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THE APPLICATION OF OCCULMATIONS TO GEODESY

PART i: GENERAL THEORY

Introduction

The sun and the moon have apparent daily motions across
the sky, rising in the east and setting in the west. These
motions are apparent in that they are presumably not motions
of the sun and moon proper, but are the result of the earth's
rotation. Hence these motions are shared by all the rest of
the heavenly bodies -- the stars and the planet3. That the
sun and moon have other motions which are not related to the
earth's rotation is shown by the different positions of these
two from day to day with respect to the stars. This is
especially obvious in the case of the moon, which can be seen
to shift its position eastward with respect to the stars by a
distance equal to its own diameter every hour, -ince the
moon has an angular diameter of about half a detrree, in one
day of 24 hours the moon will have moved 120 eastward with
respect to the background stars, and hence will be observed to
rise the time equivalent of 120, or 48 minutes, later every
day. A complete circuit of the star field takes about 27.3
days.

In its eastward motion among the stars, it is to be
expected that the moon will pass in front of and hide such
luminous bodies as may be along its path. Except where the
body is our own sun, in which case an eclipse is said to
occur, the passage of the moon across thieline of sight
between a star or planet and an observer, is called an
occultation of the star or planet by the moon. An eclipse
of one sort or another seldom occurs more than twice a year;
an occultation, on the other hand, can be observed almost
every night with a pair of binoculars.

Both eclipses and occultations have been observed in
order to find the geographic location of the observer (ref-
erences 12, 13, 14). That such use can be made of eclipses
and occultations stems basically from three circumstances:

(1) The moon is so close to the earth that a
shift in the observer's position produces an appreciable
change in the apparent position of the moon with respect
to the surrounding stars (or the sun). At the sub-lunar
point, a shift of 1000 meters in the observer's position
produces a shift of about one-half second of arc in the
position of the moon.
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(2) The directions of the brighter stars occulted
by the moon are well known, so that a bright star occultation
gives an accurate space direction for that portion of the
edge of the moon (at the instant of occ-altation) at which the
occultation occurs.

(3) The position of the moon with respect to the
earth is known from the exhaustive studies of Z. W. Brown
(reference 1) and others, as a result of many years of precise
observations at observatories. At the instant of occultation
there is established in space a fixed line on which the observer
is known to lie. Since the occultation takes place at the edge
of the moon and not at the center, to fix the line would require
not only the coordinates of the center of the moon, but also the
direction and distance from the center of the moon to that point
on the edge at which the occultation was observed to take place
(Figure 1).

In practice, the direction (from the moon's center to its
edge) at which the occultation occurs cannot be measured
accurately, and no attempt is made to measure it, so that there
is actually a set of parallel lines determined, all pointing
toward the smaitar and on any one of which the observer could
lie. The intersection of this set of lines with the spheroid
(taken to be the earth's surface) is an arc, a short segment of

which is called a *line of position*(LOP). The direction from
the center is always known well enough that on a map the LOP is
practically a straight line. Two occultations give two lines
of position, and the observation site lies at the intersection
of these two lines.

Another deviation of practice from theory occurs because
the lunar profile is not a perfect circle, but is highly irregular;
that point on the edge of the moon at which the occultation occurs
is at a different distance from the lunar center for each occulta-
tion and this distance is not accurately known, Hence, every
occultation occurs at a different distance from the optical center
of the moon; every additional occultation introduces another and
different radius of the moon, and the ensuing set of equations
always contains more unknowns than there are knowns. To remove
this difficulty each occultation can be observed by two different
observers; if the occultation occurs at the same point on the limb
for b th, one of these observations may be used to determine the
radius of the moon for that occultation. When this is done, the
situation is like that in the preceding paragraph where only the
position angle (direction from the moon's center) in addition to
the observer's position, was unknown, and the problem is again
solvable.
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FIGURE 1

The star at effectively infinite distance, is the center for projection of-the
profile of an irregularly-shaped body, the Moon, onto an irregularly-shaped
surface, the Earth. The Moon's surface is approximated by a sphere, its
profile by'a circle and the Earth's surface by an ellipsoid of revolution.

3



I. Mathematical Formulation of the Problem

Mathematically, the simplest approach to the problem
would be to go directly to the solution by determining the
intersection of the spheroid surface with the set of lines
tangent to the moon's edge and extending in the direction of the
occulted star. Such an approach would, however, be very diffi-
cult to handle, since it would entail the solution of a complex
system of simultaneous fourth-degree equations. Hence a lass
direct toute to the solution was adopted long ago by astronomers
and has been retained ever since. This indirect route permits
most of the computations to be carried out as if the occultation
occurred in a plane, and then brings the results from the plane
up to the surface of the spheroid as a last step.

As was mentioned in the Introduction, the two major unknowns,
other than the geodetic ones, occurring in the occultation problem
are the position angle to the occultation and the distance from
the center of the moon to the point on the edge at which the
occultation occurs. After the basic occultation equations have
been set up, as in section B below, two distinct ways of removing
these two unknowns are possible. One, which is called the Single-
Site Method, requires that occultations be observed from one site
over as great a range of position angles as possible. When the
geodetic unknowns and as many as possible of the systematic
astronomical unknowns are solved for by the method of least
squares, and the variations in the radius of the moon are ignored,
it is expected that variations in the moon's radius will act in
the solution as if they were randomly distributed with respect
to the various observations, and hence will not appear in the
values found for the geodetic unknowns. This method is discussed
only briefly in section C below, because although it is of con-
siderable interest in its own right, as well as closely related in
theory to the Equal-Limb-Line Method, it has already been treated
at length in a previous paper by Pamelia A. Henriksen (reference 2).
It is included here largely for the sake of completeness and to
throw additional light on the less obvious problems associated
with occultation survey by the Equal-Limb-uine Method.

The Equal-Limb-IUne Method, as stated in the 'Introduction,
removes the uncertainty in the radius of the moon by using a second
observer to determine the radius for the same occultation as that
being viewed by the first observer. Since no reliance is placed
on statistics to produce results, the accuracy of this method is
inherently greater than that of the Single-Site Method. Section
D below covers the Equal-LAmb-Line Method in detail.
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FIGURE 2

Geodetic and topocentric coordinates of the observer (X~ hand E systems)
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Before anything is done toward setting up the equations
describing the occultation phenomenon, however, a clear statement
must be made concerning the frames of reference in which the
equations will be used. This is not a simple subject, since the
data which come from the observations, from the ephemeris of the
moon, and from the star catalogs are referred to many distinct
frames of reference which are related to each other in a complex
fashion. Also, because the computation procedure is indirect, a
chain of intermediate reference systems is introduced which must
be distinguished from the primary reference systems. Section A
below will discuss simply the frames of reference used in the
theory.

A. Frames of Reference.

1, The observer's coordinates (Figure 2" are given
first with respect to some standard spheroid as:

A, 0, h.

The spheroid is assumed to be defined (Bomford, reference 3)
so that its minor axis is parallel to the earth's axis of
rotation; a major axis is assigned the value A_- 0, and is
parallel to the meridian of Greenwich,and the perpendicular at
the datum point -Ao, 00 is defined to coincide with the vertical
(the direction of"'jraity) there at a depth ho below the surface
of the earth. Usually, h_ will be given initially not with
respect to the reference spheroid but with respect to mean sea
level -- essentially, the co-geoid. The height of the co-geoid
above the spheroid, Ah, must be added to the given h. to get
the height, h, above the spheroid.

Host computations are carried out using the International
spheroid ( a a 6,378,388 meters, 1/f a 297)as the reference
surface. When, as often happens, the survey data on the occultation
site are with reference to some other reference surface, a transfor-
mation between the two spheroids is necessary. The procedure used
is given in Appendix D.

2. A rectangular coordinate system with origin at
the center of the spheroid is used in preference to the geographic
system for computations (Figure 3); this system is defined by the
equations:

X . (N+h) cos7\ cos

X - (N+h) sin A cos 0 (1)

X 3 LN(l-e2) + hJ sin 0.
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N is the radius of curvature in the prime vertical and can be

computed from

N - a [..e2 sin2  (•(2)

a is the semi-major axis of the spheroid.

3. A topocentric rectangular coordinate system with
origin near or at the observer is used to relate the occultation
data directly to the geodetic coordinates of the observer. Tkis
system (Figure 2), designated the i:-systen, is related to tke
XI-system by the equations:

E R - R R (Xi - X') (3)L sin' + coo~ 0 1
R = co -sin A 0 (4)

0 0 1

S0 0

R 0 + sin0 -cos (5)
0+ cos + sin

The Xi are the Xi-system coordinates of the topocentric system origin.
0

4. Most of the computations are carried out in an inter-
mediate reference system whose origin is also at the center of the
spheroid (see below), but whose orientation is with reference to the
moon's and star's coordinates rather than with reference to earth-
fixed coordinates (references 11 12, 13). This system will be denoted
by lower-case letters (xl, x 2 , x 3 ). The x 3 -axis is parallel to' the
line joining the star and the center of the moon and is positive in tke
direction of the star; the x 2 -axis lies in the plane of x 3 and the
spkeroid'h minor-axis and is positive to the North; the xl-axis is
perpendicular to x 3 and is positive towards the East (Figure 4). The
x-system is therefore related to the Xi-system by the equations:

[xi] - [RS*71 [Rp ] .Xi (6)
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FIGURE 3

Rectangular coordinates, Earth-fixed (the Xi-system)
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Rectangular coordinates (the xi-system)

9



Here

+ feinj'+ coo jj.* '
R A* - coso, + sin f, 0 (7)

0 0 1

1 0 0

R , a 0 +Gin + cosg] (8)

0 -COS •,+ fin

is the Greenwich hour angle of the star.

A* m GST - % (9)

GST - GSTho + (time of observation)

If the Lx]-system is referred to some space-fixed system
instead of to an earth-fixed system, the relation between the two
can be expressed as a rotation:LcogsO sin 0

[t ] - -sinG coso

0 0 a

Here the CXY system has rotated through the angle 0 since
zero time when it made the angle go with the space-fixed systems,
and N, 6, are the right ascension and declination of the star
(GST is the Greenwich hour angle of the star at the instant
considered).

In observing an occultation, the optical axis of the
telescope is kept pointed at the star, and the time at which
the star disappears (or reappears if an emersion is being observed)
is recorded. The optical axis is therefore constantly parallel to
to the x3 -axis, and no distinction is made between events occurring
at different points along this axis. As far the observer is
concerned, his world of events lies in the xT xT plane. Hence it
is customary to further i#m t1ify the mathematics by doing most of
the computations in the x1 x1 plane, which is called the
"fundamental plane" after Bessel, who first introduced it.
Coordinates in this plane are often denoted by ý f &2,
or 10



These four systems are basic to the mathematics of occultations.
There are a few others, principally those associated with the motion
of the moon and with the lunar surface, but except for the above four,
none plays any great role in the reduction of the observation data.
Considerable care must be taken, however, in the use of theie four
systems. In the first place, the observations five data which are or
can be referred to systems with origin at the center of the reference
spheroid. The equations of the moon's motion, on the other hand, are
set up in a geocentric system -- i.e., a system with origin at the
earth's center of gravity; at theý;present time, the position of the
earth's center of gravity with respect to any reference spheroid is
known to-better than ± 100 meters. Hence a certain amount of error
is introduced; a more detailed study of this point is made in Part I1.
In the second place, if more than one observing site is used, and if
the sites are on different datums, there will be a separate xi, Xi-,
Ei-system for each site. The systems for the separate sites will be
designated by subscripts.

B. Basic Equations

1. General:

There are four physical bodies which enter into the
occultation equations; these are the star, the moon, the earth, and
the observer. They are all tied together by one parameter -- the time.
The star's position is given by the vector:

- ( ' ,& r.),

where 0., (are the star's apparent place coordinates, but since
Ae distance r* is of ,no interest to occultations, the unit vector
r*( A, .*), which gives the direction of the star, can be used
instead. r* is gotten in the usual manner from a catalog of star
directions; the occulted stars lie wthin 30" of the celestial
equator. In the above vectors, 0*, W* and r* are all functions of
the time t, but since the period of time over which a particular
occultation can be usefully obseved is less than three hours
(usually less than 1.5 hours), 7.(t) for such stars is practically
constant.

