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Abstract

In this report the aerodynamic pressure acting on a circular

cylindrical shell of infinite length in an airflow parallel to the cylin-

der axis is studied. The shell is deformed by a harmonically oscil-

lating standing wave of a sinusoidal pattern. Based upon the exact

solutions, asymptotic expansions are developed for the aerodynamic

pressure. In this manner the accuracy of the linear piston theory

approximation, when applied to cylindrical shells.. is investigated-

Furthermore improved approximations can be obtained from these

asymptotic expansions.
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List of Symbols

a 0Velocity of sound in the undisturbed air.

f(r) See eq. (1.4).

H) (z), H(n2)ýz) Hankel, functions (Bessel-functions of the
n n

third kind).

Kn(z) Modified Hankel-functions (modified Bessel-

functions of the third kind).

M Mach number of the external airstream. M

is positive if the air is -blowing in thepoei-

tive x-direction.

MM M - a , see eq. (2.2).
0

M 2  M+ , see eq. (2.5).
v ao

n Number of waves around the circumference.

0 Landau symbol.

Ap(x, r. 0) Aerodynamic pressure disturbance due to

the sinusoidal deformation of the cyhnder,

see eq. (1.6).

Ap Aerodynamic pressure distrubance acting

on the shell, due to the sinusoidal defor-

mation or sinusoidal vibration of the cyl-

indrical shell.
Ap* Ackeret's formula, see eq. (3.8).

A* Linear piston theory approximation, see

eq. (4.2).

ao p pao Ma + "W- w), see eq. '61'

R Radius of the shell.



r Radial coordinate.

a(x) sin(vx) or cos(vx), see eq. (2.4b).

t Time.

w Deformation of the shell, positive in the

positive r-direction.

w0 Real or complex constant.

*• See eq. (6.2).

x Length coordinate.

x, r, e Cylinder coordinate system.

o Angular coordinate.

v Wave number, see eq. (1.4).

9 Real, positive variable.

PO Density of the undisturbed air.

Velocity potential.

co Circular frequency of the shell vibration,

see eq. (2.1), real and non-negative.
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INTRODUCTION

Piston theory, originally developed by Lighthill (ref. 10),

was introduced into aeroelasticity in the linearized form by Ashley

and Zartarian as a handy tool in 1956, see ref. 2. This theory

furnishes an approximation for the aerodynamic pressure acting

on a slightly deformed flat plate in a supersonic airstream. The

lkaeerised pisten theeoy is widely tsed-in-the inestigation-v thv-

flutter of flat panels, see the summaries of Fung, refs. 5 and 6.

As far as the flutter of cylindrical shells is concerned, an

appropriate approximation for the aerodynamic pressure acting

on a vibrating shell is lacking. In the case of supersonic outer

airstream, many authors use the linear piston theory expression

for the aerodynamic pressure. Some authors even employ Ackeret's

formula, neglecting the aerodynamic damping term of the linear

piston theory.

There are doubts about the accuracy of using the linear

piston theory for cylindrical shells. This opinion was strengthened

by recent studies at Caltech. The author has investigated the flut-

ter in an axisymmetrical mode of a thin cylindrical shell of finite

length in a supersonic airstream on the bases of Timoshenko's

linearized shell equations, linear piston theory and linear material

damping, see ref. 7. On the other hand, wind tunnel experiments

in the summers of 1961 and 1962 (see ref. 11) reveal no flutter in an

axisymmetrical mode in the predicted Mach number range. This

indicates that the basic physical assumptions on which the above
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mentioned calculations are based are not satisfactory. The inade-

quacy of the linear piston theory and the neglect of boundary layer

effects might be responsible at least partially for this disagreement.

The influence of the boundary layer, using a simplified model

set forth by Fung in the summer of 1961, has been studied by Fung

and Anderson, see refs. 1 and 6. It is the subject of the present

paper to investigate the accuracy of the linear piston theory approx-

imation when applied to cylindrical shells.

