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ABSTRACT,

The analytic form of the velocity potential of a heaving
hemisphere is studied. The potential is expanded in terms of
a wave source and of wave-free potentials, and the coefficients
in the expansion are studied

(1) when the dimensionless wave number Ka is small,

(2) when Ka 1is arbitrary.

X Tesult 18, that the virtual-mass coefficient is the
real part of

(én Ka - 1w)4,%(Ka) + ﬂm)

(fn Ka - 1% )ay" (Ka) + A" (Ka)
where the functions A(Ka) are entire functions of Ka , real

for real Ka .

The argument depends on the expansion of a surface source in
powers of Kr and On Kr , given here for the first time.

A similar theory, not gi ven here, can be developed for two=
dimensional moving cylinders, It is believed that investigations
of this kind will be helpful in studying the damped motion of
freely floating bodies on still water.
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1. 0.) ND Y OF R .

The heaving sphere has recently been studied by
Sir Thomas Havelock (1955) and by Barakat (1962), both of whom
give computaticns of the (dimensionless) virtual-mass coefficient
and damping parameter. Their results do not agree for small
values of the parameter Ka = = 2e,/g (where 27T/ 1s the period,
end a 18 the radius of the sphere). In particular, Haveleck
finds that the virtual mass is initially an increasing function
of Ka , whereas Barakat finds that it is a decreasing function

of Ka . It is the purpose of the present note to consider the
analytic form of the expansion of the potential, particularly for
small Ka,

It 1s shown that for all Ka the virtual-mass coefficient
is the real part of an expression of the form

(‘n Ka - 177 )A,*(Ka) + A **(Ka)
(n Ka - 17 )A,* (Ka) + A" (Ka)

(1.1)

vwhere the A's are entire functions of Ka (i.e. power series
convergent for all Ka ), real for real Ka ,' for which explicit
expressions in closed form are not known. The argument depends on
the expansion of a surface source in powers of Kr and ¢n Kr
which is here given for the first time. The leading coefficients
are examined, and it is found that the virtual mass is initially an
increasing function of Ka , in agreement with Havelock!s result.
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2. SIATRMENT OF THE PROBLEM. SUPERPOSITION OF S
AND EXPANSION OF THE POTENTIAL.

Spherical polar coordinates r, © are defined, with
their origin in the mean free surface at the mean position of
the centre of the sphere. The vertical axis of symmetry is
@ = 0 , pointing downwards. (Ve shall also use coordinates
y=rcos®, R=rsin®) The fluid is assumed inviscid, so

that the motion is irrotational; the amplitude of motion is
assumed so small that the equations can be linearised.-—Then—bhe————

velocity potential @(r, ©)e™ Aot atisties Laplace's equation
e R O S N R R S BY (2.1)
where /% = cos @ , in the region r >a, 00 < 2¥W .,
On the free surface the pressure is constanv. It follows
(Lamb, 1932, paragraph 227) that
Kg + }g =0 (2.2)
on the mean free surface y =0, 6 = %W , wvhere K = Uz/g .
On the sphere, the normal velocity is prescribed:
}g=vocose on r=a. (2.3)
At infinity the waves travel outwards:
r’}i—g-mﬂ)-)o as r=rgin @ >x, (2.4)
To solve this problem, Havslock (1955) and Barakat (1962)
proceed in the same manner. The potential is expressed as the
superposition of a wave gource at the origin,

glr, 6 K) = 9: oy e T %5k roatn O)ax (2.5)
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= e ety kR &
where the path of integration passes below k' = K, together
with wave-free potentials -

on Por(cos @) P, .(cos 8)
g, = g HB—) (2.6)

r r
(n = 1’ 2, 3, ooo) . '

(This form of expansion is analosous to the expansion used in the

plane problem of the' heaving circular cylinder, Ursell 1949). It
i8 easy to see that (2.5) and (2.6) are solutions of Laplace's
equatioﬁ (2.1). 'To verif‘y that (2.5) and (2.6) satisfy the free-

surface condition (2.2) we note the representation -

1 ., _
r Py(cos 8) = e

£ W e‘k" I, () 5 (2. -
this is valid in the half-space y > 0, since both sides of
(2.7) are clearly equal wvhen 8 =0, R =0 ; and they are both

harmonic and axially sy.n.metric'in the half-space.

