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On Dynamic Switching in One-Dimensional

Iterative Logic Networks*

William L. Kilmer

Research Laboratory of Electronics
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Cambridge 39, Massachusetts

ABSTRACT

A SITN is a cascade of identical finite automata such that the i automaton

receives an x1 input from the outside world and a yi. input from its left neigh-

bor, and produces a zi output to the outside world and a Yi+l output to its right

neighbor. We prove three main theorems: 1) For every integer k there is a

cell definition such that a corresponding SITN either can or cannot switch from

equilibrium to a cycling condition following .a single x. change according as

n 4 k or n > k, respectively; 2) there do not exist algorithms to tell whether

or not a given cell definition admits of a SITN that can start from equilibrium

and following a single xi change either a) switch into a cycling condition, or

b) put out a zi = 1 during a switching transient; and 3) there do not exist algo-

rithms to tell whether or not a given SITN cell definition must have every

switching transient following a single xi change from equilibrium either a) die

out a bounded number of cells to the right of the change, or b) extend all the

way to the SITN boundary. All theorems are proved constructively on finite-

state diagrams, and 2) and 3) hinge on an embedding of Minskyts Post Tag

system results into such diagrams. We conclude with several iterative net-

work equivalence demonstrations.

*This research was supported by Air Force Cambridge Research Labora-

tories Contract No. AF19(604)-6619, under the auspices of The Montana State
College Electronics Research Laboratory, Bozeinan, Montana. The author is
currently at the Research Laboratory of Electronics, M. I. T. , on leave from
Montana State College.



I. Introduction

We consider a concatenation of n identical logic cells as shown in Fig. 1.

The ith cell has associated with it the. following: 1) a memory state variable

si, with domain of values al, a 2 , ... am; 2) an external (i. e., outside world)

input variable xi, with domain bl, b 2 .... bp; 3) lateral input and output

variables yi and Yi+l respectively, each with domain cl, c 2 ' ... cq; and

4) an external output variable zi, with domain di, d2 3 ... d r. We assume

that the functions z i(xi, yi, si) and yi+1 (Xi, yi' si) are realized with zero time

delay'; across the cells; and that the function;, si(x.,y yi si) is realized with

unit time delay. within the cell.. At time t = 0 the y1 , xi, si variables are all

assigned arbitrary values from' their respective domains, and for all t > 0

the values of yl and all the xi remain fixed. We denote such cell systems

SITNs (for Sequential ITerative Networks).

A SITN is said to be in equilibrium at t > 0 if and only if all of its Yi, s i

values remain fixed from t on. A SITN is said to be cycling at t > 0 if and

only if its over-all configuration of yi, si values at t first recurs at t + T,

for T>.l. If a SITN is in equilibrium at t = -1, and at t = 0 some y, and/or

xi values change, the corresponding sequence of yi, si value changes is called

a transient just in case the SITN reaches equilibrium at some t > 0. Other-

wise the SITN enters a cycle.

The main purpose of this paper is to present some results on the problem

of determining, for an arbitrary SITN cell definition, the various ways in

which corresponding SITNs can switch from equilibrium to equilibrium, and

equilibrium to cycle, following single xi value changes. We alsoapplythese

results to non-SITN models discussed in Kilmer (1961), (1962A), (1962B) in

order to extend the present theory of switching dynamics for iterative

systems.

We claim that the results of this paper furnish new insights into the

classical long-range order problemsI of statistical mechanicg, sociology,
2

nonlinear control theory, neurophysiology, and genetics.

1. Those problems that involve the derivation of long-range order

patterns from short-range order relations.

1



2. In particular, the operational problem of the reticular formation in
vertebrate nervous systems. This formation is always the central command
and control center in such systems.

2
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II. On the Relationship of SITN Size to Possible Cycle-Entry

Our concern in this Section is to give a constructive proof of Theorem 1.

Theorem 1: For every positive integer k there exists a SITN cell definition

such that any corresponding n-celled SITN which is in equilibrium at t = -1,

and which has a single x. value change at t = 0, either can or cannot possibly

enter a cycle at some t > 0 according as n > k or n -- k respectively.

Proof: Consider the partially complete SITN memory state diagram for

xi = bI shown in Fig. 2. The ci label on each arrow there indicates that

if a cell with x input equal to b 1 has the memory state value given at the tail

of an arrow and if its y input value is ci, its corresponding y output value

is c and its next memory state value is the one given at the head of the arrow.

