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ABSTRACT

The determination of the critical speeds of a flexible rotor is
usually carried out on the assumptions of negligible bearing mass and stiffness.
In this report the effect of bearing mass and stiffness on the natural frequencies
of a uniform flexible shaft is found, Two specific cases are considered: the
shaft of symmetric cross-section rotating in bearings of different horizontal
and vertical stiffness, and the unsymmetric shaft rotating in symmetrically
stiff bearings. The frequency equations for various types of end constraints
are solved by means of a simple graphical procedure, It is found that bearing
mass and stiffness usually have considerable influence on all but the first or
second critical speeds.
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NOMENCLATURE

principal flexural rigidities of shaft (Sz Sl)

S=(SI+SZ)/2 mean flexural rigidity

R 7 ¥ h xr

<

<
[\

g ® &= O

length of shaft

mass per unit length of shaft

angular speed

natural frequency (radians per second)
flexibility of bearing

mass of bearing

displacement of shaft in first principal direction
displacement of shaft in second principal direction

distance along shaft

Non-Dimensional Variables and Parameters

t time

V,/L displacement

VZ/L displacement
Z/L variable distance along shaft

(SZ -Sl)/(SZ+Sl) measure of shaft anisotropy

ﬂ v XL4/S angular speed

Y gL3/S reduced gravity force
kL3/ Sratio of bearing and shaft flexibilities

M/ ¥ L ratio of mass of bearing to mass of shaft
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ARF Project K274
DYNAMICS OF FLEXIBLE ROTORS

OBJECTIVES

Because of its importance in rotating machinery, the dynamics of
flexible shafting has been the object of much theoretical and experimental
study. This research has not only attempted to determine the vibrational
behavior of various systems as a function of operating speeds, shaft para-
meters and support conditions, but also devised methods of minimizing these
motions., For a review of previous analysis and balancing techniques, the
reader is referred to Armour Research Foundation Report No. K206 and the
exiensive bibliography contained therein.

Despite the most exacting balancing procedures, there usually
exists a small deviation of the center of gravity of the shaft from the axis
of rotation. As the shaft rotates, this mass eccentricity produces a peri-
odic centrifugal force; it is by this excitation that flexible shafts are brought
into unwanted vibration. Generally, these oscillations are negligible but at
certain speeds of rotation, the system may vibrate at a level which is intol-
erable for proper operation of the machinery or its environment. In addi-
tion to causing structural damage, excessive vibration may interfere with
delicate in.truments, be of discomfort to humans, or generate noise. The
problem of noise reduction is of particular importance in naval construction
since sound detectors are a primary means of locating ships above and below
the surface.

The initial step in developing intelligent means of vibration attenua-
tion is an analysis of the motion. Once an understanding of the interrelation
of various system parameters has been made, the designer can rationally
proceed to a system of desired smoothness.

In standard analysesa of rotating shafts, it is assumed that the bear-
ing mass itself has negligible effect on the characteristics of the vibrations,
This is certainly the case in a rigid bearing; in practice, however, this
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idealization is sometimes impossible to achieve because of practical limi-
tations on the size of the supporting structure, Indeed, it is possible that

a bearing is rigid in one direction and quite flexible in the other direction.

The Bureau of Ships, Department of the Navy, Washington 25, D.C.,
established this research project under Contract No. NObs-86805 in order
to investigate the effects of heavy flexible bearings on the dynamic behavior
of flexible rotors. It was believed that this information would be of value
to anyone concerned with rotating machinery as a means to understand and

avoid unwanted vibrations,
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INTRODUCTION

We shall investigate the dynamics of a flexible shaft rotating at
constant speed in heavy flexible bearings. To keep the problem as general
as possible without obscuring it with mathematical complexities we shall
assume that the shaft has different stiffnesses in two mutually perpendicular
directions but is otherwise uniform along its length, The bearing masses
and flexibilities may all be different.

Several authors have considered the dynamics of non-symmetric
rotors{l=3)*
mases and/or flexibility. Foote, Poritsky, and Slade“’) have treated a sys-

tem comprised of a single mass on a weightless non-symmetric shaft sym-

; all of these, however, have not included the effect of bearing

metrically mounted in massless flexible bearings. Their investigation in-
volved two ordinary coupled differential equations with periodic coefficients,
The results indicate that shaft anisotropy alone will cause instability over a
range of speeds while shaft and bearing anisotropy can cause unstable oper-
ation over as many as three ranges of speed. Furthermore, they noted
that the inclusion of damping does not necessarily remove thése instabilities.
Because of the nature of the differential equations, the mathematics is quite
lengthy and it is doubtful whether the approach could be modified to include
the effect of massive bearings. Moreover, since they considered only a
one-lump parameter system, there can be no information as to stability of

the continuous system at super-critical speeds.

Kellenberger(7) has treated the uniform non-circular shaft rotating
in immovable bearings. The partial differential equations of motion, when
referred to a rotating coordinate system, are easily solved. His method,
however, is applicable only to systems whose boundary conditions are in-
variant under rotation. It is found that there occur an infinity of critical
speed ranges that vary with the amount of anisotropy of the shaft. Second-
ary critical speeds induced by gravity, are also determined.

* Numbers in brackets denote references collected at end of this report.
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In this report, the vibration of an undamped shaft in heavy self-
aligning flexible bearings is studied. A method of characteristic exponents
is used to investigate the stability of the system. Expressions are found in
closed form for the dividing surfaces between stable and unstable domains.
The secondary critical speeds are found to bear a simple relation with one
of these expressions. The method, being sufficiently general, is applicable
to other types of end constraints,

As a special case of the above analysis the frequency equations for
various practical round shaft systems are found and the critical speeds are
presented in graphical form as functions of bearing-shaft mass and stiffness

ratios.
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PROBLEM STATEMENT

Let the shaft of Fig. 1 have unequal principal stiffnesses 5, and
Sz. As the shaft rotates, its stiffness in any fixed coordinate system will
be a periodic function of time completing two cycles for every revolution of
the shaft. Consequently, the equations of motion in any fixed coordinate
system will have periodic time-dependent coefficients, When referred to
rotating coordinates fixed in the shaft along the principal directions of stiff-
ness all coefficients in the equations of motion are constant, If the hori-
zontal and vertical flexibilities at the bearings are unequal, the flexibilities
in the rotating system are also periodic functions of time. In order to avoid
periodic coefficients in the boundary conditicns, we shall assume that the
bearings possess equal flexibility in two mutually perpendicular directions.
This assumption facilitates the analysis of the non-symmetric shaft and is
unnecessary in the treatment of the isotropically stiff shaft. We are thus
able to investigate two cases; the anisotropic shaft in isotropic bearings and

the isotropic shaft in anisotropic bearings.

