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VIBRATION TN AN INCOMPRESSIBLE FLUID

Introduction

In the current procedure for calculating the natural frequencies
of & vibrating ship the effect of the fluid is teken into account by increase
ing the mass &t each section of the ship slong its lepngth by an added-mess.
The latter is obtained by the soecalled method of strip theory, first pro-
poged independently by F. M. Leuwls (17" and J. L. Taylor [2], in which the
added moss st e transverse section is Tirgt baken to be that for a two«éimen«
sicnal form of that shepe, end then the ordinates of this added-mass dis‘stf;ibﬁu-
tlon curve are multiplied by & comstant correchtion factor obtained from the
axaet ;oﬁential«-flm-r soluticn for a vibrating spheroid.

Tae eforementioned wethced hos yielded predictions of vibration free-
quency in good sgreement with sxperiment st the lower modes, but serious devie
ations observed at the higher ones raise the question vhether more exact the-
ories of both the elastic charscteristics of the ship and the effect of the
surrounding fluid might not be required. It has been reported [3] that an
attenpt is under way to improve upon the bean theory of ship vibration by take
ilng into account the 'three«dimenéiona}. gtructure of the hull, which clesrly

“becomes importent ot the higher modes of vibretion. Complementary to this is

the work reported here to improve upon strip theory by developing a unified
hyGroelastic theory of ship vibreatlion.

This work wes supported by Contract Noor 327L{01}{X) with the

Styuctural Mechsnics Laboratory of the David Taylor Model Besin,

General Thegry

) Pirst suppose thet the body conslsts of n discrete mssses cons
nectad by certain elastic restraints. Let oy denote a st of generallzed
coordinates which describe the displacements, asmmed smell, of the system

from equilibrivm, eund 4y the corresponding set of generalized velocities.

“Humbers in [ ] iudlcate references at end of veport.
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Then the kinetic energy of the body; TB’ is expressibLe in the form
‘ 5 . s o _ ‘
_271—3 —*f;;rmcj 7:.' ?J ) "(’/_/ —‘52/"'”»”—5”" (1)

in which the my 3
tions of position, but for small oscillations about equilibrium they nay be
assumed to have the constant values corresponding to the equilibrium posi-

tion, a; = 0 . Simultaneocusly the potential energy V of the system may

are generalized masses. In general the my 3 are funce-

" be expressed in the form

2v - % 'éeif ?“.?" SN IR Y (@)

in which, for the same reason, the ki 3 mey be coﬁsidered to be constants.

If the vibrating body is immersed in en incompressiblé fluid, the
fluid will also be set into motion and have kinetic energy '.'L'f which is ex-
pressible as the quadratic form [4]

BT il iernen

3

in vhich the ndded masees 8y 3 are alsc constants. The determination of
the 8y 3 is a hydrodynasmic, potentlal-flow problem. This may be approached
by Introducing velocity potentials ¢i corresponding to unit megnitude of
each generalized velocity - 9y and formulatipg N Neumsnn problems for the
¢:L . As is well known, the " a;y are expressible in terms of the 'di by
the relations [4] '

%, Z'Fffﬁb??é‘%ds “

in which the integral extends over the wetited surfaces of the system. By
formulating these Neumann problems as integral equations and replaéing the
integrals by quadrature formulas, the solution of the Neumann problems and
the evaluation of the a; 3 gre reduced to linear algebra. This procedure
becomes feaslble if high speed computing equipment is avallable.
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’ The dynemical equations of motion can now be obtained by employing
- Lagrange's formulation

at aq; G -

(5)

in wvhich L = Ty + T - V . Hence, from Eqs. (1), (2) and (3), we obtain

Zi(”fﬂﬁ +0Vij,) % + btJ Ck] = 0 ~L,j = l',2)'. .o (6)

J“

a set of N linear, homogeneous, ordinery, differential equations. Such a
t gysten can be solved by assuming hermonic solutiong with freguency ) of the
form '

4 = & g™t (7) -

This, substituted into equetion {6), yields the set of linear equations
o & . . -
[?_ [w (M +ag) h.”.] B =0 (8)

which has solutions if and only if the determinant ‘of the coefficients van-

ishes

,wz(maﬁ%)* ki ] = 0 o (9)

The values of 692 for vhich equation {9) is satisfied are the
eigenvalues of the matrix H Ky ” with respect to ll my+8y J’L[Slo In

the present case, in which both matrices are posltlve definite, there are

N = 3n reel eigenvalues and hence the same number of natural frequencies.
When such a pair of metrices has been obtained, the determination of the
eigenvalues is best performed with a high-speed computer for which appropri-
ate programs are alreedy avellable.

When the body is an elastlc c:bntinuum, the 'expressions for the
kinetic and potential energies will appesr as integrals and the system mey

L VRV
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be considered as a limiting case of the one previously discussed, having an
infinite rumber of degrees of freedom. A procedure for obtaining numerical
solutions for the eigenvelue consists of approximating the system by one
having a finite number of degrees of freedom which can then be treated by
the method outlined above. This can be accomplished either by replacing the
integrals by quadrature formules and the space derivatives of the displace-
ments (which occur in the expressions for the potentisl energy) by differ-
ence formulas, or by variationsl methods such a.sl those of Reyleigh«Ritz and
Galerkin, ' '

In comparison v;ith strip theory, the forégoing method introduces
the surrounding fluvld into the problem in a simple, unified manver, without
assumptions, and takes into account quite naturally the hydrodynamic inter-
ference effects which are represented by the nondiagonsl elements of the

” B3 “ added-mass matrix. In strip theory it is assumed that the non«
diagonal elements are zero. When these elements are small in compariscn with
those of the principal diagonsl, application of the method of matrix pertur-
bation yields a procedure for correcting the frequencies calculated by strip
theory. -

These considerstions are illustrated in the following by several
cases, culminating with a formulation of the procedure for a éhip undergoing

a verticaleshear vibration.