The moon's position is given by the vector:

where A., &a and rm are also time dependent. The elements of the
vector are most easily gotten from one of the published lunar
ephemerides (reference 6). They, of course, change appreciably within
a period of three hours, and could be written explicitly as

r.[06(t), m(t), rm(t)]

11



or, since ephemerides give the horizontal equatorial parallax
instead of the distance, as

Srmb to), F t),% td.

in the ephemerides the elements gives refer to a point which is
called the center of mass of the moon, and not to the center of
the visible disk. Hence account must be takes, in correlating
observations with the ephemeris predictions, of the displacement
of the optical center from the ephemeris center. The equation
of a spheroid in a space-fixed system is

4.S.I -1 (10)

where 8 is a dyadic with elements which are functions of time.

Since the occultation occurs at the edne of the moon, as
viewed from the earth, the equation of the line on which the
observer and star lie is:

. rm + r. + r. (11)

where fm is the vector from the center of the moon to the
point on the surface at whch the occultation occurs, and f is
a variable. The vector f is a complicated function of the
time since• the moon's motton is compounded from many inde-
pendent motions such as librations, etc.

4m " .em m(t), bm(t), fa(t3" (12)

Here I(t), bm(t), Pm(t) are the selenographic coordinates of
that point on the moon at which the line observer-to-star sR
is tangent when the occultation occurs. Our knowledge of the
shape of the surface Ld insufficient to permit prediction of~m,
bm, and em' and as mentioned before, certain assumptions or
procedures must be adopted to get around this difficulty. Taking
it for granted that this has been done, the solution is gotten
by solving simultaneously the equations:

,;. ,,+ + -r,(13)

. 't.. (14)

12



Because of the indeterminacy in 17- the first equation will
be not that of a single line, but will define a set of gener-
ating elements of a cylinder; the common solution of these two
equations will give a curve instead of a point. If n occultations
are observed, the vectors in these equations become 3 x n matrices,
and we have

CR] [rm ] + rOmJ + (r,,] (15)

2i 1 CaJ T  [S](t (16)

When n* •2, the solution obviously becomes indeterminate since the
rank of the matrix is then less than the order, and recourse must
be had to least squares.

2. The Fundamental Plane Equations:

The general approach given above has not been used
for computations because of the difficulty of solving the equations
with small mechanical computers. Instead, as much of th•ecompu-
tation as possible is done on the fundamental plane, xl x2 . When
the equations are formulated in ,1, X2 coordinates, a tremendous

simplification takes place. r* disappears formally, since r*

is parallel to x3 ; Fm projected onto xl x2 becomes identical with
the observed radius of the moon, and rm projected onto xl x2 shrinks
approximately to the size of the earth's radius or less. The radius
vector from the spheroid center to the observer is also projected

onto x1 x2, and the combination of the two equations (15) and (16)
on the fundamental plane is then very simple.

Let t be the projection of Pm onto the plane xi x2 , and
let t 3 be the vector along the x3 -axis. Then

e - (Dm (17)

which maps m into -. so,

r. q., r. , " ] (18)
,•m ,•m'bm 10ml-'••,"

13



The simultaneous solution of (14) and (18) is given by

[aTi T T pt[ ~ m j (19)

This is a second-degree equation. To make it easier to work
with, it can be linearized by taking the differential of both
sides, to give the first-degree equation in j,,.j andsa t -. ]

0-,&a - [wl - R1 [ac - [de110(20)

From here on, the treatment is either by the single-site
method or by the equal-limb-line method. The former will be
treated first.

C. insrle-8i&e Method of Survey

The equation (20) above is so simple in form that it
gives a misleading idea of the number of important quantities
which actually influence the rewults. In the equal-limb-line
method this is not too important, since most of these influencing
factors are removed by the control observations; in the single-
site method it is very important to identify every influencing factor
and to evaluate its size in order to be able to decide whether the
factor can be ignored or must be solved for along with the geodetic
unknowns. To emphasize the presence of these factors, equation (20)
is rewritten as:

464'

where

The [ukJ are the factors whose influence on the romults is to be
determined. A large part of the evaluation is of a quantitative
nature and will be covered in Part II, Error Analysis. At this
point, only a general discussion of the particular factors involved
is needed.

14



The most obvious factors are the geodetic corrections:

AK 1 _= AZ, the correction to the easting

AE 2  A AN, the correction to the northing (22)

6E3 s &H, the correction to the height above the
spheroid,

which enter into the variables Theca,#M3 give, of course,
the factors:

am

Ag(23)

Ar
I

defining the corrections to the position of the center of the
moon, and

Ltým

Sb (24)m

which define corrections involved in locating the occulting
feature.

Implicit in the equation, however, and not literally
present are a number of other quantities. First, there are
the quantities

Ac%

(25)

wkich were used to define the space-fixed directions of the

x -system. Next, there are the quantities

.fxi (26)
mo

which enter into the analysis because the equation was set
up as if everything were referred to the observer's reference

15



spheroid and datum at P, whereas, in fact, the position
[XJof the moon is taken from the Brown's Tables of the
lotion of the Moon (reference 4)( or from an ephemeris based
on these tables, reference 6), and these tables refer
to a system which is at least approximately geocentric --
that is, which has its origi .at the center of gravity of
the earth. The vector I&X_| is therefore the displace-
ment between the spheroidocietric system and the putative
geocentric system origins.

Another quanity which must be considered is AT, the
error in the ;ecorded time of occultation, which enters not
only into [CJ but also, through [ ) , into f) . The
time error is of two kinds: instrumental and astronomical.
The former arises from errors in the mechanical equipment
used in recording and reading the time associated with the
occultation, while the latter arises principally from the
difference between the time scale in which the observations
are carried out (U.T.) and the "time" scale associated with
the L[X given in Brown's Tables (E.T.). This difference in
scales arises, as is well known, from the irregular rotation
of the earth (which rotation measures U.T.) as compared with
the revolution of the moon about the earth (which measures
E.T.), and from the failure of Brown's tables to represent
the motion of the moon. The former effect is apparently very
much greater than the latter.

In addition, there is a quantity E[4e M- analogous to
the [I.3 which represents the displacement of the visible
or geocentric center of the moon, which is what is observed,
from the center of mass of the moon, which is given as ZXJ
in Brown's tables. Very little is known regarding the actual
value of EA0m] ; only the Abm component (i.e., the latitude
component) is known well enough to be given a value in
computations.

The distance O-itself contains several different types of
error which, however, cannot be solved for but must either be
eliminated by a least-squares adjustment, or allowed fdr in the
reduction by use of the best available information. The most
important of.these is the quantity hm, which is the height
of the occulting feature above the lunar mean datum. hm is
different for each occultation, hence cannot be found liom the
analysis; it can be estimated to within 200 meters from Hayn's
charts (reference 5) or from the charts of Dr. Watts of the
U.S. Naval Observatory (reference 6). Only the latter charts
can be considered to be accurate to ± 200 meters, although
Hayn's charts are contoured at 0.'2 or 300-meter interval@.

16



When the list of factors is further investigated, it is
found that the CAOat,, A64 ,[Cx.m, A , Ar I can be broken
down still farther. The[4 09*, A6*, WiTl, l~ke h., vary from
occultation to occultatiote. In addition, because of the nature
of occulet4.ons, they cannot be separated from the gross values
of [-ACm, A.m1. Hence in the solution they will be lumped
with radm, af -Arin The :'orrections [A%., AC'm, Arm] to
the moon's position are themselves influenced by the errors
in the parameters of the moon's motion, These parameters may
be variously chosen; the paper (reference 2) by Pamelia A.
Henriksen selects the following correction factors:

&r z correction to the longitude of perigee

&A _ correction to the longitude of the node

Ae m correction to the eccentricity of the moon's orbit (27)

Ai = correction to the angle between lunar and stellar axes

5 correction to the obliquity of the ecliptic

A • = correction to the position of the equinox.

The AT could also be included in tke group of factors involved
in the moon's motion.

Taking all the above correction factors as a set 1,juk
the equation (21) can then be used to determine the rAuk]
if sufficient values of A0 are available. If there are
J observations (j Q 1 to J, J -0K), the observation equations are

T(28)

or [At fm [Eiji [twillj [UVFA[,uk]. (29)

In order for tke least squares adjustment to give reasonable
values for r &uk J, there must be sufficient observations to
provide an approximately Gaussian distribution for the &r*
and the hI; i.e., Jv•K.

17



ThenT

[~~ [P i IT m] [uj j i t ] [ ]} (30)

or, in abbreviated form,

L,&uki -[ w] LA 61. (31.1)

[Ex] Final m Lxi + [IN -

The [X] are related to the [E] and the [AX] to the [419] by
equations 3, 4, 5 and the partials of these equations. However,
the

L~o and a [R N
~Lx] a [x]

are zero, so that

[A El - [R 0] [aR X] (31.2)

The problem cannot be considered solved by this equation since
it is the position [X] of the observer with respect to a geo-,
centric system of axes which has been found, and this is of no
value by itself. Ahat is wanted is the relation of [3xFinal

to the [xI of some standard datum and spheroid as, for
example, North American Datum and the International spheroid, or
British Datum and the Airy spheroid. In order to get this
relation, a similar series of observations would have to be
carried out independently on the standard reference datum and
spheroid.

Let LX_-2 be the geocentric coordinates of a point in
a reference lystem different from that of 5, and let [L.23
be the coordinates of this same point referred to the reference
datum and spheroid of that system. Then

[Xgj - LX8] + [AX82] (32)

and the [AXO] are found as before from the equation

[Auk' n - LWn] [ 6•J] (33

and equation (31.2).
18



Since

'uk u k
1 n

when two or more datums are involved it is best to solve all the
observation equations simultaneously, except for the geodetic
variables.

D. Equal-Limb-Line Method of Survey

Return now to the equation (20) of section B,

A- ] - (34)

The A T can be separated into two parts:

AOr -E A6 (35).

d-g is that part of the error in l- which arises from errors
in the geodetic coordinates of the observer, while A a- is that

m
part of the error in AG. which arises from errors in the observed

lunar radius (and hence includes error in r, Im' and r*).
If the occultation is observed at two different sites, P1 and P2'

2 
f 2] T [A] 2 - ['Am] 2] (36)

First, point P2 will be so chosen that

,aM 0. (37)

This assumption will be more fully discussed in Part II, in the
section .on geodetic errors. For the present, it will be justified
by the rather obvious statement that any datum and spheroid can be
chosen as the basic datum and spheroid to which all positions are to
be referred, in which case, points already geodetically connected to
that datum can be considered as having 4 geodetic error. There will
actually be some error associated with r 20 and hence with [812 and
we could write:

-- p -- ). -- up

r = r + S , (37)2 02 2

but at the moment it is enough to state that the datum and
spheroid on which P2 is located are the datum and spheroid taken
as known. Then P2 can usually be located anywhere within a
fairly large area without violating the assumption, and:
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j-- Aj (39.1)

2 2 -- 4 m 2 (39.2)

Note that 14J and [t32 and hence [44? and refer to
the observing lites' coordinateswhile it is the corrections [4fJ..
and CA 3,, to the datum coordinates which are sought . The
relationship between LAI and IA-U is not easily expressed in
the Ri-system, where the rigidity of the geodetic net requires that

Secondly, P2 is chosen in such a manner that, at the time t2,

6X2 Jul(41)

and therefore

This is iti practice an extremely restrictive condition. Lack of
accurate knowledge of the shape of the moon's surface makes it
imRerative that the occultations as obs rved from P and P have
(7 , bm2) as close as possible to ( , bi). _ and b are
the seleonographic longitude and latitu[e of the point on tMe moon
at which the occultation is seen to occur. When the moon's librations
in latitude and longitude are resolved into components with axes paral-
lel to x3 and x2 , it is seen that only that part whose axis is parallel
to x3 can be accounted for. This component is a rotation in position
angle P. Using a theorem discovered by O'Keefe,

dx . 2 sin if (42)
dt TM

where Tm is the moon's sidereal period; if is the inclination of
the moon's axis of rotation to the fundamental plane; and)9 is
the position angle (reference 7). Ust of this equation helps
determine the coordinates of P2, since'

sina-2-.em ;coo Y, 3." (43)

Once the coordinates are fixed, FEI 2 becomes a function

of the time: 1
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5tý2
2 "sin •l+ 5 2 T rini

m + (44)

+mC0131 2 "7rin

1

This (second) condition therefore limits the choice of points
vail ble to P2 to a line which is the locus of the projection of

1a( 4n&, b3 l) onto the fundamental plane.

Once P2 has been chosen to satisfy the second condition, the
final equation is derived by subtracting equation (39.2),from
equation (39.1). Then

\ [ l--(1w
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But at t1 and t2, beaause of the choice of the coordinates of P2

Oj(t1 ) " "2 (t 2 ) (46)

A-'tl (t)I A-2(t

Hence as can also be seen inmediately from the diagram,

[~ l [•~lJmT[ Lemj] 2 I (47)

and therefore

46 rl

A0[ (48)

This is the basic equation for the equal-limb-line method of survey

giving the geodetic corrections [911 as a function of the difference

[A6r01between the observed radii of the moon at sites P1 and P2 .

