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The analytic form of the velocity potential of a heaving

hemisphere is studied. The potential is expanded in terms of

a wave source and of wave-free potentials, and the coefficients

in the expansion are studied

(1) when the dimensionless wave number Ka is small,

(2) when Ka is arbitrary.

.. ares isp- rvirtual-mass coefficient is the

real part of

(in Ka - i-w)Ak*(Ka) + A 2* (KA)

ft~ Ka - i-w)k*(Ka) + A2 Ka)

where the functions A(Ka) are entire functions of Ka , real

for real Ka .

The argument depends on the expansion of a surface source in

powers of Kr and On Kr , given here for the first time.

A similar theory, not gi yen here, can be developed for two-

dimensional moving cylinders. It is believed that investigations

of this kind will be helpful in studying the damped motion of

freely floating bodies on still water.
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1. INTRODUCTION MN SIMMYP OF RESIJTS.

The heaving sphere has recently been studied by

Sir Thomas Havelock (1955) and by Barakat (1962), both of whom

give computaticns of the (dimensionless) virtual-mass coefficient

and damping parameter. Their results do not agree for small

values of the parameter Ka = 2 a/g (where 2 T/(, is the period,

and a is the radius of the sphere). In particular, Haveleck

finds that the virtual mass is initially an increasing function

of Ka, whereas Barakat finds that it is a decreasing function

of Ka . It is the purpose of the present note to consider the

analytic form of the expansion of the potentials particularly for

small Ka.

It is shown that for all Ka the virtual-mass coefficient

is the real part of an expression of the form

(!in Ka - i V)A. (Ka) + A,1** (Ka)

(!n Ka - i*r)k*(Ka) + A*(a(1.1)

where the Als ore entire functions of Ka (i.e. power series

convergent for all Ka )P real for real Ka j, for which explicit

expressions in closed form are not known. The argument depends on

the expansion of a surface source in powers of Kr and d n Kr

which is here given for the first time. The leading coefficients

are examined, and it is found that the virtual mass is initially an

increasing function of Ka, in agreement with Havelock's result.
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2. STATEMENT OF THE PROBLEM. SUPERPOSITION OF SINGULARITIES
AND EWPANSION OF THE POTENTIAL.

Spherical polar coordinates r, 9 are defined, with

their origin in the mean free surface at the mean position of

the centre of the sphere. The vertical axis of symmetry is

9 = 0 , pointing downwards. (We shall also use coordinates

y =r cos , R = r sin 0) The fluid is assumed inviscid, so

that the motion is irrotational; the amplitude of motion is

asmed so sl ha h QlIA.+inn be -- I 1! -ad., h.

velocity potential 0(r, O)e- i wt  satisfies Laplace's equation

wherep. = cos 9 , in the region r > a, 0< _V

On the free surface the pressure is constanut. It follows

(Lamb, 1932, paragraph 227) that

KO + = 0 (2.2)

on the mean free surface y= 0 , = fW , where K 6 2/g.

On the sphere, the normal velocity is prescribed:

- = VO coo 0 on r = a. (2.3)'Ar

At infinity the waves travel outwards:

) iK) -0 as r = r sin 0-> Go (2./+)

To solve this problem, Havelock (1955) and Barakat (1962)

proceed in the same manner. The potential is expressed as the

superposition of a wavjsorc at the originp

a(r, ,1) -k Lr ' oos 0 jo(k r sin Q)dk (2.5)



-4-

- ki~ k K--kJO(ky )d

where the path of integration passes below k' = K , together

with wave-free potentials "

n P2n(cos @) K P2n-l (Cos e)
On I~ r 2n+l 2n ) .n (2.6)

(n = , 2, 3, ... )

(This form of expansion is analogous to the expansion used in the

pJane problem of the heaving circular cylinder, Ursell 1949). It

is easy to see that (2.5) and (2.6) are solutions of Laplace's

equation (2.1). To verify that (2.5) and (2.6) satisfy the free-

surface condition (2.2) we note the representation

r .PV(cos 0) = j io (k)'- e-ky Jo(kR)dk ; (2.7)

this is valid in the half-space y > 0 , since both sides of

(2.7) are clearly equal when = 0 , R 0; and they are both

harmonic and axially sy1,metric in the half-space.