A System of Three Degrees of Freedom

As an example of a system with a finite mumber of degrees of freew-
dom, consider s massless string under tension T , extending from x =0 to
%= 4, to vhich smell spheres of rzdius aA and mass m ave attached at the
points x=1, 2, 3., Let ¥y » Yp s ¥z Qenote small lateral displace-
ments in the y-direction of the spheres at x=1, 2, 3, respectively. If

~ this system is displaced from equilibrium, and the effect of the surrounding

fluid iz neglected, its equations of motion are
yo= 2y ) :
o (Y -2 Y+ Ys) b . (10)
2 '
Yy = ¢ (%am2 %)

2
i

Q.
™
3}

s
1
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where ol* a Z’/ ”o

If one put
}fa = Ej e ,)=42,3 (11)
equations {10) becomé
%'(wz_zo(‘a) ‘ffézd'z =0
B o+l (WP-z2a?)+E, 0= 0

Ezocz"' Es(we“z‘xz) =0

'

(12)

These yield the secular equation for
wi-2x* o 0
0 e w2 o>
the solutions of which are
| w, = \2-VZ & 0765 <
=Nz = L4140 | (15)
Wy = xV2+VZ 5 1,846 <

(>
»
}

Next suppose that the spheres are immersed in a fluid of mass
density P . The added mess of an isolated sphere of radius a 1is half the
mass of ' the displaced fluid. Then, aécording to strip theory, one need only
replace m by

M= megm, | m=Smap (14)

in (10), and hence, putting (’5 «\(T/m , we sgain obtain the expressions (13)
for the frequencies, but with o¢ replaced by (;'. .



R . e, w gt gt e . I e LA W T R AR N s e
— L e el L T piton At S b A e 3 3 o

The velocity potential due to the motion of an isoclated sphere with
velocity U in an infinite fluid is that of a doublet of strength

/}L = -;,'?-‘-U o (15)

at the center of the sphere oriented in the direction of its motion. In the
problem under consideration, however, we have three spheres moving in the

. y-direction vith velocities ¥, , ¥, , and ¥ . BSince the radius of each

_ sphiere is small in comparison with the distance between them, it is & good
‘first approximation to assume that the doublet strength is unaltered by the
presence of the other spheres. This approximation is equivalent to the strip-
theory assumption.

| In order to improve upon this first approximstion it is necessary to
take ianto account the imege system within each sphere of the two:external
doublets, & second approximation which will guffice for the present purpose.
The imége system of a y-oriented doublet of strength M at a distance ¢ from
the sphere is a similarly oriented doublet at the inverse point within the
sphere of strength . a."’/c:,:5 , and a lipe distribution of doublets, oriented in
the negative y-direction, of total strength -é— /4;.3./ e , &iving a combined
image strength of 4 4 a%/c® . Thus, 1f §, = 1, the doublet strength within
the second sphere is A, = 44> and the sun of the doublet strengths of the
inage system Of J, within the first sphere is L a® . Accordtng to the
generalized Taylor edded-mass theorem [6] this gives the induced added mass

A :’foaf =,‘_f.a,3mf | (18)
In this msnner the following set of values of the added masses are c;bpained
A= A22= Ass :zlmF
Ay =R =A= A, =Z?-a»3mp (17) -
A3l = A5 = 322‘@’ L |

Hence the kinetic energy of the fluid is given by

2‘T,~: = -‘% ™ (fg'ﬁ- %;*3:‘.’ 3 '3,’3;%0'? ‘33'3.‘ +3a J, 32) _ (18)
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Also we have for the kinetic energy of the spheres, T g ? and the -

potential energy of the system, V,
2T; = m (4F 4+ gj) (20)

2V = 2T (Yt s e fe fe) (20)

Hence, by (9), the secular equation for the frequencies becomes

il

|w*2p" awwp> L Aw®

I G ()

|Law>  AwE wiz@

% P Pl

_where A\ = 3TEQ

: C4amM -

, Since the terms in (21) contributed by the second approximastion are
small, the method of perturbations is appropriate for finding the new eigen-
values. For this purpose we first solve (12) {with o(,a replaced by (3,2 )
for thelthree normalized eigem{ectors E 13’ E) 23 5 . %‘ 35 associated with
G)l R 0“)‘2 s o()s ; This gives the orthogonal matrix

!

\ )
5. G® oz
0 (22)

. -l
o Ve vz

S
2 vz 2
. Applying the transformations

g[ = %L'J"_ZJ' ) | /gd = é’l:j %d

we now obtain from (18), (198), and {20)
o2 T MG B R)

s Mo F2g-E-Ng+235] (o)
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. 2V = TUe-VD)F +232 +(2417)32)

and the secular equation becomes

@ feVIe)-A9E) 0
‘ ' A 2
0 W(i-7)-28
. )\ 2
I ©

Rt
O

- B(GRECHR)

=0

(24)

Neglecting terms in )\2 , one sees that the eigenvalues are now vgiven by

oo _ER-Z) )
! l+-}t(:evz+l) |
e 28
Q)Z:: .
8
- 2(2+V2 ) .

- 21602 1)

o

(25)

the numerators of which are the eig;envélues previously obtalned from strip

theory.

This simple example ‘illustrates the genersl procedure for correcting
the values of .the fregquencies obtained by strip theory for a system with a

finite number of degrees of freedom.

Vibrating Plate

Next, as an example of a case with infinite degrses of freedom, con-

sider a plate which bounds an infinite incompressible fluid on one side. Take
ing the x - 3‘ plane to be coincident with the plate in its equilibrium posi-
tion, 1t will be supposed thet the plate 1s undergoing a unidirectional oscil-

-lation with amplitude

n(x,t) = Xx) crwt

£, £27, ...

