
UNCLASSIFIED

A D .408 434,

DEFENSE DOCUMENTATION CENTER
FOR

SCIENTitFC ANDl TECHNICAL INFORMATION

CAMERON SrATION, ALEXANDRIA, VIRGINIA

UNCLASSIFIED

NOTICE: When government or other drawings, speci-
fications or other data are used for any purpose
other than in connection with a definitely related
govrernment procurement operation, the U. S.
Government thereby incurs no responsibility, nor any
obligation whatsoever; and the fact that the Govern-
ment may have formulated, furnished, or in any way
supplied the said drawings, specifications, or other
data is not to be regarded by implication or other-
wise as in any manner licensing the holder or any
other person or corporation, or conveying any rights
or permission to manufacture, use or sell any
patented invention that may in any way be related
thereto.

io U

jc:

THE INSTITUTE FOR COOPERATIVE RESEARCH

ICR

UNIVERSITY of PENNSYLVANIA

PHILADELPHIA, PENNSYLVANIA

JU 1

TISLA A

Vo

A STUDY OF PIECE PART FAULT ISOLATION

BY C14PUTER LOGIC

STATUS REPORT

Dated: 30 June 1962

Covering: 1 July 1961 to 30 June 1962
Contract No. DA36.O34h507=ORD-3347RD

Department of the Army Project No.
Ordnance Corps Project No.

Technical Supervisor. Frankford Arsenal

j)• Prepared by-

(C. Beckman, Pro'J6dt-Di'e-or
S. D. BedrosianJ
R. S. Berkowitz,
P. Z. Ingerman,

D. Prener C
R. L. Wexdlblat,

The Institute for Cooperative Research

University of Pennsylvania

A STUDY OF PIECE PART FAULT ISOLATION

BY COMPUTER LOGIC

30 June 196e

Approved:

C. Beckman
Project Director

! ii

A STUDY OF PIECE PART FAULT ISOLATION BY COMPUTER LOGIC

TABLE OF CONTENTS

Page

Abstract x

Section A. Automatic Programming 1

I. Introduction 0 1

II. The Compiler Language. 2

1. Symbols and Definitions 8

2. Variables and Expressions 0

"3. Basic Statementslh

h. Procedures and Program 25

5. Input-Output 32

III. The Compiler. 3

Appendix 1. The Generation of the S-table, S-matrix,
and Binary Table for the 11==>1 Operation . . . 56

Appendix 2. Strings and Their Interpretation 63

Appendix 3. Modifications to RAVEL 65

Appendix h. Libratr3l-500 Floating Point Arit',metic
and Square Root 66

Appendix 5. - Part I. Algebraic Compiler Language Manual . .75

Appendix 5. - Part II. Setting External Equipment. 96

Bibliography and References on Compiling Languages and Compilers10

Section B. Circuit Analysis and Network Element Value
Solvability Study106

iii

I
I

List of Figures and Tables

Page

Figure 3.0 Block Diagram of Complete Compiler 35

Figure 3.1a RAVEL (a,p,y)-recursive 37

Figure 3.1b RAVEL - non-recursive Form. 39

Figure 3.2a SKEIN - recursive 53

Figure 3.2b SKEIN -non-recursire 54

Figure 3.3 Schematic of Input Routine 56

Table 3°0 Definition of Symools Used in Figures 3.1a and 3.lb 38

Table 3.1 Syntax- Linear Format - S-table 42

Table 3.2 Syntax-Matrix Format - S-matrix. 46

Table 3.3 Abbreviations Used in Tables 3.1 and 3.2.51

Table 3.4 Notation Changes. 52

iv

SPECIAL REPORT

ON ELEMENT VALUE SOLUTION OF SINGLE-ELEMENT-KIND NETWORKS

S. D. Bedrosian

TABLE OF CONTENTS

Page

Index iii

List of Tables xi

List of Figures xiv

List of Symbols.o , &.V .--

Glossary of Terms........... xxi

Bibliography xxv

Preface. $ * # * * *xxviii

Chapter I. Introduction and Summary e1

A. Statement of the Problem* 1

B. Motivation 2
C. Scope 1

D. Summary * . * . * . . 2

Chapter IIT Review of Previous Work 4

A. Nature of the Solvability Proble

B. Related Work up to 1960 r................... 6

C. Recent Effort 9

1. Introduction. 9

2. Summary of Berkowitz' Results 9

D. Chapter Summary 9..... o13

Chapter III. Topological Model for Single-Element-Kind Networks . . . 14

A. Introduction...... 14
B. Classifying Graphs. 14

v

Page

1. Concept of a Potentially Solvable Network......... 15
20 Characteristic Number for Identification

of Graphs. 18

3. Effect of Node Changes on Potential
Solvability. 21

40 Domain Chart Representation 25

C. Chapter Summary 32

Chapter lI!. Formulation of Equations 0. 33

A. The • Matrix Representation for Measurements.0...... 33

1. Generalized Reduction Formulas 34

2. Conditions on the Matrix Elements 0 36

3. The Key Subgraph . . . 0 0 0 0 37

4. Numbering Convention . 0 0 0 0 37

5ý Example 40

6. Checking the Equations 43

B. Modified System of Equations 44

Co Topological Implications 48

1. Implications on the System of Equations 148
2. Determinant Representation of the Key

Subgraph 0 00 . 0. 55

3. Topological Formulation of Equations 58

a. Via Topological Formulas58

b. Via Path Concept 0. .0. . . 59

D. Chapter Summary....0 .0 0 63

Chapter V. Method of Solution 64

A. Introduction0. 64

B. Tabular Method0 o 0..... 65

1. General... * .0 . . . 0 . . 65
2. Tabulation 68

vi

Page

a. Choice of Equations . 68

b. Choice of Secondary Variables 68

c. Setting up the Extended Entry Table. 69

3, Prelimina'r Example...... 69

a. Solution by Tabular Method 71

b. Numerical Check 73

14, Operations 74

a. General 0 0 74

b. Column Operations. 75

cC. Ratio Operations 75

d0. Substitution Procedure ... e.. 75

e. Reduction Operation . . a 76

5. Solution Procedure 77

C. Detailed Example .0. a a. a 0 79

D. Flow Chart a o 0 .00.o. 94

1. Manual Operation a . a a. 96

2. Computer Operation 0 .. . a .a 96

E. Chapter Summarya. .a.a a a 103

Chapter VI. Illustrative Examples 105

A. Introductiona . .o 105

B. Examples .. 107

6.1. Example I- 2: (B q9, B-8, Bk=7a, Bal) 108

6.2. Example I-2: (B 2 --B-1l0, Bk- 7 Bc1). 112

6.3. Example I1 2: (B qB=12, Bk9 Bc1) . .a.l5

6.4° Example 1I 2: (Bq=1 5 . B=14, Bk=99 Bc=l) 119

S6,5. Example I= 2: (BqB-15, Bk=9 , Bc=l)(nonsolvable) 124

6.6. Example I= 3s (Bq=-B=12, Bk=8, Bc2) 134

6.7. Example I-=3: (Bq'B=12, Bk=lO, Bc-2) . . . a. 138

vii

Page

6.8. ExanpLo I= 3- (B G=1, B=12, Bk= 9 , Bc3) .. . 143

6.9. Example I= 3-- (B -5l, B=12, Bk=1 2 . B =3) lh7
q k ,c

C. Networks Related by Key Subgraph 153

D. Chapter Summary.... 157

SClhpter VII. Supplementary Results . .1............................... .. L58

A. Introduction 0 158

B. Equivalent Networks.. 159

1. Equivalent Networks via Topological
Transformationso 159

2, Equivalent Networks via Matrix Equations 162

Co Determination of Additional Nonsolvable Subgraphs 167

D. Remarks on Two-Element-Kind Networks 171

E. Practical Considerations 172

F. Chapter Sumnary. . . o 173

Chapter VIII. Conclusions and Recommendations 174

A. Conclusions 174

B. Suggestions for Further Work176

1. Sufficiency Theorem 176

2. Tabular Method of Solving Equations. 177

3. Topological. Derivation of the Modified
System of Equations.177

4.- Computer Program for Solving Single-Element-
Kind Networks 0 . 0177

5. Optimization of Network Measurement
Procedures - 177

6. Extension to Multicolored Graphs 178

7. Investigation of the Domain "Chart. o . 178

8. n-Terminal Network Synthesis 178

9o Possible Application to Social Sciences* 178

viii

Page

Appendixes

I. Formulas for the Number of Trees in a Network 179

II. Operations on the Domain Chart 184

III. Comments on Inverting Matrices 0 .. 190

IV. Converse of the Star-Mesh Transformation .0 ... 194

V. Topological Formulation of Equations 201

VI. Supplementary Equivalence Relations° 209

ix

ABSTRACT

The present study is a continuation and..extension of work done

during 1959 and. 1960 entitled 'ýA Study of Piece Part Fault Isolation by

Computer Logic.1" During the period June 1961- June 1962 the emphasis

has been on automatic checkout of Automotive Systems with special regard

to the computer contr-olled. tank checkout...system. developed by the Frankford

Arsenal and on an extension of the work of Berkowitz ip network element

solvability.

Section _ on Autonm_-tic Programning is divided, into an introduction

followed by two 'n parts and. five. appendiceso. The first of the main

sections dis-cusases. the compiler, pseudo.-language, .deriv..ed from the language

developed for the Electronic Piece Part Fault Analysis system, giving a

"formal spae.cificatioon of the.-syntax. of the language .and showing that part

of it is a general algebraic c.omp.iler and part .is. a series of problem

oriented input-output statementso-) The second.main..section discusses the

compiler0 Thiscompiler was first pres.ented in. the June 1961 report of

this Project and the present discussion describes various additions and

"changes. Also given are the language syntax in a tabular format and again

in a machine-oriented matrix format.

Appendix 1 presents a discussio . of. the.methods of generating the

tabular and matrix formulations of the nguage syntax. Appendix 2

presents a brief discussion of a set of symbolic strings used by the first

section of the compiler and de-coded.by the second9. Appendix 3 discusses

some modifications that might make the compiler more efficient. Ap-

pendix 4 gives the coding of some of the. service routines for the

Libratrol-500 computer 0 In Appendix 5, Part I is a short manual to the

language, giving an informal presentation that might be the basis for a

training manual to. be written at some later date.

Appendix 5. Part II, gives some practical illustrations of the use

of the language.

Section B, on Circuit Analysis and Network Element Value Solva-

bility Studies consists of the Bedrosian PhZD. dissertation on Element

Value Solutions of Single-Element=Kind Networks.

In this study the work of Berkowitz is extended by finding ex-

plicit solution techniques for single-element-kind networks. This in-

cludes a computer programmable algorithm and discussion of various rami-

fications.

The original object of this effort, based on an optimistic at-

titude, was to consider element value solvability for major classes of

networks. Subsequent investigation ravealed unexpected subtleties and

inherent difficulties associated. with this problem. Consequently, the

work has been restricted to the treatment of single-element-kind networks,

.xi

Section A. Automatic Programming

I. Introduction

This report describes the work done on automatic checkout

on Project ROTEK from June .1961 to June 1.962. The effort was devoted to a

language and compiler oriented- towar& Automotive &ystems (tanks, in par-

ticular) with the Libratrol-500 to be used. as the testing computer and the

compiling computer as yet unspecified.

Work was divided into three sections:

Language development

Further work on the compiler

Writing of utility programs for the Libratrol-500

These are described in detail in the succeeding sections of this

report. Also included is a brief manual of the language which is designed

to be the basis of a lar-ga training manual. At various places in this

report, reference is made to the June, 1961 status report. This is:

Beckman, et. al, Study of Piece Part Fault

Isolation by Co•puter Logic - Status Report,

June 1961, The Institute for Cooperative

Research, University of Pennsylvania.

{

!1

II. The Compiler Language

The language presented here is derived from FATAL (see June, 1961

report) and, like FATAL is based upon ALGOL-60. It is divided into two

sections: an algebraic corpiler languaga and a. series of special state-

t ments having to do with input and output- an&..using a problem oriented

vocabulary.

The Basic Algebraic Compiler

The algebraic compiler.. is. based ..upon. ALGOL-60 and as put forward

here .is probably mare. powerful than would. ac.tuaJly. be required for an

automatic checkout system. 1 ' 2 3 ' 2 9 The compiler..disaussed in section III

of this report is, however, independent .of .the iput. or output languages

and will just as readily handle any reasonable .subset of the language.

By reasonable subset we mean vny subset. that is unambiguous in meaning and

in defin±LLon. And, whWt is 111o•.L inrj1ortant, the speed and efficiency of

compiling is dependant upon the language .us.ed so. there will be no decrease

in efficiency caused by hypothesizing .a mo.re general language than will

actually be used. From outward appearances , this part of the language looks

quite different from the algebraic. parts.. of FATAL. These differences were

due to an attempt to. make the languaga .as..close. to English as possible.

There are those in. the computer. field..tnoday who.. are still of the opinion

that. English is. a good. programming language.,. This,.is. not so and it should

V be emphasized that. the unnecessary and.redundant words .and symbols added to

the language increase ease. of ..understanding. at. the. cast of efficiency of

compiling. Compare our VARY statement and..F.ORTRAN!..fDO statement to see

an example of this. 25

2

As in last yearls .report, the. language. is given in the Backus

Normal- Form (BoNoF.). The formal specification. is. prefaced with a formal

and an informal. description. of how the Backuz: Normal Form works.* The

-following..specification. is .meant to..e .self-contained and can be used

independent of the-rest of this report.

The following is quoted from the paper ,'Specification Languages

for Mechanical Languages and Their Processors, A.Baker's, Dozen" by Saul Gorn.**

A Backus syntactic specification. language is a linear
sequential.language. o.ver.an alphahet...(infinite) composed of
the. following symbols.-

a, The Bracket, Symbols '<' and '>'.

b. The production symbol o

c. The choice symbol ' I'
d. Two alphabets called..'namest' and Vsymbols'.

Both of these.alphabets. are.. often-selections of words from
a prior alphabet and can be. infinite in number (but not in
length).

The individual Inames' are intended to denote auxiliary
languages called 'syntactic type.st..of the language being

-- specified; a string of symbols consisting of '<, followed on
the right by a name and then followed by >v is intended to
designate the extent of the name,. i.e, the set of strings in
the specified language of which it is the name- or, put another
way, surrounding a name by these brackets is an operation trans-
forming the intent designated by the name to the set of
processors which operate on it.

-The individual 'symbols' are. designated strings of charac-
ters from the alphabet. of the language...being specified, and

*It should be noted that BoN.Fo is a. Chomsky .type-2 Phrase Structure

Grammar and, languagea.. spe.cified in .B.. N..F.. ar.e..either type-2 grammars
or can. often be...made. -.so by suitable.. minor modifications. There is a
large body of.literature.-pertainirng.to.. these-.stiubjects that is useful

to this study°4,7,8,11

"*Comm. of the A.C.M. V. 4, No. 12, Dec. 1961, p. 532.

3

I
often. are designations, by the. objeots themselves of aux-
iliary language, with, only one. word,. namely that string.
The symbol 1.11' is used-.to chain-together alternative
forms, each of which yields composite syntactic types
which are auxiliary languages formed by concatenation.
Thus a symbol concatenated with a symbol designates
another symbol, a bracketed name concatenated with a
symbol designates the set of words obtained by concate-
nating that symbol with each-wor.d. of the set designated
by the name, a bracketed name concatenated with a
bracketed name designates the 'produat set' of all strings
designated by the other.

By using a string of the fo.'rm: '4bracketed name'
concatenated on. the .right by = concatenated on the
right by 'a composite name. constructed with ' I P,
bracketed names, symbols and.concatenation we obtain in
compact form a set of production rules for the sub-
language designated by...the bracketed name at the extreme
left of the string.

The foregoing quotation i.s. a formal. definition of a syntactic

specification in the Backus normal.form0 ... A few examples are given here

for purposes of illustration. 'Where examples are tak~en from our language

the source is shown,

The simplest production. rule. consists of a bracketed name on the

left of a ,:= and a single symbol on the rightt*

<author >.::.= SHAKESPEARE

This is to be interpreted. wherever the name vauthort appears in

brackets the symbol 'SHAKESPEARE' can be. substituted for it. The symbol

"I is interpreted 'or'o We. redefine the name author as

<author > :s = SHAKESPEAR IMARLOWE I-BACON I DRYDEN I MILTON

which means that. the name 'author' is defined aa the name of the class which

contains {SHAKESPEAR, MARLOWE, BACON, DRYDEN, MILTON}.

*In this paper we use lower case letters foor names and upper case for
symbols. A series of upper case letters (as.,: SHAKESPEARE) is con-
sidered a single symbol unless explicitly stated otherwise,

14

It is possible for bracketed names. to appear on the right of .=

<author>. s=<blind author> I <elizabethan author>I<17th century author>

This defines fauthor' as the name of the class which contains the union of

the classes: [blind author, elizabethan author, 17th century authorl

These classes might also be defined,

<blind author> e= MILTON

< elizabethan author> • z = SHAKESPEAR I MARLOWE I BACON

<17th century author> := DRYDEN I POPE I <blind author>

If we define;

< opus> ,: HAMLET I DUCHESS OF MALFI I PEYTON PLACE

and

<authorship statement> :. <author> WROTE <opus >

We can generate a whole series of statements by substituting the symbols

that <author> and <opus> name into the given statements.

For example:

SHAKESPEARE WROTE HAMLET.

BACON WROTE HAMLET.

DRYDEN WROTE PEYTON PLACE.

MARLOWE WROTE DUCHESS OF MALFI.

All of these statements are syntactically correct. The third is,• however,

semantically incorrect.; while the. correctness of the first two is disputed.

There is another concept to be considered: that of the enpty (or

null) set,

Definition:

<empty>.. =

*This defines an authorship..statement as: a member. of. the set of authors
followed. by the symbaL 'WROTE' followed. by .amember.. of the set of opera
followed by a period.

I

If we re-define:

<opus> .:= HAMLET I DUCHESS OF MALFI I PEYTON PLACE I <empty>

then the following statements are syntactically (and semantically) correct:

SHAKESPEARE WROTE.

MILTON WROTE. etc.