Thus (K + )o = - k • y Jo(kR)dk

= - r" Pl (cos 9) ,

-0 when 9 = + . (2.8)

n n 20

- (n e'ky J (kR)(k)2n -'(K + k)dk=r(2n+1) o 0ok ) k 2 ' (  ~k

whence

'b a~2n 2- 1d
(K + n - f0 e-k J (kR) (k)2n-l 2 "(k)2 dk

-by nf(2al) o 0

a2n I2 P2n-l (08 0) - ~ 2n~l (Cos 9)
n- r2n+2

= 0 when 9 = 1 . (2.9)



ThusX and On satisfy the free-surface condition. Finally
it must be shown that the functions o and n satisfy the
radiation condition (2.4). Obv4ously the n satisfy this

trivially. As for jo we have

-k-e-y 1)(kR) H 2 ( R)l dk (2.10)
- i K e H l) (KR)

0

. S exp( al Tr/ ) ..T e' Y H o( k)( k

+*fexP(- 1/41%i) - ky H (2) (kR)dk (2.11)k-K 0
where the deformations in the complex k-plane are made because

-o and " are small in the first and fourth quadrants
respectively. Since the line of integration in (2.10) passes
below k = K , the integral involving H() (but not the integral

0
involving h(2 ) contains a contribution from the polo at k= K
It is not difficult to see that the integrals in (2.11) tend to
zero rapidly as KR tends to co , and satisfy the radiation

condition trivially, while the term ITi Ke"K  h(l) (KR)
represents a cylindrical wave spreading outwards and satisfies the

radiation condition non-trivially.

We now suppose that the potential is normalized in such a

way that in suitable units

(a3  '1 0(r, e) = D* (Ka) $00(r,)+ *) 0 n ( ) (2.12)

where the coefficient of %o has been arbitrarily chosen as an
entire function of Ka . We shall choose D*(Ka) = 1 when we
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are interested only in small values of Ka , but we shall see

later that we can Oover a wider range of values of Ka by

choosing for D*(Ka) the Frodholm dr-terminant D(Ka) of our

system of equations. The coefficients W n(Ka) are complex-

valued and are to be found. The coefficient Vo in the boundary

condition (2.3) must also be treated as unknown. As we have just

seen, each term in the series (2.12) satisfies all the equations

except (2.3), which is also satisfied if, in the range

0 ... a a -O .r r

+ ocn b (r, ) (2.13)

1 2n~i r

when r - a M Te unknowns VoO n in (2.12) are to be chosen so that

(2.13) is satisfied, and we are particularly interested in the

solution for small values of the parameter Ka

So far we have followed closely the treatment given for

the plane problem of the circular cylinder, (Ursell 1949) except

that the appropriate three-dimensional expressions have been

substituted for the wave source and the wave-free potentials.

Our equation (2.12) is substantially equivalent to Havelockts

equation (10) and Barakatts equation (6.2) except that the source

term on the right-hand side of (2.12) has been normalized rather

than the velocity term on the left. This greatly simplifies the

results.
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Let (2.13) be rewritton in the form

D*FpKa a~~ (r, e) ) D* (Ka) =(a~Y Vo A
r-a

00
+ I a1gn(,() (2.14)
I n 2n(A) 2n+ P2

where /A= cos , 0 < ,AA < 1 • It is convonient first to

eliminate V° . On integrating (2.14) from -4 = 0 to p = 1,

and using the orthogonality of the set IP2n (p) 3 over (0, 1) ,

it is seen that

D* So F(, ) d/ - (a ") Vo
+nKa I -(/,A) A) (2.15)
1 2n+1 0 Ri -o

When (acr)" Vo  is eliminated between (2.14) and (2.15) we

obtain

D*[F(/, Ka) - 2, /A S F(v, Ka) dv.3 D*'(Ka) G(A, Ka)

+ 1
n ( p2nY 2n+l (2n-lrP

~1
2, So P-l (v)dv)3 (2.16)

To solve this, (2.16) is multiplied successively by the complete

set P2no() , (n 0-, 1, 2, ... ), and integrated from IAA= 0

to , = 1 • Using the known values for the integrals involving

Legendre functions we find that the unknowns . satisfy the

tn
infinite system of linear equations

D*(Ka) ( 4n+l) S0 G(/,$Ka) Pn('(.) d.,,4

Ix + Ka go k /A+l) Cn n = 1,2,3,. (2.17)
= n k k %2k+l)



where
k P(o)P2 (o) 2 P2k(O) P2n(O)

0kn = (k+n) (2k-2n-1) (2k-) (2n-l) (2n+2)

is independent of Ka .