The [A U muist, of course, be related to the [AEJ which

are the corrections to the datum of P1 op the surface of the earth.

The relations are provided by the equations

[ L = [ J [R k.] [N] + [R ý*] LR P*] LRX] 1[ I R]- [E]

[ ] 
+R t ý LRf l [-.i' ] 

] -1R[[E m ( 4 9 )

Here [X] and [X.] refer to the usual astronomic coordinate system

with center at-the center of spheroid, X3 -axis along, the polar axis,

and X1 parallel to. the meridianof Greenwich. [El and [Em] are

topocentric syitems with origin at the observer's local reference

point, E3 , along the normal at that point, and [E1] tangent to

a parallel of latitude. The [R] is are the obvious rotation

matrices which rotate from the x and E] systems to the

fundamental pline system as indicatid by subscripts.
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Writing

[R] -[R &*] LRJ4 (50)

[P] [R & [R 2[RAf' LRcý]j

and differentiating,

[4 i [P] EA] + ER AX] (1(51)

+ [ -A L u--- [x[

where [un] - g . ,ch] f o. n - 1, 2, 3, 4, 5, in
that order.

The quantity &u 2 can be separated into two parts:

Au2 A 21 + AU22

U A (52)

where eis the G.S.T., AE)is certainly less than 0!01 or 5 meters,
and can be neglected in the computations. It would, in any case, be
random in character and would therefore be among the quantities -
appearing in the r. m. s. error after the least squares adjustment.
The errors AN, AP, ad Ah are survey corrections; these could
presumably be found if enough observations were available. For
most sites, however, the total number of equal-limb-lines cannot
be expected to be more than six or seven in number, and it would not
be desirable to include AX and A(0 among the unknowns to be found.

Since the two quantities are certainly not greater than Ae, these also
will be ignored in the solution. This leaves the unknowns a4d* and AoC
and here again an analysis of the expected magnitudes shows that the
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errors contributed by each will not exceed a few 'meters. The

total error caused by dropping [&u] altbgether .-- i.e., assuming

is less than 10 meters, which can be tolerated. Equation (51)

therefore becomes

[A [][ý+ [R] [-4x] (54)

all quantities being evaluated at point P1 (and therefore at time tl).

The quantities and. [gx, both represent corrections to the

position of Pl; the latter, however, is the error in an arbitrarily

selected quantity, the assigned coordinates of the origin of thr

system at P1, and hence

LA X] z 0. (5 55.1 )

The final relationship is therefore

[A I-] - [, Pj EA (5.2)
and the elements of [P] are the direction cosines

cos (-)ci EJ).

When this is substituted back into the basic equation (48), there

results:

- Ld (56)

or

Aa1  [E [ 1 (57)

where [A] is a vector.
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If j observations are made from P and P , the coordinate

corrections to El are given by thl equation:

[A - Ai]TLA7j]l [A ]T[ LL (58)

The variances [Si] associated with the [AE1] are given by:

where thr S is the variance of the observation error distribution.
These F I are referred to the Ei-system by rotation of the axes-
the of f-liagonal variances can be reduced to zero, since the [Si
matrix is symmetrical. Hence, in the two-dimensional case, it is
possible to find a matrix V such that

V1 t (60)
k Si Vk'

The rotation ( is given by

[Vj k] ~RI[Si fRI (61.1)

where

rR]Cos sin
LRJ sin Cos J (6.2

or, when the variance [4E3J is explicitly included,

cosqD sin 01
R sin ( cos (D (61.3

0 0 1

These lquations define the semi-major axis, V1, and the semi-minor

axis,V 2, of the ellipse, as well as the angle 4 between the semi-
major axis and the E'-axis.
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These equations are easily generalized to the a-dimensional
case, which is covered briefly in' Appendix E.

Because of the few observations available from any one
site, it is highly desirable to restrict the solutios at first
to those unknowns whose errors are greatest. The component is
hence usually set arbitrarily equal to zero:

3AE3 0,

and the solution limited to the deterumaation of 6E1 and ad 2 ,
or, what is the same thing for the purpose of computation, A ?Acos
and A 0 . In this connection it is worth pointing out again
that the occultation data can provide no information about the x3 -

component of events. In occultatioas involving point P1 and P2,
which are 2000 km or more apart, the many practical restrictions
on the observation conditions -- per cent illumination of the moon,
time after evening twilight or before morning twilight, etc. --
often combine to force the observations at P1 to be made either
near the horizon or near the zenith. In the first case the El-
component will be poorly determined by the solution, and in the
second case the E3 -component would be poorly determined.

Up to now it has been assumed that the corrections are
being applied directly to the site coordinates. For a proper
solution the corrections should be applied to the datum
coordinates, since it is assumed in the derivation of the equations
that the site coordinate errors result from the datum coordinate
errors (survey errors being neglected, as explained earlier).
Where the observation sites are only a hundred kilometers apart,
no significant error is introduced by neglecting the difference
between •_i~observer and [Ei~datum. At distances much greater

than this, such a simplifying assumption cannot be made, and a

transformation from LEi2 observer to [,ildatum is necessary.

This transformation can be made by using the formulas of
Hristow (reference 8) connecting the change in position of a
point P to the change of position of a point P2 . These formulas
can be ýut into the form:

26



dA cosn 5 d ?- cosnZ

dA dA
(61.4:

dS T dS

da da

df df

L J obs. L datum

where [T 3is a function of the separation AO, 62. between P and P
For al[ practical purposes, df and da, the changes in the flatiening
and in the semi-major axis of the spheroid, can be set equal to
zero when only a small number of observations are available. When
many observations are available, covering a large area of the world,
a solution including df and da could be significant. This is not
the case at present.

Since P is tied to P1 by geodetic survey, it may be assumed
that IS and Did tum are not to be changed by the translation. The
resulting equation is therefore:

AE1, E 1

AE-2 T AE2 (61.5)

observer - - datum

where [ThJis the matrix [Tisuitably modified (see Appendix F).
This transformation can now be introduced into (57) to give:

( _l - [A]T [TIj [AE] datum 1 (61.6)
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which becomes

1421datum -{T]hI[] lr[T1] [A]~A] (61.7)

analogously to (58).

The above equations 'L(•7) - (61.7)_/ have been formulated
for the case where only two points, P and P were involved, and
where P1 was the "unknown" point sand i' the goatrbl point. In an
occultation surv~ey program covering a farge area, the distinction
between "unknown" and "control" points will become largely artificial,
with a particular site Pk being referred sometimes to an "unknown",
sometimes to a "control" datum. A network of occultation sites will
therefore be set up in the area being surveyed, and the equation
(61.7) mast be modified accordingly. I& the light of the discussion
in Section C of the Single-Site Method Survey, it is obvious that
an adjustment of an equal-limb-inse network in which no one point
is held fixed (i.e., for whichLA a- 0, will not have say meaning.)
Some point Pk in the network must be assumed known, so that for it

ýJ-0 (62)

The occultation equations will then be /.referring back to equation (57)/:

A ka -Ai
ji a

A~i ~(63)
k

and the solution will be given by:

A LA8]T  ] (64)

28



or the suitable variation according to (61.7). The variances
are then found as before, by an obvious extension of the previous
equations.

Suppose D distinct datums are involved, and let these datums
be numbered d - 1, 2, 3, ..... D. Each datum is to be fixed on
the basis of observations from s sites, referred to that datum,
so that

sd = 1d , 2 d , 3d' ...... sd

Furthermore, each site will have observedqad occultations

"q "d 1 ad ,2 ad , 3 ad , ...... Qa
qd sd ad ad sd

To simplify the notation, this can be written:

d 1l, 2, 3, .... D

ad ld, 2d, 3d, .... sd

qsd a lad, 2sd, 3sd, .... Qad.

Then

[A[de] - [Aiqsd) _.Eiad + LB iad]•4Eite] (64.1)

where

t,e a a, d.

From (61.5) and (61.7) and the above equation (64.1), it then
follows that the final set of equations can be written as:
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T AE2 + [Di 1r' ez 642

- ~ Aqsd E[ ] + [ Hidj [ ifAEI 642

or, enlarging the vectors and matrices and inverting,

i[K K]Li

where the [i E] vector now contains all the datum corrections.

When more than two sites lie on the same equal-limb-line,
and only two sites are involved, it is obvious that the total
addition to the geodetic information is not equal to the number
of permutations available, but is actually a good deal less.
These cases can be taken care of by weighting the observations.
For example, the most common case, where two observations are made
from one end of a line and one observation from the other,
could lead to three equations involving.

'A r 2' 623' 4a31

where P2 and P3 are on one datum and P 1 on another. The quantity
&Cr23 is of no importance to the adjustment scheme; A l712 and
A r-31 are of importance in relating the two datums and the single
observation there and give two equations. The point P1 is, however,
coomn to both equations. Whereas, if the equations were being
solved by the method of individual occultations (Part II), there
would be three equations corresponding to the three values C.
A Og 2 , Ac- 3 , as opposed to the four equations if there weregiour
independent observations. Hence each of the two 6 "lj equations is
to be weighted by 3/4 for a total of 3/2. A table for relative
weighting of observation equations referring to the same equal-limb-
line can be drawn up in the following manner to take care of the most
common cases.
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RELATIVE WEIGHTING

No. of Sites on Line of Weight Total
per W i h

Datum 1 Datum 2 Equations Equation

__ _ __ _ __ _ __ _ _ __ _ _ __ _ _ Eq ai o eig

1 2 2 0.75 1.5

1 3 3 0.5 1.5

2 2 3 0..75 2.25

E. Other Forms of the Occultation Equations

The fundamental relation between and [and can also be
written as

T

LAJ] -L ~ Le L ilj] (65)

+T'[ o h

(since x2 2• 2

Going through the same procedure as before, it is easy to show that
the final equations are, formally,

~A~ -[,ASj + [A~s~][1 (66)

where [zýr has the usual meaning. sj~is the x -2.plane
component Af the correction to [E], and[Sj )T[& is the

xI x 2 -plane component perpendicular thereto. The equations can

be considered as giving the correction components [E ) or [a•t]
in still another system, the al-system, where the axes are designated
as

-2 (67)

a33
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The s-axis makes an angle i with the g1 -axis, and the
x-axis makes an angle 7C with the I -axis. Then

[& r] [m [ R IE] + [r] [E] (68)in [q ] <">

The rotation matrices[ RI , [r) and [Q] then create vectors

R, r, and Q, whose sum is Aý , which can itself be considered

as a component of a 3-vector [A0-] whose components 4- 2 and d-3

are identically zero. The rest of the solution can be carried out
just as before and is no different mathematically from the previous
methods. The interest lies in the fact that [A]i can be transformed

into a correction in the El E2 _plane, CT
LR 41[R [S Re] [ 3 T[ (69)

14S = A A r + B APJ J

where br and &P are the radial and tangential components,
respectively, of the corrections. If only one of these is solved
and the other is ignored, then the question is whether to set

6r or AP equal tozzero for a particular occultation. If

AP 0 0, equation (69) defines lines

1 (E - A Ar sin • ) sin e (70)

J j J J

and the corrected position of the point P is obtained by solving
these equations for the intersection of tie straight lines. If,
on the other hand, Ar - 0, equation (69) defines circles of radius
B4 AP, and the corrected El and E2 lie at the common intersection
ol these circles.

F. Relative Position Method

The equations and methods described heretofore are
satisfactory if a set of related geodetic positions referred to
one particular datum is being built up. This is especially true
when the set is global, so that the positions can all be referred
to an "absolute" coordinate system (in this case that system to
which the lunar orbit is referred). Where no such unified set
is envisioned or possible, however, the previous equations are
open to the objection that they contain implicitly the assumption
that an "iabsolute" coordinate system is involved when it is postulated
that A . 0
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for one of a pair of occultation sites, the implication is present
that the lunar orbit is also fully defined for that site. This is
not so, and the resulting error will not be removed unless a global
set of positions is involved.

To make the equations useable for relative position deter-
mination, there is no change required in the equations other than
to drop the condition

4X2i W 0,

and to substitute for it some relation which does not involve
knowledge of the absolute coordinate system. The required
relation is arrived at through the o~vious, and simply proven,
considerations that the vectors &X and A 2 must, if they
represent relative shifts, be equal in magnitude but opposite
in signs; the unknown relation between the lunar orbit coordi-
nate system and the local geodetic systems is the same at both
places. The resulting equation is therefore:

[ai + [a'k] [xi] - (,

which is solved for the [dX1] by the same method as before.

