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ERRATA in "Vibration in an Incompressible Fluid"

by L. Landweber

1. P. 10, line 4: Aii instead of Aij

KnK
2. P. 11, eq. (38): 03) t - instead ofSn Ir"p

2n +2n
5. P. 16, eq. (57): close parenthesis about n + 1 ; (n + 1)

4. P. 20, two equations following eq. (65):

Change - 2'PQ) to + 2 Pn(W)

- 2'Q ) to + 2Q()

5. P. 21, eq. (67): (- instead of (x

6. P. 22, two equations following eq. (71):

Change ~ to

Change F( ),i9+ " ..-( ) j)( 2 +...

to F( ) +I 1.( ( )2 -

7. Pgs. 24 and 25, caption for tables:

Q/1 instead of Oi-n

8. P. 27, eq. (75): 2+

9. P. 30, line following eq. (85): y- 0 instead of yX 0

L- eq. (86): ; V- f2 ( ) instead of - - f ( )"ai 2TI-

last line: k(•,•; x,j) instead of k( x,•)

10. P. 33ý, equation following eq. (100):- R(x, xId9y) instead of R(x,,x'



VIRATION IN ANll OPRSIL FLUID

Introduction

In the current procedure for calculating the natural frequencies

of a vibrating ship the effect of the fluid is taken into account by increas-

ing -the mass at each section of the ship along its length by an added-mass.

The latter is obtained by the so-called method of strip9 theory, first p. o-

posed independently by F. M. Lewis £l]* a-Ad J.'L. Taylor ( 21, In w--hich_ the

added mass at a transverse section is first taken to be that for a tWo'-dimen-

siorz2L form of that shave, and then the ordinates of this eadded-mass dittr ibia--

tion curve are mu~lt I nl-ed by a constantJr correction factor obtained from the

eXact rotentiall-flow soliltion for -a vibrating spheroid.

The afrementioned method has yielded predictions of vibration fre-

quency in good agreement with experient at; the lower modes, but serious devi-.

ationis observied at t~he higher ones raise the quiestion idiether more exact the-

ories of both the elastic characteristics of -the ship and the effect of the

surrounding fluid, might' not be recpaired. it has been reported [311 that an

attempt is under way to improve upogn the beam theory of ship vibration by tak-

Ing into accoixnt -the three-dimensional structure of the hull,1 wrfhich clearly

becomes important at the higher modes of vibration. Complementary7 to this i s

the work reported here to improve upon strip t~heory by developiyag a unified

hy~droelsastic theory of ship vibration.

This work'r was supported b-y Contract Nonr 3271(01) ( ) ith the

Structural -Mechanics laboratory of the Dav-id Taylor Model B8asin.

General Theo2rY

Frst suppose tb;ý.t the body consists of n discrete masses con-

nected by certa-in elastic restraints. Let q.denote a seýt of generalized

coordinates w hich describe t~he displacements, assulnued srmal, of the system

from egquililbrium, sand qjthe corresponding, set of generali-zed velocities.

*NUmbers in £i:.ndicate references a~t end o±f repo'rt.



Then the kinetic energy of the body, TB, is expressible in the form

C,,i v "iý - J" = 1 ' "- 'V ,N

in which the mij are generalized masses. In general the mIi are func-

tions of position, but for small oscillations about equilibrium they may be

assumed to have the constant values corresponding to the equilibrium posi-

tion, qi 0 . Simultaneously the potential energy V of the syste-m may

be expressed in the form

2V Z Ik.44Q~ 1, 42, .4/(2)
in which, for the same reason, the k j may be considered to be constants.

If the vibrating body is immersed in an incompressible fluid, the

fluid will also be set into motion and have kinetic energy T. which is ex-

pressible as the quadratic form [41

21>Ž Tp Z a. 2, A/ 3

in which the added masses aij are also constants. The determination of

the aij is a hydrodynamic, potential-flow problem. This may be approached

by introducing velocity potentials 01 corresponding to unit magnitude of

each generalized velocity. qi and formulating N Neumann problems for the

*i" As is well know-m, the a are expressible in terms of the ' by

the relations [4]

0~.~ Pff i d~ (4)

in which the integral extends over the wetted surfaces of the system. By

formulating these Neumann problems as integral equations and replacing the

integrals by quadrature formulas, the solution of the Neumann problems and

the evaluation of the aij are reduced to linear algebra. This procedure

becomes feasible if high speed computing equipment is available.



