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SCIENTIFIC REPORTS
their purpose and place

"THE EVER INCREASING NEED TO BE INFORMED has caused an
ever increasing volume of publications. The very quantity
of these publications, however, makes it difficult to satis-
fy the need, because it becomes more and more arduous

"A to locate the literature pertinent to any one subject; and
because any one of us becomes more and more weary of
having so much to read. Moreover, only a small minority
of these publications may help satisfy the need, because
an overwhelming majority is void of content.

Consequently, it ik imperative to present to the public
only manuscripts which do carry new information without

H* undue verbiage; hoping to be judged not by the number
of published pages but by their quality. In particular,

* papers in the field of Applied Mathematics ought to be
* published only if they contain one or more of the follow-

ing items: new basic results, new methods, new applicat-
ions, new numerical results, new presentation of difficult
and important topics, up-to-date bibliographies; and if
"the number of their pages is not dictated by the desire of
imposing upon the superficial reader.

To discharge our contractual obligations, we publish
Technical or Scientific Reports, such as the one you now
have in your hands. It has been our constant policy to

"* see to it, that they satisfy the above strict criterion.

PARKE MATHEMATICAL LABORATORIES, INc.

carlisle, massachusetts
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ABSTRACT

An abstract covering problem is formulated which includes as special

cases the prime implicant problem, the usual set-theoretic covering and

systems of representatives problems, and the problems of externally stable

sets, 1-widths of matrices and minimal including sums. The known methods of

solution are extended to the general case.
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Basic Features Common to Some

Combinatorial Covering Problems

by

J. A. Riley

1. Introduction. The most basic problem in the theory of minimization

of Boolean formulas is that of finding the minimal normal formulas

representing a given Boolean function. The known methods for solving

this problem all consist essentially of the following two steps: first,

find the irredundant normal formulas representing the function, and then,

second, use the preassigned criterion of minimality to extract
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the minimal formulas from the list of irredundants. It is well known

that the components of an irredundant normal formula are prime impli-

cants; the problem of finding the irredundant equivalents of a given

function breaks up, then, into two further problems: that of computing

the prime implicants of the function, and that of finding those unions

of prime implicants which are irredundant equivalents. The problem of

finding the prime implicants of a given function has been solved in

more or less satisfactory fashion, depending on the data in terms of

which the function is specified. Of course, in practice, enormous

difficulties may be encountered, the poirt being that there are functions

in not too many variables which have literally thousands of prime

implicants. Nevertheless, there does not seem to be too much room for

improvement in the existing algorithms. A much more serious problem

is encountered in the second step of the program, that of computing

the irredundant equivalents. The bulk of the succeeding sections will

* be taken up with descriptions of the known methods of solution of this

problem. These are essentially three in number, (if we except the

McCluskey-Pyne attempt to use the methods of linear programming;

see [16]), a 'naive' trial and error process, the 'Boolean algebra'

or 'multiplying-out' method, and the 'branching' technique. In one

form or another the basic ideas of these methods underlie all known

procedures and algorithms for finding irredundant normal formulas.

In the course of our work on these problems, we had devised

several procedures which, at first sight, appeared to be quite promis-

ing. On closer examination, however, these turned out to differ only

trivially from one or the other of the methods just mentioned.

The fundamental difficulty in applying each of these methods is

that they each require the generation of many more formulas than are

actually found to be irredundant, that is, none of these three methods,

it seems, goes to the heart of the matter in as direct a fashion as

would be desirable. It should be mentioned that if minimal formulas

"5-
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are what are desired, the minimality criterion may be applied at

various intermediate points in the computations; this has the effect

of weeding out more quickly those formulas which would eventually be

found to be non-minimal. Even so, the problem still remains - to

devise a procedure which will• in some sense, avoid the necessity of

considering a host of superfluous formulas, and give the desired

irredundant and/or minimal formulas in a straight forward, effective

fashion.