For the concept of recursive definitions, .take .an example from the

language (lIA),

If letters and digits are defined intuitively as primitive concepts

we can define:

<symbol> ::= <letter> I<digit>

- <symbol string> t : <syrb.ol><symbol string><symbol>

<symbol string> is defined.in..terms of. itself (i,.e, recursively) this

allows the building up of a symbol string of any length containing any

combination of letters. Starting with the letter R, which is a symbol

string by the first part of the definition of symbol string, second part

of the definition (which says -that a symbol string is any symbol string

followed by any symbol) allows the formation..ofi the string R1. Again by

the second part of the definition R12; then R124; then R124C; then R124C4;

then R124C41 and so ono,

The syntax of the name Inumber' .is given, by a combination of

definitions, both simple and recursive, ..(1,B,.l) The simplest form of a

rnumber is a digit. By the same sort of recursive definition used for

symbol string an unsigned integer, is .a. s.eries of digits (of any length).

A decimal fraction is an unsigned integer preaeeded by a decimal point;

while a decimal number is. either an..,unsigned. integer, a decimal fraction

6

or else an unsigned integer .followed. by .a decimal fraction (i,,_e 3 or

.41159 or else 3,,14159). An exponent part is defined as lO, integer

where the double star is the symbol for exponentiation and an integer is

either an unsigned integer or else an unsigned integer preceeded by either

t+ I or t -', An unsigned number is either a decimal number, an ex-

ponent part or the former followed by the latter with a star between (star

is the sign for multiplication), Finally, a number is either an unsigned

number or an unsigned number with a sign before it,

In this manner the entire syntax of the language is defined in

terms of the basic symbols. A program is (by. the rules of 6,A) a string

of these basic symbols put together according to the rules of the

definitions following.

7

1. Symbols and Definitions

I4A Symbols

< symbol > < : <letter> I< digit >

<symbol string>' ,• <syimbol>I<symbol string>I <symbol>

<letter> : 1=
<digit> ::=.defined according to their intuitive meanings

l.B Numbers

l1B.l Syntax

<number> := <unsigned number> + <unsigned .number> - <unsigned number>

<unsigned number>,: = <decimal nurriber>I< exponent part>I
<decimal number>* <exponent part>

<decimal number>::= <unsigned integer.> j< decimal fraction>1
<unsigned integer.> <decimal fraction>

<unsigned integer>: -.=<digit>j<unsigned integer> <digit>

<decimal fraction> :.= .<unsigned integer>

<exponent part> >: -10**<integer>

<integer>: ::=<unsigned integer>I +<unsigned integer>1 -<unsigned integer>

1.B.2 Semantics

Any number of the forms usually associated. with.decimal numbers can

be expressed., The exponent part is shorthand for a scale factor expressed

as an integral power of 10,.

l.C Comments

At any point in a program, the programmer may put a comment which

consists of any symbol string without a semi-colon. This will be ignored

by the compiler. Comments are of us.e. for making explanatory notes within

a programý

<coment> :"=COMMENT: <symbol string>j

2. Variables and Expressions

2.A Variables

22.A.1 Syntax

<value>• s= <number >I•variable name

<variable. name > t-= < simple, -variable> j< vector >j< matrix>

<simple variable> := <variable identifier>

<vector> < <variable. identifier > (< primary)

<matrix>• = K variable identifier > (<primary>, <primary>)

<variable identifier> F !.$ <letter> <symbol string>

2,A.,2

The term variable name. is used. to denote a quantity referred to by

name rather than by explicit appearanca and which is able to take on a

number of values.. In. .thia..language, as p resently.-formulated, there are

three types of variable. names. allow.ed... simple....variables, vectors., and

matrices. A vector is a subscripted variable having one subscript and

a matrix is a subscripted variable having -two subscripts. •C.f., however,

section 3.Eo4.

Values of variable names can be changed. by set statements or refer

statements (qv 0.)

Although any string of letters. is. syntactically .a legitimate variable

identifier, the use of the names. of .the.standard..functions (see 2.B.4.C)

should be avoided.

2.A.3 Examples

Simple variables:

X
X3

FOOF

SUM

I

* Vectors

X(i) X(2)
I Y(i+J!2*n) Y(4

SUM (SIN(3,PI/2*n)) SUM2(97)
I Matrices

J1 (1, 3)
Y(X(i, j), COS(Z(k))) Y(27,2)

SUM2(SIN(X), 3*ARC TAN(THETA)) SUM2(1,5)

2.Ao4 Subscripts

As can be seen from the above examples.the. subscripts of vectors or

matrices can be expressed in terms of. numbers,. -of other variables or

arithmetic expressions, however, the actual.component of the vector or

matrix referred to is specified by the actual numerical value of the

subscripts. (If this numerical, value is. not an integer, its value is

taken.as the.nearest..integer.nott greater than the. actual value. Only

positive.o(noný-zero) subscripts are defined.)

If a subscripted variable is. to. be used,.. it. must have previously been

defined by a dimension, statement..(q.v..) or a refer statement (q,.v.)*

2.B Arithmetic Expressions

2.B.1 Syntax

<adding operator >• s+ I
<multiplying operator >. *I/

<memory value > a <number>j<simple variable>

<function name > a t-ABS I SIGN I SQRT I SIN I COS I ARCTANI LNI EXPI ENTIERII
MEDIAN I LOG I MEAN

<function expression> >s: <function name > (< arithmetic expression >)

<primary>. .- <memory value >I<vector>t<matrix>I
<procedure call> I <function expression >j
(< arithmetic expression >)

10

< factor > : < primary > <factor > ** <primary>

<term> ::- <factorr>I<term> <multiplying operator> <factor>

<arithmetic, expression>-.: <.tenr>j< adding operator> <term> I
<arithmetic.expression.><adding operator><term>

2.B.2 Semantics

An arithmetic expression is. .a rule for compnting a numerical value.

7 When the indicated arithmetic. operations .are performed on the actualL
numerical values of the. primaries.f the expression the value of the

expression .is obtained.....For..variables,.in-.an..arithmetic expression the

value of the expression is obtained from the. crrent value while for

function designators it is the value arising from the indicated operation.

For arithmetic expreasions.in. parenthesis the-valua must be expressed in

terms of the values of the-primarieswithin the parenthesis. A memory

value is a convenient .special case. usde.when -there exist non-subscripted

variables, In this case. the coding.generated is more efficient.

S2.B.3 Examples

Primaries.

1732*10**-.3 (3+Y*Z) X(1)
X cos(X+3) x(3,7)

omega (cos(X)+3) Y(3n+2)

Factorst

1.414**7 cos(X+3) **Y X(i, j)D*(+K)

141**Y((+3)**Y)

Terms:

1414**Y/cos(X+3) lo414**Y/(cos(X+3)*Z (A/B)4C

(1 o414**Y/cos (1+3)) *Z A/B A/(B*C)

Arithmetic Expressions:

+ln(3-Y) C*D+B**A

-(A+B) .3+4*oos(5+T)

1U

2 .B.4 Operators and Functions

2oB.4.a Definitions

The operators +, -, *, and / have their conventional meaning

(addition, subtraction, multiplication, and division). The ** symbol

is used to symbolize exponentiation. In the operation

<factor>**<primary> the factor is the base and the primary is the

exponent.

For example
bc

a*,*b**c means (ab)

ai,'(b**c) means a(be)

2.B.4°b Precedence

The following rules of precedence of evaluation hold:

first: *

second: */

third: +-

These follow from the definitions in 2.B.l,

2.B.4-c Standard Functions

Various standard functions are expressed in abbreviated notations;

several of these are:

ABS(E) The absolute value of expression E

SIGN(E) The signum of E(+1 if E>0, -1 if E<O, 0 if E= 0)

SQRT(E) The square root of E

SIN(E) The sine of E

COS(E) The cosine of E

ARCTAN(E) The principal value of the arc tangent of-E

LN(E) The natural logarithym of E: log e(E)

LOG(E) The logarithym to the base 10 of E: loglO(E)

12

EXP(E) The 6ponential of E• (eE)

ENTIER(E) Largest integer not greater than E

MEDIAN(E) a. If E has no free subscripts. MEDIAN (E) E
b. If E has one free.snbscript then, if the values of E

be arrangeain-order of magnitudes
1 1. MEDIAN(E) is. equala- _tho e value in the central

position (if the.greatest- value of the subscript
is odd).

2. MEDIAN(E) is equal to the mean of the two values
nearest to a central- position (if the greatest
value of the subscript is .even).

c. If E has- zore. than. one. free subscript, MEDIAN (E) - 0

MEAN(E) a. If E. has no..free. subscripts, MEAN(E) = E
b, if E has-ona free. subscrip.t.. then, if n is the greatest

value, of. this. subacript,..• 1W.IEE) - (B(i).+ E(2) +...+ E(n))/n.
c. If. E has.. more than.one..fr.ee- subscript MEAN(E) 0

E may.be.-any-arithmetic expression*

13

3. Basic Statements

3.A Let Statement

3.A.l Syntax

<equation>: -=<variable name> -= <arithmetic expression>

<equation list> -:=<equation>j<equation list , <equation>

<let statement > •=LET<equation list>

3.A.2 Semantics

The let statement is. used for computations.

For examples-

LET X=3.COS(THETA)/SIN(SQRT (PHI)),
Su•==2*X -5/X**Z,

-• X(i+l) :=X(i) + Y(j);

K 3oB Transfer Statement

3.B.1 Syntax

<location> : : <procedure call >j< statement label>

<transfer statement.> :s=i= GO TO <location> j I HALT <location>;
T

3.B.2 Semantics

The GO TO transfer can be used for a jump or unconditional transfer

of control. The HALT is the. samne except that the computer stops before

transferring.

If transfer is made to a statement (identified by a label), this

statement must be in the procedure being run at the. time. Transfer may

be made to another procedure. This. is discussed in 4.B and the syntax

V of <procedure calal> is given in 14A.

3.C Condition Statement

3.C.I Syntax

< reaation > =,=< I K I= >1

114

<condition> : := <primary> <relation> <primary>
<condition part>::- <condition>I<condition part> AND <condition>

<condition list>: : <condition> I(<condition part>)
<condition list> OR <condition list>

<statement list> : : <statement>l <statement list> <statement>

<end>::-. I.<symbol string>

<condition tail> s t <statement list> <end>I
<statement list> ELSE <statement list> <end>

<condition statement> : -&IF <condition list> THE <condition tail>;

3.C.2 Semantics

A condition statement is of one of the two forms:

a. IF (some combination of conditions is fulfilled) THEN (do something)
ELSE (do something else).

b. IF (some combination of conditions is fulfilled) THEN (do something).

In the first case, if the conditions are fulfilled, the list of

statements following the THEN are performed and the list following the

ELSE is skipped. If the conditions are not fulfilled, the list following

the ELSE is performed and the one following the THEN is omitted. In the

second case, if the conditions are not fulfilled, control is transferred

to the next statement following the condition statement.

The condition list is made up of combinations of simple conditions

of the form:

<primary> <relation> <primary>.

Some examples:

a>b

D(2,3) 12

3< A+B(j)

SIN(THETA*2*PI)2. COS(OMEGA/2*PI).

15

I

The syntax of condition list ailows.the joining of these simple

relations into more complex forms.. A condition part can be any strhig

of conditions connected by AND. For example:

a>b AND D(2,3)).2 AND J**2/-l AND

This' is. satisfied if..and.only.if each of the individual conditions is

satisfied. A condition.part in parenthesis-.is..a.condition list and can

be used in a condition statement.

It is also possible..to -combine .tw..o..or. more condition lists by

stringing..them..along..with.OR. separating them... In this case the ex-

pression is satisfied if and. only •if at.least one of the constituent

conditions is satisfied. For example:
(a>b AND b,<c) OR J**2/-1 OR

(A(l,.j) B(j+.3) AND C= O) OR .. 0

The statement list may consist of any combination of statements and

ends in a period. A. comment may be added after the period if desired

without the necessity of writing "COMMENT:"

3.C.3 Examples:

IF (a>b AND c<d+l) OR (a-O AND d-l=O) THEN

GO TO $3; ELSE LET d:= d+1; GO TO Sh; .; represents:

a>b? e< d4. y Y @

I Zn
I- d- -- d

IF a- 0 OR a>lO**9 THEN GO TO EIIT; .; represents:

16

nn a>0 l9, n Continue in
y Yyy sequence

IF i>k THEN

IF j>i THEN LET i" =i+l; j CASE 1;

ELSE

IF j >i THEN LET i:-j; ELSE LET i:=k;. CASE 2; represents

i> k in
n n
n n

Continue

"CASE 1" and "CASE 2" are comments added for mnemonic purposes.

3.D Vary Statement

3,D.1 Syntax

<lower limit> : :=<primary>
<upper limit> :.-<primary>

<increment> : : <primary>

<statement list> : := <statement >j< statement list> <statement>

<vary by steps> : :=
VARY <variable name>FROM<lower limit>

BY < increment,> UNTIL <upper limit>

IN < statement list > < end >;

<name list> -. <variable name>j<name. ist>, <variable name>

<vary list> ::-=<value>I<vary list>, <value>

< compound vary list > ::(< vary list >) < compound-.vazr..list > (< vary list>)

17

<end>•: . I.< synbol string>

<vary by list> ::-

VARY < name list> OVER <compound vary list>
IN <statement list> <end>;

<vary statement> ::sm<vary by steps>j<vary by list>

3.D.2 Semantics

The first vary statement will cause the value of a variable in a

specified. list of- statements. to,.he modified-by. increments over a given

range. The second. vary. statemaent.will cause one or more variables to

be varied.. each over. its-. o.wn..sp.ecifiedlist.of.. values. It is possible

for the statement list of one vary statement to contain another vary

statement. A period ends the statement. list. af a vary statement. As

before, a comment (not containing a semi-colm) .-may be inserted after

the period for purposes of explanation.

3.D.3 Examples

VARY X FROM 0 BY 10 UNTIL 300 IN

IF X- Z THEN

GO TO TEST 2;.;.;

In this example, Z is some previously defined simple variable and

the simple variable X is varied by steps of 10 from 0 to 300 in the

condition statement "IF XZ ... THEN GO..TO. TEST 2; .1". The flow chart

for this iss

> X > 300? 0% continue

8 y
TES 2i In

18

The general form of. a.vary by steps statement is

l ow er lim it -@•Y

dunny location > upe"M tny

statement list

d--idxriy + inc~rement -4 d'T~mr.

The limits and increment do not have to be constants.,

VARY i FROM a BY ((a-b)/100) UNTIL b IN

IF 3*i**2 >10 THEN

LET c:=i;

GO TO S9; .; , END OF i LOOP;

A compound vary statement:

VARY i FROM 1 BY 1 UNTIL 10 IN

VARY j FROM 1 BY 1 UNTIL i IN

IF X(i, j) = 0 OR

ABS(X(i, j)) > 1o**6 TEmE
GO TO ERROR; .; .; .;

- -can be represented:

I > l? y 9continue

X•i =0o y ERR,• OR

ABS(X , j)) > io**6?

19

wherein the symietric matrix X is taken tern by term (actually, only

those terms along or above the main diagonal are-considered) and if any

6
term equals O.or..is greater in magnitude-than -10. , control is transferred

to ERROR.

in a vary by list. astatement, variables .areoranged over lists. For

example:

VARY. K,.. X,. Z.OVER (1,2,.3)(A,B, C)(i0**2), 10**3, 10) IN
LET P(k) :- Z*X; .;

This statement will perform the following operation:

LET P(l) s10**2*A

P(2) -=l0**3*B

3.E Dimension and Refer Statements

3.E.1 Dimension Statement Syntax

<vector limit> := <variable identifier > (<unsigned integer >)

< matrix limit >..: < variable identifier >
(< unsigned integer>, <unsigned integer >)

< subscript limit > - : = < vector limit >1< matrix limit >

<dimension list> - :-<subscript limit >I
<dimension list>, <subscrit limit >

<dimension statement> : :mDIMENSION <dimension list>;

3.E.2 Refer Statement Syntax

<vector identifier >.:.: = <variable identifier>

<value list >.::= <value.> I<value list>, <value>

<pair> : := <value list >AS <vector identifier>I
<value> AS <variable identifier>

<pair string > : : <pair > I<pair string >, <pair >

<pair part>::= <pair string>AND I<empty>

<pair list > : := <pair part> <pair>

<refer statement > ::=REFER TO <pair list>;

20

3.E.3 Semantics

The dimension s±tatemant..is.used.d.tn. allocate...storage for vectors

and matrices.

For example if a program used the matrices SUM (i, j) and A (r,t)

(where l<i<<10, lJ<j<,20, l<r,<3 and l1<t<,200) and the vectors

PRESS (k) and TF• (s) (where l k.< 30 and. 1< s< 5), then the following

statement would-appear, in the program. (this. .must.,...of course come before

the use of any of the dimensioned names):

DIMENSION SUM (10, 20), A (3, 200), PRESS (30), TEMP (5)"

The. refer statemzs•_ha&..t'wo. uses., .one.isa.to. allow...the name of a vari-

able or set of variables to be changed..andL the.. second..to allow a series of

values of variables or constants to be combined into.a single vector for

ease in reference. When a simple variable or an entire vector or an

entire matrix .is.renamed by a refer statement,...the-.original variable name

becomes undefined and may be re-assigned at will.

K For example, the following refer statement will put the combination

of values of variables X(ll), Y(i,l), Z(3), ALPHA and 13.75 into a

vector, V:

REFER TO X(1,1), Y(l,l), Z(3), ALFHAs 13.75 AS V;

The statement

REFER TO X AS Y, HPESS AS FOOF AND GEB.AS. GBW;•will give X, PRESS and

GEB the new names Y,.. FOOF, GBW respectively.. X,. PRESS. and GEB could be

simple variables or arrays. The equivalents would. have the same dimension.

3.E.4 General Subscripting

For the system as proposed, compilation time will. be decreased (at the

cost of decreased generality. and wasted .torage).by..limiting arrays to two

21

subscripts. Below is- a. refornQrltioi.of -Dimension .,sing the name ARRAY

to identify a matrix. of any dimension.