There is no reason why this equation cannot also be used
in setting up a global, connected set of positions. From the
relative nature of the AXi, it is obvious, of course, that
the Ind product will be "fioating" in the sense that two (if

A X is involved) or three parameters must be arbitrarily

specified unless the connection is closed.

The preceding discussion has covered principally the data
analysis aspect of occultations. For the prediction of occulta-
tions, the same equations would, of course, apply. However,
additional work must be done to select the stars, compute the
"equal-limb-line positions, and so on. The procedures have been
put into a form suitable for mechanical calculation by the
Department of Geodesy, Army Map Service; these procedures
will be published in a forthcoming report entitled "Mechanical
Procedures for Occultation Prediction."
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PART II•. ERROR ANALYSM

Introduction

The equations which govern the use of occultations
for surveying are incomplete as they are given in Part I
of this report. since they do not state the range of errors
which can affect the results. These errors in the results
arise from errors in the constants and original data, and
their sizes are decided by both the sizes of the input
errors and the equations themselves. An analysis of the
errors therefore concerns itself first with the sources
of errors in the input, and secondly with the growth of
these errors as they pass through the occultation equation..

As is seen from the equations in Part I, the sources
of error are:

1. Star positions
2. Moon positions
3. Geodetic coordinates of the observer
4. Timing of the occultation.

Errors in star position and moon position combine with the
(unknown) lunar radius at the point of occultation .to pro-
duce an apparent lunar radius which is greater than or less
than the standard assumed radius of the moon. Errors in
geodetic position, by moving the observers off the "equal-
limb-line" positions, affect the results by amounts Ag which are
approximately,

&g. O hm &
OP

where _21 is the average slope in the vicinity of the
C)P

occultation feature on the moon, and A0 is the error in
latitude. Errors in timing are transformed into errors in
position correction which are approximately equal to the
time error multiplied by the average velocity of the moon's
projection onto the observer's horizon plane.
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II. Error Analysis

A. Error Sources

1. Star Position Uncertainties:

The occultation survey method, using two independent
observers, is not sensitive to reasonably sized errors in the star
coordinates. Such errors, practically inseparable from errors in
the moon's position, cancel out almost completely in the first-
order approximation to the exact occultation equations. Sample
computations used in the prediction star, positions differing by
la, have given paths differing by only 1 or 2 meters over a 1000-
kilometer length. However, it is obviously desirable to reduce
all errors to a minimum consistent with computational ability so
go-to produce the number of unknowns that must be accounted for.

The source of the star positions used is of major importance
here. Since only stars occulted by the moon need be considered,
attention can be restricted to the zodiacal zone. Furthermore, it
is desirable to have as homogeneous a set of stars as possible.
The requirements of (a) high precision, (b) zodiacal zone, (c) homo-
geneity, and (d) adequate coverage to 9th magnitude, effectively
limit the choice of sets to (1) the Robertson Zodiacal Catalog
(ref. 17) and (2) the Yale Zone Catalogs between +300 and -300 (ref. 18)
The FK4 contains too few stars to be useful as does the N30; the
Boss General Catalog is inaccurate (one second of arc or more r.m.s.
error). Hence, all stars used have been from either the Robertson
or Yale Zone catalogs, with corrections being made where necessary
for the systematic differences between the two. The necessary
corrections are made by using the conversion tables given in the
Yale Zone and Robertson catalogs, going in each case from the system
in question to the Boss General Catalog and thence to the appropriate
second system.

Table I. Star Position Error

Catalog Absolute Value of p. e.

Yale Zone (1) < 0".5
Zodiacal (2)(3) o0."5

(1) Evaluated from Yale Zone Catalogs for Zones between
*300 and -300 declination. See Table II.

(2) Approximate evaluation from 50 random samples in
catalog.

(3) Systematic differences between the Zodiacal Catalog
and the General Catalog run from about +01.45 to -01122 in right
ascension and from +0926 to +0107 in declination.
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TABLZ ii. iFobable Errors L Direction
Yale Zone Catalogs

Zone Orx d 0./dt 4 S/dt 1960Total

-30 to -27 ± 0.105 t '0.305 1 0.011 ± 0.010 f 0.41

-22 to -27 ± 005 1 0.105 1 0.011 ± 0.010 ± 0.41

-20 to -22 1 0.105 1 0.105 - ± 0;011 ± 0.009 t 0.41

-18 to -20 ± 0.120 ± 0.105 ± 0.011 ± 0.009 ± 0.43

-14 to -18 ± 0.120 * 0.105 ± 0.012 1 0.009 ± 0.43

-10 to -14 1 0.120 ± 0.105 ± 0.011 1 0.011 1 0.46

- 6 to -10 ± 0.105 1 0.105 t 0.008 ± 0.008 ± 0.32

- 2 to - 6 ± 0.105 ± 0. 05 *0.008 ± 0.008 1 0.32

+ I to 7 2 ± 0.115 ± 0.115 ± 0.006 1 0.007 1 0.24

+ 5 to + 1 ± 0.115 1 0.115 ± 0.007 1 0.007 ± 0.27

+10 to + 5 ± 0.115 ± 0.115 ± 0.008 1 0.007 ± 0.27

+15 to +10 t 0.115 ± 0.115 ± 0.008 ± 0.006 1 0.26

+20 to +15 ± 0.115 + 0.115 ± 0.005 + 0.006 ± 0.23

+25 to +20 ± 0.095 ± 0.095 ± 0.005 ±+0.005 ± 0.26

+30 to +25 * 0.095 ± 0.095 1 0.007 * 0.005 ± 0.31
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From an analysis of the errors introduced by each of
the two catalogs, as summarized in Tables I and II, it
appears that there is no significant difference between the
errors of the two catalogs (proper motions being taken into
account). Except for systematic differences between the two
catalogs, there is no hindrance to the simultaneous use of
both catalogs in the reduction of occultations. The different
backgrounds of the two catalogs (the Robertson Catalog is
"fundamental" and relates to an earth-faxed system, while the
Yale Zone Catalog is differential and hence more "absolute"
in nature) have no significance as far as the use of the
catalogs for occultations is concerned.

In summary, then, it can be assumed that the probable
errors in right ascension and declination of the directions
rt- stars used are less than 07'5, and hence that the

standard deviations are less than 0".75. The corresponding
error introduced into the computed geodetic position is less
than 2 meters.

2. Moon Position Uncertainties

The phrase *center of the moon* is inadequate for
defining a point since the definition used is operational and
actually varies with the method being studied. There are
three kinds of lunar centers which are of interest:

a. The center of mass, or, more precisely, the
center of gravity.

b. The optical center.

c. The operational center.

The center of gravity of the moon is at present defined by
Brown's equations for the motion of the moon (ref. 4) as
modified in the Improved Lunar Ephemeris (ref. 19). It is
a set of coordinates (latitude, longitude, and parallax) to which
the center of the moon is said to belong, and which are computable
as a function of time alone. These coordinates, established by
the equations of motion, do not correspond to any point that can
be located by observation, because (a) the theory is based on
values of basic parameters, such as the size and shape of the
earth, whose errors are not known; and (b) the theory refers
its predictions to the gravitational center of the earth
approximately, while actual observations do not have access
to this center.
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The right ascension and declination of the moon are
given in the Improved Lunar Ephemeris (ref. 19), and in
national ephemerides of 1960 and following, to:

0.015 right ascension
0.101 declination.

These were obtained, however, by interpolation in the computed
longitude and latitude of the moon as given by Brown's equations,
and are really limited in precision only by the abilities of the
computing machine used to evaluate the equations, and could be
carried out to say number of figures. The constants entering
into the computation are good to 10-5 seconds of arc, and this
together with neglect of term, machine rounding-off error, etc.,
limits computed positional precision to about 1 0?.1001. As is
discussed further under Time Uncertainties, the precision is
here also the accuracy. The reason for this is that at the
present time all discrepancies between the computed coordinates
and coordinates obtained from observations are assumed to be
caused by irregularities in the observations, and primarily in
the real time. As far as occultations and most other obser-
vational techniques are concerned, the positional uncertainty
in the gravitational center of the moon can be taken as:

(a) From published ephemerides < 0'02

(b) From special ephemerides < 0?002

(c) From specific computations - 0.

b. The only center for the moon which is "directly"
observable is the optical center. Even the gravitational center
of the moon is not free of optical influences, since the constants
entering into the equations of motion were determined from optical
observations., It is true that the 6onnection is tenuous4 since
a very large number of optical observations enter into the con-
stant determinations, so that random variations could be expected
to be averaged out. Systematic effects do appear and must be
accounted for; the initial work by Brown (ref. 1, 4) gives a
value of -0.15 for the difference in latitude between the optical
center and the gravitational center. This value accounts explicitly
for all residuals in the latitude equation not otherwise accounted
for, and hence is not entirely satisfactory. Furthermore, there is
an asymetry between the eastern and western portions of the lunar
limb, as is shown by existing profile measurements. This asymmetry
does not show up in the equations of motion.
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A more direct way of finding the optical center is to fit
circular or elliptical arcs to lunar profiles and to resect from
these. Or, what is the same thing, to fit a circle or ellipse to
profile measurements to give best fit in the least squares sense.
The latest and probably best measurement of the relation between
center of figure and center of gravity is that of Watts and Scott
(ref. 23), which gives - 0.60 + 0"08 for the difference in
latitude.

The value given in the American Ephenmris and Nautical
Almanac to be used for the calculation of eclipses is - 0"5.

c. The definition of the moon's center is that in which
the observations (occultations, eclipses, etc.) themselves
provide the center. In this way, centers peculiar to each method
arise. For example, a careful statistical analysis in 190
by Mr. G. Reuning of some 2000 visually observed occultations
gave an optidal center minus ephemeris center value ofS - 0"4
(ref. 24). Similarly, eclipse reductions provide temporary
centers pertaining' to the eclipse.

TABLE III. Lunar Position Uncertainties

Uncertainty in: Absolute Relative

Difference between Optical and 0." - O"
Gravitational Centers

Orbit (2) < 0".02 f 0"

Right Ascension < OO015 f 0"
Declination < OV001 0"

Radius (3) 0 0

Height (4) 0112 <0 O".09

To compare a theoretical position of the moon, as defined
by the Improved Lunar Ephemeris, with the actual position of the
moon as defined by, say, transit or moon camera observations, is
not very easy, since instrumental errors must be also accounted
for. A simpler and almost as valid method of comparison is to
compute the difference between the Improved Lunar Ephemeris
position and a position based on the same equations but with more
"modern" values for some of the fundamental constants.
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If we take the following values as possible values,

a 6,378,150 meters

f 1/298.3

g1 978.036 cm/sec 2

M/E 1/81.32

for the semi-major axis of the earth-fitting spheroid, the
flattening, the mean gravitational acceleration at the
equator, and the ratio of lunar to terrene mass, then the
moon's horizontal equatorial parallax as given by Brovn's
equations requires correction by a factor

1 - 6.72 x 10-5.

while the lunar ephemeris computed by the various cbservations
from these equations requires a correcting factor:

S-2.05 x 10-5

Furthermore, all terms with the coefficient ¶j, which contain
M/E and a, must be multiplied by the correction factor

1 - 1.805 x 10-3.

A list of those terms which are sufficiently changed to affect
the position by 00.001 is given in Table IV. Further changes,
in addition to those in which the dynamical parallax occurs
directly, are required by a change from Brown's value of 1/294
for the flattening to 1/298.3. These changes are of the siie

1 - 2.92517 x 10-2.

