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of these publications, however, makes it difficult to satis-
fy the need, because it becomes more and more arduous
to locate the literature pertinent to any one subject; and
because any one of us becomes more and more weary of
having so much to read. Moreover, only a small minority
of these publications may help satisfy the need, because
an overwhelming majority is void of content.

Consequently, it is imperative to present to the public
only manuscripts which do carry new information without
undue verbiage; hoping to be judged not by the number
of published pages but by their quality. In particular,
papers in the field of Applied Mathematics ought to be
published only if they contain one or more of the follow-
ing items: new basic results, new methods, new applicat-
ions, new numerical results, new presentation of difficult
and important topics, up-to-date bibliographies; and if
the number of their pages is not dictated by the desire of
imposing upon the superficial reader.

To discharge our contractual obligations, we publish
Technical or Scientific Reports, such as the one you now
have in your hands. It has been our constant policy to
see to it, that they satisfy the above strict criterion.
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ABSTRACT

An abstract covering problem is formulated which includes as special
cases the prime implicant problem, the usual set-theoretic covering and
systems of representatives problems, and the problems of externally stable
sets, l-widths of matrices and minimal including sums. The known methods of

solution are extended to the general case.
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Basic Features Common to Some

Combinatorial Covering Problems

by

J. A. Riley

1. Introduction. The most basic problem in the theory of minimization
of Boolean formulas is that of finding the minimal normal formulas
representing a given Boolean function. The known methods for solving
this problem all consist essentially of the following two steps: first,
find the irredundant normal formulas representing the function, and then,

second, use the preassigned criterion of minimality to extract
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the minimal formulas from the list of irredundants. It is well known
that the components of an irredundant normal formula are prime impli-
cants; the problem of finding the irredundant equivalents of a given
function breaks up, then, into two further problems: that of computing
the prime implicants of the function, and that of finding those unions
of prime implicants which are irredundant equivalents. The problem of
finding the prime implicants of a given function has been solved in
more or less satisfactory fashion, depending on the data in terms of
which the function is specified. Of course, in practice, enormous
difficulties may be encountered, the poirt being that there are functions
in not too many variables which have literally thousands of prime
implicants. Nevertheless, there does not seem to be too much room for
improvement in the existing algorithms. A much more serious problem
is encountered in the second step of the program, that of computing
the irredundant equivalents. The bulk of the succeeding sections will
be taken up with descriptions of the known methods of solution of this
problem. These are essentially three in number, (if we except the
McCluskey-Pyne attempt to use the methods of linear programming;

see [16]), a 'naive' trial and error process, the 'Boolean algebra'

or 'multiplying-out' method, and the 'branching' technique. In one
form or another the basic ideas of these methods underlie all known
procedures and algorithms for finding irredundant normal formulas.

In the course of our work on these problems, we had devised
several procedures which, at first sight, appeared to be quite promis-
ing. On closer examination, however, these turned out to differ only
trivially from one or the other of the methods just mentioned.

The fundamental difficulty in applying each of these methods is
that they each require the generation of many more formulas than are
actually found to be irredundant, that is, none of these three methods,
it seems, goes to the heart of the matter in as direct a fashion as

would be desirable. It should be mentioned that if minimal formulas
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are what are desired, the minimality criterion may be applied at
various intermediate points in the computations; this has the effect
of weeding out more quickly those formulas which would eventually be
found to be non-minimal. Even so, the problem still remains - to
devise a procedure which will, in some sense, avoid the necessity of
considering a host of superfluous formulas, and give the desired
irredundant and/or minimal formulas in a straight forward, effective
fashion.

This is obwviously a vague objective; it may even have been
attained. By this I mean that it could be maintained, without obvi-
ous objection, that the Boolean algebra and branching methods are
themselves optimal o: near-optimal, at least as far as the computation
of irredundants is concerned. However, we feel that there is merit
in attempting to improve and extend these algorithms. At the very
least, we may discover various improvements in detail which would make
the concrete applications of the methods more tractable,

In view of the preceding remarks, therefore, we have undertaken
to survey the published literature on these subjects, and to try to
extract the essence of what has been accomplished. The following
sections constitute a first draft of our findings. Very early in our
work, we discovered the already more or less well known fact that our
problems are abstractly identical with other combinatorial problems,
currently under study, such as set-theoretic covering problems, the
"prime implicant' problem, the theory of minimal including sums, and
the theory of "l-widths'" of matrices of O's and 1's. This abstract
identity consists in the fact that each of these problems is a special
case of a more general abstract "covering" problem, which we present
in section 2. The methods used by various authors for solving the con-
crete problems are themselves capable of being abstracted to give

methods for solving our general problem. In sections 4, 5 and 6 we
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give our abstract version of these. In section L we give what we feel
is a useful mathematical framework for the discussion of such problems.
In section 7 we turn to a special case - the problem of minimal includ-
ing sums.. We show how the multiplying out method may be combined with
Gazalé's method of "fractions" to yield an interesting method of finding
minimal including sums.