So that the results may be applicable to any system, the analysis is
carried out non-dimensionally. Interms of u and v, the dimensionless
displacements in the rotating system, and other dimensionless variables and
system parameters defined elsewhere, the equations of motion for the aniso-

tropic shaft are

4 2
(1-¢) aa_‘; + p? (:—‘5 -u-Zg—: = -hsinT+pZf(z) (1)
z T

4 2
(1+€) ;?Y + pZ (§:§ -v+2?a—:)=-hcos‘r+p2g(z) (2)

Here the parameter ¢ (0<e £1) is a measure of the shaft asymmetry with
vanishing € implying an isotropic shaft. The angular speed of the shaft
is characterized by p while h measures the gravity force. The functions
f(z) and g(z) represent the mass eccentricity of the shaft.

We shall investigate the motion of a shaft mounted in heavy, self-
aligning bearings, These lead to boundary conditions commonly referred
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to as pinned-pinned ends; the analysis that follows could apply equally as
well to any other type of end constraint. The equations of motion of the

bearings are

2
. 2% 2 % v, _
at z=0 (1-() s:g +Klu+ mlp (?—TZ -u-Zs-? =0
3 2
v v v
3 2 G
_ 2 u 2 , 0% dv., _
at z=1 -(l-e)a—zg +K,u+ m,p (3? -u-Za—_F)-O
3 2
+(l+e)B +K2v+m2p (3 -v+2%$) = 0
The additional conditions for pinned-pinned end constraints are
2 2
at z=0,1 29 - ¢ a_‘z’=o (4)
dz oz

Equations (1) - (3) are derived in Appendix A,

The problem is to find the displacements as functions of the bear-
ing masses, m,, m,, stiffnesses Kl’ KZ’ speed p, and asymmetry factor
¢. For certain values of speed and asymmetry we should expect a steady-
state solution while at other speeds the displacements will increase without
limit, While infinite amplitudes will not occur physically, the system will
operate with excessive vibrations at these so-called critical speeds. The

first task, then, is to determine these critical speeds.

ARMOUR RESEARCH FOUNDATION OF ILLINOIS INSTITUTE OF TECHNOLOGY

-7- ARF Final Report
No. K274



THE HOMOGENEOUS SOLUTION

Because of the nature of the non-symmetric shaft, the homogeneous
solution is of considerable importance. Even though damping may be pres-
ent in the shaft, the homogeneous part of the solution, while being transient,
can still become unbounded. This seemingly paradoxical situation is ex-

plained in Appendix B.

Since the equations of motion (1), (2) have constant coefficients, the

homogeneous solution can be expressed as
v=BeO<z+1p,'r (5)

where A, B, o¢and p are, in general, complex constants to be determined
by the end conditions. When equations (5) are substituted into (1) and (2), it
is found that these constants are related by

El-e)oz" . p? (1+“2)] A-2p% iB=0
(6)
2p2p iA+ [(1+e)o¢4-p2(1+p2)] B=0

For a non-trivial solution, the determinant of coefficients of (6) must vanish,
Performing this operation, we obtain a relation between o¢ and p which is
quadratic in 044. Since the time exponent p determines whether the mo-
tion is stable, it is advisable to eliminate O¢ in favor of u. Thus

4 2 2 ! 2 2,2 2 2
o = [p/(l-gz)] [(lﬂ; ) + \/e (1+p™)" + 4p " (1l-c )J (M
For each possible p there are eight values of O and sixteen
constants of integration A, Bj which, from (6) and (7) are related by

. = «i0, A
BJ 37

0, = |:-€(1+u2) S\ asud? + g2ad :] Eu(m{l

(j=1,23,...8) (8)

where
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The upper sign is to be taken for j = 1,2, 3,4 and the lower sign for
j=5,6,7,8. The solution (5) may now be written as

ZZAe

root p

v= =i E E 0. Ae
p J

root p

xj(p)zi- ipT

(9)
ocj(u) z+ipT

Here the summation is extended over all characteristic values p which
shall be determined from the boundary conditions, For each as yet un-
known p the constants of integration A. are found from the boundary

conditions (3) and (4), which in terms of the notation (8) and (9) become

8 i

E A (1-e)o( + Ky + mp? (42 -1+2i0)| =0

j=1 L

8

E A, | -(14e) 10,03 - K10, + m pZ (i0.p% + 10, + 2ip)| =0
j i 177 1 j j

J=1 L

® xir 3 2, 2 o

E (1) O w2 ; -
AJe (1l-€) ] +K2+mzp (-p 1+ 210j) 0

j=1 L

8 Xjr

E 1 Age (1+e)ioj°¢j3-xz i0j+m2p2 (iojp2+i°j+2ip.) =0

j= L

8
2
0. &{.“A. =0
ZJ J J
i=1

J
o 8 o
j j
O(jze A= 0 E ojoljze Aj=0 (11)
j=1 j=1
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The frequency equation for u is obtained by setting the determinant
of coefficients of (10) and (11) equal to zero, In this manner, a non-trivial
solution for Aj will be obtained. For any system configuration, all para-
meters except u, of course, are known. When all frequencies are real,
the vibrations are steady-state; when the frequencies are complex, the mo-
tion is transient. The transient will decay or become unbounded depending
upon the imaginary part of the complex frequency.

It is evident from Eq. (9) that the system is stable for given system
parameters p, ¢, m, and K whenever real (ip) is non-positive. Itis a
simple matter to show that the frequency equation is an even function of u
so that both p* and -p* are roots. If w* is a complex root and real
(ip *) is non-positive then real (-ip*) is positive so that the amplitudes
may increase exponentially with time. Clearly, stability is assured when-
ever all frequencies are real. Since instability occurs whenever the fre-
quencies become complex, the bounding surfaces between stable and unstable
domains are the loci of parameters p, ¢, m, and K for which ® 2 =0 is a
root of the frequency equation. Physically p = 0 implies there is no time
variation of the displacements in the rotating coordinate system. The shaft,

then, is performing a "frozen whirl" at the onset of instability.

As indicated in Appendix C when p approaches zero, the eighth
order determinant reduces to the product of two determinants of fourth

order. The bounding surfaces are found from
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The loci of parameters for which A, or a, vanishes represents the be-

ginning or end, respectively,of an unstable domain (as the speed p is in-
creased). As ¢ approaches zero, these two curves in the p-¢ plane
converge to the natural frequencies of vibration of the symmetric shaft.