(28).

in the y-direction at angular frequency @J, with nodes &t the points x= 0,
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The velocity potential for the motion of the fluid in the region
¥y > 0 may b taken of the form

¢ = ¢, Y) smwt

with

Qb =2 ané"’,mn; (22)

then gives

It will suffice to cbtain the kinetic energy T of the fluid bounded
by the planes x = 0 and x =T per unit width of the plate. This is given

w . w |
2= ¢ @%2;5;: - Jowﬂ/-\(;c,g)ch)X@)dm; (28)
vhere
A% =%§%Mnx sinnk (29)

The infinite series in (29) can be sumed vhen x ¢ & . We have (7]

-4 ",
;%mna = —lz-&t(l—zn.wsewb})

Hence, writing (29) in the form

A(llé) = .f’r‘i

R
na M

(cos n{x-§)- cos n(x+4)] (30)
wg obtain

A, = J;.M =4 mt(ﬂfgl
K W% §~ Cos (%K) Flﬂr‘dni—(x—t) (21)
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This shows that A(x ,'g) has a logarithmic singularity at =x aug . Hence,

- if the integral for the kinetic energy in {28) were replaced by & quadrature
formla, the resulting matrix Ai 5 would have a strong principal disagonal.
Since the elements AiJ of the principal disgonal would very with 1 , as is
seen from (31), these are not equivalent to & strip-theory added-mass approxi-
mation.

An exact treatment of the present case can be bésed on the maximum
property of the eigenvalues. Put for the potertial energy per unit width of
the plete .

. o -
2V = f J R (%,E) Xx) X&) d x dg—ooszgot | (32) -
! o 0 ' N

- and for its kinetic energy
. e ’
3 . Y ' 2.
. ZszmeLCf(x,%)dng/er (33}

where c? (}'2.,,%‘) -1s the Dirac delte function and m is the mass per unit area
of the plate. Hence, 'since the total énergy is conserved‘ ve nust have

f f {wzie/\(%)ﬁ>+m5£x - ,%)}X(x))((’s')d.xdg 0  (34)

Assume x(‘{) " Z ¢, sin nx . Then (34) becomes

m=t B
o . T ' '
2 ) N . a :
Z: é: {w‘ cn[f’gﬁ 4-m} w Copm C,J fk(z,g)/&wmmn Sm g obxd’.g} =0 {35)
me =) - 20
The condition thet @ is e meximwm with respect to variations of Cq s Co see
yields .
ey T
e, Ll +m)] 2_ L. C lf ROE)gimmasimng cede =0 (36)
"~ N mst Lz mMiig " ) . E) : .

g get of linear equations for S 2 the determinant of which is the secular
equation for obtaining the eigenvalues Ct)2 .
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Assuming that the potential«-energy integral 1s also diagonalized

by the transformation X(x) = Z ¢, sin nx , l.e.,
=)

(TRws) X X©)edxds = T ik,

then we obtain instead of (36)
AP LYK = O (37)

Hence, setting the derivative with respect to e, equal to zero, one sees
that the condition for ¢ to be & maximun yields

| w (m + T )
or
. Kn | .
. 2% ‘
Thus, for this case, the added mass is ﬂ'f’ /{2n) , inversely proportional to

the order of the mode.

The Vibrating String

Another illustrati‘qn of a case with infinite degrees of freedom is
furnished by the vibrating étring. It vﬁll be supposed that the string of
radius 9_, is of infinite length but restricted to vibration with nodes at
x=0.,%9" , 27, ... along its length. Let m denote the mass of the
string per unit length and T its tension, and suppose that the string is
vibrating transversely in the y-direction with amplitude

NE) = Xtx) coswl (=)

at angular frequency"CO .

The. 'velocity potential may be assumed to be of the form [2]

@ (%,4,6) smwl
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vhere (x, r, @) are the cylindrical coordinates of a point, and¢ (x, r, 8)
is a velocity potential expressible as the series '

¢ (%,2,8) = Za K(%A«)mnx cos® - (40)

M

where Kl(7\)‘ denotes the modified Bessel function of the first order. From
the boundary condition at the surface of the string

QQ_) = v)essh |, TE) =-wX ()
1=
we obtain

a f X()aon n¥ dy

5T T K'(m)
where Kl' denotes the derivative of Kl with respect to i‘os argument, snd
hence (40) becomes

¢=-22 7 n’f(‘:::‘l) wsef)((s Jamnt ginngdy ()

The maximum value of the kinetic energy of the fluid bounded by the planes
x=0 and x= N is then given by ‘

2Ty = —PW S = Fw{ [a4> X0 dxd®
evaluated on the surface r # a . Substituting from (41), we obtain

T v
2T = f@‘f [ AG,%) Yoo K(s)dx d |
where ° e ‘ (42)
A"'-ZQ}ZG(nOu)MnXWLYl% G(?L)-— Té%

The modified Bessel function Kl(7\) is defined by the series [8]

K,(n)

Ly \P(MN’MH)-ZW?\ (_7\__)2” (43)

=
.- n 4 w=o Mt (me) ! 2
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where
P@r=-C, Pmr=-Coirht +L

and C is the Euler constant, C = 0.5772 ... For small values of A we
obtain from (43) the asymptotic formula

G=1 +?3"19n-2- +C A Y | A:<< ) | (44)

For large values of A. we have the asymptotic formula [10]

| ~ [ %y, N
K = 7€ (-5
where

A =\ AP+t ) %'2‘-.4"2:

We obtain then

LK =T (v )e”
K/ (7\} ~ - @ (l+ 5%_6-1

GO ~ -%\~(l - 2}7\“ S 2> | (45)

and

.and hence

For intermediate values of A , G(A) may be computed from tabulated values
of X () [8], using the identity '