This is obviously a vague objective; it may even have been

attained. By this I mean that it could be maintained, without obvi-

ous objection, that the Boolean algebra and branching methods are

themselves optimal o: near-optimal, at least as far as the computation

of irredundants is concerned. However, we feel that there is merit

in attempting to improve and extend these algorithms. At the very

least, we may discover various improvements in detail which would make

the concrete applications of the methods more tractable.

In view of the preceding remarks, therefore, we have undertaken

to survey the published literature on these subjects, and to try to

extract the essence of what has been accomplished. The following

sections constitute a first draft of our findings. Very early in our

work, we discovered the already more or less well known fact that our

problems are abstractly identical with other combinatorial problems,

currently under study, such as set-theoretic covering problems, the

"prime implicant" problem, the theory of minimal including sums, and

the theory of "l-widths" of matrices of O's and l's. This abstract

identity consists in the fact that each of these problems is a special

case of a more general abstract "covering" problem, which we present

in section 2. The methods used by various authors for solving the con-

crete problems are themselves capable of being abstracted to give

methods for solving our general problem. In sections 4. 5 and 6 we
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give our abstract version of these. In section 4 we give what we feel

is a useful mathematical framework for the discussion of such problems.

In section 7 we turn to a special case - the problem of minimal includ-

ing sums. We show how the multiplying out method may be combined with

Gazale's method of "fractions" to yield an interesting method of finding

minimal including sums.

.Our presentation is necessarily very sketchy, our main purpose

being simply to present what we feel is the essence of these concrete

covering problems. For the purpose of maintaining contact with the

literature we give in section 3 a list of these concrete problems,

together with an indication of how they fit into our general framework.

We have not attempted to write a complete "comparative anatomy" of the

literature, but have limited ourselves here to an occasional remark at

the appropriate point in our discussion.

The list of bibliographical references at the end is not known to.

be complete; we present it simply as an adequate and useful collection

of source-material discussed here.

2. The Abstract Covering Problem. Let R,C be finite sets, and j: R--. C

a relation between R and C , i.e. a multiple valued mapping from F to

C . We will assume that JP is onto,i.e. that each element e of C is

contained in fur) , for some YR. We will also assume that the domain

of F is the whole of R . If ret and QE C , we will say that c

covers • if C4 jpf() A subset CI of C is a cover of R if for

each Te , (,r) n C' is not empty, i.e. if each element of R is

covered by at least one element of C. If C Care covers of K,

and C " S ' Y then G. is called a sub-cover of C . It is obvious

that C is a cover of R and that any cover of R is a sub-cover of C.

A cover C' of R is said to be irredundant if no proper subset

of C' is a cover. It is easy to see that any cover of R contains an

irredundant sub-cover.

Our first covering problem is: (I) Find the irredundant covers of R.

-7-
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Conceptually, of course, this problem has a trivial solution, viz.

list, in some order, all of the covers of R , and then pick out those

which are irredundant. In practice, however, such a procedure is

almost never practicable; what is needed is a method of circumventing

this exhaustive listing.

A second problem, possibly even more important for the applications,

is that of. finding minimal, weighted covers.

A cost function, I on C , is a map which associates to each sub-

set 5 of G a non-negative real value, r(S) : the "cost" of S.

We assume in addition that t satisfies the axiom: if SE _S , then

r- 5) ., with equality only if 3' S A cover, , of

Is said to be V -minimal if for any other cover C", •(c')e •(c.

It is easy to see that a Y -minimal cover is necessarily irredundant

(although the converse is not true).

Our second covering problem is then: (II) Find the 't -minimal

covers of R

The remarks made above concerning the impracticality of starting

with an exhaustive list of all covers also apply here. What is needed

here also is a more refined method for finding minimal covers - one

which does not require at the outset a listing of all covers.

A possibfe solution consists in first computing the irredundant

covers; we have noted above that any Y -minimal cover is irredundant.

The minimal ones may then be located by inspection.

In many cases of practical interest, the number of irredundant

covers is uncomfortably large, so that, again, it would be desirable

to find methods of computing minimal covers directly.