<array limit> ::= <arithmetic expression>

(limit list> : := <array limit>I<limit. list>, <array limit>

<array segment> : := <variable, identifier> (<limit list >) I
<variable identifier>

<array list > : :• <array segment> I<array list>, < array segment>

(array statement> : :=ARRAY <array list >;

In this case, the array statements do not have to appear at the

beginning of.a program .butt may appear. anywhere. Note that this implies

dynamic storage. allocation. If..this. feature,- is not required, use

< array limit > :s - < unsigned integer >

The dynamic. storage. allocation. mplies.J._the. .us.e of such concepts as

global and. local variables and block structure. We attempt to gain some

of the advantagea o.Lthis through. the use of the RELEASE psuedo-statement

(c.f. 3.1).

3.F Type Declarations

3bF,I Syntax

<identifier list> : := <variable identifier>I

< identifier list >, < variable identifier >

<declaration> : :=INTEGER <identifier list >;I

INTEGER VECTOR <identifier list> ;i
INTEGER MATRIX.<identifier list >;I

3.F.2 Semantics

In general, variables name floating point numbers. The use of an

INTEGER declaration will make the value of the variable an integer which

will be stored at some fixed magnitude in memory.. INTEGER VECTOR and

INTEGER YATRIX serve to .make,..all.the.v.alues..of a_.vector or of a matrix

22

integers. Declaring a variable used in a subscript to be an integer will

facilitate the finding of the value desired.

Variables of either type (integer or floating point) may be used in

any equation. The type of the result is the type of the variable found

on the left of the "

3.G Dummy Statements

3.G.1 Syntax

<dunvpYrx Statement m::

3.G.2 Semantics

A dummy statement is occasionally useful for labelling the end of

a procedure.

3.H Code Statements

3.H.1 Syntax

<code statement> -:=CODE<symbol string>END;

3.H.2 Semantics

If it is wished to include a block of computer coding (numerical and/or

symbolic) in the program, it can be placed between "CODE" and "END;"' and the

compiler will pass it through unchanged. N.B.: the symbol string "END;"

must not appear within the block of coding or the compiler will take that

to the end of the block.

3.1 The Release Statement

3.1.1 Syntax

<identifier list> ::= <variable identifier>I
<identifier list>,, <variable identifier>

<release statement> : :=RELEASE<identifier list>;

23

t 3.1.2 Semantics

This statement is actually a pseudo-statement since it will generate

only pseudo-operations for the assembler. It is used to conserve

storage.,. when a section of the program is finished with some simple

variable, vector, or matrix, the use of RELEASE will permit the memory

used for that variable, vector, or matrix to be reassigned.

24

4. Procedures and Program

4.A Syntax

<unlabelled statement> - <code statement> f<condition statement>I
<declaration> I <dimension statement>1
<dummy statement>l< let statement>I
<read statement> I<refer statement>I
<release statement>I <set statement>I
<special statement> I <transfer statement>1

<vary statement>

<statement label> := <letter > <symbol string>

<statement> -.= <statement label> : <unlabelled statement> I
<unlabelled statement>

<statement list>: < statement> I< statement list > <statement>

<procedure name list> = < function name> I <procedure identifier> I
<function name>, <procedure name list>[
<procedure identifier>, <procedure name list>

<subroutine list> .*=(< procedure name list>) IE

<variable list> .-- <variable name>I<variable list> , <variable name>

<formal parameter list> = (<variable list >) E

<procedure heading> -.= <formal parameter list>, <subroutine list>

<procedure identifier> :-= <letter> <symbol string>

<procedure> = PROCEDURE <procedure identifier>
<procedure heading> <statement list>END

<procedure sequence> -= <procedure> I<procedure sequence> <procedure>

<program>-. :-START<procedure sequence> STOP

<parameter> -.= <variable name> l<arithmetic expression>

<actual parameter list> *:- <parameter> I
<actual parameter list>, <parameter>

<procedure call> -.= <procedure identifier> (<actual parameter list>)

h.I.B. Semantics and Examples

A complete program begins with START and ends with STOP. Between

these delimiters there may be several procedures, each with END to denote

its finish. It is possible for one procedure to call upon another as a

subroutine. If this is to be done, each procedure to be called is named

in the heading of the calling. procedure. It is.emphasized that all

variables firs mantioned withiu a. pr4-is ýae.loa o ht- cdr

and if used.by.another procedure. (except.-asaallowed by the following)

are treated as completely new .names.. The exception to this rule is in

the case of a procedure being used as a subroutine . The sub-procedure

may refer to any variables of the super-procedure .(but not vice versa)

which are mentioned in the procedure call. The symbolic assembly

program will take care of this detail.

Consider the following procedure which will transpose a given matrix.

It is assumed that this procedure is to be used only as a subroutine and

the matrix to be transposed is to replace the original matrix:

PROCEDURE TRANSPOSE (n, m), E;

COMMENT: n is the order of the matrix to be transposed, and

M is the matrix itself;

INTEGER i, J;

VARY i.FROM 1 BY 1 UNTIL n IN

VARY J.FROM i BY 1 UNTIL n IN

LET TEMPs=M(i, j),

M(i, j) 2 :M(J,i),

M(Ji) s-TEMP; .END j LOOP; .END i LOOP;

COMMENT: This routine is actually short enough not to need to be
used.. as. a.asubr.outine, ..but..it.will. do for illustrative
purposes; END

In the above procedure, the variables i, j and TEMP are local to the

subroutine and if the symbolic names si", tj" or "TEMP" were used by

another routine, they would have an entirely 1-•1erent meaning. If it

were now necessary to use this procedure as a subroutine the entry to

the subroutine might be by a procedure call of one of the following forms:

26

1a.) TRANSPOSE (n, M)ý
b.) TRANSPOSE (23, a);

c.) TRANSPOSE ((c+ d)/e, L)3

In a procedure heading, the variables are really dummy variables and,

upon operation, the true values, i.e. those in the procedure call are

used. In a.) above, the values of n and M in the subroutine are those

found in the super3 in b.) n is set to 23 and the values for M are taken

as the values of the matrix a (which must have been defined in the super

program)s and, in c.) n is set equal to the value of (c+ d)/- (where

c, d, and e must be defined in the super program) and values for M are

taken from the values of the matrix L.

The following rather lengthy program is for inverting a matrix

PROCEDURE INVERT (A, n, s, Al), Ei

COMMENT. l This program is a translation from the original ALGOL
of Algorithm 42 by T. C0 Wood, published in the
April 1961 issue of COMM. AoCoMo (p. 176).

2, This procedure inverts the square matrix A of order n
by applying a series of elementary row operations to
the matrix to reduce it to the identity matrix. These
operations when applied to the identity matrix yield
the inverse Al. The case of a singular matrix is
indicated by the value sg=l (upon exit).

3. A and Al are arrays that must have been previously
dimensioned. s and n were previously declared integer.

4. This program uses variable size arrays. If these were
not allowed, an integer would be substituted for n;

DIMENSION a(n,2*n), INTEGER i, J, k, m, ind;

CCKMENTg Augment matrix A with the identity matrix;

VARY i FROM 1 BY 1 UNTIL n IN

VARY j FROM 1 BY I UNTIL 2 *n IN

IF j<,n THEN LET a(i. J).=A(i, j); ELSE

IF j=n+i THEN LET a(i, j)= 1.0; ELSE

LET a(i, j).- 0.0; .; .

27

END j LOOPo

END i LOOP;

COMMENT. Begin inversion;

VARY i FROM 1 BY 1 UNTIL n IN

LET j•=i, ma=i, ind,=O, s-=O;

LIs IF a(m, j)=O THEN

LET inds=I;

IF m<n THEN

LET m•=m+ 14

GO TO LI1

ELSE LET s•=l$

GO TO L2; .; .;

IF ind=l THEN

VARY k FROM 1 BY 1 UNTIL 241n IN

LET TEMP--a(m, k),
a(m, k).-a(i,,k).

a(i., k),-=TEMP; END k LOOP; .;

VARY k FROM 2*n BY -1 UNTIL i IN

LET a(i~k).-=a(i, k)/a(i, i); .;

VARY m FROM 1 BY 1 UNTIL n IN

IF mn i MEN

VARY k FROM 2*n BY -1 UNTIL i IN

LET a(m, k)Q=a(m, k)-a(i, k)*a(m, i); .; .; .;

END i LOOP;

VARY i FROM 1 BY 1 UNTIL n IN

VARY j FROM 1 BY 1 UNTIL n IN

LET Al(i, j).--a(i, n+j)i o, ,;

L2 ; END

Two examples of programs in the English-based algebraic compiler

language are given. In all cases, the first comment gives the source

of the routine.

28

a.) Exponential of a complex number

PROCEDURE EXPC (a, b, c, d), (EXP, SIN);

i COTETT I. By John Ro, Herndon, Algorithm 40", from Coyno A.C.M.,
April 1961.

2. This procedure computes the number c+ di, which is

equal to e

LET c:=EXP(a);

LET d:•cc*SIN(b);

cs=ciOS(b); END

b.) Logarithm of a complex number

PROCEDURE LOGC (a, b, c, d), (SQRT, ARCTAN, LN);

CONMENT: 1. Same author, same source, Algorithm .48.

2. This procedure computes the number c+ di which is
equal to loge(a+ bi);

LET cg=SQRT (a-a+ b*b);

LET d-ARCTAN (b/a),

c.-LN(c);

IF a<O THEN LET dE=d+ 3.lbl5927; .; END

c.) An example of a complete program with input and output.*

This program will read in a 10 x 10 matrix from tape (or card)

invert it and print the result on the typewriter. We assume the

existance of three procedures in machine languages

PROCEDURE READ(R) will read in one number in decimal, convert
it to binary and leave it in location R.

PROCEDURE WRITE(W) will take one word, convert it to decimal
and print it on the typewriter.

PROCEDURE NEWLINE will return the carriage of the typewriter.

*Adapted from "An Introduction to ALGOL" by H. R. Schwartz, Comm. A.C.M.,
February 1962, p. 94.

29

START

PROCEDURE FLIPE9 (READ, WRITE, NEWLINE, INVERT)3

COhMM±,'rrg IREAJD5 WK-I'- and NEWLINE are code programs, INVERT
is given as an example in Section 6.B of the
language description and is not repeated here;

DIMENSION A(10, 10);

INTEGER i9 Jý

VARY j FROM i BY 1 UNTIL l0 IN

VARY i FROM 1 BY 1 UNTIL 10 IN

EXEC UTE READ (Ai, J)); s

EXECUTE INVERT (A, 10, singular, A)i

IF singular= 1 THEN LET oops•=-l

EXECUTE NEWLINE

EXECUTE WRITE (oops)i
GO TO done; .

VARY j FROM 1 BY 1 UNTIL 10 IN

EXECUTE NEWLINE;

VARY i FROM 1 BY 1 UNTIL 10 IN

EXECUTE WRITE (A(i, j)); .; o,

done.,; END

PROCEDURE READ (R), E;

CODE. ... END; END

PROCEDURE WRITE (W), E;

CODEa ... ENDý END

PROCEDURE NEWLINE E, Ei

CODEs ... END; END

PROCEDURE INVERT E. E;

COMMENTa (see 6.B); END

STOP

30

The Input-Output Statements

The Libratrol-500 computer has, as well as standard programmed

control input-output facility, the ability to give output and take input

through groups of relays connected to a special track in the memory.

The automotive checkout system is built around a specially modified

Libratrol-50O and an EPUT meter. The programming and operation of the

Libratrol500 are described in the Instruction and Programming Manuals

published by the Librascope Division of Royal Precision Corporation

(Burbank, California) and in a special Instruction Manual Supplement

prepared for the Frankford Arsenal by Librascope. The EPUT meter is

described in considerable detail in the Instruction Manual for the

MAIDS EPUT METER prepared for the Frankford Arsenal by California

Computer Products, Inc. (Downey. California).

A series of special statements called input-output statements is

used to program the EPUT meter and its associated analog to digital equip-

ment, to read in from or out to the EPUT meter and analog-digital equip-

ment and to output various standard messages to the operator during the

running of any testing program.

The statements are part of the complete compiler language but

are given separately because they are designed for a special purpose. The

algebraic compiler of the previous section could be coupled with the

L CONNECT statement of FATAL to make a circuit testing language. See 1961

report, p. 21o

31

5o Input-Output

5.A Set Statement

5.A.1 Syntax

<set statement> • .=SET<device>

<device> g <adc> <output line> I<eput>

<adc> *.=ADO TO<range> <speed>

<range> 1IV SCALE 10 V SCALE

<speed> g HIGH SPEED(<crankshaft angle>)I<empty>

<eput> .- EPUT<mode> <a-setting> <b-setting> <slopes> <threshold>I
EPUT MD<a-setting> <b-setting> <slopes> <resetting> <threshold>

<mode> .-MA. I MBMO I ME I F I MG
<a-setting> • = N= <value> I <empty>

<b-setting> =, M=<value> <delay> I<empty>
<delay>.-.--, D j<empty>

<slopes> •s=<da 1 slope> <da 2 slope> <da 3 slope>

<da 1 slope> g -=.,<sign> DAlI<empty>

<da 2 slope> -,<sign> DA21<empty>

<da 3 slope> • °,<sign> DA31<empty>
<sign> -. ,= + I

<resetting> .--THEN<da 3 slope>l<empty>

<threshold> 9, DA3 -<number> VOLTSI<empty>

<crankshaft angle> -,= <integer> DEGREES

<output line> , g = < line identifier> TO <number> VOLTS

<line identifier> o= < letter> . <digit> <digit> <digit>

5.A.2 Semantics

The set statement can be used to set the scale or the method of oper-

ation of the analog to digital converter. If the high speed mode is

selected than a crankshaft angle giving the final reading desired must

be specified. If the given angle is not a multiple of 10, it is taken

as the greatest multiple of 10 less than the given value.

32

Setting an output line. -consists -of making- anu.appropriate series of

relay closures. If a..voltage is sp.ecified. that is not available, the

nearest value less in magnitude than the -specified value is selected.

The EPUT meter can be set up. fom any desinade.-reading (c~f. MAIDS

Manual).. The. following.assumptions are made:

when a slope is. not specified, it is +

when an a-aetting..or a. b-set-ting.s.. not specified, it is O

when a threahold.is .no.t.apciJfied.,. .it.is unchanged from the
last timethe EPUT meter was used.

5.B Read Statement

5.B.1 Syntax

(<read statement> : -READ < source >INTO <variable identifier> <space >;

<source> i <relay list> < line identifier>

<relay list> s:= <list member>I<relay list>, <list member>

<list member > s s=GROUP(< group number >) I GROUPS(< group list >)

RELAY(<relay number >)I RELAYS(<relay number list >)

<group list> < :=<group number >1<group list >, < group number>

<group number >.:=<unsigned integer>

<relay number > -s= <group number>°<unsigned integer>

<space> s =(< unsigned integer >) I (<unsigned integer>,FF)

<relay number list>: s:i<relay number>J<relay number list>,<relay number>

L5..B2 Semantics

The read statement can -be uaed alone to rea_. relays and relay groups

or in conjunction with a set statement to read from. the EPUT meter or from

the ADC in the high speed mode. Relay graupB. are. identified by a unsigned

integers and individual relays by a group number and a relay number.

Inputs are either read into a single .storage..location or into a vector

(which must have been previously dimensioned) starting at the location

identified by the integer following the-variable. identifier. For exaxple:

33

READ GROUPS (1,3, 5, t j (29.1) INTO G(9FF);

means that the 24 relays in groups 1, 3, and 5 and.relay 29.1 are read

into G(9), G(lO), ... G(32), G033)

When a read statement, containing a line identifier follows a aet state-

ment, the two are taken as a unit, is the read.. atatement specifying the

input to the EPUT meter (or ADO).

S5.C-1 Syntax

<special statement> s s <delay statement> I< typeout statement >1

<definition statement> I<close switch statement>1
<open switch statement>

<close switch statement> stG-CLOSE SWITCH<unsigned integer>;

<open switch statement.> s s=OPEN SWITCH<unsigned integer>;

<delay statement> -,=DELAY <unsigned number> SECONDS;

<typeout statement> >a:TYPEOUT <typeout list >;

<typeout part> a .- '<symbol string> I <unsigned. integer>j (< variable name>)

<typeout list > a s-<typeout part> j<typeout list> < typeout part>

<definition statement > 8. -DEFINE <definition list >

<definition list> : g= <definition >I<definition list>,< definition>

<definition > :sTYPEOUT < unsigned integer> AS ' <symbol string >'

5.C.2 Semantics

The delay statement and the switch statemapts are used respectively

to cause time delay in the operation of the program and to open and close

switches under computer control.

There are three kinds of typeout statement.-

4*) TYPEOUT ' <symbol string >1 - the symbol string between the quotation
marks is typed. out. (thia-umat not contain a ";

b.) TYPEOUT <unsigned integer> - the symbol string corresponding to the
given integer (which must have previously been defined by a
definition statement) is typed out.

c.) TYPEOUT (<variable name>)- the current value of the variable is
typed out.

34

III. The Compiler

The complete compiling program for the algebraic language will

consist of four separate routines Another routine .l.l be anpended to

compile the input output statements.

SYMBOLIC
PROGRAM

LANGUAGE- INPUT ROUTINE COMPILING COMPILING ASSEMBLY PROGRAM
PROGRAM ROUTINE ROUTINE PROGRAM

E INUT-OUTPUT1

Figure 3.0 Block Diagram of Complete Compiler

The input routine is a short one-to-one translator that will

substitute numbers for the symbol strings in the input. It will also label

input-output conmands so that they will be processed by the special input-

output compiler and it will label constants, variable identifiers, procedure

identifiers, etc. as such to save the compiler proper having to process

strings symbol by symbol. The substitution of fixed length numbers for

variable length symbol strings will increase the efficiency of the various

table look-ups needed during the compiling. The input routine is discussed

in more detail later. The Symbolic Assembly Program is not a part of the

compiler proper but is shown for completeness. It is emphasized that the

compiler is able to generate either symbolic or absolute coding (or both,

at some small loss of efficiency) and as such the Assembly Program can be

eliminated entirely. For a computer such as the Libratrol-500 which is

single address, it would be most efficient to generate numeric coding

directly and omit the symbolic phase altogether. For a two address machine

such as FADAC for which optimization or minimum latency programming is

required, it would probably be best to compile symbolic coding and let the

optimizer do the assembly.

