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ABSTRACT. This report extends the least-squares methods cur-
rently in use at NOTS to cover the case of correlated data. A
derivation of the theory is followed by detailed discussions of the
applications to the Askania cinetheodolite solution and curve
fitting of space-pesition data. References are given for other
local applications, but specific results for these are not included.
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FOREWORD

The study described in this report extends mathematical
methods to cover cases that are of specific interest at the U. S.
Naval Ordnance Test Station. The derivation of the theory is
followed by its application to the analysis of data that must be
obtained in the evaluation of weapon systems.
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INTRODUCTION

This report extends certain least-squares methods currently in use at the Naval Ordnance
Test Station (NOTS) to cover the case of correlated data. This extension makes possible, for
instance, the use of derived azimuths and elevations in an Askania solution for space position.
The general theory of least squares is given in the literature (Ref. 1—~3). This report contains in-
dependent derivations pertaining to certain cases of special interest at NOTS. A presentation of
the theory is followed by detailed discussions of the applications to the Askania cinetheodolite
solution and curve fitting of space-position data. References to other local applications are
given, but the specific results for these are not presented.

DERIVATION OF THE THEORY

THE COVARIANCE MATRIX OF A LINEAR COMBINATION
OF RANDOM VARIABLES

THEOREM 1. Suppose

U =DV where
) Xy /dn dig ... di,
u X2 d?l d22 “ e e d2n
U=1 2|, V=%, D -
1y Xn dkl dk2 - dkn
N .
the X; are random variables, and the d;; are constants. Further define
2
0)(1 0X1X2 . e lexn
2
s IX1Xy 9X, S OXaX,
2
UXIXu 0X2X" e Oxn
and
2
up  Tumuy c - Tugg
2
- Oujug O « o Ougu
s _ | T Ow 28k
2
T Tug

lHere o,, = cov(u,v). Then @ = pspT.
Proof. 1 Xy, X3, .. . X, are random variables and a;, b; are constants with
Ti=a1 Xy +aXg +. .. +a,X,
Ty = b1 Xy +b0Xg +. .. 45X,
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then by taking expected values we obtain

E(T,Ty) = E[(ia,-X,-)( ib,x,)] - E( 3 a,.b,.x,-x,.) = 3 abBXX) ()
i=1 =1

6= 6,71

n n n n n
E(M)E(L) = E(Z a,-Xi) E(E b,-X,-) = Y aE(X) Y bE(X) = Y a;b E(X)E(X) (2)
i=1 =1 izl = ij=1
In obtaining Eq. 1 and 2, the linearity of the expected-value operator has been used and the prod-
ucts of sums have been written as double sums. Noting that by definition g,, = L(uv) » E(u)[(v),
the subtraction of Eq. 2 from Eq. 1 gives

n

OT| Ty = _Zlaib,' ox, X, (3)
L=

and putting a; = dj; and b; = dj,; so that
T1 =up = d“Xl + dlZXZ +.0.+ dlan

Ty =u, =dp Xy +dpoXn +.. . +dp,4,
gives, by virtue of Eq. 3,
Tuqup = iéldlidpjaxixi (4)
From direct calculation of the Ip element of DSD”, denoted by (DSDT)p, one obtains
(DSDTY,, - ildh-a,,,- ox,x, (5)
£,]=

A comparison of Eq. 4 and 5 gives
DSDT = (o)

as required.

A FORMULA FOR THE DIFFERENTIATION OF A
QUADRATIC FORM

The result obtained here is well known, but is established in a convenient form for use in
deriving the normal equations in the following section.

THEOREM 2. Let

uy ¢

v=|", c-|

iy o
P11 P12 --+ Plm Ly L ... ha
P P12 P22 --- P2m , L - loy lyp ... by
Plm F2m *++ Pmm P Y A,

FU) = (LU + OTP(LU + ©)
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| OF

duy

OF

dF | Ouy
E"' .
\aF

du,

Then

dF

— =2LTP(LU + C)

du

Proof. It can be verified by expansion and differentiation that

d
— (WTBW) - 2B
dw

and W is a column vector; also

d »
—KW =K

dv
if K is a row vector.
By the Distributive Law

F(U) = (CT+ UTLTYP(LU + €) = CTPC + CTPLU + UTLTPLU + UTLTPC

Since CTPLU is a 1 x 1 matrix and as such is symmetric, it follows that
cTPLU =UTLTPTC=UTLTPC

Thus, (
F(U) = CTPC + 2CTPLU + UT(LTPLIU

Hence, by the formulas already derived,

dF
= oL TPLU + 2¢TPLYT =2L.TP(LU + C)

as required.

iHE GENERALIZED LEAST-SQUARES CRITERION: DERIVATION
AND DISCUSSION OF NORMAL EQUATIONS

Let it be required to determine the parameters u), uy, . . . u; from measurements m;, =g,
. m, with covariance matrix #. Define

-

m) ~a) v uy
mo ~— Qg va 2]

..... !