. Our presentation is necessarily very sketchy, our main purpose
being simply to present what we feel is the essence of these concrete
covering problems. For the purpose'of maintaining contact with the
literature we give in section 3 a list of these concrete problems,
together with an indication of how they fit into our general framework.
We have not attempted to write a complete "comparative anatomy" of the
literature, but have limited ourselves here to an occasional remark at
the appropriate point in our discussion.

The list of bibliographical references at the end is not known to.
be complete; we present it simply as an adequate and useful collection

of source~material discussed here.

2, The Abstract Covering Problem. Let R,( be finite sets, and p: R—C

a relation between R and § , i.e. a multiple valued mapping from R to
C . We will assume that p is onto,i.e. that each element ¢ of ( 1is
contained in p(v) , for some YéR . We will also assume that the domain
of p is the whole of R ., If veéR and ceC  we will say that ¢
covers ¥ if c& p(¥) . A subset ¢' of C is a cover of R if for
each YeR) f(*) n¢ is not empty, i.e. if each element of R is
covered by at least one element of 6 . 1f C"’ C‘ are covers of N
and C" € (' , then C" is called a sub-cover of C' . It is obvious
that ¢ is a cover of R and that any cover of R is a sub-cover of C.

A cover (' of R is said to be irredundant if no proper subset
of ¢ is a cover. It is easy to see that any cover of R contains an

irredundant sub-cover.

Our first covering problem is: (I) Find the irredundant covers of R.
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Conceptually, of course, this problem has a trivial solution, viz.
list, in some order, all of the covers of R , and then pick out those
which are irredundant. In practice, however, such a procedure is
almost never practicable; what is needed is a method of circumventing
this exhaustive listing.

A second problem, possibly even more important for the applications,
is that of finding minimal, weighted covers. |

A cost function, Y on € , is a map which associates to each sub-

set § of € a non-negative real value, ¥(S) : the "cost" of S.
We assume in addition that ¥ satisfies the axiom: if S'S 8 , then
res) = s -, with equality only if 5'=S . A cover, G, of R
s said to be ¥ -minimal if for any other cover (' , Y(c')= W(C").
It is easy to see that a ¥ -minimal cover is necessarily irredundant
(although the converse is not true).

Our second covering problem is then: (II) Find the ¥ -minimal
covers of R . ‘

The remarks made above concerning the impracticality of starting
with an exhaustive list of all covers also apply here. What is needed
here alsc is a more refined method for finding minimal covers - one
which does not require at the outset a listing of all covers.

A pussible solution consists in first computing the irredundant
covers; we have noted above that any Y -minimal cover is irredundant.
The minimal cncs may then be located by inspection.

In many cases of practical interest, the number of irredundant
covers is uncomfortably large, so that, again, it would be desirable
to find methods of computing minimal covers directly.

It is possible to combine both problems (I) and (II) into a single
more general one by introducing an abstract order relation into the
collection of subsets of C . Precisely, we will assume the existence
of a "pre-order' relation, which we will denote by "%" on the subsets

of § , and which satisfies the following axioms:
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a) §=2 §  for all subsets S of ¢,
b) if 84T and T2 U , then 52V,

c) if 8¢S , then S'<S , and, in this case, S£ S’
only if S=8.

It is easy to see that the relations of set-inclusion, and of

"cost less than or equal to'" are concrete instances of the pre-order relation

it is important to notice that we have deliberately not assumed that

$'« S and S=3S' together imply that S= S . This last property

is one of the usual requirements for a so-called partial order relation.

The relation, € of set-inclusion does, of course, possess this property

of ‘exclusivity;' the cost relation, however, does not, since it is

possible for distinct subsets to have the same cost.