The determinants (12) can be expressed as

A,=(1-¢ )206,6(1-c030(.| coshOZI)+0l‘3(l-e ) RK1+K2)-(m1+mZ)(1-¢ )a{]vzl x

x Einhdlcosdl-cosha’lsindl:' +2 Enl(l-e )¢14-Kﬂ [mz(l-e )d14-K2J sina’lsinhﬁ/l=0
A o=(1+¢ )% 8(1-cos ¥ coshal )+ o3 (14¢ ) | (K. +K,)~(m ., +m W 1+e)¥ ¥ | x
2" 5 5 065 5 1 2 1 2 5
x Einhdscosols-coshdssindgj +2 En1(1+e )d54-K£| En2(1+e )°L54-K2]sinaﬁssinha¢5=0
For the special case of symmetric mounts, m,=m,=m, K1=K2=K
the loci reduce to
(1-¢ )2 d16(1-cosd1cosh°f1)+ 2{1-¢ )0(13(K-mp2)(cosodlsinh0(1 -sindlcoshﬁl)
2,2 . .
+ 2 (K-mp") smaélsmhafl =0 (13a)

and
(1+e¢ )20(56( 1 -cosafscoshO(SH 2{1+e )0(53(K-mp2)-(cos Q-’ssinha’5-sinﬂ-/5cosh°45)

+ 2 {K-mp“}© sina/_sinho) = 0 {13h)

L

The unstable speed ranges for a pinned-pinned shaft in immovabie bearings,
found previously by Kellenberger, are obtained from Eqs. (13) when K

approaches infinity., This results in

sin l’zlsinho(1 =0

|
(=]

sindssinh¥5 =

dl' (ts = nr

(nm)? "/1-: < p < (nm)? Viee (n=1,2....) (14)
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EFFECT OF GRAVITY - SECONDARY CRITICAL SPEEDS

The gravity solution can be treated completely and independently
of the previous solution for the homogeneous case, Let us assume a par-
ticular solution of Eqs. (1) and (2) in the form

u=x(z) sinT v=y(z)cos T (15)

With this formulation, the time dependence can be factored out of the equa- b
tions of motion leaving the following equations in the amplitudes x(z) and
y (2):

atx 2
(1-() &—z- + Zp (-x+y)= -h
z

. (16)

€Y +2pP(x-y) = -h

dz

(lt+e)

Eliminating y (z) from Eqs. (16) we obtain

4
2 2 2
y(z) = — El-e )/2 p :| -:—§ + x -h/2p
z
(17) )
aBx 2, 2 | ak 2, 01 2 |
'd—g — | 4p%/(1-%) —4 = 4p"h/(1-¢%)
z dz
A complete solution of equation (17) is
x{z)=A sincz+Bcoscz+ Csinhd'z+Dcoshcz+Ez3+Fzz+Gz+H -hz2/24
1
o4=4p2/(1-¢ %) (18)

The eight constants of integration are obtained from the boundary conditions
(3) and (4). Once again, the time dependency factors out; this would not
have happened had damping been present so that a solution more general
than (15) would have to have been used. These reduced boundary conditions

in x(z) and y (z) are
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3 ' 2
at z=0, (l-¢) 9—-’3‘ + K;x - Zmlp (x-y) =0
dz

3
(1+¢) :_.§ + Ky + 2m p° (x-y) = 0 (19)
z
2 2
d™x d
= =0
o Rl
a3x 2
at z=1, -(l-¢) 3 + Kyx - 2m,p” (x-y) = 0
a3 2
-(l+¢) 3 + K,y + 2m,p” (x-y) = 0 (20)
z
& _ day _
dz¢  azt

When (18) is put into (19) there results eight simultaneous linear nonhomo-
geneous equations for the constants of integration. For general values of
p» €,K. and m, the constants will be bounded functions of these system
parameters. However, for certain combinations of parameters, the amp-
litudes will become unbounded; this happens when the determinant of the
coefficients of the linear equations vanishes, These values of p for fixed
¢, m, and K are the secondary or gravity-induced critical speecds and are
given by

e® (1-¢ %)% (coso coshe - 1)+ o> (1-¢2) [(mlﬂnz)(l-e 2, c4-(K1+K2)] x

x Einho'cos c-cosho'sino'] -2 [ml(l-e z) 0'4-1(1] [mz(l-c z) 0'4-1(2] x

X|sine linhv] =0 (21)
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It can be seen from comparison of Eq. (21) and the first of (12a)
that these curves are identical if ocl is replaced by ¢ and ¢ is replaced
by € Z. Thus from the plot of Al’ in the p-¢ plane, we can obtain the
secondary critical speed by replacing p with 2p and ¢ with ¢ 2. Thus
the gravity critical speeds for the round shaft are half the natural frequen-

cies of the shaft.
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EFFECT OF MASS ECCENTRICITY

It is a practical impossibility to manufacture a shaft which is per-
fectly straight and uniform throughout its cross section. Consequently,
there exists some small mass eccentricity along the length of the shaft even
after it has been balanced. As the shaft rotates, the small centrifugal forces
may be sufficient to cause vibrations which render the system unserviceable.
If f(z) and g (z) are the eccentricities along the principal directions, the
equations of motion become

4 2
du 2 ,9% av 2
(1-€) =—3 ¢+ p (=g -u-2 ) = f (z)
oz 2T 3T P
(22)
34v 2 ?zv

1e) = + " (S5 -ve23T) = Pl a)

Note that in the rotating coordinate systemn, the centrifugal forces
are constant while in a fixed system these forces are periodic with a fre-
quency equal to that of the shaft. A possible motion of the shaft is a '"frozen
whirl" where it is deformed but does not vibrate. This implies that there
is no time dependency of the displacements along the principal directions;

therefore we try a solution of the form
u = u(z) v =v(z) (23)

With the formulation (23) the equations (22) become uncoupled. The
actual form of the eccentricities insofar as stability is concerned is imma-

terial. The solution of these equations is

u=Asin« z + B cos&z + C sinh®|z + D cosh,z + § (z)
vz E sinotsz + F cosa/sz + G sinholsz +H cosha’sz + W(z) (24)

ot = pH-a At = pPiee
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where f (s) and ’lo(:) are particular integrals of Eqs. (22). The constants
of integration are found from the boundary conditions (3) and (4). This re-
sults in two sets of four non-homogeneous simultaneous linear equations.

The determinants of coefficients of these sets is identical with those given

by equation (12). This should have been expected since (12) was developed
on the basis of vanishing frequency which is precisely the '"frozen whirl" of
Eqs. (23).

It is apparent, then, that the flattened shaft possesses two sets of
natural frequencies like a non-symmetric beam which vibrates in two mu-
tually perpendicular directions. Moreover, all frequencies between these

""adjacent critical speeds are also critical. For the symmetric shaft, these

natural frequencies will coincide.
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ROUND SHAFT IN UNSYMMETRIC BEARINGS

In most practical cases, the shaft will be symmetric while the
supports possess unequal flexibility in two mutually perpendicular directions.
In determining the natural frequencies of the system, we do not need to use
the previous notation. Since the equations of motion and the boundary con-
ditions are uncoupled it is necessary to consider motion only in one direction.
The equation of motion for the undamped system is

4 2
2U U

El £  +f—5 =0 25
22z Ua: “

while the boundary conditions are

23u 2%
at 2=0 El Z— + kK Ut+m —— =0 (26a)
02 1 Y
2% _ ,
22z°
Z = 2%y K 3% 0 6b
at Z=1 -EI—-E;+2U+m2-—tz-= (26b)
2% |,
'azz

Here EI is the flexural rigidity of the shaft while the constants kl and kz
are the stiffnesses of the supports at Z =0 and Z = L respectively.