Terms affected to the extent of O.001 are listed in Table V.
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TABLE IV. List of Terms Affected by Changes in Major
and Minor Axes Dimensions of Ellipsoid

Number Value Change Affected

21 - 125.154 + 0.250 Longitude

55 - 8.466 + 0.017 Longitude

56 + 18.609 - 0.037 Longitude

57 + 3.215 - 0.006 Longitude

61 + 18.023 - 0.036 Longitude

62 + 0.560 - 0.001 Longitude

118 - 0.986 + 0.001 Longitude

119 + 1.750 - 0.003 Longitude

120 + 1.225 - 0.002 Longitude

123 + 1.267 - 0.002 Longitude

129 - 1.089 + 0.002 Longitude

138 - 0.584 - 0.001 Longitude

627 - 0.978 + 0.002 Parallax
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TABLE V. List of Terms Affected bz Chane. of Ratio
of Mjor to Minor Axis or Ellipeold

Number Change Term
Affected

1. Arg•uents

1375 - 0.212 L

1376 - 0.008 L

1401 0.061

1407 - 2.807 ,

14o8 - 0.456 a
1409 - o.• 4

2. Periodic Terms

3 - 0.007 Longitude

7 - 0.025 Longitude

8 + 0.019 Longitude

25 + 0.002 Longitude

26 + 0.001 Longitude
33 + 0.001 Longitude

51 - 0.009 Longitude

314 - 0.007 Latitudp

326 + 0.025 Latitude
328 + 0.019 Latitude

339 - 0.002 Latitude
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4. The Radius of the Mloon

As stated previously, the principal sources of
information on lunar heights are the charts of Haya, Weimer,
and Watts. Using these charts, it becomes a matter of
indifference what the mean surface is, as long as the proper
value is used with each chart. From the method of construction
of Watts' profile, the major error is introduced in the process
of finding the mean surface. The various errors can be
summarized as:

actual surface to mean surface ± 0707
mean surface to center (optical) ± 0.2
optical center to mass center ± 0.1

Total ± 0"23

Although the computations for equal-limb-line
occultations presume that the occulting feature is located
precisely, the actual situation is quite different. A major
uncertainty arises through the lack of ability to account for
(a) the uncertainty in profile caused by uncertainty in ground
position, and (b) the uncertainty in profile on the moon's
edge because of libration in longitude between occultations at
the two or more ground stations.

The difference between the assumed position of a ground
point and its position referred to the lunar orbit reference system
will, in all cases except where initial survey was grossly inadequate,
be less than 3 km., measured along the reference ellipsoid. The
greatest uncertainty will occur when this distance is along the lunar
edge and when the slope of the profile in that region is maximal.
The radial uncertainty would then be

Sr ± 1500 meters
max

with respect to the radius at the other ground sites. Since
station locations are changed from occultation to occultation to
diminish the difference between assumed "true" positions, after
one or two occultations the radial uncertainty would be reduced
to correspond approximately to the uncertainty in the occultation
fneth68 itself. Furthermore, occultations are selected which
occur at maria or similarly flat areas in which the maximum
slope is closer to ± 5*. A realistic estimate of the radial
uncertainty maxirium arising from station position uncertainty
would then be

A r - 30 meters.
max
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Since the maximum time between occultations on an equal-limb survey is
less than 2 hours, the radial uncertainty is the sum of the uncertAiaties
from the longitudinal libration position at the different occultation times
In 2 hours the longitudinal libration is less than 91, and the maximum
radial uncertainty attributable to introduction of a new feature by
longitudinal libration would be between 1 15 meters certainty, and most
of the time, therefore, much less.

5. Observer's Position Uncertainties

In theory, the latitude, longitude, and height of an observer
are clearly defined quantities. In the simplest case, a spheroid
(ellipsoid with two equal axes) of size and shape approximately that of
the earth is selected. A point on this spheroid is chosen to represent
a given latitude and longitude on the earth, the position usually being
chosen so that its geodetic coordinates coincide with or are close to
the actually measured coordinates of the physical point on the earth.
The spheroid is then oriented (in theory) until its minor axis is.pitalel
to the earth's mean axis of rotation and its major axis, labelled X1,
points parallel to the plane of the Greenwich meridian. Agaimin theory,
the spheroid is translated bodily until the chosen point on it lies on
the vertical through the selected point on the earth, and it is then
further translated, always without rotation, until the separation of the
two points is equal to some pre-selected distance. The point on the
earth's surface is referred to as the datum point, and its latitude,
longitude, and height above or below the spheroid, together with the size
and shape of the spheroid, are sufficient to define the geodetic system.
Subsequent points located on the earth's surface, with respect to the
datum point, are transferred to the corresponding points on the spheroid.

In the case of a large area such as North America, the process of
transferring points from the earth's surface to the spheroid surface
can introduce large errors. These errors arise because, at great
distances from the datum point, the triangulation errors which increase
with distance become larger. Furthermore, the distance between the
surface of the earth, on which the measurements are made, and the
surface of the spheroid, to whiah positions are referred, becomes less
well known with increasing distance from the datum point, at which
the spheroid-earth difference is defined.

Where there is no continuous chain of survey from the datum point
to a given point on the earth's surface, another source of error enters.
This is the unknown amount of translation needed to bring the spher6id
proper to the first system into coincidence (at the origin) with that proper
to the second point.
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The majority of occultations observed so far by the equal-
limb-line method have been such that one of the two observation
points lies within 10 km of the datum point. However, a sub-
stantial number have the observation points at considerable
distances from the datum point, and hence this distance must
be considered.

Where extensive triangulation networks exist, the survey
is of high-order accuracy, and an error of 1 cm/km in the distance
between points on the network itself can be assumed. Points not
on the network are located to within + 1 meter horizontally, with
respect to the nearest points in the ietwork. For a point 1000 km
from the datum point, the error will therefore be approximately
+ 10 meters, horizontally, the local error being insignificant.
This error is usually that in distance along a sea-level surface.
Because of the not-very-well-known separation between the sea-
level surface and the spheroid, an additional amount must be added
to show this. There are no universally valid data on the error thus
introduced; there are, however, excellent approximations available,
based on assumptions regarding the size and shape of the sea-level
surface, which make a value of + meters in 1000 meters a reasonable
upper bound.

Although even a very long triangulation chain represents a
high order of accuracy as far as distance is concerned, the accuracy
of the coordinates at the end of the chain would be very low unless
independent means were available for controlling the direction of the
chain. This control, generally afforded by other chains orthogonal
to the first, and by periodic determinations of astronomic azimuth
along the chain, can be assumed for the purposes of the analysis
to be present. It may be noted that, in almost all cases where
occultations have been observed, the observation sites have been
well within 1000 km of the (taturn point and usually within 100 km
of the datum point.

These errors or uncertainties, together with a number of
others of much less importance arising from errors in the geoid
above spheroid and other values, are all considered as lying
within one datum system. Another large error arises from the
unknown relationship between positions measured on spheroids
which are located in different, unrelated datum systems. Because
of the definition of the spheroid and datum or because of the
mathematical procedures used in computation of coordinates, all
spheroids are similarly oriented. The errors therefore arise
from the errors in measurement of the distance between spheroid
centers. There is, of course, no value known for the error in
this distance in any case of interest; only the precision is known.



Furthermore, since occultation surveys depend o0 a knowledge of
the lunar orbit to some extent, the error in the distance between
the spheroid center and gravity center is of importance. A value
of 1 200 meters is adopted here for the quantity. This value is
probably greater than necessary, but not unreasonably so. By the
very nature of occultation surveying, this particular error
appears entirely in the unknown site coordinates, which have to
in corrected in any case. The effect of the error, together with
the errors within the datum, is to cause a displacement of the
unknown site along the lunar limb and perpendicular thereto,
which means that the unknown site is going to obtain a final
correction whose error is proportional to the amount by which the
actual feature observed on the moon differed from that predicted
by the equal-liub-line calculations. This was discussed earlier
in the section on lunar-position uncertainties.

6. Time Uncertainties.

The principal sources of time uncertainties are listed
in Table VI, together with estimates of the uncertainty magnitudes.
The uncertainties arise from:

a. The nature of time itself and its definition.

b. The determination of time and its propagation
to the receiver.

c. The reception, amplification, and recording of time.

d. The propagation of the light signal.

a. Reception, amplification, and recording.

f. Measurement of the record.

Total time uncertainty is found to be less than 001. In spite
of the many still unanswered questions in a check of the above
list, this value of 0901 is considered reliable and probably close
to an upper bound. The reason is that the largest part of this
uncertainty arises from the measurement resolution limit, which
was taken as 0.5 m- upper bound, and which is accessible to veri-
fication, and from the radio propagation time uncertainty of 09002,
which also can be evaluated, although with slightly less confidence.
The unknowns in the time problem are at least an order of magnitude
smaller than this.
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TABLE VI. Time Uncertainty Estimates

Absolute Relative
Delaay(AS) Uncertainty"

1. Delay in Electronic Circuitry (1)
a. Photomultiplier (2) 0.1 0.004
b. Cable, photomultiplier 7000 2

to amplifier
c. Amplifier
d. Cable, amplifier-recorder < 500 .4 10
e. Recordpr
f. Radio recevier <500 10
g. Filter, 1000-cps band pass

2. Delay in Mechanical Components (1)
a. Recorder pen lengths 1 1000
b. Galvanometer inertia (3) 10,000 1 1000
c. Chart speed < 1000 4 1000

3. Optical Uncertainties
a&,. Light travel time 1,000,000 0 0.1
b. Diffraction edge position (4) 700 < 100

4. Radio Propagation Uncertainties
Radio propagation time 30,000 < 2000

5. Direct Time Errors
a. Emission time correction (5) 50 < 1
b. Ephemeris Time correction (6) 10,000 < 1
c. Polar motion: rotation

of earth (5) 500 'e 5600

6. Measurement Errors
a. Resolution (0.5 imm) 4000 1
b. Cross-chart correction

(0,.1 mrT) 800 1100

TOTAL <8400
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(1) Tests have been made to measure the time delays present
in the equipment between signal (light or radio) reception and recording.
The system paths considered are shown in the following diagram:

rSIBAL. IN!

,RADIO 1000 CPS AM4PLIFIER RECORDERF1~ PARTJ I I

RECORDER
UNIT

S•=PART II

ISIGNA. IN]

The amplifiers are of the same type; the recorder units (galvanometer and
pens) are of the siame type, housed together, and with common chart drive
and chart. Figures 5 and 6 show the two test methods. Variants of these
methods were also used, with individual components of toe systems being
tested as well.

(2) The trangit time in nine- or ten-stage photomultiplier tube
is around lO-7 to 10- secondis, but the variation in this is many orders of
magnitude less. Engstrom (ref. 28) and KaroluF (ret 2r , among others,
give values for the transit times. There is some caltio, necessary in
the evaluation of transit times. A single electron at the input to an
eleven-stage tube will, according to the literature, produce a pulse
of IO-8 -second width at half amplitude. The signal transit tiae is the
time of start of the pulse, but the measur3d time will depend upon the
sensitivity, averaging properties, et o ., othe measuring instrument, and
could be the pulse half-width point,

(3) The galvanometer response time was evaluated separately
and as part of the over-all system, Appendix A gives the derivation
of the pen-response equations.

(4) The moon acts as a diffracting plane to produce a
diffraction pattern. The effect of this on the shape of the occulta-
tion curve and on the time determination is discussed in Appendix B.

(5) The radio signals are, for obvious technical reasons,
seldomly emitted at the instant which they are supposed to indicate.
The actual times of emission are determined by monitoring of station
broadcasts by time centers such as Greenwich Observatory; tbe
necessary corrections are published periodically in time bulletins.
The major source for such corrections has been the U. S. Naval
Observatory Time Bulletins. The bulletin values must, of course,
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be corrected for time of transmission from the station to the
observatory; since only the difference in time of reception by
two equal-limb-line time observers is involved, this transit-
time correction is of no importance where the same radio-station
signals are used.

Further corrections must be made for the variation of
latitude caused by the motion of the pole and for the seasonal
variation in the rotation of the earth. The necessary correction
constants are computed by the Bureau International de l'Heure
(ref. 27); preliminary values are provided in the time bulletins.

(6) The observations of occultations are related to time
through radio signals sent out by radio stations, or to locally
generated time signals from a clock which is calibrated against
the radio signals. The problem of accounting for the difference
between the time recorded by the occultation equipment and the
time - Universal Time - at which the time signal should have been
emitted is complex, but the individual steps necessary to the
solution are well understood. This is not the case with the relation
between Ephemeris Time and Universal Time. Universal Time and its
variants Universal Time-l and Universal Time-2 lend themselves to
precise operational definition; Ephemeris Time, on the other hand,
has no physical existence, is defined theoretically in terms of an
unrecoverable unit, and can be related to other time standards
only through empirical methods. There is no theoretical relation-
ship, for instance, between the Ephemeris Time second and the
second defined by an atomic molecular oscillator.

The unit of Ephemeris Time (ref. 19) is the tropical year
defined by the mean motion of the sun in longitude at January 0,
1900, 12h E.T. The ephemeris second is defined as (31, 556,925.97h7)-
times the topical year at the above-epoch. Since Ephemeris Time
is designed explicitly to give positions of the major solar system
bodies which agree with observations, the relation of Ephemeris Time
to other kinds of time must be through observation of these bodies.
The body easiest to observe is the moon, and therefore the relation
between Ephemeris Time and Universal Time is gotten at present
through the lunar motion. The principal techniques utilized are
occultations, transit observations, and photography of the moon
against a star background &he moon-camera method of Markowitz
(ref. 321 • Although from the standpoint of operational definition
there is a different kind of Ephemeris Time for every member of
the solar system, these fine distinctions are quite lost in the
observational errors associated with measurement of:

&T - E.T. - U.T.

