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On Dynamic Switching in One~Dimensional
Iterative Logic Networks*

William L. Kilmer

Research Laboratory of Electronics
Massachusetts Institute of Technology
Cambridge 39, Massachusetts

ABSTRACT

A SITN is a cascade of identical finite automata such that the ith automaton

receives an X; input from the outside world and a ¥y input from its left neigh«~
bor, and produces a z; output to the outside world and a Vil output to its right
neighbor. We prove three main theorems: 1) For every integer k there is a
cell definition such that a corresponding SITN either can or cannot switch from
equilibrium to a cycling condition following a single x; change according as

n <k or n >k, respectively; 2) there do not exist algorithms to tell whether
" or not a given cell definition admits of a SITN that can start from equilibrium
and following a single x; change either a) switch into a cycling condition, or
b) put out a z; = 1 during a switching transient; and 3) there do not exist algo=~
rithms to tell whether or not a given SITN cell definition must have every
switching transient following a single x; change from equilibrium either a) die
out a bounded number of cells to the right of the change, or b) extend all the
way to the SITN boundary. All theorems are proved constructively on finite-
state diagrams, and 2) and 3) hinge on an embedding of Minsky's Post Tag
system results into such diagrams. We conclude with several iterative net~
work equivalence demonstratfons.

*This research was supported by Air Force Cambridge Research Labora~
tories Contract No. AF19(604)-6619, under the auspices of The Montana State
College Electronics Research Laboratory, Bozeman, Montana. The author is
currently at the Research Laboratory of Electronics, M.I. T., on leave from
Montana State College. ‘



I, Introduction

We consider a concatenation of n identical logic cells as shown in Fig. 1.

The i

8, with domain of values a5, 89, ... @

cell has agsociated with it the. following: 1) a memory state variable
- 2) an external (i.e., outside world)
input variable X0 with domain bl’ b2, eoe bp; 3) lateral input and output
variables ¥; and Yis1 respectively, each with domain Cys Cos +-- cq; and

4) an external output variable Zis with domain dl’ _d2, ce dr. We assume
that the functions zi(xi, Y Si) and yi+1(xi‘, yi,' si) are realized with zero time
delay'; across the cells; and that the function:’ Si(xi’ ¥y Si) ig realized with
unit time delay. within the cell,. At time t = 0 the Yy X 5 variables are all
assigned arbitrary values from their respective domains, and for all t> 0

the values Qf ¥y and all the X, remain fixed. We denote such cell systems
SITNs (for Sequential ITerative Networks).

A SITN is said to be in equilibrium at t> 0 if and only if all of its Yir 8
values remain fixed from t on. A SITN is said to be cycling at t> 0 if and
only if its over-all configuration of Yo 8 values at t first recurs at t + T,
for T>1, If a SITN is in equilibrium at t = -1, and at t =0 some Yi and/or
X, values change, the corresponding sequence of Yi 8 value changes is called
a transient just in case the SITN reaches equilibrium at some t> 0. Other-
wige the SITN enters a cycle.

The main purpose of this paper is to present some results on the problem
of determining, for an arbitrary SITN cell definition, the various ways in
which corresponding SITNs can switch from equilibrium to equilibrium, and
equilibrium to cycle, following single X, value changes. We also apply these
results to non-SITN models discussed in Kilmer (1961), (1962A), (1962B) in
order to extend the present theory of switching dynamics for iterative
gystems.

We claim that the results of this paper furnish new insights into the
classical long-range order problemsl of statistical mechanicg, sociology,

nonlinear control theory, neurophysiology,2 and genetics.

\

1. Those problems that involve the derivation of long-range order
patterns from short-range order relations.



2. In particular, the operational problem of the reticular formation in
vertebrate nervous systems. This formation is always the central command
and control center in such systems,
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II. On the Relationship of SITN Size to Possible Cycle-Entry

Our concern in this Section is to give a constructive proof of Theorem 1.

Theorem 1: For every positive integer k there exists a SITN cell definition

such that any corresponding n-celled SITN which is in equilibrium at t = -1,

and which has a single x, value change at t =0, either can or cannot possibly

enter a cycle at some t = 0 according as n> k or n € k respectively.

Proof: Consider the partially completed SITN memory state diagram for

x, = b1 shown in Fig. 2. The Ci/cj label on each arrow there indicates that
if a cell with x input equal to b1 has the memory state value given at the tail
of an arrow and if its y input value is Cis its corresponding y output value

is cj and its next memory state value is the one given at the head of the arrow.