A solution of Eq. (25) is

iat
U = (Acoshp Z + Bcosp £ + C sinp Z +Dsinp Z)e (270)
where .
4+ 424
pt = D2 (27b)

The constants of integration are found from the boundary conditions (26).
A non-trivial solution for these constants results in the frequency equation
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In terms of the redefined non-dimensional parameters

3

k,L M 4
_ _ 1 2_.2)L 4
Ki= 9w ™ =g ¢ P =) —gr =8
3 (29)
kzL M2

Ke= ¥ ™2° 3T
the frequency equation (28) becomes

__B%(1-cos p cosn p) + B [ (K, + K,)-(m +m,) p*|| sinh p cos p - cosh p -ian

+2 [mlﬁ4 - K, ][ m,p* - KZJ sinBsinhp = 0 (30)

For the special case of identical bearings K1=K2=K. m,=m,=m and

B3 cosh  sin p - sinh § cos p * (sin B - sin p) (31)

4
K=mf" ¢+ Z28InpPs

Taking the upper and lower signs separately, we obtain the frequency

equations
s, p B B
K=mfp" + > (tanh 5 + tan 2.)
(32)
3
K=mp* + & (coth § -cot §)
4
The natural frequencies ) = E-I-f—- for specified values of

L
the system parameters m and K can be found by a simple graphical pro-

cedure. The functions

2343

F* = I (taoh 3 + tan ) (33)
33 27 1/4
F =-'-§—(coth-";--cot -';;) c=g=.‘;.[_%_]
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are plotted in Fig. 2, For particular values of K and m we need only
plot m1r4o'4 as indicated and shift this curve upward through a distance K
(dashed curve in Fig. 2). The intersections of this curve with the curves
Ft anda F° give those values of f which satisfy the frequenéy equation.
Note that these curves asymptotically approach B .=nz(n=1,2,...) as K
approaches infinity. Thus, as expected, X =6121r2/L2)@I/7;) are the natural
frequencies for a pinned-pinned shaft in rigid self-aligning ﬁearings. As a
further check, we note that the intersections of these curves with the -
axis (m =~ 0, K = 0) correspond to the natural frequencies of the free-free
shaft. The expressions, of course, also provide the natural frequencies of
a uniform beam under the same type of end constraints. A numerical ex~

ample will be found in Appendix D.

The natural frequencies for various mass and stiffness ratios are
given in Appendix E, Figures (El) to E11). This appendix also contains a
treatment of six other types of bearing configurations which are of practical

importance.
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UNSYMMETRIC SHAFT IN IDENTICAL BEARINGS

The graphical procedure developed in the last section can be used
to solve the frequency equations (13). The first of these equations is solved
for K interms of & to obtain

a3 -4 o
Tl.{‘g'm“l‘*'%‘ (tlnh-zl-+tln-zl-) (34a)
043
'I:Kz = mat + = (coth °.‘z‘. - cota-‘zl-) (34b)

Theé Trequency equation (I13b) is identical to the above when - ¢ and d_l are
replaced by + € and & 5 respectively. In terms of the physical constants
of the system, the parameters in Eqs. (34) are

x _ox® w3 e a3t 2t
Fe=sta * T * % ° Fra = TEr
M
mes ?r
k _ x> oxt® o4 2%t 24t (35)
Tvre¢ ™ S(T+e) El’z" 5 ST¥ey -~ ~ B

Comparison of equations (35) and (34) with (29) and (32), respectively,
indicates that, aside from subscripts on the flexural rigidities, the two sets
of frequency equations are identical.

The calculations for a particular rectangular shaft are given in
Appendix D. The dependence of critical speeds on the shaft stiffness aniso-
tropy € is shown in Fig. 3. The solid lines represent the first three gravity
critical speeds. ' The first two natural frequencies enclose a speed range for
which the transient solution is unstable, The effect of damping on this criti-
cal speed range is indicated schematically in Fig. (Cl).
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EXPERIMENTATION

The test fixture used in this program may be considered as consist-
ing of three parts: the drive section, which was simply a source of uniform
rotational motion; the experimental section, which consists of a very stiff
beam upon which the shaft is installed in spring-mounted bearings, and the
instrumentation, by means of which the rotational speed and forces on the
test shaft bearings are measured. The mechanical parts may be seen in
Fig. 4, and the electrical and electronic parts in Fig. 5.

The drive system has as its principle element a 28 v. d. c. motor

T Eted &t 33 amps, 10, 000 pm. It was selected for its smoothness of oper-

ation and wide running speed range. Power is supplied to it by a 220 v trans-
former seen on the floor behind the oscilloscope cart in Fig. 5 and by two
rectifiers and two variacs shown at the left of Fig. 5. (It was détermined
that fluctuations in the 110 volt line were too great to allow accurate speed
control.) The voltmeter and ammeter on the front of the large rectifier
case are in the armature circuit, Speed is regulated by adjustment of the
larger variac on top of the case at the front. The motor is coupled to a
flywheel whose polar moment of inertia is 59, 64 in. -lb-lecz. (The polar
moment of inertia of the flat shaft is 0, 00505 in. -lb-lecz.) The flywheel
is coupled to the test shaft by a connecting shaft and two universal joints.

A portion of the connecting shaft and one of the universal joints may be seen
in Fig. 6. The drive section is mounted on a stiff, cross-braced table
which has incorporated in it a vibration damping pad, which reduces any
vibration transmitted to the experimental section.

The experimental section has as 2 base a welded box beam 11-1/2
in. wide by 19-1/2 in. deep, with four stiffening baffles, all made from 3/4
in, steel plates. Two A-frames are bolted to the beam for mounting the
springs and bearings. The stiffnesses of the A-frames in both horisontal
and vertical directions are about 100 times as great as that of the springs
used in the program, thereby insuring that the springs constitute the sole
significant flexibility at the bearings. Adjustable bolts through the A-frames
have cups at one end into which the ends of the springs are fitted, Similar
cups on the bearing blocks accept the other ends of the springs, thus allow-

ing motion in either the horisontal or vertical direction.
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Self-aligning anti-friction bearings are used to minimise moments
applied to the bearing block by rotation or bending of the shaft. Axial mo-
tion is prevented by the fixity of the connecting universal joint on the test
shaft and the held bearing on the cutboard flywheel journal. The test shaft
is not held in either bearing. The bearing blocks provide mounts for the
accelerometers.

Speed sensing was effected by means of a light source and an elec-
tric eye directed toward a strip of aluminum tape on the flywheel rim (see
Fig. 4). Since the rest of the rim was covered with black paint, the elec-
tric eye emitted a voltage which rose and fell once during each revolution,

The instrument at the top of the rack at the right in Fig. 5 is a tachometer
which was used for rough measurements of the speed. In addition, the out-
put of the electric eye was fed into the oscilloscope where, by adjustment of
the sweep time base and measurement of the trace length for one revolution,.
accurate speed measurements were made. Furthermore, the oscilloscope
was used for vibration phase measurement, through observation of the rela-
tive positions of the electric eye trace and the spike in the accelerometer
trace.

Bearing forces were sensed by C. R. L. accelerometers on the
bearing blocks, and measured by the Ballantine Model 300 voltmeter on the
shelf in the rack. Other instrumentation in the rack includes selector
switching for location and direction of accelerometers used, calibration
circuitry, and cathode follower isclation amplifiers for the accelerometers.