RAVEL - The First Compiling Routine

In last June's report, RAVEL and SKEIN were the two compiling

routines that made up the YARN compiler. This compiler was developed by

P. Z° Ingerman on a contract sponsored jointly by the Air Force Office of

Scientific Research and the National Science Foundation.* This work is

well documented elsewhere and the discussion here centers mainly on the

application of this compiler to the automatic checkout languagel1sl15l7,l9

Figure 3.la shows the recursive subroutine RAVEL (a, p, y) where ca, P and y

are three parameters that must be assigned values before the routine is called.

The program calls upon itself as a subroutine at two points. The first,

RAVEL (A[h], S [J,2], 1) sets the values of a, p and y to A[h], S [J,2] and 1,

respectively5 while the second RAVEL (S[J,2], GOAL, 2) sets a, P and y to

S[J,2], GOAL and 2. (The terms A[h] and S[J,2] are defined below).

*This work was done under Air Force contract AF-49(638)-951, "Research
into Mechanical Languages" and N.S.F. Grant G-1h096 placed with the
Mechanical Languages Projects Office of the Moore School of Electrical
Engineering, Univ. of Penna. Dr. Saul Gorn is the principal investigator
on this contract.

36

CýJ

H HJ L

+ 41 PCl)

r'-

H - H Cd0

+d +

Q) 4-D

r-H C.

C) C

r1t Cd

Cdr- A N od

cId a) a
p~ 111 4

4'bf 4'P4

wri) i) CH
-H H *H 0

0:

-4P00 00

EH-1 Cd

37

Figure 3.1a is a modification of the flowchart on page 52 (Figure 6) of the

June 1961 report. The mechanization of a recursive routine requires a lot

of bookkeeping and the use of pushdown storage. Figure 3.1b shows the same

routine in non-recursive form where the subscript '"i" designates the level

of the pushed down storage and symbols subscripted with Pi" are the pushed

down variables.

Table 3.0

Definition of Symbols Used in Figures 3.la and 3.1b

i -Counter on the level pf the main pushdown storage

Ri WStratification counter

J. - ymtax table address
1

Parameters in the main
IVARi - Name of the current node pushdown storage.

GOALi - Name of the current goal

Exit. - Exit switch

S - Syntax matrix

K - Label counter

p - Counter on the level of the label pushdown storage

- Label pushdown storage

h - Counter on the input list

Ah - The input list (A [0] is the first word, string or symbol input
A [1-]: is the second..,: eto.)

0 - The enpty string (which may appear in the third column of the
Syntax matrix)

a- Output control switch

A language specified in the Backus Normal Form (BNF) can be diagrammed as

a tree with recurrent nodes. For example the languages

<a> :=BIB<c>

 :-ABIA<c>

<c> :t-<a>

38

Figure 3.1b -RAVEL -non-recursive form

04p

04i'
04 i

ItPROGRAM".
GOAL i

Ah IVAR~

0 ->JJ+i

a1[j, OUTUT "X" KVA OUPT S Si +~, 0a J, h~~ +

-~~a 41S4a2+GO~

(I i .3ay *a EIil

ýnb

0 39

can be diagrammed

B B<c> •

*<a> .\

'II, N
I,

• /
A'B A- <

and, given a string such as, for example, BBABBAB which is of type <a>

there is a path through the tree to generate this strink. If the language

is unambiguous, this path will be unique.7' 8 '9'11

The RAVEL routine takes an input program. (or statement on procedure,

etc.) and using the complete tree of the language, traces the path of

generation. In this generation tree there is associated with each node

a unique label or name and the output of RAVEL is a list of these node

labels together with such local cross references as are necessary for the

second compiling routine to be able to translate this list into computer

code, Appendix 3 contains a discussion of a modification to RAVEL to

increase efficiency.

The complete tree of the language would be a quite large and unwieldy

combination of lines, arrows and labels; rather than actually draw the tree,

the syntax is put into a tabular form and then into a 3 by (mari)-matrix

machine oriented form. These are called the S-table and S-matrix and the

40o

method of their generation is given in Appendixl Table 3.1 is the S-table

1 ~for the complete Maeri agaexxlTba••Ah trix Form of 3.1.

In Figure 3.1a there is a block coritaining %he expression

SHIVAR -0 GOAL" (read: does IVAR lead to GOAL). The answer to this is given

I in a binax-y matrix. The answer'is "YES" if the space. corresponding to IVAR

on the left and GOAL at the top has a "I" otherwise.,.the answer is "NO".

} A sample table of this sort is given as Table 3 (p. 60) of the June 1961

report and the method of generation is given in Appendix I.

l4

7i

Table 3.1 Syntax Linear Format - S-table

*adop A

-adop B

* muJlop 0

/mulop D
(arex)prim E
C condpart) condlist F

(procnalist) sublist G

(varlist) formiparlist H
C varylist) comvarlist I

<relJ

l<rel K

rel L
rel M

>rel N

9rel 0
*end P

*string end

dunstat R

ABS fnarn S

actparlist param actparlist T

adop term arex U

ARCTAN fnam, U

arex adop term arex w

arex parain X

CODE string END codestat Y

coed astat unstat z

comment unstat AA

COMM4ENT Istring coumment A
comvarlist (varylist) cowuarlist AC

cond condlist AD

cond condpart AE

condlist OR condlist condlist AF

condpart AND cond condpart A

condstat unstat A

constant number AI
Cos fnani AJ

dumstat unstat 4K

E formparlist AL

E sublist AM

ENTIER fnani AN

eqlist p equation eqlist AO

equation eqlist A

EXP fnaxn AQ

fact prim fact AR
fact term A

fham (arex) unex AT
fnam .9 proclist procnalist AU

fnam procnalist AV

formparlist p sublist prochead AW

funex prim AX

GO TO loc transtat AT
HALT loo transtat AZ

IF condlist THEN condtail 31 condstat BA

LET eqlijt betstat BB

betstat unstat BC

LN fnam BD

LOG fnam BE

matrix prim BF

matrix varnain BG

MEAN fnam BH

MEDIAN fnain BI

inval prim BJ

namebist p varnam namelist BK

number mval BL

)43

number value BM

param actparlist BN

prim fact BO

prim incr BP

prim lowli-M EQ

prim ýi1 prim cond BR

prim uplim ES

procc loc BT

procc prim BU

procedure procseq BV

PROC)EDURE procid prochead stlist END procedure BW
prci (actparlist)procc BX

procid procnalist procnalist BY

procid procnalist BZ

procseq procedure procseq CA.

SIGN fnam CB

sinva-r mval cc

simvar varnam CD

SIN fnam CE

SQRT fnam CF

START procseq STOP program CG

stat stlist CH

statlab unstat stat CI

statlab loo CJ

string procid CN

string statbab CO

string varid CF

stlist ELSE stlist end condtaib CK

stbist end condtail CL

stlist stat stlist CM

term arex CQ

term mubop fact term CR

transtat unstat CS

44h

unstat stat CT

value varylist CU

varid Cprim vector CV

vaid "U~. priz matrix C
varid simvar GI

varlist varriam varlist CY

varnamn arex eqaaticon Cz

varnazu namelist DA

varnam param PB

varnam value DC

varnam var].ist PD

VARY namelist OVER comvarlist IN stlist end

vbyl DR

VARY varnam FROM lowJim BY in-cr UNTIL

uplim IN stlist end

vbyl DF

varylist. value varylist DG

varystat unstat IS

vbyrl varystat DI

vbys varystat DJ

vector prim JIC

vector Varnam EL

145

Table 3.2 Syntax - Matrix Format - S-matrix

0 0 + 81 31 0 ENTIER 120

0 - 82 32 0 eqlist 121

S0 * 83 33 0 equation 122

0 / 84 34 0 EP 123

4 0 (85 35 0 fact 124

5 0 < 90 36 0 fnam 126
6 0 o 91 37 0 forxparlist 129
7 0 - 92 38 0 funex 130

8 0 • 93 39 0 GO TO 131
9 0 > 94 40 0 HALT 132

10 0 , 95 41 0 IF 133

31 o . 96 42 0 LET 134
12 0 ; 98 143 0 letstat 135

13 0 ABS 99 44 0 LN 1.36
14 0 actparlist 100 45 0 LOG 137

15 0 adop 101 46 0 matrix 138
16 0 ARCTAN 102 47 0 NMAN 140
17 0 arex 103 48. 0 M EIAN 141
18 0 COD 105 149 0 mval 142

19 0 codestat 106 50 0 namelist 1143
20 0 comment 107 51 0 number 144

21 0 COMMENT 108 52 0 param 146

22 0 comvarlist 109 53 0 prim 147

23 0 cond 110 54 0 procc 152

24- . 0 condlist 112 55 0 procedure 154

25 0 condpart 113 56 0 PROCEDURE 155

26 0 condstat 114 57 0 procid 156

27 0 constant 115 58 0 procseq 159
2.8 0 Cos 116 59 0 SIGN 160
29 0 dumstat 117 60 0 simvar 161

30 0 E 118 61 0 SIN 163

46

Table 3.2 (Con't)

62 0 SQRT 164 94 3 rel N

63 0 START 165 95 3 rel 0

64 0 stat 166 96 2 end P

65 0 statlab 167 97 1 string 201

66 0 stlist 169 98 3 dumstat R

67 0 string 172 99 3 fnarm S

68 0 term 175 100 1 • 202

69 0 transtat 177 101 1 term 203

70 0 unstat 178 102 3 fnam V

71 0 value 179 103 0 adop 204

72 0 varid 180 104 3 param X

73 0 varlist 182 105 1 string 205

74 0 varnam 183 106 3 unstat Z

75 0 VARY 188 107 3 unstat AA

76 0 varylist 190 108 1 o 206

77 0 varystat 191 109i 1 (207

78 0 vbyl 192 110 2 condlist AD

79 0 vbys 193 ill 3 condpart AE

80 1 vector 194 112 1 OR 208

81 3 adop A 113 1 AND 209

82 3 adop 114 3 unstat AJH

83 3 mulop 0 115 3 number AI

84 3 mulop D 116 3 fnam AJ

85 0 arex 196 117 3 unstat AK

86 0 condpart 197 118 2 formparlist AL

87 0 procnalist 198 119 3 sublist AM

88 0 varlist 199 120 3 fnam M

89 1 varylist 200 121 1 , 210

90 3 rel J 122 3 eqlist AP

91 3 rel K 123 3 fnam AQ

92 3 rel L 124 0 ** 211

93 3 rel M 125 3 term AS

47

Table 3.2 (Con't.)

126 0 (212 158 3 procnalist BZ

127 0 , 213 159 1 procedure 224

128 3 procnalist AV 160 3 fnam CB

129 1 , 214 161 2 mval Cc

130 3 prim AX 162 3 varnam CD

131 1 loc 215 163 3 fnam CE

132 1 loc 216 164 3 fnam CF

133 1 condlist 217 165 1 procseq 225
134 1 eqlist 218 166 3 stlist CH

135 3 unBtat BC 167 0 . 226

136 3 fnam BD 168 3 loc CJ

137 3 fnam BE 169 0 ELSE 227
* 138 2 priya BF 170 0 end 228

139 3 varnam BG 171 1 stat 229

140 3 fnam BE 172 2 procid ON
141 3 fnam BI 173 2 statlab CO

142 3 prim BJ 174 .3 varid OF

143 1 , 219 175 2 arex CQ
144 2 wval BL. 176 1 mulop 230
145 3 value BM 177 3 imstat CS

146 3 actparlist BN 178 3 stat CT

147 2 fact BO 179 3 varylist CU

148 2 incr BP 180 0 (231

1149 2 lowlim BQ 181 3 simvar CX

150 0 rel 220 182 1 , 232
151 3 uPlim BS 183 0 , 233

152 2 loc BT 184 2 namelist DA

153 3 prim BU 185 2 param DB
154 3 procseq BV 186 2 value DC
155 1 procid 221 187 2 varlist DD

156 0 (222 188 0 namelist 234
157 0 , 223 189 1 varnam 235

48

Table 3.2 (Con't.)

190 1 , 236 224 3 procseq CA
191 3 unstat DI 225 1 STOP 261
192 3 varystat DI 226 1 unstat 262

193 3 varystat DJ 227 1 stlist 263
194 2 prim DK 228 3 condtail CL

195 3 varnam DL 229 3 stlist Cm

196 1) 237 230 1 fact 264

197 1) 238 231 1 prim 265
198 1) 239 232 1 varnam 267
199 1) 240 233 1 arex 268
200 1) 241 234 1 OVER 269
201 3 end Q 235 1 FROM 270
202 1 param 242 236 1 value 271
203 3 arex U 237 3 prim K

204 1 term 243 238 3 condlist F
205 1 END 244 239 3 sublist G
206 I string 245 240 3 formparlist H
207 1 varylist 246 241 3 comvarlist I
208 1 condlist 247 242 3 actparlist T
209 1 cond 248 243 3 arex w
210 1 equation 249 244 1 ; 272
211 1 prim 250 245 1 • 273

212 1 arex 251 246 1) 274
213 1 procnallst 252 247 3 condlist. AF
214 1 sublist 253 248 3 condpart AG
215 3 transtat AY 249 3 eqlist AO
216 3 transtat, AZ 250 3 fact AR

217 1 THEN 254 251 1) 275
218 1 • 255 252 3 procnalist AU
219 1 varnam 256 253 3 prochead AW
220 1 prim 257 254 1 condtail 276
221 1 prochead 258 255 3 letstat BB

222 1 actparlist 259 256 3 namelist EK
223 1 procnalist 260 257 3 cond ER

49

Table 3.2 (Con't.)

258 1 stlist 277 279 3 condtail CK

259 1) 278 280 3 vector CV

260 3 procnalist BY 281 1 prim 287

261 3 program CG 282 1 IN 288

262 3 stat CI 283 1 BY 289

263 1 end 279 284 3 condstat BA
26 4 3 term CR 285 3 procedure BW

265 0) 280 286 3 proce BX

266 1 , 281 287 1) 290
267 3 varlist CY 288 1 stlist 291

268 3 equation Cz 289 1 incr 292

269 1 comvarlist 282 290 3 matrix OW

270 1 lowlim 283 291 1 end 293

271 3 varylist DG. 292 1 UNTIL 294

272 3 codestat Y 293 1 ; 295

273 3 comment AB 294 1 uplim 296

274 3 comvar2ist AC 295 3 vbyl I3

275 3 funex AT 296 1 IN 297

276 1 ; 284 297 1 stlist 298

277 1 END 285 298 1 end 299

278 1 g 286 299 1 j 300

300 3 vbys DF

Table 3.3 Abbreviations.Used.in Tables 3.1 and 3.2

actparlist - actual parameter list mval - memory value

adop - adding operator param - parameter

arex. - arithmetic expression prim - primary

codestat - code statement proce - procedure call

comvarliat - compound vary list prochead - procedure heading

cond - condition procid - procedure identifier

condlist - condition list procnallst.- procedure name list
condpart - condition part procseq - procedure sequence

condstat - condition statement rel - relation

condtail - condition tail simvar - simple variable

dumstat - dummy statement statlab - statement label

eqlist - equation list stat - statement

fact - factor stlst - statement list

formparlist - formal parameter list sublist - subroutine list

2ram - function name transtat - transfer statement

funex - function expression unstat.- unlabelled statement

incr - increment uplim - upper limit

letstat - let statement varlist - variable list

loc - location varnam - variable name

lowlim - lower limit varystat - vary statement

mulop - multiplying operator vbyl - vary by list

vbys - vary by steps

I

SKEIN - The Second Compiling Routine

As mentioned above, the output from RAVEL is a list of node labels

and associated with each node is a symbolic string. SKEIN processes the

strings named by the RAVEL output and from them, the coding is formed. The

string language is briefly described on pages 40 to 43 of the June, 1961

report and in more detail in reference 19.

The flowchart of SKEIN given last year was in recursive format.

Figure 3.3 shows SKEIN in non-recursive form with explicit pushdown storage.

Table 3 .4 shows changes in notation in the string language and SKEIN

symbolism.

Table 3.4 Notation Changes

String anguage Skein S ybolism

New Notation Old Notation New Notation Old Notation

$ r e
3 S2 M.

(6 S3 N

q: _5

e
-b #

The method of writing strings in heuristic rather than algorithmic

and requires a detailed knowledge of the language being compiled, of the

computer being compiled for, and of the method of compiling. Appendix 2

contains a brief discussion of this and several examples. Mr. P. Z. Ingerman

who developed the compiler we are using is in the process of writing a paper

on SKEIN which includes a detailed description of the string language and a

section on the writing of strings.14

52

A 4

H pr

A0

0 ý0)

Ii-
pq CaI4

f4f
P4 pq

H

C12 0

0
C5 0' 0

Hý 0 H

00
III

t a r 0 P.

~H +

a Ii

~~r I I

HfL~f

t pa * -I

C\Md~ P0 0~

HS C\I

c~J
1

C E H

r-I H

The Input Routine

Input to the compiling computer will most likely be in the form of

punched card or punched. tape0. It will be necessary to delimit in some

manner the special. symbol strings..which..are to .be, treated as single characters

(for example.: "LET", 4VARY", "ARCTAN", "s=, etc.) One possible way would be

to place special symbols before and after these strings. This is however,

dependant upon the input. characteriatics of the specific computer used for

compiling.
w

The primary purpose of the. input roatine is to substitute numbers

for letters and. words- so that the processing and. table lookup will be more

efficient.

Usually, numbers will be assigned. to charactets in the language in

some orderly manner, for example. numbering. the. characters according to their

first appearance. in the S-matrix will. simplify table look-up; and then a

range of numbers is set aside for variable and procedure identifiers, another

for statement labels, another for comments and another for constants. As

words or characters are read into the computer, they are looked up in a

table of allowed words or characters and if found th6 equivalent number is

stored in the input list. If not found, they aro identified ("comment?

constant? etc.).and assigned numbers. These numbers are then stored in the

input list. Figure 3.3 roughly diagrams the procedure. Once a character

string has-.been identified. the same number is assigned to each succeeding

occurrence of the same string.