Leonhard and Hedgepeth develop in ref. 9 an exact expres-

sion for the aerodynamic pressure, acting on a cylindrical shell of

infinite length, which is exposed externally to an airstream parallel

to the generators of the cylinder, and where the shell is slightly

deformed by a harmonically oscillating standing sinusoidal wave.

In the present paper the well-known asymptotic expansions for cyl-

inder functions are used to obtain an asymptotic formula for the

aerodynamic pressure under consideration, in the form of poly-

nomials of the reciprocal of the shell radius with a remainder term.

The results differ according to whether the Mach number of the

free stream or the frequency of the shell vibration is "large' or not.

In the case of "large" Mach numbers or "large' frequencies,

the asymptotic expansion can be split up into the linear piston

theory expression and some correction terms. The latter ones

tend to zero if the radius of the shell and the Mach number tend to

infinity; the same is true if the shell radius and the frequency of the

shell vibration tend to infinity. Hence this expansion provides an
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estimate of the error of the linear piston theory approximation.

Furthermore improved approximations can be obtained fromn this

asymptotic expansion.

In case neither the Mach number nor the frequency is ularge',

the linear piston theory approximation can no longer be considered

as a first order approximation of the considered aerodynamic pres-

sure.

Furthermore, on the assumption that the Mach number is

larger than one and letting the shell radius tend to infinity and the

frequency of the standing wave tend to zero, the asymptotic expan-

sion tends to Ackeret's formula.

These investigations have been performed for standing

waves of a sinusoidal pattern on the cylinder. The exact terms

for the corresponding aerodynamic pressure, as well as most of

the coefficients of the asymptotic expansion, depend also upon the

frequency of the shell vibration and upon the wave length in the

iirection of the cylinder axis. Therefore, if these results are to

be applied to more general vibration patterns, every term of the

corresponding Fourier-expansion has to be treated specially.

It is with pleasure that the author expresses his gratitude

to Professor Y. C. Fung for fruitful discussions and for bringing

the above -mentioned paper of Leonhard and Hedgepeth again to the

attention of the author. Furthermore the author wishes to express

his thanks to Mrs. D. M. Eaton for her careful numerical calcu-

lations and to Mrs. E. Fox, who again typed the manuscript.
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1. Aerodynamic Pressure Acting on a Stationary Sinusoidally De-

formed Cylindrical Shell

We consider an infinitely long circular cylindrical shell of

radius R, which is exposed externally to a uniform airstream

parallel to the generators of the cylinder. The Mach number of the

undisturbed airstream is M. The density and the velocity of sound

of the air are denoted by p0 and a0 respectively. Let a cylinder

coordinate system x, r, e be chosen, where the positive direction

of the x-axis coincides with the positive direction of the airstream(1).

Now the shell is assumed to be stationary and slightly deformed by

a sinusoidal wave

w = w 0 cos (nO) e"ivx (1.1)

where w is the radial displacement of the shell, measured positive

in the outside direction. w0 is a real or complex number, n is a

non-negative integer and v is a positive or negative number. The

deformation (1.1) of the shell is assumed to be of infinitesimal ampli-

tude, so that the differential equations and the boundary conditions

for the air-flow are linearized, and the boundary conditions are ap-

plied on the mean position of the shell rather than on the actual sur-

face. The governing equation for the velocity potential *(x,r,O)

reads (see e.g. ref. 4. page 432) for JM J * 1:

(1) Therefore a negative Mach number means that the airstream is
moving in the negative x-direction.
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(1 -M ) + + + 0.
Ox O r r B

The boundary conditions are given by

MruaoMe for r=R;

(1.3)
and Sommerfeld's finiteness and radiation condition for r -co.

Solutions of eq. (1. 2) which are suitable for our purposes are of the

form

4(xr,0) a f(r) cos (nO) e -"i, (1.4)

where f(r) is a solution of the differential equation

d2f + f (M-) _ ] f(r) 0 (1.5)
. - + -r- )7

dr r

and satisfies boundary conditions corresponding to the conditions (1.3).