Now assume an n-_celled SITN in equilibrium at t = ~1 as follows:
all X = bl; s, = 3, for i odd and 8, = 3, for i even; and Y1 =¢q- This equi-
librium is an obvious consequence of the self-returning arrows out of a, and
ay. Then suppose that at t =0, X changes to b2' Figure 3 shows that this
causes y, to change immediately from <, to e Figure 2 accordingly indi-
cates the successive SITN variable value changes listed in Fig. 4., Each
square's entry in Fig. 4 contains the column variable's value at the corre-
sponding row time. Any column left blank above a certain row denotes that.
the column's topmost entry persists from that row time on. Note that the aj
values assumed by each s; in Fig. 4 always have (maximum j) = i, Hence the
(k+1)St cell is the leftmost one which can ever have its s, variable take on the
a4 value, and from that time on cycle around the 3417 Bp+o loop. Since this
is the only cycle admitted by Fig. 2, the figure provides the essentials of a
proof of Theorem 1. ' .

We fill in the details of our proof in Fig. 5. Figures 5 and 3 clearly indi-
cate that the only possible equilibrium 8; values are a; and a,. Thus it is
easily seen that regardless of the sequence of X values along any corresponding
SITN in equilibrium, if any single X, value change is to cause the SITN to enter
a cycle, it must do so essentially in accordance with Fig. 4. Hence at least

3. In the obvious sense that out of each s, memory state value there should
be an output arrow for each possible Y5 value,



e OR <, OR c3 OR c4/c]

c3/c3 IF k EVEN
c4/c4 IF k ODD

Oal&

c]‘/cs IF k EVE

c3/c3 IF k ODD
. c4/c4 IF k EVEN

c4/c4

c3/c3 c3/c3

‘ cy/ey ‘

C]/Cz C2/C]

< OR <y OR cq OR c4/c2

co/cy IF k ODD

FIG. 2 PARTIALLY COMPLETE SITN MEMORY STATE DIAGRAM

" FOR x; = b] USED IN THE PROOF OF THEOREM 1.
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c],cz,c3,c4/c2

c3/c3 IF k EVEN
c4/c4 IFk ODD

c],c4/c3 IF k EVEN
c]/c4 IFk ODD

c/cq IFk EVEN
CprCg/cy IF k ODD

c],c4/c2 c2,c4/c]
S-i DOMAIN: 01,02, Tt uk+ 2
X; DOMAIN: (IN FIGS. 5 AND 3) : b]’bZ'
yi DOMAIN : C],C2,C3IC40

.

FIG. 5. COMPLETE SITN MEMORY STATE DIAGRAM TOGETHER
WITH FIG. 3)'USED IN THE PROOF OF THEOREM 1



k + 1 cells are always required to the right of any single X, value change if a
Fig. 5-type SITN is to enter a cycle under the conditions of Theorem 1.
Q.E.D.



III. Some Unsolvable Problems on Cycle Entry,

Equivalence, and Transient Character

In this Section we prove two unsolvability theorems, using essentially one
SITN memory state diagram and Minsky's (1961) result that universal Turing
machines can be represented by Post tag systems. We state both theorems
before proving either.

Theorem 2: There does not exist a recursive procedure to determine of an

arbitrary SITN cell definition4 whether or not any corresponding SITN in any

arbitrary equilibrium at t = ~1 can have a single X, value change at t =0 cause

it to: ‘
i) enter a cycle at some t 2 0,

or ii) pass through a transient which causes a 1 output on some z; at some t2 0.

The ii) part ofthis Theorem pertaing to the existence of certain SITN equiva-
lence tests [cf. Hennie, (1961)]. '

We now consider SITNs which if in e‘dﬁilibrium at t = -1 and subjected to
single x; value changes at t =0, admit only transient responses (i.e., no

cycle entries at any t = 0). We call such SITNs transient SITNs. In case a

transient-SITN cell definition is such as to insure that all single x; changes
from equilibrium cause transients involving Y3 value changes all the way to
‘the right boundary of every corresponding SITN, we call the cell definition
boundary transient. And in case a transient-SITN cell definition is such as

to insure that no single X, change from equilibrium can cause transients -
involving Y value changes more than a bounded (hence calculable) number of
cells to theright.of the xi' change in any corresponding SITN, we call the cell
definition bounded transient.

Theorem 3: There does not exist a recursive procedure to determine of an

arbitrary transient-SITN cell definition whether or not it is:

i) boundary.transient,

or ii) bounded transient.

4. Such as given in Figs. 3 and 5 for example,

10



Our first step in proving Theorems 2 and 3 is to define a Post tag system.

