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ABSTRACT

The determination of the critical speeds of a flexible rotor is

usually carried out on the assumptions of negligible bearing mass and stiffness.

In this report the effect of bearing mass and stiffness on the natural frequencies

of a uniform flexible shaft is found. Two specific cases are considered: the

shaft of symmetric cross-section rotating in bearings of different horizontal

and vertical stiffness, and the unsymmetric shaft rotating in symmetrically

stiff bearings. The frequency equations for various types of end constraints

are solved by means of a simple graphical procedure. It is found that bearing

mass and stiffness usually have considerable influence on all but the first or

second critical speeds.
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NOMENCLATURE

Sits principal flexural rigidities of shaft (S2 S1 )

S=(SI+S2 )/2 mean flexural rigidity

L length of shaft

mass per unit length of shaft

angular speed

natural frequency (radians per second)

k flexibility of bearing

M mass of bearing

V1  displacement of shaft in first principal direction

V2  displacement of shaft in second principal direction

Z distance along shaft

Non-Dimensional Variables and Parameters

%"= ttime

u = V 1 /L displacement

v = V2 /L displacement

z = Z/L variable distance along shaft

= (s 2-Sl)/(S2+SI) measure of shaft anisotropy

p = L4/S angular speed

3h = ' gL /S reduced gravity force

K = kL 3/Sratio of bearing and shaft flexibilities

m = M/ý' L ratio of mass of bearing to mass of shaft
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ARF Project KZ74

DYNAMICS OF FLEXIBLE ROTORS

OBJECTIVES

Because of its importance in rotating machinery, the dynamics of

flexible shafting has been the object of much theoretical and experimental

study. This research has not only attempted to determine the vibrational

behavior of various systems as a function of operating speeds, shaft para-

motors and support conditions, but also devised methods of minimizing these

motions. For a review of previous analysis and balancing techniques, the

reader is referred to Armour Research Foundation Report No. K206 and the

extensive bibliography contained therein.

Despite the most exacting balancing procedures, there usually

exists a small deviation of the center of gravity of the shaft from the axis

of rotation. As the shaft rotates, this mass eccentricity produces a peri-

odic centrifugal force; it is by this excitation that flexible shafts are brought

into unwanted vibration. Generally, these oscillations are negligible but at

certain speeds of rotation, the system may vibrate at a level which is intol-

erable for proper operation of the machinery or its environment. In addi-

tion to causing structural damage, excessive vibration may interfere with

delicate instruments, be of discomfort to humans, or generate noise. The

problem of noise reduction is of particular importance in naval construction

since sound detectors are a primary means of locating ships above and below

the surface.

The initial step in developing intelligent means of vibration attenua-

tion is an analysis of the motion. Once an understanding of the interrelation

of various system parameters has been made, the designer can rationally

proceed to a system of desired smoothness.

In standard analyses of rotating shafts, it is assumed that the bear-

ing mass itself has negligible effect on the characteristics of the vibrations.

This is certainly the case in a rigid bearing; in practice, however, this
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idealization is sometimes impossible to achieve because of practical limi-

tations on the size of the supporting structure. Indeed, it is possible that
a bearing is rigid in one direction and quite flexible in the other direction.

The Bureau of Ships, Department of the Navy, Washington 25, D. C.,
established this research project under Contract No. NObs-86805 in order

to investigate the effects of heavy flexible bearings on the dynamic behavior
of flexible rotors. It was believed that this information would be of value

to anyone concerned with rotating machinery as a means to understand and

avoid unwanted vibrations.

I.
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I

INTRODUCTION

We shall investigate the dynamics of a flexible shaft rotating at

constant speed in heavy flexible bearings. To keep the problem as general

as possible without obscuring it with mathematical complexities we shall

assume that the shaft has different stiffnesses in two mutually perpendicular

directions but is otherwise uniform along its length. The bearing masses

and flexibilities may all be different.

Several authors have considered the dynamics of non-symmetric

rotorsl ; all of these, however, have not included the effect of bearing

mass and/or flexibility. Foote, Poritsky, and Slade( 6 ) have treated a sys -

tem comprised of a single mass on a weightless non-symmetric shaft sym-

metrically mounted in massless flexible bearings. Their investigation in-

volved two ordinary coupled differential equations with periodic coefficients.

The results indicate that shaft anisotropy alone will cause instability over a
range of speeds while shaft and bearing anisotropy can cause unstable oper-

ation over as many as three ranges of speed. Furthermore, they noted

that the inclusion of damping does not necessarily remove these instabilities.

Because of the nature of the differential equations, the mathematics is quite
lengthy and it is doubtful whether the approach could be modified to include

the effect of massive bearings. Moreover, since they considered only a

one-lump parameter system, there can be no information as to stability of

the continuous system at super-critical speeds.

Kellenberger(7 has treated the uniform non-circular shaft rotating

in immovable bearings. The partial differential equations of motion, when

referred to a rotating coordinate system, are easily solved. His method,

however, is applicable only to systems whose boundary conditions are in-

variant under rotation. It is found that there occur an infinity of critical

speed ranges that vary with the amount of anisotropy of the shaft. Second-

ary critical speeds induced by gravity, are also determined.

* Numbers in brackets denote references collected at end of this report.
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I

In this report, the vibration of an undamped shaft in heavy self-

aligning flexible bearings is studied. A method of characteristic exponents

is used to investigate the stability of the system. Expressions are found in

closed form for the dividing surfaces between stable and unstable domains.

The secondary critical speeds are found to bear a simple relation with one
of these expressions. The method, being sufficiently general, is applicable

to other types of end constraints.

As a special case of the above analysis the frequency equations for

various practical round shaft systems are found and the critical speeds are

presented in graphical form as functions of bearing-shaft mass and stiffness

ratios.
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I.

"PROBLEM STATEMENT

Let the shaft of Fig. 1 have unequal principal stiffnesses S1 and

S 2. As the shaft rotates, its stiffness in any fixed coordinate system will

be a periodic function of time completing two cycles for every revolution of

the shaft. Consequently, the equations of motion in any fixed coordinate

system will have periodic time-dependent coefficients. When referred to

rotating coordin~ates fixed in the shaft along the principal directions of stiff-

ness all coefficients in the equations of motion are constant. If the hori-

zontal and vertical flexibilities at the bearings are unequal, the flexibilities

in the rotating system are also periodic functions of time. In order to avoid

periodic coefficients in the boundary conditions, we shall assume that the

bearings possess equal flexibility in two mutually perpendicular directions.

This assumption facilitates the analysis of the non-symmetric shaft and is

unnecessary in the treatment of the isotropically stiff shaft. We are thus

able to investigate two cases; the anisotropic shaft in isotropic bearings and

the isotropic shaft in anisotropic bearings.