Thus (K + 2 = - £k o™ 5 (kR)ak
= - p=2 Pl(cos 8) ,
=0 when 0=%T ., (2.8)
2
and 0, = miry 5o o 3,60 (0% + K™ Mak
. |
= iy S o™ SR WP (K ¢ 1k,
whence
2n
* 2, = iy 57 o7 7, 08 (02 - (k) e
(cos ©) P, (cos ©)
a.2n gn -2n_1-_-r2n ~— - (2n+1) r;n.,z } ’

=0 when =477 . (2.9)
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Thus do and ﬂfn satisfy the free~surface condition. Finally
it must be shown that the functions g, and #, satisfy the
radiation condition (2.},). Obviously the dn satisfy this
trivially. s for @, we have
L= e o g H(Sl)(k R) + % Héz)(k R)} dk (2.10)

=T x'e"‘KY Hél)(KR)
™y
TN exp(1/4 )i%x' ok HC’(1)0(R)dk
| VAT ke oy @) s ()
vhere the deformations in the complex k-plane are made because

) %?*WJHWH 2 re small in the first and fourth quadrants

(o]

' 'respeétiveiy. Since the line of integration in (2.10) passes

below k=K ,'-the integral involving Hgl) (but not the integral

involving H§2) ) contains a contribution from the polc at k=K , -

It is not difficult to see that the integrals in (2.11) tend to
gero rapidly as ICR'_ tends to ~, end satisfy the radiastion
condition trivially, vhile the term 1 Ko™V §(1) (k)
repregents a cylindrical wave spreading outwards and satisfies the
radiation condition non=trivially.,

We now supposé that the potential is normalized in such a
way that in suitable units

()™ gz, 8) = D*(ka) & (r, o) + ‘_,’f 55 8. 9 (2.12)

where the coefficient of ¢° ‘ha.a been arbitrarily chosen as an
entire function of Ka . We shall choose D*(Ka) =1 when we
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are interested only in small values of Ka , but we shall see
later that we can Bover a wider range of values of Ka by
choosing for D¥(Ka) the Frodholm d~terminant D(Ka) of our
system of equations. The coefficients Nn(Ka) are complex-
valued and are to be found. The coefficient V, in the boundary
condition (2.3) must also be treated as unknown. As we have just
seen, each term in the series (2.12) satisfies all the equations
except (2.3), which is also satisfied if, in the range
0gesEm,

- . e A

& L T
o T 4

oo()(nb

+ % 2n+L .b_@ (r, 9) (2.13)

when r =a . The unknowns Vo,otn in (2.12) are to be chosen so that
(2.13) is satisfiod, and we are particularly interested in the
solution for small values of the paramecter Ka .

So far we have followed closely the treatment given far
the plane problem of the circular cylinder, (Ursell 1949) except
that the appropriate three-dimensional expressions have been
substituted for the wave source and the wave-free potentials.
Our equation (2.12) is substantially equivalent to Havelock's
equation (10) and Barakat's equation (6.2) except that the source
term on the right-hand side of (2.12) has been normalized rather
than the velocity term on the left. This greatly simplifies the
results.