The equations (2.17) can be written as equations for

Cn

or(Ka) = D*.n*(n+l) Si G(/A) P2 n (,.)dI =

J n + Ka (k OK)d (2.18)

where d n = cl C P

_______ 0-1 then he uOlved by O"en~ t i~~t iw

can be shown that 1] 12  and Ildkn12  converge. The theory

of such infinite systems is analogous to the Fredholm theory for

integral equations of the second kind and shows that the solution

is of the form

Where Dn(Ka) , D(Ka) are entire functions of Ka , since the

coefficients on the right-hand side of (2.18) involve only powers

of Ka . (This result may be obtained, for instance, from the

theory of infinite determinants, Riesz, 1913, p.36 . A trivial

preliminary transformation is then needed, Riess, p.39, since

I J 1dk[ diverges.) The denominator D(Ka) (the Fredholmk

determinant of the system), may have real zeros, but clearly

D(O) = . If we are interested in a range of Ka which may
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contain a sero of D(Ka) we shall find it convenient to take

D*(Ka) = D(Ka) , and then

J % D (Ka) m(a) (2.20)n m

where the Dnm(Ka) are entire functions of Ka . If we are

interested only in small values of Ka then we normalize the

source term by taking D*(Ka) = 1 , and we shall have

n = I nm(Ka) m(Ka) (2.21)

where the % rm(Ka) are power series, known to be convergent only

for small Ka . In either case the general theory shows thax

I n12 converges, and one more substitution in (2.18) shows

that in fact Oc = O(n3/) . It thence follows that the seriesn

for the potential and for the velocity components are absolutely

convergent when r > a

We are interested also in the analytic form of the coefficients

O n(Ka) We shall show later (eqn. 3.6) that, for all Ka

G(?pKa) = (n Ka - iir) g*(pKa) + g**(,Ka)

= (en Ka - iW)nI(Ka)n g.(

+ 0 (Ka)n g**(j44) ,(2.22)

where g*ipKa) and go *(j4, Ka)I are functions of /A, reuplar

when 0 </ < 1 and real for real Ka, and where the power series

converge for all Ka . It will follow immediately that

n(Ka) = (en Ka - i'i) *(Ka) + n**(Ka)
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where the *and are entire functions of Ka, real

for real Ka . If we choose D*(Ka) = D(Ka) , then it follows

from (2.20) that

Ix n(Ka) = (En Ka- in) 4n*(Ka) + w n**(Ka)p (2.23)

where the Yn* wa % n ** are entire functions of Ka , real for

real Ka S ubstitution in (2.15) now gives

(ar).Vo = (en Ka - ir) V0*(Ka) + Vo**(Ka), (2.24)

where V0* and V0** are entire functions of Ka, real for

If on the other hand we are interested only in small values

of Ka , then it is converdent to choose D*(Ka) = 1 . The

results (2.23) and (2.24) are then formally unaltered but the

functions bcn* , O n** P V0* , Vo** are now power series

convergent for sufficiently small Ka .

We thus see that the behaviour of the unknown coefficients

dependbon the behaviour of the function G(1 ,Ka) defined in

(2.16). For this we rmed the expansion of the wave-eource potential

So(r, 9p K)
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3. AN EXPANSION FOR THE POTENTIAL OF A WAVE-SOURCE IN THE

FREE SURFACE.

Expansions for a submerged wave source in three dimensions

have been given by Thorne (1953). Near the source the potential

has the form

1.+ I A r n Pn(M) (3.1)
r on

where r is the distance from the source, and the coefficients

An depend on the depth of the fluid, the depth of immersion of thq

source, and the wavelength. When the depth of immersion tends to

zero the coeffic~§ UZI j n~n&±

for a surface source is not of the form (3.1). The simplest way

of obtaining the correct expansion is perhaps the following:

Since o (r, O, K) is axially symmetric about 9 = 0 ,

it is determined by its values on 9 = 0

!,!e have

(, 0 , K) = -krdk

o k-K

0 ok-K

where the line of integration passes below the pole k = K

Then the Laplace transform
*os r (0o (r)- rdr =K -oe ' r  'r d

= .. (~ (B k)drl
0 ~ ~ ok-K0 o -

= K (k-K)(s+k) ' a"
elementary integral



K+s K+s

where the last term comes from the polo at k = K

It follows that the Laplace transform is
t (;) ' n + (-l)m) I
0 (. 1 )m m l K m 0

NOW e -sr(L dr
0 r W71K

whence o eS( r K ) K -

Thus on = 0

0 r 0 r#

+ i1r K T (-i)m I1
ml

The expansion for other values of 9 can be written down at once:

g0 (r,@) r - K 't (-l)m(- Kr )  + P v (cos
r 0 ( +
+ ilW K I (-I)m K Pm(cos 0)

0 ml m
whence we(re9) = r + K 7(-l)m(Kr)m Pr(cos 9) W( 1 )

-K z (-I)m ( P, (cos 9))

0 ~ml *avV m
- K ( 1 )m (r)m(en Kr - ilr)Pm(cos @)

(3.2)
where +(l) = -s, '(m+l) = + ... +m are values of

the logarithmic derivative of the gamma function (Erdelyi, 1953,

p.16)1 the function 3L P. (cos 0) is discussed by Hobson (1931P
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p.172); it is singular at 0 = 1.