So that the results may be applicable to any system, the analysis is

carried out non-dimensionally. In terms of u and v, the dimensionless

displacements in the rotating system, and other dimensionless variables and

system parameters defined elsewhere, the equations of motion for the aniso-

tropic shaft are

•4 2 • 2 u •v p 2

( e) + p 2 2 u -u - - -hsin,+'p f(z) (1)

€v p2 • 2 v • u p2

(l+E + P2 2. -vV+ 2 u) -hCOST +p2 g (z) (2)

Here the parameter E (0_* t1) is a measure of the shaft asymmetry with

vanishing 6 implying an isotropic shaft. The angular speed of the shaft

is characterized by p while h measures the gravity force. The functions
f(z) and g(z) represent the mass eccentricity of the shaft.

We shall investigate the motion of a shaft mounted in heavy, self-

aligning bearings. These lead to boundary conditions commonly referred
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to as pinned-pinned ends; the analysis that follows could apply equally as

well to any other type of end constraint. The equations of motion of the

bearings are

at z =0 (I-f) a 3u 2 -a2u "u-2•v 0= + K1I u + mlP (- -= - F, =

"3v 2 a2v 0
(1-.) ;s. +Kvi lp v-m -u-Z T) = 0

(3)

at z= I -(1-C) a3 2 Kau 22P _u -U2 •- =0

3 • v 2 B 2 v 'D U
+(l+e) 3  +K 2 V+mp v- v+ 2.~ 0

The additional conditions for pinned-pinned end constraints are

at z =0,l1 2. = 0 = 0 (4)

Equations (1) - (3) are derived in Appendix A.

The problem is to find the displacements as functions of the bear-

ing masses, mi, m72 , stiffnesses KI, K 2 , speed p, and asymmetry factor

SE. For certain values of speed and asymmetry we should expect a steady-

state solution while at other speeds the displacements will increase without

limit. While infinite amplitudes will not occur physically, the system will

operate with excessive vibrations at these so-called critical speeds. The

first task, then, is to determine these critical speeds.
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THE HOMOGENEOUS SOLUTION

Because of the nature of the non-symmetric shaft, the homogeneous

solution is of considerable importance. Even though damping may be pres-

ent in the shaft, the homogeneous part of the solution, while being transient,

can still become unbounded. This seemingly paradoxical situation is ex-

plained in Appendix B.

Since the equations of motion (1), (2) have constant coefficients, the

homogeneous solution can be expressed as

•°ez + i• (5)roz P-
u = Ae v= BeCz+ (5)

where A, B, o0 and p are, in general, complex constants to be determined

by the end conditions. When equations (5) are substituted into (1) and (2), it

is found that these constants are related by

.)O4 p2 (1 + 2L)I A-2 p2 p iB= (6

2p 2 p iA+ [(l+6) 4-p2(l+IlZ)] B=0

For a non-trivial solution, the determinant of coefficients of (6) must vanish.

Performing this operation, we obtain a relation between O0 and p which is

quadratic in oe . Since the time exponent p determines whether the mo-

tion is stable, it is advisable to eliminate 04 in favor of p. Thus

04 [p2/(1. 27] [(l+PZ2 ± \p 2(1+) +72+ 4IL2(l..2)J (7)

For each possible p there are eight values of 04 and sixteen

constants of integration Aj, Bj which, from (6) and (7) are related by

B. = -10. Aj (j = l,2,3,.... 8) (8)

where
where 03= [El(+P)_.VEz(I+P2)2+ 4p 2 (1-i 2 ) •• IG
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The upper sign is to be taken for j = 1,2,3,4 and the lower sign for

j =5,6, 7, 8. The solution (5) may now be written as

OD 4XI .(P ) Z + ijL
u - 7. e

root j = ( (9)

v= -i T -- A e j

root IL j = I

Here the summation is extended over all characteristic values i, which

shall be determined from the boundary conditions. For each as yet un-

known I the constants of integration A. are found from the boundary3

conditions (3) and (4), which in terms of the notation (8) and (9) become

3 3 + + p 2 _ t 1+ 2i uil

"- A. -(l+E) iOA. 3 
- KliO. + ml P2 + i3, + 2i = 0

j= I

8 8
~A •'-Ae I+,_) iý3 -K ij +m m2p2 1ij + Mi0j+2, =0

j~A = 0 1

8I 0 CA= j
j=1

and

8 8

2A. = 0 Oj Ci j
j l j l

8 O X j 8 0ý.•

Z:C• 2e A 0= 03Oe3 e A30 (11)
€ j l j l
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The frequency equation for • is obtained by setting the determinant

of coefficients of (10) and (11) equal to zero. In this manner, a non-trivial

solution for A. will be obtained. For any system configuration, all para-

meters except p, of course, are known. When all frequencies are real,

the vibrations are steady-state; when the frequencies are complex, the mo-

tion is transient. The transient will decay or become unbounded depending

upon the imaginary part of the complex frequency.

It is evident from Eq. (9) that the system is stable for given system
parameters p, E, m, and K whenever real (ig ) is non-positive. It is a

simple matter to show that the frequency equation is an even function of P
so that both IL * and -pa * are roots. If pa * is a complex root and real

(ipa *) is non-positive then real (-ipa *) is positive so that the amplitudes

may increase exponentially with time. Clearly, stability is assured when-

ever all frequencies are real. Since instability occurs whenever the fre-

quencies become complex, the bounding surfaces between stable and unstable2
domains are the loci of parameters p, c, m, and K for which p2 = 0 is a

root of the frequency equation. Physically p = 0 implies there is no time

variation of the displacements in the rotating coordinate system. The shaft,

then, is performing a "frozen whirl" at the onset of instability.

As indicated in Appendix C when p approaches zero, the eighth

order determinant reduces to the product of two determinants of fourth

order. The bounding surfaces are found from

l A12= 0

ARMOUR RESEARCH FOUNDATION OF ILLINOIS INSTITUTE OF TECHNOLOGY
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The loci of parameters for which A 1 or A2 vanishes represents the be-

ginning or end, respectivelyof an unstable domain (as the speed p is in-

creased). As E approaches zero, these two curves in the p-E plane

converge to the natural frequencies of vibration of the symmetric shaft.