Let A be a finite set of letters a;, a a . ; and let W be an agsociated

set of words, such that for each i, W2i is a fixed string or word of letters of
A. Let P be some integer, and define the following process applied to some
initially given string S of letters of A; Examine the first letter of the string
S. Ifitis a;, remove the first P letters of S, and then adjoin the word Wi to
the end of the remainder. Perform the same operations, defined a production,
on the resulting stfing, and repeat so long as there are P or more letters left
in each resulting string. If at some point there are fewer than P letters left
in the resulting string, the process is said to terminate at that string. We call

A, W, S, P, and the process just defined a Post tag system. Minsky, (1961),

showed that the problem of determining for any given Post tag system whether
or not the correéponding process ever terminates is recursively unsolvable.
We will now embed -his result into a SITN memory state diagram.

. We replace the letters a1y 89y eees Al (but not the symbols S, Wi) of a
given Post tag system by the i values’ Cis Cgs vves € respectively, and
then complete the Y domain by adding three special values, ¢, @1 and wg-

The latter two are interpreted as marker values, and ¢ is interpreted as the
null value, Next we specify aj, @y, g, 2g, and a, as the only possible equi-
librium 8 values, and bl' b2 as the X, domain. Figures 6 and 7 then give the
essential outline of a SITN memory state diagram sufficient to prove Theorems
2 and 3.

Our notation in these Figures is as follows: C dehoteq any yi'value;"'wl.
~w,y, and ~¢ denote any y, values but «,, wos and ¢ respectively; i values
raised to the jth power denote j successive repetitions of those values; £(T),
for any string of letters T, denotes the number of letters in T; and TU,
T and U both strings, denotes the string consisting of the letters of T followed
by the letters of U in order.

Let us nowagsume, in order to explain Figs. 6 and 7, that we have a corre-
sponding SITN in equilibrium at t = -1 as follows: all X, values are bl’ 54 is
a,, 8 is ay, and all other s, are a,. Then suppose that at t =0 there ig a
single X, value change from b1 to b2 in the first cell. This causes Yo to change
from é.(i.e.null) to wg. Subsequently 8, passes from a; down through ag to ay,
causing y 4 to put out the string wZS before gettling down at ¢.

11



’C'i("¢)p-] /CDP-] vy

~®/OUTy,, | VALUE
= INy, VALUE

. q)z(wi /W,

FIG. 6. THE PARTIALLY COMPLETE SITN MEMORY STATE DIAGRAM
FOR x; = b]‘ USED IN THE PROOF OF THEOREMS 2 AND 3.
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C/w]

" THE REST OF FIG. 7 IS THE SAME AS THE
‘ CORRESPONDING PART OF FIG. 6, EXCEPT
e a, 1S INTERCHANGED WITH a,, AND ag

IS INTERCHANGED WITH ay-

FIG. 7. THE SITN MEMORY STATE DIAGRAM FOR X, =b,
USED IN THE PROOF OF THEOREM 2 AND 3
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Next we show that y 4 accordingly puts out essentially the result of the

first production in the c;rresponding Post tag system. To see this, we note

that 83 is taken from ag to ag by Y3 = g from ag to a, by the next value of
Y3 (i.e.,-the first letter of S, assumed ci), and from ay to ag by the next

P -1 values of Y3 (i. e., the next P-1 letters of S, whatever they might be).
y4's value remains ¢, or null, during all of these changes. Following them,
however, the (P+1)St non-¢ value of Y3 (i.e., the pih letter of S) produces
wy out aty,. Then the sequence consisting of y3's (P+2)m1 non-¢ value to its
last non-¢ value (i.e., the (P+1)St to the last letter of S) produces itself out

at Yy Finally, when Y3 settles down at ¢, 8y leaves ajgor a {(whichever

11
state it is in) and causes Y4 to put out the string Wi’ corresponding to the
first letter of S, After that Y4 also settles down at ¢. Thus the first pro-

duction in the Post tag system,

S= ¢.T T - T W.,
-3 1: Lo 2 -3
P letters

is represented by the Y3 ™Yy transformation across the 3rd SITN cell,
wZS -+ sz‘ZWi (preceding and succeeding ¢ values not shown).