Now assume an n-celled SITN in equilibrium at t = -1 as follows:

all xi= b; si= a1 for i odd and s= a 2 for i even; andy 1 = c,. This equi-

librium is an obvious consequence of the self-returning arrows out of a1 and

a 2 . Then suppose that at t = 0, x 1 changes to b 2 . Figure 3 shows that this

causes Y2 to change immediately from c 2 to c 1 Figure 2 accordingly indi-

cates the successive SITN variable value changes listed in Fig. 4. Each

square's entry in Fig. 4 contains the column variable's value at the corre-

sponding row time. Any column left blank above a certain row denotes that

the column's topmost entry persists from that row time on. Note that the a.3
values assumed by each si in Fig. 4 always have (maximum j) = i. Hence the

(k+l)st cell is the leftmost one which can ever have its si variable take on the

ak+l value, and from that time on cycle around the ak+1, ak+2 loop. Since this

is the only cycle admitted by Fig. 2, the figure provides the essentials of a

proof of Theorem 1.

We fill in the details of our proof in Fig. 5. Figures 5 and 3 clearly indi-

cate that the only possible equilibrium si values are aI and a 2 . Thus it is

easily seen that regardless of the sequence of xi values along any corresponding

SITN in equilibrium, if any single xi value. change is to cause the SITN to enter

a cycle, it must do so essentially in accordance with Fig. 4. Hence at least

3. In the obvious sense that out of each si memory state value there should
be an output arrow for each possible yi value.

4



ak+ý 2

c1 OR c2 OR c3 OR c4 /c 1  c 1 OR c2 OR c3 OR c4/c2

'3k+ 1

I'c3/c3 IF k EVEN
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ci I3/c3 IF k EVE
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c4 /c 4

05
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a4

0/ 3 c42/c4
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cl,'c3
Cl1/C2 c2/cI

FIG. 2 PARTIALLY COMPLETE SITN MEMORY STATE DIAGRAM
FOR x= b USED IN THE PROOF OF THEOREM I.
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k + 1 cells are always required to the right of any single xi value change if a
Fig. 5-type SITN is to enter a cycle under the conditions of Theorem 1.

Q.E.D.
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III. Some Unsolvable Problems on Cycle Entry,

Equivalence, and Transient Character

In this Section we prove two unsolvability theorems, using essentially one

SITN memory state diagram and Minsky's (1961) result that universal Turing

machines can be represented by Post tag systems. We state both theorems

before proving either.

Theorem 2: There does not exist a recursive procedure to determine of an

arbitrary SITN cell definition4 whether or not any corresponding SITN in any

arbitrary equilibrium at t = -1 can have a single xi value change at t = 0 cause

it to:

i) enter a cycle at some t >_ 0,

or ii) pass through a transient which causes a 1 output on some z. at some tO 0.

The ii) part of this Theorem pertains to the existence of certain SITN equiva-

lence tests [cf. Hennie, (1961)].

We now consider SITNs which if in equilibrium at t = -1 and subjected to

single xi value changes at t = 0, admit only transient responses (i. e., no

cycle entries at any t >, 0). We call such SITNs transient SITNs. In case a

transient-SITN cell definition is such as to insure that all single xi changes

from equilibrium cause transients involving yi value changes all the way to

-the right boundary of every corresponding SITN, we call the cell definition

boundary transient. And in case a transient-SITN cell definition is such as

to insure that no single xi change from equilibrium can cause transients*

involving yi value changes more than a bounded (hence calculable) number of

cells to theright.oftthex. change in any corresponding SITN, we call the cell1

definition bounded transient.

Theorem 3: There does not exist a recursive procedure to determine of an

arbitrary transient-SITN cell definition whether or not it is:

i) boundary, transient,

Or ii) bounded transient.

4. Such as given in Figs. 3 and 5 for example.

10



Our first step in proving Theorems 2 and 3 is to define a Post tag system.

Let A be a finite set of letters a 1 , a 2 , ... am; and let W be an associated

set of words, such that for each i, Wi is a fixed string or word of letters of

A. Let P be some integer, and define the following process applied to some

initially given string S of letters of A:r Examine the first letter of the string

S. If it is ai, remove the first P letters of S, and then adjoin the word Wi to

the end of the remainder. Perform the same operations, defined a production,

on the resulting string, and repeat so long as there are P or more letters left

in each resulting string. If at some point there are fewer than P letters left

in the resulting string, the process is said to terminate at that string. We call

A, W, S, P, and the process just defined a Post tag system. Minsky, (1961),

showed that the problem of determining for any given Post tag system whether

or not the corresponding process ever terminates is recursively unsolvable.

We will now embed *his result into a SITN memory state diagram.