The dynamical equations of motion can now be obtained by employing

Lagrange's formulation

6 L - (9)

in which L q TB + T- V H Hence, from'Eqs. (1), (2) and (3), we obtain

a set of N linear, homogeneous, ordinary, differential eqquations.' Such a

system can be solved by assuming harmonic solutions with frequency 6) of the

form

~~ (7).

This, substituted into equation (6), yields the set of linear equations

211 (r~+ c~~ - ~ - 0(8)

which has solutions if and only if the determinant of the coefficients van-

ishes

The values of CO for ;hich equation (9) is satisfied are the

eigenvalues of the matrixf k~ 11 with res~pect to f1 mjj + a~jI[5]. In

the present case, in ihich both matrices are positive definite, there exe

N = 3n real eigenvalues and hence the same number of natural frequencies.

When such a pair of matrices has been obtained, the determination of the

eigenvalues is best performed with a high-speed computer for which appropri-

ate programs are already available.

*When the body is an elastic continuum, the expressions for the

kinetic and potential energies will appear as integrals and the system may

I,



be considered as a limiting case of the one previously discussed, having an

infinite number of degrees of freedom. A procedure for obtaining numerical

solutions for the eigen-value consists of approximating the system by one

having a finite number of degrees of freedom which can then be treated by

the method outlined above. This can be accomplished either by replacing the

integrals by quadrature formul. and the space derivatives of the displace-

ments (which occur in the expressions for the potential energy) by differ-

ence formulas, or by variationsl methods such as those of Rayleigh-Ritz and

Galerkin.

In comarison with strip theory, the foregoing method introduces

the surrounding fluid into the problem in a simple, unified manner, without

assumptions, and takes into account quite naturally the hydrodynamic inter-

ference effects which are represented by the nondiagonal elements of the

I. ai jj added-mass matrix. In strip theory it is assumed that the non-

diagonal elements are zero. When these elements are small in comparison with

those of the principal diagonal, application of the method of matrix pertur-

bation yields a procedure for correcting the frequencies calculated by strip

theory.

These considerations are illustrated in the following by several

cases, culminating writh a formulation of the procedure for a ship undergoing

a vertical-shear vibration.

A System of Three Degrees of Freedom

As an example of a system with a finite number of degrees of free-

dom, consider a massless string under tension Zý, extending from x = 0 to

x 4, to which small spheres of radius a and mass m are attached at the

j points x = , 2 , 3 Let y 1 , y2 , y 3 denote small lateral displace-

ments in the y-direction of the spheres at x = 1 , 2 , 3 , respectively.. If

this system is displaced from equilibrium, end the effect of the surrounding

fluid is neglected, its equations of motion are

S( )

Ai 2/ I0
/0



where oL ý

If one put

equations (10) become
•,(0-o•) , = 0 1

J'+- 2 @o)- 2  ) 00 0

These yield the secular equation for
62- 2,x? o.. 0

0 Z C-

the solutions of which are

S=o42+VT- • 1,./46 c•

Next suppose that the spheres are immersed in a fluid of mass

density f0 . The added mass of an isolated sphere of radius a is half the

mass of the displaced fluid. Then, according to strip theory, one need only

replace m by

M TAYh 1 = (14)+

in (10), and hence, putting v eT , e again obtain the expressions (13)

for the frequencies, but w,_ith ce replaced by



The velocity potential due to the motion of an isolated sphere with

velocity U in an infinite fluid is that of a doublet of strength

2 LUO (15)

at the center of the sphere oriented in the direction of its motion. In the

problem under consideration, however, we have three spheres moving in the

y-direction with velocities j, ' Z ', and : 3 . Since the radius of each

sphere is. small In comparison with. the distance between them, it is a good

first approximation to assume that the doublet strength is unaltered by the

presence of the other spheres. This approximation is equivalent to the strip-

theory assumption.