More generally, the Yi = Vis1 transformation across the ith SITN cell
can be .made to represent the (i--2)rld tag system production as follows:
For each i in the tag system .alphabet of letters, {Ci}’ we add to Fig. 6 a
portion of H state diagram which is exactly the Cit counterpart of the portion
already there from ag to a3 This is primarily to enable the first c, value in
each incoming ¥; sequence to direct 8 to a portion of over-all state diagram -
. that ends yi+1"s non-¢ sequence with the right WJ ‘The Wj are produced in
one of the alz—a13-type portions of augmented s, state diagram, and are SITN
representations of completions of corresponding tag production steps. The
purpose of add‘ing ap-a,; as well as alz—al‘s-type portions of s, state diagram
is threefold: 1) the ap-ag portions enable the ith cell to effectively remove
(i. e., replace by ¢) the gnd
This begins the SITN representation of each corresponding tag prqduc’cion;

to Pth Cj values of each incoming y; sequence.

2) If there are ever fewer than P c; values, the ap-ag portions allow Yi+1 to

remain fixed at ¢.In‘each such case one Bbundle arrow in Fig. 6 is traversed;

and 3) The ag-all-type portions enable the i cell to simply pass the (p+1

14



to last c5 values of each y; sequence. Thus they represent intermediate
tag production steps, preparatory to W;j adjoinments.
Hence if the corresponding tag system productions terminate at the ith

string, y. ., is the leftmost SITN value that is left unchanged in the associ-

i+2
ated network transient.

We now finish our proof of Theorem 3 by filling in the missing details of
Fig. 6 in Fig. 8. We leave it to the reader to check in Figs. 7 and 8 that
only one type of transient can involve Yi value changes more than one cell to
the right of a single X perturbation of a corresponding SITN at equilbrium.
And that transient type is the one discussed above. Since the problem of
determining whether or not the tag system productions corresponding to such
a transient ever terminate is recursively unsolvable, so also is the problem
of determining whether or not the transient itself is bounded or boundary.
.This completes our proof of Theorem 3.

The proof of Theorem 2 follows almost trivially. We prove part ii) by
modifying the B bundle in Fig. 8 as follows: Instead of directing this bundle

into a,, we direct it into a new state, a4 a8 shown in Fig. 9. Then we

specif:; that z; = 0 for all s values except ayys in which case z; = 1.

Theorem 2 ii) follows immediately by noting that it is yes if and only if the
transient in the proof of Theorem 3 is bounded. But this question is recursively
unsolvable.

We prove Theorem 2 i) by modifying Fig. 9 as shown in Fig. 10. Then
states a, , and ayg comprise the only cycle that is accessible under the conditions
of Theorem 2. Hence Theorem 2 i) is yes if and only if Theorem 2 ii) is yes,
which is recursively unsolvable. ’

Q.E.D.

As a passing point, we note that by identifying the right and left boundary
signals in the SITNs of Theorem 3, we can get a result much like Theorem 1,
but with the inequalities reversed. Although this point has considerable interest,
we will not develop it further here.

15
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IV. Applications to Non-SITN Models

In this Section we apply our results to some non-SITN models discussed
in Kilmer (1961), (1962A), (1962B). Our method is to develop a chain of
equivalences from one of those models to SITNs.

First, we define the network model shown in Fig. 11. The large square
boxes there represent identical combinational logic cells, each having zero
switching delay, and the small rectangles represent unit delay elements.
Cellular a, B, and x inputs are constant during each unit time interval, so
the network operates synchronously. Each cell's ay and pi‘ lateral inputs and
% external input take on values ranging over finite a.,
respectively. Correspondingly, each cell's a; and Bi lateral outputs and z;

pi, and X, domains

external output rangeé over finite domains of values as determined by the truth
table comprising the network's cell definition. We require oaly that the
number of network cells be finite, and define such networks BITNs (for
Bilateral ITerative Networks)..

In Fig. 12 we show a reconception of Fig. 11. There the ith cell maps
a; > ;3. 1 under the influence of X, and a left-coupling parameter, Cﬁ- and
also maps B, ™y

i+l under the 1nﬂu<,nce of X, and a right- couphng parameter,

Cm, all, with zero delay. The coupling 1dea is to let C** pe a function of ﬁi

such that all those B; values Wthh exert the same 1nfluence in every a; > By

mapping cause the same C ! value. Similarly for c™ and a; values,
Fig. 1l1-to-Fig. 12-transformations are easily made 1-to-1. To illus-

_trate, assume in Fig. 13 that the a, [3 a., . portion of the left-hand table is

i+1

identical for all X, values. Then ﬁ maps into a. ., in the same way regard-

less of x's value and whether a;'s value is O or -2F1 Therefore let Cm(ai) be
R for a; = 0 or.2, and R2 for a, = 1. Similarly for the right-hand table,
assume that the ﬁlalﬁl_l portion of the table is identical for all X; values.
Then let c? ([Si) be L, for p, =0, and L, for p; = 1 or 2. Our method should
be clear by now,.so we omit the remaining details.