We replace the letters a 1 , a 2 , .... am (but not the symbols S, Wi) of a

given Post tag system by the yi values cl, c 2 " .... cm respectively, and

then complete the yi domain by adding three special values, ý, WV and w 2.

The latter two are interpreted as marker values, and 4 is interpreted as the

null value. Next we specify a0 , a 1 , a 2 , a 3 , and a 4 as the only possible equi-

librium si values, and b1 , b 2 as the xi domain. Figures 6 and 7 then give the

essential outline of a SITN memory state diagram sufficient to prove Theorems

2 and 3.

Our notation in these Figures is as follows: C denotes any yi value;~col,

U2) and 'c denote any yi values but wl' w,2' and 4 respectively; yi values

raised to the jth power denote j successive repetitions of those values; Y(T),

for any string of letters T, denotes the number of letters in T; and TU,

T and U both strings, denotes the string consisting of the letters of T followed

by the letters of U in order.

Let us now-assume, in order to explain Figs. 6 and 7, that we have a corre-

sponding SITN in equilibrium at t = -1 as follows: all xi values are b1 , sI is

ao, s2is a 1 , and all other si are a Then suppose that at t = 0 there is a

single xi value change from b 1 to b 2 in the first cell. This causes Y2 to change
from (V(i.e1.null) to w1" Subsequently s2 passes from al down through a5 to a2,

causing Y3 to put out the string w,2 S before settling down at 4).

11
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THE REST OF FIG. 7 IS THE SAME AS THE

CORRESPONDING PART OF FIG. 6, EXCEPT

aI IS INTERCHANGED WITH a 2 , AND 03

IS INTERCHANGED WITH 04.

FIG. 7. THE SITN MEMORY STATE DIAGRAM FOR Xi = b2
USED IN THE PROOF OF THEOREM 2 AND 3
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Next we show that y4 accordingly puts out essentially the result of the

first production in the corresponding Post tag system. To see this, we note

that s 3 is taken from a 3 to a 6 by Y3 = w2; from a6 to a 7 by the next value of

Y3 (i. e., the first letter of S, assumed ci), and from a7 to a 9 by the next

P- 1 values of Y3 (i. e., the next P- 1 letters of S, whatever they might be).

Y4 Is value remains 4, or null, during all of these changes. Following them,

however, the (P+I)st non-4 value of Y3 (i. e., the pth letter of S) produces

W 2 out at Y4 . Then the sequence consisting of Y3's (P+2)nd non'- value to its

last non-4 value (i. e., the (P+I)st to the last letter of S) produces itself out

at Y4 . Finally, when Y3 settles down at 4, s 4 leaves a10 or a 1 1 (whichever

state it is in) and causes Y4 to put out the string Wi, corresponding to the

first letter of S. After that Y4 also settles down at 4. Thus the first pro-

duction in the Post tag system,

S = c"i.T , T2 -T 2Wi"
Pletters

is represented by the Y3 - Y4 transformation across the 3rd SITN cell,

S - W2 T2 W (preceding and succeeding 4 values not shown).
2 2 th

More generally, the yi - yi+l transformation across the i SITN cell1 lnd
can be .made to represent the (i-2) tag system production as follows:

For each i in the tag system alphabet of letters, {ci}, we add to Fig. 6 a
th

portion of si state diagram which is exactly the ci counterpart of the portion

already there from a 7 to a 1 3 . This is primarily to enable the first cj value in

each incoming yi sequence to direct si to a portion of over-all state diagram

that ends yi+,Is non-4 sequence with the right W.. The W. are produced in

one of the a 1 2 -a 1 3 -type portions of augmented si state diagram, and are SITN

representations of completions of corresponding tag production steps. The

purpose of adding a 7 -a 1 1 as well as a 1 2 -a 1 3 -type portions of si state diagram• th1
is threefold: 1) the a 7 -a 8 portions enable the i cell to effectively remove

(i. e., replace by 4) the 2 nd to Pth c. values of each incoming y, sequence.

This begins the SITN representation of each corresponding tag production;

2) If there are ever fewer than P c. values, the a 7 -a 8 portions allow yi+1 to

remain fixed at 4,.Irieach such case one Bbundle arrow in Fig. 6 is traversed;

and 3) The a 9 -all-type portions enable the ith cell to simply pass the (p+l)st

14



to last cj values of each yi sequence. Thus they represent intermediate

tag production steps, preparatory to W. adjoinments.

Hence if the corresponding tag system productions terminate at the ith

string, yi+2 is the leftmost SITN value that is left unchanged in the associ-

ated network transient.