My = ap Uy Uy
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2
q11 4921 -+ Qr1 Ov1 Opqvg  ++ ¢ Uul,,"
2
0 = 912 922 - -+ k2 ¥ Ov,v9 vy « oo Oygu,
= , M
2
91n 92n -+ Gkn Ovyvy, Tuvgyy --- Oy,

Here the a;, g;; and Oy,v; are constants, M is positive definite, and Q is of rank &. The latter
assumption implies that there are sufficient independent data to solve the problem.

It can be shown (Ref. 2 and 3) that the maximum-likelihood estimate of uy, ug, . . . u; under
the assumption of normally distributed errors inthe m; is given by

G(U) = (V = Q)M (V = QU) = minimum (6)
This criterion is taken as the generalized least-squares criterion for correlated data.
By Theorem 2,
dG : Ty—1
E=Z(~ D WV = QU)
Equating to zero gives the normal equations
AU=0TM71Y (7)
where
4=Q" 1
We show that 4 is non-singular. Consider the quadratic form H(X) = XTH™1X, which is posi-
tive definite. If we perform a linear transformation, X = QY, there results

HQY) - YT(QTM1 Q)Y
By a theorem (Ref. 4) from linear algebra,
rank Q + nullity ¢ = number of columns of Q

Since rank Q = number of columns of Q = £, it follows that nullity Q = 0. Thus QY can be zero
only if ¥ = 0. Hence H(QY), when regarded as a quadratic form in Y, is positive definite;

QTM™1Q is a positive-definite matrix and, as such, has only positive eigenvalues. That is to say,
0™M Qs non-singular. (Note that if Q had rank less than k, then 4 would be singular, since the
rank of a product is at most equal to the rank of any factor.)

Equation 7 can therefore be solved uniquely for U as follows:
U=a"1Tuv (8)
In order to prove that Eq. 8 actually furnishes aminimum of the expression for G(U), Eq. 6, let Uy
be the solution given by Eq. 8. That is, let Ug = A"'QTM™V and let U* be any other real column

vector having dimension k. It follows by direct expansion, making use of this expression for Uy,
that

G(U*) ~ G(Ug) = (U* = Up) TA(U* = Up)

Since it has already been shown that 4 is positive definite, it is concluded that Uy does indeed
furnish a minimum of Eq. 6.

If Sy is the variance—covariance matrix of U, we have by a direct application of Theorem 1
SU - (A-IQTM-I)M(A-IQTM—I)T - A—I(QTM-IQ)A-I
or

Sy =A7! (9)
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Thus the entire least-squares solution consists of computing Sy by Eq. 9 and U by Eq. 8. The
application of this solution to the various specific situations merely consists of properly defining
the matrix Q and the quantities a;. This is done in detail for the Askania cinetheodolite solution

and the application to curve fitting of space-position data. References are given for other appli-
cations,

APPLICATIONS

APPLICATION TO THE ASKANIA CINETHEODOLITE SOLUTION

For a more detailed explanation of the notation used in this section the reader may consult
Ref. 5. Let r be the number of Askania stations. Then, n = 2r. It is assumed that the ith Askania
station determines azimuth and elevation measurements A; and E; with covariance matrix

2
4. OAE.
( ' ? ) (i=1,2...7

G4E;  OE;

and that the measurement errors from a given station are independent of those from any other sta-
tion. Of course, since 4; and E; are assumed correlated here, it would be permissible to use
azimuths and elevations derived from other primary measurements rather than direct Askania read-
ings. Under these conditions, ‘

o4, O .0 a8, O 0 0 \
0 o4, 0 0 0 Oape, O 0
0 0 2 0 0
M= ‘Y %4, * OAE,
94, E, 0 * 0 021 0 . 0
0 Oagg, O 0 0 of, 0
” 2
0 O . oArEr 0 0 . oEr

We have
m; = ith azimuth reading, i =1, 2,...r
m; = (i - Nth elevation reading, i =r+1, ... 2r

In order to obtain M~! as required for the normal equations, one may follow the analysis! of Ref. 6
with the following result, which is easily verified by direct calculation.

1 The use of this procedure, which finds MY in terms of submatrices that are dingonal, was suggested
by Mrs. D. Saitz of the Test Department, NOTS.
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o ~04\E
—l 0 . 0 —-—]"—L 0 . 0
D, D,
o ~04,E
0 =2 0 0 0 —£272 9 0
DZ D2
2
0 0 . ai 0 . B _oArE’
D, D,
Ml=
a
OMEL . 0 A, : 0
D, D,
04 ‘7,42
0 il 3 R 0 0 22 0 0
DZ D2
2
0 0 . LArE!— 0 . 0 f_A_r
D, D,
where D; = aji ab?i - (gAiEi)Z. None of the D; will be zero, for if D; =0, then the corresponding

covariance matrix
2
(aAi aAiEi)
2
O4E, O
AE; E;
The unknowns are the corrections uj = Ax, ug = Ay, and uz = Az to be applied to an initial

estimate xg, yq, 2o of space position. Therefore k = 3. We define the coordinates of the ith As-
kania station as X;, Y;, Z; wherei=1,...r

Then

would be singular.

