatory provide a test of

the procedure. These charts, with a putative accuracy of t 200 meters

in height, may be used if we assume that, although

h s 1 =h sy 1 2~ 200 m
Watts true

2-h_ , 2~20m



yet :lwf\tts,z - h‘.htts,l = htru.e,? - htrue,l
consequently, we may proceed as follows:

4, For the time of occultation at point-1l, compute from the
charts the lunar radius at the occultation point.

b, Resolve the point~2 shift in longitude and latitude into
components parallel to and perpendicular to the lunar profile at the
instant of occultation at point-1l.

¢. Convert the parallel component into limits which can be
used on the charts, and compute the height of profile at the shifted
point on the profile.

d, Add the difference between the two profiles to the AC of
the survey.

e. For the predicted position angle corresponding to the
occultation at point-2, and for the profile at the instant of occul-
tation at point-2 as seen from point-2, compute the lunar radius.

f. Add the difference between the two radii to the Ao
computed in step d. above,

g+ Use the new A0 to recompute the position of site 2.
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