In terms of € , a £ -minimal cover C' will be one which satisfies

the property : if C" is any cover of R such that ¢"< €' , then in
addition, C'< C" .

Specialization of this notion yields immediately the notions of
irredundant, and of ¥ -minimal cover. We point out that in view of

axiom c), any £ -minimal cover is also an irredundant cover of R.

The general covering problem with which we will be concerned here

is then the following, and includes (I) and (II) as special cases:
(II1) Find the £ -minimal covers of R .

Since % -minimal covers are irredundant, we again have a first
tentative solution : find the irredundant covers, and then weed out
those which are not £ -minimal.

In the following sections we will adapt the known methods for
finding irredundant and minimal covers to our more general situation.

We point out here that Roth [2] has given an algorithm, the so-

called "extraction" algorithm, for solving a very general covering

problem. His problem is essentially the same, in another terminology,

as our abstract version, the only difference being that he allows for

the presence of "don't-care" conditions; we may express this by saying
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that the domain of p 1is not necessarily the whole of R .
The algorithm itself, translated into our framework, is exactly
the branching technique, to be discussed in section 6.

3. Examgles.v In this section we collect a number of examples from
the current literature which may be interpreted as covering problems
and which fall within our abstract framework,

Example A, Set theoretic coverings. If R=(v, ...,%,} is a
finite set, and C=1c,, ..., ¢c,} is a collection of subsets of R

such that R=c,v..-uvc,, then ( is called a cover of R , A sub-
set, ¢' , of C 1is a sub-cover of C if R= \)ic\ce C'} ,

i.e. if each element of R belongs to at least ome set in ¢' . Denote
by 1C'\ the cardinality of €' , i.e. the number of sets which it
contains. Then the minimal covering problem is : find the minimal sub-~
covers of ( , i.e. those sub-covers of smallest cardinality. To show
that this problem is a special case of our general one is easy : we
define p(v) to be the collection of sets ¢, in ( which contain ¥ ,
and we define 5'< 5 to mean that $' has fewer sets than S.

Edmonds [3] gives an interesting extension to these set-theoretic
covering problems of the Berge-Norman-Rabin theory (see [4] and the
references given there) for minimal coverings of a graph. It seems
that any covering problem may be transformed into a variant of the
covering problem for graphs; the Berge-Norman-Rabin technique is then
generalized to obtain some information concerning the structure of
minimal covers. We have not included any discussion of this theory
here both because it lies in somewhat different direction and because
a definite algorithm for finding minimal covers has not yet been obtain-
ed (for the general problem, that is; the Berge-Norman-Rabin theorem
(cf. [4]) yields a more-or-less explicit algorithm for the "ordinary"

covering problem for graphs).

-10-
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Example B. Systems of Representatives. Let R={Y,...,r,} bea
finite collection of finite sets ¥Y,,..., ¥» and let 0 denote the

union of the sets in R, ¢ - Uil eRS . A subset C' t{e,,.--,c‘.s
is a system of representatives of R if each set ¥; in R contains at

least one ¢; from ¢' . An irredundant system of representatives is one
such that no proper subset of it is also a system of representatives.
One problem which may be posed is to find the irredundant systems of
representatives of R . If a cost function is defined by attaching a
cost or weight to each element of G , Wwe may pose the problem of
finding the systems of representatives of smallest cost; here by the
cost of a system of representatives we mean the sum of the costs of its
elements. It is easy to see how this problém also fits our general
pattern,

Example C. The Prime Implicant Problem. Let f be a Boolean functionm,
T,

or states. The prime implicant table for f is defined to be the matrix A

1w, 1its prime implicants, and p, ..., p,, its canonical terms

whose entry @;; is | if p. implies T, , and 6 otherwise. The prime
implicant problem is to find the sets of columns covering A having as

few columns in them as possible - i.e. letting the cost, W(S) , of a
set of columns be the number of columns in it, the problem is to find
the V-minimal covers of A .

Evidently, these ¥ -minimal covers correspond to those normal
formulas representing ¥ which consist of a minimal number of summands.
Variations in the problem are possible; we can ask for the
irredundant covers, for example. These correspond to the irredundant
normal formulas representfng F . In his thesis [1a] McCluskey gives

several other cost functions which may be used.
The prime implicant problem has been treated extensively by
McCluskey and Pyne in their two papers ([2], [3]).