Knowing the velocity potential 0 one obtains the resulting pressure

perturbation Ap(x,r,e) by (see e.g. ref. 4, page 432)

Ap(x,r.e) - Po ao M•6 (1.6)

In this manner one arrives at the following results for the pressure

perturbation acting on the cylinder well, Ap = Ap(x,R,0), which de-

pends upon the Mach number range under consideration (for details

the reader is referred to ref. 9): (1)

po (aO M)2 V 2 Kn( I vjR '2" ) x

Sl•' Kn]" J I'Mz'(1. 7a)

for -1 < M < I

Here and in the following we always choose the positive square-root.
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&P o aoM)2 V2 H(' (jIVIR F2)__ -- w(x,0)

(l? Ib)

for IMI>land Mv>O,

n . 7c)

for JMj>1 and MV<O.

Here H(l)(z) and H(n)(z) are the Hankel functions (Bessel functions

of the third kind) and Kn (z) the modified Hankel functions (modified

Bessel functions of the third kind). Because K%(z) is real-valued

when n is real and z is positive (see e.g. ref. 3), which is obvi-

ously the case here, the perturbation pressure Ap for I M I < 1 is

"Iin phase" with the shell deformation w(x, 0), see eq. (1. 7a). This

is no longer true for I MjI > 1. For the fractions of the Hankel-functions

and their derivatives involved in eqs. (1. 7b) and (l.7c) the following

relation holds

H(nl)( v IR FMR ) H(n2)( Iv IR /T),

H(1"((I v IR J -, H(n2)'(JvJR 18

for IMI>1. (1)

T Here and in the following the barred symbol denotes the conjugate
complex number, i.e. -aF+ z a-ib; (a,b real).
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2. Aerodynamic Pressure Acting on a Shell which is Deformed by

S~a Traveling Sinusoidal Wave or by a.Standing Sinusoidal Wave

S~Now we consider shell deformation of the form

w(x,0,t) a w0 con (nO) •"ivx iwt-

-iv(x ! 1t)
=wo cos (ne)e , (O ;1 O)

where &) is assumed to be a real, non-negative number. The defor-

mation w represents a sinusoidal wave which travels with the

velocity 2 in the positive x-direction. A moving observer who
Vw

travels with the same velocity !- in the positive x-direction can

apply the formulas (1. 7) after M has been replaced by

-M -, M (2.2)

Referring these results again to the (resting) x,r,0-coordinate sys-

tem one obtains for the pressure perturbation acting on the vibrating

cylinder wall

polaoM,)2 v2 Kn(IV IR F4 -iV ( - 2-t)°

Ap z W0 cos(ne)e2• v I I K CI• IV IR• •-

for I M1 l< 1,

PO(oM)22 HMl)IvRJ -iv (x -t)
Ap M • Hnl v IV -I)I wo cos(nO)e

(2. 3b)

for 1.>l and Mv>O,

IM
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•o,• : • H(n"(1v IR -iV' (z.,,A!' t)'

AP o ao j)vj nW cooi(ne)e V

n ~(2. 3c)

for 1M• 1>l and Mlv <O.

Shell deformations of the form

w(x,c, t) - wo coo (nO) s{2eict-"

with

sin (vx)

s(x) a or (2.4b)

cos (vx)

which represent a standing sinusoidal wave, are obtained by suitable

superpositions of two waves of the form (2.1), traveling in opposite

directions. Hence the corresponding aerodynamic pressure is a su-

perposition of the corresponding pressure terms (2.3). Introducing

the notation

Mz M+" (2.5)

we find especially:

Ap iwo cos(nG)eiwt r HP(O(v R( -1elix" •' 1"H(nl'(1v IR f)- 1)

(2.6a)

2 n' 2
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for

M1 > 1; M2 > 1; v > 0; w uw w cos(ne) sin(vx)e ;~ (2. 6b)