The experimental procedure was directed solely toward the deter-
mination of the critical speeds of rotation. Displacements were not found
at this time since analytic results were not available for comparison.

Tests were conducted on two shaft systems: a 50-in. long l-in.
diameter round shaft and a 50-in. long 7/8 by 1-1/2-in. rectangular shaft.
The bearing flexibilities, limited by the availability of commercial coil
springs, were 2500 and 5300 lbs/in. An infinite amount of stiffness, i.e.
rigid bearings, was obtained by compressing the springs to the bottoming
point. The balancing fixtures on the round shaft were not needed since the
amplitudes of vibration near resonance were not severe as long as the rotor

ARMOUR RESEARCH FOUNDATION OF ILLINOIS INSTITUTE OF TECHNOLOGY

-27 - ARY Final Report
No. lﬂ?:po

S e




SRS ————

B B= = e

 S—

| St

!

p— -——
| R— i

passed quickly through this critical speed. No attempt was made to balance
the flat shaft because unstable speed ranges and gravity critical speeds exist
independently of any mass eccentricity of the shaft,

The results for the round shaft are presented in Pig. 7 and 8 in
terms of the horizontal and vertical accelerations at the bearing remote
from the driving end., The observed first resonant speed was at 1640, 1720,
and 1770 rpm for bearings of 2500 1b/in,, 5300 1b/in. and infinite stifiness,
respectively., The secondary gravity critical speeds were not noticeable.
The resonant speeds were apparent from the large vibrations and noise levels.

" The theoretical predictions of Appendix D are 1720, 1870, and 1910
rpm. The calculations, however, did not include the 1. 15 1b weight of the
balancing fixtures. The corrected frequencies, based on a new mass of
shaft and elastic modulus E = 29 x 10° psi, are 1610, 1750, and 1790 rpm,
which are in very good agreement with the experimental results.

The results for the flat shaft with bearing stiffness of 2500 1b/in.
are presented in Fig. 9. In this case the apparent secondary critical speeds,
occurring at 950, 1450 rpm were quite severe. In the rough running range
from 1600 to 2100 rpm it was difficult to maintain constant speed because of
the large vibrations of the rotor. At approximately 2100 rpm the shaft be-
came disengaged from the bearing mounts causing some minor damage to
the apparatus.

The analysis of Appendix D predicted gravity critical speeds at 910,
1500, and 2140 rpm and a critical speed range from 1600 to 2120 rpm. (For
E=29x 106 psi the predictions would be 900, 1470, and 2100 rpm for the
gravity critical speeds and 1570 to 2080 rpm for the critical speed range.)
It is clear that the destructive vibrations near 2100 rpm were caused when
the effects of gravity, mass eccentricity, and shaft stiffness inequality were
felt at the same time,
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CONCLUSIONS

The natural frequencies of a uniform undamped shaft rotating in
heavy undamped flexible bearings have been found for two specific cases:
1) a shaft with non-symmetric cross section rotating in heavy, self-aligning
bearings whose principal flexibilities are equal, and 2) a syminetric shaft
rotating in heavy bearings of unequal principal flexibilities. Secondary
critical speeds induced by gravity are also determined. The general case

of non-symmetry in both shaft and bearings is not amenable to solution,

In the first case, a doubly infinite set of natural frequencies are
found. The spread between corresponding frequencies of each set increases
from zero with increasing shaft anisotropy. Centrifugal forces induced by
mass eccentricity excite a steady state response at all speeds except the
natural frequencies where the response becomes unbounded. The transient
solution, however, will become unbounded at any speed which lies between
corresponding natural frequencies. Damping in the system will not com-
pletely eliminate this range of unstable opsrating speeds. The unstable
nature of this transient makes it imperavive that this type of shaft design

be avoided wherever possible,

For the case treated above, the secondary gravity critical speeds
can be found with little extra effort from the data on the natural frequencies.
For slight shaft asymmetry these critical speeds are approximately one-half

the natural frequencies.

For the special case of identical bearings, the transcendental fre-
quency equation is sufficiently reduced so that by means of a simple graphi~
cal construction natural frequencies may be found for any combination of the

remaining system parameters.

When the symmetric shaft rotates in unsymmetric bearings, there
are again two sets of natural frequencies, but no ranges of critical speeds.
In this case, there is a direct analogy to the beam whose end supports posseas
different horizontal and vertical flexibilities; the natural frequencies of each
system are identical. These frequencies can be found from the same graphi-

cal construction mentioned above.
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It is interesting to compare the system considered in this report
with the idealized case of immovable pinned-pinned bearings. In terms of
the bearing-shaft flexibility ratio K and mass ratio m the following con-
clusions can be made: 1) for large K and small m the first two or three
natursl frequencies are approximately equal; 2) for large X and m or
medium K small m only the first natural frequency corresponds to the
idealised case; 3) for small K the frequencies are very sensitive to the
mass ratio. Moreover, since there is another set of natural frequencies
corresponding to the different bearing flexibility in the perpendicular direc-
tion, the similarities to the idealised case are further obscured. If the

principal bearing {lexibilities are nearly equal the natural frequencies may
occur in clusters.

It is apparent that, aside from rotating systems whose supports
are very inflexible, the vibrations of flexible rotors operating at super-
critical speeds will be sensitive to the bearing characteristics. It appears
that the bearing with adjustable stiffness may be suitable as a resonance
changer, thereby effecting a decrease in noise and vibration levels.
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In summary,

1. Bearing mass and flexibilily have considerable effect on the critical '

speeds of flexible rotors. Generally only the first and second nat-
ural frequencies of flexural vibrations are accurately predicted by ;

the idealized assumption of rigid (immovable) bearings.

2. Yhen the bearing stiffnesses in two mutually perpendicular direc-

tions are unequal, the occurrence of critical speeds is doubled.
It is possible for these speeds to occur in clusters thereby giving i

the appearance of a range of unstable operating speeds.

3. Shafts of non-symmetric cross section should be avoided whenever
possible because of instabilities which, in general, cannot be re-

moved by damping.
4. Half critical speeds in symmetric shafts are unimportant.

5. Bearings with adjustable stiffness offer a means of changing reso-

nance thereby allecwing smooth operation in between critical speeds.
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RECOMMENDATIONS FOR FURTHER WORK

In this report only the effe:cts of bearing mass and stiffness on the
natural frequencies of a uniform shaft were found. Account should also be
taken of shafts of non-uniform cross section which may be carrying thin
heavy disks on interior and/or overhanging sections. It is also of practical
interest to determine the magnitude of vibrations for various combinations of

shaft system parameters,

In addition, the possibility of using flexible bearings as a means of
controlling vibrations should be pursued. The chief cause of excessive vi-
bration is an unbalanced rotor operating near a critical frequency. Preci-
sion balancing and conservative design are two common methods of vibration
control. While it is standard procedure to balance all critical rotating ele-
ments, these rotors may eventually operate poorly at or near the natural
frequencies of the system. On the other hand, conservative design in many
cases would be too costly and impractical especially if the system operates
over a wide range of speeds. Adjustable bearings would perform the same
task as a redesign since they would relocate the natural frequencies, i.e.,
they act as a resonance changer. This method may not reduce vibration:,
but simply avoid them by adjusting the troublesome critical speeds to be

sufficiently removed from the operating speed.