-11=
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Example D. Minimal including sums. Let 'F ‘) 4, be a set of Boolean

formulas, each of which is U ~irreducible, 1 e, is a product, and let ?.
be a formula, (or function) such that% implies 'S' (VR u‘f'

Then S— Uree U -f- is called an including sum for 9 (the fact that ?Q‘f
is alao sometimes expressed as " £ includes ¥ ;" hence the name

"{including sum"). It may also happen that 9 implies a "sub-sum"

‘f-;,‘u..-uhr_ of ;-u .- uf, . Such a sub-sum 'F,_'U U;' is
said to be a minimal 1nc1uding sum for (composed of one or more of

the §; ) if a) % implies 5',;' u'--,UyL;r , and b) 3 implies no other
proper sub sum of -f-;,l U... VU ‘S‘L\, A '

Denote by by, - '>‘Pm the canonical states of ¥ - Then each p;
implies -S—-U ..-U 4 . We define a matrix A as follows : a; =1/
if* implies -;-J , and a. =0 if P does not imply f . Then A is
a matrix of o's and s, and the minimal including sums for 9 correspond
exactly to the irredundant covers of A . )

If 9 is equivalent to the function ¢ , then {-:u---uf,, is
equivalent to | , also, and is called a "sum~to-« 'e." 1In this case
the problem is to find the minimal sums-to-one contained in ‘;, v Uf” .

The problem of finding the irredundant normal formulas representing
a given function % is evidently a special case : for this we would
take the f'J to be the prime implicants of $ -

We may formulate the problem of finding the prime implicants of a
given function F as a problem in minimal including sums. More exactly,
we show how to find the prime implicates of the dual function, §F.

The prime implicants of ¥ are then the duals of the prime implicates
of §F .

We take for ( the set of literals which are essential to F , and
for R any set of terms whose union is a normal formula representing F.
Then the set of literals is an including sum for F , and the minimal
including sums are the prime implicates of F .

The theory of minimal including sums has been developed by Samson
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and Calabi [5], and has been applied in [6] to the determination of
higher order minimal formu®as.
Example E. Externally stable sets. If G is a graph, a set T of
vertices 1s called externally stable if each vertex of 6 not in T
18 joined by an edge of G to at least one element of T . A minimal -
externally stable set is one having a minimum number of vertices. The
problem is : find the minimal externally stable sets of a given graph.
To see that this is a special case of our general problem, we take
R=606= {\/”...) V,,} , where the v; are the vertices of 6 , and
we define a, . to be | if v, and v; are joined by an edge of e,
and a;;=o if ¥, and v; are not joined by an edge of & . Then each
row and column of A= (a.;ss corresponds to a vertex of 6 . If we
define the cost of a set of columns to be the number of columms in the
set, we obtain a cost function ¥ , and it is easy to see that the
minimal externally stable sets of G are in one-to-one correspondence
with the ¥ -minimal covers of A.

The algorithm given by Berge ([7]; pp.42-43) for finding a minimal
externally stable set is essentially the branching method to be dis-
cussed below.

Example F. 1l-widths of matrices. The concept of width of a matrix

of zeros and ones plays an important role in many combinatorial problems
of current interest ([8]). If A is a matrix of zeros and ones, the
l-width of A is by definition (transposed into our terminology) the
smallest number of columns such that each row meets at least one of

these columms. Thus the theory of l-widths of matrices also falls within
our general scheme,

The article by Edmonds referred to in Example A above shows that

the more general concept of oL -width (cf [8]) of matrices and OSand I's

also can be formulated as a covering problem.
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4. Matrix Formulation. The Naive Solution. Basically, there are
three known methods for the solution of coverimg problems: the
“naive” solution, the Boolean algebra, or "multiplying-out" method,
and the branching technique.

We have omitted from consideration the application by McCluskey
and Pyne [15] (see also Breuer, [9]) of linear programming Eechniquu
to the normal minimization problem. This technique may of course be
applied in a similar fashion to find the ¥ -minimal covers of s
general covering matrix, at least in the case that the cost of &
cover is the sum of the costs of the columns which it contains. Certain
serious difficulties (analyzed in [16]) are encountered in the use of
the ‘classical' linear programming techniques; further investigation
devoted to the resolution of these difficulties would be desirsble.

It will be convenient, for our subsequent exposition, to have the
problem formulated in matrix terminology.