We now finish our proof of Theorem 3 by filling in the missing details of

Fig. 6 in Fig. 8. We leave it to the reader to check in Figs. 7 and 8 that

only one type of transient can involve yi value changes more than one cell to

the right of a single xi perturbation of a corresponding SITN at equilbrium.

And that transient type is the one discussed above. Since the problem of

determining whether or not the tag system productions corresponding to such

a transient ever terminate is recursively unsolvable, so also is the problem

of determining whether or not the transient itself is bounded or boundary.

.This completes our proof of Theorem 3.

The proof of Theorem 2 follows almost trivially. We prove part ii) by

modifying the B bundle in Fig. 8 as follows: Instead of directing this bundle

into a 3 , we direct it into a new state, a 1 4 , as shown in Fig. 9. Then we

specify that zi = 0 for all si values except a 1 4 , in which case zi = 1.

Theorem 2 ii) follows immediately by noting that it is yes if and only if the

transient in the proof of Theorem 3 is bounded. But this question is recursively

unsolvable.

We prove Theorem 2 i) by modifying Fig. 9 as shown in Fig. 10. Then

states a 1 4 and a 1 5 comprise the only cycle that is accessible under the conditions

of Theorem 2. Hence Theorem 2 1) is yes if and only if Theorem 2 ii) is yes,

which is recursively unsolvable.

Q.E.D.

As a passing point, we note that by identifying the right and left boundary

signals in the SITNs of Theorem 3, we can get a result much like Theorem 1,

but with the inequalities reversed. Although this point has considerable interest,

we will not develop it further here,

-15
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a1  6

o-l VALUE~iy 0

I B

s. DOMAIN : FINITE NUMBERS OF ai's" .

x. DOMAIN (IN FIGS. 7 ANDB8): bvb2 0,I O3yi DOMAIN:c 1 ,c 2 ,

B BUNDLES FOR c. = c.
C/C PORTIONS NOT SHOWN

FOR EXPOSITORY
REASONS

FIG. 8. COMPLETE SITN MEMORY STATE DIAGRAM
TOGETHER WITH FIG. 3) USED IN THE PROOF

OF THEOREM. 3
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S/°'/0
1TO 03

FIG. 9 .CHANGE IN FIG.8•" FOR
PROVING THEOREM 2ii)

B BUNDLE

FIG. 10. MODIFICATION OF FIG 9 FOR
PROVING THEOREM 2i
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IV. Applications to Non-SITN Models

In this Section we apply our results to some non-SITN models discussed

in Kilmer (1961), (1962A), (1962B). Our method is to develop a chain of

equivalences from one of those models to SITNs.

First, we define the network model shown in Fig. 11. The large square

boxes there represent identical combinational logic cells, each having zero

switching delay, and the small rectangles represent unit delay elements.

Cellular a, p, and x inputs are constant during each unit time interval, so

the network operates synchronously. Each cell's ai and Pi lateral inputs and

xi external input take on values ranging over finite aV, Pi, and xi domains

respectively. Correspondingly, each cell's ai and Pi lateral outputs and zi

external output range over finite domains of values as determined by the truth

table comprising the network's cell definition. We require only that the

number of network cells be finite, and define such networks BITNs (for

Bilateral ITerative Networks).

In Fig. 12 we show a reconception of Fig. 11. There the ith cell maps

~i -* Pi-1 under the influence of x. and a left-coupling parameter, ci; and
also maps Pi - a 1i+ under the influence of xi and a right-coupling parameter,

ri 11
C r, all: with zero delay. The coupling idea is to let C be a function of

such that all those Pi values which exert the same influence in every a. -* i.

mapping cause the same C.i value. Similarly for Cri and ai values.

Fig. 11-to-Fig. 12-transformations are easily made 1-to-1. To illus-

trate, assume in Fig. 13 that the atpial+i portion of the left-hand table is

identical for all xi values. Then Pi maps into at+1 in the same way regard-

less of x.'s value and whether a.'s value is 0 or 2. Therefore let Cri(ai) be

R 1 for a. =0 or, 2, and R2 for ai = 1. Similarly for the right-hand table,

assume that the iaiAi_l portion of the table is identical for all xi values.

Then let CGi(pi) be L1 for Pi = 0, and L2 for Pi = 1 or 2. Our method should

be clear by now, so we omit the remaining details.

