UNCLASSIFIED

DEFENSE DOCUMENTATION CENTER

FOR
SCIENTIFIC AND TECHNICAL INFORMATION

CAMERON STATION, ALEXANDRIA, VIRGINIA

UNCLASSIFIED



NOTICE: When govermment or other drawings, speci-
fications or other data are used for any purpose
other than in connection with a definitely related
gnvernment procurement operation, the U. S.
Government thereby incurs no responsibility, nor any
obligation whatsoever; and the fact that the Govern-
ment may have formulated, furnished, or in any wey
supplied the sald drawings, specifications, or other
data 18 not to be regarded by implication or other-
wlse as in any menner licensing the holder or any
other person or corporation, or conveying any rights
or permission to manufacture, use or sell any
patented invention that may in any way be related
thereto.



1 L e b N e

i

Lz

DBU pLE copy

408 434

S
iy
&
o

H
¥
— . - S O {y
1
!
!
!
b
N
'
;
il
t
-

THE INSTITUTE FOR COOPERATIVE RESEARCH

ICR

UNIVERSITY of PENNSYLVANIA
PHILADELPHIA, PENNSYLVANIA

JUL L2 859

— 1

EERE .
TiSiA A

-
H

-

P =K R

vy
Y.




| & rv#0 /29

{ A STUDY OF PIECE PART FAULT ISOLATION
BY CCMPUTER LOGIC

STATUS REPORT

Dateds 30 June 1962

Coverings 1 July 1961 to 30 June 1962
Contract No, DA36=03)=507=0RD=~33L7RD
- Department of the Army Project No,
Ordnance Corps Project No.

| Technical Supervisor: Frankford Arsenal

‘ Prepared bys
L
| (L )g .

- ), C. Beckman, Projsct-Director
( S. D. Bedrosian’
R, S. Berkowitz
P, Z. Ingerman,
D. Prener Q.\\é\
R. L, WeXslblat,

| The Institute for Cooperative Research

University of Penngylvania



A STUDY OF PIECE PART FAULT ISOLATION
BY COMPUTER LOGIC

30 June 1962

Approveds

C. Beckman
Pro jest Director

ii



A STUDY OF PIECE PART FAULT ISOLATION BY

TABLE OF CONTENTS

Abstract,. « « v ¢ v v v v e e e e e e e e
Section A, Avtomatic Programming . . . . .
I. Introduction. . « v « o« +v o ¢« o

IT. The Compiler Language . . . . .

1. Symbols and Definitions . .
2. Variables and Expressions .
3, Basic Statements. . . . . .
4. Procedures and Program. . .
5. Input-Qutput. . . . . . . .

III, The Compiler. . « « « « o « o« »

COMPUTER LOGIC

.

*

S~-matrix,

Operation

Strings and Their Interpretation . . . .

e e e & 8 ¢ @

Appendix 1. The Generation of the S~table,
and Binary Table for the " ="
Appendix 2,
Appendix 3. Modifications to RAVEL ,
Appendix L. Libratrol-500 Floating Point Arit'metic

and Square Root. .
Appendix 5, - Part I.

Appendix 5, - Part IIL.

.

* & & o & o & o =

.

Algebraic Compiler Language Manual

Setting External Equipment, . . .

Bibliography and References on Compiling Languages and Compilers. . .

Section B.

Circuit Analysis and Network Element Value

Solvability Study o o« v v ¢« ¢« o ¢ ¢« s ¢« o ¢ o v v e s e

iii

.

Page

NG Co n (=

.1
. 25
. 32

* 96
.10hL

.106



(RS T Y]

p———

Figure 3.0
Figure 3.la
Figure 3.1b
Figure 3.2a
Figure 3.2b
Figure 3.3
Table 3.0
Table 3.1
Table 3.2
Table 3.3

Table 3.l

List of Figures and Tables

Block Diagram of Complete Compiler. . . + « ¢« ¢ o &
RAVEL (0,B,Y) = TECUrSIVE. « o« o o o o o « = o o & o
RAVEL - non-recursive FOIM. . « ¢ ¢« o ¢ o o o ¢ « o
SKEIN = Tecursive o + o o o v o + o ¢ s o s = « « o
SKEIN = non~recursive - « o s + s o« o o & = o + o »
Schematic of Input Routine. « ¢« ¢ ¢ o ¢ o « 5 « o &
Definition of Symbols Used in Figures 3,1la and 3.1b
Syntax = Linear Format -~ S=table ¢ o v o v ¢« o ¢ ¢ &
Syntax = Matrix Format = S-matrix. . ¢ « o ¢ v ¢ o &
Abbreviations Used in Tables 3.1 and 3.2¢ « o o o+ &

Notation ChangesS. o« o « o o o o ¢ ¢ 6 o o + » « o »

iv

Page
» 35



e

SPECIAL REPORT

ON ELEMENT VALUE SCLUTION OF SINGLE-ELEMENT~-KIND NETWORKS

S. D. Bedrosian

TABLE OF CONTENTS

IndeXe « o o ¢ 6 o ¢ o ¢ 0 06 o 6 o o o & o

List of Tables o ¢ ¢« o o « o « ¢« o o o o

Iist of Figures. + v v o« v ¢« ¢« o o & o & o

List of Symbolse « « v+ o o o ¢ o s o o 4 »

Glossary Oof TeIMSs o &+ « o « o s o o o « o

Bibliography © & @ & & ¢ o ©° e 2+ 8 B+ e @

PrefaCGOQQ'Oetoovoooooloa

Chapter I, Introduction and Summary . . .
A. Statement of the Problems. o « + .
Be Motivation . . ¢ ¢« ¢ v o o o o
Co SCOPE o o + o ¢ v 0 o ¢ o s s o «
Do Summary ¢ o« v« o o o = 6 o s ¢ o o

Chapter II.

A.
B.
C.

D.

Chapter III.

A.
B.

Review of Previous Work . . .

Nature of the Solvability Problem
Related Work up to 1960 o o« « « &
Recent Effort o «

l, Introduction. o« « « ¢ o « o &

« * 0 * o s @

2+ Summary of Berkowitz' Results
Chapter Summary « o « « « « ¢ o o

.

-

.

°

-

Topological Model for Single-Element~Kind Networks

Irltroduc'tion.a‘oiou...ao..’ooooeooa

Classifying GraphS. o « o o o s o o o o o o 0 o ¢ o o s

Page
* a iii
s o Xi
. o Xiv
. oXVil
. o XxXi
L] . xxv
oxviii
A
e o 1
. s 1
. o 1
@ L ] 2
e s L
e o L
- * 6
L] * 9
. . 9
.« o 9
L] 3 13
R 1
. o 1u
* o lh



-

e T e

- 3.

| L.

Concept of a Potentially Solvable Network.,

Characteristic Number for Identification
Of GraphS. ¢ o o o« v o o o o o 6 o o ¢ o o

Effect of Node Changes on Potential
Solvability. » o+ o v o v v o 0 6 6 6 6 o

Domain Chart Representation. . . o « o o o

C. Chapter SUMMary. . + + ¢« « o o o o o o o o o o

Chapter IV,

Formulation of Equations o o o ¢« o o + o «

A, The'7% Matrix Representation for Measurements.

' 1.
2,
3.
L.
| g

6.

Generalized Reduction Formulas o o o o« o+ o
Conditions on the Matrix Elementsc¢.. o o «
The Key Subgraph o ¢ o« o o o o o o o s o o
Numbering Convention « « o« o ¢ o« o o « o
Example. o o o o o o o s s o o 3 o o o v o
Checking the Equations « « o o o o« o o o o

j B, Modified System of Equations o o« o« « o o o o

C. Topological Implications o « o o o o o o o o o

1.
2

-~

3.

Implications on the System of Equations. .

Determinant Representation of the Key
Subgraph o o o o s o o o 6 o 0 6 o 5 o o o

Topological Formulation of Equations ., . .
a, Via Topological Formulas . o s o & o o

b, Via Path Concept o« ¢ ¢ « ¢ o o o o o o

, D, Chapter Summary. . « s o s+ o o o o o o o o s o

Chapter V.

Method of Solution. « « o o o o s « o o o =

‘ A, Introduction o o o o o o s ¢ ¢ o o 06 ¢ o ¢ o «

B, Tabular Method 4+ . & » o o o o o 6« o o o s o

1,
2.

G’eneralo-i & ¢ ® © © e @ « o © & o6 o 4 o @

TabUlation ¢ ¢ ® o 0 © © & © U 0 e o & o 6

vi

Page

. 25

o 3l
. 36
. 37
. 37
. Lo
. L3

o 55
. 58
. 58
. 59

. 65



[R—

do

bO

Choice of Equationse. o o« o« o o s o o

Choice of Secondary Variables. . . .

c, Setting up the Extended Entry Table,;

-
3. Preliminary Example, . . .

2o
b
Lo
e
bo

Co

d..

(S

E

s

Solution by Tabular Mathod

Numerical Checkos o o « o o

Operations « o o o o s o o

Generale o o o o » o o
Column Operations. . .
Ratio Operations « - .
Substitution Procedure

Reduction Operation. .

5. Solution Procedure ., o o o

Ce Detailed Example o o o « o«

- D. FlowChart o o« o o o o o o
1, Manual Operation . . »

- 2, Computer Operation . »
E., Chapter Summary. s o o o o

) Chapter VI, Illustrative Examples.
f A, Introduction . « « o o o o

AB.

ExampleSce o o s o s o o o

-

o

L3

°

@

°

°

s

°*

I

-

°

]

-

3

o

°

bl

o

Example I= 23 '(Bq=9, B=8, B, =T, Bc=1),

(B,=B=10, B, =7, B =1). .
(Bq-B'.-l2, B,=9, B®1). . .

I~ 23‘ (quls, B=lh, Bk=99 Bc=l)o

6ol.

602. Example I=2:
6,3, Example I= 2:
6.lis Example

6o5. Example I=2s
6.6, Example I= 33
6,7. Example I=3:

o

3

o

.

(quBﬁlS, B, =9, Bc=l) (nonsolvable)

(quB=12, Bk=8’ Bc=2)° e 6 o s o &

k

(B =B12, B, *10, B=2) & o « - - -

vii

Page
68
68
69
69
71
73
7k
74
75
75
75
76

7
79
9k
96

103
105
105
107
108
112
115
119
12
13L

. 138



[P

c.
‘ D,
E,

| v
Chapter

- A,

. B.

6.8,
6.9

&mmﬂaz=3=0%#w,Bﬂ2,%;% B

Example I= 3 (Bq:'—"155 B=12, B

=12,

Networks Related by Key Subgraph . . . .

Chaoplter SUMmaTy. « + o s « « » v o o s »

° VIIo

Suppliementary Besulis o » ¢ o v ¢

Introduction o ¢ s v « o s o o ¢ o a o o

Equivalent Networks. . o « « ¢ o o o & &

1a

2,

Equivalent Networks via Topological
Transfomationsu ¢ e © 6 % o °o ©v » e

Bc=-3)

o

°

o

»

o

Equivalent Networks via Matrix Equations . . .

Determination of Additional Nonsolvable Subgraphs.

Remarks on Two=-Element-Kind Networks ., .

Practical Considerations « « o « o < o «

Chapter SUMary. s ¢« « + o o o o ¢ « o o

VIIT.

Conclusions and Recommendations. .

ConclusionsSe. v « o # o « s v o 6 ¢ & o »

Suggestions for Further Work « . + o + o

1.
2,
3»

L.
5e

6o
7o
8.
9e

Sufficiency Theorem. ¢ o« o o o o s o

Tabular Method of Solving Equations,

o

©

Topological Derivation of the Modified
System of Equations., ¢ « « o « s o s 5 s o o

Computer Program for Solving Single~Element-

Kind NetworkSae o » « ¢ o 2 o« o o s ¢« o v o o

Optimization of Network Measurement
Procedures. o « « ¢« o s o #» v o o o

Extension to Multicolored Graphs . .
Investigation of the Domain Chart. .

n~Terminal Network Synthesis . . . .

]

*

»

»

L

Possible Application to Social Sciences.,

viii

Page
o 143

o 147

. 153
. 157

» 158
o 159

. 159
o 162

. 167
< 171
. 172
o 173
o 17k
. 17k
. 176
o 176
. 177
. 177
o 177

- 177
. 178
. 178
. 178
. 178



Page
Appendixes

I. Formulas for the Number of Trees in a Networke o o « o o « o 179
II. Operations on the Domain Chart o ¢ » o o » o & o o 0 o o o o 184
III. Comments on Inverting Matrices o o o o 6 0 o o ¢ o « o ¢ o o 190
IV, Converse of the Star<Mesh Transformation . . o o s o o o o o 194
o Topological Formulation of Equabtions . o « o « o o« « » « o« o 20L

VI, Supplementary Equivalence Relationse ¢ o s o ¢ o o o o o o « 209



o

ABSTRACT

The present study is a continuation and extension of work done
during 1959 and 1960 entitled "A Study of Piece Part Fault Isolation by
Computer Logic." During the period June 1961 = June 1962 the emphasis
has been on autc;matic checkout of Automotive Systems with special regard
to the computer controlled.tank .checkout .system developed by the Frankford
Arsenal and on an extension of the work of Berkowitz in network element
solvability.

n A\ on Automatic Programming is divided. into an introduction

followed by two in parts and five appendices.. The first of the main

sections discusses the compiler. pseudo=language, derived from the language
,‘5 J{JC’AK @({

developed for the Electronic Piece Part Fault Analysis systemy giving a

formal specification of the syntax of the langnage .and showing that part

of it is a genersl algebraic compiler and. part is a series of problem

oriented input=output statemen'bsoj The second. main.section discusses the

compiler;g'This compiler was first presented in the June 1961 report of
this Project and the present discussion describes.various additions and
changes. Also given are the language syntax in a tabular format and again
in a machine=oriented matrix format.

Appendix 1 presents a discussiof of the methods of generating the
tabular and matrix formulations of the language syntax. Appendix 2
presents a brief discussion of a set of symbolic strings used by the first
section of the compiler and decoded by the second, Appendix 3 discusses
some modifications that might make the compiler more efficient. Ap=
pendix L gives the coding of some of the service routines for the

Libratrol=500 computer. In Appendix 5, Part 1 is a short manual to the

X



language, giving an informal presentation that might be the basis for a
training manual to be written at some later date.

Appendix 5, Part II, gives some practical illustrations of the use
of the language.

Section B, on Circuit Aralysis and Network Element Value Solva=
bility Studies consists of the Bedrosian Ph.D. dissertation on Element
Value Sclutions of Single-Element=Kind Networks.,

In this study the work cf Berkowitz is extended by finding ex~
plicit solution techniques for single=element-kind networks. This in-
cludes a computer programmable algorithm and discussion of various rami-
fications.

The original object of this effort, based on an optimistic at-
titude, was to consider element value solvability for major classes of
networks. Subsequent investigation revealed unexpected subtleties and
inherent difficulties associated with this problem. OGConsequently, the

work has been restricted to the treatment of single~element-kind networks.,

xi
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Section A. Automatic Programming

I. Introduction

This report describes the work done on automatic cixeckout
on Project ROTEK from June 1961 to June 1962, The effort was devoted to a
language and compiler oriembted boward Automotive Systems (tanks, in pare-
ticular) with the Libratrol-500 to be used as the testing computer and the
compiling computer as yet unspecified.

Work was divided into three sections:

Language development
Further work on the compiler
Writing of utility programs for the Libratrol-500

These are described in detail in the succeeding sections of this
reporte Also included is a brief manual of the language which is designed
to be the basis of a larger training manual. A% various places in this
report, reference is made to the June, 1961 status report. This iss

Beckman, et. al, Study of Piece Part Fault
Isolation by Computer Logic - Status Report,
June 1961, The Institute for Cooperative
Research, University of Pennsylvania,




II, The Compiler Language

The language presented here is derived from FATAL (see June, 1961
report) and, like FATAL is based upon ALGOL-60, It is divided into two
sections: an algebraic compiler language .and a..s,gzties of special state~
ments having to do with input and output. and.using a problem oriented
vocabulary.

The Basic Algebraic Compiler

The algebraic compiler. is. based.upon. ALGOL=60 and as put forward
here is probably more powerful than would.actually. be required for a;n
automatic checkout systemol’zs’ 29 The compiler discussed in section III
of this report is; however, independent .of .the lupnt.or output languages
and will just as readily handle any reascnable. subset of the language.