I ' w o r I n beSt or e i
7II1owe~d I .. >)equivalent

[word nube i
N [As~•a input list_

[number

Contat New
Y constant

New Y,
comment

N N

or Y New Y

Procedure ientifier
identifier IN

Other
special
symbol
strings.o

Figure 3.3 Schematic of Input Routine

55

Appendix 1

The Generation of the S-table, S-matrix
and Binary Table for the "=>" operation

The S-table is formed by re-writing the syntax of the language in

a linear format and then alpbabetising. Consider the language shown in

Figure Al.O.

Figure Al.O Sample Language

<a> s:= A B C

 ,i=A B DIA BI B A

<c> i:t A I B<a>!ID

This is rewritten breaking up the "or" possibilities into a series

of statements, dropping the metalinguistic-brackets. and writing the name

on the left at the right, as in Figure Al.l.

Figure Al.1 Rewritten Language

A B C a

A B D b

A B b

B A b

A b c

B a c

D c

This is then alphabetised-as in Figure Al.2 and the formulae are

given symbols identifying them

Figure A1.2 S-table for Sample Languages

A b c S1

A B b $2

A B C a S3

A B D b S4
B a c $5

B A b S6

D c S7

The S-matrix is formed from the S-table by an orderly transformation

which is shown in progressive steps in Figure Alo3 (The numbers in the O'th

column are for reference only and are .not part of the S-matrix).

a) All names in the first column of the S-table are listed in the

second column of the S-matrix (duplicated names are entered only

once) to form the first local list.

b) Tag nmubers are entered in the first column of the matrix.

A tag of 1 means that this entry ends a local list and a tag

of 0 means that the entry does not end a local list.

c) The names from the second column of the S-table are listed in

the second column of the S-matrix. Duplicated names are entered

only once only if all S-table entries to the left of them are

identical. Erg. the three entries of B in the second column of

the S-table all have the same entries to their left so they are

only listed once.

d) The third column of the matrix will contain either an S-table

identifying symbol (e~g. Sl, S2, 83, etc. in this example; or

A, B, C, D. ... etc. in the S-table for the language) or a number

referring to another row in the matrix. The A in the first

column of the S-table is followed by b in one row and B in three

others. Hence, the A in the first row of the S-matrix is said to

"refer to" and b and the B in rows 4 and 5 of the matrix. The b

and B in rows 4 and 5 form a second local list and are tagged

accordingly. Column 3 of row 1 has a 4 to indicate that the A

is followed by the members of the local list beginning in row 4.

57

Simil.arly., the B in row 2 is followed by the local list consist-

ing of a and A. beginning in row 6 and the D is followed by the

single entry local list in row 8. Whenever a character is

entered into column. 2 that is followed in the S-table by an

identifier, that identifier is entered into colmn 3 and two is

added to the tag digit to indicate the end of a production rule.

(The separate lines in the S-table are known asproduction rules@.)

e) The next set of entries in the second. column come from the third

column of the S-table0 In this case every name is entered since

no two identical names have identical entries to their left.

f) As above, local lists are formed, tagged and appropriate entries

are put in column 3. The b of row 4 leads to the single entry

list of row 9 which is c and this ends the production rule

identified. by Slo The B of row 5 leads. to the 3 entry local

list in 10, U1, 12o Row 10 column 3 contains an identifier so

the tag digit of row 10 is increased by two.

g and h) The above processes are continued, using the next (in this case,

the last) column of the S-table and this completes the S-matrix.

In the S-table for the complete compiler language, there are entries

that have up to 13 itemso In forming.. the S-matrix, the above procedures

must be repeated twelve times.

The table for the "->" operation is formed from the S-table.

Figure A1.4 contains a part of the S-table of Table 3.1. am> P is read

"does a lead to P" and a is called the antecedent and P, the

consequent. In the table the antecedents are listed along the left margin

58

Figure AI.3 Steps in Formation of the S-matrix

1 2 3 1 2 3
a) 1 A b) 1 o A

2 B 2 0 B
3 D 3 1 D

1 2 3 1 2 3

c) 1 0 A d) 1 0 A 4
2 0 B 2 o 0 6
3 i D 3 i D 8
4 b 4 0 b
5 B 5 1 B
6 a 6 0 a
7 A 7 l A
8 c 8 3 c S7

1 2 3 12 3
e) 1 0 A 4 f) 1 0 A 4

2 0 B 6 2 0 B 6
3 i D 8 3 1 D 8
4 o b 4 o b 9
5 1 B 5 1 B 10
6 0 a 6 0 a 13
7 1 A 7 1 A 14
8 3 c S7 8 3 c S7
9 c 9 3 c Sl

10 b 10 2 b 32
11 C Ii 0 C
12 D 12 I D
13 c 13 3 c 35
14 b 14 3 b S6

1 2 3 1 2 3
g) U 0 C h) 3-1 0 c 15

12 I D 12 I D 10
13 3 c $5 13 3 c S5
14 3 b S6 14 3 6 36
15 a 15 3 a S3
16 b 16 3 6 s4

59

and the consequents across the top. Antecedents are the names and symbols

that appear in the first column of the S-table and consequents are the

names that appear at. the end of the rules. The -> table is begun by

entering a 1 into each place where antecedent and consequent correspond

to the beginning and end of a rule in the S-table; as in Figure A1.5.

Figure Al.4 Part of Table 3.1 Used for Example in Text

+ adop
- adop
* mulop
/ mulop
(arex) prim

ABS fnam
adop term arex
arex adop term arex

Cos fnam
fact p* prim fact
fact term
fnam (arex) funex

funex prim
matrix prim

mval prim
numb mval
prim fact
term arex
term mulop

simvar roal
vector prim

Next the rule: (a-y)e(j-•7)>(a y r) is applied to Figure Al.-5

one row at a time to give Figure A1.6. For example (+-> adop) and

(adop+ arex) therefore (+4 arex); (COS+ fnam) and (fnam+ funex)

therefore (COS + funex).

6o

Figure A1.5 Initial Entries in w table

+ 1
- 1
* 1!

/ •1
(11

ABS 1
adop 1
arex I

COs 1
fact 1
fram 1

funex 1
matrix 1

reval 1
numb I
prim 1

term 1
simvar 1
vector [

Figure A1.6 Extension of • table

/~
0 19

ABS
adop 1
arex 1GOs ____ 11
fact 11
fram 1 1

funex li 1
matrix 1 1

mval 1 1
numb 1 i1
prim I1
term 1

simvar 1 I1
vector I1I1

61

The rule is then applied to the rows in the modified table and repeated

until there is no further change. Figure Al..7 shows the complete table.

Figure A1.7 Complete - table for the S-table of Figure Al.4

,sa t'

* 1
/ 1+ 1

ABS 1 1111 1 1
adop 1
arex 1

COs i111 11
fact 11 1
fram 1 1 1 1 1

funex 11 11
matrix 11 11

mval 11 11
numb 1 1 1i 1
prim 11 1
term 1 1

simvar 1 1 11 1
vector I1i

62

Appendix 2

Strings and Their Interpretation

The following strings have thus far been written

A: .

E2 [(2e*Tb*T*I)]
Us [(l) (2)]
Wa C(3)HT(3e*T) (le*Tb*T*I).

(2)Ho128 BT(3eNT)-OO12 UOOOO AO000]

AO s[(3) (l)]
AS- [(l)]
BJ: ED (l)]
BO- [(1)]
cc: [(W)]
CDs [H()
CQ: [(l)]

oZ: (l)(3)]

Where: (n) means Itreplace this string by what comes n strings below"

(nedbP) means "replace this string by what comes n strings below

except where a appears, put P.0

(3ea) means replace this string by an integer one less than the

number of characters in a ("*T" and "1*I"1 are considered to be single

characters).

The method of generation of strings that has been used is to simulate

RAVEL for various input statements and, knowing the. coding w wish to have

generated for the given statement, write strings that will do just that.

Consider string "AS": when a factor becomes a term according to the

definition in 2.B.l of the language,, no coding need be generated since both

factors and terms are. held.. in. the accumulator. The string is al)] which

essentially says "go on to the next string" when a memory value becomes a

63

primary, however, this entails the bringing. to. the acc!m•.-ator of a word

in memory. The string for this is [B(1)J where the B is the Libratrol-500

"Bring" code. For more exanml a of strings, including a completely

simulated. statement,, see the June 1961 report.

64~

Appendix 3

Modifications to RAVEL

The use of an input routine to label and. identify the strings and

symbols in the input simplifies the processing... In, fact, sections l.A and

l.B.I of the language can, be omitted.from- the S-table and S-matrix. In

consequence RAVEL must be modified so. that. when. a symbol string that is

identified as a. variable. Identifier,,. statement label. procedure identifier,

etc. is entered into the pushdown storage, .the following occurs i Ri. is set

equal-to. zero, some special symboL is. placed...in the Ji column and the i is

increased by l GOALj-_ goes into GOLLi the identifier associated with the

symbol string. (io.e. varid, statlab, etc.) is.put,.into..IVARi, "12" into EXITi

and control transfers. to the IVAR i -> GOALi section. It is understood that

IVAR i + GOALi is never true, when IVAR is a symbol string.

When J. is a special symbol and the 'Output S(Ji, 3)" box is reached,

the actual. symbol string identified by the. number in IVARi is put out.

65

Appendix 4

Libratrol-500 Floating Point Arithmetic and Square Root

The coding is given in relocatable form. For the arithmetic the

first. operand. is in the accumulator while the second..is stored in the base

address + 128o For the square .ro.t., the operandis. in the accumulator.*

The format is qq.mmnmm where mmnmm is the normalized mantissa and

qq is the exponent of z. (complement notation is used for both.)

The output is a number in_ the accumulator in the above format.

The routine uses four tracks and no additional storage.

Calling sequences:

Arithmetic: R Lo+12

U Lo

X 0000 (where I is A, 82 M or 'D depending upon
the operation desired*)

Square Root: R Lo+330

J Lo+300

l*Square Root is done using Newtorts Method.

66

Coding of Arithmetic Routines.

Instruction
Program Input Codes Location Operatien Address . Contents of Address & Notes

0000 H 0132 1 a

0001 E. 0219 1 Extract exp a

0002 H 1,0226 1 Exp a

0003 B 0132 1 a

0004 E10220 1 Extract sign-mantissa a

0005 VT 0336 1

0006 B 0128 1 b

0007 E :0219 1 Extract exp b

0008 H. 0227, 1 Exp b

0009 B 0128 1 b

0010 E10220 1 Extract sign- mantissa b

001 u 0o34i 1

0012 BEL 21 1 Operation code

0013 U 0,015 1
0014 z10211 1

0015 S10223 1 6 at 15

0016 T 0150 1 if neg divide

0017 S8 0224., 1 2 at 15

0018 T " 0113 1 if neg multiply

0019 H -0130 1 if + add or subtract

0020 B.10226 1 exp a

0021 •S 0227 1 exp b

0022 T 0033 1 if. neg b>a

0023 S10215 1 1 at 7

0024 r00144 1 if negb a

0025 H L0129 1 a-b-1= counter a>b

0026 B 0229 1 b mantissa

0027 M f0214 1 1 at I

0028 H :0229 1 b mantissa

0029 B. 0129 1 counter

67

Instruction
Program Input Codes i Location Operati on Adress • Contents of Address & Notes

0030 S. .0215 1 1 at 7
0031 T|0044 1 if neg a- b

0032 U,0025 1

0033 B 0227 . b exp

0034 S. 0226 1 a exp

0035 S,0215 1 1 at 7
0036 H.!0129 1 b-a-i - counter b>a

0037 B,0228 1 a mantissa

0038 -0214. 1 1 at 1
0039 H 0228 1 a mantissa

0040 B C 1 counter

0041 S30215 1 lat7

0042 T I0047 1 if neg ag b
0043 U *0036 1

0044 R;0226 1 a exp

0045 H 0230 1 final exp
0046 U 0049 1 1

0047 B 0227 1 bexp
0048 H 0230 1 final exp

0049 B. 0228 1 a mantissa

0050 M 0214 1 1 at 1

0051 H 0228 1 a shifted right one place

0052 B 0229 1 b mantissa

0053 fl0214 1 1 at 1

0054 H 0229 1 b shifted right one place

0055 B 0130 1 code (-8)

0056 s0225 1 7 at 15
0057 T 0062 1 if neg add - if + subtract

0058 B 0228 1 a mantissa
0059 S 0229 1 b mantissa

0060 H.0231 1 a-b = final mantissa

0061 0101 1

0062 B 0228 1 a mantissa

0063 _&0229 1 b mantissa

68

Instruction o4
0 0Program Input Codes 4 Location Operationf Address • Contents of Address & Notes

0100 H 0231 1 a+b- final mantissa

0101 U 0104 1
0102 1

0103 1

0104 B1 0230 1 final exp

0105 A.0215 1 1 at 7
0106 T1 if neg overflow exponentl

0107 M.0230 1 final exp

0108 U 0207 1

Multiply 0109 XC 6363 1

0110 S 10131 1

0111 U 70134 1

0112 1

0113 B 0226 1 exp a

0114 S ;0221 1 64 at 7

"0o115 A.0227 1 exp b

0116 T1 if neg overflow exponentl

0117 H-0230 1 final exp

0118 B. 0228 1 a mantissa

0119 MD229 1 b mantissa - ab at 14

0120 N'0348 1 1 at 24

0121 H 0231 1 final mantissa

0122 B 0228 1 a mantissa

0123 NR0229 1 b mantissa = ab at 0 (n part)

0124 M10216 1 1 at 24

0125 H O131 1 ab mantissa at 24 (n part)

0126 T 0109 1 if neg- Iabl+l at 24

0127 u o136 1

0128 1 b

0129 1 counter

0130 1 code (-8)

0131 1 ab mantissa- (n part)

- 69

P4 Instruction0

Program Input Codes 4 Location Operation, Aess Contents of Address and Notes

0132 1 a

0133 1 b exp (-63)
0134 A 0348 1 1 at 24

0135 H 0131 1 ab mantissa at 24 (n part)

0136 B 0231 1 final mantissa

0137 A 0131 1 ab at 24 (n part)

0138 H 0231 1 final mantissa

0139 E 0218 1 extract all but Ist bit

0140 S 0218 1 1 at 8
0141 T 0143 1 if neg shift

0142 U 0207 1
0143 B 0231 1 final mantissa

0144 N 0217 1 1 at 30

0145 H 0231 1 final mantissa

0146 B 0230 1 final exp

0147 S 0215 1 at ?

0148 H 0230 1 final exp

0149 U 0207 1

Divide 0150 B 0227 1 b exp

0151 S 0222 1 6 5 at 7

0152 H 0133 1 b exp (-65)

0153 B 0226 1 a exp

0154 S 0133 1 b exp (-65)

0155 T I if neg tunderflow exponent!

0156 H 0230 1 final exp

0157 B 0228 1 a mantissa

0158 M 0214 1 1 at 1

0159 D 0229 1 b mantissa
0160 U 0352 1

0161 E 0218 1 extract all but 1st bit

0162 S 0218 1 1 at 8
0163 T 0201 1 if neg shift

70

Instruction
0 0

Program Input Codes I Location Operation Address 4 Contents of Address and Notes

0200 U 0207 1

0201 B 0231 1 final mantissa

0202 N 0217 1 1 at 30

0203 H 0231 1 final mantissa

0204 B 0230 1 final exp.

0205 S 0215 1 1 at 7

0206 H 0230 1 final exp.

0207 B 0012 1

0208 A 0213 1 ZOO01

0209 Y 0212 1

0210 U 0232 1

0211 A 0230 1
0212 U [] 1 EXIT

0213 XZ 0001 1

)0000012 0214 4000 0000 1 1 at 1
0215 100 0000 1 1 at 7
0216 40 1 1 at 25

0217 2 1 1 at 30

0218 80 0000 1 1 at 8= Ist bit extractor

0219 7WOO 0000 1 Exp extractor

0220 80WW IMMT I Sign- mantissa extractor

0221 4000 0000 1 64 at 7

0222 4100 0000 1 65 at 7

0223 6 0000 1 6 at 15

0224 2 0000 1 2 at 15

0225 7 0000 1 7 at 15

0226 1 a exp

0227 1 b exp

0228 1 a mantissa- sign

0229 1 b mantissa- sign

0230 1 final exp

0231 1 final mantissa- sign

71

0 Instruction 0
Program Input Codes • Location Operation Address • Contents of Address and Notes

0232 B 0231 1 Mantissa
0233 0249 1 No. is neg?

0234 S 0217 1 1 at 30

0235 T 0262 1 if neg no.- 0

0236 U 0349 1
0237 S3 0218 1 1 at 8

0238 T 0241 1 if neg shift

0239 B 0231 1
0240 U 0211 1

0241 B 0230 1 exp

0242 S 0215 1 1 at 7
0243 T 1 if neg overflow exponent!

0214 H 0230 I

0245 B 0231 1 mantissa

0246 N 0217 1 1 at 30

0247 H 0231 1

0248 U 0236 1

0249 B 0261 1 Z0255

0250 Y 0240 1

0251 XC 6363 1
0252 S 0231 1 -(mantissa)

0253 H 0231 1 -(mantissa)

0254 U 0236 1

0255 B 0014 1 Z0211
0256 Y 0240 1

0257 XC 6363 1

0258 S 0231 1 +(mantissa)

0259 E 0220 1

0260 U 0211 1

0261 Z 0255 1

0262 B 0214 1 64O00000

0263 U 0212 1 TO EXIT

72

, •Instruction o,
Program Input Codes P Location Operationi Address +) Contents of Address and Notes

Square Root 0300 H 0132 1 a
0301 T 03 33 1 halt if neg.