G(R) == K.\ _ vy

WO T KOEKD (46)

The maximum velues of the kinetle and potentiel energies of a vi- -
brating string are given by

27T, =~
2V =

(47)

H
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Hence, b& (42), the total kinetic energy of string and fluid is given by

T : '
2(T+Tp) = co‘f L[mg (%, E) +f‘A(x,§)}“X (v{)){(?,) dx:dg (48)

o

and the condition of constancy of the total enéi'gy gives
o Y > | |
co‘j f Im o)+ pANE) XX(E) dx d = z:-g %)zdx (49)

Asg in the.previous case of the 'vibrating plate, exact solutions for
the vibration frequencies can be obtained from the energy equation (49) by the
Rayleigh -~ Ritz method. Assume. ' '

wnay

Then {49) becomes

m=1

wa:é\ Cf,\‘{mflTa.fG(na)]‘ = T2_ncn

The condition thet the c, Dbe selected go that @ 1s a maximum or a minimum

glves
o [: - T ? G {}’2@)) = T ')45

and hence, denoting the frequency corresponding to n by wn 3
' NCR
C{J,n... WV";:—nU + o G(nq,)] (50}

where ¢ 1s the specific gravity of the string material.

. According to strip theory, the frequency is given by

§ .
b= =
Wy = n{% (‘ + ?f") : (51)
Hence; from (50) aand {(51) we have
Wn _ [T o |+ =GO : (s52)

Wy | T+ Gna) 2(T+1)



3 s it

LTSN N A DR I NI YT RN ¢ SO YIRS MY i e

F& harmonics of moderate ordsr the velue of G{A) in (44) pay be applied
and (52) becomes ‘

a = '+§(§+7;(9n-§--c) , Azmna (53)

For example, consider a steel string (6"« 6.8) 2 £t long and 0.01 £t in
diameter. Since the foregoing theory is based on & string length of T be-
twveen nodes, the value of a in (52) will be taken to be

a = &%LE = 0.00785

This gives the following valies of 63;:/0%5 -

i % na) Dok

1 1 1
10 0.985 1.001

100 0,660 : 1.022

The example indicates that the strip-theory approximation would be an excellent
_oue in the case of a vibrating string. :

Vibrating Spheroid

In the cases of the infinite plate and the infinite string vibrating
in a fluid, it has been possible to obtain exact sclutions for the natural free
quencies. Since the principal purpose of the present work is to illustrate an
approximate numerical procedure for obtaining these frequemncies, it would be
of interest to coupare the results of this numerical procedure, applied to
either of the previcus cases, with the knorwn exact solution.

Although it is planned 40 undertake such a calculation in the contine
uation of this study, to date sttention bas been devoted to the development of
procedures for obtaining the added-mass function for several cases of more
practical interest than the preceding ones - viz., a circular bar of finite
length, & spberoid, and & ship form. Of these, only in the case of the finite
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bar, discussed in Part 3 of this Final Report, has a complete application
of the theory, taking into account the inertia end elastic properties of
the bar, been consummated. The results obtained in the case of a vibratin-g;
spheroild will first be presented,

7 It has been shown [9] that the kinetic energy of a liquid, for a
spheroid vibrating at its free surface, is expressible in the form

Tom- 0600 & LS el [[Fpofsneoguad] " o

where

Fu8)= g + (-5 2] (v c0n 6 1 gim 6)

Here (33 » /4. , 9) are the spheroidal coordinates of a point with focal dis-
tance 2k . The surfaces § = const. are prolate spheroids, the value

?;’ Ej denoting the equilibrium surface of the vibrating spheroid. The
polar a.nd equatorial radii of the spheroid ;’ § are

cw=kE ¢ = R(§Zn"?

The functions P S ana Q‘ns are the associated Legendre fudnctions of the

first and second kind [10], end u_ , v_, v, are the components of the

e e
veloclty vector ve‘ » related to the velocity vector .‘fe of & point on the

surface § «& . b
U= 8yt w
Let us consider a pure shear motion with
Uz V=0 , U= 7"59’”) ' (56)

Then (54) becowmes

2 Ty= %Y_f,gs aszA%v)'ur Q«)u)‘(v)asu oy

where ‘ (57)

Apo) < NTRTSIE 8 el
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Let us write the kinetic and potential ensrgies of the elastic
spheroid in the form

2T, :jxgu) wp )
2V = Jh;p.,v)Xyc) Xtv)dp dov

where x()o 1s the anmplitude of the vibration, given by.

W) = -2 Xp)

Fromtliec;mservntionofthetomenergywethenbave

I J{ (X0 S +A, A kgw)} Xy)qu,dv- (s8)
wherc )\ -—-f k5§, ‘
' The Rayleigh-Ritz method will mow be applied, assiming

Xg;) = é Ca 89‘)

Then (58) becomes
wg E ,[C;.Cs[h; )\F;%i .f,:',::,) Ca c‘ff_ Rin Bydus jﬁ-T 2P0 E0) ]

= Z:Z Kuo Cn Ca | (s9)

As)

where

Mo = [ 293 RpRIO4
Ko = | '[:&VL,»> Ry Bw) ducky
The integrals occurringfiin (59) can be simplified by means of the relations
[e] |
Py = (- p)" ﬂﬂ
(R 0P =2 (B - R )

Fr
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Applying these yields
SR [ PR dr = [l Ry Ry du
. 3‘:“‘;‘?’."}1@-73\'\)&&/"

Hence, suming with respect to r, we obtain

-« \ ’ _ .C'. o
‘;" c‘.l'N l?" P":l(r)&(}‘)d}‘ - 21!}‘” (a»t: = zn,g)
and the term co'ntunins the integrals in (59) reduces to
! - Cod ' 2
i dntl) (- € [«
b g R (- (oo

The condition that the eigenvalues & 2_ are stationary with respect

’ to variations in the coefficients c_, applied to (59) ylelds a set of homo-
geneous linear equations and the secular equation for determining the eigen-
i ' velues. The form of (60) » vhich represents the contribution of the fluid iner-
tia, indicates that there will be several nondiagonal elements due to the fluid
_in the secular equation. This will be studied in the continuation of the
present work. In the remainder of this section the properties of the added-
mess function will be developed.