Henceforth we denote Fig. 12 renditions of BITNs, B_IINiﬁ, And if the
C domam has only one element, we denote the corresponding networks
R-BITN s (for right-coupled BITN" s). Now consider the R-BITN" shown in

Fig. 14. We note that each light dashed rectangle there encloses a structure
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which closely approximates a SITN cell. . We will show that the 'network in
Fig. 14 is, in fact, equivalent to a SITN.

Suppose in Fig, 14 that Cr1 maps B, into agat t. Then this a, produces

r2 r3

C
which maps Py into ay at t+ 2, and so forth. Thus if one knows crl at t,
t+2, t+4, ..., and one knows B, into cell 1 at t, ﬁz into cell 2 at
t+1, ..., and p into cell n att+ n-1 for a R~ BITN one has sufficient
information to estabhsh exactly half of its a and § wvalues during each

, Which maps ‘32 into ag at t+ 1, This ag in turn produces C

successive time 1nterva1 Hence the listed set of B's and associated cFrs
is called the R- BITN 's correspondence set at t. (We note that such a set

is generally quite distinct from the analogous ''initial condition set.')

Obviously any two independent R-BITN* correspondence sets, say at t
and t + 2k + 1 forrsome integer k, respectively, are analyzed separately, yet
in the exact same way, in order to determine their respective response. Each
set is also analy'zed independently of the unit time delay between celle. Hence
the R- BITN m Fig. 14 is equivalent to the SITN in Fig. 15 under the
conditions that 4

1) the small rectangles beneath each cell in Fig. 15 represent unit
delays, and ,

2) in Fig. 15 Crl and [3 into cell i at tlme t map into (‘r(1+1) and ﬁ
out of cell i at time t, just as in Fig., 14 c™ and B, of the correspondence

set at t map into Cr(1+l)

-and pi of the correspondence sets at t and t + 2,
resgpectively.

From this discugsion, we readily see Theorem 4.
Theorem 4: For each SITN result in Theorems 1, 2, and 3, there are exactly
analogous results for R-BITN s, BITN s, and BITNs. - .

We remark that Theorems 3 and 4, with more or less immediate proof modi-

fications, give strengthened versions6 of Hennie's (1961) Theorems 10, 10.1,
10.2, 11, 11,1, and 15, Also since the proof of Theorem 3 embodies a SITN
representation of a universal Turing machine [ ¢f. Minsky, (1961)], the result

5, Hennie, (1961), has developed a class of equivalence results that are
related to, but essentially distinct from, those derived above,

6. Because we start from equilibrium instead of arbitrary initial conditions.
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clarifies several computing capacity problems alluded to in Hennie, (1961).
Finally, we claim that the present paper distributes the proof burden for
Theorems 3 and 4 in such a manner as to substantially illuminate the basic

nature of Hennie's previous work.



V. Corclusions

Kilmer, (1961), and Winograd, (1962), essentially closed out the main
switching transients problems for BITNs which have either a; or (31 lides
missing. Hennie's previous work, (1961), extends these results to canonical
decompositions of over-all memoryless BITNs (i.e., BITNs which have
1-to-1 over-all equilibrium {xl, Xy, oo .xn} input ~ {zl, Zos oo zn} output
relations). Kilmer, (1962B), discusses the unsolvable nature of steady-state
cycling problems in BITNSs, BITN*S, and R-BITN*S. And this paper shows
the essential unsolvability of the main transients problems in BITNs and
SITNs. Thus future work must be directed at developing sufficiency con-
ditions for desired transient behavior in such networks. 7

In closing we note the curious duality between Theorem 1 of this paper
and Theorem 2 of Kilmer, (1962A). The latter states: For every positive
integer k, there exists a BITN cell definition such that every corresponding
n-celled BITN is or is not over-all combinational accoridng as n is or is
not < k.

Now the curious thing about these theorems is that both of their
(censtructive) proofs seem to require cell complexities that are directly
proportional in some sense to k. For Theorem 1 this proportionality is
between k and the size of the Sj domain; and for Theorem 2 it is between
k and the number of rows in the corresponding cellular truth table definition.
The author is not sure what this really means in terms of recursive function
theory, if indeed anything, but it certainly suggests a Cantor diagonalization
approach. '

7. (Note added in proof) At least one such set of donditions has already been
derived, and it appears that others are forthcoming.
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