Let the elements of R be Y,,..., %, and those of C, Chyerny &y
The matrix A= (a,;j) of the relation ¢ 1is by definition given by:
a;; =/ if ¢; e p(e;) , and a;; =0 if ¢ £ f(";) . We
will denote the rows of A by %,...,Hh, andthe columns of A by

Ciyvvey, &y - the notation was originally chosen with this in mind.

We say that row r; meets column ¢; if &, =/ , i.e. if c;ér(r;).
A cover of R , or as we shall say; of A , is a subset (' of the set
of columns of A such that each row in R meets at least one column

in ¢' . The translation of the notions of irredundant cover, ¥ -minimal
and < -minimal covers into the terminology of rows and columns is
simple.

Now it is well known that the Boolean algebra of subsets of a
given set ( is isomorphic; 1in a technical sense, to the Boolean
algebra of n -tuples of ¢’s and [|’s , where w is the number of elements
in C . The explicit description of this isomorphism will yield us &
way of transforming our covering problem into the problem of solvisg

a certain set of Boolean equations.

el
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Denote by .J(C) the Boolean aigebra of subsets of C, ¢~ {c,, ey C,.;
~and by B, the algebra of W -tuples of o's and !'s . We define the
map «:J(C)—> B, by $—> e, =('?,,..., 4, ), where 4. =/
if ¢;e€ S and y; =° if ;¢ S . It is not at all difficult to
see that the Boolean operations of union, intersection and complementa-
tion are preserved, ard that, in the technical language, € is an
isomorphism of the two Boolean algebras. If ¢ 1s the empty subset, S,
is then-tuple consisting entirely of zeroes; the subset 0 itself
corresponds to the n -tuple, (1), consisting entirely of s .

Consider the system of equations
(*) a X v U dy,yx, =/

@a x v Joa x =/

”m; 4 mn n

If (' is a cover of R » then the components #,...., A of the
corresponding n ~tuple Cc, = (7“ - 7”) are a solution of the
system (*). The reason for this is that if a row ¥, meets C; ¢ C",
then 4 =/ , so that upon substitution of the 4 for the X; in (*),
) . th | . .
the left side of the (  equation becomes @ #, U:--Uaq;y; U va, Y
and since a‘.J =/ , and 4, =1 ( C; being an element of ¢’ ), we
have that a;4; =/ and the left side is equal to / . Thus
* h
CYy s ‘én) is a solution of the i’ equation of (*), and this is
so for each ( . Conversely, it is easy to see that if (7,, N )
'
is a solution to (*), the corresponding subset ( of C , for which
GC.=(%.)...)7,) , 18 a cover of R .
Our general problem (III) becomes then:

(III') Find the £ -minimal solutions of the system (*).

]

It should be remarked that our assumed pre-order relation =

has been transported bodily from the collection ~(C) of subsets
of ( to the corresponding isomorphic algebra of n -tuples - we say

that €, < €, , for two nh -tuples ( and ¢, if '« ¢,
¢ ¢



[ ———————

Pankx MATHEMATICAL LABORATORIES, INCORPORATED 2417-5R-2
ONE RIVER ROAD o CARLISLE. MASSAGHUSETTS

. The first method of solution of (III') is what can be called
the '"naive" method. It consists s’‘mply in examining, one after the
other, the various n -tuples of 0's and I's to determine the ones which
are solutions of (*). From the list of solutions, the £ -minimal
covers can be located'by inspection. We have already mentioned that
this exhaustive method {s not generally practical. A better, but still
impractical, way of proceeding, would be to solve the system (*) by
some algebraic means, analogous perhaps to successive elimination of
variables in solving ordinary simﬁltaneous systems with real coefficients.
Techniques for solving linear Boolean equations are known; they do not
seem as yet to have been considered in connection with covering problems.
This seems to be a potentially useful direction for future work.