In order to improve upon this. first approximation it is necessary to

take Into account the image system within each sphere of the twoi!external

doublets, a second approximation which will suffice for the present purpose.

The image system of a y-oriented doublet of strengthp, at a distance c from

the sphere is a similarly oriented doublet at the inverse point within the

sphere of strengthf a5/c , and a line disttibution of doublets, oriented in

the negative y-direction, of total strength 1/0a/c 3 . giving a combined

image strength of J/ a 3/c 3 . Thuzs, if -a 1 j, the, doublet strength within

the second sphere is,/ 2 . iaL and the sum of the doublet strengths of-the

image system ofA within the first sphere is . 6 . According to the

generalized Taylor added-mass theorem [6] this gives the induced added mass

A.12  airfo = .1.. 2 (16>

In this manner the following set of values of the added masses are obtained

A21 - A 2  = Aa, = ?. (17)

A51= Al = "- ni"

Hence the kinetic energy of the fluid is given by

2T - i+,.%.,,



Also we have for the kinetic energy of the spheres, T , and the

potential energy of the system, V ,

2 T, ý 2 (19)

2V=-(20)

"Hence, by (9), the secular equation for the frequencies becomes

where /A •--F

Since the terms in (21) contributed by the second approximation are

small, the method of perturbations is .appropriate for finding the new eigen-
2 2values. For this purpose we first solve (1.2) (with o•. replaced by (3 )

for the three normalized eigenvectors l 21 31 associated with

I 0 •2 0 •),3 This gives the orthogonal matrix

~ ~ .(22)

Applying the transformations

we now obtain from (18), (19), and (20)

2T-2 Ts+2ZT= ( + t )

+ 16V- + V2* -e" O + (23)

k.1



2V

and the secular equation becomes

0

16
Neglecting terms in ? 2 , one sees that the eigenvalues are now given by

1+ 2(, g +

(25)

the numerators of which are the eigenvalues previously obtained from strip

theory.

This simple example illustrates the general procedure for correcting

the values of-the frequencies obtained by strip theory for a system with a

finite number of degrees of freedom.

Vibrating Plate

Next, as an example of a case with infinite degrees of freedom, con-

sider a plate which bounds an infinite incompressible fluid on one side.. Tak-

ing the x - - plane to be coincident with the plate in its equilibrium posi-

tion, it i.rill be supposed that the plate is undergoing a unidirectional oscil-

•lation with amplitude

(-X, COzi, O t(26).

in the y-direction at angular frequency W1, with nodes at the points x 0 ,

t ±,
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The velocity potential for the motion of the fluid in the region

y >O ybe taken of the forn

with

n Ec e" (27)

The boundary condition

then gives

C))

It vil suffice to obtain the kinetic energy T of the fluid bounded

by the planes x 0 and x y1 per unit vidth of the plate. This Is given

by

Vk))d~ ffA A X(X~)X(ý)Lcd (28)

where

he infinite series in (29) can be smed when x W we have [7]

Hence. w:riting (29) in the form

Ae obtain

AC-A)A -G~*4) -I ~(31)



This shows that A(x ,)has a logarithmic singularity at x • Hence,

if the integral for the kinetic energy in (28) were replaced by a qtuadrature
formula, the resulting matrix A. would have a strong principal diagonal.

Since the elements Aij of the principal diagonal would vary with i , as is
seen from (31), these are not equivalent to a strip-theory added-mass approxi-

mation.

Am exact treatment of the present case can be based on the maximum
property of the eigenvalues. Put for the potential energy per unit width of

the plate

Irl
Vf X(X) X(ý Cd C,0 (52).

and for its kinetic energy'

where c• (x,) is the Dirac delta function and m is the mass per unit area

of the plate. Hence, 'since the total energy is conserved, we must have

7rr
A (YA + YYL(y, (x X d, d(34)

* 0

Assume X(x) . cn sin nx. Then (34) becomes

n1W 112 Dovkx,4 nYd 0 (35)
470

The condition that W- is a maximim with respect to variations of cI , c 2 ...

yields

(38

a set of linear equations for r , the determinant of which is the secular
m

equation'for obtaining the eigenvalues O).