By reasonable subset we,meain‘ eny subseb. that is unambiguous in meaning and
in definition. And, wint is mo.e imgportant, the speed and efficiency of
compiling is dependant upon the language.used .so.there will be no decrease
in efficlency caused wy hypothesizing .a more general language than will
actually be useds From outward appearsnces, this part of the langunage looks
quite different from the algebraic parts.of FATAL. These differences were
due to an. attempt.to make the language.as. .close to English as possible,
There are those in the computer. field today.who.are still of the opinion
that. English is a good programming language. This.is not so and it should
be emphasized that the unnecessary and.redundant.words.and symbols added tp
the language increase ease of.understanding..at.the cost of efficiency of
compiling. Compare our VARY statement and FORTRAN's. DO statement to see

25
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As in last year!'s.report, the language is given in the Backus
Normal Form (BoNoF.). The formal specification.is prefaced with a formal

and an informal description of how the. Backus. Normal Form works.® The

following. specification.is meant to.be self=contained and can be used

independent of the.rest of this report.
The following is quoted from the paper "Speecification Languages
for Mechanical Languages and .Their Processors, A.Baker's.Dezen" by Saul Gorn, **

A Backus syntactic specification language is a linear
sequential. langnage. over an alphabet. (infinite) composed of
the following symbolss

a, The Bracket Symbols '<'! and ! >?%,
b, The production symbol ':s=t, =~ !
c. The choice symbol '|*,

de Two alphabets .called. !namest and Ysymbols!,
Both of these.alphabets .are.often.selections of words from
a prior alphabet and can be infinite in number (but not in
length) .

The individual *names' are intended to dencte auxiliary
languages called 'syntactic types'_of the language being
specified; a string of symbols comsisting of '<' followed on
the right by a name and then followed by '>' is.intended to
designate the extent of the name, i.e. the set of strings in
the specified langwage of which it is the name- or, put another
way, surrounding a name by these brackets is an operation trans-
forming the intent designated by the name to the set of ‘
processors which operate on it.

The individual fsymbols' are designated strings of charac-
ters from the alphabet. of the language.being specified, and

*It should be noted that B.N.F. is a Chomsky .type-2 Phrase Structure
Grammar and languages. specified in B,N,F,. are either type~2 gramars
or can. often be .made .so by suitable minor modifications. There is a
large body of .literature pertaining.to.these. suhjects that is useful

to this study.,h"z’s’ll

*oomm, of the A.C.M, V. L, No, 12, Dec. 1961, p. 532.
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often.are designations. by the chjects themselves of auxe~
iliary language with only one word, namely that string,
The symbol ' [|' is used to chain together alternative
forms, each of which yields composite syntactic types
which are auxiliary languages formed by concatenatione
Thus a symbol concatenated with a symbol designates
another symbol, a bracketed name concatenated with a
symbol designates the set of words obtained by concate-
nating that symbol with each . woxrd. of the set designated
by the name, a bracketed name concatenated with a
bracketed name designates the 'product set' of all strings
designated by the other.

orm: ‘bracketed name'
concatenated on the right by f::=! concatenated on the

right by 'a composite name' constructed with ¢ |7,

bracketed names, symbols and.concatenation we obtain in

compact form a set of production rules for the sub=-

- langnage designated .by .the bracketed name at the extreme

left of the string.

The foregoing quotation is. a formal definition of a syntactic
specification .in the Backus normal form. A few examples are given here
for purposes of illustration., Where examples are taken from our language
the source is shown,

The simplest production. rule.consists of a bracketed name on the
left of a ::= and a single symbol on the right:™

<author > := SHAKESPEARE

This is to be interpreted: wherever the name *author! appears in
brackets the symbol !SHAKESPEARE! can be substituted for it. The symbol
il is interpreted 'or?. We redefine the name author as .

<author > :3= SHAKESPEAR |MARLOWE |.BACON | DRYDEN | MILTON

which means that the name Yauthor! is defined as the name of the class which

contains {SHAKESPEAR, MARLOWE, BACON, DRYDEN, MILTON} .

¥In this paper we use lower case letters ior names and upper case for
symbols. A series of upper case letters (as: SHAKESPEARE) is con=
sidered a single symbol unless explicitly stated otherwise,

L



It is possible for bracketed.names to appear on the right of s:=
<author >s3=<blind author>|<elizabethan author>|<17th century author>
This defines ‘'author' as the name of the class which contains the union of
the classes: J,})lind author, elizabethan author, 17th century author} .
These classes might also be defined.

<blind author > ss= MILTON
<elizabethan author > ss= SHAKESPEAR | MARLOWE | BACON
<1T7th century author>ss= DRYDEN|POPE|<blind author>

If we define:
<opus> 3= HAMLET | DUCHESS. OF MALFI | PEYTON PLACE

. and
<authorship statement> 2:= <author>WROTE <opus > o*

We can generate a whole series. of statements by substituting the symbols
that <author> and <opus> name into the given statements.

For example:

SHAKESPEARE WROTE HAMLET.

BACON WROTE HAMLET.

DRYDEN WROTE PEYTON PLACE.
MARLOWE WROTE DUCHESS OF MALFI.

A1l of these statements are syntactically correct. The third is, however,
semantically incorrect; while the correctness of the first two is disputed.
There is another concept to be considered: that of the empty (or
null) set,
Definition:

<empty> s+

*This defines an authorship.statement as: .a member of the set of authors
followed.by the symbel 'WROTE! followed. by a member of the set of opera
followed by a period.
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If we re-define:
Lopus> ¢3= HAMLETIDUCHESS OF I\MLFIl PEYTON PLACE | <empty>
then the following statements are syntactically (and semantically) correct:

SHAKESPEARE WROTE.
MILTON WRQTE. etce

For the concept of recursive definitions, .take.an example from the
language (1.A4).

If letters and digits are defined intuitively as primitive concepts
we can define:

<symbol> ::=<letter>|<digit>
<symbol string> t:=<symbol >|<symbol string><symbol)>

<symbol string> is defined .in.terms of itself (i.e. recursively) this
allows the building up of a symbol string of any length containing any
combination of letters. Starting with the letter R, which is a symbol
string by the first part of the definition of symbol string, second part
of the definition (which says that a symbol siring is any symbol string
followed by any symbol) allows the formation.of the string Rl. Again by
the second part of the definition R12; then R12L; then R124C; then R124Cl;
then R12LCL1 and so on,

The syntax of the name ‘number! is given by a combination of
definitions, both simple and rec.ursive.; (1+B.l)» The simplest form of a
number is a digit. By the same sort of recursive definiticn used for
symbol string an unsigned integer. is.a series of digits (of any length).
A decimal fraction is an unsigned integer preceeded by a decimal point;

while a decimal number is. either an unsigned.integer, a decimal fraction



or else an unsigned integer followed by a decimal fraction (i_.\g_0 3 or
14159 or else 3,14159). An exponent part is defined as 10% integer
where the double star is the symbol for exponentiation and an integer is
either an unsigned integer or else an unsigned integer preceeded by either
t+4% or '=-1, An unsigned number is either a decimal number, an ex=
ponent part or the former followed by the latter with a star between (star
is the sign for multiplication). Finally, a number is either an unsigned
number or an unsigned number with a sign before it.

In this manner the entire syntax of the language is defined in
terms of the basic symbols. A program is (by the rules of 6,A) a string
of these basic symbols put together according to the rules of the

definitions following,
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1.4

1.B

1:B.1l

1.B.2

1.0

Symbols and Definitions

Symbols

<symbol > :1=<letter>|<digit>

< symbol string >1:® <symbol>|<symbol string>|<symbol>
<letter>::=

<digit>:i= } defined according to their intuitive meanings
Numbers
Syntax

<number > : := <unsigned number>> |+ <unsigned number > | ~<unsigned number >

<unsigned number > ::=<decimal number>|<exponent part>|
<decimal number>#* < exponent part>

<decimal number > ::=<unsigned integer.>|<decimal fraction>|
<unsigned integer.> <decimal fraction>

<unsigned integer>::;=<digit>|<unsigned integer> <digit>

<decimal fraction> ::=.<unsigned integer»

<exponent part > ::=10%tlinteger>

<integer > ::=<unsigned integer >| +<unsigned integer >|~<unsigned integer>

Semantics

Any number of the forms usually associated. with.decimal numbers can
be expressed. The exponent part is shorthand for a scale factor expressed
as an integral power of 10,
Comments

At any point in a program, the programmer may put a comment which
consists of any symbol string without a semi~colon. This will be ignored
by the compiler. Comments are of use for making explanatory notes within
a programa

< conment > : 13 COMMENT : <symbol string>;



2.
2.A

20A.1

2°A°2

20A.3

Variables and Expressions
Variables

Qe de
wylivda

<value> s ¢=<number >|<variable name

<variable name >::=<simple variable>|<vector >l matrix >
<simple variable> ts=<variable identifier>

<vector > ss= < variable identifier >( < primary>)
<matrix>s:=<variable identifier >(<primary >, <primary>)
<variable identifier > 3= <{letter > <symbol string>

The term variable name is.used to denote.a quantity referred to by
name rather than by explicit appearance .and which.is able to take on a
number of values, .In this.language as.presently.formulated, there are
three types of variable names allowed:. . simple variables, vectors, and
matrices, A vector is a subscripted variable having one subscript and
a matrix is a subscripted.variable having two subscripts. C.f., however,
section 3.E.l.

Values of variable names can be changed by set statements or refer
statements (q.v.)

Although any string of letters. is.syntactically a legitimate variable
identifier, the use of the names. of the standard.functions (see 2,B.li.C)

should be avoided.,

Examples

Simple variables:
X
£3
FOQF
SUM
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2B

2:B.1

Vectors

x(4) x(2)

Y(i+3/2%n) (L)

SUM (SIN(3#PI/2#n)) SuM2(97)
Matrices

x(1, J) x(1,3)

T(X(4, 3),C08(2(k))) ¥(27,2)

SUM2(SIN(X), 3%ARC TAN(THETA)) SUM2(1,5)
Subscripts

As can be seen from the above examples.the.subscripts of vectors or
matrices can be expressed in terms of numbers,.of other variables or
arithmetic expressions, however, the actuval .component of the vector or
matrix referred to is specified by the actual numerical value of the
subscripts, (If this numerical value is not an integer, its value is
taken.as. the.nearest.integer.not .greater than the actual value, Only
positive.(non~zero) subscripts are defined,)

If a subscripted variable is. to be used,. it.must. have previously been
defined by a dimension statement .(q.v.) or a.refer statement (Qqo.ve)s
Arithmetic Expressions
Syntax

<adding operator >ss=+|=
<multiplying operator >ss= #|/
<memory value > s3=< number >|<simple variable>

<function name>::=ABS | SIGN | SQRT | SIN| €0S | ARCTAN | LN | EXP | ENTIER |
MEDIAN | LOG | MEAN '

<function expression > s:=<function name > (< arithmetic expression >)

<primary >:s=<memory value >|<vector >|<matrix >|
< procedure call>|<function expression>|
(< arithmetic expression>)

10
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< factor >t =< primary > <factor> ¥ primary>
<term>is=<factor> |‘<term,> <multiplying operator> <factor>
<arithmetic.expression>»is=<term> |<adding operator> <term> |

Semantics

<arithmetic.expression><adding operator><term>

An arithmetic expression is.a rule.for .computing a numerical value.

When the indicated arithmetic. operations .are performed on the actual

numerical values of the primaries of the.expression the value of the

expression is obtained... For wvariables. in.an.arithmetic expression the

value of the expression is obtained from the current vaiue while for

function designators it is the value arising frem the indicated operation.

For arithmetic expressions.in parenthesis the.value must be exp;ressed in

terms of the values of the.primaries within the parenthesis. A memoxry

value is a .convenient .special case .used when there exist non=-subscripted

variables. In this case, the coding generated is more efficient.

Examples

Primaries:
17323103
X

omega
Factorss

L1oLLli3ee7
1olilhsey

Terms:

141U /cos (X+3)
(Lok1lxy/cos (X+3) ) #2

Arithmetic Expressionss

+1n(3-Y)
~(A+B)

(3+1%Z)
cos(X+3)
(cos(X)+3)

cos (X+3) Y
cos( (X+3)##Y)

1.0y /(cos(X+3)#Z
A/B

CHD+BBA
3+ltcos (5+T)

11

x(1)
x(3,7)
¥(3n+2)

X(i, j)se(3+K)

(a/B)%C
A/(BxC)



2.B.4 Operators and Functions
2.B.i.a Definitions
The operators +, -, *, and / have their conventional meaning
(addition, subtraction, multiplication, and division)., The 3% gymbol
is used to symbolize exponentiation. In the operation |

< factor > <primary> the factor is the base and the primary is the

b (]
ai¥bi¥c  means (a°)

c
astt(bi*e)  means Jb)

2,B.L.b Precedence
The following rules of precedence of evaluation holds

first:
second: %/
third: + o~

These follow from the definitions in.2.B.1.
2.B.Lh,e¢ Standard Functions
Various standard functions are expressed in abbreviated notations;

several of these ares

ABS(E) The absolute value of expression E

SIGN(E) The signum of E(+l if E>0, 1 if E<0, O if E=0)
SQRT(E) The square root of E

SIN(E) The sine of E

COS(E) The cosine of E

ARCTAN(E) The principal value of the arc tangent of E

IN(E) The natural logarithym of E: loge(E)

LOG(E) The logarithym to the base 10 of E: loglo(E)

12



EXP(E) The exponential of Es (eP)
ENTIER(E) .Largest integer not greater than E

MEDIAN (E) ae

°

MEAN(E) a.

Co

If E has no free subscripts, MEDIAN (E) = E

If E has one free. subscript then, if the values of E

be arranged.in order of magnitude:

1l MEDIAN(E) is equal to.the value in the central
position (if the greatest value of the subscript
is Odd)o

2, MEDIAN(E) is equal to the mean of the two values
nearest to a central position (if the greatest
value of the subscript is_even).

If E has. more than one. free subscript, MEDIAN (E) =0

. If E has no. free subscripts, MEAN(E)=E

If E has.one free.subscript. then, if n is the greatest -
value. of. this subscript, MEAN(E) = (E(1)+ E(2)+...+ E(n))/n.
If E has. more than one.free subscript MEAN(E) =0

E  may be any arithmetic expression,

13
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3.
3.4
3ehel

3.A02

3.B

3eBel

3eBe2

3C
3eCel

Basic Statements
Let Statement
Syntax
<equation> ::=<variable name> s=<aritlmetic expression>

<equation list> ::=<equabtion>|<eqyuation list , <eguation>

<let statement > ::=LET <equation list> ;
Semantics

The let statement is used for computations.
For example:

LET X:=3#COS(THETA)/SIN(SQRT (PHI)),
. Sumi=2#X = 5/X%#Z,
X(i+1) 1=X(i) + Y(J);

Transfer Statement

Syntax
<location> = <procedure .call >|< statement label>
<transfer statement 13= GO TO<location>;|HALT<location>;

Semantics

The GO TO transfer can be used for a Jjump or unconditional transfer
of control. The HALT is the same. except that the computer stops before
transferring.

If transfer is made to a statement (identified by a label) , this
statement must be in the procedure being run at the. time, Transfer may
be made %o another procedure, This is discussed.in 4.,B and the syntax
of <procedure.call> is given in L.A.

Condition Statement
Syntax
<relation>i=<||=|2|>|#

1k
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<condition}> 3= <primary > <relation> <primary>
<condition part> =< condition>|<condition part> AND <condition>

<condition 1list> :s=<condition>|( <condition part>)
<Lcondition list> OR <condition list>

<statement 1list> ss= <statement>|<statement list> <statement>
<end>s:=,|.<symbol string>

<condition tail)> &= <statement list> <end>|
' <statement 1list> ELSE <statement list> <end>

<condition statement> s:=IF <condition list> THEN <condition tail>

3 eC‘ .2 Semantics

A condition statement is of one of the two forms:

a., IF (some combination of conditions is fulfilled) THEN (do something)
EISE (do something else).

b. IF (some combination of conditions is fulfilled) THEN (do something).

In thq first case, if the conditions are fulfilled, the list of
statements following the THEN are performed and the list following the
ELSE is skipped. If the conditions are not fulfilled, the list following
the ELSE is performed and the one following the THEN is omitted. In the
second case, if the conditions are not fulfilled, control is transferred
to the next statement fdllowing the condition statement.

The condition list is made up of combinations of simple conditions
of the form: “

<primary> <relation> <primary> .