This is true also of the difference between E,T. as defined by
Brown's theory and W.T. as defined by a numerically correct theory.
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(7) The UT2 time of emission of the signal is not the
same as the time stated by the signal, but may differ from it
by many milliseconds even if the radio station is operating
properly. The U. S. Naval Observatory monitors the time signals
from a large number of time-transmitting stations, as do Greenwich;
Tokyo Astronomical Observatory, et al., and the times of receptions
are published as UT2 times. Since the monitoring station whose
published reception times are used in the reduction is usually
within a hundred miles of the transmitting station whose signals
are used for timing the occultations, the transmission time error
from this source is certainly less thpn 100, ._ T ikewise, the
monitoring errors themselves should be less than 100lp s, and,
in fact, the times of reception are for most stations given to
0.1 ma.

(8) In most cases, the occultation observing site is within
4000 km of a time-transmitting station, and one-hop propagation
may be assumed. Giving the F2 layer a height of 400 kIm, the
maximum difference in transmission times are given by:

Straight-line: 13.3 ms 0.3

One-hop: 13.6 ms 0.8

Two-hop: 14.4 ms

The maximum error is therefore less than 1 ms, and will in fact
usually be less than 0.5 ms.

(9) There are no good theoretical values for the time
delay involved in the movement of the signal from the antenna
to the recorder input. The maximum delay occurs in the 1000 cpe
UTC band pass filter, and direct measurements of the time delay
show that this is about 1.3 s.

7. Aberration

Aberration, the apparent displacement in position of an
object, caused by the finite velocity of light, is not of any great
importance in the equal-limb-line method. The reason for this is
that the observations are paired in such a manner as to cancel the
effects of aberration on the results. First, since at a particular
point on the earth, an occultation consists of the alinement of
star, lunar feature, and observer, the star and lunar aberration
effects are exactly equal. Second, the time difference between
observations of an occultation from two different sites is so
small that annual aberration is insignificant. Since the interval
between the observations in an equal-limb-line occultation is
almost always less than 21 hours, the difference in the annual
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aberration at the two points in the orbit must be less than:

A2 cos o + k sin(s- X) A (s- A)

A2/ - k gin Pcos (a-7) A(s-A).

Since (s-\), over a period of 3 hours, is less than 3 x 10-3 the
aberration differences are less than O"06, and the maximum difference
is therefore less than 0Y1. This is insignificant when even a rough
approximation to the aberration correction is made; an error of 10 km in
estimating the amount of correction necessary would introduce less
than O"005 error.

The diurnal aberration, 0"!32 cos 4) is somewhat more important.

The changes in right ascension and declination are given by

A OC.= - 0'1.32 cose cos H sec

A + 0-."32 coso sin H sin

(Reference 11). Latitudes are generally restricted to ± 600, the
declination to ± 30', the hour angles H can extend almost to ±900.
The diurnal variation limits are therefore

Max. Min.
A • - 0;'37 0
A 6•-± 0.'16 0

From the equal-limb-line view, the difference between the values of
diurnal variation at the two places is of primary importance. Here

Max. M1n.
0- 0

AH - 85" 0
Ace - ±300 0

and the variation in aberration is as great as for the single-site type
of observation. The error in the estimate of the aberration is compounded
of the errors in

(1) radius of the earth ( < 1:104)

(2) velocity of light ( < 1:10 )

(3) cosine of latitude of
observer ( < 1:104).

It is therefore less than 01'.0001 and can be ignored.
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From what is stated at the beginning of this section, it
is safe to neglect the errors arising from aberration effects in
the lunar orbit. In the Improved Lunar Ephemeris, page x, it is
mentioned that terms depending on the eccentricity of the lunar
orbit are omitted (- periodic terms of 0.'009 size). Rules for
inclusion are given in Transactions of the International
Astronomical Union, No. VII, page 175 (1950).

B. Error Effects

At this point it is well to summarize the conclusions
of the section just preceding. That section gave, as reasonable
values for the errors in the various physical quantities affecting
an occultation, the following:

Star Position Errors ---- <0"8
Moon Position Errors -- 0'.3
Observer's Position Errors

known datum - 41.0
unknown datum - <60."

Time Error ---- < O!01
Aberration Error ---- < 01.O005

The combined effects of these errors are given by the equation:

AE 1  )E 1 E E1 a E' 3E1 3 E1 9E1  -E 1  E1 ?O4m-- -i -TE- 2 •- -•_ as*

20 0- OA
&E2  EE2  2  a E 2  •E2  3E2 aE2 2E 2  

"O'

I3 C- Fo' J-7E a E 3 =at 6~E
A Em0 0 0 0

AE ~ 3  E 3  E 3 aE 3  E3  -aE3  aE3  ýE3  E 2

3 a' a&* ~c( l ae E aE2 30
S0 0 0 E3

L 0

Lt

where the matrix elements have the obvious interpretation. The
aberration error is present in the equation, but combined with the
star and noon errors.

53



Now the quantities [bEi]enter into the theory through'
the equation

The 604 are the "observed" differences in the lunar radii at
the occultation equal-limb-line points for occultation J, while
the a are the corresponding coefficients. In order thae A i
mav bi determined, it is essential that three or more values of

Ao-J be available. That is,

AEi W )Ei( &LO-, &U-2,

and the equation ik.

[1E4 , [[ aj jT ajT -A T

For convenience, let us define

62
ul u 2 = 06

m mU3 s •.u4 . M,

u 5  M E1  u6  = E2
0 0

u 8  u t 
7  E3

0

Then the successive derivatives of the (&Ei), when strung together
in a Taylor's series, give

(uk A

~(A Ei) (A &u k

J,k (a rJ uk
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and fipally

[6 ( All) [a J P[

This equation is merely the mathematical way of saying that the
errors present in the occultation results are to be found from
the errors is the radius of the moo& measured on the fundamental
plane, magnified by inverse projection of these latter errors
from the fundamental plane back onto the surface of the earth
(back into the observer's local horizon),

There are several ways of continuing the solution of the
error-analysis problem. One, which is the simplest when there is
convenient access to as automatic computer, is to compute, for
various combinations of values of the uk's, values of 6Yfor unit
variations (for each combination of ukivalues) in each of the
uk successively, i.e., compute

- £Y(ul, u2 , ul, u4, u , u6, u7 )

0+47--+4 1 . (uI +Aul, u 2 , u3 , u4 , u 5 , u6, u7)

and so on, so that, approximately,

(j-+ bo-)3

k 
au k

(Because, as will be remembered from the definitions in Part 1,

,is defined as

ai-_- 6--
2 1

where C_ and are the radii of the moon as observed at
paints 2 and 1, respectively, the quantity

' uk " a uk- a uk

The lineaity of thl preced ag equations hence allows the problem
to be worked for 0r and er separately. This separation is
assumed iesdiately above and following.)

55



The Coefficients havin beea evaluated, it remaiss only
to compute, for each k,

( 2 1 u
Suk •uk

aid to sum over k. The result will, of course, be applicable
only to the situation as defined by the set of uk's chosen,
but it would not be too difficult to (a) repeat the procedure
for more sets of uk's; (b) select a representative ug is the
first place; or (c) select the uk for maximuu S(AC-).
A representative case is provided by as occultation of date

t1  1957 June 14 7 25m 06774

S119" 03' 36"000 W.

0I 340 13' 00"OO0 N.

hI 0 meters

Star 28 896 (AMS cataloe so.)

t 2 1957 June 1 4 d 8 h 02m 24.000

A2  102" 16' 37V679 W.

02 36" 12' 00.585 N.

h 2  0 meters

The individutl variations are gives is Table V7I. (Tke conversion
between & E aid AXk, Ag is gives closely enough by'the relations

aEl -ras cosn A

A92 . rmean a

although more precise values can be obtained from the usual
formulae or from one of the well-known tables of functions on
the International ellipsoid.)
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Table VII. Parameter Variations

44 - 205.9 - 205.2

/a* - 1604.5 - 1605.4

a FU 212.8 200.0

'o 1631.1 1631.3

Ak 1  - 31.8 - 31.0

. O 6.4 0 0.5

Ah 1  7.3 5.3

.& t 664.2 676.01

d7-I 265.9 - 1414.6

The rule for propagation of errors gives

(Si -d)2  Au k)~ ~ 2k uk u2k

where

S 2 4 ) site 2-=

Attention mist be paid to the non-equal time errors, but when we are
through, we get, using the values given at the start of this section,

(s-dA O-)partial M 23.87295

To this r.m.s r we may add the r.m.s. error arising from the non-
equal-lihu-lime observation circumstances. If it is assumed that
the Watts limb profiles, although good absolutely to only 180 meters,
are good relatively to much better - say 60 meters, then corrections
can be made to C6on this basis. That is, although height

r.m.s.e. (hB,Watts - hBTrue) • 100 meters

r..s.e. (hA,Watts - h A,Tru) 180 meters

r.m.s.e (hB,Watts- hA,Watts 30 meters.
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Hoe*c

2 Toa 23.87495 2 + 3600 meters

- 570.0132375+ 3600 - 4170.0132375 meters

Taking as before the worst case, we shall bring this value up
to the surface of the earth for as observatios at am altitude
of 10* (the usual limit in selecting an occultation is 15*).
Hence

r.m,s.e. d - sec 2 800 * (7

W 33

- 33 x 64.578

- 2131.074. meters

A moment will be taken here for a short digression to
discuss the roles of "sumerical" error analysis sand "algebraic"
error analysis. Until fairly recently, the derivation of a
parameter of a function from computed values of the function
at different points in its domain, rather than by computation
from an asalytic expression for the parameter has been frowned
upon by mathematicians as being "unmathematical" sad less
desirable. This attitude, unfortunately, has beau adopted
too of ten in the other sciences where mathematics is applied,
and there is very little justifications ay more for the
attitude. The validity of a method is determimed largely by
its correctness and by its e"as of application. tUmtil the last
decade: the latter consideration made it feasible to spend a
long time deriving a formula if the formula could shortem the
computing time; sow, is mast cases, a computation cam be carried
out much more rapidly them cam the derivaties of a formula.
Realizatios is gradually growing that algebra is only &-tool
to be used in getting to am and, and is sot am esd is itself,
and that analytic formalations msut be Justified by the and
for which they are used, not by the cultural ewvironment is
which they are used.

After this digressios, we cam go en to look at the
analytic formulatios of the error analysis. As was sees, the
major problpm remaining is that of finding, for each observation
point
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This is fortunately quite simple. The basic equation to be
used is that given in Part 1:

i ohs Imoon)

s o t h a t -c r . t " A 1)

a- 0'o 0 M

+ ((2 ,t2)(At 2 _Ae 2)]
0 m 0

The basic equations are

1 0 0

to, 0 coo sin .

t3 0 sin Cos

cos h 0 sin h

0 1 0

-sin h 0 cos h

1 0 0 =" 0

0 ccs 0 sin 0 0

0 -sin 01 cos 01

and correspondingly Fsj
f•] .•.. co•..0 co -,so o.Oj..)

V~ ~~~ 1 os0+si O
cos sin

3 0 i o i~% o ý-a

1 0 00

0 -sin cos si M r H
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where

r-

Tke Jacobia - is simply derived from these formulae since

if we demote tke successive rotation matrices is the equations

for [Etij by R1 R2 R3 P, we kave

o .0 0

D1 0 1

0 1 0

0 0 0

QE4 1dLR - IR I
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Expaasioas of particular term are given below:

h 0 a C O, - O. T , Co. ,s

t2
0[ux "q"• @in' + Co" Cos Cos "]

0

u coo - ( 'ai $is' sa i a

S - 0 co'Cs co.s

0 . Pfcosqr cosi +Bin c'sias ces hi

= - cs V , cis* sink

0 a [coo sin" sin ~Cos( cook

-
U

0 coon coon? snin h

ae
0Corns coon S sin" Corn k

3

9 t 0 cgsQ cornT sirn h
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0.- coon4- cos h
at

C t (cooq sin ý* $sin

Sim•ilarly, the coefficients for the moon's position errors
nay be derived.