The determinants (12) can be expressed as

,=(11 ,)2 0ý 6 (1-cos coshd.)+OL', 3  (-4 Kl+KZ)-(ml+mZ)(÷1-.)4] x

x Einhcl cosdýrcoshdlsin +2 1 (1_,E ).&Z4-K m 2 (1-E)di4_K sinal sinh'' 1 =0

A2 =(14. ) 2 d5
6 (1-coscgscosh )+ a5

3 (1+_ ) FKl+Kz)-4(ml+mz)(1+E)]s4] x

[s inhYsc o soý -c o sh06' ain] q 2 [m(l+c )& 5 4ý K] L(l+) 5-K _ ]sinOý sinhac40

For the special case of symmetric mounts, m 1 =m =m, KI=K2 =K

the loci reduce to

2 6 )OZ 3 m2 (c sinoe -since coshe(1 -E) 4e 1 - cos~lcosh : 1l)+ 2(1 -E )I (K-mp)(cossinh1 1 h 1 )

+ 2 (K-mrp 2 )2 sineXCsinh4 1 = 0 (13a)

and

(1+) bc5°( 1 -cos {5cosh05)+ 2 (1+, 53K sinh5-sin•' cosh*4
5 5e5 5 5Km )cs 5 5 -5,

+ 2 22 a; " so - n (13b)
I -. . -5-......5 -

The unstable speed ranges for a pinned-pinned shaft in immovable bearings,

found previously by Kellenberger, are obtained from Eqs. (13) when K

approaches infinity. This results in

sin slinh /I = 0

sinO 5sinho(5 = 0

or1, 0/5 = n7r

or

(nw,)2 1F < p < (n~r)z / (n 1,2.) (14)
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EFFECT OF GRAVITY - SECONDARY CRITICAL SPEEDS

The gravity solution can be treated completely and independently

of the previous solution for the homogeneous case. Let us assume a par-

ticular solution of Eqs. (1) and (2) in the form

u= x (z) sinT v= y(z) cosT (15)

With this formulation, the time dependence can be factored out of the equa-

tions of motion leaving the following equations in the amplitudes x(z) and
t y (z):

"d 4 x 2(1-6) .- + 2p (-x+y)= -h
dz 

4

4 2 2 xy (16)

(I+6) + Zp (x- y)= -h
dz

Eliminating y (z) from Eqs. (16) we obtain

y(z) =- I-)/2Zp2] A + x -h/2p2

! (17)

d8 x F4 P2/(1. 2)] A = 4p 2 h/(d-4 2 )

dz L7 dz

A complete solution of equation (17) is

x(z)=A sinrz+Bcosarz+Csinhrz+Dcoshorz+Ez3 +Fz2 +Gz+H -hz 2/24

o'4=4p /(1 -f )( 8

The eight constants of integration are obtained from the boundary conditions

(3) and (4). Once again, the time dependency factors out; this would not
have happened had damping been present so that a solution more general
than (15) would have to have been used. These reduced boundary conditions

in x(z) and y (z) are

ARMOUR RESEARCH FOUNDATION OF ILLINOIS INSTITUTE OF TECHNOLOGY
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at z = 0d(-)• X-xxy

(l- ) -- K ~ - ------ ( - ------

( d÷E) dy +Ky+ 2mp2 (x-y) = 0 (19)

d2 x d2

dx7 dz
Sd 3 x2

at z=1, -(d-E) x + K2 x - 2m 2p2 (x-y)= 0

d + K 2 y + Zm 2 p2 (x-y) = 0 (20)

Sd2 x d 2 y = Od-- -- d-
dz dz7

When (18) is put into (19) there results eight simultaneous linear nonhomo-

geneous equations for the constants of integration. For general values of

prE ,G , and m, the constants will be bounded functions of these system

parameters. However, for certain combinations of parameters, the amp-

litudes will become unbounded; this happens when the determinant of the

coefficients of the linear equations vanishes. These values of p for fixed

E, m, and K are the secondary or gravity-induced critical speeds and are

given by

I" 0.6 2I- 2) (cs'oh' ÷03 (-2) [(ml+m2)(l-e 2) a4-(IK)

Ir (1..: ):(oserch (1.+o 4 (K1) r~K 2]

X [sinoruinhw] = 0 (21)
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It can be seen from comparison of Eq. (21) and the first of (12a)

that these curves are identical if M I is replaced by a- and r, in replaced
2by i Thus from the plot of A V in the p -t plane, we can obtain the

2secondary critical speed by replacing p with 2p and o with * . Thus

the gravity critical speeds for the round shaft are half the natural frequen-

cies of the shaft.
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EFFECT OF MASS ECCENTRICITY

It is a practical impossibility to manufacture a shaft which is per-

fectly straight and uniform throughout its cross section. Consequently,

there exists some small mass eccentricity along the length of the shaft even

after it has been balanced. As the shaft rotates, the small centrifugal forces

may be sufficient to cause vibrations which render the system unserviceable.

If f (z) and g (z) are the eccentricities along the principal directions, the

equations of motion become

(l u4 +'u 2 2u av p 2
3z + (- -u-2 ) pf(-)

(22)
4v 2 ? 2 v + V+2v 2(1+6) -i +p )- v 2.) = pg (z)

Note that in the rotating coordinate system, the centrifugal forces

are constant while in a fixed system these forces are periodic with a fre-

quency equal to that of the shaft. A possible motion of the shaft is a "frozen

whirl" where it is deformed but does not vibrate. This implies that there

is no time dependency of the displacements along the principal directions;

therefore we try a solution of the form

u = u (z) v = v (z) (23)

With the formulation (23) the equations (22) become uncoupled. The

actual form of the eccentricities insofar as stability is concerned is imma-

terial. The solution of these equations is

u = A sine'Iz + B cos lz + C sinho1z + D cosholz + 0 (z)

v = E sinoe5 z + F coso z + G sinhh 5 z + H cosh~ez + O(z) (24)5 (5

e 14 = p2 A54 = p2/(l+0)

ARMOUR RESEARCH FOUNDATION OF ILLINOIS INSTITUTE OF TECHNOLOGY
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w
Swhere (s) and ý(a) are particular integrals of Eqs. (Z2). The constants

of integration are found from the boundary conditions (3) and (4). This re-

sults in two sets of four non-homogeneous simultaneous linear equations.

The determinants of coefficients of these sets is identical with those given

[• by equation (12). This should have been expected since (12) was developed

on the basis of vanishing frequency which is precisely the "frosen whirl" of

Eqs. (23).

It is apparent, then, that the flattened shaft possesses two sets of

natural frequencies like a non-symmetric beam which vibrates in two mu-

tually perpendicular directions. Moreover, all frequencies between these

...aacent critical speeds are also critical. For the symmetric shaft, these

natural frequencies will coincide.

I
L
f
t

I

Ii;
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ROUND SHAFT IN UNSYMMETRIC BEARINOS

[f In most practical cases, the shaft will be. symmetric while the

supports possess unequal flexibility in two mutually perpendicular directions.

In determining the natural frequencies of the system, we do not need to use

the previous notation. Since the equations of motion and the boundary con-

ditions are uncoupled it is necessary to consider motion only in one direction.