If just one = -minimal cover is wanted, the naive method may
sometimes be useful., We have in mind the case that < is derivable
from a cost function ¥ , with the cost of a cover being given as the
sum of the costs of its columns. The procedure is to examine in succes-
sion sets of columns, starting with those of cardinality / , then those
with two columns, and so on. Each time that a cover is found, its cost
is recorded, and compared with the costs of those already found. The
procedure is carried out to the point at which it can be determined that
the cost of any set of columns of larger cardinality would be larger
than the minimum cost so far recorded. At this point, the recorded cover

of smallest cost will be the desired minimal cover of A ,

5. The Boolean Algebra, or Prime Implicant Method. This method is

based on the following theorem, which shows that the irredundant covers
of R are in one-to-one correspondence with the prime implicants of a
certain Boolean formula associated to the matrix A . Here, the a::

are the entries of A ,

Theorem: Define the Boolean formula, F(A} , by:

F(A)&"—\a/uclu...ua’ ” \)"'(anIc[ u..-ua’mn c”)

n~n )

-16-
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where we have used the letters C, ,o00, Cp tO denote both the columns
of A , and Boolean literals. Then ¢'= SC‘;' s oo Cop f is an
irredundant cover of A if and only if the formula F(c)= Ce,oor G,

is a prime implicant of F(A),

Proof: We show that, in general, a subset S = gc‘;” ceey €2, F

of § is a cover of A if and only if the formula F(S)= ci, C;.',_

is an implicant of F(A) (i.e. F(§)=> FCA) | wel1, if S=ic.,..., ¢,
is a cover of A , then Ale )= (n) , 8o that the system (*) is
satistied, with €5 = lg ..., 4 F:

]

P

d

d’u'ﬁ/ AR Ua’ilﬂ "jn

am',"u..,uamn A}" -1
Thus (a,u»;‘u-uua,m 7.,)"'(57'»1,4;,0"' voa,, 7‘,) = ’j

now the expression on the left here is that obtained by substituting Atq
for ¢; in F(A) , for j=4, ..., . Since y; =/ if and only if
C; € S , it follows that the formula F(S) = ¢, . + €., takes the
value one only upon this same substitution of the " for ¢; . Thus
the product F(S) = C;,- - Ci, implies F(A) , and F(S) is an
implicant of F(A) . A reversal of the argument shows that conversely,
if F(S) is an implicant of F(A) then S is a cover of A . Thus the
problem of finding irredundant covers is transformed into the problem
of finding the prime implicants of a certain formula given as the
product of sums of literals, i.e., the problem of finding the star
formula F*(4) of F(A) . The existing known methods for finding
prime implicants can then be brought to bear. In particular, since f(A)
does not contain complements, F*(A) may be found by first multiplying-
out F(A) and then simplifying by deleting redundant terms and literals.
We remark that, as we have seen in the discussion of the examples,
the problem of finding the prime implicants of a function can itself be
formulated as a covering problem, so that any progress in finding better

algorithms for computing % -minimal covers would lead to improved
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methods for finding prime implicants,

The theorem, in the special case of irredundant normal formulas,
is implicit in the work of Samson and Mueller [10]; the first explicit
statement and proof seems to have been given by Petrick [11]. The

presence-function defined by Gaulé [12] is also a function whose

‘prime implicants correspond to irredundant normal forms (his derivation
of it is somewhat different, however, and belongs more properly to the

situation of minimal including sums discussed below in section 7).

6. Branching Methods. Consider the system (*) of equations for the

covering problem:
(*) a,,,'x,u‘--Ua/‘x,,=:/;
Gy X, U -+ U a,, x =1,

It {s a trivial, but as this section will demonstrate, an extremely
useful observation that an irredundant solution of (*) either will
have X, 6=/ , or will have X, = 0 . This suggests that we split the
problem (*) up into two smaller ones, viz. first find those irredundant
covers of A , if any, which do not contain column C,, and then find
those, 1f any, which do. 1In order to describe the procedure we need
a bit more notation. We will denote the set of = -minimal covers of
a matrix A by M ..:Cy s Where ..., c,, are the columns of A.

If c; 18 a particular column of A , we denote by M ..C, the
set of < -minimal covers of the matrix obtained from A by deleting

not only column ¢; but also by deleting in addition those rows of A

/ )

which meet C; . Thus, for example, if A= ,/,o,,’/ » with colums ¢ = (|
2 006 /) °

etc., then M * is the set of £ -minimal covers of the matrix, //
€.C.C,Cy e

Then our previous remark may be rendered symbolically as follows: the
< -minimal covers of A which do not contain column C, are exactly
the covers in the set M. et 5 the £ -minimal covers of A
which do contain ¢, are the covers in the set M el . Then

we may express the solution Mc\...c.. to the coveting problem in the

-18-
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following form:

A
() M ooen = min i Me e, s G Marc, b
\.""Cn °|,-l' Nel I n CI"'CQ

~ .