%0 - Z;

a; =ta A | = Ly oo e
) " X0 — X,; (l 1! 2’ r)

1 Yo = Y'-r
[(xo - Xi—r)2 + ()'o -~ Yi-r)zlllz

a; =tan" (G=r+1,...n

The gj; are defined as follows:
Zl- - 29
- (X, —xo)2 + (Z, - 20)2

q1i (i=1,2,...7
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~(Xi=r = )Y — y0)

i= = L, ...
% (X~ 2002 5 i = 3012 (Zir = 20 Koy — 7002 5 (Zig = ) 77 Lo

g2: =0 (i=1,2,...9
UXi—; = x0)? + (2, — 20)7] 172

- . = I ...
= (Xier =~ %0)2 + (Yimy = 70)? + (Zi=, = 20)?] (E=r+ n)

~(X; ~ o) |
=(Xi"xo)2+(zg—zo)2 (i=1,2,...7

q3;

—(Yi"r - }’0)(2,-.., - Zo)

[(Xi-;"' x0)2 + Yooy —y0)2 + (2, = 20) WXy — %)% + (Z ey ~ 29) 21172 (i=r+1,...n)

q3i=

The solution shown here is ordinarily iterated until all the corrections u; are negligible. For
further detail see Ref. 5.

APPLICATION TO CURVE FITTING OF SPACE-POSITION DATA

Suppose that it is required to fit polynomials in the time, ¢, to space position, %, y, z, in the
form
h
X = +U2l+' . '+Ull+1t
1
y= Uli+2 + ull+3t +oee+ ul]*i2+2t 2
l
z = ull+l2+2 + u11+12+3t +er u11+12+la+3t 3

The quantities required to apply the method of this report are obtained below.

The basic data are x;, y;, z;, M;, t; (space positions, varicnce—covariance matrices, and val-

ues of time) fori =1, 2, ... r, where

2

[ P4; 9x;y; 9%;z;
M, = | oxv: ol Oy, 2.
[ XiY¥i Yi Yi<i
g [0/ 02
Xi2; YiZi Zi

Dy definition, n = 3r, ¢; =0 fori=1,2,... 3r,
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x]
b1
2]
x3

Y2

23

L+lyg+1l3+3

1 et + o o .+ o |0 . 0
0 0 « 0 |1 & .+ d2fo 0
0 0 « 0o .+ + 01 4 i3
1 e « t]o . 0 |0 . 0
Q=10 + « 0 |1 &5 . delo . 0
0 +« + 0 |o « 0 1 g 143
1 ¢ « d&1jo « .+ 0 |0 . 0
0 « « 0 |1 ¢ o tejo . .
0 « « 0 0O + « 0|1 el
3,
M0 . . 0
0 My 0 « 0
M={0 0 Mg 0 o0 ||3
0 0 « « M

4

3r
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Hence, by inspection,

|

Then the vector of polynomial-equation coefficients is given by Eq. 8, and the variance—
covariance matrix of these coefficients is given by Eq. 9. The smoothed x,y,z valu=s obtained by
evaluation at time ¢, together with the corresponding variance—covariance matrix, are easily ob-

tained.?

REFERENCES TO OTHER LOCAL APPLICATIONS

The required quantities for application of the method of this report to several specialized
least-squares procedures are easily obtained from Ref. 7 and 8 and several informal reports®:4:5.
[t must be admitted that these solutions would not be affected by the use of the method of this
report. This is true because the assumption of uncorrelated data is valid in terms of present
knowledge about the measurement techniques involved. However, the posaibility does exist that
the examples under APPLICATIONS can all be made special cases of the genera] method. Fur-
thermore, a general least-squares subroutine based on the method of this report could easily be
written for the IBM 7090 computer.

SUMMARY

A least-squares procedure for correlated data has been presented. The use of this method will
not affect present sclutions unless the assumption of uncorrelated data is to be replaced by an es-
timate of the variance—covariance matrix. The method of this report is applicable at present to (1)
the use of derived azimuths and elevations, which are correlated, to obtain space position; and (2)
the fitting of space-position data by polynomials in time where the variance—covariance matrix for
each given time is known. It is recommended that a general least-smares subroutine incorporating
the equations of this report be programmed.

2 An informal report, IDP 1339, entitled “The Determination of the Variauces and Covariances of Line-
of-Sight Angular Rates as Obtained From Askania Data,” by Otto Neall Strand, was issued by NOTS 5 De-

cember 1961.

3Informal report, Technical Note 303-26, entitled “COTAR Data Reduction and Error Analysis,” by
Otto Neall Strand, was issued by NOTS iz September 1957.

41DP 1272, entitled “A Least-Squares Star Calibration of the FI.R Camera,” by Otto Neall Strand and
Lee Thomson, was issued by NOTS on 26 June 1961.

51DP 1313, entitled “A Least-Squares FL.R Solution for Aircraft Space Position,” by Otto Neall Strand
and Lee Thomson, was issued by NOTS on 12 July 1961.
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