I. The equation of motion for the undamped system is

IEI + = 0 (25)

I• at z=:0 EI-. 1 Um 1 -U 0(2a

I- +k u+mI•t2 Ua
z at

Z=L -E +-k 2 U 4.m 2  -rt :0 (26b)

3~U 2

{at Z: 0 -EI + U+m-0(2a

=o 0

i ~Here EI is the flexural rigidity of the shaft while the constants kIand k2

are the stiffnesses of the supports at Z = 0 and Z = L respectively.
a[ A solution of Eq. (25) is

where (A cosh• +*B cos• • *C sinP .• * Dsin• •)e (27)

The constants of inegation are found from the boundary conditons (26).

A non-trivial solution for these constants results in the frequency equation

I ARMOUR RESEARCH FOUNDATION OF ILLINOIS INSTITUTE OF TECHNOLOGY
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Li

In terms of the redefined non-dimensional parameters

kIL3  4M p2=X2 y L 4

k2 L3 M2 (29)

K2 = - -2- 7r

the frequency equation (28) becomes

------- -. 11 Co 0cos P (K + K2 )-(M1 +M2 ) V sinh~ CosP -coshPs@in P1

+2 [ miP4 _ Kjj[ m 2 P4 _ K 2 j] sinPsinh,6 = 0 (30)

For the special case of identical bearings K-=K =K, m =m 2 -=m and

S= P4 3 cosh P sin P - sinh P cos•P ± (sin P - sin P) (31)K=m4 + z sinp p s(n3p

Taking the upper and lower signs separately, we obtain the frequency

equations

4 P3  pPI: K=m 4P +* (tanh P + tan 7 )

(32)•3

I= mp 4 + T (coth P - cot P)

The natural frequencies • =1EI: ý for specified values of

the system parameters m and K can be found by a simple graphical pro-

cedure. The functions

3 3F+ 703o1

FT . (tanh - + tan 7-) (33)

F_ ~ ~ - -r30 ct rr cot rw w f L o F~ 1 1/4
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are plotted in Fig. .. For particular values of K and m we need only
4 4

plot mr a- as indicated and shift this curve upward through a distance K

!. (dashed curve in Fig. 2). The intersections of this curve with the curves

F and F give those values of P which satisfy the frequency equation.

Note that these curves asymptotically approach = nir(n = 1, 2,...) as K

approaches infinity. Thus, as expected, )X =(nZ rZ/LZ)(EI/1)are

frequencies for a pinned-pinned shaft in rigid self-aligning bearings. As a

further check, we note that the intersections of these curves with the c-
axis (m = 0, K = 0) correspond to the natural frequencies of the free-free

shaft. The expressions, of course, also provide the natural frequencies of

a uniform beam under the same type of end constraints. A numerical ex-

ample will be found in Appendix D.

The natural frequencies for various mass and stiffness ratios are

given in Appendix E, Figures (El) to El 1). This appendix also contains a

treatment of six other types of bearing configurations which are of practical

importance.
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UNSYMMETRIC SHAT IN DMZNTICAL BZARMS

U The graphical procedure developed in the last section can be used

to solve the frequency equations (13). The first of these equations it solved

for K in terms of Ot to obtain

K 04 Y1 &I (3kILC M~t oi + - (tanh "T +ta(3)

K13 {coth 0 - cot 04 (34b)

F, ifindjdiýthe aoewhen and ~ rL .............. Tieqlusncy equaffion-1Th V-sidntcal to teabove whn- •ad• r

replaced by + G and C'5 respectively. In terms of the physical constants

of the system, the parameters in Eqs. (34) are

K L kL 3  24 )2rL4

m= M

K kL3  kL3  4 al(L (35)

Comparison of equations (35) and (34) with (29) and (32), respectively,

indicates that, aside from subscripts on the flexural rigidities, the two sets

f of frequency equations are identical.

The calculations for a particular rectangular shaft are given in
Appendix D. The dependence of critical speeds on the shaft stiffness aniso-

tropy 6 is shown in Fig. 3. The solid lines represent the first three gravity

f critical speeds. ' The first two natural frequencies enclose a speed range for

which the transient solution is unstable. The effect of damping on this criti-

Li cal speed range is indicated schematically in Fig. (Cl).

IL
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EXPERIMENTATION

The test fixture used in this program may be considered as consist-

ing of three parts: the drive section, which was simply a source of uniform

U rotational motion; the experimental section, which consists of a very stiff

beam upon which the shaft is installed in spring-mounted bearings, and the

instrumentation, by means of which the rotational speed and forces on the

test shaft bearings are measured. The mechanical parts may be seen in

Fig. 4, and the electrical and electronic parts in Fig. 5.

"The drive system has as its principle element a 28 v. d. c. motor

.atea at 3 -amips, -e, eUUe rpm. - ctedfor ts smoothness of oper-

ation and wide running speed range. Power is supplied to it by a 220 v trans-

former seen on the floor behind the oscilloscope cart in Fig. 5 and by two

Srectifiers and two variacs shown at the left of Fig. 5. (It was determined

that fluctuations in the 110 volt line were too great to allow accurate speed

control.) The voltmeter and ammeter on the front of the large rectifier

case are in the armature circuit. Speed is regulated by adjustment of the

larger variac on top of the case at the front. The motor is coupled to a
flywheel whose polar moment of inertia is 59.64 in. -lb-sec . (The polar

moment of inertia of the flat shaft is 0. 00505 in. -lb-sec 2 . ) The flywheel

[f is coupled to the test shaft by a connecting shaft and two universal joints.

A portion of the connecting shaft and one of the universal joints may be seen

I in Fig. 6. The drive section is mounted on a stiff, cross-braced table

which has incorporated in it a vibration damping pad, which reduces any

Li vibration transmitted to the experimental section.

The experimental section has as a base a welded box beam 11-1/2

I in. wide by 19-1/2 in. deep, with four stiffening baffles, all made from 3/4

in. steel plates. Two A-frames are bolted to the beam for mounting the

f springs and bearings. The stiffnesses of the A-frames in both horisontal

and vertical directions are about 100 times as great as that of the springs
used in the program, thereby insuring that the springs constitute the sole

.I significant flexibility at the bearings. Adjustable bolts through the A-frames

have cups at one end into which the ends of the springs are fitted. Similar

1 cups on the bearing blocks accept the other ends of the springs, thus allow-

ing motion in either the horisontal or vertical direction.Ii ARMOUR RESEARCH FOUNDATION OF ILLINOIS INSTITUTE OF TECHNOLOGY
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Self-aligPtng anti-friction bearings are used to minimiseu moments

applied to the bearing block by rotation or bending of the shaft. Axial mo-

tion is prevented by the fixity of the connecting universal Joint on the test

shaft and the held bearing on the outboard flywheel journal. The test shaft
is not held in either bearing. The bearing blocks provide mounts for the

accelerometers.