-0

si +m Co Cos coos(o(-a*

pin -Tj cosi

sin sinls"sin( n

.2 r [ Cos o coCos Ex+si.sin Cos(o -

s-inr-r L m

/0 [ o O (:-*

. ./o [., c..o.( .<<

sinsin(

2 ta sinf TT sin cos CB6n in( 6

'a.of sin Tru*a"0.

t22

sininCos S sic(s( U -

si Ir sIa O

___ - cot Mu t-
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m snCos j s a - si Cos Co s c(a 3

a g asi TraL--

a * a

•33

--- cot r- -3

•-- -
- ____ rc a t

at a

+cos oacoo( O . 4.) . a T a

* a ON t t at

C •n1 - aec 7T- t2a
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The C. and N are here assumed to be constant; as far as the
three-hour or less interval, which is all that concerns occultations,
such an assumption is certainly valid.

In addition to the above quantities, there must be taken
account of the natural errors which creep directly into A 6through
our lack of complete knowledge of the moon's profile shape, Since
these errors are directly additive to A 6, and, furthermore, have
been discussee'n precedong sections, there will be no further
investigation here of the error, but it will be included after
evaluation of W-other errors. Note that this same addition must
be made to the P (A6) determined previously by computation.

Evaluation of the above expressions for typical values,
ranges of values, or for values leading to a maximum for S(4 d)
is not difficult, but is time consuming. The values of the derivates
of the types

t t

are gotten from any lunar ephemeris. The variable ey' in these
equations is the geocentric latitude, not the geodetic latitude.
The difference between the two latitudes is not significant for
error evaluation. Some simplification can be achieved by making
a number of approximations. First of all, 0(* and 4* do not
change appreciably between occultations at points 1 and 2, and,
in tact, it is customary in the analyses of the data to use for
both points an o(* and S* computed for a time half-way between
the times at 1 and 2. Hence we can use the same a* and 9* for
1 and 2. Secondly, 0j, and E change at rates of O05 per
second and 0.18 per second. Over the three-hour maximum interval
between paired observations, this involves only about 1°5 change
inUh and 0255 change in 6'. Hence we can use the same values for
am andd at both ends, merely adding on a small correction for

the change. Furthermore, if a reasonable limit is being sought,
rather than an exact (but obviously not accurate) limit, then the
coefficients of the 0k and S variations can themselves be approximated.
This is all the more possible since OLm and Im will not differ greatly
from 0.* and 4 at occultation time. For example, the correction to

S2

is then

). - [co sin cos('os -Oc ,n

coos .coso g sin ( O - A)CS

-i
_ ,sin rf sn o . cos (l -coo m

- cos 24. sin( CM - A*)A A .
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-Cos2 1. AIX~c( ....

1 171I

sin•71 .0175

Set • 30

P1gO V 10 . 0 174 5r

A ot -115 .0262r

- -3/4 X 4.5 X 10- 4 ( -
sin 11 m

- -3.3 X 10" ( -1
sin ~

- 3.3 X I0-4 X 6.378 X I06 X 57 X 10-6

, 0.6 meters per secomnd of arc.

This quantity is then to multiply the -4 ',, since the other parts
of

e¢2
ag.

will cancel each other. The rest of the differential corrections
can be gone through in the same manner. The major differences enter
through the portions which depend upon the observer's coordinates
since the coefficients here cannot be equated, the one to the other,
The observer's coordinates may differ by 30* to 60' or more in
latitude; the local hour angle h may differ by 90' or more at the
two points. It is to be expected that the major errors will creep
in at this point. As can be seen from the equations, the maximum
for any one a i will be about 30 meters per second of arc.

The following partials,are based on expected maximum variations*
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PARTIAL DERIVATIVES - a i

a uk

0 - 14.67 17.56 0 - 1822.15 0.08

C1, 3.92 11.10 - 19.23 - 1577.94 - 13.81 23.92

- 22.21 21.49 7.89 - - -

A 3.92 11.10 - 19.23 - - -

t 3.92 11.10 - 19.23 52.39 26.87 - 1.81

S- - - 1 5.95S 1822.24 0.08

I - - - 1577.94 13.81 -23.92

"Tr-, - 1582.16 - 4.52 -104390.92

All values expressed in •eters/secead ef arc.

.500 .866

.707 .707

.500 .866

L-OL, .0175 .9999

7-1 .0175 .9999 57.29 1.0002

k .985 .174

t . 660"1 6.374 X 106
St 36008

C OLI 1800" a77 -v 30"
90- 'a t 36005
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APPENDIX A: COMPENSATED GALVANOMETER EQUATIONS

The d'Arsonval galvanometer system can be shown schematically

as

Pen

Wire 2

Coil

Wire 01

where II and 12 are the moments of inertia of the coil and pen,

respectively, and k0 1 and k2 are the torsional stiffness of the

anchoring wire and pen-coil wire, respectively. The flux density

of the (permanent magnetic field is B, the effective Iength of the

coil wire is L, and the current in the coil is i. If the back

e.m.f. of the coil and drag are neglected,

i - E/R

where E is the signal voltage. To start with, 9 will be assumed to

have the form E=Eol(t), so that i - iol(t). The differential

equations of motion are therefore (references 15, 16)

I d2, k2 ( 02 -l) + k 0 -- BELI

dt 2  (1)

12 d2 0, + k1 2 (0 2 - 01 ) 0 0

dt 2

where gland Q2are deflections of the coil and of the pen, respective-

ly from the rest, or "no current" position.

67



Rearranging,

I, d2 2" ÷ (kol * k1 2 ) 0 1 - k1 2 02  . -BI (2)

"%l2 @I + 12 d2 @2 * k32 @2 -o0
dt 2

The Laplace transform of these equations gives,

1 1 p 2  l _ I , p2 O 1o + (I O i + k 1 2 ) 0 1 - kI 1 2  0 2 - I

(3)

"k2 0  + I2 i2 0• 2 - 1 2  2o 2 k1 2 02 - o

k - kol+ k+ 2

(I P2 k)01 -k 12 02 -Il p2 E10 -BLI (14)
"-k12 1 + (12 p2 + k1 2 ) 02 "k p2 020 -0

Assume also 10o 0 _ 020

I, p2 + k -BLI

Then
Thn02 - kl2 0 (5)

I, P2 + k -Ik1 2

-kl2 12 P2 + k12

or 02 "kL2 LI (6)

Il 12 p4 + p2 (I 2 k + I.kl2 ) + (k - k2)k.2

-k12 BLI

2T (7)

p + p2 (k_ +112 ) k12
11 12 !7
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-k 12BLI

11 12 (8 )

4 dl p2 + d2

The roots of the expression in the denominator are

j irI , + ir 2 ,

so that the transform of 02 is

(9)

M 4-k12 BLI ( 1 (I-cos hrlt 1 -cos h r2t)
II 12 (r . r2 r2 A2

1 2 12

If the back e.m.f, of the coil is taken into account, together with

the drag of the pen across the paper, then several new terms are

introduced.

We have

Ri + BL dQ1  . (10)

.- BLr (11)
R • dt

B - 301(t) (12)

- BIE B2 L2 r (13)

,i 1  - k1 2 (0 2-01 ) + k01Q2 - R

.* B2L2r Bl +(IE +1,9 1+(~ k12) "1 k1292 = 7"-T

12 IY2 +÷n 2 + k1 2 (92 - 01) -0
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p1 (p2o - P2g1o - P 6 1o) - R (P Ol - P 00)

R

N0 *Io k'12) 01~. - k12 02 -BLI0/R (1)

12 (P2 02 - P2
2o - P 62o) + r'(P 02 - 0 20)

+ k12  02 -k1 201  0

Let k o + k12 (16)

020 0 620 - o - 610 - 010 (17)

So that
B2L 2  BLE°Jp2 + p---R-) ÷+ "j 1 -k" --2-

(18)
(I2P 2 + nP + k12 02 k k12) 01 -0

These equations, solved for 02, give

11p2 _B 2 L2r P + k BLo
1R "- '-

-k 0
02 I 12 (19)

xp _ B2L2r P + k - k12

-k 12 P2 + nP + k2

which can be written

02 - k. 1 (20)R (P-al)(P a2(p-a3) (p-a4)I

where the a3  are the roots of the quartic in the denominator of

(19) hence
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e +k 12BLEO iii (aj-a, I) aj (21)
2 jl,2,3,04 II(aj - aj+l)

cyclicly
Equation (21) gives the response of the galvanometer pen to a step

function, and shows that the system is doubly resonant, with

dampened oscillations because of the pen-drag and back-e.m.f. (Proper

choice of the values of Ils 12v k0  and removes the double

resonance.) A somewhat more representative form for B would have

been the ramp function.
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APPENDIX B: THE L13HT CURVE

To an observer looking at an occultation with a telescope, the event

appears to be instantaneous; in fact, it is even possible for physiologi-

cal reasons for the observer to "see" the event before or after it actually

occurs. A recording of the light intensity, however, shows that the event

is far from instantaneous; a noise-free record would show a curve which

is similar to that of a Fresnel diffraction curve for a straight edge.

The slight (but importaný differences are caused by:

1) the finite angular size of the source, which makes the influence

of non-uniform light distribution over the star's surface felt;

2) the failure of the lunar surface to act like a straight edge.

These two differences permit, in some eases, the reconstruction of the stel-

lar structure or the micro-analysis of the form of the lunar profile

(References 20S 21). As far a s the geodetic use is concerned, these details

are of no significance and are neglected.

The diffraction pattern in its gross appearance can be constructed by

evaluating the Fresnel integral

I {f-cos .2 dv) + (fsin 1 dv) 2]

The variable v is related to the distance along the diffraction pattern

by the formula

/Ar 0  
(2)

_V2
Evaluating the integral for 5 - 50 run, d - 380,000 km, the intensity at
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the line observer at the instant of the occultation, (when observer,

moon's edge, and star are collinear) is

Iobs " 'average (3)

4
where 'average is the average intensity before the immersion (or

after the emersion). From the observer to the first maximum is

approximately 12 meters.

These values must be modified to take account of the difference

between the physical situation and the simplifying assumptions which

were made above. These differences include:

a. the superposition of diffraction patterns from a range of

wavelengths

b. the different response of the photomultiplier tube at

different wavelengths

c. the varying brightness of the source at different wave-

lengths

d. the filtering action of the atmosphere and optics on the

radiation from the source. At a particular distance y from the

diffracting edge, the intensity as recorded would therefore be

represented by the formala

I M KA F(A) G(A) H(A) x (cos v2 2 + sin B;2l2 diA2I - V- (V dv)

where F(A) is the spectral response of the photomultiplier tube,

G(A) is the source relative brightness

H(A) is the atmospheric filtering function

and K is a scaling factor.
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The RCA 1P21 photomultiplier tube, widely used in astronomical

photometry and used in the ArWv Map Service occultation surveys, has

an S-4 spectral response. This scaled to a value of 1.00 at the

400 m maximum, the values are given at 50 m (50 nanometer) inter-

vals in Table B-i. The source function can be represented by the

Planck formula (reference 29)

12 *2C 1 (eC2/A T .1)-1

17N
where C1 * 4.992 x 10"15 erg-cm

C2 - 1.438 cm-deg

or, to a sufficient approximation, by a numerical table for the sun,

a G 0 star. In Table B-2 is given a set of values combining G(A)

and H(\), being the solar radiation at sea-level.

A simple picture of the effect of these various factors can be

gotten by looking back at equation B (2). Taking the derivative of

the function y, and keeping the position of the first maximum

constant at v - 1.2 (approximately),

dy dA

y-yp

The effective range of d is about t 200 around the 550 nm point,

so that the maximum at different wavelengths varies over about

± 2 meters from the 550 nm point. The close-by maximum and minimum

will be shifted by about the same amount, so that the diffraction

pattern may be expected to be considerably smoothed, in the recording,

from what it would be in a monochromatic recordUng.
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TABLE B-i

S(n-) RESPONSE (erg/cu2 )

0 0

300 0.0

350 0.90

400 1.00

450 0.90

500 0.70

550 o.4o

600 0.10

650 0.03

700 0.00

00 0

TABLE B-2

SOLAR RADIATION AT 600 ZENITH DISTANCE AND AT SEA LEVEL

7% (cm) x 107 Q(erg sec'icm"3 ) x 107 QN(Qhoo - 1)

300 0 0

350 0.188 0.40

400 0.470 1.oo6

450 1.oo6 2.14

500 1.215 2.58

550 1.190 2.53

600 1.167 2.48

650 1.173 2.49

700 1.108 2.35

750 0.867 1.84

800 0.857 1.82
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APIEDIX C: ANALYSIS OF EQUAL-LB-MI E OBSERVATIONS

The equations(3,0 as written enable one, apparently, to solve

for the corrections AEj at several sites without the necessity of

making any assumptions about the corrections at one of the sites. The

reason for this apparent paradox is that the equations have hidden the

lunar orbit errors within the geodetic corrections without explicitly

saying so. This is shown by the following analyses.

