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INTRODUCTION

This report extends certain least-squares methods currently in use at the Naval Ordnance
Test Station (NOTS) to cover the case of correlated data. This extension makes possible, for
instance, the use of derived azimuths and elevations in an Askania solution for space position.
The general theory of least squares is given in the literature (Ref. 1-3). This report contains in-
dependent derivations pertaining to certain cases of special interest at NOTS. A presentation of
the theory is followed by detailed discussions of the applications to the Askania cinetheodolite
solution and curve fitting of space-position data. References to other local applications are
given, but the specific results for these are not presented.

DERIVATION OF THE THEORY

THE COVARIANCE MATRIX OF A LINEAR COMBINATION
OF RANDOM VARIABLES

THiEOREM 1. Suppose

U = DV where

111 X1 di d12 .''. dind
U--u2 V X2 D J d2) d22 """d2n

Ilk X" dk1  42 . . . dk.

the Xi are random variables, and the dii are constants. Further define
2X CX 1X2 . . . X lXnl

2

OX X2 CI 9 . . Xor2= aX1X2 aX 2. .2 . GXn

and

2
"• OUl2 au I2 . . . (YU ukau 0

r 2  . . . C U.

a1 u2  
0 U2 .

a2U
O'ulUk • uk

Here a, = cov (u,v). Then F =DSDT.

Proof. If X1, X2, ... Xn are random variables and ai, bi are constants with

T 1 =aiX1 +a 2 X2 +... + anXn

T2 -= bjX + b2X2 + . + bnXn
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then by taking expected values we obtain

E(T1 T2) - E [( aiXib( n E(x, aibEXiX) l= . aibjE(XjXj) (1)~=l bj1 X I =E / i,jl

E(T1)E(T2 ) = E( naiXi)E( biX) = jaE(Xi) X.b1E(Xj) = naibE(Xi)E(X) (2)

\j=l =1 j=
1  

i,j=l

In obtaining Eq. 1 and 2, the linearity of the expected-value operator has been used and the prod-
ucts of sums have been written as double sums. Noting that by definition au, = E(uv) ., E(u)E(v),
the subtraction of Eq. 2 from Eq. 1 gives

n

IT = X aibjox~xj (3)

and putting ai = d1i and bi = dpi so that

TI = u= d11X1 + d12X 2 +. . . + dnXn

T2 = up =dp 1 X 1 + dp 2 X2+.. + + dpXn

gives, by virtue of Eq. 3,
n

uu= • dlidpjaxix, (4)
i,j=1

From direct calculation of the Ip element of DSDT, denoted by (DSDT)tp, one obtains
n

(DSDT)P = -,F djidpjuXiX j (5)
i,j=l

A comparison of Eq. 4 and 5 gives

DSDT = (auup)

as required.

A FORMULA FOR THE DIFFERENTIATION OF A
QUADRATIC FORM

The result obtained here is well known, but is established in a convenient form for use in
deriving the normal equations in the following section.

THEOREM 2. Let

2U 2 C 2

P11 P12 ... Pim 111 112 . .. n

Plm P2m ... Pom ImI 1 m2 •. . Imn

F(U) = (LU + T P(LU + C)

2
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3ur

au1
dF Yu

dU "

auF

Then

dF
- = 2LTP(LU + C)
dU

Proof. It can be verified by expansion and differentiation that

d
_ (WTBW) = 2BW

dW,

and W is a column vector; also
d

-KW = K
d7/

if K is a row vector.

By the Distributive Law

F(U) - (CT + UTLT)P(LU + C) = CTpC + CTPLU + UTL TPLU + uTL TPC

Since CTPLU is a 1 x 1 matrix and as such is symmetric, it follows that
CTPLU = OIL UpTC _ UT L"PC

Thus,

F(U) = CTpC + 2CTPLU + UT(LTPL)U

Hence, by the formulas already derived,

dF TCT T T
- 2LTPLU + 2(CTPL)T =2LTP(LU + C)
dU

as required.

THE GENERALIZED LEAST-SQUARES CRITERION: DERIVATION
AND DISCUSSION OF NORMAL EQUATIONS

Let it be required to determine the parameters ul, u2, . uk from measurements M 1 , M.2 ,

m,, with covariance matrix If. Define

/ m
1

- a, V k

3
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Q q12 q2 2  . qk2 ov 1 -2 a.2 ) " " . Tv2v:
. . . . . . . . . . . . . . . .

qI, q2n . . . qk VlVn a2V1 • • or.,

Here the aj, qjj and ov., are constants, M is positive definite, and Q is of rank k. The latter
assumption implies that there are sufficient independent data to solve the problem.