Here by C.,'.Mz.,‘...c., we vmeanhthe collection of sets ;C«.} v §
where $' ranges over the sets in M::,,“ . Here, also, by min {X,Y
we mean the collection of % -minimal sets in X U,

The formula (#*) is intuitively obvious: a < -minimal cover of A
either does not contain C,, or else it is composed of c, together
with a £ -minimal cover of those rows not already covered by ¢, , i.e.
those rows not meeting ¢, .

The two sub-problems are each of a smaller order than 4 , the
one having one column less, and the other having not only one columnm,
but also at least one row less.

Further simplification may be had by iterating formula (**). We

have for example, selecting columm C,_, as the next "pivot:"

A PN
Cpi

Cn
MC‘--C = h'” min SMcn"'ch‘& } c”-l * MC . [ }} MC."-C» ¢

' L] 1" nay

This may be written, using obvious properties of the wWiv s ) }
operation,
~ -~
Cn-t Con
(30x) Mc,...cn ,mmgMc.".ch_z s M s Mc,...c,, k .
It is necessary to point out that a sub-problem obtained by this
type of deletion may have no solutions. We have not mentioned it before,
but it is not difficult to see that a system of equations (*) will

fail to have a solution if and only if some row of the matrix A con-

sists entirely of zeros. For example, if in (¥#*) ¢, and ¢, , were

the only columns meeting some row of A , then Mc c vould be ¢.
100 Coen
In this case (¥*) would reduce to ~
. Coet Cw
C,---Cn - MDV\ cﬂ-' . Mc.“.‘n" , C” . MC,--‘C. } .

«19-
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In practice we may use this iterative simplification by choosing
for successive pivots all of the colums which meet a chosen row of A.
We obtain then a determinate set of simpler problems, and we are sure
that a £ -minimal cover of the original matrix A must be a % -minimal
cover of one at least of these sub-matrices.

Another practical method of procedure is the following. First

choose an irredundant cover of A , and re-arrange the columns of A

so that those in the cover are the first v columns €y, Cr
Then SC,,...,C,} is the only cover of the matrix [C, vee Gy ],
i.e. Mc.,-..c, = fc”,.., c,.f . Now consider the problem MC.-’-C,C,N

By (**) the £ -minimal covers of this are:

~
. [
Mc""crcr‘l = mn §ic"no~)cr}, CV‘I MC|"'CPfI } .

Having these, we repeat the procedure, adjoining the next column
of A , using (**) again, and so on.

There are other variations which may be made in using the branching
technique in specific problems. A good summary of various procedures
can pe found in the papers of McCluskey and Pyne ([la]-[lc]). In
section 2 above we have pointed out that Roth's extraction algorithm
is basically the same as the branching technique. Menger's procedures
[13] for finding minimal normal formulas seem, also, to consist among
other simplifications, in an ingenious adaptation of the branching tech-

nique.

7. An application to minimal includitm sums. The Gazg_e_-Rado' Technique.

Let 'f',,,.., ;,, be a set of formulas and 7,,..., T, a set of terms
such that T, v .- U, = f V- f . The problem of minimal includ-
ing sums for M v...u T, is as we have seen, to find those "sub-sums"
of f, v --~u‘F,, which are also implied by each T; , and which have the
property that none of their proper sub-sums are implied by T, u---u ., .
The usual formulation of this as a covering problem uses the matrix A
whose entry Q;; is | if T, = ﬂ' , and © otherwise. The following

theorem shows that we may solve the problem in essentially the same

-20-
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manner as our previous covering problems, except that now we admit the
use of matrices whose entries are not necessarily © or / , but may
be any Boolean function. We need to define some terms occurring in the
statement of the theorem.

Denote by 5") (7;) the function obtained from % by substituting /, o
(according as the corresponding literal is X or X ) for the variables X
which occur in TN , and leaving the rest of the variables in f-.; un-
touched. If W. is. X X, ,
is the function |.0: %, UX X = X‘X* .

We define the matrix B by stipulating that its entry L‘,-_'; shall

for example, and ';J- is X% %, u % %, , then f;,-(’IT()

be ;J"UT&) .. We label the columms lo”,,,) b,, and consider the b; also

as Boolean literals. If S= Eb,;,) cee A‘-r is any set of columms, we
denote by F(S) the product, F{S)=b; ... b;, of the literals correspond-
ing to these columns.. If 3= 4-;’ v - . v ;gr is a sub-sum of 4’; vited Py
we let this corrgspond to the set S = Ské‘) ceey la;’f of colums. The

formula F(S) is then the product of the literals b, , cer, b+ correspond-
’ ' ‘r

ing to the summands of Q—L- N ) ‘}“'_.