It is possible to combine both problems (I) and (II) into a single

more general one by introducing an abstract order relation into the

collection of subsets of G Precisely, we will assume the existence

of a "pre-order" relation, which we will denote by " on the subsets

of C , and which satisfies the following axioms:

-8-
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a) i 5 for all subsets S of C'

b) if S!T and T6U , then SAV)

c) if S'-C , then S' £ 5 , and, in this case, $- S

only if S = 5'.

It is easy to see that the relations of set-inclusion, and of

"cost less than or equal to" are concrete instances of the pre-order relation

It is important to notice that we have deliberately not assumed that

S'•- S and S E' together imply that S- S' . This last property

is one of the usual requirements for a so-called partial order relation.

Mhe relation, S of set-inclusion does, of course, possess this property

of 'exclusivity;' the cost relation, however, does not, since it is

possible for distinct subsets to have the same cost.

In terms of -- , a ! -minimal cover C' will be one which satisfies

the property : if C" is any cover of R such that C- C' ,then in

addition, G'-E V .

Specialization of this notion yields immediately the notions of

irredundant, and of Y -minimal cover. We point out that in view of

axiom c), any :S -minimal cover is also an irredundant cover of R.

The general covering problem with which we will be concerned here

is then the following, and includes (I) and (II) as special cases:

(III) Find the 4 -minimal covers of P .

Since -- -minimal covers are irredundant, we again have a first

tentative solution : find the irredundant covers, and then weed out

those which are not :E -minimal.

In the following sections we will adapt the known methods for

finding irredundant and minimal covers to our more general situation.

We point out here that Roth [2] has given an algorithm, the so-

called "extraction" algorithm, for solvin& a very general covering

problem. His problem is essentially the same, in another terminology,

as our abstract version, the only difference being that he allows for

the presence of "don't-care" conditions; we may express this by saying

"-9-
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that the domain of p is not necessarily the whole of R

The algorithm itself, translated into our framework, is exactly

the branching technique, to be discussed in section 6.

3. Examples. In this section we collect a number of examples from

the current literature which may be interpreted as covering problems

and which fall within our abstract framework.

Example A. Set theoretic coverings. If R= is a

finite set, and C - cI...I "j is a collection of subsets of R

such that R= cu ... cr ) then C is called a cover of K . A sub-

set, C', of C is a sub-cover of C if R=V C%1¢•€

i.e. if each element of R belongs to at least one set in C' Denote

by W1'I the cardinality of C' , i.e. the number of sets which it

contains. Then the minimal covering problem is : find the minimal sub-

covers of C , i.e. those sub-covers of smallest cardinality. To show

that this problem is a special case of our general one is easy : we

define ?•(' to be the collection of sets CL in C which contain r

and we define 5' 5 S to mean that S' has fewer sets than S.

Edmonds [3] gives an interesting extension to these set-theoretic

covering problems of the Berge-Norman-Rabin theory (see (4] and the

references given there) for minimal coverings of a graph. It seems

that any covering problem may be transformed into a variant of the

covering problem for graphs; the Berge-Norman-Rabin technique is then

generalized to obtain some information concerning the structure of

minimal covers. We have not included any discussion of this theory

here both because it lies in somewhat different direction and because

a definite algorithm for finding minimal covers has not yet been obtain-

ed (for the general problem, that is; the Berge-Norman-Rabin theorem

(cf. [4]) yields a more-or-less explicit algorithm for the "ordinary"

covering problem for graphs).

-10-
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Example B. Systems of Representatives. Let R T, be a

finite collection of finite sets ' r, , and let C denote the

union of the sets in R, G-USLVO% eR 3  . A subset G' * r)...,cvj

is a system of representatives of R if each set V"4 in K. contains at

least one cl from C' . An irredundant system of representatives is one

such that no proper subset of it is also a system of representatives.

One problem which may be posed is to find the irredundant systems of

representatives of R . If a cost function is defined by attaching a

cost or weight to each element of G . we may pose the problem of

finding the systems of representatives of smallest cost; here by the

cost of a system of representatives we mean the sum of the costs of its

elements. It is easy to see how this problem also fits our general

pattern.