Speed sensing was effected by means of a light source and an elec-
tric eye directed toward a strip of aluminum tape on the flywheel rim (see

L Fig. 4). Since the rest of the rim was covered with black paint, the elec-

tric eye emitted a voltage which rose and fell once during each revolution.
SThe instrument at the top of the rack at the right in Fig. 5 is a tachometer

which was used for rough measurements of the speed. In addition, the out-

put of the electric eye was fed into the oscilloscope where, by adjustment of

the sweep time base and measurement of the trace length for one revolution,

accurate speed measurements were made. Furthermore, the oscilloscope

was used for vibration phase measurement, through observation of the rela-

tive positions of the electric eye trace and the spike in the accelerometer

trace.

Bearing forces were sensed by C. R. L. accelerometers on the
( bearing blocks, and measured by the Ballantine Model 300 voltmeter on the

shelf in the rack. Other instrumentation in the rack includes selector

switching for location and direction of accelerometers used, calibration

circuitry, and cathode follower isolation amplifiers for the accelerometers.

The experimental procedure was directed solely toward the deter-

mination of the critical speeds of rotation. Displacements were not found

Li at this time since analytic results wore not available for comparison.

Tests were conducted on two shaft systems: a 50-in. long 1-in.

diameter round shaft and a 50-in. long 7/8 by 1-1/2-in. rectangular shaft.

The bearing flexibilities, limited by the availability of commercial coil

Ssprings, were 2500 and 5300 lbs/in. An infinite amount of stiffness, i. e.

rigid bearings, was obtained by compressing the springs to the bottoming

Spoint. The balancing fixtures on the round shaft were not needed since the

amplitudes of vibration near resonance were not severe as long as the rotor

[ ARMOUR RESEARCH FOUNDATION OF ILLINOIS INSTITUTE OF TECHNOLOGY
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passed quickly through this critical speed. No attempt was made to balance

the flat shaft because unstable speed ranges and gravity critical speeds exist

independently of any mass eccentricity of the shaft.

The results for the round shaft are presented in Fig. 7 and 8 in

terms of the horisontal and vertical accelerations at the bearing remote

from the driving end. The observed first resonant speed was at 1640, 1720,

and 1770 rpm for bearings of 2500 lb/in., 5300 lb/in. and infinite stiffness,

respectively. The secondary gravity critical speeds were not noticeable;

IIThe resonant speeds were apparent from the large vibrations and noise levels.

The theoretical predictions of Appendix D are 1720, 1870, and 1910

rpm. The calculations, however, did not include the 1. 15 lb weight of the

balancing fixtures. The corrected frequencies, based on a new mass of

shaft and elastic modulus E = 29 x 106 psi, are 1610, 1750, and 1790 rpm,

which are in very good agreement with the experimental results.h The results for the flat shaft with bearing stiffness of 2500 lb/in.

are presented in Fig. 9. In this case the apparent secondary critical speeds,

if occurring at 950, 1450 rpm were quite severe. In the rough running range

from 1600 to 2100 rpm it was difficult to maintain constant speed because of

the large vibrations of the rotor. At approximately 2100 rpm the shaft be-

came disengaged from the bearing mounts causing some minor damage to

the apparatus.

The analysis of Appendix D predicted gravity critical speeds at 910,

1500, and 2140 rpm and a critical speed range from 1600 to 2120 rpm. (For

E = 29 x 106 psi the predictions would be 900, 1470, and 2100 rpm for the

gravity critical speeds and 1570 to 2080 rpm for the critical speed range.)

It is clear that the destructive vibrations near 2100 rpm were caused when

the effects of gravity, mass eccentricity, and shaft stiffness inequality were

felt at the same time.
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CONCLUSIONS

The natural frequencies of a uniform undamped shaft rotating in

heavy undamped flexible bearings have been found for two specific cases:

1) a shaft with non-symmetric cross section rotating in heavy, self-aligning

bearings whose principal flexibilitics are equal, and 2) a symmetric shaft

rotating in heavy bearings of unequal principal flexibilities. Secondary

critical speeds induced by gravity are also determined. The general case

of non-symmetry in both shaft and bearings is not amenable to solution.

In the first case, a doubly infinite set of natural frequencies are

found. The spread between corresponding frequencies of each set increases

from zero with increasing shaft anisotropy. Centrifugal forces induced by

mass eccentricity excite a steady state response at all speeds except the

natural frequencies where the response becomes unbounded. The transient

solution, however, will become unbounded at any speed which lies between

corresponding natural frequencies. Damping in the system will not com-

pletely eliminate this range of unstable operating speeds. The unstable

nature of this transient makes it impera.ive that this type of shaft design

be avoided wherever possible.

For the case treated above, the secondary gravity critical speeds

can be found with little extra effort from the data on the natural frequencies.

For slight shaft asymmetry these critical speeds are approximately one-half

the natural frequencies.

For the special case of identical bearings, the transcendental fre-

quency equation is sufficiently reduced so that by means of a simple graphi-

cal construction natural frequencies may be found for any combination of the

remaining system parameters.

When the symmetric shaft rotates in unsymmetric bearings, there

are again two sets of natural frequencies, but no ranges of critical speeds.

In this case, there is a direct analogy to the beam whose end supports possess

different horizontal and vertical flexibilities; the natural frequencies of each

system are identical. These frequencies can be found from the same graphi-

cal construction mentioned above.
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c It 1i interesting to €ompare the system considered in this report
with the idealised case of imznovable pinned-pinned bearings. In terms of
the bearing-shaft flexibility ratio K and mass ratio m the following con-
clusions can be made: 1) for large K and small m the first two or throee

I_. natural.froquencies are approximately equal; 2) for large X and zu or

"medium K small m only the first natural frequency corresponds to the
idealised case; 3) for small K the frequencies are very sensitive to the
mass ratio. Moreover, since there is another set of natural frequencies
corresponding to the different bearing flexibility in the perpendicular direc-
tion, the similarities to the idealised case are further obscured. If the

.principal bearing flexibilities are nearly equal the natural frequencies may

occur in clusters.

It is apparent that, aside from rotating systems whose supports
are very inflexible, the vibrations of flexible rotors operating at super-
critical speeds winl be sensitive to the bearing characteristics. It appears

that the bearing with adjustable stiffness may be suitable as a resonance
changer, thereby effecting a decrease in noise and vibration levels.

iI
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In summary,

1. Bearing mass and flexibility have considerable effect on the critical

speeds of flexible rotors. Generally only the first and second nat-

ural frequencies of flexural vibrations are accurately predicted by

the idealized assumption of rigid (immovable) bearings.

2. When the bearing stiffnesses in two mutually perpcndicular dircc-

tions are unequal, the occurrence of critical speeds is doubled.