O —————
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‘Let (2.13) be rewritton in the form

por (pfa) = a2 (z, 0)) D*(xe) = (a o) v, 1

)
* OJE., un {PZn('“) * 5111%3. P2n-1(/A)} (2.14)

where f=cos 8, 0 M £1. It is convenient first to
eliminate V,  « On integrating (2.14) from s =0 to pa=1,
and using the orthogonality of the set {P2n ( /4)} over (0, 1),
it is seen that -

D Sg' F(/u) dm =4 (at:»’)ml v,

L ermas e e ms

© : ’
&n ¢l
+ Ka :{- e} So BZn—l(/u) dm (2.15)
When (ca..cS')":L v, is eliminated between (2.14) amd .(2.15‘) ﬁe
obtain B

D*{F (/e Ka) - 244 S2 F(v, Ka) dv} = D*(Ka) G(uy Ka)
= K _
1 . .
- 2pm S0P, o (V)av)] (2.16)
To solve this, (2.16) is multiplied sucoessively by the complete
set Pzn(/u) » m=0,1, 2, ... ), and integrated from s+=0
to Mm=1., Using the known values for the integrals involving

Legendre functions we find that the unknowns o¢ n gsatisfy the

infinite system of linear equations
D¥(Ka) (4n#1) S G(prKa) By (pa) dpa

xR
= 'xn + Ka k% uk (%&) ckn ) D= 1,2,3,;0- (2017)
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where
_ k P, (0)P,,(0) 2 Py (0) B, (0)
%n (ctn) (Rk—2n-1) ~ (2k~1) (20-1) (2n+2)
is independent of Ka .

The equations (2.17) cen be written as equations for

n%ocn :
%, (Ka) = rrtlund) 52 6u) Py (plapn =
w oo, + Ko Z) (Fec o (2.18)
where 4., = % ckn

&0 :,':.;:" S

can be shown that ilgnlz and Zild}mlz converge. The theory
of such infinite systems is analogous to the Fredholm theory for
integral equations of the second kind and shows that the solution
is of the form

n*un=g“xa o2y Don(Ke) 5 (Ka) o .'.(2.:',9)

vhere Dnm(Ka) s D(Ka) are entire functions of Ka , since the
coefficients on the right-hand side of (2.18) involve only powers
of Ka . (This result may be obtained, for instance, from the
theory of infinite determinants, Riesz, 1913, p.36. A trivial
preliminery transformation is then needed, Rless, p.39, since

iﬁ [ | daiverges.) The denominator D(Ka) (the Fredholm
determinant of the system), may have real gzeros, but clearly
D(0) = 1. If we are interested in a range of Ka which may
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contain & sero of D(Ka) we shall find it econvenient to take

D*(Ka) = D(Ka) , and then

o o n= 2D (Ka) T _(Ka) (2.20)

where the Dnm(Ka) are entire functions of XKa . If we are
interested only in small values of Ka then we normalize the
source term by taking D*(Ka) = 1 , and we shall have

+ _

e =I % (Ka) (Ka) (2.21)

vhere the nm(Kza.) ore power series, known to be convergent only

‘ In]o(nlz" converges, and one® more substitution in (2.18) shows
, that in fact Oc = O(n-3/2 ) « It thence follows that the series
' for the potential and for the velocity components are absolutely

.convergent when r 2 a .

© " We aro interested also in the analytic form of the cosfficlents

*_(Ka) . ‘W shall show later (eqn. 3.6) that, for all Ka ,
G(pm,Ka) = (€n Ka = 177) g#(}4,Ka) + g*¥(p,Ka)

€n Ka - 47) L (Ka)" g *(u)

+ 3 (5a)" g ** (M) (2.22)

where g*()an sKa) and g**(1,Ka)! are functions of M, regmlar

when 0 <M< 1 and resl for real Ka, and where the power series
converge for all Ka . It will follow immediately that

G (Ka) = (€n Ka = 1) T, #(Ka) + ¥, **(Ka)
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where the 5 # and ¥ o¥* are entire functions of Ka , real
for real Ka . If we choose D*(Ka) = D(Ka) , then it follows
from (2.20) that

< (Ka) = (bn Ka - 177) o _*(Ka) + ¢ %*(Ka), (2.23)
vhere the (Xn* and \Xn** are entire functions of Ka , real for
reak Ka . Substitution in (2.15) now gives

(ae)™ = (€n Ka - 1) V_*¥(Ka) + V_**(Ka), (2.24)
where Vo* and Vo** are entire functions of Ka , real for
real Ka .