Ap a iwo coo(nB)eiPO aoa~.l~ 2I~ IR0)1~

(2. 7a)

-- mZ_ H~j(j)(vjRýFM1) lvx}

fori

M1 > 1; M 2 > 1; v < 0; w 3wo cos(nO)sin(vx)e ; ~ (2. 7b)

Ap wo cooa(ne)e POEtpoa~ M7 H$-jJ~ a

(2.8a)

F[M H2)(I vIR im 2_1) *1v~

for

M1 > 1; M 2 > 1; v > 0; w x wo cos(nO)coa(vx)ei ; (2. 8b)

iwt 2Z i' n__ F4_____ __~Ap miw0  coo(nG)e poa. 2_1 H( 2 )1(IV OR ~ ) 1 1)

(2. 9a)

IR7-



for

M,-1; M2 > I-, v > 0; w a W0 cos~rlB)sin~vx)e iw t (Z. 9b)

Ahp aWO cOSt fl)a PO a 0Yi47H(Z)(i ,R(T ~X
n ( V IRr~il(2. 10a)

for

JAI> 1; Mz < -1.; < 0; w W WO cos(ne)cos(vx)e iot(.1b

&p aiw0 con (ri)e po ao L1j. K(vR-li)e~V
2 1M K, (IV IR F7M 1nain (2. Ua)

M? Kn(jv IR ivXT

for

< ; M2 <;v 0; w wo w cos(n9) sin(vx)e i)t;, (2.Ub)

iwt 2 2

A~p aiwo oCaS(fO) O aoac 'Z~~ Kc'(IV ja1M) 21.

-M2  H(-)'(Ivi~) .ivzM7Z n
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for

IMJ < I; M2 > 1; v > 0; w a wo cos(ne) sin(vx) a . (z.lzb)

Letting the Mach number M tend to zero. one obtains the

aerodynamic pressure acting on the vibrating cylinder, which per-

forms the vibration (2.4a) in still air. This can be realized by in-

spection of the formulas (2.9) and (2.11) and by a comparison with

the corresponding results in ref. 8. (Notice: The positive w-direc-

tion in ref. 8 is opposite to the one chosen in the present paper.)



3. Asymptotic Expansions of the Involved Cylinder Function Terms

In this section we apply the following well-known asymptotic

expansions for cylinder functions for o -D o (see e.g. ref. 3, pages

85 and 86).

Q-1

I(~q (n q) + eQC

t Kn(V) q- 0 (nq)q O(e'Q)} , (3.2)

with

(n,0) = 1;
-l (3.3)

(ntq) t (2eq) (4n2-1) (4n -32) ..a. (4np-[Zq-l] 2);

to the exact expressions for the aerodynamic pressure stated in sec-

tion 2. Using eq. (3.1) one arrives in a straightforward manner at

() -ln 3 2 _( 2 _3 -3+H (1g) V z

n (3.4)

+0(- 4) for 4-- +co.

Because 4 is assumed to be real valued, one obtains (see eq. (1.8))
H (2) () H H(n1)() - 2

n)) n-- i2-1 +i (n- - 2-2 3 -3
r I r,~i~+i2~" )~ -(n -j) +

n Hn
(3.5)

+o("4) for 4 -*- co

IIere and in the following it is assumedthat 4 is a real variable. 0
is the Landau-symbol; i.e. F(4) a 0(4" ) for 4 -.•o means that
jF(4)VJ is bounded as g tends to infinity.
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Further, applying eq. (3.2) one finds

Kn( s-+ gr n 3 - 3 .

K'n €) (3.6)

for - co

From the well-known relations (see e.g. ref. 3)

~ ~-i~A'~. ~f) - ~)2nj~-t. ),1
(3.7)0

Kn (9) - K~n(V)

one learns the following: If one includes in the asymptotic expansions

(3.4). (3.5) and (3.6) higher powers of . , then the corresponding

coefficients depend on powers of n with even exponents.