COnveggencé of A]g_ v !
[

For large values of n we have the asymptotic .fomalas {8]
3" ~ 2nel
n .
3 - "N antl ' 2nel
Ry \/m_'o(m’ T 0 —din 23019

, .
V) — |2 (cog 31LLE' — 4im 2280
R \‘rrsm( 2 6 2 9)

’
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where/-l =cos @, V = cos ®' . Hence the nth term of the series for .
A(/a,v) is, asymptotically,

ey amoan®Gr) [0 B (0-9) - sin 252647

Thus the series for A9¢,V) converges, except when /4 «) ., Comparison with
(30), the added-mass function for the infinite plate, indicates that the pres-
ent function also has & logarithmic singularity at M y and consequently,
if it were rep:._'.gced by & quadrature formula, the resulting sdded-mass matrix
AiJ‘ wvould haye a strong principal disgonal. This indicates that perturbation
mathods should be suitable for deriving corrected values of the frequencies
from those obtained by strip theory.

Evaluation of Q U§)/Q U3)

Tables of values of Qn1(§) and 5h1(§’) , which are required for
the mmerical evaluation of the sdded-mess function (57), do not seem to be
availsble for the values of & near unity associated with elongated spheroids.
The functions QDI(Q) may be successively computed from the recurrence formue

la [8]
\

n Q':m = (;nﬂ)tQ;, - () R,
vhere "2 Y4l e
6= )3t -y | ()
) Q) = %((;”—-I)»&n%"- v2-38 |
Also we have )
(E‘-') Q.,'n = 7‘-§ Q - (“ﬂ)a'c\-l
and hence

Q - _(5%1)Q, -
& MG ey, (e2)

An alternative form, which will be useful in deriving an asymptotic formula,
is obtained by meens of the relation [8] :
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QL(EY = (B=1)2 Q)

and .
(tz") Q'n(t) = /n'lé§&'n'&m-|)

These yield the formula

S (s Qo= Qe + (- 1) |
e = (8% ' " met “
&:, | ) Q,;{;TQ%*(?-\.)(Q,,_,‘ 2nQﬁ)+(§ ) 'n(;) | (83)

From equations (58) and (59) values of in/in can be successively computed.

It is of interest to derive a series expénsion of Q,n(';") about
$ =1 1in order to obtain en ssymptotic formula for in/énl for values of
t near uwnity. It will be shown that

Q) = Q-H! +,r,.ﬁg—"f~"—(Q,,~ Ho)E-1) 4 + ‘——-—J’("_‘g;"{,;',_‘;‘; (o2 ) LSRN

where

Q) = L it | ¥

-}

and.
n
P

] It is interesting to observe the identity of the coefficients in
(61) with those of the known éxpansion [lO] _

RE)= 1+ 28 (e )i 4 %’;ﬁ;ﬁ@-‘s)’#.»' (65)

In proving (61) we will meke use of “the differentiasl equastion satisfied by
the Legendre functions

(5=1) Bi&) - 25 Bfs) () R,() = 0
1) 6§ 5)- 26 Q48 ~n(n+)Qle)=0

and ‘the relation

. S '
Qn=QR-W, | W, .,. ;-}f 4P (66)



S S . U U

e

[

s,

Ptutectan

g

Sl

Let us also write Wn_l(é) as the Taylor series

'n't y

W(:) ,,,20 -1y | (67)

_O fbv

Since Pn( 1) = 1, we immediately have from (64)
‘ !
b)) = ’
W= H, - (69)
 From (66) and the above differential equation, we obtain

G Wor+ 25 Wo = nt )W, it By = 0

which, by (65) and {67), can be expressed ss the series in terms of A =81,

-t N-i ('z)‘
_(ma)zi%)\ +2(7\+l Zi( 50 X ~n(mt)Z ()
L e

t'z%;a(/c-m-,?\ ,'O

Equeting cdefficients of 7\r~l nov gives, after simplification, -
(ﬂ.)

W, W = g.;wz_c_mw‘“" A0
/L

or, from (65)

W(Cl) (?’l‘—/&ﬂ)('ﬂﬂ) w(qig (N-ha)e - One)
VR WYY,

Thus, when r = 1 , we have by (68)

‘ .
WO = nl) (w0 -1 = m(;nn H2
and similsrly., continuing successively. with »=2, 3, ... , ve obtain °

) . Vet > Attt .
W (I) ) foin) H% . (89)

2" 1!

It is now seen that (61) is derived by substituting the expansions (64) and
(67) into (66).
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The desired asymptotic formila for Q 3/l 1s obtatned by substi-
tuting (64) into (635) end neglecting povers of (& - 1) greater then the
first. The result is

3 .

- g g?_ p 1 =[2n Q- H ) v (6-1) (70)
»

It does not appear to be useful to extend this asymptotic formula to higher

powers of (5 - 1) since, at the small values of n at which the formula

gives sufficiently accurate results, better results are obtained from the

recurrence relations (61) and (62). Equation (70) is valuable in that it dis-

plays the analytical behavior of Q/4;, when n 1is small.