Denote by S'-', yer s 5,',.‘, the minimal including sumg-to-one in

% row of B ; we recall that this means the minimal including

the ¢
sums for the function / , which in our case, since T u-.-- U7, = -}- .
is the union of the entries ‘:'J'UT; ) in the ("™ row of B . Finally,

we denote by F(B) the formula defined as follows:
!

Fry = (F(su)u - U-HF-,,)) R G RV F(Sm”‘;).

The statement of the theorem is:
Theorem. The sub-sum 5:&,;,()'.. . U;é,. is a minimal including sum for
T u..- 0T, if and only if F(S) is a prime implicant of F{B).

The proof follows the same pattern as that of our previous thecurem
concerning the relation between prime implicants and irredundant covers.

Thus, let S='+..‘, U--- V¥, be a sub-gmof fu---u :p,, such fhat
F($) => F(B) . Then F(%)= F(Sa)u-er L F( Sir‘-;“ for eacl .

and since these formulas contain no complements, F(S)y= F(S;g) 1.

-21-
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some % . Thus the columms corresponding to S:%& are among those
corresponding to S . Thus we see that for each row, there is a
minimal sum-to-one whose corresponding columns are a subset of the

columns &.’,'3,, ‘f',;r . But this then leads immediately to the implica-

")
tion T, V... U T, = §'.:, v U‘)c,;r . Thus we have shown that each sub-
sum of §,U...0 %, such that F(§,,... % )= F(B) 1is an including

sum for T, u..- U T, . Conversely, a similar proof will show that
if = S'LI Ueo e u-f',;r is an including sum for TN v:..- 0 7, then F(S)
is an implicant of F(B) ., It follows that the minimal including

sums correspond to the prime implicants, and vice versa.

We close with several remarks dealing with the application of this
theorem.

The usual applications of the technique of minimal including sums,
for example, finding irredundant normal formulas, start with the
canonical sum of states representing the given function., In the prime
implicant problem, likewise, the rows of the prime implicant table
correspond to states or canonical terms. The preceding theorem shows
that we may use any normal formula representation of the function to
represent the rows of our matrix & . Thus, the summands, TT; , of
the given normal formula would correspond to the rows of B , and the
prime implicants of the function would correspond to the columns.
Since, in general, we can obtain a normal formula which has fewer
summands than states, we see that B has fewer rows than the usual
covering matrix A would have. This means a saving in the amount of
work necessary - in particular, the formula F(®) will have fewer factors
to be multiplied-out.

Off-setting this advantage, however, is the fact that this more
general procedure requires the computation, for each row of B , of
all of the minimal including sums of functions in that row. This may
very well amount to more work, for some problems, than using the
larger number of rows corresponding to the states, but together with

entries of © and | , only, in B.



Pankx MaTHEMATICAL LABORATORIRS, INCORPORATED 2417-8R-2
ONERIVERROAD o CARLISLE. MASSACHUSETTS

L A

There are ways of getting around the difficulty, but we have
not yet inveatigated them to the extent sufficient to decide whether
they are really ﬁorthwhile or not.

The entries $J(11"\ of the matrix B are what would have been
called "ratios" by Gazald, snd would have been denoted by 4'-3/1& 3
see [12], Gazagle however considered only terms for the "‘j ; in
this respect our procedure is an extension of his. Radé [14], in
his treatment of the general "presence'" function, gives a proof of
our theorem in the special case that the {'\T.“l are all of the canoni-

cal states for the function 4, U v "’n.
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There are ways of getting around the difficulty, but we have
not yet inveatigated them to the extent sufficient to decide whether
they are really worthwhile or not.

The entries c\,-(“:.\ of the matrix B are what would have been
called "ratios" by Gazald, snd would have been denoted by ‘;j/ﬂ'; ;
see [12]. Gazale however considered only terms for the "‘j ; in
this reapect our procedure is an extension of his. Radd [1l4], in
his treatment of the general "presence'" function, gives a proof of
our theorem in the special case that the {Tr.?i are all of the canoni-

cal states for the function 4, Ve U "',, .
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