Some examples:

a>b

D(2,3) 12

Jix2f =1

3<A*B(J)

SIN(THETA#2#PI) = COS(OMEGA/2%PI) ,

15
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The syntex of condition list allows.the joining of these simple
relations into more complex forms. A condition part can be any string:
of conditions connected hy AND. For example:

a>b AND D(2,3) 22 AND J##2# ~1 AND ...
This is satisfied if. and. only if each of the individual conditions is
satisfie&. 4 condition.part in parenthesis.is..a _condition list and can
be used in a condition statement,

It is also passible.to combine two.or more condition lists by
stringing. them along with.OR. separating them. .In this case the ex=
pression is satisfied if and . only .if at.least one of the constituent
conditions is satisfied. For example:

(a>b AND bge) OR J#%2# -1 OR
(A(1,3) = B(j*3) AND C=0) OR ..o

The statement list may consist of any combination of statements and
ends in a period. .A comment may be added after the period if desired
without the necessity.of writing “COMMENT:"

Examples:

IF (a>b AND c<d+l) OR (a=0 AND d=1=0) THEN
GO TO S3; ELSE LET d:=d+ly GO TO Sh; .; representsi

2517 P—3{ c<arl F—ox %@
In n
3

2= 07 P—o a-1=07}>

e [ETSE @)

IF a=0 OR a>10%*9 THEN GO TO EXIT; .; representss

16



n §n . .
a= 07 b 2 >10 Continue in
‘ y v sequence
\' 4
{ 17
B IF i>k THEN
‘ IF j>i THEN LET i:=1+1 ;. CASE 1;

)‘ ELSE
! IF j>i THEN LET i:=j; ELSE LET i:=k; . CASE 2; represents

Continue

NCASE 1" and UYCASE 2" are comments added for mmemonic purposes.
‘i 3.,D Vary Statement

3.D.1 Syntax -
! <lower limit> ::=<primary>
| <upper limit> ::=<primary>
<increment > i i= <primary>
} <statement 1list> 1:=<statement >|<statement list> <statement>>

<£vary by steps> ::1=
i : VARY < variable name>FROM<lower limit>
- BY < increment> UNTIL <upper limit>
IN< statement list > <end>;

| <name list> t:=< variable name>|<name 1list>, <variable name>
<vary list> =< value>|<vary list>, <value>
‘ <compound vary list> ::=( <vary list>)|<compound vary list>(<vary list>)

\ 17



<end> 1=, | . <symbol string>

<vary by list> ii=
VARY < name list> OVER <compound vary list>
IN<statement list><endy;

<vary statement> :3=<vary by steps>|<vary by list>
34De2 Semanties
The first vary statement will cause the value of a variable in a
. specified 1ist of. statements. to.be.modified by.increments over a given
range. The second vary statement. will cause one. or more variables to
be varied.each .over its. own.specified Jist.of.values, It is possible
for the statement list of one vary statement to confain another vary
statement, A period ends.the statement. list of a .vary statement. A4s
before, a comment (not containing a semi=colon) may be inserted after
the period for purposes of explanation. |
3¢De3 Examples

VARY X FRCM O BY 10 UNTIL 300 IN
IF X=7Z THEN
GO TO TEST 23 &5 o3

In this example, Z is some previously defined simple variable and
the simple variable X is varied by steps .of 10 from O to 300 in the
condition statement “IF X=Z THEN GO.TO.TEST 25 .3". The flow chart

for this is:

05X XS 3007 F= continue

X271 mEST 2

n

\ 4

X+10-X

18



The general form of a.vary by steps statement is

lower limit -
dummy location

J
(dumuy) > upper limit? —>

n

statement list

l———{ (dummy )+ increment —¥ dumny |

The limits and increment do not have to be constants:

VARY i FROM 2 BY ({(a~=1)/100) UNTIL b IN
IF 3#iws2 >10 THEN
LET ci1=1;
GO TO 89; .; . END OF i LOOP;

A compound vary statement:

VARY i FROM 1 BY 1 UNTIL 10 IN
VARY j FROM 1 BY 1 UNTIL i IN
IF X(i,35)=0 OR
ABS(X(1, §)) >10%x6 THEN
GO TO ERROR; 43 o5 o3

can be represented:

= Hf—){ ST S continue
n
N2

o e Y

1=>J A >3'_?..J
pel
\ 4

(X, p=0 —> ERROR

n

y
(AL ) > 10567 - 4

s 4

—{Fi=7]
G+ T

19
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wherein the sysmetric matrix Xij is taken verm by term (actually, only
those terms along or above the main diagonal are.considered) and if any
term equals Q.or is greater in magnitude than lob, control is transferred
to ERRUR.

In a vary by list..sbatement,.variables.are .ranged over lists. For
ezaliple:

VARY.K, X, Z.OVER (1,.2, 3)(A, B, C) (10%#2), 10%¥3, 10) IN

LET P(k) := Z#X;5 o3

This statement will perform the following operation:

LET P(1) e=10%s#2%a
P(2) :=10%%3%B
P(3) £=10%C;

3.E Dimension and Refer Statements
3.Eel Dimension Statement Syntax

<vector limit> :s=<variable identifier > ( <unsigned integer>)

<matrix limit> s:=<variable identifier >
(< unsigned integer >, <unsigned integer >)

<subscript limit> ss=<vector limit>|<matrix limit)>

<dimension list> ::= <subscript limit >|
<dimension list>, <subscript limit>

<dimension statement > ::=DIMENSION <dimension list> ;
3.Be2 Refer Statement Syntax

<vector identitier > ::=<variable identifier>
<value list >::=<value>|<value list>, <value>

<pair > i:=<value list >AS <vector identifier>|
<value> AS<variable identifier>

<pair string > := <pair>|<pair string >, <pair>
<pair part >::=<pair string>AND |[<empty>
<pair list >:t=<pair part> <pair>

<refer statement > 3:=REFER TO <pair list> ;

20
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3.E03 Semantics

3.E.h

The dimension statement.is.used.to allacate. .storage for vectors
and matrices,

For example if a program used the matrices SUM (i, j) and 4 (r,t)

(where 1€ig10, 1€ <20, 1<r<3 and 1< t<200) and the vectors

PRESS (k) and TEMP(s) (where 1< k<30 and 1<s<5), then the following
statement would appear in the program (this must,..of course come before
the use of any of the dimensionedlnames):

DIMENSION SUM (10, 20), A (3, 200), PRESS (30), TEMP (5):

The refer statement.has. two. uses, one.is to. allow. .the name of a varie
able or set of variables to be changed.and the second to allow a series of
values of variables or constants to be combined into.a single vector for
ease in reference. When a simple variable or an entire vector or an
entire matrix is.renamed by a refer sbatement,. the original variable name
becomes undefined and may be re-assigned at will.,

For example, the following refer statement will put the combination
of values of variables X(1,1), Y(i,l), Z(3), ALPHA and 13.75 into a
vector, Vi
REFER TO X(1,1), ¥(3,1), 2(3), ALFHA; 13.75 AS V;
The statement .
REFER TO X AS Y, PRESS AS FOOF AND GEB. AS. GBW;. .wi;l.l give X, PRESS and

GEB the new names Y, FOOF, GBW respectively. X, PHESS and GEB could be
simple variables or arrays. The equivalénts would have the same dimension,
General Subscripting

For the system as proposed, compilation time will be decreased (at the

cost of decreased generality and wasted.storage) by .limiting arrays to two

21



[ —

3sF
3aFel

3.F2

subscripts. Below . .is. s reformulation .of Dimension using the name ARRAY
to identify a matrix of any dimension.

<array limit> 3= <arithmetic expression>>
<limit list> t1=<array limit>»|<limit list>, <array limit>

<array segment > si=<variable. identifier>(<1limit list >)|
..<variable identifier >

<array list > :s=<array segment>|<array list>, <array segment>
<array statement > :$=ARRAY <array list>;

In this case, the array statements do not have to appear at the
beginning. of .a program but may appear anywhere. Note that this implies
dynamic storage allacation, If.this feature.is not required, use

<array limit > s¢=<unsigned integer>

The dynamic. storage. allncation.nimpliés,.,the. .use..of such concepts as
global and local variables and block structure.. We attempt to gain some
of the advantages..oﬁ..fhis through the use .Aof,.the-REiLEASE psuedo=-statement
(cofs 3.I)

Type Declarations
Synteax

<identifier list.> :i=<variable identifier|
<identifier list. >, <variable identifier>

<declaration> t $=INTEGER <identifier list>;|
INTEGER VECTOR <identifier list> ;|
INTEGER MATRIX <identifier list > ;|

Semantics

In general, variables name floating point. numbers. The use of an
INTEGER declaration will make the ;zalue of the. variable an integer which
will be stored at some fixed magnitude in memory. INTEGER VECTCR and

INTEGER MATRIX serve to .make...alL.the.,..v.a.mes..of. .a.vector or of a matrix

22
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3 del

3.G.2

3.H

3H.1

3.H.2

integers. Declaring a variable used in a subscript to be an integer will
facilitate the finding of the value desired.

Variables of either type (integer or floating point) may be used in
any equation., The type of the result is the type of the variable found
on the left of the ":=",

Dummy Statements
Syntax

<dummy statement >:i=
Semantics

A dummy statement is occasionally useful for labelling the end of

a procedure.

Code Statements

Syntax

<code statement> s:=CODE<symbol string>> ENDj;
Semantics

If it is wished to include a block of computer coding (numerical and/or
symbolic) in the program, it can be placed between "CODE" and "END3"™ and the
compiler will pass it through unchanged, N,B,: the symbol string "ENDj"
must not appear within the block of coding or the compiler will take that
to the end of the block,

The Releage Statement
Syntax

<identifier list> s:= <variable identifier> |
<identifier list> ,<variable identifier>

<release statement> ::=RELEASE<identifier list>;

23



3.I.2

Semantics

This statement is actually a pseudo-statement since it will generate
only pseudo-operations for the assembler, t is used to conserve
storage... when a section of the program is finished with some simple
variable, vector, or matrix, the use of RELEASE will permit the memory

used for that variable, vector; or matrix to be reassigned.

2l
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li. Procedures and Program
Lh.A Syntax

<unlabelled statement> ::= <code statement>|<condition statement>]|
<declaration> | <dimension statement>|
<dummy statement>|<let statement>|
<read statement>|<refer statement> |
<release statement>|<set statement |
<special statement>|<transfer statement>|
<vary statement>

<statement label> ::= <letter > <symbol string>

<statement> ss= <statement label>: <unlabelled statement> |
<unlabelled statement>

<statement 1list> ::= <statement>|<statement list> <statement>

<procedure name list> ::=< function name> | <procedure identifier>|
< function name> ;, <procedure name list>|
<procedure identifier > ; <procedure name list>

<subroutine list> s:=(< procedure name list>) |E

<variable list> s3=<variable name>|<variable list> ,<variable name>
<formal parameter 1list> s:=(<variable list>)|E

< procedure heading> 33= <formal parameter list> ; <subroutine list>
<procedure identifier> s:=<letter> <symbol string>

<procedure> : 3= PROCEDURE<procedure identifier>
<procedure heading> <statement 1list>END

<procedure sequence>> :3=<procedure> |<procedure sequence> < procedure >
< program> s 3= START <procedurs sequence> STOP
<parameter > ss= <variable name> |<arithmetic expression>

<actual parameter list> s:= <parameter> ]
<actual parameter list> , <paramster>

<procedure call> :s= <procedure identifier >( <actual parameter list>)s
li .B. Semantiés and Examples
A complete program begins with START and ends with STOP. Betwesen
these delimiters there may be several procedures, each with END to denote
its finish, It is possible for one procedurs to call upon another as a

subroutine., If this is to be done, each procedure to be called is named

25
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in the heading of the calling procedure., It is. emphasized that all

variables first mesntion
and if used by.another procedure (except .as.allowed by the following)
are treated as completely new names., The exception to this rule is in
the case of & procedure being used as a subrontine. The sub-procedure
may refer to any variables of the super-procedure.(but not vice versa)
which are mentioned in the procedure call. The symbolic assembly
program will take care of this detail,

Consider the following procedure which will transpose a given matrix.
It is assumed that this procedure is to be used only as a subroutine and

the matrix to be transposed is to replace the original matrixs

PROCEDURE TRANSPOSE (n, m), E;

‘COMMENT: n is the order of the matrix to be transposed, and
M is the matrix itself;

INTEGER i, J;

VARY i FROM 1 BY 1 UNTIL n IN

VARY j FROM i BY 1 UNTIL n IN

LET TEMP:=M(i, j),

M(1, 3) 3= M(J, 1),
M(Jj, i) ¢= TEMP; ,END j LOOP; . END i LOOP;

COMMENT: This routine is actually short enough not to need to be
used. as. a.subrontine, .but. it .will do for illustrative
purposess END

In the above procedure, the variables i, j and TEMP are local to the

subroutine and if the symbolic names Wi%, %j® or WITEMP" were used by
another routine, they would have an entirely different meaning, If it

were now necessary to use this procedure as a subroutine the entry to

the subroutine might be by a procedure call of one of the following forms:

26



a.) TRANSPOSE (n, M)3
b.) TRANSPOSE (23, a)s
¢.) TRANSPOSE ((c+ d)/e, L)s

In a procedure heading, the variables are really dummy variables and,
upon operation, the true valuves, i,e. those in the procedure call are
used, In a.) above, the values of n and M in the subroutine are those
found in the superj in b,) n is set to 23 and the values for M are taken
as the values of the matrix a (which must have been defined in the super
program)s and, in c.) n is set equal to the value of {c+ d)/e {where
c, d; and e must be defined in the super program) and values for M are
taken from the values of the matrix L,

The following rather lengthy proégram is for inverting a matrix

PROCEDURE INVERT (4, n, s, Al), Es

COMMENT: 1, This program is a translation from the original ALGOL
of Algorithm 42 by T. C., Wood, published in the
April 1961 issue of COMM, A.C.M. (p. 176).

2. This procedure inverts the square matrix A of order n
by applying a series of elementary row operations to
the matrix to reduce it to the identity matrix. These
operations when applied to the identity matrix yield
the inverse Al. The case of a singular matrix is
indicated by the value s:=1 (upon exit),

3. A and Al are arrays that must have been previously
dimensioned. s and n were previously declared integer.

i, This program uses variable size arrays., If these were
not allowed, an integer would be substituted for nj
DIMENSION a(n,2#n)s INTEGER i, j, k, m, inds
COMMENT: Augment matrix A with the identity matrixs
VARY i FROM 1 BY 1 UNTIL n IN '
VARY j FROM 1 BY 1 UNTIL 2%n IN
IF j<n THEN LET a(i, j)s=A(i, j)s ELSE
IF j=n+i THEN LET a(i, j):= 1,03 ELSE
LET a(i, J)z= 0.0% o3 o3 o

7
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END j LOOPg
END i LOOPg
COMMENT: Begin inversiong
VARY i FROM 1 BY 1 UNTIL n IN
LET js=1i, me=1i, indz=0; s:=03
Lls IF a(m, j)=O THEN
LET inds=13
IF m<n THEN
LET me=m+ 13
GO TO Lig
ELSE LET ss=1g
GO TO 12§ .5 3
IF ind=1 THEN
VARY k FROM 1 BY 1 UNTIL 2¥n IN
LET TEMPs=a(m, k),
a(m, k)s=a(i,k),
a(i, k)e=TEMPy END k LOOPy .3
VARY k FROM 2%#n BY -1 UNTIL i IN
LET a(i,k)s=a(i, k)/a(i, 1)3 .3
VARY m FROM 1 BY 1 UNTIL n IN
IF m#i THEN
VARY k FROM 2#n BY -1 UNTIL i IN
LET a(m, k)s=a(m, k) - a(i, k)*a(m, 1)§ «3 +3 5 «
END i LOOPg
VARY i FROM 1 BY 1 UNTIL n IN
VARY j FROM 1 BY 1 UNTIL n IN
LET AX(i, J)s=a(i, n+3)3 o5 «3
12:5 END

Two examples of programs in the English-based algebraic compiler
language are given, In all cases, the first comment gives the source

of the routine.
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a.) Exponential of a complex number
PROCEDURE EXPC (a, b, c, d), (EXP, SIN);

COMMENT: 1. By John B, Herndon, Algorithm 46, from Comm, A4.G.M.,

April 1961,
2, This procedure computes the number c+ di, which is

aqual to e(a*'bi);

LET c3=EXP(a);

LET ds=c#SIN(b)s

ce=c*C0S(b) 3 END

b,) Logarithm of a complex number
PROCEDURE LOGC (a, b, ¢, d), (SQRT, ARCTAN, IN);
COMMENT: 1, Same author, same source, Algorithm L8,

2. This procedure computes the number ¢+ di which is
equal to loge(a+ bi)s

LET c¢:=SQRT (aa+ bib)s
LET ds=ARCTAN (b/a),
cs=LN(c)s
IF a<0 THEN LET ds=d+ 3,1L159275 .5 END

¢.) An example of a complete program with input and output .¥*
This program will read in a 10 x 10 matrix from tape (or card)
invert it and print the result on the typewriter. We assume the
existance of three procedures in machine languages:

PROCEDURE READ(R) will read in one number in decimal, convert
it to binary and leave it in location R,

PROCEDURE WRITE(W) will take one word, convert it to decimal
and print it on the typewriter.