It is possible for these speeds to occur in clusters thereby giving

the appearance of a range of unstable operating speeds.

3. Shafts of non-symmetric cross section should be avoided whenever

possible because of instabilities which, in general, cannot be re-

moved by damping.

4. Half critical speeds in symmetric shafts are unimportant.

5. Bearings with adjustable stiffness offer a means of changing reso-

nance thereby allowing smooth operation in between critical speeds.
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RECOMMENDATIONS FOR FURTHER WORK

In this report only the effects of bearing mass and stiffness on the

natural frequencies of a uniform shaft were found. Account should also be

taken of shafts of non-uniform cross section which may be carrying thin

heavy disks on interior and/or overhanging sections. It is also of practical

interest to determine the magnitude of vibrations for various combinations of

shaft system parameters.

In addition, the possibility of using flexible bearings as a means of

controlling vibrations should be pursued. The chief cause of excessive vi-

bration is an unbalanced rotor operating near a critical frequency. Preci-

sion balancing and conservative design are two common methods of vibration

control. While it is standard procedure to balance all critical rotating ele-

ments, these rotors may eventually operate poorly at or near the natural

frequencies of the system. On the other hand, conservative design in many

cases would be too costly and impractical especially if the system operates

over a wide range of speeds. Adjustable bearings would perform the same

task as a redesign since they would relocate the natural frequencies, i. e.,

they act as a resonance changer. This method may not reduce vibrations,

but simply avoid them by adjusting the troublesome critical speeds to be

sufficiently removed from the operating speed.

A program to accomplish the above recommendations would contain

the following elements:

1. Develop the dynamics of non-uniform shafts carrying thin

heavy disks. This would include gyroscopic effects and

the effects of bearing mass, damping, and stiffness.

2. Determine the amplitudes of vibration for various shaft

system parameters with particular emphasis on changer

of bearing stiffness.

3. Perform experiments which will verify the analytical
results.

4. Evaluate the feasibility of adjustable bearings as a

resonance changer.
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APPENDIX A

THE EQUATIONS OF MOTION

It is convenient to derive the equations of motion in the rotating

Vim V2 coordinate system (Fig. Al). In determining the boundary condi-

tions, we shall make use of the fixed X, Y coordinate system. We develop

the equations in their most general form and then specialize to the problem

at hand.

Let S 1 (Z) and S2 (Z) be the principal stiffnesses in the V1 and

V2 directions, respectively. Classical beam theory yields the following

relations between shear force F, bending moment B and displacements

VI, V 2 of the neutral axis:

"2B 1 ZIv 1 2 v2
F = - F 2 = - B 2 B =S B =S 2  (A-i)

We recall that the components of acceleration referred to a coordinate sys-

tem which rotates at a constant speed n are

a1- •21 t2V - z V2

1 tZ 7j) t

(A.=Z1

a2 = 2 r2"2 V1+ 2n 1

For a horizontal shaft of density X'(z) per unit length, the equations of

motion are
ýF 1 2,7v 1 2 •v 2- (Z) g cos fCt + - =5- = Y'(Z) C t 1 - 2 ( -- T-

(A-3)

2 2
-•(Z) g sinfQt + 2 = r2  + 2--
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where the first term of each of equations (A-3) represents the gravity force.

Substituting relations (A-i) into (A-3) we obtain

• 2 + (Z) -i 2V 122VI 2 2 - r(Z) g cosolt

S 1 (Z)Z 1 nfl

s• S1(Z) + W'(Z) 2-.- .2VI- 2 2t = (A-4)

When the shaft is uniform, SI, S 2 , and • are constants and, after suitable

non-dimensionalization, equations (1) and (2) result.

In the rotating system, the component of force exerted by the shaft

on the bearing is

-S at Z = 0 and + S B-. at Z = L (A-5)

The displacements in the fixed coordinate system are related to V 1 and V2

by

X = VI cos nt - V 2 sinS2t

(A-6)
Y = V, sin 0t + V- cos r t

F and Fy, the components of a force in the fixed system, and F 1 and F 2 ,

its components in the rotating system, are related by

F -F cos Qt + F sinfQt
1 x y

(A-7)

F =-F sinfQt + F cos nt
2- x y

Now the force exerted by the springs on the mass is

F = -k X; F =k Y (A-8)
x xy y
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where k., ky are the flexibilities of the springs in the X and Y directions,

respectively. Substituting (A-6) and (A-8) into (A-7) we obtain

(k x " k x2 ) + (k xky)Cos 2C2t ]Vl +Lr(k 'k y)a sin. 2C2t v

F j(k -k ) +(kx+ky (k(xkk-k ) ) t AV9

F 2 = L sin2ft 2 S ( k Cos 2 "t t 2

as the components of the force of the spring on the bearings.

Finally, when (A-2), (A-5), and (A-9) are taken into account, the

equations of motion of the bearings become

at Z = 0

k + kly k[lxkly

•-2 QJ L cos Zf V - i lytjn2 V2[a F -2V - 2V 22V2" 0

"3Vs2 klx ly in 2Qt V, + [clx+klyos 2 nkt V

S2

aV 1 •22 " 212 =0
7TTV 1  tI

at Z=L

3 . I + v l 2x+ k k2 x k 2 y cos 2 1 t VI _ [k :x k 2y sin 2 n t V2

2V 1 +72 IV?-+ V

+ M 2
1 ? . - 2v1 -0 =0
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f. 3 V2 k k sn217 t k +coo2k1 t V"S2 = ""

~ 2V 2  21V+ M Z _l~- 222+0C

We see that these end conditions have time dependent periodic co-

efficients when the flexibilities k and k at the bearings are not equal.
x y

When referred to the fixed coordinate system, the boundary conditions have

periodic terms arising from the shaft anisotropy. Moreover, the equations

of motion in the fixed coordinate system also have time-dependent periodic

coefficients. For the special case of equal bearing flexibilities klx k ly = 1

and k = k = k2 the nondimensionalized equations (3) result.
2x 2v
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APPENDIX B

AN EXAMPLE OF AN UNSTABLE TRANSIENT

OF A ROTOR CONTAINING DAMPING

The transient solution of the damped non-symmetric shaft systems

considered in this report can be shown to be unstable for certain ranges of

operating speed; however, for the sake of clarity we shall demonstrate this

behavior for a simplified lumped parameter system. Consider an unsym-

metric shaft of negligible weight supporting a mass m. In terms of an x,

y coordinate system which rotates with the shaft, the equations of motion

are

rn(y -n 2 y+ z2 x) + CIy+ kly=0
"L (B-1)

2m(x -Q x-2[2y) + C x+k2x-o0

Here Q is the constant angular speed of the shaft, C is the damping factor,

and k is the shaft stiffness.