If on the other hand we are interested only in small values
of Ka , then it is convenient to choose D*(Ka) =1 . The
results (2.23) and (2.24) are then formally unaltered but the
functions Mn* ’ °<n** ’ Vo* ’ VO** are now power series
convergent for sufficiently small Ka .

We thus see that the behaviour of the unknown coefficients
dependson the behaviour of the function G(/A,Ka) defined in
(2,16), For this we need the expansion of the wave-source potential
¢° (ry 0 K) .
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3. R T OF A WAVE-SOURCE IN
FREE S E,
Expansions for a submerged wave source in three dimensions
have been given by Thorne (1953). Near the source the potential

has the form
¢ =

where r 1is the distance from the source, and the coefficients

¢ Ta " p () (3.1)

Hi

An depend on the depth of the fluid, the depth of immersion of the

gsource, and the wavelength. When the depth of immersion tends to

zero the coefficients tend to infinity, and in fact-the-expansien— -~

for a surface source is not of the form (3.1). The simplesgt way
of obtaining the correct expansion is perhaps the following:
Since ¢%(r, 8, K) 1is cxially symmetric about © =0,
it is determined by its values on 8 =0,
‘e have

¢°(r) = ¢o(r: 6 K) = ﬁ‘: ]-sz‘ e-krdk
A

where the line of integration passes below the pole k =K .

Then the Laplace transform
-ST -
Sy ¢~ (@ () - Bar =K

o3

=-sr A =kr
® (\P:k_xe dk)dr

ic'l-‘i o o~ (8*K)T 3y

& 0%

K

K% @x)(sx) » &

elementary integral



=-_1S-en§ i‘“"L

K+s K+8
where the last term comes from the polo at k =K .
It follows that the Laplace transform is

- @™ e S i § ("™

\4 N
Now -3r (Kr __K
f: N TS dr = S+l
\)
whence -3r - K K
Thus on =0
I RN AL RGO Tl . LTI SRR LT W e 4 R en AR ewETs 1. W ,(...—T ,- - _:w:.ﬁ«r;lu’nr; *+ LT ACEE ta L TSSEIYIAR | AT WS s AR RERIL ST

+ 4T K? (-1)" LmKrl—m

The expansion for other wvalues of © can be written down at once:

v
g,r0) = - % T (1) %ﬁ@v

o0 m
+ {WK g (-1)" -(-K-ﬁ— Pm(cos e),

whence

#,(x,0) =} + K F(-1)7 (k)" Py (con 6) Al

-k ¥ ()n X 2 Py (cos 6))
Y=n
-k ¥ ()° %‘-)-(en Kr - 177)P_(cos ©)
(3.2)

- - 1 1
vhere Y(1) = =%, P*) = % tpt et = -X are values of
the logarithmic derivative of the gamma function (Erdelyl, 1953,

p.16); the function %) Py (cos 8) 4s discussed by Hobson (1931,
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p.172); 1t is singular st e =7r,"
The leading terms are
=1 »
#o(r8) = % = K. €n Kr ~ K{¥~ £+ (P (cos 9)),”:0}
+ O(I<.2r fn Xr) (3.3)

h
whence :%9=";12'§+0 (Kzenxr), (3.4)
It follows that if
F(m,Ka) = a2(°,‘—gi.9 (r,0)) -,
ST F(/,.,Ka) Ly b @ im:!;’ (Ka)ﬁwfn*(,uf N
+ 3 (Ra)" £ v(p)  (3.5)
and that

G(M,Ka) = F(pm,Ka) - 24§ F(v,Ka)dv

(24~ 1) (1 + Ka)

+ (n Ka - 1) L, (Ka)"g * (1)

+ % (Ka)™ g, ** () (3.6)
as was stated in equation (2.22) above.