Example C. The Prime Implicant Problem. Let F be a Boolean function,

r , -rW, its prime implicants, and p,, ... , c, its canonical terms

or states. The prime implicant table for F is defined to be the matrix A

whose entry a•j is I if Pz implies ITI , and o otherwise. The prime

implicant problem is to find the sets of columns covering h having as

few columns in them as possible - i.e. letting the cost, V(S) , of a

set of columns be the number of columns in it, the problem is to find

the V-minimal covers of A .

Evidently, these f -minimal covers correspond to those normal

formulas representing F which consist of a minimal number of summands.

Variations in the problem are possible; we can ask for the

irredundant covers, for example. These correspond to the irredundant

normal formulas representing F . In his thesis [la] McCluskey gives

several other cost functions which may be used.

The prime implicant problem has been treated extensively by

McCluskey and Pyne in their two papers ([2], [3]).

S~-11-
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Example D. Minimal including sums. Let • 4. be a set of Boolean

formulas, each of which is U -irreducible, i.e. is a product and let

be a formula, (or function) such that ct implies u ...

Then ' U,.. 0 is called an including sum for c. (the fact that f f
is also sometimes expressed as " includes . ;" hence the name

"including sum"). It may also happen that ck implies a "sub-sum"

u U... ou+Lr of ,. u .• , . Such a sub-sum 4, u. uJK'. is

said to be a minimal including sum for . (composed of one or more of

the Z ) if a) qimplies 4•.Z... -, , and b) ý implies no other

proper sub sum of , U... U U k
Denote by h,,-..,• the canonical states of . Then each p;

implies 7u ..u 4- . We define a matrix A as follows : /

if ý: implies 4- , and a.. -- o if p4 does not imply . . Then A is

a matrix of o'5 and 1's, and the minimal including sums for I correspond

exactly to the irredundant covers of A

If is equivalent to the function I , then ;, u... u is

equivalent to I , also, and is called a "sum-to-( e." In this case

the problem is to find the minimal sums-to-one contained in {,U-. ULF.

The problem of finding the irredundant normal formulas representing

a given function j is evidently a special case : for this we would

take the ý' to be the prime implicants of I *

We may formulate the problem of finding the prime implicants of a

given function F as a problem in minimal including sums. More exactly,

we show how to find the prime implicates of the dual function, &FF.

The prime implicants of F are then the duals of the prime implicates

of RF .

We take for C the set of literals which are essential to F , and

for R any set of terms whose union is a normal formula representing F.

Then the set of literals is an including sum for F , and the minimal

including sums are the prime implicates of F .

The theory of minimal including sums has been developed by Samson
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and Calabi [5], and has been applied in [6) to the determination of

higher order minimal formug.&.

Example E. Externally stable sets. If G is a graph, a set 'r of

vertices is called externally stable if each vertex of G not in Tr

is joined by an edge of G to at least one element of T . A minimal

externally stable set is one having a minimum number of vertices. The

problem is : find the minimal externally stable sets of a given graph.

To see that this is a special case of our general problem, we take

V, ,where the V; are the vertices of C ,and

we define a,, to be I if vý and vy are joined by an edge of C,

and a,. = o if V and vj are not joined by an edge of & . Then each

row and column of A = (a.. corresponds to a vertex of G . If we

define the cost of a set of columns to be the number of columns in the

set, we obtain a cost function • , and it is easy to see that the

minimal externally stable sets of G are in one-to-one correspondence

with the t -minimal covers of A.

The algorithm given by Berge ([7]; pp. 42-43) for finding a minimal

externally stable set is essentially the branching method to be dis-

cussed below.

Example F. 1-widths of matrices. The concept of width of a matrix

of zeros and ones plays an important role in many combinatorial problems

of current interest ([8]). If A is a matrix of zeros and ones, the

1-width of A is by definition (transposed into our terminology) the

smallest number of columns such that each row meets at least one of

these columns. Thus the theory of 1-widths of matrices also falls within

our general scheme.