Henceforth we denote Fig. 12 renditions of BITNs, BITN *s And if the
C domain has only one element, we denote the corresponding networks

R-BITN s (for right-coupled BITN s). Now consider the R-BITN shown in
Fig. 14. We note that each light dashed rectangle there encloses a structure

18
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as a i+ I

X.
I

X. a. i a,+X i a.

0 0 0 1 0 0 0 1
0 0 1 2 0 0 1 1
0 0 2 0 0 0 2 0

0 1 0 1 0 1 0 2
0 1 1 2 0 1 1 2
0 1 2 1 0 1 2 1

0 2 0 1 0 2 0 2
0 2 1 2 0 2 ,1 2
0 2 2 0 0 2 2 1

1 0 0 1 1 0 0 1

* a

FIG. 13. AN OUTLINE FOR A FIG. 11-TO-FIG. 12
TRANSFORMATION
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which closely approximates a SITN cell. We will show that the network in

Fig. 14 is, in fact, equivalent to a SITN.

Suppose in Fig. 14 that Crl maps .P into a 2 at t. Then this a 2 produces

Cr 2 , which maps P2 into a3 at t + 1. This a, in turn produces Cr 3

which maps P3 into N4 at t + 2, and so forth. Thus if one knows Crl at t,

t + 2, t +4, ... , and one knows P1 into cell 1 at t, P2 into cell 2 at

t + 1, .... , and P ninto cell n at t + n- I for a R-BITN*, one has sufficient

information to establish exactly half of its a and p values during each

successive time interval. Hence the listed set of p's and associated Crs

is called the R-BITN 's correspondence set at t. (We note that such a set

is generally quite distinct from the analogous "initial condition set.")

Obviously any two independent R-BITN correspondence sets, say at t

and t + 2k + 1 for some integer k, respectively, are analyzed separately, yet

in the exact same way, in order to determine their respective response. Each

set is also analyzted independently of the unit time delay between cells. Hence

the R-BITN in Fig. 14 is equivalent to the SITN in Fig. 15 under the
conditions that 5:1

1) the small rectangles beneath each cell in Fig. 15 represent unit
delays; and

2)ri Cr(i+1)2) in Fig. 15 C and Pi into cell i at time t map into C ) and Pi
out of cell i at time t, just as in Fig. 14 Cri and Pi of the correspondence
set at t map into Cr(i+l). and Pi of the correspondence sets at t and t + 2,

respectively.

From this discussion, we readily see Theorem 4.
Theorem 4: For each SITN result in Theorems 1, 2, and 3, there are exactly

analogous results for R-BITN s, BITN s, and BITNs.
We remark that Theorems 3 and 4, with more or less immediate proof modi-
fications, give strengthened versions 6 of Hennie's (1961) Theorems 10, 10. 1,
10. 2, 11, 11. 1, and 15. Also since the proof of Theorem 3 embodies a SITN

representation of a universal Turing machine [ cf. Minsky, (1961)], the result

5. Hennie, (1961), has developed a class of equivalence results that are
related to, but essentially distinct from, those derived above.

6. Because we start from equilibrium instead of arbitrary initial conditions.
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clarifies several computing capacity problems alluded to in Hennie, (1961).

Finally, we claim that the present paper distributes the proof burden for

Theorems 3 and 4 in such a manner as to substantially illuminate the basic

nature of Hennie's previous work.
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V. Conclusions

Kilmer, (1961), and Winograd, (1962), essentially closed out the main
switching transients problems for BITNs which have either ai or Pi lines

missing. Hennie's previous work, (1961), extends these results to canonical

decompositions of over-all memoryless BITNs (i. e., BITNs which have

1-to-I over-all equilibrium {xIx 2, . ... Xn} input - {z 1, z 2 , . . . zn} output

relations). Kilmer, (1962B), discusses the unsolvable nature of steady-state

cycling problems in BITNs, BITN *s, and R-BITN*s. And this paper shows

the essential unsolvability of the main transients problems in BITNs and

SITNs. Thus future work must be directed at developing sufficiency con-

ditions for desired transient behavior in such netrworks.

In closing we note the curious duality between Theorem 1 of this paper

and Theorem 29 of Kilmer, (1962A). The latter states: For every positive

integer k, there exists a BITN cell definition such t-hat every corresponding

n-celled BITN is or is not over-all combinational accoridng as n is or is

not < k.

Now the curious thing about these theorems is that both of their

(constructive) proofs seem to require cell complexities that are directly

proportional in some sense to k. For Theorem I this proportionality is

between k and the size of the s. domain; and for Theorem 2 it is betweenJ
k and the number of rows in the corresponding cellular truth table definition.

The author is not sure what this really means in terms of recursive function.

theory, if indeed anything, but it certainly suggests a Cantor diagonalization

approach.

7. (Note added in proof) At least one such set of donditions has already been
derived, and it appears that others are forthcoming.
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