PROCEDURE NEWLINE will return the carriage of the typewriter.

*Adapted from "An Introduction to ALGOL" by H. R. Schwartz, Comm., A4.C.M.,

February 1962, p. 9.
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PROCEDURE FLIPE, (READ, WRITE, NEWLINE, INVERT)s

COMMENTs HREAD, WRITE and NEWLINE are code programs, INVERT

is given as an exampls in Section 6.B of the
language description and is not repeated herej

DIMENSION A(10, 10)s
INTEGER i, J3
VARY j FROM 1 BY 1 UNTIL 10 IN
VARY i FROM 1 BY 1 UNTIL 1C IN
EXECUTE READ (A(i, )3 +3 o3
EXECUTE INVERT (4, 10, singular, A)j
IF singular=1 THEN LET oopss==1
EXECUTE NEWLINE
EXECUTE WRITE (oops)s
GO TO doneg .3
VARY j FROM 1 BY 1 UNTIL 10 IN
EXECUTE NEWLINEj
VARY i FROM 1 BY 1 UNTIL 10 IN
EXECUTE WRITE (A(i,3))3 o3 o3
donesg END
PROCEDURE READ (R), Es
CODEs ... ENDy END
PROCEDURE WRITE (W), Ej
CODE: .., ENDy END
PROCEDURE NEWLINE E, Ej
CODE: .,., END3 END
PROCEDURE INVERT E, Eg
COMMENT: (see 6.B)3 END
STOP
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The Input-Output Statements

The Libratrol-500 computer has, as well as standard programmed
control input-output facility, the ability to give output and take input
through groups of relays connected to a special track in the memory.

The automotive checkout system is built around a specially modified
Libratrol-500 and an EPUT meter. The programming and operation of the
Libratrol=500 are described in the Instruction and Programming Manuals
published by the Librascope Division of Royal Prescision Corporation
(Burbank, California) and in a special Instruction Manual Supplement
prepared for the Frankford Arsenal by Librascope. The EPUT meter is
described in considerable detail in the Instruction Manual for the
MAIDS EPUT METER prepared for the Frankford Arsenal by California
Computer Products, Inc., (Downey, California).

A series of special statements called input-output statements is
used to program the EPUT meter and its associated analog to digital equip-
ment, to read in from or out to the EPUT meter and analog-digital equip=-
ment and to output various standard messages to the operator during the
running of any testing program,

The statements are part of the complete compiler languvage but
are given separately because they are designed for a special purpose. The
algebraic compiler of the previous section could be coupled with the
CONNECT statement of FATAL to make a circuit testing language. See 1961

report, p. 21,

31



5. Input-Output
5.4 Set Statement
5.4.1 Syntax

<set statement> s:=SET<device> 3

<device> s:= <adc> <output line>|<eput>

<adc> s$s=ADC TO<range> <speed>

<range> :3=1 V SCALE 10 V SCALE

<speed> s3= ; HIGH SPEED( < crankshaft angle> )|<empty>

<eput> ¢ :=EPUT <mode> <a=-setting> <b-setting> <slopes> <threshold>|
EPUT MD<a=-setbing> <b-setting> <slopes> <resetting> <threshold>

<mode> ss=MA | MB | MC | ME | MF | MG

<a-setting> ss=, N=<value> | <empty>

<b=-setting> s:=, M=<value> <delay>|<empty>

<delay>ss=, D |<empty>

<slopes> ss=<da 1 slope> <da 2 slope> <da 3 slope>

<da 1 slope> ss=,<sign>DAll<empty>

<da 2 slope> ss=,<sign> DA2|<empty>

<da 3 slope> s:=, <sign> DA3|<smpty>

<sign> ss=+ |«

<resetting> ss=THEN<da 3 slope>|<empty>

<threshold> ¢s= , DA3 =< number > VOLTS|< empty >

<ecrankshaft angle> ss=<1integer > DEGREES

<output line> ss3=< line identifier> TO <number > VOLTS

<line identifier> ss=<letter>,<digit> <digit> <digit>

5.A.2 Semantics
The set statement can be used to set the scale or the method of oper-
ation of the analog to digital converter., If the high speed mode is
selected than a crankshaft angle giving the final reading desired must
be specified. If the given angle is not a multiple of 10, it is taken

as the greatest multiple of 10 less than the given value,
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Setting an output line consists of making an appropriate series of
relay closures. JIf a.voltage is specified that is not available, the
nearest value less in magnitude than the .specified value is selected.

The EPUT meter can be set up for any desired reading (c.f. MAIDS
Marual).. The.following assumptions are mades

when a slope .is not specified, it is +
when an a=setting or a b-setting is not specified, it is 0O

when a threshold is not specified,..it..is unchanged from the
last time.the .EPUT meter was used.

Read Statement
Syntax
< read statement > 1 $=READ < source > INTO< variable identifier > <space>;
<source > s i1= relay list> <line identifier >
<relay list> s3=<1ist member >|{<relay list> , <list member>
<1ist member > 33=GROUP( < group number >)|GROUPS( < group list >)
RELAY( < relay number >)|RELAYS( < relay number list>>)

<group list> ::=<group number >|<group list >, < grow number>
<group number >3 :=<unsigned integer>
< relay number > ;s= <group number>,<unsigned integer>
<space > 13=( < unsigned integer >)|(< unsigned integer>,FF)
<relay number 1ist >si=<relay number>|<relay number list>,;<relay number>
Semantics

The read statement_can .be. used alone to.read relays and relay groups
or in conjunction with a set statement. to read from the EPUT meter or from
the ADC in the high speed mode., Relay groups.are identified by a unsigned
integers and individual relays by a group number and a relay number,
Inputs are either read into a single .storage.location or into a wvector

(which must have been previously dimensioned) starting at the location

identified by the integer follewing the variable identifier, For example:
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READ GROUPS (1, 3, 5), REIAY (29.1) INTO G(9FF);
means that the 24 relays in groups 1, 3, and 5 and relay 29.1 are read
into G(9), G(30), eoo G(32), G(33).
When a read statement, containing a line identifier follows a set state-
ment, the two are taken as .a uniit, .is the read statement specifying the

input to the EPUT meter (or ADC).

Syntax

<special statement> ss=<delay statement>|<typeout statement>|
<definition statement>|<close switch statement>|

<open switch statement>
<close switch statement > :3=CLOSE SWITCH <unsigned integer > ;
<open switch statement.>ss=QPEN SWITCH<unsigned integer>;
<delay statement > 3:=DELAY <unsigned number > SECONDS;
<typeout statement > :3:=TYPEOUT < typeout list > ;
<typeout part>i:=i<symbol string>’ | <unsigned irteger>|(<variable name >)
<typeout list >¢s=<typeout part>|<typeout 1ist > < typeout part>
<definition statement > 5:=DEFINE <definition list>;
<definition list > 1s=<definition>|<definition list>,<definition>
<definition >3 s=TYPEOUT < unsigned integer> AS'<symbol string>*

Semantics

The delay statement and the switch statements are used respectively
to cause time delay in the operation of the program and to open and clese
switches under computer control.

There are three kinds of tyéeout statement

d4¢) TYPEOUT ! <symbol string >' - the symbol string between the quotation
marks is typed. out. (this. mst not contain a ";t),

b.) TYPEOUT <unsigned integer> - the symbol string corresponding to the
given integer (which must have previously been defined by a -
definition statement) is typed out,

¢.) TYIPEOUT (<vé.riable name >) - the current valne of the variable is
typed out,
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III. The Compiler

The complete compiling program for the algebraic language will
consist of four separate routines. Another routine will be appended to

compile the input output statements.

SYMBOLIC
PROGRAM
COMPILER FIRST SECOND SYMBOLIC NIMERIC
LANGUAGE— INPUT ROUTINE |—> COMPILING 3 COMPILING 7 ASSEMBLY p——d> PROGRAM
PROGRAM ROUTINE ROUTINE PROGRAM
INPUT~-OUTPUT
COMPILING
ROUTINE

Figure 3.0 Block Diagram of Complete Compiler

The input routine is a short one-to-one translator that will
substitute numbers for the symbol strings in the input. It will also label
input-output commands so that they will be processed by the special input-
output compiler and it will label constants, variable identifiers, procedure
identifiers, etc. as such to save the compiler proper having to process
strings symbol by symbol. The substitution of fixed length numbers for
variable length symbol strings will increase the efficiency of the various
table look-ups needed during the compiling., The input routine is discussed
in more detail later. The Symbolic Assembly Program is not a part of the
compiler proper but is shown for completeness, It is emphasized that the
compiler is able to generate either symbolic or absolute coding (or both,
at some small loss of efficiency) and as such the Assembly Program can be

eliminated entirely. For a computer such as the Libratrol-500 which is
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single address, it would be most efficient to generate numeric coding
directly and omit the symbolic phase altogether. For a two address machine
such as FADAC for which optimization or minimwum latency programming is
required; it would probably be best to compile symbolic coding and let the
optimizer do the assembly.

RAVEL - The First Compiling Routine

In last June's report, RAVEL and SKEIN were the two compiling
routines that made up the YARN compiler. This compiler was developed by
P. Z. Ingerman on a contract sponsored jointly by the Air Force Office of
Scientific Research and the National Science Fowndation.* This work is
well documented elsewhere and the discussion here centers mainly on the
application of this compiler to the automatic checkout languageolh’ls’l7’l9
Figure 3.la shows the recursive subroutine RAVEL (a, B, y) where o, B and ¥
are three parameters that must be assigned values before the routine is called.
The program calls upon itself as a subroutine at two points, The first,
RAVEL (A[h], S[J,2], 1) sets the values of a, B and v to A[h], S[J,2] and 1,
respectivelys while the second RAVEL (S[J,2], GOAL, 2) sets a, B and ¥ to

s[J,2], GOAL and 2. (The terms A[h] and S[J,2] are defined below).

#This work was done under Air Force contract AF~49(638)-951, "Research
into Mechanical Languages® and N,S,F. Grant G-1L4096 placed with the
Mechanical Languages Projects Office of the Moore School of Electrical
Engineering, Univ. of Penna, Dr. Saul Gorn is the principal investigator
on this contract.
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Figure 3.1a is a modification of the flowchart on ﬁage 52 (Figure 6) of the
June 1961 report. - The mechaﬂization of a recursive routine requires a lot
of bookkeeping and the use of pushdown storage, Figure 3.1b shows the same
routine ip non-recursive form where the subscript "i" designates the level
of the pushed down storage and symbols subscripted with "i" are the pushed

down variables.

Table 3.0

Definition of Symbols Used in Figures 3.la and 3.1lb

i- Counter on the level pf the maln pushdown storage
Ri = Stratli‘lcatlon counter

Ji = Syntax table address

Parameters in the main

IVAR 4" Name of the current node ? pushdown storage.

GOALi -~ Name of the current goal

Exit; - Exit switch »
S = Syntax matrix

K « Label counter

p = Counter on the level of the label pushdown storage
Mp - Label pushdown storage

h = Counter on the input list

- The input llst (A EO] is the first word, string or symbol input
A[1] 'is the second. v’ e’cc.)

¢ =~ The empty strlng (which may a.ppear in the ‘third column of the
Syntax matrix)

a = Output control switch

A language specified in the Backus Normal Form (BNF) can be diagrammed as
a tree with recurrent nodes. For example the language:

<a> 1=B|B<e>
<b> :=ABla<ec>
<e> 1=<b><a>
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Figure 3.1b - RAVEL - non-recursive form

O3p
0>k
0%h
021
¥
RYXTT
0= EXIT,
"PROGRAM"
: GOAL,
Ye
A "ad
A, > LVAR,
h i
0> J;
< . - ‘[“:
S[Ji,lj = IVAR, Ji+13d; h+1-9h
¥ 7 0 S(Ji,2)-) GOAL, ,,
LIVARi =>c;,o,u,ij_)[ 0> F, %‘l §(3;,3) 37y Jad SCIL,IPT Ry
1 » EXIT,
i: ‘ v i+l
= n 12 . R
TVAR, = GOAL] BXIT, i+li
0l1 y __
5T ’ Eécri%r T a, %2 5(J;,2)> IVAR; 5
BRIT. . 190K GOAL; > GOAL;
i+l [ Exit
B ] 2> EXIT ;0
3 J =
k9 Mp S( 1,1) 1 034
n
Ryt 1> Ry S(J, 103 i
k+1¥»k In
p+13p I riddy
!
OUTPUT: "XV, K|, i [ OUTPUT s §(J,3) |y S(d,3) = ¢
a, >a ‘ s [y
h 4
a;>a
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can be diagrammed

\
B B*<c> \

A*B Ae <c_>//

and, given s string such as, for example, BBABBAB which is of type <a>
there is a path through the tree to generate this string. If the language
is unambiguous, this path will be unique.7’ 8,9,11
The RAVEL routine takes an input program (or statement on procedure,
etc.) and using the complete tree of the language, iraces the path of
generation. In this generation tree there is associated with each node
a unique label or name and the output of RAVEL is a list of these node
labels together with sich local cross references as are necessary for the
second compiling routine to be able to translate this list into computer
code., Appendix 3 contains a discussion of a modification to RAVEL to
increase efficiency.
The complete tree of the language would be a quite large and unwieldy
combination of lines, arrows and labels; rather than actually draw the tree,
the syntax is put into a tabular form and then into a 3 by (many)-matrix

machine oriented form, These are called the S~table and S-matrix and the

4o



method of their generation is given in Appendix 1,.. Table 3.1 is the S~table

for the complete algebraic language and.Table 3.2 is.the Matrix Form of 3.1.
In Figure 3.la there is a block containing the expression

“IVAR = GOAL" (read: does IVAR lead to GOAL)., The answer to this is given

in a binary matrix. The answer-is YYES" if the space. corresponding to IVAR

on the left and GOAL at the top has a "1% otherwise, the answer is "NOW,

A sample table of this sort is gi;r-.en as Table 3 (p. 60) of the June.196l

report and the method of generation is given in Appendix I.
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s
ABS

actparlist
adop
ARCTAN
arex
arex
CODE
coriastat
comment
COMMENT
comvarlist
cond
cond

Table 3,1 Syntax = Linear Format - S-table

adop A
adop B
mulop C
milop D
arex )
condpart )
procnalist )
varlist )
varylist )
rel d
rel K
rel L
rel M
rel N
rel 0
end P
string end
dumstat
fnam
s paramn
term \ arex
fnam U
adop term
param X
string END
unstat Z
unstat AA
: 1 string
( varylist
condlist AD
condpart AE

prim
condlist
sublist
formparlist
comvarlist

Q
R

S
actparlist
U

arex

H oo 8 W

w

codedvab

convarlist

LB
AC



b ;

condlist
condpart
condstat
constant
Cos
dumstat
E
E
ENTIER
eqlist
equation
EXP
fact
fact
fnam
fnam
fnam
formparlist
funex
@0 TO
HALT
IF
LET
letstat
LN
LOG
matrix
matrix
MEAN
MEDIAN
mval
namelist

number

OR
AND
unstat
number
fnam
unstat
formparlist
sublist
fnam
5
eqlist
fnam
%

term
(

I
procnalist

b
prim
loc
loc
condlist
eqlist
unstat
fnam
fnam
prim
varnam
fnam
fnam
prim

3
mval

condlist
cond

AH

AJ
AK
AL
AM
AN
equation
AP
AQ
prim
AS
arex
proclist
AV
sublist
AX
transtat
transtat
THEN

5
BC
BD
BE
BF
BG
BH
BI
BJ

varnam
BL

condlist

condpart

eqlist

fact

)
nrocnalist

prochead
AY
AZ

condtail
letstat

namelist

L3

AF
AG

A0

funex AT
AU

AW

H condstat
BB

BK

BA



nunber
paranm
prim
prim
prim
prim
prim
proce
proce
procedure
PROCEDURE
procid
procid
procid
procseq
" SIGN
simvar
simvar
SIN
SQRT
START
stat
statlab
statlab
string
string
string
stlist
stlist
stlist
term
term

transtat

value
actparlist
fact

prim
procseq
procid

(

3
procnalist

procedure
fnam
mval
varnam
fnam
fnam
procseq
stlist
loc
procid
statlab
varid
ELSE
end
stat
arex
mulop
unstat