A different expression for the source function, used by
Havelock and by Barakat, appears to be convenicnt for computation
but leads to difficulties near © = 0 . Havelock has also given
the first few terms in the expansion in powers of Ka , but the last
term in his equation (26) is a non-analytic function of © near the

axis of symmetry © = O where in fact the potentlal must be regular.

¥ Similar expansions, not given here, can be obtained for surface
singularities of higher order.
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4. THE VIRTUAL-MASS COEFFICIENT.
Since the hydrodynamic pressure is - Q% @ e
=1g6 g e-wt

-i'St)

» the hydrodynamic forco on the sphere is
- T
- 211'1Q_6’a2 R 53 #(a,0) sin © cos 6 d ©

= - 2T 106 & e §1 (o (Ka)g, (4, Ke)

+ } R ) * 2 By (DI (D)
Equation (3.2) shows that

 afg(uKe)= (nKa~dm)F Ra)  He(p)

AT AL AT AT AT

o; Doy e

+ I (Ra) h **(u) (4.2)
and the Mn‘s are of the form (2.23) . Thus the force (4.1) is
of the form

217 1e_°’2 gh o715t {(bn Ka - 1M o % (Ka) + a ** (Ka)} ,
(4.3)
where the a,lls are entire functions of Ka , real vhen Ka 1s real,

The velocity of heaving is given by (2.15)

v e = 2a %0 ox (ka) §7 Fv,Ka)av
®Sn_
- Ka I 55 5, Popg (D) (4+4)
~16%

the acceleration 1s ~#V_ e o Thus, from (3.5) , the
velocity is of the form
2 60 o {(ln Ka - Ma¥Ka) + ()} (4.5)

where ths a.z's are entire functions, real when Ka is real.
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By definition the virtual-mass coefficient is

(force)
g A X acceleration

i.e. the real part of

@n Ka - 1wW) aq* (Ka) + a ** (Ka)
> Un Ka - 1) a*(Ka) + a,**(Ka) ’

(4.7)

vhere the functions a4 (Ka) and az(Ka) are entire functions
of Ka, real when Ka 4s renl. Except for the notation this
is the result stated in (1.1).

i e e - PINA NS YATNE 0T CHIN BRprESIION TOFARAIY T

Ke . We now put D*(Ka) =1 . For small Ka we have, from
(3.3) that

g (pka) =2 - K €nXa+ O(K) (4+7)
and from (2.17) that

%_ = (4m#1) §7 GlunsKa) Py (ma)dp + O(Ke)

= (4n*1) ST (2p-1) B, (p)dp + O(Ka),
from (3.6)

= 20nt1) 2By () pdpt OKa) o (4.8)
Thus the hydrodynamic force (4.1) is
2¥1pe?ed iV I £ x ket

&fg 22_(%1.). P, () Sg P, (v)vdv + 0(K) Jpad
= —1¢S%abe i {1 - katn ka

..,?42%%(5% Pzn(v)v dv)2 + O(KB.)} (4.9)

= o 1&625,49'1& {s - Ka Pn Ka + O(Ka)} (4.10)
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where A 18 a real pogitive constant.
Similarly the velocity of heaving (4.4) is, from (3.5),
equal to

o35t 1

2ac Si(l + Ka)dv + 0(Ka)}

= - 200 6 %(1 + 0(Ka)) (4+11)
The acceleration is thus
21052 701 + 0(Ka)) (4.12)
ard the virtual-mass coefficient, defined by (4.6) is
. k(e) =2 (A-KalnKa+ Oa)),

where 2 4 is the (positive) virtual-mass coefficient when XKa =0 .
It is evident that the gradient d k(Ka)/d(Ka) is positive infinite
wvhen Ka = 0, as was found by Havelock.

Barakat'!s results must therefore be incorrect near Ka =0 ,

At Ka = 0 the series can be surmed in terms of tabulated constants:

_17 3
k(0) =32 -1-20¢

= 0.8309-.
1 1 1
where G = - + tesee = 0091596600 is Catalan's constant
AN

of the theory of elliptic integrals. This is in reasonable
agreement with Barakat'!s result.
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