The leading terms are

Vo(r,s) = - K. en Kr - K - iT + ('. P (cos 9)) }

+ O(K2 r en Kr) (3.3)

whence 1 K + 0 (K2 e n Kr) (3.4)
rb rn r

It follows that if

F(1 4,Ka) = a2 -Q (rg))r,=a" br r-a

F(/A,Ka) =-(j+Ka) + (en Ka - VOW 0 (Ka) (/A)

+ To (Ka)n f**(,) (3.5)

and that G , Ka) F(4,Ka) - 2,- S F(v, Ka)dv

: (2- l)(1 +Ka)

+ (en Ka - Of)'(Ka)ngn*(A)

+2 n g**(n) (3.6)

as was stated in equation (2.22) above.

A different expression for the source function, used by

Havelock and by Barakat, appears to be convenient for computation

but leads to difficulties near 8 = 0 . Havelock has also given

the first few terms in the expansion in powers of Ka , but the last

term in his equation (26) is a non-analytic function of 9 near the

axis of symmetry 9 = 0 where in fact the potential must be regular.

Similar expansions, not given here, can be obtained for surface
singularities of higher order.
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4. THE VIRTUAL-MASS COEFFICIENT.

Since the hydrodynamic pressure is " e ( et

= it6o e iWt , the hydrodynamic force on the sphere is

21T i a2 e -it JO g(aQ) sin 9 cos 9 d 9

=-21T ite a5 e-i't Sl (D* (Ka) 00(/4, Ka)

+ 0 +l (14n) + Ka Pn-l(i))3A4 dA (4.11

Equation (3.2) shows that

CO+ I (y ')n ht"* (,AA (4.2)

and the Q( Is are of the form (2.23) • Thus the force (4.1) isn

of the form

-21Tip 2 a4 e-it[(& Ka - iTr) a1*(Ka) + al**(Ka),

(4.3)
where the alls are entire functions of Ka , real when Ka is real.

The velocity of heaving is given by (2.15)

Voe-iet = 2e -ita 6 D*(Ka) I F(v, Ka)dv
00

1 2n+l o P2n(v)dv, (4.4)

the acceleration is -W Ve . Thus, from (3.5) , the

velocity is of the form

2 a e'trf(en Ka - ir)a2* (Ka) + a2 **(Ka)] (4.5)

where tha a2ts are entire functions, real when Ka is real.
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By definition the virtual-mass coefficient is

,, (force) - (4.6)

5T fa
3 x acceleration

i.e. the real part of

(Qn Ka - iw) a1*(Ka) + (4.7)

(fn Ka - i-nj a2*(Ka) + a2**(Ka) '

where the functions al (Ka) and a2 (Ka) are entire functions

of Ka p real when Ka is real. Except for the notation this

is the result stated in (1.1).

Ka . We now put D*(Ka) = I For small Ka we have, from

(3.3) that
0o(04. Ka) 1 = K n Ka + 0(K) (4-7)

and from (2.17) that

rK n = (4+l) S G(AM,Ka) Pn(p)dp + 0(K)

= (4ntl) S' (214~-l) P2 n(/4)dA4 + 0(Ka),
from (3.6)

2(4n+1) S' P2 (,AA) d o(Ka). (4.8)

Thus the hydrodynamic force (4.1) is

-2ritcT2 a~e-iltS1 K in Ka +

.f P2U.,) ~ S P (v)v dv + 0(K) .d,

-T fUf6 24eil'tfl - Kafn Ka

+ "+ (S1 p~n(v)v dy) 2 + 0o(Ka)3 (4.9)
a 2n+ l K

= = !Sia4e=d fA - Ka Pn Ka + 0(Ka)} (4.10)
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where A is a real Dooltive constant.

Similarly the velocity of heaving (4.4) is, from (3.5),

equal to

2a e-i 6t f- Sl (I + Ka)dv + o(Ka)3

- - 2acr e-idt (1 + o(Ka)) (4.11)

The acceleration is thus

2ia(! 2 e-ilt(I + O(Ka)) , (4.12)

and the virtual-mass coefficient, defined by (4.6) is

k(Ka)= -Kan Ka,+ O(Ka)),

where 3 A is the (positive) virtual-mass coefficient when Ka = 0

It is evident that the gradient d k(Ka'/d (Ka) is positive infinite

when Ka = 0 , as was found by Havelock.

Barakatts results must therefore be incorrect near Ka = 0 .

At Ka = 0 the series can be summed in terms of tabulated constants:

k (0) =17 1 3 G;- l---

= 0.8309..

where G = 1 1 + 1.= 0.915966.. is Catalan's constant

of the theory of elliptic integrals. This is in reasonable

agreement with Barakatfs result.
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