0302 S 0217 1 1 at 30
0303 T 0333 1 halt if neg.

0304 B 0132 1 a

0305 E 0219 1 Extract exp. a
0306 H 0226 1 Exp a

0307 B 0132 1 a

0308 E 0220 1 Extract sign- mantissa a
0309 H 0228 1 sign- mantissa a

0310 B 0226 1
0311 E 0215 1 Extract of= 7 bit

0312 S 0215 1 1 at 7
0313 T 0320 1 if neg characteristic is even
031 4 B 0226 1
0315 A 0215 1 1at 7

0316 H 0226 1
0317 B 0228 1

0318 M 0214 1 1 at 1
0319 H 0228 1

0320 B 0215 1 1 at 7
0321- C 0347 1 Xi

0322 S 0228 1

0323 D 0347 1 Xi
0324 A 0347 1 Xi

0325 M 0346 1 -1/2 at 0
0326 T 0331 1 If neg Xi+l"X +Xi]

0327 B 0226 1 if +Xi-
0328 M 0214 1 5 at 8
0329 A 0347 1 Xi

0330 U[1
0331 A 0347 1 i

73

Instruction 0Program Input Codes • Location Operation Address 4 Contents of Address and Notes

0332 U 10321 1

0333 XZ 0000 1 a< 0 To continue START

0334 B 0214 1 bring 64.00000= 0
0335 U 0330 1

0336 T 0338 1 if neg add fill in
0337 U 0339 1

0338 A 0219 1 2 's complement fill in
0339 H 0228 1

0340 U 0006 1

0341 T 0343 1 if neg add fill in
0342 U 0344 1

0303 A 0219 1 2's complement fill in
0344 H 0229 1

0345 U 0012 1

)o0000001 0346 JO00 0000 1 -1/2]

0347 1 i 1 for sq. root

)0000001 0348 80 1 1 at 24

0349 B 0231 1
0350 E 0218 1

0351 U 0237 1

0352 M 0215 1
0353 H 0231 1

035,4 U 0161 1

0355 1

0356 1

0357 1

0358 1
0359 1

0360 1

0361 1

0362 1

0363 1

74

Appendix 5 - Part I

Algebraic Conpiler Language Manual

1, General

A computer program written in this language consists of a series

of statements each containing words and symbols. Each statement ends

with a semicolon. This manual describes the.allowable statements and

discusses how they are combined into meaningful routines. subroutines

and procedures.

2. The LET statement, variables and constants

2.1 The general form

Computations are programmed as LET statements which are of the

1
form

LET "a variable" 8-Olan arithmetic expression'tj for example:

LET B.=C+D

Before discussing this more fully, we shall describe the structure of

the variables and constants that may appear in the statementso

2oll Variables

A variable is a symbol which names a number 0 Simple variables

are formed by strings of letters and digits beginning with a letter.

For example s

A AFL S3T958

C26947 ROOT ROOT1

RESULT ALPHA GAMMA 6O

2o12 Constants

A constant is a number and may be expressed. either as an integer

or as a decimal number0 A decimal number may contain a decimal point

lln this rwmnu1l,• the quote symbols are often used to denote examples and
class names. They do not appear in the actual program0

75

and may have a power of ten attached. A plus or minus sign may preceed

the number if desired.

Examples

Integers: 1 +3 -27 +7125 197654975

Decimals without powers of ten:

100 +3.0 -2o700 +°7125 .000197654975

Decimals with powers of tenI

1.0*10**3 - 1o0"103

+3*1**•8 = +3*10-8

6 . -1io 6

-.005*10*-*12 - - 5-1012

Note that numbers do not have to be in normal form.

I.e 0 9 30 - 30.0 a 3"10*l1

- 3*10**2 - .03*10**3 etc.

2,13 Arithmetic expressions

An arithmetic expression is an algebraic formula and gives a rule

for computing a numerical value. It is made up of variables, constants

and the signs:

+ addition

-subtraction

* multiplication

/ division
2

** exponentiation.

'An asterisk denoates multiplication and a double asterisk denotes

exponentiation.

21t is helpful to think of division as multiplication by the reciprocal

i.e.$ A/B=- A*(B)YI and. A/B/C -A*(B)I*(C)-1.

76

Left and right parenthesis are used for setting off parts of the

expres sion.

Examples:

A+B A+BC (A+B)*C

A/B+C/D (A+B+C*D)/E (A+B)**E

Operations are performed in the following orderss

First: **

Second: * and /
Third8 + and-

and, where no order is expressed (as in A+B+C- D) evaluation is

performed from left to right.

Examples8

ABC
A*B**C/D means

(A*B)*bC/D (A)C
D

(A*B)**(C/D) " (AB) C/D

A*B**(C/D) " ABC/

A*B+C**E-D AB+J-D

A*(B+C)**E-D " A(B+C) E-D

A*B+C**(E-D) • AB+C(E-D)

A+B**C-D/E*F " A+BC-D(E)" - A+BC DF

A+B**((C-D)/E)*F " A+B(C-D) I

(A+B**C-D/E*F " (A+B) C -

77

2.14 Functions

There are a series of standard functions available for use in

arithmetic expresslonao In the following definitions Y stands for

any arithmetic expression.

ABS(Y) means the absolute value of Y8 -Y if Y is negative, other-
wise Y.

SIGN(Y) " the signum of Ys/1 if Y is positive, -1 if Y is
negative, 0 if Y=O.

SQRT(Y) It the positive square root of Y.

SIN(Y) " the sine of the number Y, or of the angle whose
radian measure is Yo

COS(Y) " the cosine of the number Y.

ARCTAN(Y) " the principal value (in radians) of the arctangent
of Y.

LN(Y) " the natural logarithm of Yt logeYo

LOG(Y) " the logarithm to the base 10 of Ye lOgloY.

EXP(Y) " the exponential of Y: eye

ENTIER(Y) I the greatest integer not greater than Y.

NEDIAN(Y) are used primarily in conjunction with subscripted variables
IdEAN(Y) andcwilI be. discussed-later. They are, however,

defined for an expression Y which contains no free
subscripts as follows:

IdEDIAN(Y) =
EAN(Y)= Y.

Examples.-

SIN (THETA) COS (3*JVI)

SQRT (B*B-4*A*C) LN (EXP (X))

2.15 The replacement Operator

The symbol ", := is called the. replacement operator and is used in

equations. It is not the same as 1=0 but rather means "assign the value

resulting from the conputation.on the right side to the variable on the

left."

78

I.E. ng=n+l is a valid operation.

but n-n+l is an invalid statement.*

2.2 Computing, using the LET Statement

The basic let statement, as given above is of the forms LET

"Ovariable" :-" arithmetic expression"; If more than one computation

is to be performed, several equations may be. combined into one LET

statement by separating them with commas:

LET "variable'" = 1arithmetic expression';,
"variable"' ="arithmetic expressionP,

"variable' 8 -"arithmetic expression";

2.21 Examples

LET A: - BI

LET is- i+2;

LET ROOT: s =-b+SQRT (b*b-1*a*c)) /2*a;

LET Tl - A.,
As - B,
Be - TI§

LET RESULT - (.5*SIN(PI*3*OMEGA)+COS(ALPHA))
*(LN(E0XP(S RT(ARG))));

2.3 Subscription of Variables

It is sometimes useful and often necessary to refer to groups of

numbers by a single name, using subscript numbers to denote the

individual numbers. For example§ matrices and determinants. This

language allows the use of. variables having single and double subscripts

called respectively vectors and matrices.. Since true subscripts caninot

be conveniently written, the convention has been established that sub-

scripts will be enclosed by parenthesia and placed.behind the variable

*However some Programming languages (cf FORTRAN) allow it.

79

}

name. The two subscripts of a matrix are separated by a comma. E.g.

A(i) FOOF(3)

A(i,j) FOOF(3,7)

Subscripted variables may be used any place non-subscripted variables

appear so long as the values of the subscripts are defined, I.e.

A(i,j) does not mean anything unless numerical values have been assigned

to i and to J.

An arithmetic expression may appear as a subscript e.g.

A(i+j, i-j)

FOOF((C+D/G, SQRT(Pl))

When these subscripted variables are used, the expression or

expressions in the subscript will. be evaluated and if it is not an

integer, the nearest smaller integer will be used (note that 4.001 and

4.999 will both be taken as 4). Memory space for vectors and matrices

must be allocated by a special compiler-directing command, the DIMENSION

statement, discussed below.

2.31 Subscript Functions

The MEAN(Y) and MEDIAN(Y) functions are meant to operate on

expressions containing subscripted variablea with one subscript

undefined. The following are the complete definitionss

MEDIAN(Y) means a. If Y has no free subscripts, HEDIAN(Y)= Y.

b. If Y has one free subscript, then, if the values
of Y be arranged in order of magnitude:

(1) If the greatest value of the subscript is odd,
MEDIAN(Y) is equal to the value in the central
position.

(2) If the greatest value of the subscript is even,
MEDIAN(Y) is equal to the mean of the two
values surrounding the central position.

80

c. If Y has more than one free subscript,

CDIAN(Y) 0.

MEAN(Y) means a. If Y has no free subscripts, MEAN(Y)= Y.

b. If Y has one free subscript, then if n is
the greatest value of this subscript,
WMAN(Y) - (Y(l) / Y(2)/ .. ,/Y(n))/no

c. If Y has more than one free subscript

An arithmetic expression may be used as a subscript, provided the

variables usedjin that expression. all have values at the time of

evaluation.

3. Control

A variety of statements are available .to control the order in which

computations are. performed, and to .facilitate. repetitive calculations.

3.1 VARY-statements

VARY-statements are used to. repeat certain calculations (or control

statements) with changing. values. of one .or several variables.

A VARY-statement. contains within. it. statements to be repeated. The

VARY-statement and each statement wLthin it must end with a semicolon.

In addition to this, the. list., of statements to. be. repeated must end with

a period°. The. semicolon, which dnaotes the end of the VARY-statement

comes after this period... There are two types of VARY-statements:

vary-by-steps and vary-over-list.

3.11 Vary-Over-List

A VARY-statement of the, vary-over-list type will cause arn specified

list of statements to. be. repeated, with a specified. variable or variables

being assigned,& -mew value from a list for each repetition of the list

of statements. A VARY-statement of .this type. consists of the word VARY,

3 81

followed by the variable(s) to be varied -- if there is more than one,

they are separated .by commas , followed by the word OVER, followed by

the list or lists of values over which the variable(s) is (are) to be

varied, followed by the word IN followed by the list of statements to

be repeated, followed by a period, followed by a semicolon. Remember

that each of the statements withinthe list must also end with a semi-

colon.

"variable": Ilist of values"
VARY or OVER or IN "statement list".;

"Rlist of variables" "lists of values"

The list or lists of values are given in the following format. There

is a separate list of values for each variable.. If more than one variable

is used, the separate lists should all. contain the same number of values,

for it is this number which determines the. number of times the indicated

statements are to be repeated. The lisats are each enclosed in parenthesis,

and are given in the same order in which the variables were given. They

are not separated by commasý they follow one another directly. Each list,

within its parenthesis, consists of a. set of values - either numbers or

variables but not arithmetic expressions - separated by commas. Any

variables used in these lists of values must currently have numerical

values.

Examples:

VARY J OVER (1, 2, 3,. 4) IN

LET X(J):. 3*J; q

After execution of this statement, the vector X would be:

(3, 6, 9, 12)

that is, for the first execution of the LET-statement (in this case the

82

entire list of statements contains just this one statement) J would be

set to l for the second J would be 2; for the third, 3; and for the

fourth, 4. The vector I should have been dimensioned with a

DIMENSION-statement at the beginning of the program. The first semi-

colon ends the LET-statement; the period ends the statement list; and

the following semicolon ends the VARY-statemento

VARY K, M, N OVER (2, 3, 4)(A, B, c)(1.6, 1.7, 1.8) IN

LET X(K).--X((K- 1101N;

LET Y(K) so = =*X(K) .

This statement would result in the following two vectors,

X: (R, R/1.6, R/((Io6)(1o7)), R/((1.6)(1-7)(1.8)))

where R was previously given a value, and

Yg (Y(1), AR/1.6, BR/((k,6)(lo7)),, CR/((1.6)(I°7)(1.8)))

where Y(l) remains whatever it was before the. execution of this state-

ment. A, B, and C must have been assigned values before this statement

was reached.

3.12 Vary-by-Steps

A VARY-statement of the vary-by-steps type will cause any specified

list of statements to be repeated, with a specified variable being

incremented or decremented by a certain amount for each repetition.

A VARY-statement of this type consists of the word VARY, followed by

the name of the variable to be incremented, followed by the word FROM,

followed by the desired value of the variable for the first execution

of the statement, followed by the word BY, followed by the amount of

the increment, followed by the word UNTIL, followed by the final value

the variable is to attain, followed by the word IN, followed by the

83

list of statements to be repeated. The punctuation following this list

is the same as for a vary over list VARY-statement.

VARY O'variable" FROM "lower limit" BY "increment" UNTIL "upper limit"

IN "statement list"o;

The quantities to be specified; initial value, increment, and final

value, may be expressed as numbers or variables, provided any variables

so used have numerical values at the time this statement is executed.

In addition, any arithmetic expression may be used to specify these

quantities.

Examples

VARY J FROM 1 BY 1 UNTIL 4 IN

LET X(J) 3*J; .;

This would yield the same result as the first example in 3ll.

In order to help make the vary statements more readable, a comment

consisting of any symbol string not containing a semicolon may follow

the period and preceed the semicolon. For example:

VARY X FROM 2 BY 1 UNTIL N IN

VARY I FROM 1 BY 1 UNTIL (X-l) IN

LET Z(X, I): = X/I,

Z(I,X) =X*I§ . end I loop;

LET Z((X-1), (X-l)) =X-1; . end X loop;

This would create a matrix Z of order N wherein any entry below the major

diagonal would be the sum of the subscripts of that entry, any entry above

the major diagonal would be the product of its subscripts; any entry on

the major diagonal would be one of its two equaL.subscripts0 Notice that

this statement fails to assign a value to Z(N,N)o The VARY-statement,

84

like any other statement, can be used in the statement list of a

VARY-statement. No computation or other statement within the range of

a VARY-statement should ever change the value of the variable being

incremented by that statement. When nesting one vary statement within

another, one must be particularly careful of. the punctuation. In the

above example, if the second LET-statement had been omitted and both

VARY-statements had ended with. the first LET-statement, the punctuation

following it would have been as follows.

o o; ~; (excluding the comments)

The first semicolon ends. the LET-statement; the first period ends the

statement list of the second, or "inner" VARY-statement; the second

semicolon ends the inner VARY-statement; the second period ends the

statement list of the first, or "outer" VARY-statement; the third semi-

colon ends this VARY-statement.

After a VARY-statement has been performed, that. is after the state-

ment list has been. executed the proper number of times, the next

instruction, in the statement sequence is executed.

3.2 Transfer Statements

A transfer statement is a statement which alters the sequence of

execution from sequential order0 In order that statements within a

program may be easily referred to, and for mnemonic purposes, it is

possible to label a statement by assigning a name to it. It is legitimate

to label one or several statements without labeling them all. The only

place a statement label is required is where it is referred to by a

transfer statement, as described below. To name a statement, one precedes

the staterment. by a statement label followed by a colon0 A statement label

is any string of letters and digits which. begins with a letter.

S~85

3.21 Unconditional Transfers

There are two types of unconditional. transfers, both of which un-

conditionally transfer control to the indicated location. A location

is either a statement label, or a procedure (discussed in section h.l).

3.211 GO TO-statements

A GO TO-statement. is of the following form: the words GO TO,

followed by a location (a statement label or a procedure call)ý followed

by a semicolon. It has the effect of immediately transfering control to

the indicated statement or procedure. For example:

GO TO B76Y3

would, as soon as it was reached, transfer control to the statement

labeled B76Y.

3.212 HALT-statements

A HALTostatement consists of the word HALT, followed by a location,

followed by a semicolon. Its function is identical to that of a

GO TO-statement, except that, computer will stop before transferring.

3.22 Condition statements

It is possible to make the flow of a program conditional upon

certain arithmetic conditions. These arithmetic conditions are of the

form; an arithmetic expression, followed by a relation, followed by

another arithmetic expression. The relation is one of the following six:

Some examples of conditions:

A>B

D(2, 3) <12
J3*2 - 1

3= (A+B(J))

SIN(THETA*2*PI) e COS(oiEGA/2*PI),

86

A condition statement is of one of two forms. The first type consists

of the word IF, followed by a condition or a combination of conditions,

followed by the word THEN, followed by a list of statements to be

performed if the specified conditions are satisfied (if the conditions

are not satisfied, the statement after the..condition statement is

performed next).

IF t'condition(s)" THEN "statement list'to;

This statement list is of the same form as for a VARY-statement:

each statement ends with a semicolon, the list ends with a period, which

may be followed by a comment (the comment may not. contain a semicolon),

and the condition statement itself ends with a semicolon.

The other type of conditiorn statement consists of the word IF,

followed, by a condition or a combination of conditions, followed by

the word THEN, followed by a list of statements to be executed if the

the conditions are satisfied,. followed by the. word EISE, followed by a

list of statements. to. be performed if the conditions are not satisfied,

followed by a period (in a condition statement of this type, the first

statement list, after the word THEN, is not followed by a period) and a

comment if desired, followed by a semicolon.

IF "condition(s)" THEN "statement list" ELSE "statement list".;

It is possible to combine conditions, merely by separating them

by the word OR, in which case the combined condition is considered to

be satisfied if and only if one or more of its component conditions is

satisfied. It is also possible to combine conditions, by separating

them by the word AND, so that the combined condition is satisfied if

87

and only if all the component conditions are satisfied. Any number of

conditions may be strung together in either, or a combination of both,

of these two ways. Any group of conditions connected by the word AND

(or by several AND's) should be enclosed in parenthesis.

Examples:

IF (A>B AND C<D+l) OR (A- 0 AND D-l<O) THEN

GO TO S3;

ELSE LET D) = D+1

GO TO SW; .;

Notice that the above condition combination is changed if the parenthesis

are placed differently:

IF (A>B AND C<D+l OR A=0 AND D-1<O) THEN etc.

is satisfied if A >B and D- 1<0 and either

C<D+l or A= 0.

IF I>K THEN

IF J>I THEN

LET I. :I+I; I;

ELSE IF J>I THEN

LET Ig=J§

ELSE LET I. =K; o; •;

3.3 Dunmy Statements

A dummy statement is a convenience sometimes used for ending a vary

statement list or a subroutine. A dumxr statement is always labelled,

and is usually referred to by at least one transfer statement and serves

as an exitt.point, for example

VARY INDEX FROM LLIM BY INCR TO ULIM IN

IF THING >27.5 THEN GO TO END; .;

LET THING:= THING+ ALPHA (INDEX/3);

END:-;

F 88

In this case the dumVy statement END:; gives a place to jump to

within the VARY loop just in case the value of THING is greater than 27°5.