At large values of n the iteration procedure for computing Qn/dn

- becomes ‘inaccurate because of thé accumulstion of errors and an asymptotic

formla suitable for large values of n 1is desirsble. Availsble for this pur-
pose 1s the expansion [11]

. . -
Q:tg’o) = e‘m‘im'('n"m” ._i

L3, {2net) Gz‘ynr'la
vhere ' 2

5, = CoshE | 3=6€

and F 4s the hypergecmetric series

.. i) = Cnttlomd) _ orlomomtlomtd) |
Flmermefinedid) =1+ m&)o-z‘) RS Tor 1D

The series (71) converges when i)%\/f - 1,061 ... When§°<£fﬁ , the
remainder after r terms of the series is less pumerically than the (r + 1)th
term; 1.e., the series is asymptotic. The limiting value L‘o--f-‘-v&‘ corre-
sponds to & spheroid of length-diameter ratio a/c = 5.0 , so that, for elon-
gated spheroids, the asymptotic Iroperty of the series is very important.

For m = 1 , the hypergeometric series becomes

(&) F(m{},—m*{m%;;}?) (71)

- 3 | _ 15 I
F=l 3 @nv3) 3+1) g(ani3anes) @"-tS""
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and bhence, when §’°<33-\f5, the first two terms of ¥ will give a good
approximation provided the last term is very much less than unity. From the

form of this last term it is seen that a nearly equivalent condition is
' 3 p L
'ﬂ.+r ))-3-{:?—-

But from the relations

‘.
‘ -1~ 2C 2
Hence the above condition becomes

n >>—2-9‘E---'~2 | | (72)

For sufficiently large n we have then

' . . 3 |
Qg :""H'-'- ei | + Zansl) FET - 2n4d gw‘»&j?nmahht eg
Q, " ! | + 55 T an+2 Jomhi+(@nrdsinhi

and hence, from (60), we obtain after simplification

Q. 2(31)
: [3 .
Q. (@H)‘k}l f?of AR 43,

. (1)

Values of Qul/Ql calculated by the exact iteraticn formulas, (58)
and (59), and by the two asymptotic formulss, (70) and (73), are compared in
the following tables for spheroids of length-diameter ratios 7.1 and 71. In
the former case it is seen that (70) agrees well vith the valuss from the iter-
ation formulas only up to n = 3 ; equation (73) becomes 8 good approximation
"for values of n > 10 , and indeed yields values more relisble than those from
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the iteration formila, becsuse of error accumulation, for n > 40 . For the
much more elongated body, a/c « 7L , equation {70) yields scceptable results
up to n =30 . At nw 70 the value from (73) is high by about 4 percent,
the devietion from the value from the iteratlon formula reducing to about 2

percent at n = 100 .

o /ot 5 So=1.01, efem7.4

n | Egs. (58, 59) Eq. (70) . Eq. (73)
1 0.01860 ~0.01857 0.01584
2 0.0X713 | 0.0L712 ~ 0.01528
3 0.01572 | 0.01595 |- 0.,01446
4 -0,01444 0.01533 0.01355
5 0.03.330 0.01546 0.01268
6 0,01.250 .. 0.01649 0.01185
: 8 0.01065 ‘ : 0.01039
. 110 © 0.00985 : T 0..00020
C -1 12| oc.ooesz | .. S R e T
16 | 0.00879 o P - 0.00875
20 | 0.00573 | | : 0.00571
2 | 0,00410 | j . 0.00409
40 0.00322 . o.o0me
50 . . | o.o0zeL
© 80 S ©'0.00220
| S ©7o.o0ie1 |
8o .1 S 0.00168
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o,nl/q;nl 5 $o=1.000L, afcw Tl
n Eqe. {58, 59) Bg. (70) Ea. (73)
1 0.0001997 0,0001987 |  0.0001388
2 0.0001992 0.0001992 0.0001.399
3 0.0001985 0.0001985 0.0001414
4 0.0001977 0.0001§77 0.0001427
5 0.6001969 0.0001969 0.0003439
6 0.0001958 - 0.0001958 0.0001449
8 0.0001936 0.0001936 0.0001.465
10 0.000191.2 0.00019%1 0.0001478
12 0.0001886 0.0001835 | . 0.0001486
16 0.0001830 0.0001829 0,0001452
20 | 0.0001773 0.0001772 0.0001485
30 0.0001630 0.0001644 0.0001437
40 0.0001487 0.6001956 ' 0.0001365
£0 0.000L577 0.0001286
80 0.0001272 0.0001206
70 0,0001179 0.0001131.
56 . 0.0001087 0.0001070
30 0.0001024 0.0000997
160 0.0000980 0.0000941
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One final interesting property of the added-mass function Al ,’v)
in (57) will be derived. From the recurrence formila [8} /

™ B ~Grtiu 3'3») + ) Bl = 0

we have
' ¢ t
2n+t u p' - _Pmét) R
N(N+) /‘LP‘“(/"') T Tma TR
\ ¥
2yt ‘o) ) R4
Ay ¥ Bb) =y D
Hence |

2 )Rl B=s (R 8- Bl ) LR RY-B 4 B

T )

and consequently

7 20 () BOIRE) = U [RL6) BIO) ~RG0 R 0)

b5 ) | ,
- B4 RO Ry ) + (1) R Pl

But we have , |

F?iu) = .(l",u‘l)ilz :

=3 l-p"
and then

LIRPRO-RBE) = LR 8 ')

Hence, finally

m ‘ ' ' | .
y2hel Dy Plyy - R RO -BINE,0)
nm fhel) ST Tt = o (y)
This gives the ‘sum of the first n terms of the _§eries for A(/l ,V) when
§;l <« | and n is chosen sufficiently smell so that in/éhlci 1.