The article by Edmonds referred to in Example A above shows that

the more general concept of aL-width (cf [8]) of matrices and O' and I s

also can be formulated as a covering problem.

-13-
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4. Matrix Formulation. The Naive Solution. Basically, there ere

three known methods for the solution of covering problems: the

"%aive" solution, the Boolean algebra, or "oultiplying-out" mdw4p

and the branching technique.

We have omitted from consideration the application by McCluskey

and Fyne [16] (see also Breuer, [91) of linear programing techniques

to the normal minimization problem. This technique may of course be

applied in a similar fashion to find the t -minimal covers of a

general covering matrix, at least in the case that the cost of a

cover is the sum of the costs of the columns which it contains. Certain

serious difficulties (analyzed in [163) are encountered in the use of

the 'classical' linear programming techniques; further investigation

devoted to the resolution of these difficulties would be desirable.

It will be convenient, for our subsequent exposition, to have the

problem formulated in matrix terminology.

Let the elements of R be Y,...) rm and those of C, C... .

The matrix A= (c.j) of the relation is by definition given by:

&Z.. - / if cje p 9(%,) , and -O if CS Ajf(0~ . we

will denote the rows of A by t, ,.., rl" and the columns of A by

C, .. IC, - the notation was originally chosen with this in mind.

We say that row r, meets column ai if a. - / , i.e. if c; 6 f C r,.

A cover of R , or as we shall say, of A , is a subset C of the set

of columns of A such that each row in R meets at least one column

in C . The translation of the notions of irredundant cover, t -minimal

and •- -minimal covers into the terminology of rows and columns is

simple.

Now it is well known that the Boolean algebra of subsets of a

given set C is isomorphic; in a technical sense, to the Boolean

algebra of h -tuples of o's and 1'S , where v is the number of elments

in C . The explicit description of this isomorphism will yield us a

way of transforming our covering problem into the problem of solvisg

a certain set of Boolean equations.

-lii-
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Denote by J(C) the Boolean algebra of subsets of C, C 01 ,, .. ,, c,,

and by F3 the algebra of V -tuples of o&s and Is . We define the

map c: .(C) -: 8, by S--> es = ... , ,where ij - I

if c S and O if C S . It is not at all difficult to

see that the Boolean operations of union, intersection and complementa-

tion are preserved, ard that, in the technical language, e is an

isomorphism of the two Boolean algebras. If 5 is the empty subset, e•
is then -tuple consisting entirely of zeroes; the subset C itself

corresponds to the n3 -tuple, (1), consisting entirely of I's.

Consider the system of equations

Y* -) U)L

If C' is a cover of F , then the components , • of the
corresponding Y) -tuple ft =C, -- • , ,, ') 1,) are a solution of the

system (*) The reason for this is that if a row Yj meets C, C

then 0,i,, , so that upon substitution of the for the Xj in (*),

the left side of the Z equation becomes ., , U.-. U , ý U.. a',
and since aj / , =i and • . I ( C. being an element of C' ), we

have that oi • / , and the left side is equal to / . Thus

(1,) ... , I ) is a solution of the iý equation of (*), and this is

so for each I . Conversely, it is easy to see that if A,, ... , ,, )
is a solution to (*), the corresponding subset C1 of C , for which

eC1 =- 1,)..., I,, , is a cover of R .

Our general problem (III) becomes then:

(II') Find the - -minimal solutions of the system (*).

It should be remarked that our assumed pre-order relation -

has been transported bodily from the collection J(C) of subsets

of C to the corresponding isomorphic algebra of v)-tuples - we say

that e : e , for two h -tuples C and V, if ":t

-15-
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The first method of solution of (III') is what can be called

the "naive" method.. It consists simply in examining, one after the

other, the various Yi -tuples of ' . and J's to determine the ones which

are solutions of (*). From the list of solutions, the ! -minimal

covers can be located by inspection. We have already mentioned that

this exhaustive method ts not generally practical. A better, but still

impractical, way of proceeding, would be to solve the system (*) by

some algebraic means, analogous perhaps to successive elimination of

variables in solving ordinary simultaneous systems with real coefficients.