BM
BN
BO
_BP
BQ

prim
BS

BT

BU

BV
prochead

actparlist

procnalist procnalist

BZ
procseq
cB
cC
CDh
CE
CF
STOP
CH
unstat
o)
CN
co
CP
stlist
condtail
stlist
cQ
fact
cs

cond

stlist
)

CA

program

stat

end
CL
CM

term

L

BR

END procedure

3 procc
BY

CcG

CcI

condtail CK

CR

BW
BX



unstat
value
varid
varid.
varid
varlist
varnam
varnam
varnam
varnam
varnam
VARY

VARY

varylist.
varystat
vbyl
vbys
vector
vector

stat -
varylist

g
namelist
param
value
varlist
namelist

varnam

unstat
varystat
varystat
prim
varnam

8 g

prim

~ad e

prim

OVER

FROM

value

BREBER

varlist
equation

comvarlist

lowlim
wplim

varylist

L5

vector
prim

cY
Cz

BY

)  matrix cW

stlist end
F vbyl IE

incr  UNTIL

stlist end
f vbyl DF
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Teble 3,2 Syntax - Hat;;; Fbrmatw- S-matrix
+ 81 1 0,
- 82 32 0
* 83 33 0
/ 8L 3 0
( 85 3% 0
< %0 36 0
< 9 37 ©
= 92 38 0
> 93 39 0
> Sk o o
¢ 95 u o
. 96 L2 0
3 98 43 o
ABS 99 bh o0
actparlist 100 L5 0
adop 101 L6 0
ARCTAN 102 L7 (0]
arex 103 8. o
CODE 105 k9 o
codestat 106 56 0
comment 107 [y 0
COMMENT 108 52 0
comvarlist 109 53 0
cond 10 Sh 0
condlist 12 55 0
condpart 113 56 0
condstat 114 57 ©
constant 115 8 0
cos 116 59 0
dumstat 117 60 0O
E 118 61 0

L6

ENTIER
eqlist .
equation
EXP

fact
fnam

formparlist

funex
GO TO
HALT

IF

LET
letstat
IN

LOG
matrix
MEAN
MEDIAN
mval
namelist
number
param
prim
procc
procedure
PROCEDURE
procid
procseq
SIGN
simvar
SIN

120
121
122
123
12l
126
129
130
131
132
133
3L
135
136"
137
138
140
a
12
U3
1
L6
W7
152
154
155
156
159
160
161
163



Table 3.2 (Con't)

62
63
6l
65
66
67
68
69
70
71
72
73
7h
75
76
77
78
79
80
81
82
83
8L
85
86
87
88
89
90
91
92
93

o

W wwwHE O 00 O0WWWWMHEHOOOOOOOOOOOoOOOOOoO OoO o

SQRT
START
stat
statladb
stlist
string
term
transtat
unstat
value
varid
varlist
varnam
VARY
varylist
varystat
vbyl
vbys
vector
adop
adop
mulop
mulop
arex
condpart
procnalist
varlist
varylist
rel

rel

rel

rel

164
165
166
167
169
172
175
177
178
179
180
182
183
188
190
191
192
193
194

196
197
198
199
200

™oy

2t

9L
95
96
97
98
99
100
101
102
103
104
105
106
107
108

109.

110
111
112
113
11
115
116
117
118
119
120
121
122
123
12
125

L7

W O W W H W W N WwWwWwWwWwwH R W e

- W W H WO WK HWWHM DWW

rel
rel
end
string
dumstat
fnam

Ll

term
fnam
adop
param
string
umstat
unstat

o
3

(
condlist
condpart
OR

AND
unstat
number
fnam
umstat
formparlist
sublist
fnam

3

eqlist
fnam

34

term

202
203

204

205

206
207

208
209

AT
Ad

AL

AN
210
AP
AQ
211
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Table 3.2 (Con't.)

126
127
128
129
130
131
132
133
13
135
136
137
138
139

1
2
143
nlh
5
146
W7
148
149
150
151
152
153
154
155
156
157
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Q O M W W N woo N N N WWwMD MWWWWN WWWHMEMERM®WKHEWDO

(

]

procnalist

prim

"loc

loc
condlist .
eqlist
unstat

prim

value
actparlist
fact
iner
lowlim
rel
uplim
loc
prim
procseq
procid

(

H

212
213
AV

: 1L

215
216
217

218

BD
BE

BG
BH
BI
BJ
a9

BL,

BM
BN
BO

BQ
220
BS

BU
BY
221
222
223

L8

158
159
160
161
162
163
16}
165
166
167
168
169
170
7
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189

H O™ P M MPOo HWwOWWWHIRPDWMNOMDFEOO WO WHWWWRN WM W

-

procnalist
procedure
fnam
mval
varnanm
fnam
frniam
procseq
stlist
loc
ELSE
end
stat
procid
statladb
varid
arex
muilop
unstat
stat
varylist
(

simvar

3

g=
namelist
param
value
varlist
namelist
varnam

BZ
22l
CB

9888

225

226
cJ
227
228
229

88888

2
cs
cT
U

21
cx

232

233

DB
)]

23
235
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1%0

19
192
193
194
195
196
197
198

199

200
201
202
203
20
205
206
207
208
209
210
211
212
213
21
25
216
217
218
219
220
221
222
223

HOHOF R H R FWWwH MR RMMEEBRRRHRBWHWHRMRMRM.MHWWRD W ww

3
unstat

varystat
varystat
prim
varnam

S’ N W NG NS

end

param
arex

term

END
string
varylist
condlist
cond
equation
pria

arex
procnalist
sublist
transtat
transtat
THEN

3

varnam
prim
prochead
actparlist
procnalist

236

DI
DJ

237
238
239
2140
2in

242

23

24
245
26
247
248
249
250
251
252
253

AY

AZ
25
255
256
257
258
259
260

L9

22}
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
2l
22
243
24
245
216
27
218
249
250
251
252
253
254
255
256
257

procseq
STOoP
unstat
stlist
condtail
stlist
fact

prim
varnam
arex

OVER

FROM
value
prim
condlist
sublist
formparlist
comvarlist
actparlist
arex

S’ o e

condlist
condpart
eqglist
fact

) |
procnalist
prochead
condtail
letstat
namelist
cond

261
262
263

CL

26,
265
267
268
269
270
271

L I I T ]

272
273
27k
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258
259
260
261
262
263
26
265
266
267
268
269
270
271
272
273
27h
275
276
277
278

()

HEHEW W W W W KMWWHEO WHWWW M

stlist

)
procnalist
program
stat

end

term

)

H

varlist
equation
comvarlist
lowlim
varylist
codestat
comment
comvarlist
funex

3
END

3

277
278
BY
ca
cI
279

280
281

171
282
283

DG

o

AC
AT
28)
285
286

279

280

281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
2%
297
298
299

W HWHEHEPFERFEWRMREWWWRH R KHWW

condtail
vector
prim

IN

BY
condstat
procedure
proce

)

stlist
incr
matrix
end
UNTIL

)

uplim
vbyl

Iy
stlist
end

3

~ Vvbys

€K

287
288
289

2
291
292
o
293
29L
295
2%

8 ZER

297
298
299
300
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Table 3.3 Abbreviations.Used in Tables 3.1 and 3,2

actparlist = actual parameter list
adop = adding operator

arex - arithmetic expression
codestat - code statement
comvarlist - compound vary list
cond -~ condition

condlist - condition list

condpart - condition part

condstat - condition statement
condtail ~ condition tail

dumstat ~ dummy statement

eqlist - equation list

fact - factor

formparlist - formal parameter list
fnam ~ function name

funex -~ function expression

incr - increment

letstat ~ let statement

loc = location

lowlim ~ lower limit

mulop - multiplying operator

mval - memory value

param - parameter

prim - primary

proce -~ procedure call
prochead - procedure heading
procid - procedure identifier
procnalist. ~ procedure name’ list
procseq - procedure sequence
rel - relation

gimvar - simple variable
statlab -~ statement label
stat - statement

stlist - statement list
sublist - subroutine list
transtat ~ transfer statement
unstat - unlabelled statement
uplim ~ upper limit

varlist - variable list
varnam - variable name
varystat - vary statement
vbyl - vary by list

vbys = vary by steps
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SKEIN - The Second Compiling Routine

As mentioned above, the output from RAVEL is a list of node labels
and associated with each node is a symbolic string. SKEIN processes the
strings named by the RAVEL output and from them, the coding is formed. The
string language is briefly described on pages LO to L3 of the June, 1961
report and in more detail in reference 19.

The flowchart of SKEIN given last year was in recursive format,
Figure 3.3 shows SKEIN in non-recursive form with expiicit pushdown storage.

Table 3.l shows changes in notation in the string language and SKEIN

symbolism,
Table 3.1 Notation Changes
String language Skein Symbolism
New Notation 01d Notation New Notation 0ld Notation
L $ r 0
] S. M,
3 J2 J
6 s N
( ] | 3 3
¢ 5
) 9
o ¢
.b #

The method of writing strings in heuristic rather than algorithmic
and requires a detailed knowledge of the language being compiled, of the
computer being compiled for, and of the method of compiling. Appendix 2
contains a brief discussion of this and several examples. Mr. P, Z. Ingerman
who developed the compiler we are using is in the process of writing a paper
on SKEIN which includes a detailed description of the string language and a
1k

section on the writing of strings.
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The Input Routine

Input to the compiling computer will most 1likely be in the form of
punched card or punched tape. It will be necessary to delimit in some
mamner the special. symbol. strings which are to .be. treated as single characters
(for example: WLET®, MVARY", MARCTAN", "s=%, etc,) One possible way would be
to place special symbols before and a.i“tef these strings. This is however,
dependant upon the input characteristics of the specific computer used for
compiling.

| The prima;'y purpose of the input routine is to substitute numbers
for letters and words so that the processing and table lookup will be more
efficient.

Usually, numbers will be assigned to characters in the language in
some orderly manner, for example, numbering the.characters according to their
first appearance in the S-matrix will. simplify table look-up; and then a
range of numbers is set aside for variable and procedure identifiers, another
for statement labels,. another for comments and another for constants. As
words or characters are read into the computer, they a‘re looked up in a
table of allowed words or characters and if found thé equivalent number is
stored in the input.list. If not found, they are identified {‘comment?
constant? etc,) .and assigned numbers. Thegse numbers are then spored in the
input list. Figure 3.3 roughly diagrams the procedure. Once a character
string has been identified the same number is assigned to each succeeding’

‘occurrence of the same string.
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Appendix 1

The Generation of the S~table, S=matrix
and Binary Table for the "=3" operation

The S-table is formed by re-writing the syntax of the language in
a linear foxmat and then alphabetising. Consider the language shown in
Figure Al.O.
Figure A1.0 Sample Language
<z>1:=ABC
<b>ss=ABD|AB|BA
<e> 1= A<b> | B<a>|D
This is rewritten bireaking up the ®or" possibilities into a series
of statements, dropping the metalinguistic. brackets and writing the name
on the left at the right, as in Figure Al.l.

Figure Al.1 Rewritten Language

A B C a
b

[~ T I - I
o p o P W W
o 0 o v o

This is then alphabetised as in Figure Al.2 and the formulae are
given symbols identifying them

Figure Al,2 S-table for Sample Languages

A b ¢ 81

A B b 82

A B C a S3
4 B D b 84
B a ¢ 85

B & b 86

D ¢ 87



The S-matrix is formed from the S~-table by an orderly transformation

which is shown in progressive steps in Figure Al.3 (The numbers in the O'th

column are for reference only and are not part of the S-matrix).

a)

b)

c)

d)

All names in the first columm of the S-table are listed in the
second column of the S-matrix (duplicated names are entered only
once) to form the first local list.

Tag numbers are entered in the first column of the matrix.

A tag of 1 means that this entry ends a local list and a tag

of O means that the entry does not end a local list.

The names from the second column of the S-table are listed in
the second colum of the S-matrix. Duplicated names are entered
only once only if all S-table entries to the left of them are
identical. BEg. the three entries of B in the second column of
the S-table all have the same entries to their left so they are
only listed once.

The third column of the matrix will contain either an S-table
identifying symbol (eg. S1, 52, $3, etc. in this example; or

A, B, C, D aos etc. in the S-table for the language) or a number
referring to another row in the matrix. The A in the first
column of the S-table is followed by b in one row and B in three
others. Hence, the A in the first row of the S-matrix is said to
"refer to" and b and the B in rows L and 5 of the matrix. The b
and B in rows L4 and 5 form a second local list and are tagged
accordingly. Column 3 of row 1 has a L to indicate that the 4

is followed by' the members of the local list beginning in row L.
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T |

e)

£)

g and h)

Similarly, the B in row 2 is followed by the local list consist=
ing of a and A beginning in row 6 and the D is followed by the
single entry local list in row 8. Whenever a character is
entered into columm 2 that is followed in the S-table by an
identifier, that identifier is entered into column 3 and two is
added to the tag digit to indicate the end of a production rule.
(The separate lines in the S~table are known asproduction rules.)
The next set of entries in the second column come from the third
column of the S-table. In this case every name is entered since

no two identical names have identical entries to their left.

2

As above, local lists are formed, tagged and appropriate entries
are put in column 3. The b of row 4 leads to the single entry
list of row 9 which is ¢ and this ends the production rule
identified by S1.. The B of row 5 leads to the 3 entry local
list in 10, 11, 12, Row 10 colum 3 contains an identifier so
the tag digit of row 10 is increased by two.

The above processes are continued, using the next (in this case,

the last) column of the S=table and this completes the S-matrix.

In the S-table for the complete compiler language, there are entries

that have up to 13 items, In forming the S-matrix, the above precedures

nmust be repeated twelve times.

The table for the ¥=s»® operation is formed from the S-table,

Figure Al.l contains a part of the S~table of Table 3.1. &= B is read
tdoes & lead to PB" and a is called the antecedent and B, the

consequent, In the table the antecedents are listed along the left margin
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Figure Al.3 Steps in Formation of the S-matrix
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and the consequents across the top., Antecedents are the names and symbols
that appear in the first column of the S-table and consequents are the
names that appear at the end of the rules. The = table is begun by
entering a 1 into each place where antecedent and consequent correspond

to the beginning and end of a rule in the S~tablej as in Figure Al.S.

Figure Al.l4 Part of Table 3.1 Used for Example in Text

+ adop
- adop
* mulop
/ mulop
( arex ) prim
ABS fnam
adop term arex
arex adop term arex
Ccos fnam
fact ¥ prim fact
fact term
fnam ( arex ) funex
funex prim
matrix prim
mval prim
numb mval
prim fact
term arex
term mulop
simvar mval
vector prim

Next the rule: (a=»B)e(p= y)>(a & v) is applied to Figure Al.5
one row at a time to give Figure Al.6. For example (+= adop) and
(adop=» arex) therefore (+=» arex); (COS=> fnam) and (fnam+=» funex)
therefore (COS=> funex),
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Figure Al,5

Initial Entries in =% table

arex
fact
fnam
funex
mulop
mval
prim
term

1 | adop

ANE D+

ABS

i

adop
arex

cos

fact
fram
funex

matrix
mval
numb

prim
temn
simvar

vector

Figure Al.6

Extension of =% table

fact
fnam
funex
mulop
mval
prim
term

+ 1 tadop
=~ |arex

x4+

N\

ABS

rahs

11

adop
arex
Ccos

fact
fram
funex

R

matrix
mval
numb

=
e

prim
term
simvar

-

vector

H e

e L ) | A P

4
%) B

61



| The rule is then applied to the rows in the modified table and repeated

until there is no further change. Figure Al.7 shows the complete table.