Table I on page 28 gives some information about the accuracy

of the expansion (3.4). The parameter values R and v are chosen with

respect to an electroplated copper cylinder which was used repeatedly

during the flutter experiments, see ref. 11. The length of this cylin-

der is L = 16 inches, its radius is R w 8 inches.

Using the expansions (3.4) and (3.5) one realizes immediately

that for R -- the aerodynamic pressures (l. 7b) and (I. 7c) (i.e.

the aerodynamic pressure acting on a stationary and sinusoidally de-

formed cylinder for IMj > 1) tends to Ackeret's formula

2 -ivxpo (ao M) d(wo e )
Ap . (3.8)

iM 2 dx
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4. Asymptotic Expansion of the Aerodynamic Pressure for I M, I> I

and IM 2 1>I.

Let the cylinder deformation w be given by eq. (2.4a) and

let M, and M 2 be restricted by 1M 1I >1 and M 2 1> ". We apply

the results of section 3 to the exact expressions for the aerodynamic

pressure, which are partially listed in eqs. (2.6) to (2.10). We obtain

Ap - aopo {ao M + + h

M M2)

1 2 a

M2  M

223

1 M'
+ 2 3  (+ +1

2 3n -1 1 1 w+

S1 /2

......... (7 M -, ] M [1-•])•

+w RO(4_ ' M[II -
m

L IJ

J M 2
-~r 1 )O

Ml MI2



with

M1• M-••- 1 M2WMv+vo 10 4.1b)

and and fsinlvx)

w a w0 cos(nO)s(x)ei&t; s(x) a or v 0 (4.1c)

for

SMl I > 1; 1 M7.1 > 1.(4. ld)

(Notice: For M< -1 it holds 2 2_1-]1 1M/l-~]. The

first term on the right hand side of eq. (4. la) is the appr-bximation

by means of the linear piston theory

* aoPo faoMR+ (4.2)

which has been separated. The other terms on the right side of eq.

(4.la) are the "correction terms" and a "remainder", which demon-

strate how far the linear piston theory approximation (4.2) is in error.

The first two correction terms are

1 2 MI M2 2to)aao Po iv I + 11J1 - w (4.3a)

Mi M

and

2 .1 j I *

Mi M
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The remaining correction terms are of the form

apo A m + h11 mli)W-

"777 Mz M -2l ,.
iM 2  (4. 3c)

F
- w

R m

and

*

z A / 1
V a R P Mm k Irm+l)/7?' ý m- 1 [l- jI (m+li)/z

12  (4.3d)

F*
m aw

m 1=, 2, 3.

* 2
The coefficients A and A , m - 2, 3, are polynomials in n

see section 3. By means of eqs. (4. 3) new coefficients F and

Fm , m a 0, 1,2,3, are introduced. Naturally, always only one of

the two signs in (4.3c) and (4.3d) is relevant. Expanding the coeffi-

cients F and F * in power series of and 1 one obtains,m Zn

after some regrouping 1)

,, 2 7. M i"M M ½i Z•
F0 = -. 0v + 4 55

(4.4a)

denotes the absolute value of the binomial-coefficient

() The same holds for the following.
\2
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* r~M ai\ M +Mj -a M(~ M-Mi ,(.

FOUa~o1';T2 (2i1i M3 M3  '3'M
L'V2'2' 2 M1M2

Fin --4ao2Po{f + M z M + M4 M1  } (4.4c)
M1 M2  1 M2

4M -- MP 4M~ 44 6 6

MfM 2 M1 M2 Mi M 2

Am be-~ A1 { M 2t -1 ++ +~

hq 14M hqlle2 (4.4c)

A MM-1+ N- M+l 1 +1~

F* Mi2m A

(4.4f)

+ 2(11M3 M 3 *

Furthermore it holds

M ~ a 4('L +M4-7 ML+IL - (P)W 2 (4.5ba)
Li' MIA 3 .i+

fM' (-a-o(4. 5c)

u IA..
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where, of course, the dots in (4.5a) and (4.5b) stand for finite sums.