Equation (19) can be written in vector form as the difference

between two vectors

j . - •m)2

0--* 1-o

Let the true values of tj, fJm be ljs Xjm so that

j -4. ->

J X + m

>-

in Xjm + axjm
Then -

02 01 (X2 +L6X2  x2m - AX 2m) 2  (1l + 1 - 11, kXlm) 2

U-2

(12 - X 2 ) _ (X 1 _ Xlm) 2 + (X2- X2) .X2

- l~. A.l (X2-X) ~X 2m (XI-Xjm) .* 1

+ 0 (az) 
2
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Let 2 rrJ

Furthermore, by the conditions of equal-limb-line occultation obser-

- -i 2 -. - 2
vations, (X2  - X2m) - (X1  Xlm) .

We can assume that, over the (at most) 2-hour interval between

occultations 1 = AX

From these conditions it follows that

-Xl 2 (X2  X2m) (Xi Xim)
T 0 = 6-2 0- A- + " x2 A X-

(X2 - X2m). __ _- __m'r2 214

The equation actually used explicitly includes only term II without

specifying the disposition of terms I and III. But term I is

obviously the residual error ,2 pin the lunar radius P while

the term III is approximately the component of the moon's position

error in the direction of the tangent to the limb. Since term III

varies from occultation to occultation, it cannot be solved for,

and must be absorbed in the overall error. Fortunately, since the

two terms in the pre-factor are very nearly equal, differing in

direction only by the libration in latitude and in magnitude by the

small error in the lunar radius, there is no great error incurred.

The residual error WOis very small, as follows from breaking

Sup into components

G m+ 0I'
j jm jx

where is the vectorial error in position of the moon's

jm
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center,

Tip is the lunar radius vector

Orx is the vectorial error in position of the observer.

Hence
0-•- 0-i " *2e

and - o
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APPENDIX D: SPH0EROD-TO-SWEROID TRANSFORMAITIONS

A point P with geodetic coordinates ( X 1, 01, h) is given, the

coordinates being measured on and from a spheroid aI whose semi-major

axis is aI and whose semi-minor axis is bl. It is required to find

the geodetic coordinates of P, (% 2 •, •2 h2 ) measured on and from

some other spheroid 82 whose semi-major axis is a2 , whose semi-minor

axis is b2 s and which is located in some known relation to sa. The

position of 82 with respect to a1 can be defined by means of two

rectangular Cartesian systems created as follows:

(1) The origin of system P111 is at the center of spheroid(3ll

(2) The xil axis coincides with the semi-minor axis of asl

and is positive to the north.

(3) The{I1~ axis lies in the plane of the zero meridian of{s,

and is positive in the direction of Greenwich. Then '2 is located

with respect to al as follows. [Xl] is translated parallel to itself

until the origins of [X1l and [i 2] coincide. T1is translation

defines the vector 2

The translated [ 1X is now rotated counter-clockwise about [Xý]

until [zll lies in the plane [Xi8 defining the angle tyl.



This new (translated and once-rotated) system [Xiij is now rotated

counter-clockwise about I (into which X1 went) until X31

coincides with X3, defining the angle 1#2. Finally, this translated

and twice rotated system is rotated counter-clockwise about X3 until
2

its remaining axes coincide with the corresponding axes of [X2] 9

defining an angle Y3. Denoting these rotations by [R1u [R2 1

respectively, we have[X2] - [Rj [• R21 [R] [Xl] - [LýX•t(1

or[X12 - [R]ýJXj] - [LA Xj I . (2)

The solution to the problem is then given by the 'following steps:

1. P(A lj, Ol,. hl) -- P(X11, Xj, Xj)

thru the equations

x1 (Nl + hl) cos 1 cosA 1

41 2 (N1 + thl)cos 01 sin 1 (3)

Lx~J {Ni(l - e2)thjý sin 01]

where

N1  a l (l - e2 sin2 01) -2 (4)

1

and 2
a 2

a1

2, P xL -4-1 P [X2] by tle equations
X2] -_ Ral - bl] (6)

3. P[ X2] -_4 P A•2 , 02' h2 ) by solving the equations
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Il' (N2 + h2 ) cos 02 coBi 2

2 (N2 ÷ h2 ) COS 02 sinA2 (2)

3fN 2 (1. - e)+h2j sin 02
L JL

for A2, 02, and h2 (N2 and 02 are defined similarly to N1 and ea,.

It is step #3 which offers the greatest difficulty, since it involves

the solution of a system of three simultaneous non-linear equations.

The longitude ;2 can be found immediately from

,fanA2' fX2 8

*~ct2 ~ ( lI)

The latitude 02 and height h2 may be found by linearizing the

equations to give (9)

W3 e3 co 3

Shj) sin 0j CosB o cosjcospoo

2 0 [-(Nj + hj) +~ .3 cO930] sin 0j sin A0 cosojsin?.o A0

£0

-1 0 0

and iterating to convergence, using A 2P 0I, hl for starting values.

Since the A, 0, h will be very close together, the process con-

verges rapidly. It is sometimes simpler to proceed, when an exact

solution is not needed, by solving the equations
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N cos A2 008 0
2

2 N sin A2 cos 0 (10)

L (l-) sin 0

for A 2 and 0. Then

and h2 is computed fro, equation D-7. While the latitudes 0 and

heights h that result are not exact, since 0 is for an ellipsoid

homothetic to the ellipsoid actually wanted, the difference in most

cases is substantially less than 1 meter.

In practice, the angles will either be identically zero by

definition, since it is customary in determining "best* fitting

ellipsoids to enforce the parallelism of that ellipsoid's axes to

the axes of the "best-fitting" ellipsoid at Greenwich, or so small

that they may be considered zero. Theapnly the translation vector

remains. Furthermore, in many applications, it is merely a case of

from one ellipsoid to another, not completely from one datum to

another. The two ellipsoids are then assumed tangent at the common

datum point, and the transformation vector is given by

P [-2] - P [X1] : &ILX1
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APPENDIX E: THE ELLIPSE OF ERROR

A non-singular symmetric matrix can be brought into the diagonal

canonical form by a similarity transformation. In the present case,

this involves the diagonalization of a series of 2 x 2 submatrices

of 633 1 0. Hence the transformation to principal axes is

"RI 0 0 T 02  0 ......

0 R2. 0 R2

& * •

* . *. •R . . .o.•.

where each rotation submatrix is of the form (61.2) or (61.3), de-

pending on wheter or not the LrE3 - 0 or not.

The derivation of the ellipse of error equation for the simple

case Ri - 0, 1 >Ž 2, is given by Grossmann (reference 9). Interpre-

tation of the ellipse in this way is not easy, however, but the

extension of the ellipse of error to an n-dimensional case is quite

easy. A more general presentation is given by Cramer (reference 10).

In dealing with the definition of the n-dimensional ellipsoid

of error, it is simplest to consider the axes of the ellipsoid to be

defined by the eigen-values of the covariance matrix, so that

defines the ellipsoid. [�IZ] here denotes the least-squares

estimation of [A1iJ , and q2 is the parameter defining the size
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of the ellipsoid (reference 19). The value of q2 is the same as the

value of x2 , this value is chosen to represent the 1-0( level of

confidence.

The confidence ellipsoid, in n-dimensional space, is generally

defined by the axes of the coordinate system in which the measurements

are carried out and by the standard deviation values gotten from the

varUlm matrix. This is not strictly analogous to the ellipse of

error used in 2-dimensional error analysis (reference ý), Crossmun).

An extension of the ellipse of error concept is desirable, and is

provided in the same way.

As in the 2-dimensional case, a rotation matrix, this time of

3 or more dimensions, is sought which will convert the existing co-

ordinate system to one in which the variance matrix is diagonal and

for which the variances are a maximum over any other rotation. The

required rotation matrix I Rij )2 and the corresponding variance

matrix [t iJ I are derived from the initial variance matrix [Oij)

by solving equation

{[o0ijlI - Xii [Ij [Ri]

for the eigen vectors [Ri] corresponding to the eigen values Zii

of the original matrix [GiJ] . The usual method of computation

permits an easy ord-ir" of the Eii and rotated 5Xi so that

U + i +l



APPENDIX F: TRANSFORMATION BETWEEN DATUMS

The problem is to convert corrections to the observation site into

corrections to the corresponding datum. Occultations give corrections

[141] to the observation site. These corrections are made up of two

portions [ Ei [ [,T Ei]
The [A Li] . arise from errors in the actual survey connecting the

site to the triangulation system, while the [. Eil d arise from the

deflection of the vertical at the datum. Since [L Ei] a and ['g] d

enter into the equations in different ways, the latter being subjected

to a linear transformation, it is theoretically possible to solve for

both. Practically, however, the number of occultations available is

not sufficient to permit solving for a large number of unknowns, and

attention must be focused on the [a E] d, which are the more important.

L Ei] . can usually be set equal to 0, since the occultation sites

are connected to the existing triangulation by third-order survey and

the resulting error is less than two meters at the worst.

The formulae of Hristow (reference 8) permit adjustment of a

large number of parameters simultaneously. They can be written as

dA cos a•1  a12  .13 .- • * al6 dA cos

do a21 a22 a 2 3 .. * a26 do

do a31 a32 a 3 3 . o. a36 ds

dA . . .. .. dA

d • . . . . . .da 0o da
,be. "6l a62 a63 :" :66 d
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where a is the geodetic distance, A is the azimuth (from the datum),

d_ is the flattening, and a is the semi-major axis of the ellipsoid.

For the present purposes

d6 - 0

do - 0

Furthermore, the fact that Fobs and Pd are connected through a tri-

angulatio,• net implies that

do - 0

While the condition dA - 0 is not necessary, it is desirable

because of the paucity of occultation data. Its enforcement merely

keeps the internal orientation of the net unchanged. Hence, the

transformation equations can be written as

[A~ lal a12 E
E2 obs a21  a22  E au

The individual elements of the aij matrix are

all ! cos sec 0.

a12  9 see 0. ý t(i-) 2 + 4) L + (1+t2 _ 1~2.2t 2 2)

LOLA +. t(l+t2)L 0 2A -1 cos20t~l+t2)L~A a]}

721 0

" "1 [l-3t(rn3 . 14)• . ,•( 2 .t2rn2)t• 2 -

1 co$2g (l+t24.Jn12)n X 2[

Here 0ob - 9 datum
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A 7- ?ý obs - /\datmi

t tan 0

12 e12 cog2~

*9w2 a2-b



APPENDIX 0: THE ADDITION OF CORRECTIONS FOR LUNAR LIMB

INEQUALITIES

The equal-limb-line method depends for a great deal of its

effect upon the assumption that at points 1 and 2 the occultation

is observed, at the same point on the moon or that, at any rate, in

the equation (the Taylor Series, expansion with quadrates and higher

terms dropped)

4h moon A + 1/LnAA+ /moon 2
moonoo

hmoon a tt a 2 a 02

( moon is the lunar radius observe•d from point 1; A t, a A 0
2 2

are the variations in time, longitude, and latitude causing the

occultation point on the moon to change; and ahmoon is the

corresponding change in lunar height), the partial derivatives are

small. This assumption may, in cases where the quantities & t,

2&2, A02 are large, but quite wrong, and a method of correcting

for this error is desirable.

One such method is to use a chart of the lunar limb in the

region being considered, and from the chart to estimate the partials

in the Taylor Series linear terms. The definitive charts produced

by Dr. C. B. Watts of the U.S. Naval Observatory provide a test of

the procedure. These charts, with a putative accuracy of t 200 meters

Ln height, may be used if we assume that, although

hWatts, 1 - htrue, 1 200 m

Watts, 2 - htrues 2 200 m
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yet V;tts,2- "'•Ittsl e true,2 - true.l

consequently, we may proceed as followas

u. For the time of occultation at point-i, compute from the

charts the lunar radius at the occultation point.

b. Resolve the point-2 shift in longitude and latitude into

components parallel to and perpendicular to the lunar profile at the

instant of occultation at point-i.

c. Convert the parallel component into limits which can be

used on the charts, and compute the hei ght of profile at the shifted

point on the profile.

d. Add the difference between the tvo profiles to the A40of

the survey.

e. For the predicted position angle corresponding to the

occultation at point-2, and for the profile at the instant of occul-

tation at point-2 as seen from point-2, compute the lunar radius.

f. Add the difference between the two radii to the &

computed in step d. above.

g. Use the new WT to recompute the position of site 2.
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