It can be shown (Ref. 2 and 3) that the maximum-likelihood estimate of U1, u2 . . . . Uk under
the assumption of normally distributed errors in the mi is given by

G(U) = (V - QU)T"M'( V - QU) = minimum (6)

This criterion is taken as the generalized least-squares criterion for correlated data.

By Theorem 2,
dG-- = 2(_Q) rl-t (V _ QU)
dU

Equating to zero gives the normal equations

AU - QTM-I V (7)

where

A - QTM-1Q

We show that A is non-singular. Consider the quadratic form H(X) _ XTM-tX, which is posi-
tive definite. If we perform a linear transformation, X = QY, there results

H(QY) =- yT(QTM -IQ) y

By a theorem (Ref. 4) from linear algebra,

rank Q + nullity Q = number of columns of Q

Since rank Q = number of columns of Q = k, it follows that nullity Q = 0. Thus QY can be zero
only if Y = 0. Hence H(QY), when regarded as a quadratic form in Y, is positive definite;
QTM-1Q is a positive-definite matrix and, as such, has only positive eigenvalues. That is to say,
QTj-1Q is non-singular. (Note that if Q had rank less than k, then A would be singular, since the

rank of a product is at most equal to the rank of any factor.)

Equation 7 can therefore be solved uniquely for U as follows:

U = A -1 QTM-1V (8)

In order to prove that Eq. 8 actually furnishes a minimum of the expression for G(U), Eq. 6, let U0
be the solution given by Eq. 8. That is, let U0 = A-1QTM-1V and let U* be any other real column
vector having dimension k. It follows by direct expansion, making use of this expression for Uo,
that

G(U*) - G(Uo) = (U* - Uo) TA ( U* - Uo)

Since it has already been shown that A is positive definite, it is concluded that U0 does indeed i
furnish a minimum of Eq. 6.

If SU is the variance-covariance matrix of U, we have by a direct application of Theorem 1

SU = (A-'QTM-)AM(A-1QTM-l) T = A-'(QTM-1Q)A-1

or

Su =A-' (9)

4
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Thus the entire least-squares solution consists of computing SU by Eq. 9 and U by Eq. 8. The
application of this solution to the various specific situations merely consists of properly defining
the matrix Q and the quantities ai. This is done in detail for the Askania cinetheodolite solution
and the application to curve fitting of space-position data. References are given for other appli-
cations.

APPLICATIONS

APPLICATION TO THE ASKANIA CINETHEODOLITE SOLUTION

For a more detailed explanation of the notation used in this section the reader may consult
Ref. 5. Let r be the number of Askania stations. Then, n = 2r. It is assumed that the ith Askania
station determines azimuth and elevation measurements Ai and Ei with covariance matrix

GA, A (i 1, 2,.. r)
aAiEi 2E /

and that the measurement errors from a given station are independent of those from any other sta-
tion. Of course, since A, and Ei are assumed correlated here, it would be permissible to use
azimuths and elevations derived from other primary measurements rather than direct Askania read-
ings. Under these conditions,

GA 1  0 * 0 aA 1 E1 0 0 0

0 0 0 0 OA 2 E2  0 0

2

o o A 0 0 . A,.Er

0 0 0  0 *0°Aa 1r OA 0E r

2

A 2 E2  0 0 0 GE2  0

0 0 0 2

We have
mi = ith azimuth reading, i = 1, 2, r

Mi = (i - r)th elevation reading, i = r + 1, . . . 2r

In order to obtain M-1 as required for the normal equations, one may follow the analysis 1 of Ref. 6
with the following result, which is easily verified by direct calculation.

1The use of this procedure, which finds A1_1 in terms of submatrices that are diagonal, was suggested

by Mrs. D. Saitz of the Test Department, NOTS.

5
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a2

o o2 -OA 2 
E2D D2

a2

0 0 E, 0UaE
D, D,

M-l=

a

0 A0 0 0
D1 D,

a 2

0 0-()rAr Er 0 0 A r
Dr D,

where Di =A2 a2 -2 (AE)2. None of the Di will be zero, for if Di =0, then the corresponding

covariance matrix
2i 2 (TAiEil~O

OAiEi aE)

would be singular.

The unknowns are the corrections ul = Ax, u2 = Ay, and u3 = Az to be applied to an initial

estimate xo, yo, zo of space position. Therefore k = 3. We define the coordinates of the ith As-
kania station as Xi, Yi, Zi where i = 1, . . . r.