Using the coefficients Fm and F'M , introduced by eqs. (4.3).

one can rewrite eq. (4. la) in the form

Apa uaopo fao M + .~ + (4.6)

+ FOw+ F:* w(Flw+F*.)+

+w (u +0 w + Ow)'+)] +

1 1

aw 1i 1 l (1-
~~~- L7 'J 'M1 -- 5/Z 0 - 3~[l ... 1 . 5/2I

Now we are ready to discuss the behavior of the correction

terms and the remainder as one of the parameters I M, R, w, and

Jv I tend to + co, provided that the inequalities (4.ld) are observed.

First of all an inspection of the remainder in eq. (4.1a) or eq. (4.6)

discloses immediately that the remainder tends always to zero as

soon as at least one of the above mentioned four parameters tends

to + Co.

The following statements are based on eqs. (4. 1) to (4.6) and

the just quoted statement concerning the behavior of the remainder.

For I M -co we obtain

Fro-.Oform a 0,2,3; Fm -.0 for m = 0,1,2,3;

(4.?a)

1 -- * pa0 for 1MJ =,



hence

Ap- (&* - • w) -G0 for IMj- cr. (4.7b)

For R -* o it holds

F F*
mmR-• --.O - 0 for R--o, m=I,2,3, (4.8a.)

hence

a -(M3 3)+

+'a)

&**popf 14W+ 2 0 oM +-

MM1 i M2

for RM 5.

Further we obtain

Fm-0 mO • 0,2, 3 ; Fm "-0' = 0,1,2,3; FI-.--ao~po

(4.10b)

for R -. + oD,

hence
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Sforw-.+. (4.lOb)

Eqs. (4.8) and (4.10) lead to

Ap.- A .* -. 0 for R -OcD, W-w o. (4. U)

In order to investigate the limiting process lvi -a o we restrict

Mby

IMI > 1. (4.12)

Thanks to this inequality we are assured that for sufficiently large

values of I v I the inequalities (4.1d) are satisfied. We obtain

2 M2

-- -*iwo -{.4M0,M m i},; F* 0, {m!Ž~M}

F - ±o PO ; Fm 0,mn2, 3; F* 0, ma 1, 2,3 (4.13a)
1 m

for jv -- O.

These relations lead to

(IMI 2-_ 1a+ 2o MIo O.
Ap-f{4p*+aopo (M7-_l)IM2 -1l t+a O 20 M

a ýM a

(4. 13b)
-opo M-_} .-. o0 for 1vi--wo.

From the relation (4.13b) we obtain immediately

2Ap-( *-'-O-w)--0 f[or ImI -- o, IvI--co, (4.13c)



I
I

-21-

Ap-.p -. 0 for IMI-- co, I vj I o, R co. (4.13d)

In case the inequality (4.12) does not hold, the restrictions (4. ld)

would be violated sooner or later as I Y tends to infinity, no matter

how large the value of w is. Then the expansion (4. 1 a) is no longer

valid. This case will be dealt with shortly in section 5.

It should be emphasized that the coeffl.aent -=70•. of the cor-
2

rection term - aPw, which appears especially in eqs. (4.7b), (4.10b),

and (4.13c) is independent of the parameters M, W , v, and n.

It is almost superfluous to quote the following remark: The

asymptotic expansions in section 3 were carried out up to the term

of the order f-3. In accordance with this the expansions (4.la) and

(4.6) are extended up to the term of the order R 3 . In case the expan-

sions would be carried out to higher order terms, one would obtain

expansions for the aerodynamic pressure analogous to (4.1a) and (4.6).

Formulas (4.3c), (4.3d), (4.4e), (4.4f), (4.7) to (4.13) would be valid

too, after the range of the index m is extended appropriately.

From eqs. (4.la), (3.4), and (3.5) one learns that the coeffi-

cients of (I/R)2
9 (I/R)3 in the asymptotic expansion for Ap depend

upon n 2 . (The same is true for the coefficients of higher powers of

h/R, if the asymptotic expansion would be carried out to higher terms,

see section 3.) For the investigation of the flutter of cylindrical

shells it is often necessary to consider values of n up to the order

of 20, see refs. I and 6. For these large values of n the influence