(74)
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Kinetic Energy of a Vibrating Ship

The equation of the ship surface in its equilibrium position will

be taken in the form
’g -*{'(7‘)3) , —YexX&T

wvhere x, ¥, 3, are rectangular Cartesian coordinates with the x axis in
the free surface, the 3 axis positive vertically upwards in the centerplane
of symmetry of the hull, and the y axis completing the right-handed coor~
dinate system. From (75) one obtains for the direction cosines €l ‘2
of the outward normel to the surface

f- & £ S

. =+ =N __ (1)
A [ xR I (T e

according as yx 0 , where f_ = Of/Ix , ete.

It will be assumed that the fluid is incompressible and inviscid,
and .that the flow is irrotationsl. These are reasonable assumptions for vibra-
tions of very small amplitude, Then ihere exists a veloclty potential which,
for vibration in a particular mode at an angular fréquency <, may be written

in the form .t
P = ¢(x,?,§)'e‘w
The vib:éation» will be assumed to be one of pure shesr, expressible in the form
U“(i,f) = Vo ei‘"t
It is requi:ied, then, to obtain a solution of Laplace's equat_ionw.

L 3, TP -0

3?(1 ':)—gf 32
vhich on the surface (1) satisfies the boundary condition
= 4,V (76)
M 3

where n denotes dlstance in the direction of the outward normal, and on the

free surface the condition

Ci) =D | (77)
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The amplitude of the kinetic energy of the fluid associated with the vibrae
tion is given by

2T=-—F§¢-§%d5 - (78)

the integration extending over the surface of the hull.

Two alternative methods for cbtaining the kinetic energy of the
fluid will now be formulated. The first method, in vhich it is assumed that
the flow ia. generated by a distribution of sources on the centerplape, regquires
the solution of a Fredholm integral equation of the first kind; the second, in
vhich & distribution of sources on the hull surface is gought, leads to one of
the second kind; In principle, an exact solution for the latter equation ex-
1gts and csn be found by iteration. For the former, in gemeral, only approxi-.
mate solutions can be found, although for elongated bodies these approxima-
tions may be adequate for practical purposes. Furthermore, because of the
aveidance of a maﬁ:ematical sipgularity, the formulations of poteantial-flow
problems by means of integral equations of the first kind have resulted in
briefer numerical computing programs. There is a possibility, however, that
a Drocedure for_eliminating the singularity in the kernel of the integral equa-
tion of the secand kind, which is presented in the following, may make the labor
of solving this type integral equation more nearly i:omparable.

Distribution -on Center Flane

Thé boundary condition ¢ = 0 on the undisturbed position of the
free surface, y = 0 , can be satisfiled at each instant by edding to the sub-
merged portion of the bhull its mirror image in the free surface and treating
the double form as & single body, completely immersed in an infinite fluid,
and undergoing vibretion. In order to satisfy the boundary condition on the
hull surface (76), assume that the flow is genereted by a distribution of
sources on the center plane of the bull and its image, of stremgth u(£,¥) ,
vhere £ apd § are used to dencte values of x and 3 on the center plane,
to distinguish from tho coordinstes of points on the hull surface.

In terms of this distribution the potential at an arbitrary point
(x, y,%) of the fluid is given by

- | mLE) dydy (79)



vhere

= (-0 4y g -3

.and the boundary condition (6) at a point of the surface S ylelds the
Fredholm integral equation of the first kind :

[ 8) & () dsds = LV ~ (80)

In both (79) snd (80) the integration extends over the surface of the center
plane and its imge in the free surface. The integral equation may also be
expressed in the form

fimes) ki 3)dsd = Vo fe3) )
vhere | F (1)
(88;23) = %;}%igﬁfg—*—ﬁ#

I_f. {81} were solved, its solution would be of the form
m(s,5) = {{heS; 3P Vi dedy (e

Through use of (76) and (79) one obtains for the kinetic energy of the fluid
(78)

7

= pf AL, Voo V(x') dxdx'

where

¥ _ S X-' 0
Awx) = e ﬁbg dfdsdzdy’ (9
Here the hull-surface elements 45 occurring in (78) have been projected on
the x-; plane, and only the projection from one side of the double hull form
(y20) has been taken, since the energy calculated with the imege included

is twice the actual energy. The function A(x,X*} in (83) is the desired
quantity from which an added-mass matrix can be obtained.
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An explicit solution of (81) can be obtained for a very thin ship
(y<¢cl) . For this case the kernel of (80) behaves like a Dirsc delta function
and we obtain

-m(%,3) f g-{(f':)dl; de = e,V(‘x) (84)
But by Gauss's flux theorem ve have
-l 5%— (L) dsds };; rom (6s)

according as y§ 0 , and, except near the borders of the center plane, the
corresponding integrals containing derivatives with respect to y and 3 are
zero. Hence, since -

(Flwly., = AL W,

we'o'btain'ﬁ‘cn(Bd.)
m(x3) = 12/1-(;’9 %(1.3) (86)

Comparison of (88) with the form of the solution assumed in (82) shows that
h(‘g,‘;; x,})» is a Dirac § function vhich has the properties that it vanishes
except when g-x,§-} and that

[Jhe5x3) decly = Lo (87)

Hence we obtain for the added-mass function (83)

([ _he g dy |
A= o || et )

The equivalent matrix, obtained by replacing the doudble integral by a quadra-
ture formula, would have strong diagonal elements (x = x') , although the non-
disgonal elements would probably not be negligible.