Since the differential equations (B-i) have constant coefficients,

the solution has the form

i~~ .= ct >1t ..i~-j = A = c-

The frequency equation for X is found from the requirements that the de-

terminant of coefficients of A and B vanish. This results in

0 mx 2 + C + (kl mQ2) 2 Om
"1 1 (B-3)

-27rmi mx2 + C 2)> + (k -m C)

or

m 2 X4 + m(C1 + C 2 )) 3 + +k k ).m + CIC + zm )2

[ 1  2 ) 2 1 J
+ C1 (K2 - m(2) + C2 (k, - m n + (kI . m2 ) (k2 - mnO) = 0
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In general, the solution of the frequency equation (B-3) has two

sets of complex conjugate roots. If the solution (B-2) is bounded, the real

part of the complex frequency X must be less than or equal to zero. When

Real (X) > 0 the transient is unstable since it increases exponentially with

time.

While it is possible to obtain a relation among the shaft system

parameters for which Real (X) > 0, it would be too cumbersome to be in-

formative. It is found that critical speeds occur in a range whose width

depends on the stiffness difference (k 2 -k1z4+kl) and the damping factor C.

This critical speed dependence is indicated schematically in Fig. Bl.

Since the right-hand sides of Eqs. (B-l) are zero, the casual ob..

server may conclude that the system is in free vibration. One may wonder

why the homogeneous solution of a damped system can be unstable when it

is known that any freely vibrating dissipative system will eventually come

to rest. However, the equations of motion (B-1) are really forced since

the angular speed is kept constant. At the critical speeds, more energy

is added to the shaft than is absorbed by dissipative elements. This can

happen only when there exists a shaft stiffness inequality which some authors

have considered apparently equivalent to "negative damping".

I.
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L APPENDIX C

[I DERIVATION OF CRITICAL SPEED EQUATION
FOR A NON-SYMMZTRIC SHAFT

As I approaches zero, the conditions (10) and (11) become

4 ZA 3 j -) 3 + XlmP]+ Rc13 m 2 14~)Jul Jul

A1 . is[1.Ej+ 2 , 2

1=1

J _m 1 + K1 e -10d +lP ffi

> oj" jZ = j 0

Jul

8 f

T" j= 1

5 C-I 2t =0 Aj 0(rt

-+F.~~~~o F ,K 6)&+ 74 l

-~/ 8

T T 1-ZAj e [-(1 + C) 01- + X2 m2P 2J =0

T f e2 . A .
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where

£r

V () -5[P2/,(l+C 1j4
- I) -p (J 

= 5 ,6. 7 , 8

" If A, the determinant of coefficients of equations (C-1), were written out

explicitly, we would note that the elements of the lower left four by four

sub-determinant vanish. • Consequently, the eighth order determinant is

expressible as the product of two fourth order determinants; that is (seeu page C-3)
256 6

T 1 2

The expression for 62 is obtained from 61 when (1- ) and '• are

Sreplaced by (1 + C-) and 045 respectively. By a simple rearrangement

of columns of (C-2), we can show that 61 and 62 are respectively equi-

valent to Al and A2 of equations (12).
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NUMERICAL EXAMPLES

L I. ROUND SHAFT

We are to find the natural frequencies of a 50-in. long 1-in. dia-

meter steel shaft mounted in self-aligning bearings. The 6. 2 lb bearing

blocks are connected to a rigid foundation by means of springs of 2500 lbs/in.L ....... stiffness. The total mass of the springs is negligible in comparison to the

mass of the bearing. The physical constants of the system are

L - 50 in. length of shaft

YgL = 11. 11 lb weight of shaft

Mg = 6. 2 lb weight of bearing

k = 2500 lb/in. spring stiffness

E = 30 x 106 lb/in.2 Young's modulus
6 = 5.75 x 10-4 lb sec 2 /in. 2 mass per unit length of shaft

4 -2 4I = w r /4 = 4.91 x 10 in. area moment of inertia

K = kL 3/EI= 212 bearing-shaft•.stiffness ratio

Im = 6.2/11. 11 = 0.56 bearing-shaft mass ratio

The equations for the natural frequencies I are given by•

4 4 ir Vry
K-mr 4 = r- (tanh V- + tan ')

.. 4 4 T3 V 3 TV T.V•

[i l•.K-mr V = "'" cot "- cot )

where

auL

IIL
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U

In Fig. D- 1 the functions given by Eqs. (D- 1) and the dashed curve

S212 - 0. 56 r4 w4 are drawn. The intersections of these curves, points

A, B, C. and D, represent the first four dimensionless natural frequencies

a- = 0. 95, 1. 31, 1. 43, and 2. 09, respectively. The frequencies )t (in

radians per second) are given by

22 j / E 2
'x z- - 200w

L thus

.I 180 rad/sec = 1720 rpm

2X = 342 rad/sec = 3270 rpm

X3 = 409 rad/sec = 3900 rpm

X4 = 874 rad/sec = 8350 rpm

I

I

, .:

Ii
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A

I. RECTANGULAR SHAFT

SlWe determine the rough running, speeds of a rectangular shaft

mounted in the flexible bearings of the previous case. The constants of

U the system are

cross section a 0. 875 in. x 1.5 in.

AYgL = 18.6 lb
= 0. 0837 in. 4

= 02 = i.6n. 4

S = E (1 1 z/ 45 x10 bin.
6= (1 2(z-)/(Iz+Il) = 0.49

K = kL3/S = 61.3

K/(l-a) = 124

K/(1+ ) = 42.3

K/(l-Ej = 83.2
m = 0.333

L EThe frequency equation for an anisotropic shaft is given by

K ~ ~ (tanh C-T + tan a

(D-2)

=.-(coth at cot (2

L when

K K 4 
2 IL' 4* f
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A graphical solution of these equations is obtained by constructing the

functions

f+ () = --. (tanh 'r tan r&)

343
f -(,) r,. (coth Ira-- cot

and

The intersections of the dashed curves K = 124 and 42. 3 with the full

curves in Fig. (D-2) determine the dimensionless natural frequencies

:L and

L i' 4

L )k respectively.F V2
Taking K' = 124 we obtain

0.91 or X = 167 rad/sec = 1600 rev/min

| •.= 1. 25 or X = 315 rad/sec = 3010 rev/min

= 1.43 or z = 413 rad/sec = 3940 rev/min

•For K =42.3 we find

t a 0. 79 or. = 222 rad/sec a 2120 rev/min
= 0.95 or I = 312 rad/sec = 2980 rev/min

• 1. 27 or X a 558 rad/sec = 5330 rev/min
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In obtaining the gravity critical spesd., we can easily show that the