of the terms of the order (1/R)2 and (I/R)3 in (4.la) and (4.6) can

become quite significant.
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5. Examination of the Remaining Cases.

In section 4 only the case IMl>1, 1 MJ> 1 has been

considered, where the linear piston theory expression proved to be

a first order approximation for the aerodynamic pressure under in-

vestigation. In the remaining case, i.e.

a.) IM1 .<1; IM 2 1<l; b.) IM11<l; IM 2 1>l;

(5.1)

c.) iM11>l; JM2 1<l

the formulas (2.11), (2.12) and similar ones have to be applied, and

besides the expansions (3.4) and (3.5) also the asymptotic expansion

(3.6) has to be used. In none of these remaining cases (5.1) the

linear piston theory expression (4.2) can be considered as a first

order approximation of the aerodynamic pressure under investigation.

Let w . the cylinder deformation, again be given by eq. (2. 4). Then

one obtains for instance:

A p- Ap

Va a .2 1 /_4a

Sao PO iM + 2M - -+ [4 M 2- i + ... (5 2a
Svo,

-V -2 + 2- o 1 4 4M w + o (R -1)

for

I MI< l; IM2 1< l; v> o (5.2b)

and



***t+ + **~-2(33a

Ap -Ap

M~~f<1;~ M 2 1 v2 (.b



-24-

6. Conclusions.

In the preceding sections the aerodynamic pressure acting on

a circular cylindrical shell of infinite length in an airflow parallel to

the cylinder axis is investigated. The shell is deformed by a har-

monically oscillating standing wave of a sinusoidal pattern. Based

upon the exact solutions, furnished by Leonhard and Hedgepeth, asymp-

totic expansions are developed for the aerodynamic pressure. These

expansions allow an investigation of the accuracy of the linear piston

theory approximation (4. 2) when applied to cylindrical shells. Fur-

thermore improved approximations can be obtained from these

asymptotic expansions.

In case the absolute values of M and M 2 (see eqs. (2.2)

and (2.5)) are larger than one, IM11>1; IM 2 I > 1, then the linear

piston theory expression Ap can be considered as a first order ap-

proximation for the aerodynamic pressure under investigation. Never-

theless the replacement of Ap by the approximation

ao -* a =o M r . + - & w
Ap a uAp = w of g T- Mr(6.1)

is suggested as a first step of an improvement for the application to
2

cylindrical bodies. The coefficient - ao PO of the additional term in2-Zr
(6.1) is independent of the parameters Mv, w and n. Due to the

independence of v the approximation formula (6.1) can be applied to

more arbitrary oscillatory shell deformations of the form

w(x,e,t) = cos(nO) #v(x) ei~t (6.2)

where Wv(x) and its first derivative are representable as Fourier



-25-

series (provided that for all individual terms the above mentioned

inequalities for I MlI and I M21 are valid) withouta constant term.

S~The last remark reflects the fact that v a 0 was excluded from our

S~investigations.

For large values of n especially the correction terms of

the order (I/R) 2 and (l/R) 3 in eqso (4. la) and (4. 6) can become

quite significant. For flutter investigations it is often necessary to

consider values of n up to the order of 20.

In the following cases a.) I 1 M < l; 1M21 < 1; b.) 1M < 1;

I M2 1 >1; c.) IM1 1 >1; JM 2 1 <1 (see (5.1)) the linear piston theory

expression (4.2) can no longer be considered as a first order approxi-

mation for the aerodynamic pressure, as is demonstrated in section 5.

I-
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