Better approximations are obtained by solving (81) by 1tara£ion.
since K(E,Y, %3 ) .peaks sbarply in the neighborhood of &= x ,‘g_.a ,
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and is small elsevhere, it is seen that the value of the integral is affected
only slightly by replacing m(f,&§) by mx,3) 1in (B1); f.e., the procedure
vhich gives an exact solution vhen the kernel is a Dirac delta function will
pow be used to obtain & first approximation. Instead of (85) we now employ
the actual value for the given ship form of the double mtegral of the kernel.
This yields for the first epproximation

m(%,3) = - H_;’;_L. {3(1,5) )

Tf%‘% _ _[jk(€,§.:x,3)d!. o

and for the corresponding added-mass function

g o~ N Epdydy’ (%0)
A.(xix) - 2% ‘”[“ x);j—g%‘;)*‘ ,):. 3 20

In order to cbtain a second approximmtion we write (81) in the form

ffimts.5) -m s RS x,3) A8 s
= Voo f3 - I,y kEX 2 3) dg ds

Then, by the same reasoning as was used to derive ,ml(x,a) , we obtain the
second epproximetion '

mo = m(oj)- 5 (Ve ffmkdsds)

or, from (89),
m,(x,3) = 2 m,(x,z) - H -H‘!%&g)f;@';)h({ﬂl,s)wg) d§ dg (92)

The resulting added-mass function 1s then, by (82), (83), and (90),

A= o[ HHRER R sy
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This procedure cowld be contimued to obtain additionsl successive approxima«
tions, but the second epproximetion will probebly suffice.

Distribution on Hull Surface
+ will now be assumed that the flow is generated by a distribution
of sources on the surface of the hull and its image, of strength m(%,%) .
This gives for the potential &t an arbitrary point (%, y, 2) of the fluid
__ [ miey) .
TTITR 43

S

(94)

where

H

R = [0y (35717, w=fem) [

The boundary condiition (6} at a point of the surface S nov ylelds the Fred-
noln integral eguation of the second kind :
: R
ammld) - ([me %) & () o5 = & Vi)

vhere > (95)

: 2 (1) oo hencban has) -
é%(& } = Rs\_ |‘( E) a& { 5(3%)} J

& procedure Tor eliminating or reducing the corder of the singularity

of the integrand in {93) vhen the points (x, y, 3) and (‘%‘ ,72 »& ) coincide

will nov be indiceted. By Gauss's flux theorem we have

o dS = -2m (96)

where V denctes distance in the direction of the outward ncrmel abt a point
(% YL §) of the hull surface. Thus the integral equation (95) may be ex~

pressed In the form »

4rm (e 3]~ ~{{im(s, 9 &) -mir3hS («é—) 4§ =1V (97)

' which accomplishes the desired purpose,
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An spproximate solution of (32), obtained by neglecting the surface
integral, is given by

(% - ‘e \/(X ‘ ‘
(5,3) ——’——)—W (98)
Successive approximations are then obtained from the iteration formula
PETA 'D 1\ dEcli ‘
A w = Vo0 o [(mits ) SR -5 ) T (s9)
2
which yields a solution of the form

mx3) = - 4 (x,3 Voo + Jf 3(5 5ix3) ;fé g Vg ded e (200)

Substituting (76) and (94) into (8), we obtain for the kinetic energy
of the fluld

, S (f moey) A63) Viw ~ »
J.TF = 2?“” gl(:x!%'é';tﬁé"'zwzz(uz) d'X-de- d’édz

-in yhich, by symetry, only values of gé corresponding to yi;() need be
taken, the'resulting:qpadruple‘1ntegral belng multiplied by 2 instead of by
4, since the energy calculated with the image included is twlce the sctual
energy. Substituting for uﬁ)c,zd from (100) gives then

T o] e Vo -
Jassu Ve d§d§] drdeds d.;

vhich yields the added-mass function

A= Age ) +2ff] 2;:2';8%%) Asdsagdy aon

where

. - )= [ Lafpdads’
A, x) ~“ 27I‘R(x,x',5,§') (102)
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Sﬁs{m and Recommendations

x & dynamicel theory of an elastic body vibreting in an inéompressible,
taviseid fluid ha"é’gen epplied in five examples; m.% system of three dew
grees of fresdow, an infinlte plate, & teut string, & spheroid, and a ship
The case of & circular fx of finite length ;{;ﬁ,ls;e;a,ratelyr—cons%&eretr’ffl’a)rt‘ 3
of this Floal Report. e firet of these problems is soived by employing watr:
theory, the second and third by means of the method of Reyleigh-Ritz - )

e RS
CSince one of t.ze purposes of the present work is to compere the Ray-

leigh~-Ritz method with the proposed one of replacing surface integrels for the
" kinetic and potential energies by quaurature forrulas so that matrix methods
become spplicable, it would be of interest to obiamin solutions for the ssme
Problem oy both metheds. These can readily be performed for either the infinid
plate of string. In the case of s vibreting sphereid, the meithemotical proper-
ties required for epplication of either method heve already been developed, and
it remaine to perfomn the numerical celculstions for the elgenvalues. In the
lazt case a wgy of applying the Rayleigh-Ritz method is not epparent, and only

the formulation for the mairix method has been accompllqhea,&

Varlous expressions for the eddedemass Tunction for a ship form, {(88)
{20), (93), (.wl,, and {102}, have been derived. It appeers 1o be desirable
o underteke a numericeal study of these funcblons for a pavticulsr ship form,
pougibly cne defme&. by simple mpthemitical formulas. The functbions defined
by {88), {90}, and (,10?3_‘} are much simpler then those given by (93) and (101),
although the latter two are more accurate and, in principle, that given by
{101} is exack. & numericel study would indicste whether the siwpler Hit less
scceurate forms were sdegquate Tor practleal purposes.

It would also be of essential interest to compare the natural free
Q‘uﬁﬁ(‘.!.(“u obtained with the sdded-mass metrices derived from the zbove added~ ~
mags functions with those computed by strip theory. This would show wheither
there s eny practical adventage over strip theory of the present development
of & more rational procedure for the imclusion of hydrodynemic inevtie effects

In vibration anslyses.
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