[ frequency equationis identical with Eq. (D-2) where

41 >.2L4[ ~ ~ K a'uK/(1- 2  and *4L

Thus from Fig. (D-2) with KI' = 83. 2 and

L 4Y>2

we obtain

JZ= 0.88 or t = 95 rad/sec u 910 rev/min

= 1. 13 or X = 156 rad/sec = 1500 rev/min

L t = 1. 35 or X z 224 rid/sec = 2140 rev/min

This particular shaft system, then, has the following characteris-

tics: discrete rough running speedwat 910, 1500, 2140 rpm, etc. and criti-

cal speed ranges 1600-2120 rpm, 2980-3010 rpm, 3940-5330 rpm,

L

[
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MODE SHAPES FOR CASE I

jjThe three lowest modes of vibration corresponding to the pinned-

pinned shaft of case I are

U Il=0. 5 cosh 2. 970 a + 0.5 coo 2.970 s - 0. 449 sinh 2. 970 a + 5. 964 sin 2. 970 s

u 2 =0. 5 cosh 4. 102 s + 0. 5 cos 4. 102 a - 0. 518 sinh 4.102 s + 0. 260 sin 4.102 s

u 3=0. 5 cosh 4. 478 z + 0. 5 cos 4. 478 . - 0.488 sinh 4. 478 z - 0.663 sin 4. 478 s

These modes are constructed in Fig. D-3 where the bearing displacement is

taken as unity. Although the first and third modes are orthogonal to the

second, they are not orthogonal to one another.

L.

[
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L APPENDIX E

L THE FREQUENCY EQUATIONS FOR VARIOUS

BEARiNG CONFIGURATIONS

The frequency equations for uniform round shaft systems can be

obtained in reasonably sizrple forms. The various bearing configurations

can be characterised as follows:

I Both Bearings Flexible (K1 = K2, Mi = Mz)

a) Pinned-Pinned (already treated)

b) Clamped-Clamped

c) Clamped-Pinned

II Left Bearing Flexible, Right Bearing Rigid

a) Pinned-Pinned

b) Pinned- Clamped

c) Clamped-Pinned

d) Clamped- Clamped

The natural frequencies for a free type of end constraint may be

{found as the limiting case K--.-O, while the immovable constraint is found

from the limit K-40o

1
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Case lb Clamped- Clamped

The boundary conditions (26) now become

Ea3U a2U _

at Z 0 -- + k U + M UI - 0 (El)

" a8U

au

= 0 (E21

I.3 2
a U a US..... •t Zo - ---- + kZU + M• - 0 (E3ý

If obtain the frequency equation (E6) given on the next page. For the case o

identical bearings the frequency equation takes on the simple form

or K = mit6/ 7 + cot+ah-2 (E5

fL. where __ L- [ 1/4 ,

I.. The first four natural frequencies for various mass and stiffness ratios a

given in Figures (Ei2) to (El?). The asymptotes correspond to the naturi

( frequencies of immovable bearings which are found from

L tanh tan
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Case Ib Clamped-Clamped

[3The boundary conditions (26) now become
E183 U 8 2 U

at Z- 0 EI + kI U + Mi1 - 2  - 0 (El)

r OU = 0 (E2)

at Z= L E1 a . k U + M=a-- 0 (E3)

L au
-0 (E4)[3

Using expression (27) as the solution at the equation of motion (25), we

obtain the frequency equation (E6) given on the next page. For the case of

identical bearings the frequency equation takes on the simple form

4 44 3 3 __K = mir4C4 + Zir oe /(tanh•O' _ tan

or K = mn4o.4 + •r 64,/(coth + cot 7r (ES)

Swhere 1L YX2]1/4

The first four natural frequencies for various mass and stiffness ratios are

given in Figures (EIZ) to (El7). The asymptotes correspond to the natural

[ frequencies of immovable bearings which are found from

[_i tanhl - = tan 2 -z

1-1'
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Cas. Ic Clamped- Clamped

Here the boundary conditions (El),. (EZ) and (E3) are unchanged

while the remaining condition becomes

at Z aL _8 a0 (EC7)ozf For identical bearings, the frequency equation (E9) given on the next page

reduces to

____4____x3X3, n1+3 coshw*<cos umOV 4i-cos ýW.Cosoh ¶rL)2+4(cos wov. +coshupc)2
I-i+ V-W-ac-;coen 0 W -W CIII k-z

The first few natural frequencies for various mass and stiffness
ratios are given in Figures (E18) to (EZ3). The asymptotes correspond to
the natural frequencies of the ideal clamped-pinned shaft which are found

from

tanhwo C= tanwoX

[

I

[1

Ii
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Case Ha Pinned Flexible-Pinned Rigid

F . A Any number of frequency equations may be presented by varying

the shaft system parameters KV, KZ, M1 and M2 . However, we shall

[ restrict ourselves to the case where one bearing is practically rigid

(at Z = L) while the other bearing remains flexible (at Z = 0). Accordingly

the boundary conditions (26a) remain unchanged while the boundary conditions

at the other end become
82 U

at Z= L U= 0, -:2 =0 (EIG)
8Z

Again assuming the solution (27), we obtain the frequency equation
3•3

K = mirL 4 + - (cothwoL - cot wo) (Eli)

where c•- -
W 1Yd

The first few natural frequencies for various K and m are given in Figures

(E24) to (E29). Note that the idealized case of pinned-pinned immovable

vearings (K--*co) furnishes the natural frequencies

o • = 1, 2, 3,...
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Li
Case UIb Pinned Flexible- Clamped Rigid

In addition to the boundary conditions (26a) we have

at Z= L U = 0, a = 0 (EIZ)

The frequency equation corresponding to the solution (27) is

" K: m 4 o 4 sinh woccos W04 - coshl;r)sin WQw3h3(1 +.O coe. -ocosh wC2Uil) o
I (E 3

- The dependence of the natural frequenciesX on K and m is illustrated in

Figures (E30) to (E35).

L~i
It

.1_

L
[1
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[i

Case IIc Clamped Flexible-Pinned Rigid

The conditions for a clamped flexible bearing are given by conditions

(El), (EZ), while a pinned- rigid bearing has the conditions

at Z = L U = 0, a - 0 (El4)

(' The frequency equation is

K =mw &e.4 + ZWioc. /(tarih oCL - tan woe) MEIS)

The first few solutions of this equation are given graphically in Figures

(E36) to (E41).

[

[.
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Case IId Clamped Flexible- Clamped Rigid

I.n In addition to conditions (Et), (EZ), we have

at Z L U = 0, aJ = 0 (E16)

The frequency equation is

4 3 3K = mir04o + 7r-OC (sin w kcosh ir•. + cos r Wosinh wro) (E17)
m (coo 7r o(cosh wro.,- -)

The first few solutions of this equation are given graphically in Figures

(E4Z) to (E47).

I.

I

I
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