Techniques for solving linear Boolean equations are known; they do not

seem as yet to have been considered in connection with covering problems.

This seems to be a potentially useful direction for future work.

If just one ý" -minimal cover is wanted, the naive method may

sometimes be useful. We have in mind the case that t is derivable

from a cost function ' , with the cost of a cover being given as the

sum of the costs of its columns. The procedure is to examine in succes-

sion sets of columns, starting with those of cardinality J , then those

with two columns, and so on. Each time that a cover is found, its cost

is recorded, and compared with the costs of those already found. The

procedure is carried out to the point at which it can be determined that

the cost of any set of columns of larger cardinality would be larger

than the minimum cost so far recorded. At this point, the recorded cover

of smallest cost will be the desired minimal cover of A .

5. The Boolean Algebra, or Prime Implicant Method. This method is

based on the following theorem, which shows that the irredundant covers

of R are in one-to-one correspondence with the prime implicants of a

certain Boolean formula associated to the matrix A . Here, the O:,

are the entries of A .

Theorem: Define the Boolean formula, F(A) I by:

F(A)- Ct

-16-
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where we have used the letters C, .. C,, to denote both the columns

of A , and Boolean literals. Then C'= cz, , .o., Ce':f is an

irredundant cover of A if and only if the formula FC') (d C

is a prime implicant of F(A)

Proof: We show that, in general, a subset = c;z,,.o-, CZ1.

of C is a cover of A if and only if the formula F(S) C;,.• C*

is an implicant of F(A) (L.e. F(S) 4> F(A)) . Well, if S-I,,..-, ,

is a cover of A , then A(%)= (0) , so that the system (*) is

satisfied, with es

Thus (al U-.Iu•,q.. , )
now the expression on the left here is that obtained by substituting Af;

for Cý in F(A) , for •=i, ..- Since if and only if

CE 6 S , it follows that the formula F(S) C,.. ' ," takes the

value one only upon this same substitution of the for Cý . Thus

the product F(S) CS. Ca implies F(A) , and F(S) is an

implicant of F(A) A reversal of the argument shows that conversely,

if F(S) is an implicant of F(A) then S is a cover of A . Thus the

problem of finding irredundant covers is transformed into the problem

of finding the prime implicants of a certain formula given as the

product of sums of literals, i.e. the problem of finding the star

formula F*(A) of F(A) . The existing known methods for finding

prime implicants can then be brought to bear. In particular, since F(A)

does not contain complements, F#(A) may be found by first multiplying-

out W(AI and then simplifying by deleting redundant terms and literals.

We remark that, as we have seen in the discussion of the examples,

the problem of finding the prime implicants of a function can itself be

formulated as a covering problem, so that any progress in finding better

algorithms for computing -- -minimal covers would lead to improved

-17-
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methods for finding prime implicants.

The theorem, in the special case of irredundant normal formulas,

is implicit in the work of Samson and Mueller [10]; the first explicit

statement and proof seems to have been given by Petrick [11]. The

presence-function defined by Gasale [12) is also a function whose

prime implicants correspond to irredundant normal forms (his derivation

of it is somewhat different, however, and belongs more properly to the

situation of minimal including sums discussed below in section 7).

6. Branching Methods. Consider the system (*) of equations for the

covering problem:

Z,, X, U -. L),/ X, =l(*)•.•

/ X• L '' ',,,~, x, ="

It is a trivial, but as this section will demonstrate, an extremely

useful observation that an irredundant solution of (*) either will

have X,, Y ,or will have X, = 0 This suggests that we split the

problem (*) up into two smaller ones, viz. first find those irredundant

covers of A I if any, which do not contain column C.1, and then find

those, if any, which do. In order to describe the procedure we need

"a bit more notation. We will denote the set of --± -minimal covers of

" matrix A by M , where C,,..., C, are the columns of A-
If c; is a particular column of A , we denote by the

set of ± -minimal covers of the matrix obtained from A by deleting

not only column d but also by deleting in addition those rows of A
which meet C. Thus, for example, if A=// ,with columns C,

etc., then MC, is the set of !- -minimal covers of the matrix, (.
CC-LC3 CO (

Then our previous remark may be rendered symbolically as follows: the

E -minimal covers of A which do not contain column C, are exactly

the covers in the set M.,the ! -minimal covers of A

which do contain CA are the covers in the set . Then

we may express the solution ! .. c to the covering problem in the

-18-
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following form:

C.,,

Here by C.. %...c, we mean the collection of sets c.. 3 So

where S' ranges over the sets in M... . Here, also, by *o) X

we mean the collection of ±- -minimal sets in X U Y.

The formula (**) is intuitively obvious: a * -minimal cover of A

either does not contain CA,, or else it is composed of e-I together

with a ±z -minimal cover of those rows not already covered by C, , i.e.

those rows not meeting C..

The two sub-problems are each of a smaller order than A , the

one having one column less, and the other having not only one column,

but also at least one row less.

Further simplification may be had by iterating formula (•*). We

have for example, selecting column C0.1 as the next "pivot:"

hi, MC I ; ... c .- M _CJ

This may be written, using obvious properties of the Wi• j *
operation,

a• ,.., ..... ,.C,

It is necessary to point out that a sub-problem obtained by this

type of deletion may have no solutions. We have not mentioned it before,

but it is not difficult to see that a system of equations (*) will

fail to have a solution if and only if some row of the matrix A con-

sists entirely of zeros. For example, if in (***) e, and C..- were

the only columns meeting some row of A , then M . . would be '.

In this case (*) would reduce to

M e'.. . C10190-) C Co .
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In practice we may use this iterative simplification by choosing

for successive pivots all of the columns which meet a chosen row of A.

We obtain then a determinate set of simpler problems, and we are sure

that a ý_. -minimal cover of the original matrix A must be a !- -minimal

cover of one at least of these sub-matrices.

Another practical method of procedure is the following. First

choose an irredundant cover of A , and re-arrange the columns of A

so that those in the cover are the first r columns C,. " C.

Then CC,,..., eA is the only cover of the matrix E •, . 1,
i.e. = ,. Now consider the problem V1

By (*-) the _ -minimal covers of this are:

Having these, we repeat the procedure, adjoining the next column

of A . using (**) again, and so on.

There are other variations which may be made in using the branching

technique in specific problems. A good summary of various procedures

can oe found in the papers of McCluskey and Pyne (fla]-[lc]). In

section 2 above we have pointed out that Roth's extraction algorithm

is basically the same as the branching technique. Menger's procedures

[13] for finding minimal normal formulas seem, also, to consist among

other simplifications, in an ingenious adaptation of the branching tech-

nique.

7. An application to minimal including sums. The Gazale-Rado" Technique.

Let ;1, 1 , be a set of formulas and V, 5... 7 "TIr a set of terms

such that 1r v ,' - 7 4- uuu fl . The problem of minimal includ-

ing sums for 11 U ... U 1T, is as we have seen, to find those "sub-sums"

of o U ... u fV which are also implied by each TL , and which have the

property that none of their proper sub-sums are implied by IT U... U T7,.

The usual formulation of this as a covering problem uses the matrix A

whose entry ,41. is I if 7Tr , , and o otherwise. The following

theorem shows that we may solve the problem in essentially the same

-20-
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manner as our previous covering problems, except that now we admit the

use of matrices whose entries are not necessarily 0 or / . but may

be any Boolean function. We need to define some terms occurring in the

statement of the theorem.

Denote by 77(i) the function obtained from 4. by substituting ,, o

(according as the corresponding literal is X or 3 ) for the variables x

which occur in T7r , and leaving the rest of the variables in un-

touched. If T is, X, for example, and iý is x,% , then xk )

is the function I.o.)( 3UY•)= X1Xf.