A program to accomplish the above recommendations would contain '

the following elements:

1. Develop the dynamics of non-uniform shafts carrying thin
heavy disks. This would include gyroscopic effects and

the effects of bearing mass, damping, and stiffness.

2. Determine the amplitudes of vibration for various shaft
system parameters with particular emphasis on changes

of bearing stiffness,

3. Perform experiments which will verify the analytical

results,
4. Evaluate the feasibility of adjustable bearings as a

resonance changer,
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APPENDIX A

THE EQUATIONS OF MOTION

It is convenient to derive the equations of motion in the rotating
Vl, Vz coordinate system (Fig. Al). In determining the boundary condi-
tions, we shall make use of the fixed X, Y coordinate system. We develop
the equations in their most general form and then specialize to the problem
at hand. ‘

Let S, (Z) and S, (Z) be the principal stiifnesses in the V, and
v, directions, respectively. Classical beam theory yields the following
relations between shear force F, bending moment B and displacements

Vl. V., of the neutral axis:

2
2B, 3B, v, 2%, |
F1= -?Z-. F2= --a—z—v BZ:SIS—ZT’ Bl'—'SZ?Z—Z— (A"l)

We recall that the components of acceleration referred to a coordinate sys-

tem which rotates at a constant speed Q are

2
v 3V,
al=b.azl -szl-mi—t—é
t
(A-2)
2
\'4 f'aV
a, = 2—22- -nv2+ 20 S
Dt °

For a horizontal shaft of density ¥(z) per unit length, the equations of

motion are

F, 32v zv
‘ (A-3)
oF, 2 Vz oV

-¥(2)gsinQt + ’37 K(Z)(Ta—z- - a?v +29-_-a-—)
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Fig., Al FIXED AND ROTATING COORDINATE SYSTEM
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where the first term of each of equations {A-3) represents the gravity force.

Substituting relations {(A-1) into (A-3) we obtain

2 - 2 a
2 v A4 A4
%z- [51 (z) %—Z—zl- + y(2) [%:zl— —nzvl-zn’.:_Tz. = - Y (2) gcosqt
- (A-4
22 v, ?2V2 2 oV, !
;a—z-z- S, (2) ——z-z- + Y(2) 3—:2— - 9%V, + 20 5t] = - Y{(2z) gsinqt

When the shaft is uniform, Sl' SZ' and Y are constants and, after suitable

non-dimensionalization, equations (1) and (2) result.

In the rotating system, the component of force exerted by the shaft

on the bearing is

3y v
-5 2Y atz=0 and +s5 2 atz=1L. (A-5)
22z 22

The displacements in the fixed coordinate system are related to -V1 and V
by

2

X=Vl cos Qt - stith

(A-6)

Y=V sinQt + Vzcosfzt

1
4

Fx and Fy, the components of a force in the fixed system, and Fy and F,

its components in the rotating system, are related by

F.=F cosQt + F_sinQt
1 x y
(A-7)
FZ =-Fx sinQt + FY cos Qt
Now the force exerted by the springs on the mass is
Fx = -kx X; FY = kyY {A-8)
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where kx’ kY are the flexibilities of the springs in the X and Y directions,
respectively, Substituting (A-~6) and (A-8) into (A-7) we obtain

(kx+ky) (kx-ky) (ko-k)
F, = - - + - cos 2Qt |V, + _Z‘L sinzQt|V,
(A-9)
k_-k_) (k_+k_) (k_-k )
F, =[(_iz_z_ 8in 2Q't vl]« [ "TY - "ZY cos ZQt] v,

as the components of the force of the spring on the bearings,

Finally, when (A-2), (A-5), and (A-9) are taken into account, the

equations of motion of the bearings become

at Z=0
33Vl ki ¥ ¥ kyxk) ok
s + X Y 4 Y coszat| v, - | 22 sin2qt| V
1 523 z Z 1 2 2
2
9 V1 2 aVz
+ Ml [—5-;2— - Q Vl - 2 Q -‘—éT = 0
?3"2 kixkg kietky, Ky -k
SZ%—ZT - Y sin2Qt v, + > y . 2 Y cos2qat v,
Bzvl 2 oV,
+ Ml —%:z-— - Vl - 29 .‘S_T =0
al Z=1L
2>V, Koxtkay Ko ko, Kox oy
"'Sl ‘B—Z-S—+ A + > COSZQt Vl" —-2—-—81n29t Vz
+ M CM -a%v, - AL TN B
2 ? tz 1 5 t -
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3
ka-k ¥

AL ka-kZ k2x+k2
- - i ¥y . 2y
sz_a._z_g.. __Z._Z sin2zQt |V, + v - cos2Qt| V

Dt 2 ot
We see that these end conditions have time dependent periodic co-
efficients when the flexibilities k_ and ky at the bearings are not equal.
When referred to the fixed coordinate system, the boundary conditions have
periodic terms arising from the shaft anisotropy. Moreover, the equations
of motion in the fixed coordinate system also have time-dependent periodic
coefficients. For the special case of equal bearing flexibilities klx = kly = k1

and k =k =k

2x 2y

2 the nondimensionalized equations {3) result.
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APPENDIX B

AN EXAMPLE OF AN UNSTABLE TRANSIENT
OF A ROTOR CONTAINING DAMPING

The transient solution of the damped non-symmetric shaft systems
considered in this report can be shown to be unstable for certain ranges of
operating speed; however, for the sake of clarity we shall demonstrate this
behavior for a simplified 1uinped parameter system. Consider an unsym-
metric shaft of negligible weight supporting a mass m, Interms of an x,
y coordinate system which rotates with the shaft, the equatidns of motion

are

m (y -sz+ 2ax) + C1y+k1y=0
(B-1)

m(x -@%x-20y) + Cyx+ kx=0
Here Q is the constant angular speed of the shaft, C is the damping factor,
and k is the shaft stiffness.

Since the differential equations (B-1) have constant coefficients,

the solution has the form

',':4‘;clt x=nelt (B—z)
The frequency equation for ) is found from the requirements that the de-

terminant of coefficients of A and B wvanish. This results in

0 = |mA+C A+ (k -mah) 2akm
(B-3)

-200m mAZ + Czl + (kz-mnz)

or

2. .4 3 , 2
m® 2%+ mic, + c,) 2% + [(k1+k2).m+ C,C, + Zmﬂ.z] A

+ [cl (K, - ma?) + C, (k; - m nZ)Ji A+ (k; - ma?) (k, - ma?) =0

ARMOUR RESEARCH FOUNDATION OF ILLINOIS INSTITUTE OF TECHNOLOGY

B-1 ARF Final Report
No, K274




In general, the solution of the frequency equation (B-3) has two
sets of complex conjugate roots. If the solution (B-2) is bounded, the real
part of the complex frequency A must be less than or equal to zero. When
Real ()\) > 0 the transient is unstable since it increases exponentially with

time.