4. Compiler Directing Statements

4°1 DIMENSION Statement

At the beginning of a program, one must state the maximum size

attained by each vector (one subscript) or matrix (two subscripts)

This is done by means of a DIMENSION-statement. A DIMENSION-statement

consists of the word "DIIENSION", followed by the name of a variable

(a vector or a matrix only), followed - in parenthesis - by the maximum

value(s) its subscript(s) can attain. This maximum value (or, these

values) are expressed as unsigned integers. A DIMENSION-statement ends

with a semicolon.

Example

DIMENSION A(5, 103);

DINENSION B(7)

DIMENSION A(5, 103), B(7), x2Z(3, 2), suM(5);

The first of these statements defines A as a matrix whose maximum size

is 5xl03. The second defines B as a vector of maximum order 7. The

third does both of the above, and also defines X2Z as a 3x 2 (maximum)

matrix, and SUM as a vector of (maximum) order 5. One may combine any

number of matrices and vectors, in any order, into one DIMENSION-statement

by separating them by commas, and. ending the statement with a semicolon.

4.2 REFER Statement

The REFER statement has two uses. It allows the name of a variable

or set of variables to be changed; and it allows a set of simple variables

to be combined into a single vector. As a special case of the first of

89

these, it also allows one to assign names to constants, and, thus, to

assign values - as for initialization - to constants. ExamplesS

REFER TO A AS B;

REFER TO F(l, 2) AS G;

REFER TO A AS B AND GRMP AS C;

REFER TO J(3) AS K;

REFER TO GRMP AS C, A AS B, SUM 2 AS SUM 3 AND RDC AS Yj

REFER TO A AS B -AND F(1, 2) AS G;

REFER TO 3°0 AS I.

REFER TO F(l, 2) AS G, J(3) AS K AND A AS B;

REFER TO A AS B, GRMP AS C, 3.0 AS Xý SUM2 AS SUM3, 7 AS Z AND RDC AS Y;

These are all examples of the first use of the REFER statement. No variable

should appear more than once during any REFER statement. A, GRMP, SUM2, may

be either simple variables, or arrays. Their equivalents are assigned the

same dimension as the original. When a simple. variable, a vector, or an

entire matrix is renamed, the original name becomes undefined, and may be

reassigned. When more than two pairs are given in a REFER statement, all

but the last two are separated by commas. The last. two are separated by

'AAND" which is not preceded by a comma. If a number is used, it must be

as the first half of a pair. The statement must end with a semicolon. The

second use of the REFER statement is to define vectors.

REFER TO X(1,1), Y(2, 3), Z(3), ALPHA, 13.75 AS V;

ALPHA must be a simple variable0 V must have been previously dimensioned

by a DIMENSION statement0 Commas separate all values, and the word "AND"

is not used.

5- Comments

Any string of symbols not containing a semicolon may be included in

the program in a statement which consists of the word COMMENT followed by

90

the symbol string and ending with a semicolon. This may be used for

adding explanatory comments within the body of a program. These comments

will be printed in the output listing but will not affect the program in

any way.

6C Code

In certain cases it might be efficient to include in a program a

block of machine language (symbolic or numeric) coding. This may be done

(so long as the block does not contain the string END; by prefixing the

block with CODE and finishing it with END followed by a semicolon0

7. Procedures and Programs

Within a program, groups of statements are blocked into procedures

and a procedure may serve as a routine or as a subroutine. A complete

program begins with the word START which serves to inform the compiler

that a complete program follows. The program ends with STOP which informs

the compiler that the run is over. Between these delimiters may appear

one or mbre procedures each of which begins with PROCEDURE and ends with

END.

7.1 Structure of a Procedure Heading

Each procedure begins with a heading of the following form.

PROCEDURE "procedure name" ("parameter listl%), ('tsubroutine list");

The procedure name is a symbol string that. starts with a letter and

serves to identify the procedure. It increases the efficiency of the

final program if the names of the library subroutines to be used in the

procedure body are listed in the heading in the subroutine list. If

none are to be used, this list is left blank.

91

Frequently procedures are defined for use as subroutines and as

functions of one or more variables or parameters. In these cases, the

parameters that must be set before (or upon) input to the subroutine

are listed in the heading. If there are no parameters this list may be

left blank.

Example of procedure heading

PROCEDURE SUMMATION l(n, x), (SIN);
n

this heading might be a subroutine which computes the value of • sin(nx)
1

and leaves the result in x. Thn' and 'x" are the parameters to be set

upon input and SIN is the only subroutine used.

7.2 Executing Subroutines

When, within a routine, it is desired to execute a subroutine and

EXECUTE statement is used. This consists. of the word EXECUTE, followed

by the name of the subroutine, a list of either values of parameters or

a list of locations where the values can be found, ending with a semi-

colon* Eog.

EXECUTE SUMATION 1(m, arg);

EXECUTE SUMMATION 1(27, vee)3

EXECUTE SUMMATION 1(34, 10.7h);

are all calls on the SUMMATION 1 subroutine0

The first example will enter the subroutine with the address of "'m"

replacing the dummy variable IV" and the address. of "arg" replacing the

dummy variable 9X~o The result will be placed in location 1'arg". In

the second case, the value 27 will replace "tn" and "vee" will replace

"tlxlo In the third case, 34 will be used for n and 1075 for x.

92

N.B.t The result in case 3 will never be used, for after the computation,

the result will be stored in the location where 10.75 used to be but, not

having been given a symbolic name, it can never be referred to again.

7.3 Program Structure

A compiled program always. begins running at the first statement of

the first procedure in the program. lWithin a procedure transfers (by

means of GO TO) may be made to any labelled.statement or to the beginning

of any other procedure in the program. Once a procedure has been left,

by a GO TO, return may be made only to the beginning of the procedure, If,

however a procedure is left by an EXECUTE control will be returned to the

statement following the EXECUTE after the execute& subprocedure has been

operated.

7Mt Inter-routine communication

It should be emphasized. that there is no way to communicate between

routine and subroutine except by procedure heading parameters. Ioe.

symbolic addresses used in more than one routine will be assigned different

numeric addresses and. will, in general have different values.

8. Sample Program

START

PROCEDURE COMPLEX POLYNOMIAL EVALUATION (), (ENTIER);

COMMENT This procedure has no parameters and uses the ENTIER

subroutine. It reads in values of a,, a2 , ,o aN, x,
,2 •N-1

y and N, computing the function al+a2 z+a 3z +,, a nZ = w

where z =x+ jy and w- u+ jv. If N is not a positive

integer O<N•<21, or if lwl>10- 0 an error printout

followed by an absolute halt will occur. If no error,

93

the result will be printed and the computer will halt.

If "start compute" is depressed. after print of w, new

x, y and N will be read and a new w computed.;

DIMENSION A(21)-, B 4);
REFER TO B(l) AS Y, B(2) AS Y AND B(3) AS N;

EXECUTE READ (21, A);

COMMENT procedure READ (n, v) is assumed to be a machine language

subroutine that reads n values into the previously

dimensioned vector v;

INPUT: 'EXECUTE READ (3k, B);

IF N.<O OR N>,21 OR NIENTIER (N) THEN

GO TO ERROR (); . CHECK ON N;

COMMENT: ERROR is a procedure with no input parameters

LET u.=a(l), v0= O

VARY i FROM 1 BY 1 UNTIL N IN

EXECUTE COMP EXP INT (x, y, i-l, xl, yl);

EXECUTE COMP MULT (a(i), 0, xl, yl, xl, yl);

EXECUTE COP ADD (u, v, xl, yl, u, V).

THIS LOOP HAS COMPUTED

Nw:"= alzii

1

IF SQRT (u*u+ v*v) lO**lO THEN

GO TO ERROR (); .;

EXECUTE PRINT (u, v);

COMMENT procedure PRINT (a, b) is assumed to be a

machine language subroutine that prints a (signed)

followed by b(signed) followed by the letter "j'o

E~gog +10-37j.°

HALT INPUT;

END

PROCEDURE CONP ADD (a, b, c, d, e, f), ();

LET es-a+c, fa=b+d-

COMMENT This subroutine computes e+jft= (a+jb)+(c+jd);

END

94

PROCEDURE COMP MULT (a, b, c, d, e, f), ();
LET e afa*c-b*d, f:-b*c+a*d;

COMMENT This subroutine computes e+jf:- (a+jb)*(c+jd);

PROCEDURE COMP EXP INT (a, b, n, c, d), ();

LET c-=l, d:=O;

VARY m FROM 1 BY 1 UNTIL n IN

EXECUTE COMP MULT (a, b, c, d, c, d); .;

COMMENT This subroutine computes (c+jd)s- (a+jb)n

where n is an integer. If n is negative the

program will cycle. If n is not an integer,

the nearest smaller integer will be used;

END

PROCEDURE READ (n, V), ()

CODE ENDS

END

PROCEDURE PRINT (a, b), ();

CODE END.

END

PROCEDURE ERDR (R), ()

CODE

HALT: HALT HALT;

COMMENT The odd looking thing one line above is

a self-addressed halt loop;

END

STOP

95

Appendix 5 - Part II

Setting External Equipment

The Analog-Digital Converter.

The range of the ADC can be set by either of the following commands:

SET ADC TO 1V SCALE;

SET ADO TO 1OV SCALEM

If the high speed mode is desired, the phrase I, GH SPEED (X DEGREES;')

(where X is some integer, usually a multiple. of ten) may be inserted before

the semicolon. The number of degrees in the parenthesis determines the

setting of the crankshaft. If X is not a multiple of 10, it is taken to be

the nearest multiple of 10 smaller than the given value.

Examples

SET ADC TO IV SCALE, HIGH SPEED (110 DEGREES);

SET ADC TO 10V SCALE, HIGH SPEED (20 DEGREES);

Output lines.

A voltage can be put on an output line by a statement of the following

sort:

SET Poddd TO X VOLTSI

where 1.•ddd is a code to identify a line consisting of a letter followed

by a period followed by a three digit number (A.003, B.227, etc.) and X is

a number. If a statement is used that has an undefined line identifier

(i.e. there is no line corresponding to the given identifier) the compiler

will not accept the statement. If a voltage is specified that is not avail-

able, the nearest voltage, smaller in magnitude, will be used.

Example:

SET C.003 TO -10 VOLTS;

96

The EPUT Meter.

There are many settings that must be made in programming the EPUT

meter. These have been combined into one lengthy statement, however, for

the sake of brievity certain portions may be omitted. The statement used

to set the EPUT meter is of the following form:

SET EPUT mode, N-X, M-Y, delay, slope DAl, slope DA2.

slope DA3 THEN, slope DA3, DA3v Z VOLTS•

The "mode" portion may be MA, MB, MC, MD, NE, MF or MG. It may not be

omitted.

The "N-X•" portion is ca3..Ied the A-setting and X may be either a

number or a variable. If the A-setting is omitted entirely, N is set

equal to zero. Similarly the PM- Y," portion is called the B-setting,

Y may be any number or variable and if "M= Y,) 1 is omitted, M will be equal

to zero.

The delay portion is used. to determine whether delayed or immediate

operation is desired. If delay is wished "lD' is written. If immediate

operation is to be used, the I'D" and the following comma are deleted.

Each of the three amplifiers must have a slope set for its input.

This is done by putting 1+" or 9-' for "slope" before "DAI", "DA2"1 and

"DA3". It is possible to omit any or all of the slope parts, in which case

the omitted slope(s) will be positive. In the case of MD. it may be desired

to reset the slope of DA3 during operation0 In this case the "THEN, slope

DA3" is used. This portion must be omitted for modes other than ND and in

Mode MD, may be omitted if the slope of DA3 is to remain unchanged.

The final setting is of the threshold of the DA3 amplifier which is

set by the "DA3= Z VOLTSV part of the statement. Z may be any number and

97

if this part of the statement is omitted the threshold will be the same as

the previous setting within the progrsmo (Cautions If a SET EPUT statement

without a threshold specification. is used. and. thhere was no previous setting

of the threshold, the value will be undefined)

Exampless

SET EPUT MD, N= 128, M= 32,768, D, + DAI, - DA2,

DA3 THEN, + DA3, DA3- -10 VOLTS;

SET EPUT MA, N = 2000•

SET EPUT NB, M= 12763, = DAI, - DA3;

SET EPUT NE, N= 100, M= 2001$ D, - DA3;

SET EPUT ME, N- 2056, D., - DA2, DA3= 26 VOLTSj

Relay Inputs.

It is possible to read a s.eries of values from relay inputs into

the computer memory. This statement is of the forms.

READ something INTO somewhere;

where the "somethingtt is an input relay name or list of names and the

"somewhere" is a vector which must previously have been dimensioned.

The "something" may take any of the following, forms or may be a list

of as many as are needed (separated by commas).

GROUP (group number)

GROUPS (group number, group. number, .. , etc.)

RELAY (relay number)

RELAYS (relay number, relay number, o., etc.)

A group number is a one or two digit integer while a relay humber

is a one or two digit integer followed by a period, followed by an integer

from 1 to 8.

98

The "somewhere" can be of the form:

vector name (integer)

vector name (integer, FF)

The vector name can be any s.tring of letters and digits (beginning with a

letter). In the first case, a single value is read into a single entry in

the vector. In the second case, several values are read in and the integer

specifies the location of the first value. The "',FFn' is for typographical

purposes and means "and the following". It is.. not necessary and may be

omitted at will.

Exampless

READ RELAY (29.2) INTO FOOF (28)ý

READ RELAYS (8.3, 8-4,. 29.1) INTO FOOF (25,FF);

READ GROUP (1) INTO FOOF (lFF);

READ GROUPS (2,3) INTO FOOF (9,FF);

READ GMOUPS (1,2,3), RELAYS (8.3, 8.4, 29.1, 29.2)

INTO FOOF (lFF);

The following two statements are equivalent although the second is

more efficient

READ GROUPS (1,2), RELAYS (3.1, 3.2, 3.3, 3.4,

3.5, 3.6), RELAY (3.7), RELAY (3.8), GROUP (4)

INTO GBW (7, FF);

READ G[OUPS (1,2,3,4) INTO GBW (7,FF);

If a relay or group is named that does not exist, the compiler will1

give an error indication. If a vector is used. that. is either undimensioned

or is too small, the program will give an error indication at run time.

99

Switch Opening and Closings.

There are a series of toggle switches which. are identified by numbers

and may be opened or closed under computer control. The following statements

will achieve this purposes

OPEN SWITCH switch number;

CLOSE SWITCH switch number;

The switch number may be any integer but if a switch is named that

does not exist, the compiler will indicate an error.

Typeouts During Program Running.

It is possible to define and use standard typeouts during the oper-

ation of a program. These standard typeouts are given numbers when they

are defined and the statement. TYPEOUT integer- will cause the typeout

message identified by that integer to be typed out. It is also possible to

typeout the current value of a variable using: TYPEOUT (variable), o For

brief symbolic typeouts, the symbol string to be typed can be placed in the

statement itself, enclosed in single quotes. TYPEOUT 'string';

The various typeouts may be combined in a single statement.

Examples:

We might have defined typeout 37 as "The current value of" and if

we wish to type "The current value of Z(1l1) is .. o.I (where .. means the

actual value of Z(1,1)) we write

TYPEOUT 39 'Z(1,1) isv MZ1,1));

If typeout 2 is "Calibrate temp. probe." the statement

TYPEOUT 2 (i); will print the typeout, followed by the

value of the variable i.

100

To define standard typeouts a statement of the forms DEFINE TYPEOUT

nunber AS symbol string; is used. Several typeouts can be defined in the

same statement.

For examples

DEFINE TYPEOUT 1 AS 'FOOF',

TYPEOUT 4 AS 'Gratch is nit.'.

TYPEOUT 3 AS 'X(3,14)- ';

It is important to note that the symbol string must not contain single

quotes (')o

Delays.

Since the programs put together with this compiler will have to run

in real time, there might be times when it would- be useful to have the

computer wait a fixed amount of time while s ae. external event is occurring.

The statement. DELAY number SECONDSý where "number" is any positive number

will cause the computer to delay that amount of time before continuing.

Another type of DELAY might be useful,. The EPUT meter reads directly

into the accul-mulator of the computer and, the statement "DELAY FOR EPUT;"

would make the computer delay until the number. in the accumulator stops

changing (ioe., until the EPUT has stopped). This.. statement does not appear

in the formal syntax.

101

Examples Sample program from the Controller Program Flow Diagrams

START PROCEDURE TRANSDUCER CALIBRATION E, (ABS, MEDIAN)

COMMENTs In the procedure heading, the E indicates that there are

no input parameters. (ABS, MEDIAN) indicates that the ABS

and MEDIAN subroutines are usedi

DIMENSION INPUT (58), T(31), P(5), U(2);

INTEGER i, j;

DEFINE TYPEOUT I AS 'If calibration is required - replace those probes.',

TYPEOUT 2 AS 'Calibrate Temp. probe',

TYPEOUT 4 AS OCalibrate Press° probe',

TYPEOUT 5 AS 'START ENGINE - SET 1000 RPM',

TYPEOUT hO AS 'Calibrate velocity probe';

CO•MENT: This program is an approximation to the transducer

calibration flowchart of the controller flow diagrams.

Sllg SET ADC TO lOV SCALE$

S12. READ RELAY GROUPS (1, 2, 3, 4, 5, 7, 8),

RELAYS (29.1, 29.2) INTO INPUT (l,FF);

S14. LET T(l)g-96.O*INPUT(2)- 313.0.

T(26) • 96.0*INPUT(33) - 313.0,

T(27) g=96.0*INPUT(34) - 313.0;

VARY i FROM 2 BY 1 UNTIL 25 IN

LET T(i)•-=211oO*INPUT (i+7)- 328oO; .

VARY i FROM 28 BY 1 UNTIL 31 IN

LET T(i) -=83.3*INPUT (i+21) - 344.20

S16. LET P(1).--•90*(INPUT (42) - 3.5)/(23.5- INPUT (42));

VARY i, a, b, j OVER (2,3,4,5)(56-5, 37.7, 37.7, 141.4)

(283, 101.8, 101.8, 381.8)(A3,hh,45,53) IN

LET P(i) •=a- b/INPUT(j); .;

S18: LET V(1)W x

V('2)-.= y
COMMENTs These computations are not specified in the flowchart;

102

!