Figure Al.7 Complete " table for the S=table of Figure Al.L

g8 ﬁggﬁﬁ m
LR
+ 11
- 11
# 1
/ il
( 11
ABS 111 11
adop 1
arex 1
cos 11111 11
fact 11 1l
fram 11 1 11
funex 11 11
matrix 11 11
mval 11 11
numb 11 111
prim 11 1l
term 1 1
simvar 11 111
vector 1 11
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Appendix 2
Strings and Their Interpretation
The following strings have thus far been written
A: ¢

E:  [(2e¥Ibr+I)]

Us  [(1)(2)]
Wi [(3)HT (3e¥T) (Le#Tb*T*I),
(2)H0128 BT(3e¥F)R0012 UOOCO A0000]

A0:  [(3)(1)]

ASs (1))
BJ: B}
Bos [(1)]
cc: [(1)]
cps  [EH{1)]
cqs (1)

cx: [N
cz: [(1)(3)

Wheres (n) means "replace this string by what comes n strings below®
(neabp) means %replace this string by what comes n strings below
except where a‘appears » put B."
{39{1) means replace this string by an integer one less than the
number of characters in a ("#I" and "I are considered to be single
characters).
The method of generation of strings that has been used is to simulate
RAVEL for various input statements and, knowing the coding we wish to have
generated for the given statement, write strings that will do just that.
Consider string “AS": when a factor becomes a term according to the
definition in 2,B.1 of the language, no coding need be generated since both

factors and terms are held in the accumulator. The string is [(1)] which

essentially says "go on to the next string" when a memory value becomes a
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primary, however; this entails the bringing to the accumilator of a word
in memory. The string for this is [B(1)] where the B is the Libratrol-500

"Bring" code, For more examples of strings, including a completely
simvulated statement, see the June 1961 report.
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Appendix 3
Modifications to RAVEL

The use of an input routine to label and ldentify the strings and
symbols in the input simplifies the procesaing.. In fact, sections 1l.A and
1.B.1 of the language can be omitted.from. the S-table and S-matrix. In
consequence RAVEL must be modified so that. when a.symbol string that is
identified as a. variable identifier, statement label, ‘procedure identifier,
etc. is entered into the pushdown storage, .the following occurs: R, is seb
equal . to zero, some special symbol is placed.in the J, column and the i is

i

increased by 13 GOAL goes into GOALi the identifier associated with the

i=1
symbol string. (i.e. varid, statlab,.etc.) is. put into .IVARi,‘ ®2t into EXIT 5
and control transfers to the IVAR 19 GOAL N section, It is understood that
IVAR; % GOAL, is never true when IVAR; is a symbol string.

When J; is a special symbol and the ROutput S(J 42 3)" box is reached,

the actual. symbol string identifie.d by the. number in IVAR N is put out,
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Appendix L
Libratrol-500 Floating Point Arithmetic and Square Root

The coding is given in relocatable form. For the arithmetic the
first. operand is in the accummlator while the second.is stored in the base
address .+ 128. [For the square root, the operand is in the accumulator.*

The format is gq.mmmmm where mmmmm is the normalized mantissa and
qq is the exponent of z (complement notation is used for both.)

The output is a number in the accumulator in the above format.

The routine uses four tracks and no additional storage.

Calling sequences:

Arithmetic: R Lo+#12
U Lo
X 0000 (where X is A, S, M or D, depending upon
the operation desired.)
Square Root: R Lo+330
J Lo+300

#S5quare Root is done using Newton's Method.



Coding of Arithmetic Routines.

Instruction

Q.
Program Input Codes 4 Location Ope

ration | Address
1

Contents of Address & Notes

0000
0001
0002
0003
000k
0005
0006
0007

0008

0009
0010
oo11’
0012

0013
001hL
0015
0016
0017
0018
0019
0020
0021
0022
0023
002)
0025
0026
0027

0028
0029

H|0o132
El0219
10226
50132
0220
0336
10128
10219
10227
B}0128
10220
vlo3l
BiL ]
0015
10211
0223
‘0150
$022L; .
‘0113
o130 .
10226
10227
'0033
$0215
Tookl.
10129
B}150229
Mlo21l
H}0229
B 0129

g = w o

oo

=

B WM LA BN g

m 3R W
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e e e

a
Extract exp a

Exp a

a

Exti'act sign- mantissa a

b

Extract exp b
Exp b

b

Extrazet sipgn=- mantissa b

Operation code

6 at 15

if neg divide

2 at 15

if neg multiply

. if + add or subtract

exp a

exp b

if neg dP>a

lat 7

if neg b=a

a-b-1= counter a>b
b mantissa

latl

b mantissa

counter



& Instruction &
Program Input Codes @& Location Operation[Address {3 Contents of Address & Notes
0030 slo215 1 lat?7
0031 Ti00LL 1 if neg amb
0032 U}0025 1
0033 Bl0227 1 bexp
oo3lL 540226 1 aexp
0035 5}0215 1 lat?7
0036 H|0129 1 b-a-l=counter b>a
0037 B|0228. 1 a mantissa
0038 M ?0_21).,1 1 latl
0039 H{0228 1 a mantissa
ooLo Bj012% 1 counter
ool 510215 1 lat?7
ooL2 T o047 1 if neg a=b
0043 Uj0036 1
0oLk Bl0226 1 aexp
00k45 Hj0230 1 final exp
0oL6 ujooks 1
00L7 B|0227 1 bexp
00L8 H0230 1 final exp
ooL9 BJ0228 1 a mantissa
0050 M|o21) 1 latl
0051 H{0228 1 a shifted right one place
0052 Bj0o229 1 b mantissa
0053 Mjo21) 1 1latl
0054 H|0229 1 b shifted right one place
0055 B{O130 1 code (-8)
0056 slo225 1 7atls
0057 T]0062 1 if neg add ~ if + subtract
' 0058 Bj0228 1 a mantissa
0059 sfo229 1 b mantissa
0060 H|0231 1 a-b = final mantissa
0061 yjolor 1
0062 Blo228 1 a mantissa
0063 230229 1 b mantissa

68



Program Input Codes

L
(]
L
153 ]

Instruction
Location Operation

ress

%]

o,
[«]
# Contents of Address & Notes

Multiply

0100
o101
0102
0103
o104
0105
0106
0107
0108
0109
0110
0111
0112
0113
0Ll

0115
0116
0117
0118
0119
0120
0121
0122
0123
012k
0125
0126
0127
0128
0129
0130
0131

H
U

c:mgc.*;q'%?'!?,

Mmoo W om A e » W

o]

g B mom o=

0231
‘0104

0230
0215
10230
0207
6363

$O13L

013L

(0226
0221
0227

10230
0228
0229
0348
0231

$0228

10229
0216
P01 31
0109
01 36

69
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e L A o e

L R I U S e i R I i

atb= final mantissa

final exp

1lat 7

if neg overflow exponent!
final exp

exp a
6 at 7

exp b

if neg overflow exponent!
final exp '
a mantissa

b mantissa = ab at 1k

1 at 2}

final mantissa

a mantissa

b mantissa = ab at O (n part)
lat 2k

ab mantissa at 24 (n part)
if neg= |ab|+1 at 2k

b

counter

code (=8)

ab mantissa=- (n part)



8 Instruction 8
Program Input Codes X Location Operation| Address & Contents of Address and Notes
0132 1l a
0133 1 b exp (=63)
0134 A | 03L8 1 1 at 24
0135 H | 0131 1 ab mantissa at 2 (n part)
0136 B 0231 1 final mantissa
0137 Al 0131 1 ab at 24 (n par%)
0138 H | 0231 1 fingl mantissa
0139 E | 0218 1 extract all but lst bit
0140 S| 0218 1 1at8
0141 T | 01k3 1 if neg shift
01}2 U | 0207 1
013 B| 0231 1 final mantissa
01L) N | 021y 1 1at 30
o5 H | 0231 1l final mantissa
0146 B | 0230 1 final exp
01h7 S 10215 1 lat 7
0148 H | 0230 1 final exp
0149 U | 0207 1
Divide 0150 B | 0227 1 bexp
0151 s | o222 1 65 at 7
0152 H | 03133 1 b exp (=65)
0153 B | 0226 1 2 exp
0154 s | 0133 1 b exp (=65)
0155 T | 1 if neg underilow exponent!
0156 H { 0230 1 final exp
0157 B | 0228 1 a mantissa
0158 M | 0214 1l 1at1l
0159 D | 0229 1 b mantissa
0160 T | 0352 1
0161 E | 0218 1 extract all but 1lst bit
0162 s | o218 1 1lat8
0163 T | 0201 1l if neg shift
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3 Instruction &
Program Input Codes ¢ Location Operation | Address F Contents of Address and Notes

0200 U | 0207 1
0201 B | 0231 1 final mantissa
0202 N | 0217 1 1at 30
0203 H |} 0231 1 final mantissa
020l B | 0230 1 final exp.
02085 S {0215 1 1at?7
0206 H {0230 1 final exp.
0207 B | 0012 1
0208 A]0213 1 20001
0209 Y| 0212 1
0210 Ul 0232 1
0211 410230 1
0212 vl ] 1 EXIT
0213 XZ } 0001 1

)0000012 0214 1,000 | 0000 1 latl
0215 100 | 0000 l 1at 7
0216 40 1 1lat 25
0217 2 1 1at 30
0218 80 | 0000 1 1 at 8=1st bit extractor
0219 7W00 | 0000 1 Exp extractor
0220 SOWW § Wl 1 Sign~-mantissa extractor
0221 1000 | 0000 1 6hat7
0222 14100 | 0000 1 65 at 7
0223 6 | 0000 1 6at 15
022} 2 | 0000 1 2at 15
0225 7 | 0000 1 7at 15
0226 1 aexp
0227 1 bexp
0228 1 a mantissa- sign
0229 1 b mantissa- sign
0230 1 final exp
0231 1 final mantissa- sign
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Program Input Codes

[

@]
A
mn

Instruction

Contents of Address and Notes

Location Operation ]Address
B

0232 0231
0233 T | 02Lg
023) s | 0217
0235 T | 0262
0236 U {03L9
0237 S 10218
0238 T |02l1
0239 B | 0231
02440 U |0211
02l B {0230
0242 s {0215
02443 T

o2l H | 0230
0245 B 0231
0246 N | 0217
02h7 H |0231
0248 U | 0236
0249 B |0261
0250 Y (0240
0251 XC | 6363
0252 S {0231
0253 H {0231
025l U |0236
0255 B 001k
0256 Y {0240
0257 XC |6363
0258 S {0231
0259 E | 0220
0260 U {0211
0261 Z 0255
0262 B {021k
0263 U 0212

72

el e e e e O I S o T T S S T T R T S I I & TP S AP Stop

Mantissa
No, is neg?
1 at 30

if neg no.= 0O
lat 8

if neg shift

exp
lat 7

if neg overflow exponent!
mantissa

1 at 30

20255

={mantissa)

~(mantissa)

20211

+(mantissa)

61, .00000
TO EXIT



- [ S [ -

i“,

D 1

& Instruction &
Program Input Codes 3 Location Operation] Address # Contents of Address and Notes
Square Root 0300 H | 0132 1l a
0301 T {0333 1  halt if neg.
0302 S | 0217 1 1at 30
0303 T {0333 . 1 halt if neg.
0304 B | 0132 1 a
0305 E| 0219 1 Extract exp., a
0306 H o226 1 Expa .
0307 B | 0132 1l a
0308 E | 0220 1 Extract sign- mantissa a
0309 H | 0228 1 signe-mantissa a
0310 B | 0226 1
0311 E | 0215 1  Bxtract of= 7 bit
0312 S | 0215 1 1at 7
0313 T | 0320 1 if neg characteristic is even
031 B | 0226 1
0315 A} 0215 1 lat7?
0316 H 1 0226 1
0317 B | 0228 1
0318 M | 021}, 1 lat1l
0319 H [ 0228 1
0320 B | 0215 1 1lat7
0321 G | 03L7 1 X5
0322 S| 0228 1
0323 D | 0347 R ¥}
032 A | 0347 1 X
0325 M | 0346 1 =1/2at 0
0326 T | 0331 1 If neg X, =K.+ E-%] [,% +xi]
0327 B | 0226 1 if #X3=\/fa
0328 M| 021} 1 5at$8
0329 A | 0347 1%
0330 vil ] 1
0331 A | 0347 1 %
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3 Instruction &
Program Input Codes & Location Operation | Address g Contents of Address and Notes
0332 U {0321 1
0333 XZ 10000 1 2g0 Tc continue START
033L B | 021} 1 bring 64.00000= 0
0335 U 10330 1
0336 T {0338 1 if neg add f£ill in
0337 U 10339 1
0338 A | 0219 1 2's complement fill in
0339 H | 0228 1
0340 U | 0006 1
o3l T | 0343 1 if neg add fill in
0342 U | O3Lk 1
0343 A {0219 1 2's complement fill in
03hly H | 0229 1
0345 U { 0012 1
) 0000001 03L6 JOOO | 0000 1 -1/2
0347 1 Xi }for sq. root
)0000001 0348 80 1 1at 2

03L9 B | 0231 1
0350 E | 0218 1
0351 U [ 0237 1
0352 M| 0215 1
0353 H {0231 1
035L U | 0161 1
0355 1
0356 1
0357 1
0358 1
0359 1
0360 1
0361 1
0362 1
0363 i

7



1.

2.1

2,11

2,12

Appendix 5 = Part I

Algebraic Compiler Language Manual

General

A computer program written in this language consists of a series
of statements each qontainjng words and symbols., Each statement ends
with a semicolon. This manual describes the allowable statements and
discusses how they are combined into meaningful routines; subroutines
and procedures.
The LET statement, variables and constants
The general form

Computations are programmed as LET statements which are of the

1

form™

IET Ya variable"s="an arithmetic expression®; for examples
LET Bs=C+D ;

Before discussing this more fully, we shall describe the structure of
the variables and constants that may appear in the statements,
Variables

4 variable ig a symbol which names a number. Simple variables
are formed by strings of letters and diglts beginning with a letter.
For examples

A AFL 837958
C26947 ROOT ROOT 1
RESULT ALPHA GAMMA 60

Constants
A constant is a number and may be expressed. either as an integer

or as a decimsl number. A decimal number may contain a decimal point

11 this marmal, the quote symbols are often used to denote examples and
class names. They do not appear in the actual program.
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and may have a power of ten attached. A plus or minus sign may preceed

the number if desired.

Exampless

f, Integers: 1 +3 -27 +7125 197654975
‘ Decimals without powers of ten: .
1.0 43,0 =2,700  +,7125  ,000197654975
Decimals with powers of tenl
1.0%10%#3 = 1,0%103
+3%108e=8 = +3%1070
-1 omel6 - -1016
-.005510%412 = -,005%10%2

Note that numbers do not have to be in normal form.

I.e0, 30 = 30,0 = ]88,
= G 3HLOM2 = L0303 etc.

2,13 Arithmetic expressions
An arithmetic expression is an algebraic formula and gives a rule
for computing a numerical value, It is made up of variebles, constants
and the signs:

+ addition

- subtraction

# multiplication
./ division?

#* exponentiation,

1pn asterisk denctes multiplication and a double asterisk denotes
exponentiation, :

2Tt is helpful to think of division as multiplication by the reciprocal
iees, A/B=A%(B)"l and A/B/C=A#(B)-l#(C)-1,
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Left and right parenthesis are used for setting off parts of the
expression.

Examples:

A+B A+B*C (A+B)*C
A/B+C/D  {(A+B+C#D)/E  (A+B)#¢E

Operations are performed in the following orders:

First: i
Second: #* and /
Thirds + and -

and, where no order is expressed {as in A+B+C~ D) evaluation is

performed from left to right.

Exampless
A¥B#C/D means 5%?-
(A%B)##C/D " LA_%)_E
(A%B)##(C/D) n  (ap)C/P
A#B#2(C/D) v 4g°/D
AMB+CH*E=D % AB+CE-D
A¥(B+C) #4E~D 0 a(e+c)E-p
ANBAC##(E-D) v apsg(E-D)
A+B*C~D/E#F n 248%-p(E)L = pegC- %g
A+B#t((C-D) /E)¥F "  A+B (C-D)/Eg

(a+Bwac-D/EsF % (asB)C- %
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Functions

There are a series of gtandard functions available for use in
arithmetic expressions. In the following definitiens Y stands for
any arithmetic expression.

ABS(Y) means the absolute value of Y: =¥ if Y is negative, cther~

wise Y.

SIGN(Y) % the signum of Ys#1 if Y is positive, =1 if Y is

*  negative, 0 if ¥=0.

SQRT(Y) ®  the positive square root of Y.

SIN(Y) W the sine of the number Y; or of the angle whose
radian measure is Y.

cos(Y) %" the cosine of the number Y.

ARCTAN(Y) " the principal value (in radians) of the arctangent
of Yo

IN(Y) *  the natural logarithm of Y: 1ogeY,

LoG(Y) *  the logarithm to the base 10 of Y1 log,¥-

EXP(Y) " the exponential of Y: eY°

ENTIER(Y) %  the greatest integer not greater than Y.