While it is possible to obtain a relation among the shaft system
parameters for which Real () > 0, it would be too cumbersome to be in-
formative. It is found that critical speeds occur in a range whose width
depends on the stiffness difference(kz-kl)ﬁ(z+kl) and the damping factor C.

This critical speed dependence is indicated schematically in Fig. Bl.

Since the right-hand sides of Eqs. (B-1) are zero, the casual ob-
server may conclude that the system is in free vibration. One may wonder
why the homogeneous solution of a damped system can be unstable when it
is known that any freely vibrating dissipative system will eventually come
to rest. However, the equations of motion (B-1) are really forced since
the angular speed is kept constant. At the critical speeds, more energy
is added to the shaft than is absorbed by dissipative elements. This can
happen only when there exists a shaft stiffness inequality which some authors

have considered apparently equivalent to '"negative damping'.
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APPENDIX C

DERIVATION OF CRITICAL SPEED EQUATION
FOR A NON-SYMMETRIC SHAFT

As u approaches sero, the conditions (10) and (11) become

4 5
2 A El-nxfml-mlpz] D [Aj (1-e) &® + K, -m,p? (-}ié)]

j=1 j=1
N p— IS ; 7 .
Zl_gsje E(l-e)dj3+xz-mzpz] + ZlAje [:-(l-e)dj3+l<z-mzpz (-}5;‘)] =
i= ji=
8
z —
Z oy Ay=0
j=1
8 Aj
2
Z OLj e Aj =0 (c-1)
j=1 "
. 8
- 3 2
T+ st Aj |31 -0-6)04j + K, -mp ] =0
8 o

e 2 Ae [-(1+e)¢j3+xz-mzp.z] =0

j=5

. 8
-€ Z 2
'lTé Ctj Ajlo

ju5
e & . Ky
- 2
TF¢ ,;s XsTe A0 ~
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| Shm—

i

o =

where
™ -11/4
= =1L p2/01 - ¢) 1 §=1,2,3,4
j-5 i 2 qve
= J- =
alj (i) _p /(l+é)_J j=5,6,7,8

If A, the determinant of coefficients of equations (C-1), were written out
explicitly, we would note that the elements of the lower left four by four

[ by

“sub-determinant vanish. . Consequently, the eighth order determinant is

expressible as the product of two fourth order determinants; that is (see
page C-3)

The expression for 62 is obtained from 51 when (1 -¢€) and Qﬁl are
replaced by (1 +€) and & 5 respectively. By a simple rearrangement
of columns of (C-2), we can show that & 1 and 62 are respectively equi-
valent to A 1 and A, of equations (12).
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APPENDIX D
NUMERICAL EXAMPLES
I. ROUND SHAFT
We are to find the natural frequencies of a 50-in. long 1-in, dia~
meter steel shaft mounted in self-aligning bearings. The 6. 2 1b bearing
blocks are connected to a rigid foundation by means of springs of 2500 lbs/in.
___stiffness, The total mass of the springs is negligible in comparison to the
mass of the bearing. The physical constants of the system are !
|
L = 50 in. length of shaft ' 4
¥ygL = 1l.11 1b weight of shaft
Mg = 6.2 1b weight of bearing
k = 2500 lb/in. spring stiffness
E = 30x 10°1b/in. % Young's modulus
§ = 5.15x107%m secz/in. 2 mass per unit length of shaft
I = w r4/4 = 4.91x 10"2 in. % area moment of inertia
K = kL3/EI = 212 bearing-shaft stiffness ratio
m = 6.2/11.11 = 0.56 bearing-shaft mass ratio

N -

:-—-_J t P - . M e v . 4 N

§

The equations for the natural frequencies ) are given by -

3 3
K-msfot = T5  (tanh I + tan Z)
(D-1)
4 4 £

1"’)

—_— (coth -'z’— - cot v

K-mrz o

where
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In Fig. D-1 the functions given by Eqs. (D-1) and the dashed curve

212 - 0.56 14 c‘ are drawn, The intersections of these curves, points
A, B, C, and D, represent the first four dimensionless natural frequencies
o =0,95 1.31, 1,43, and 2. 09, respectively.

radians per second) are given by

The frequencies ) (in

2 2
LA 4 El 2

A= —— = = 200¢

L J

thus

A = 180 rad/sec = 1720 rpm
A, = 342 rad/sec = 3270 rpm
A3 = 409 rad/sec = 3900 rpm
Ay, = 874 rad/sec = 8350 rpm
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II. RECTANGULAR SHAFT

We determine the rough running speeds of a rectangular shaft
mounted in the flexible bearings of the previous case. The constants of
the system are

cross section = 0,875 in. x 1.5 in.
ygL = 18,61b
I, = 0.0837 in. *
1, = 0.246 in, ¢
8= E’"’(i’i“#”‘"f;)”/”z" - '“i.Ts“flT)ﬁETrf?"“

‘=(Iz-ll)/(12+11) = 0.49
K = x5 = 613
K/(1-¢) = 124
K/(1+) = 423
K/(1-é) = 83.2
m = 0.333

The frequency equation for an anisotropic shaft is given by

3
K - ma = % (tanh & + tan &)
| | (D-2)
K' -mq,4= o.;-(coth%-- cot%‘-)
when
%' K L P L £
S T & ST-¢) - ~EI
when
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A graphical solution of these equations is obtained by constructing the

functions

3,3
() = I (tanh 3+ ran 3

33

£ (n)
and

B

-—z—”"' (coth TA - cot I

The intersections of the dashed curves K' = 124 and 42,3 with the full
curves in Fig. (D-2) determine the dimensionless natural frequencies

s
ol
4

’l=

4

2
;l = l;- Qr respectively.

2

Taking K' = 124 we obtain

~S
[}
—
8
g
o>
n

‘For K = 42.3 we find

ARMOUR RESEARCH FOUNDATION

167 rad/sec
315 rad/sec
413 rad/sec

222 rad/sec
312 rad/sec
558 rad/sec

-

1600 rev/min
3010 rev/min
3940 rev/min

2120 rev/min
2980 rev/min
5330 rev/min
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Fig. D-2 GRAPHICAL SOLUTION FOR CRITICAL SPEEDS

OF A RECTANGULAR SHAFT m = 1/3
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In obtaining the gravity critical speeds, we can easily show that the
frequency equation’'is identical with Eq. (D-2) where

2 4n21..‘
K'=K/(1 -¢“) and o= =A S
- 8(1-¢")

Thus from Fig. (D-2) with K' = 83,2 and

it

we obtain

N= 0.8 or » = 95rad/sec = 910 rev/min
n= 113 or x = 156 rad/sec = 1500 rev/min
n= 1.35 or A = 22¢ rhd/sec = 2140 rev/min

.This particular shaft system, then, has the following characteris-
tics: discrete rough running speeds-at 910, 1500, 2140 rpm, etc. and criti-
cal speed ranges 1600-2120 rpm, 2980-3010 rpm, 3940-5330 rpm, ....
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MODE SHAPES FOR CASE I