S110 LET TMED:.= MEDIAN (T(i));

COMMENT. i is a dummy subscript;

S118: VARY i FROM 1 BY 1UNTIL 31IN

IF ABS (T(i) - TIED) >5 THEN TYPEOUT 2(i); .; .

S121: LET PMED: MEDIAN (P(i));

S129: VARY i FROM 1 BY 1 UNTIL 5 IN

IF ABS (P(i)- PMED) >5 THEN TYPEOUT 4(i); .; o;

S132: IF V(1)<CONST THEN TYPEOUT 40; TYPEOUT '1' o;

IF V(2)<CONST THEN TYPEOUT 40; TYPEOUT 12!;

COMMENT: The value of "1CONSTI" was not. specified on the flowchart.;

S134- HALT NEXT;

NEXT. TYPEOUT 1;

S136 - CLOSE SWITCH K.009;

COMMENTs START ENGINE;

S137: CLOSE SWITCH Z.009;

COMMENTs SET 1000 RPM,

S138: TYPEOUT 5;

S139: OPEN SWITCH K.009;

s140o: OPEN SWITCH ZoO09;

S141: SET ALPHA TO BETA;

S142: SET GAMMA TO DELTA;

COMMENT: The flowchart says "NO LOAD" for S141 and "lOO RPM"

for S142;

S143: HALT A2; END

STOP

103

I

Bibliography and References on Compiling Languages and Compilers

1. Bottenbruch, H., 'Structure and Use of ALGOL 60," JACM Vol. 9, Nr. 2.

2. Brooker, R. A. and Morris, D., "A General Translation Program for Phrase
Structure Languages," JACM Vol. 9, Nr. 1, 1962.

3. Burroughs Algebraic Compiler. Burroughs Corporation Bulletin 220-21011-P,
1961.

4. Chomsky, N., 1'0n Certain Formal Properties of Grammars,"4 Information and
Control, Vol. 2, Nr. 2, 1959.

5. Evans, A. Jr., Perlis, A. J. and VanZoren,. H.-, "The Use of Threaded Lists
etc.,It• CACM, Volo 4, Nr. 1, 1961.

6. Glennie, A. E., "On the Syntax Machine and the Construction of a Uni-
versal Compiler," Carnegie Institute of Technology, 1960.

7. Gorn, S. et al. "Common Programming Language Task," Part I University
of Pennsylvania, 1959.

8. Gorn, S. and Parker, E. J., "Comnon Programming Language Task," Part I
University of Pennsylvania, 1960.

9. Gorn, S., "Processors for Infinite Codes of the Shannon-Fano Type,"
Proceedings of the Symposium on Mathematical Theory of Automata,
Polytechnic Press of the Polytechnic Institute of Brooklyn. To
be published,

10, Gorn, S., "Some Basic Terminology Connected With Mechanical Languages
and. Their Processors,," CACM Vol. 4, Nr. 8, 1961.

ll Gorn, S., "Specification Languages for Mechanical Languages and Their
Processors. A Baker's Dozen," CACM Vol. 4, Nr. 12, 1961.

12. Holt, A. W. and Turanski, W. J., "Common Programming Language Task,"
Part II University of Pennsylvania, 1959.

13. Holt, A. W., Turanski, W. J. and Parker, E. J., "Common Programming
Language Task," Part II University of Pennsylvania, 1960,

14. Ingerman, P. Z., "A String-Manipulative Language. for Use in Compilers
of the Syntax-Oriented Type," Paper in progress.

15. Ingerman, P. Z.., 01A Translation Technique for Languages Whose Syntax
Is Expressable in Extended Backus Normal Form," Proc. of the
Symposium on Symbolic Languages in Data Processing, Rome, Italy.
To be published 1962,

T

16. Ingerman, P. Z., "Dynamic Declarations,"t CACM Vol. 4. Nr. 1, 1961.

17. Irons, Eo T., "A Syntax Directed Compiler for Algol 60," CACM Vol. 4,
Nr. 1, 1961.

18. Irons, E. T. and Feurzeig, W., "Coments on the Implementation of
Recursive Procedures etc.." CACM Vol. 4, Nr. 1, 1961.

19. Irons, E. T., "MK-intenance Manual for PSYCO (The Princetony Syntax Compiler),I"
Part I. ID.A. C.RD., Von Neumann Hall, Princeton, N.J., January 1961.

20. Leonard, G. F., "The Cl.,- Programming System Users Manual, " Technical
Operations, Inc., Report TO-B-61-3, 1961.

21. McCarthy, J. dt al, "LISP Programmers$ Manual,kl Computation Center,
Massachusetts Institute of Technology, 1960.

22. Mechanical Translation Group. "A New Approach to the Mechanical Syntactical
Analysis of Russian," National Bureau of Standards Report 6505 and
Supplement, 1959.

23. Naur, P. ed., "Report on the Algorithmic Language Algol 60,"t CACM Vol. 3,
Nro 5, 196o.

24. Newell, A. et al., "The Elements of IPL Programming," The Rand Corporation
report P-1897, 1960.

25. "Reference Manual 709/7090 FORTRAN Programming System," I.B.M., New York,
1961.

26. Rhodes, I., "Hindsight in Predictive Syntactic Analysis," National Bureau

of Standards report 7034, 1960.

27. Sattley, K., "Allocation of Storage for Arrays in Algol 60," CACM Vol. 4.,
Nr. 1, 1961.

28. Warshall, S., "A Theorem on Boolean Matrices, ' JACM Vol. 9, NR 1, 1962.

29. Woodger, M., "An Introduction to Algol 60," Computer Journal, p. 67, 1960,

JACM = Journal of the Association for Computing Machinery
CACM = Communications of the Associa:tion for Computing Machinery

Section B. Circuit Analysis and
Network Element Value Solvability Study

The work done on this subject from July I, 1961 to June 30, 1962

consists primarily of 8 ,.Do Bedrosian's Ph.D. dissertation which is attached

to this report.

1o6

4-) 4~ 4'4').0

00

. *H

4(k0 U) U) 0)04 0)0HH HHO0 cH H U300j H") O)ýH .4 +, 1)0H0(4 o c.0 p.

OH~i~ H p .H 0 () 0 H00H 4

mC 0) 00)0 co .O O)QH00
00 P0 3 ' 01 0.0- 0 P, 0-. E-1 'r Cd ilp 00 01(04 *0)'0.0 04 HICO E-'

0 aOO) . O01CO(D(1 H00) ,ij C j Q 40 000)00 0).r II(0.a) 0) 4- b zo fI~~-IO).) m00 %' 0)4 "' 0) M) 0) 4-ioJ C' 010 NH00 0)04 U) 0)
WO 0 H CO)4'0 41 9 4 -al)0 0m, o *H "IOO. 00 b04' ~4-1 0)0 HO. Q

* ~ ~ ~ ~ l Pi4 *ýN 000100C~ 01)i'0-V HO H) 0)p .4 0) 0) M 0-10.dHO
H0H0H())0U)H AH,)c(Hý R0 U)H0) OH CO))).0))C(0

Hý PH '~ H_ u C.) H
rup OCl'.HH U0)00l ý0 4r, 8 rlI RI'op 0) 48 O)) (0. O'd(D 'D. ()20 ri oo ~ - 0 ' a)'00) 0 0 ri 0 to -r- (d (04 0100 00 HOm

C) HO *H)O~q8ý d ' PP 1 1- ~ 0-P! 0)4 H 00) p C0,-VO
C) 0)0) 0 03 l00-) 0 O)1).CH ct- 1oD"d 0 m 0

H4'4' + C .) 40+' 0 4' 0 00() 0, c S))'C 0 (0) (1) 04 4'' 010 0)F..H0)0)4' (00 0) .
* 0 '(01CO H0-ý040 04* 0OO)0)+ ýd)):1C 0 6)'4
0 m ' 10) . '00 !, P..00() aO)H-i-Q" 0- 4-'.0r 0ý).0H .-. 4'frO .'0ý OHý 00* 0 0p(0 '0 00*(4~ O) Hp Q)H 0 .00(0 O0) jco4)40) HiQ(D0cH ;R) a)-HOSt .0001((01H 0 d du00)0'')(0POH00H 00H, .00 CO C

H.0H00014.0 H'O' CO t)0.0.0 I H0 0r-i)4)0H'0 'O0 p) ~,00)
0 & 10 COW C(000) 104o4 H)H0 0 (- -0 4'))0 .)001H01 .04H0 1400(.U)H 0, OC 94)40 Q)(-10HO1040' 0) 4) 0)OHCO ,04).000 aO(00)HH ')H

E,'0 0 0 > 0010H00)00OHO)H) 0 0 E- 0 0,rIU- 00\ k(C(~0 C) c(00)'d'UIV-4O.H0 01H0)
CO 0 - 4.-' U) I -D'~- 4 0 RO0A(04'

C. H M 4 r)1(O U0 (1 0 .00)C0(4' 4 H CO 0ý 01 004d(0 4 ýý P
Hý a) 4)-4HI 0 O O OHi(0(0 ý- ~0(1) p HO H ý 0) O)4H co (1),40O O'H 00(0 HO

.0 4 HO0'0)0 O>H4 0. 00 -0-04 0 .0 '. W HO0'0)0 04 0. 00 *4'C 0 .00 X(0 ~ ~ ~ ~ a H'0M 4'O'404'0) 0) (00 0H)(0 (00.) 4 (0-d4 04 4'H(0) 0)0 DH)(0.0.)0~D 4' 0(
0

.C.O)0 AO,. .
0

(0)0 0).H4 ;M D4' 00010.CO.H0) 040 *H (1.).00.Q .040 r 00() 00H~~~~~~~~~~~~~ 1 co 0-H010~ 0o Oo4P.04H,0)(' a) ;j 01OH.10O1 '.H40(4'.H0.H0)0(0'0
-o 02 ; -H a) z k 4 M-M 4)4' "00)

H0 O40 .0a H (L) 0 F4H 'H 0 0)0d jýC0 p ck 04'.0 ý 10 10 CH - Or -N 4) I01'H0.'0It~l (04)1ýt. C) (0 l * cd10 0,;0.' M4I (0i*

4''H *H O.-.. -ri-..H (0 H0)H0)o(0 ,do U~
H.OH 1)0000 H.) H~u 04'4Od TJP .HF~ 4)

bo4 0 H .4Mr_ O'd 11,
hi V3H.(0) *H00.0 (0 HH H- (0 Hr~ 0 (060 o(ýv

U E 0 c)(4' 0)(.4) Hrd H~rq4 01 (dri0 Uia) "U) , (1)(OA0)0 I)H
ý(L0(0 4.0. H P, 4"'O -HO 0

0
'd+ -)FHr r

HfL)H4 014 CH 0) r,- H 2) (0i a))(4 a)0 0. H,(
\OH0::-iF-) ,0,0 Vo HO 0 K*.(0 .0 0 (00 a) ;q, 10 0 H a(

4)0 'dU)' 0 (000 OHd-l40l-iQ 40. 0 OCO'00U) ý4' (0(d 0ý 0rcl-4'd~-d 40. 0
0. 0 P)4'0 0W)4'0)ý 000 *OHDH4,q . ýMC 1 04 0(0 0)'S 000 O H 'Hi() 0 c 4)0Pr p
C) H f ' 0u) 04H000 M IH pH (04-10H ý04 0)'C'))H cH -H0)0W ~04 c.01);4qw1 w 4 d m- -0 (00) or E C 0* .) O CCO 0) co '-:ICdw0 0 10o (00H Ha H4- co' 0co -Hd(0 (
0 ~ ~ ~ c 00 0)H O y0(00 0Oc. H 0 0ra 4-90OHH) T 1 0)00C HO;H)
p0 HH 4"ýHCO 1O0 r)(D-aQaQ4O, " H H - 0'(0 0rt 4"0000)H 3 '

co HI. *H4Uri 0 Hr.-*P 0.4" m)(b HIr W ' JýNtP 0 l 00.0 Hf4 I'14') H) 'Q)4' .14-. H ad)
.0. Hgo c.ý) 0 r -0 H 44 '0HQR 9 W M04

(1) 00 H '0H r0C *~I4 P,' o-O 01 0)00)0 0) 00 T '
4-1 . a 0)0)00 0(1 000 Pl4'. H .0

U)0)00 0)'00 000 4'00 ' I) U)0aH)00 04) 0)0` kO, 0 0H F
H" 9 '- 0 Ha PCO H, .0il 4) Q)~ 0)) HO'H O)4"HO cH (

*rH 044)10.0 adi0 0) FH(0 U) 4 ,-iP0 or:1 004 00 0D PH 0))..H0OI(O
D, l4) 0 0) rk- ý:p90 (00 *.L4))0 0)04' * R0 0) 40) ý 0 0

0)0) Ho HO)-o- (0 a)00 *HC (Lo)r 0 4'4"H) 04-H' .00)0 4) -
i)~ M0 HH Cd)40 CI400(H .00 . U~.o10'~)4' '0.i (0H HOOP.C4-. 04 -

0 CO.p HdP. 0)ý *H p 0))0 O

H(H (0H(0 ,I 0.)0U 'DH () s:)0(0(r0 H 00 0H0H(00 0U'). H00(0(0H (0)0
40) riMHO)H- ý ýN44 . iH;

-0.H Hd Q), , o c H F ý Hb

COH a)Cý C O0100) 1 CH 00lH co 00 CH)C 0~c N-A (04'-rr- 014 U-940) O0 4
00200 000' 0 -d "HIll (0H004H)D) 0,-, (0.A I0~ 000 A0) -H0)0 (HP O0)I0)

(0ýý a)0'0H0O -14 (EH 0' 0) zOH00. 4 (.40~0H00 0 0' ~ 0(.O)~~U) HO $)4' H FA00) t0Ho) 0 ''00 CO 'I'' ,H)4H U)) 0.O 44 0'0004
01 ~ 0)410(D CO4 0)) 0 b. '0.0 '(- 0O H o0 ;21 q)-H0 (00 00 4 0) Va) l 0 1 H'0.0' 04(0 ~(0 0 H~-

HOH Z400) qC '0.HI .0 4)))0: M.' Hý HN 00)00CH *dHO4'0)4':o" to m1 p0.'0
-g0-HP! -P 0 ON Slk F00 C0O)~IH El '0d 00. 4.H-:1O) r.0 000 4k OW 0 H *0 '0 E

U) 0.401'H Q. I-..C00L 001- 0.0 1P,4 0-C'(H)0 4 m0 'H ((.OH" (00)(00a0 V H ~ 4-1HO) D 0.-cl coH0)P
04 CýO44 (0 4)04 4' 0) .O) 0).)00 E) .0 Co r, '00 40- 4) 4' l .0 (H0) 0 (D .

ON LoH 0 p010 H(-1o 02 010ý 0)4.00.0 0 CO O NH m 0 010 H0 1 000(D 0')4- Z.00) H) CO
MA H 00)4' -W4 00))0 OHID (0 4'l) 04Ad 00' 004 *.00))0 0.00(')

U.0) a) C) 4. 0, g 00*0-H'-0.MO0)H0HI 0O' 0.o) 0(0 o '0 M .0- bý r.; .*ý q,)~ .ýO) OH 00'o

C) 0) 000) OoH0' 00 '010OH00 o,4 Eý Q) 000), OOH1CO 0 '0 '(0)'0HoH((04 0)

0. 00 0'H.4'(0000.4)00 0)0ý O0 H8 0.'3 (0.10 " 'F HH'd 0000 . fO) (00.00HoID Q 0. 0'dO)M0 0 (1) 00 d000'00-4 '0) 0. O 0. '0) o0.010 r. 04'. 0.0 H04
.- (04)(0o 0 (0 ý -,H(H-, m1~)I 4)0. m8 C01 H (0(04 (.0 01(00 H C.H) (0H 0(0 p 4'0.H 0

Hý 0 COW -0ID 0 0 0H0fo 0 1 HO) 0 (0I 4'00)0. H COd 0OC(0H0~. 4H) 0 (0 Lo))('
0 H4) OM 000 (0H4 4'0I4'V ' 4)0)(0(0 Hm' bD-4'U- 000 (0H4 4'01-r4--o 020(0.0

H14 00 100 V01 0)H(01)1' CO'H01(0ý0H0)0)H0)0)P4

H ~ ~ ~ C 0g Fr* ;jO 04 .H) 0.00 004 H 10 Old' C)H0(:ý0 004 O'ý)0000)0(4
Ld 0.0)0) H0H 0) 0'Hr-r- 015 H.0'0 0 O 0 0 U) :5rýc 0 0)0 0 4r 0H'0H 0) OrýH M H.1 001d

0

pqH ;4(0O)C0o0041i)H a00)0((000 00 CO H0' p 2 - H04 r- c (00)).00'H);E-I r 00) 0(D0(000 00 CO-4

0 o 'd .0 1 'H O0'O. IH' 0 0 'H'O4 .0 (o .0 'H 2 40)0)4 . 0 H'O'00
0 ~ ~ ~ ~ 1 4' 001N.HIX HO0H .0)0 ,I 0 H 0 4' 000(1)0)CO r4 00I4 'd0),. 0400)0

H U) ~ m00'H10101 '0,H40. 04H,0000 H U 0OH01 ~)0 ',H4P.1)H0H00('

DISTRIBUTION LIST

10 copies. Commander
ASTIA
Arlington Hall Station
Arlington 12, Virginia
ATTN: TIPDR

25 copies. Commanding Officer

U.S. ArPy Munitions Command
Frankford Arsenal
Philadelphia 37, Pennsylvania

ATTN: Mr. A. Chalfin

1 copy o Commanding Officer
U.S. Army Ordnance District-Phila,
128 North Broad Street
Philadelphia 2, Pennsylvania

ATTN: OD, R and D Branch

1 copy Commanding Officer

Diamond Ordnance Fuze Laboratories
Washington 25, D. C.

ATTN: Technical Reference Section

25 copies Commanding Officer
U.S. Army Research Office (Durham)
Duke Station, North Carolina

ATTN.- Dr. J. Gergen