MEDIAN(Y) are used primarily in conjunction with subscripted variables

MEAN(Y) and .will be. discussed.later. They are, however,
defined for an expression Y which contains no free
subscripts as follows:

MEDIAN(Y)=Y
MEAN(Y)= Y.

Exampless

SIN(THETA) COS (3%J+PI)
SQRT(B#B-LA#C)  LN(EXP(X))

The replacement Operator

The symbol ":=% is called the replacement operator and is used in
equations, It is not the same as "=% but rather means “assign the value
result ing from the computation.on the right side to the variable on the

left . ®
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I,E, ng=n+l is a valid operationm, .
but n=n+l is an invalid statement.®

Computing, using the LET Statement

The basic let statement, as given above is of the forms LET
#variable® ;=" arithmetic expression®; If more than one computation
is to be performed, several equations may be combined into one LET
statement by separating them with commas:

LET ®variable"s="arithmetic expression',
ByariableM;=Marithmetic expression",
UvariableWs="arithmetic expression";

Examples

LET Ag=B;g
IET is= 1423
LET ROOTs=(~b+SQRT (b¥b-L¥akc))/2#a;

LET Tle= A4,
Ag=3B,
Be=Tl1g

1ET RESULT; = (,5#SIN(PI#3#%0MEGA)+COS(ALPHA))
#(LN(EXP(SQRT(ARG))));

Subscription of Variables

It is sometimes useful and often necessary to refer to groups of
numbers by a single name, using subscript numbers to denote the
individual numbers. For example; matrices and determinants. This
language allows the use of.variables having. single and double subscripts
called respectively vectors and metrices.,. Since true subscripts cannot
be conveniently written; the convention has been established that sub-

scripts will be enclosed by parenthesis and placed behind the variable

#However some Programming languages (cf FORTRAN) allow it.
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name, The two subscripts of a matrix are separated by a comma. E.g.

A1) FOOF (3)
A{i,3) FOOF(3,7)

Subscripted variables may be used any place non=-subscripted variables
appear so long as the values of the subscripts are defined. 1I.e,
A(i, j) does not mean anything unless numerical values have been assigned
to i and to jJ.

An arithmetic expression may appear as a subscript e.ge.

A(i+, i=3)
FOOF( (C+D/G, SQRT(P1))

When these subscripted variables are used, the expression or
expressions in the subscript will be evaluated and if it is not an
integer, the nearest smaller integer will be used (note that L4.00l and
44999 will both be taken as L), Memory space for vectors and matrices
must be allocated by a special compiler-directing command, the DIMENSION
statement, discussed below.

Subscript Functions

The MEAN(Y) and MEDIAN(Y) functions are meant to operate on
expressions containing subscripted variables with one subscript
undefined. The following are the complete definitionss
MEDIAN(Y) means a. If Y has no free subscripts, MEDIAN(Y)=7Y.

b. If Y has one free subscript, then, if the values
of Y be arranged in order of magnitudes

(1) If the greatest value of the subscript is odd,
MEDIAN(Y) is equal to the value in the central
position.

(2) If the greatest value of the subscript is even,

MEDIAN(Y) is equal to the mean of the two
values surrounding the central position.
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¢, If Y has more than one free subscript,
MEDIAN(Y) = 0.

MEAN(Y) means a. If Y has no free subscripts, MEAN(Y) = Y,

b. If Y has one free subscript, then if n is
the greatest value of this subscript,
MEAN(Y) = (Y(1) £ ¥(2) £ 00 £ X(n)) /n,

co If Y has more than one free subscript

MEAN(Y) = C.

An arithmetic expression may be used as a subscript, provided the
variables used.in that expressién.all have values at the time of
evaluation,
Control

A variety of statements are availahle .to control the order in which
computationg are performed, .and to.facilitate repetitive calculations.
VARY=-statements

VARY-statements are used to repeat certain calculations (or control
statements) with changing values of one.or several variables,

A VARY-statement contains within. it statements to be repeated. The
VARY-statement and each statement within it must end with a semicolon,
In addition to this, the list.of statements. to.be repeated must end with
a period.. The. semicolon which denotes the end of the VARY-statement
comes after this period.. There are .two types of VARY-statementss
vary-by~-steps and vary-over-list,
Vary-0Over-List

A VARY=-statement of the vary-over-list type will cause any specified
list of statements to be repeated, with a specified variable or variables
being assigned .a new value from a list for each repetition of the list

of statements, A VARY=-statement of .this type consists of the word VARY,
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followed by the variable(s) to be varied -~ if there is more than one,
they are separated by commas =-; followed by the word OVER, followed by
the list or lists of values over which the variable(s) is (are) to be
varied, fol;Lowed by the word IN followed by the list of statements to
be repeated, followed by a period, followed by a semicolon. Remember

that each of the statements within the list must also end with a semi~

colon.
WyariableW ¥1ist of values"
VARY or OVER or IN U“statement list".;
Wlist of variables" W]ists of values®

The 1ist or lists of values are given in the following format. There
is a separate list of values for each variable. If more than one variable
is used, the separate lists should all contain the same number of values,
for it is this number which determines the number of times the indicated
statements are to be repeated. The lists are each enclosed in parenthesis,
and are given in the same.order in which the variables were given. They
are not separated by commas; they.follow one another directly. Each list,
within its parenthesis, cousists of a set of values =~ either mumbers or
variables but not arithmetic expressions — separated by commas. Any
variables used in these lists of values must currently have numerical
values.

Examples:

VARY J OVER (1, 2, 3, L) IN
LET X(J)s=3%J; o

After execution of this statement, the vector X would be:
(3, 6, 9, 12)

that is, for the first execution of the LET-statement (in this case the
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entire list of statements contains just this one statement) J would be
set to 13 for the second J would be 23 for.the third;, 3; and for the
fourth, 4, The vector X should have been dimensioned with a
DIMENSION~-statement at the beginning of the program. The first semi-
coion ends the LET=-statement; the period ends the statement listj and
the following semicolon ends the VARY-statement.

VARY K, M, N OVER (2, 3, L)(4, B, C)(1.6, 1.7, 1.8) IN
LET X{K)s=X((K=1))/N;
LET Y(K)s=M&X(K)s o

This statement would result in the following two vectors,

X: (R, R/L.6, R/((1.6)(21.7))5 R/((1.6)(2.7)(1.8)))
where R was previously given a value, and

Ys (¥(1), AR/1.6, BR/((k,6)(1.7)), CR/((1.6)(1.7)(1.8)))
where Y(1) remains whatever it was before the. exscution of this state-
ment, A, By, and C must have been assigned values before this statement
was reached.

3,12 Vary-by-Steps
A VARY-statement of the vary-by-steps type will cause any specified

list of statements to be repeated; with a specified variable being
incremented or decremented by a certain amount for each repetition.
A VARY-statement of this type consists of the word VARY, followed by
the name of the variable to be incremented, followed by the word FROM,
followed by the desired value of the variable for the first execution
of ‘the statement, followed by the word BY, followed by the amount of
the increment, followed by the word UNTIL, followed by the final value

the variable is to attain, followed by the word IN, followed by the
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list of statements to be repeated. The punctuation following this 1list
is the same as for a vary over list VARY-statement.,

VARY #variable" FROM "lower limit" BY Mincrement®" UNTIL “upper limit"

IN Ystatement list".;

The quantities to be specified; initial value, increment, and final
value, méy be expressed as numbers or variables, provided any variables
so used have numerical values at the time this statement is executed.

In addition, any arithmetic expression may be used to specify these
quantities.
Examples:
VARY J FROM 1 BY 1 UNTIL 4 IN
LET X(J)s = 3%J; .;
This would yield the same result as the first example in 3.11.

In order to help make the vary statements more readable, a comment
conslsting of any symbol string not containing a semicolon may follow
the period and preceed the semicolon. For example:

VARY X FROM 2 BY 1 UNTIL N IN
VARY I FROM 1 BY 1 UNTIL (X-1) IN
LET 72(X, I)s =X A1,
Z(I,X):=X#I3 , end I loop;
LET Z((X-1), (X-1)):=X-1; , end X loop;

This would create a matrix Z of order N wherein any entry below the major
diagonal would be the sum of the subscripts of that entry; any entry above
the major diagonal would be the product of its subscripts; any entry on

the major diagonal would be one of its two equal subscripts. Notice that

this statement fails to assign a value to Z(N,N). The VARY-statement,
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like any other statement, can be used in the statement list of a
VARY-statement. No computation or other statement within the range of
a VARY-statement should ever change the value of the variable being
incremented by that statement. When nesting one vary statement within
another, one.must be particularly careful of. the punctuation. In the
above example, if the second LET-statement had been omitted and both
VARY=-statements had ended with the first LET-statement, the punctuation
following it would have been as follows,

$ o§ o§ (excluding the comments)
The first semicolon ends the LET-statement; the first period ends the
statement list of the second, or "inner" VARY-statement; the second
semicolon ends the inner VARY-statement; the second period ends the
statement list of the first, or “outer" VARY-statement; the third semi-
colon ends this VARY-statement,

After a VARY-statement has been performed, that is after the state-
ment 1list has been executed the proper number of times, the next
instruction, in the statement sequence is executed.

Transfer Statements

A transfer statement is a statement which alters the sequence of
execution from sequential order. In order that statements within a
program may be easily referred to, and for mnemonic purposes, it is
possible to label a statement by assigning a name to it. It is legitimate
to label one or several statements without labeling them all. The only
place a statement label is required is where it is referred to by a
transfer statement, as described below. To name a statement, one precedes
the statement by a statement label followed by a colon. A statement label

is any string of letters and digits which begins with a letter,
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Unconditional Transfers

There are two types of unconditional. transfers, both of which un-
conditionally transfer control to the indicated location. A location
is either a statement label, or a procedure (discussed in section L.1).
GO TO-statements

A GO TO-statement is of the following .form: the words GO TO,
followed by a location (a statement label or a procedure call), followed
by a semicolon., It has the effect of immediately transfering control to
the indicated statement or procedure. For example:

GO TO BT6Y;

would, as soon as it was reached, transfer control to the statement
labeled B76Y.
HALT=-statements

A HALT-statement consists of the word HALT, followed by a location,
followed by a semicolon. Its function is identical to that of a
G0 TO-statement, except that, computer will stop before transferring.
Condition statements

It is possible to make the flow of a program conditional upon
cerbain arithmetic conditions. These arithmetic conditions are of the
form: an arithmetic expression, followed by a relation, followed by
another arithmetic expression. The relation is one of the following six:
s S5 2 2 F

Some examples of conditions:

<

A>B

D(2, 3)<12

Jistg -1

3= (a+B(J))

SIN(THETA#2#PI) £ COS(OMEGA/2%PI),

86



§ o ——

TTTTY e

A condition statement is of one of two forms. The first type consists
of the word IF, followed by a condition or a combination of conditions,
followed by t.he word THEN, followed by a list of statements to be
performed if the specified conditions are satisfied (if the conditions
are not satisfied, the statement after the.condition statement is
performed next) .

IF “condition(s)" THEN "statement list".;

Thié statement list is 6f the same form as for a VARY-statement:
each statement ends with a semicolon, the list ends with a period, which
may be followed by a comment (the comment may not.contain a semicolon),
and the condition statement itself ends with a semicolon.

The other type of condition statement comsists of the word IF,
followed by a condition or a combination of conditions, followed by
the word THEN, followed by a list of statements to be executed if the
the conditions are satisfied, followed by the word ELSE, followed by a
list of statements to be performed if the conditions are not satisfied,
followed by a period (in a condition statement of this type, the first
statement list, after the word THEN, is not followed by a period) and a
comment if desired, followed by a semicolon,

| IF “condition(s)" THEN "statement list" ELSE "statement list".;

It is possible to combine conditions, merely by separating them
by the word OR, in which case the combined condition is considered to
be satisfied if and only if one or more of its component conditions is
satisfied. It is also possible to combine conditions, by separating

them by the word AND, so that the combined condition is satisfied if
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and only if all the component conditions are satisfied. Any number of
conditions may be strung together in either, or a combination of both,
of these two ways. Any group of conditions connected by the word AND
(or by several AND's) should be enclosed in parenthesis.
Examples;
IF (A>B AND C<D+1) OR (A= 0 AND D-1<0) THEN

GO TO S3g
ELSE LET D¢=D+1
GO TO Sls .3

Notice that the above condition combination is changed if the parenthesis
are placed differently:

IF (A>B AND C<D+1 OR A=0 AND D~l<0) THEN etc.
is satisfied if A>B and D=1<0 and either
C<D+1 or A= 0,

IF I>X THEN
IF J>I THEN
IET Ie=I+1; o3
ELSE IF J>1I THEN
IET Ig=Jg
ELSE LET I:=K;3 o3 o3

3.3 Dummy Statements
A dummy statement is a convenience sometimes used for ending a vary
statement list or a subroutine. A dummy statement is always labelled,
and is usually referred to by at least one transfer statement and serves
as an exit point, for example

VARY INDEX FROM LLIM BY INCR TO ULIM IN
IF THING >27.5 THEN GO TO ENDs .3
IET THING:= THING+ ALPHA (INDEX/3);
END: 3 -3

88



In this case the dummy statement END:; gives a place to jump to

within the VARY loop just in case the value of THING is greater than 27.5.

o Compiler Directing Statements
4.1  DIMENSION Statement

At the beginning of a program, one must state the maximum size
attained by each vector (one subscript) or matrix (two subscripts).
This is done by means of a DIMENSION-statement. A DIMENSION=-statement
consists of the word "DIMENSION', followed by the name of a variable
(a vector or a matrix‘only), followed ~ in parenthesis — by the maximum
value(s) its subscript(s) can attain. This maximum value (or, these
values) are expressed as unsigned integers. A DIMENSION-statement ends
with a semicolon.
Example:

DIMENSION A(5, 103)s
DIMENSION B(7);
DIMENSION A(5, 103), B(7), X2Z(3, 2), SUM(5);

The first of these statements defines A as a matrix whose maximum size
is 5x103. The second defines B as a vector of maximum order 7. The
third does both of the above, and also defines X2Z as a 3x2 (maximum)
matrix, and SUM as a vector of (maximum) order 5. One may combine any
number of matrices and vectors, in any order, into one DIMENSION-statement
by separating them by commas, and ending the statement with a semicolon.
L.2 REFER Statement

The REFER statement has two uses. It allows the name of a variable

or set of variables to be changed; and it allows a set of simple variables

to be combined into a single vector., As a special case of the first of
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these, it also allows one to assign names to constants, and, thus, to
assign values — as for initialization — to constants. Examples:

REFER TO A AS B
REFER TO F(1, 2) AS G;

REFER TO A4 AS B AND GRMP AS C;

REFER TO J(3) AS K;

REFER TO GRMP AS C, A AS B, SUM 2 AS SUM 3 AND RDC AS ¥;

REFER TO A AS B AND F(1, 2) AS G;

REFER TO 3.0 AS X

REFER TO F(1, 2) AS G, J(3) AS K AND A AS B;

REFER TO A AS B, GRMP AS C, 3.0 AS X, SUM2 AS SUM3, 7 AS Z AND RDC AS Y

These are all examples of the first use of the REFER statement. No variable
should appear more than once during any REFER statement. A, GRMP, SUMZ; may
be either simple variables, or arrays. Their equivalents are assigned the
same dimension as the original, When a simple variable, a vector, or an
entire matrix is renamed, the original name becomes undefined, and may be
reassigned. When more than two pairs are given in a REFER statement, all
but the last two are separated by commas. The last two are separated by
YAND® which is not preceded by a comma, If a number is used, it must be
as the first half of a pair., The statement must end with a semicolon. The
second use of the REFER statement is to define vectors:
REFER TO X(1,1), Y(2, 3), 2Z(3), ALPHA, 13,75 AS V;

ALPHA must be a simple variable. V must have been previously dimensioned
by a DIMENSION statement. Commas separate all values, and the word "ANDY
is not used,
Comments

Any string of symbols not containing a semicolon may be included in

the program in a statement which consists of the word COMMENT followed by
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the symbc;l string and ending with a semicolon. This may be used for
adding explanatory comments within the body of a program. These comments
will be printed in the output listing but will not affect the program in
any waye
Code

In certain cases it might be efficient to include in 2 program a
block of machine language (symbolic or numeric) coding. This may be done
(so long as the block does not contain the string END; by prefixing the
block with CODE and finishing it with END followed by a semicolon,
Procedures and Programs

Within a program, groups of statements are blocked into procedures
and a procedure may serve as a routine or as a subroutine. A complete
program begins with the word START which serves to inform the compiler
that a complete program follows. The program ends with STOP which informs
the compiler that the run is over. Between these delimiters may appear
one or more procedures each of which begins with PROCEDURE and ends with
END.
Structure of a Procedure Heading

Each procedure begins with a heading of the following form.