Then

ai = tan-1 zo - Zi ( ,2....r

xo - Xi

= a'Yo - Yi-r ( , n

ai = tan-1 [(xO - Xir)2 + (yr - YI-n)21)-( + "

The qji are defined as follows:

qZ = - zO ) = 1, 2 .. .. r)
q (Xi-xo) 2 + (Z, z_) 2

6
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-(Xi_, - xo)(Y•, - yo)
qii = [(Xi...r. - xo) 2 

+ (li-r -yo) 2 
+ (Zi-r - Zo) 2

][(Xi -rX 0 )
2 

+ (Zir- zo) 2
]1 2 (i = r+ 1, ... n)

q2 i = (i=1, 2 .... r)

-[(X-- X0 ) 2 + (Z.... - ] 1/2 r+ 1, it)
i= [(Xi-r - Xo) 2 

+ (Yi-r - YO)2 + (Zi-r - 2r

qai = (X -x 0 ) (i=1, 2, ... r)

(Xi - xo)2 + (Zi- zo)2

q3 = -(Y2i-r - yo)(Zir - Zo)

=[(Xj.r - x0)2 + (Yi-r - Y0) 2 + (Zi-r - zo) 2][(X,-r - x0) 2 + (Zi-r Z0) 2] 1 / 2 (i = r + 1, . . n)

The solution shown here is ordinarily iterated until all the corrections ui are negligible. For
further detail see Ref. 5.

APPLICATION TO CURVE FITTING OF SPACE-POSITION DATA
Suppose that it is required to fit polynomials in the time, t, to space position, x, y, z, in the

form

X = II + U2 t + + . . + t t1

y = u11+2 + U11+3 t + • • • + u/l.t 2 +2 t12

z = U11+12 +2 + ul1+1 2+3t + • • • + U1 +12+13+3t13

The quantities required to apply the method of this report are obtained below.

The basic data are xi, yi, zi, Mi, ti (space positions, variance-covariancematrices, and val-
ues of time) for i = 1, 2, . . . r, where

0,,2i cxvyi axizi

Ali = uxiYi 1ýi °Yizi

UXLY 2

crx izi C'y i zi crz i

Bly definition, n = 3r, ai = 0 for i = 1, 2, . . . 3r,

7
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x1

Yi

z1

M2  Y2

- Z2

Xr

Yr

11 + 12 + 13 + 3

1 t1  - 4'l 0 0 * 0 0 o

0 0 - 0 1 tl . t12 0 , 0

0 0 * 0 0 0* 0 1 ti ti

1 t2  t tl 0 . 0 0 0

0= o o 1 t2 * t212 o 0 3r

0 . 0 0 0 0 1 t2 t13

1 tr 0 "0 3 0 0 3

0 •0 1 tr , t12 0 ..

0 . 0 o • o I t, tr13

3r-

NJ 0 0 0

0 M2 0

M 0 0 M3 0 0 3,8

•0 0 . .
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Hence, by inspection,

ill-1

0

M MT'_

Then the vector of polynomial-equation coefficients is given by Eq. 8, and the variance-
covariance matrix of these coefficients is given by Eq. 9. The smoothed x,y,z valu."s obtained by
evaduation at time t, together with the corresponding variance-covariance matrix, are easily ob-
tained.

2

REFERENCES TO OTHER LOCAL APPLICATIONS

The required quantities for application of the method of this report to several specialized
least-squares procedures are easily obtained from Ref. 7 and 8 and several informal reports 3 '4 ' 5 .
It must be admitted that these solutions would not be affected by the use of the method of this
report. This is true because the assumption of uncorrelated data is valid in terms of present
knowledge about the measurement techniques involved. However, the possibility does exist that
the examples under APPLICATIONS can all be made special cases of the general method. Fur-
thermore, a general least-squares subroutine based on the method of this report could ensily be
written for the IBM 7090 computer.

SUMMARY

A least-squares procedure for correlated data has been presented. The use of this method will
not affect present solutions unless the assumption of uncorrelated data is to be replaced by an es-
timate of the variance-covariance matrix. The method of this report is applicable at present to (1)
the use of derived azimuths and elevations, which are correlated, to obtain space position; and (2)
the fitting of space-position data by polynomials in time where the variance-covariance matrix for
each given time is known. It is recommended that a general least-smi ares subroutine incorporating
the equations of this report be programmed.

2 An informal report, IDP 1339, entitled "The Determination of the Variances and Covariances of Line-
of-Sight Angular Rates as Obtained From Askania Data," by Otto Neall Strand, was issued by NOTS 5 De-
cember 1961.

31nforrnal report, Technical Note 303-26, entitled "COTAR Data Reduction and Error Analysis,* by
Otto Neall Strand, was issued by NOTS in September 1957.

4IDP 1272, entitled "A Least-Squares Star Calibration of the FLIR Camera," by Otto Neall Strand and
Lee Thomson, was issued by NOTS on 26 June 1961.

51DP 1313, entitled 'A Least-Squares FLR Solution for Aircraft Space Position," by Otto Neall Strnn.d
and Lee Thomson, was issued by NOTS on 12 July 1961.

9
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