We define the matrix B by stipulating that its entry L.-; shall

be ý2 ITr:) . We label the columns k,..., b and consider the also

as Boolean literals. If S= 6,,ý., b•'r is any set of columns, we

denote by FRc) the product, :%) .. b of the literals correspond-

ing to these columns. If u .u is a sub-sum of fr •... -.

we let this correspond to the set = . , ! of columns. The

formula F(S) is then the product of the literals b, .. correspond-

ing to the summands of -. L 4z .

Denote by ', ... , • the minimal including sums-to-one in

the . row of 8 ; we recall that this means the minimal including

sums for the function I , which in our case, since TT, L..- 7, .-.- +.

is the union of the entries ±(1Tz) in the Zi4 row of R . Finally,

we denote by F(B) the formula defined as follows:

rF( ) F\' ,,)J F/ , :71r, .. , ' v . F( ,.5 .

The statement of the theorem is:

Theo.em. The sub-sum ^. is a minimal including sum for

"Trot7.1u- if and only if F(S) is a prime implicant of F&'j.

The proof follows the same pattern as that of our previous tbe'.rem

concerning the relation between prime implicants and irredundant c:,-ers.

Thus, let S=4-Z, 0"" U r be a sub-saunof u...u- ..- such , at

F(S) - F(s) . Then F(s) =' F(S,) .J. U F(st. for eac!

and since these formulas contain no complements, F(S) => F (S f)
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some Thus the columns corresponding to Y;f are among those

corresponding to 9 . Thus we see that for each row, there is a

minimal sum-to-one whose corresponding columns are a subset of the

columns , 4. . But this then leads immediately to the implica-

tion T, u... U Lr,, =4 Z, U ... U• . Thus we have shown that each sub-

sum of -, U... U f,. such that F(QI.. 4" ) =ý F(.) is an including

sum for Tr, u... U TI- . Conversely, a similar proof will show that

if ý = 4. U... • P is an including sum for 1T7 u... U !fl , then F(S)

is an implicant of F(F) . It follows that the minimal including

sums correspond to the prime implicants, and vice versa.

We close with several remarks dealing with the application of this

theorem.

The usual applications of the technique of minimal including sums,

for example, finding irredundant normal formulas, start with the

canonical sum of states representing the given function. In the prime

implicant problem, likewise, the rows of the prime implicant table

correspond to states or canonical terms. The preceding theorem shows

that we may use any normal formula representation of the function to

represent the rows of our matrix 5 . Thus, the summands, 7Tr, , of

the given normal formula would correspond to the rows of 8 , and the

prime implicants of the function would correspond to the columns.

Since, in general, we can obtain a normal formula which has fewer

summands than states, we see that 5 has fewer rows than the usual

covering matrix A would have. This means a saving in the amount of

work necessary - in particular, the formula F(S) will have fewer factors

to be multiplied-out.

Off-setting this advantage, however, is the fact that this more

general procedure requires the computation, for each row of B , of

all of the minimal including sums of functions in that row. This may

very well amount to more work, for some problems, than using the

larger number of rows corresponding to the states, but together with

entries of o and I , only, in B.
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There are ways of getting around the difficulty, but we have

not yet inveitigated them to the extent sufficient to decide whether

they are really worthwhile or not.

The entries ;j(1T% of the matrix B are what would have been

called "ratios" by Gazale, and would have been denoted by i/Ir, j

see [12]. Gazale'however considered only terms for the ;j ; in

this respect our procedure is an extension of his. Rado [141, in

his treatment of the general "presence" function, gives a proof of

our theorem in the special case that the £ IT are all of the canoni-

cal states for the function , ... U
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There are ways of getting around the difficulty, but we have

not yet inveitigated them to the extent sufficient to decide whether

they are really worthwhile or not.

The entries •,(1T) of the matrix B are what would have been

called "ratios" by Gazsele', and would have been denoted by j/1IT•

see [12]. Gazale' however considered only terms for the 43 ; in

this reapect our procedure is an extension of his. Radd [14], in

his treatment of the general "presence" function, gives a proof of

our theorem in the special case that the are all of the canoni-

cal states for the function ;, V ... U
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