PROCEDURE "procedure name" ("parameter list"),("subroutine list");

The procedure name is a symbol string that starts with a letter and
serves to identify the procedure. It increases the efficiency of the
final program if the names of the library subroutines to be used in the
procedure body are listed in the heading in the subroutine list. If

none are to be used, this list is left blank.
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Frequently procedures are defined for use as subroutines and as
functions of one or more variables or parameters. In these cases, the
parameters that must be sef before (or upon) input to the subroutine
are listed in the heading. If there are no parameters this list may be
left blank.

Example of procedure heading
PROCEDURE SUMMATION 1(n; x), (SIN);

n
this heading might be a subroutine which computes the value of z sin(nx)
1

and leaves the result in x. '"n' and "x" are the parameters to be set
upon input and SIN is the only subroutine used.
Executing Subroutines

When, within a routine; it is desired to execute a subroutine and
EXECUTE statement is used. This consists of the word EXECUTE; followed
by the name of the subroutine;, a list of either values of parameters or
a list of locations where the values can be found, ending with a semi-
colon. E.g.

EXECUTE SUMMATION 1(m, arg);
EXECUTE SUMMATION 1(27, vee);
EXECUTE SUMMATION 1(3k, 10.7h);:

are all calls on the SUMMATION 1 subroutine.

The first example will enter the subroutine with the address of "m"
replacing the dummy variable "a" and the address of "arg" replacing the
dummy variable “x%. The result will be placed in location "arg", In
the second case; the value 27 will replace "n' and "vee! will replace

ux®, In the third case, 3L will be used for n and 10.75 for x.
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N.Bo.: The result in case 3 will never be used, for after the computation,
the result will be stored in the location where 10,75 used to be but, not ‘
having been given a symbolic name, it can never be referred to again,
Program Structure

A compiled program always. begins running at the first statement of
the first procedure in the program. Within a procedure transfers (by
means of GO TO) may be made to any labelled.statement or to the beginning
of any other procedure in the program. Once a procedure has been left,
by a GO TO, return may be made only to the beginning of the procedure. If,
however a procedure is left by an EXECUTE control will be returned to the
statement following the EXECUTE after the executed subprocedure has been
operated.
Inter-routine communication

It should be emphasized that there is no way to communicate between
routine and subroutine except by procedure heading parameters. I.e.
symbolic addresses used in more than one routine will be assigned different
numeric addresses and will, in general have different values.
Sample Program

START
PROCEDURE COMPLEX POLYNOMIAL EVALUATION ( ), (ENTIER);
COMMENT Thils procedure has no parameters and uses the ENTIER

subroutine., It reads in values of dys By wee By X

v and N, computing the function al+a,2z+a3z2+”..anzN"l=

where z=x+ Jjy and w=u+ jv. If N is not a positive

W

integer OSNK2], or if |‘w|>l(>:Lo an error printout

followed by an absolute halt will occur. If no error,
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the result will be printed and the computer wiil halt.
If "start compute" is depressed after print of w, new
X, ¥ and N will beé read and a new w computed.;

DIMENSION A(21), B{L);

REFER TO B(1) AS Y, B(2) AS Y AND B(3) AS N;

EXBCUTE READ (21, A);

COMMENT procedure READ (n, v) is assumed to be a machine language
subroutine that reads n values into the previously
dimensioned vector v;

INPUT: EXECUTE READ (3, B);

IF NSO OR N221 OR N#ENTIER (N) THEN
GO TO ERROR ( ); « CHECK ON N;

COMMENT: ZERROR is a procedure with no input parameters

LET us=a(l), vs=03

VARY i FROM 1 BY 1 UNTIL N IN

EXECUTE COMP EXP INT (x, y, i-1l, x1, yl);

EXECUTE COMP MULT (a(i), O, x1, yl, x1, y1);

EXECUTE COMP ADD (u, v, x1, yi, u, V) .
THIS LOCP HAS COMPUTED

i=1
a,2" 3

LER
1

N1

IF SQRT (uitu+ viv) 10%¥10 THEN
GO TO ERROR ( ); o4

EXECUTE PRINT (u, v)3

COMMENT procedure PRINT (a, b) is assumed to be a
machine language subroutine that prints a (signed)
followed by b(signed) followed by the letter "“j%*.
Eogot +10=-37Je3

HALT INPUT;

END
PROCEDURE GOMP ADD (a, by ¢, d, e, £), { );

LET es=atc, fo=Dtd;

COMMENT This subroutine computes e+jf:= (a+jb)+(c+jd);
END
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PROCEDURE COMP MULT (a, b, ¢, d, e, £), ( )3
IET es= a¥c~bid, f3=Db¥c+ akd;
COMMENT This subroutine computes e+jfs= (a+jb)#(c+3jd);
END
PROCEDURE COMP EXP INT (a, b, n, ¢, d), ( );
IET cs=1, d:= 0y
VARY m FROM 1 BY 1 UNTIL n IN
EXECUTE COMP MULT (a, b, ¢, d, ¢, d)§ «3
COMMENT This subroutine computes (c+jd):= (a+jb)®
where n is an integer. If n is negative the
program will cycle. If n is not an integer,
the nearest smaller integer will be used;
END
PROCEDURE READ (n, V), ( );
CODE .... END;
END
PROCEDURE PRINT {a, b), ( );
CODE o... ENDj
END
PROCEDURE ERROR ( ), ( )3
CODE co0s
HALT: HALT HALT;
COMMENT The odd looking thing one line above is
a self-addressed halt loop;
END
STOP
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Appendix 5 = Part II

Setting External Equipment

The Analog~Digital Converter.

The range of the ADC can be set by either of the following commands:

SET ADC TO 1V SCALE;
SET ADC TO 10V SCALE;

If the high speed mode is desired, the phrase ", HIGH SPEED (X DEGREESY)

(where X is some integer, usually a multiple of ten) may be inserted before

the semicolon. The number of degrees in the parenthesis determines the

setting of the crankshaft. If X is not a multiple of 10, it is taken to he

the nearest multiple of 10 smaller than the given value. .
Examples:

SET ADC TO 1V SCALE, HIGH SPEED (110 DEGREES);
SET ADC TO 10V SCALE, HIGH SPEED (20 DEGREES);

Output lines.
A voltage can be put on an output line by a statement of the following

sort:

SET f.ddd TO X VOLTS;
where _f.ddd is a code to identify a line consisting of.a letter followed
by a period followed by a three digit number (A.003, B.227, etc.) and X is
a number, If a statement is used that has an undefined line identifier
(i.es there is no line corresponding to the given identifier) the compiler
will not accept the statement. If a voltage is specified that is not avail-
able; the nearest voltage, smaller in magnitude, will be used.
Examples

SET C.003 TO -10 VOLTIS;
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The EPUT Meter.

There are many settings that must be made in programming the EPUT
meter. These have been combined into one lengthy statement, however; for
the sake of brievity certain portions may be omitted, The statement used
to set the EPUT meter is of the following form:

SET EPUT mode, N=X, M=Y, delay, slope DAl; slope DAZ,
slope DA3 THEN, slope DA3, DA3= 2 VCLTS;

The "mode" portion may be Mi, MB, MC, MD, ME, MF or MG. It may not be
omitted.

The "N=X," portion is called the A-setting and X may be either a
number or a variable. If the A-setting is omitted entirely, N is set
equal to zero. Similarly the "M=Y," portion is called the B-setting,

Y may be any number or variabl;a and :1.f WM=Y,"* is omitted; M will be equal
to zero.

The delay portion is used to determine whether delayed or immediate
operation is desired. If delay is wished "D" is written. If immediate
operation is to be used; the "D" and the following comma are deleted.

Each of the three amplifiers must have a slope set for its input.
This is done by putting M+% or "=t for "slope®" before "DA1", "DA2" and
"DA-B"o It is possible to omit any or all of the slope parts, in which case
the omitted slope(s) will be positive. In the case of MD, it may be desired
to reset the slope of DA3 during operation. In this case the ®THEN, slope
DA3" is used, This portion must be omitted for modes other than MD and in
Mode MD, may be omitted if the slope of DA3 is to remain unchanged,

The final setting is of the threshold of the DA3 amplifier which is

set by the "DA3= Z VOLTS" part of the statement., Z may be any number and
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if this part of the statement is omitted the threshold will be the same as
the previous setting within the program. (Cautions If a SET EPUT statement
without a threshold specification is used.and. there was no previous setting
of the threshold, the value will be undefined)
Examples s
SET EPUT MD, N=128, M= 32,768, D, + DAl, = DA2,
= DA3 THEN, + DA3, DA3=-10 VOLTS;
SET EPUT MA, N'= 20003
SET EPUT MB, M= 12763, - DAl, - DA3;
SET EPUT ME, N=100, M= 200, D, = DA3;
SET EPUT ME, N= 2056, D, - DA2, DA3= 26 VOLTS;
Relay Inputs.
It is possible to read a series of values from relay inputs into
the computer memory. This statement is of the forms
READ something INTO somewherej
where the "something® is an input relay name or list of names and the
Msomewhere" is a vector which must previously have been dimensioned.
The "something" may take any of the following forms or may be a list
of as many as are needed (separated by commas):
GROUP (group number)
GROUPS (group number, group number; c..; €tc.)
RELAY (relay number)
RELAYS (relay number, relay number, o,e, €tCo)
A group number is a one or two digit integer while a relay fiumber
is a one or two digit integer followed by a period, followed by an integer

from 1 to 8.
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The "somewhere" can be of the form:
vector name (integer)
vector name (integer, FF)
The vector name can be any string of letters and digits (beginning with a
letter). In the first case, a single value is read into a single entry in
the vector. In the second case, several values are read in and the integer
specifies the location of the first value. The ",FF" is for typographical
purposes and means “and the following®, It is not necessary and may be
omitted at will.
Exampless
READ REIAY {29.2) INTO FOOF (28);
READ RELAYS (8.3, 8.kL, 29.1) INTO FOOF (25,FF);
READ GROUP (1) INTO FOOF (1,FF);
READ GROUPS (2,3) INTO FOOF (9,FF)g
READ GROUPS (1,2,3), REIAYS (8.3, 8.k, 29.1, 29.2)
INTO FOOF (1,FF);
The following two statements are equivalent although the second is
more efficient
READ GROUPS (1,2), RELAYS (3.1, 3.2, 3.3, 3.l
3.5, 3.6), RELAY (3.7), RELAY (3.8), GROUP (L)
INTO GBW (7,FF);
READ GROUPS (1,2,3,L4) INTO GBW (7,FF);
If a relay or group is named that does not exist, the compiler will
give an error indication., If a vector is used that is either undimensioned

or is too small, the program will give an error indication at run time,
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Switch Opening and Closings.

There are a series of toggle switches which are identified by numbers
and may be opened cor closed under computer control. The following statements
will achieve this purpose:

OPEN SWITCH switch number;
CLOSE SWITCH switch number;

The switch number may be any integer but if a switch is named that

does not exist, the compiler will indicate an error.

Typeouts During Program Running.

It is possible to define and use standard typeouts during the oper=
ation of a program. These standard typeouts are given numbers when they
are defined and the statement: .IYPEOUT integers will cause the typeout
message identified by that integer to be typed out. It is also possible to
typeout the current value of a variable using: TYPEOUT (variable)s. For
brief symbolic typeouts, the symbol string to be typed can be placed in the
statement itself, enclosed in single quotes: TYPECOUT 'string';

The various typeouts may be combined in a-single statement.
Examples:

We might have defined typeout 37 as "The current value of" and if
we wish to type "The current value of Z(1,1) is ..." (where ... means the
actual value of Z(1,1)) we write

TYPEOUT 39 'Z(1,1) is! (Z(1,1));
If typeout 2 is "Calibrate temp. probe:" the statement
TYPEOUT 2 (i)s will print the typeout, followed by the

value of the variable i.
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To define standard typeouts a statement of the forms DEFINE TYPEOUT
rmunber AS symbol stringj; is used. Several typeouts can be defined in the
same statement,

.For examples

DEFINE TYPEOUT 1 AS 'FQOF?Y,
TYPEOUT ) AS 'Gratch is nit,?,
TYPEOUT 3 AS 'X(3,L)=';

It is important to note that the symbol string must not contain single
quotes ('),
Delys.

Since the programs put together with this compiler will have to run
in real. time, there might be times when it would be useful to have the
comuter wait a fixed amount of time while some external event is occurring.
The statements: DELAY number SECONDS; where "number" is any positive number
will cause the computer to delay that amount of time before continuing.

Another type of DELAY might be useful. The EPUT meter reads directly
inte the accumulator of the computer and the statement "DELAY FOR EPUT;"
would make the computer delay until the number in the accumulator stops
chianging (i.e., until the EPUT has stopped). This statement does not appear

5

in the formal syntax.
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Example: Sample program from the Controller Program Flow Diagrams

START PROCEDURE TRANSDUCER CALIBRATION E, (ABS, MEDIAN)
COMMENTs; In the procedure heading, the E indicates that there are
no input parameters. (ABS, MEDIAN) indicates that the ABS
and MEDIAN subroutines are useds
DIMENSION INPUT (58), T(31), P(5), W2)3
INTEGER i, Jg
DEFINE TYPEQUT 1 AS !If calibration is required = replace those probes.',
TYPEOUT 2 AS ‘'Calibrate Temp, probel,
TYPEOUT Iy AS ‘Calibrate Press. probe’,
TYPEOUT 5 AS 'START ENGINE - SET 1000 RPM!',
TYPEOUT 4O AS 'Calibrate velocity probe's
COMMENT: This program is an approximation to the transducer
calibration flowchart of the controller flow diagrams.
S11: SET ADC TO 10V SCALEs
S12: READ RELAY GROUPS (1, 2, 3, L, 5, 75 8);
RELAYS (29.1, 29,2) INTO INPUT (1,FF)j
Sils LET T(1):=96,0%#INPUT(2) = 313.0, '
T( 26) 3=96,0¥INPUT(33) - 313.,0,
T(27) ¢=96,0XINPUT (3L) - 313.03
VARY i FROM 2 BY 1 UNTIL 25 IN
LET T(i)s=211,0%INPUT (i+7) = 328,035 .3
VARY i FROM 28 BY 1 UNTIL 31 IN
LET T(4i)3=83,3#INPUT {i+21) = 3LkL.25 .3
S16s  LET P(1)s=L90#(INPUT (L2) = 3,5)/(23.5= INPUT (L2) )3
VARY i, a, b, J OVER (2,3,L4,5)(56.5, 37.7, 37.7, 1L1.L)
(283, 101,83, 101.8, 381.8)(L3,Lk,L5,53) IN
LET P(i)s=a~b/INPUT(3)s .3
S18: LET V(1)s= x 3
V(2):= ¥ 3
COMMENTs These computations are not specified in the flowchart;
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Doeminti” ]

STOP

581103

S118:

8121
5129:

S132¢

S13he

NEXTs
S136

&0

S137:

S138s
8139
S140s
S1hle
51,2z

8143

LET TMED: = MEDIAN (T(1));
COMMENT: i is a dummy subscript;
VARY i FROM 1 BY 1 UNTIL 31 IN
IF ABS (T(i) - TMED) >>5 THEN TYPEOUT 2(i); o5 o5
LET PMEDs = MEDIAN (P(i));
VARY i FROM 1 BY 1 UNTIL 5 IN
IF ABS (P(i) = PMED) >>5 THEN TYPEOUT L(i)s o3 o3
IF V(1) < CONST THEN TYPEOUT LO; TYPEOUT f1l'; ,j
IF V(2) < CONST THEN TYPEOUT L40; TYPEOUT '2%; .;
COMMENT: The value of “CONST! was not specified on the flowchart.;
HALT NEXT;
TYPEOUT 1;
CLOSE SWITCH K.009s
COMMENT: START ENGINE;
CLOSE SWITCH Z.009;
COMMENT3; SET 1000 RPM;
TYPEOUT 55
OPEN SWITCH K.009;
OPEN SWITCH Z.009;
SET ALPHA TO BETAj
SET GAMMA TO DELTA;
COMMENTs The flowchart says "NO LOAD" for S141 and "1000 RPM"
for S1L23 "
HALT A2 END
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Section B, Oircuit Anelysis and
Network Element Value Solvability Study

The work done on this subject from July 1, 1961 to June 30, 1962
consists primarily of S, D. Bedrosian's Ph,D. dissertation which is attached

to this report.
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