The three lowest modes of vibration corresponding to the pinned-
- pinned shaft of case I are

u1=0. 5 cosh2.970 2 + 0.5 cos 2.970 5 - 0. 449 8inh 2.970 = + 5.964 sin 2.970 =
u2=0. 5 cosh4.102z + 0.5 cos 4.102 & - 0.518 sinh 4. 102 z + 0. 260 sin 4. 102 =

u3=0. 5 cosh 4.478 z + 0.5 cos 4. 478 & - 0. 488 sinh 4. 478 5 - 0. 663 sin 4.478 =

These modes are constructed in Fig. D-3 where the bearing displacement is
taken as unity. Although the first and third modes are orthogonal to the |
second, they are not orthogonal to one another. ’

r

s e A ot e e e dasma o
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APPENDIX E

THE FREQUENCY EQUATIONS FOR VARIOUS
BEARING CONFIGURATIONS

The frequency equations for uniform round shaft systems can be

__obtained in reasonably lit\"zple forms. The various bearing configurations

can be characterized as follows:

M = M

I Both Bearings Flexible (K1 = KZ' 4

a) Pinned-Pinned (already treated)
b) Clamped-Clamped
c) Clamped-Pinned

5)

Il Left Bearing Flexible, Right Bearing Rigid
a) Pinned-Pinned
b) Pinned-Clamped
c) Clamped-Pinned
d) Clamped-Clamped

The natural frequencies for a free type of end constraint may be
found as the limiting case K-»0, while the immovable constraint is found
from the limit K-> '
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Case Ib Clamped-Clamped

The boundary conditions (26) now become

3 2
- 8°U 8°u_ _
at Z= 0 El—r + kU + M, —— = 0 (E1)
8z Bt
8y _ :
3z = 0 ., (E2)
3 2
o’y . 8°U
atz=L - El kU + M = 0 (E3]
T SRR LA v Burws AU G
8U _ :
32 = 0 o (E4

Using expression (27) as the solution at the equation of motion (25), we
obtain the frequency equation (E6) given on the next page. For the case o
identical bearings the frequency equation takes on the simple form

K = mnrio? + 21r3o(_3/(tanh1;(—- tan 1'29(_)
or K = m‘u"lt:(.4 + Z1r3o(_3/(coth1%‘—- + cot-ﬂ—°z<—-) ({ES5

where o B . _I:_['yhz] 1/4
= T

™ ™

The first four natural frequencies for various mass and stiffness ratios a
given in Figures (E12) to (E17). The asymptotes correspond to the natur;
frequencies of immovable bearings which are found from

2 wot 2 mwol
tanh —-z— = tgn —z-——
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Case Ib Clamped-Clamped

The boundary conditions (26) now become

3 2
_ a3y oy _
oU :
37 = 0 ) (E2)
3 2
) du | . ?u
mzrh P rRir Mg 0 =)
U _
57 = 0 . (E4)

Using expression (27) as the solution at the equation of motion (25), we
obtain the frequency equation (E6) given on the next page. For the case of
identical bearings the frequency equation takes on the simple form

K = m1r4o<4 + 21r3o(. /(tanh—z— tan 172‘1)
or K = mnix? + Zwo(, /(coth—z— + cotl‘)zé-) {E5)
» where B L 77\2] 1/4
S % T wFLET

The first four natural frequencies for various mass and stiffness ratios are
given in Figures (E12) to (E17). The asymptotes correspond to the natural

frequencies of immovable bearings which are found from

= 2 me
tanh —-z-—— = tan —z—

ARMOUR RESEARCH FOUNDATION OF (LLINOIS INSTITUTE OF TECHNOLOGY

E.2




(23)

‘dsod g  dusoo g dus d - d ware ¢

T.snu,f%:r%s-nxg _W.ﬁo#n-%,._n«nﬁu-ﬁ _wsumn-%sﬂ.a. -Nmm_ Tsumn-n wsod(, g* -N@

d : d 0 0
4 | S ¢ 1., _ 1
ma . mn vn w - Ty vn w -’y

ARMOUR RESEARCH FOUNDATION OF ILLINOIS INSTITUTE OF TECHNOLOGY

Report No. K274

E.3




o e e

P gty pe——

K= : m¥ a¢.+

Case Ic Clamped-Clamped

Here the boundary éonditiono (Ef), (E2) and ( E3) are unchanged
while the remaining condition becomes

at Z=L—--z—=0 . (E‘l)

For identical bearings, the frequency equation (E9) given on the next pigo
reduces to

4 4 £1+3 COIh‘l'l(COI u)+Y1 COs Xotcosh w¢)2+4(cos wot +conh‘l¢<)z

TZ(sInh ¥ Xco8 ¥l - COSH WoliHi WR) ¢«

The first few natural frequencies for various mass and stiffness
ratios are given in Figures (E{8) to (E23). The asymptotes correspond to
the natural frequencies of the ideal clamped-pinned shaft which are found
from

tanh ¥ = tan ¥
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Case lla Pinned Flexible-Pinned Riﬂ

Any number of frequency equations may be presented by varying
the shaft system parameters Ki' KZ' M1 and MZ‘ However, we shall
restrict ourselves to the case where one bearing is practically rigid
(at Z = L) while the other bearing remains flexible (at Z = 0). Accordingly
the boundary conditions (26a) remain unchanged while the boundary conditions
at the other end become
o’y
at Z=L U=0, — =0 : : (E10)
9z

Again assuming the solution (27), we obtain the frequency equation

3.3
K = m1|'4oL4 + l—;—‘-—(coth wol -~ cot mx) (E11)
24 1/4
- - L fyA
where d— -;L il — [-EI—-]

The first few natural frequencies for various K and m are given in Figures
(E24) to (E29). Note that the idealized case of pinned-pinned immovable
vearings (K—>m) furnishes the natural frequencies

d = 1. 2: 3:
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Case IIb Pinned Flexible- Clamped Rigid

In addition to the boundary conditions (26a) we have
at zZ=L U= 0 55 =0 (E12)
The frequency equation corresponding to the solution (27) is

130(3(1 + cos w &lcosh w)
sinh wol cos wol - cosh y o/ 8in Mo

- &[]

K= mw4a(4 +

(E13)

1/4

The dependence of the natural frequencies A on K and m is illustrated in

Figures (E30) to (E35).
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Case llc Clamped Flexible-Pinned Ri‘i_é_

The conditions for a clamped flexible bearing are given by conditions
(E1), (E2), while a pinned-rigid bearing has the conditions
2
)
at z=1L Uso,a_zg.=o (E14)

The frequency equation is

K = mwix? + 209> /(tanh vo¢ - tan wa) (E15)

The first few solutions of this equation are given graphically in Figures
(E36) to (E41).
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Case IId Clamped Flexible-Cllamped Rigid

! In addition to conditions (E{), (E2), we have »
8u
[' ] at Z = L U = 0, ¥y A = 0 (Eib)
l The frequency equation is
: 3.3 ' )
- 4 4 w o (sin mcosh o' + cos w&sinh wo( )
K = mwol + (cos 7 X cosh wo - [) (E17)

The first few solutions of this equation are given graphically in Figures

(E42) to (E47).
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