'"



Assuming that the potential-energy integral is also diagonalized
0O

by the transformation X(x) = cn sin nx , i.e.,

f X(YL) XC , g ,

00
then we obtain instead of (38)

0 (37)

Hence, setting the derivative with respect to cn equal to zero, one sees

that the condition for co to be a maximum yields

or

6)- (38)

Thus, for this case, the added mass is ¶¶f /(2n) , inversely proportional to

the order of the mode.

The Vibrating String

Another illustration of a case with infinite degrees of freedom is

furnished by the vibrating string. It will be supposed that the string of

radius a is of infinite length but restricted to vibration with nodes at

0.,+ t Tr, -21T', ... along its length. Let m denote the mass of the

string per unit length and IC its tension, and suppose that the string is

vibrating transversely in the y-direction with amplitude

=Tgx X(X) C'O'wt (9

at angular frequencyO

The velocity potential may be assumed to be of the form [21

(/)



where (x, r, 0) are the cylindrical, coordinates of a point, and 4 (x, r, 9)

is a velocity potential expressible as the series

4)0' (40)

where denotes the modified Bessel function of the first order. From
the boundary condition at the surface of the string

we obtain

where K1 denotes the derivative of K1 with respect to its argument, and

hence (40) becomes

The maximum value of the kinetic energy of the fluid bounded by the planes

x= 0 and x -iVs then given by

z - d5 = pofffcf fo.t X% .C.dcL
.evaluated on the surface r i a - Substituting from (41), we obtain

wiire Tf cfA (e.)) YWxX(ý)cGU } 42

. Gx- j
0 00

SThe modified Bessel function Kl( A is defined, by the series (8]

K',()- + ( + "____ 2___ (43)4 o(+fw



where

T(o)- -C) c . )(+= -C+ +h " + "

and C is the Euler constant, C = 0.5772 ... For small values of we

obtain from (43) the asymptotic formula

G(•,)•1 ±N4t2 ? +C)@ . I<= (44)

For large values of we have the asymptotic formula [10]

where

We obtain then

and

and hence

GN X(45)

For intermediate values of ? , G(A) may be computed from tabulated values

of Kn(?A) [8], using the identity

-A= (- (46)

The maximum values of the kinetic and potential energies of a vi-

brating string are given by

IT



Hence, by (42), the total kinetic energy of string and fluid is given by

2 (T.±T,) =e Sc-4 -F )±FA(%,)3X(%)X(k) cLd(48)

and the condition of constancy of the total energy gives

Jv ox) *A (Y.)]ý *X)()d d4 Z: (49)
0 0

As in the previous case, of the vibrating plate, exact solutions for
the vibration frequencies can be obtained from the energy equation (49) by the

Rayleigh - Ritz method. Assume.

00

Then (49) becomes

C) c, .- 0_a = t")3 =

The condition that the c be selected so that W is a maximum or a minimumn

gives

and hence, denoting the frequency corresponding to n by W n

+ ( CO (50)

where T is the specific gravity of the string material.

According to strip theory, the frequency is given by

Yn3 ( (51)

Hence, from (50) and (51) we have

GTn " + I I - '(Ia (52)

T+ Gkna)
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For harmonicas of moderate order the value or G0Qj In (4)my be applied
and. (562) becomes

,.,)& + c I zA (53)

For exanple, consider a steel string (6"i 6.8) 2 ft long and 0.01 ft in-

diameter. Since the foregoing theory is based on a string length of 7T be-

tween nodes, the value of a in (52) will be taken to be

0,0= : 0.00785

This gives the folloving values of• -J6 :

n 0(ma)

"10 0.985 1.001

100 0.660 1.022

The exoae indicates that the strip-theory approximation would be an excellent

one in the case or a vibrating string.

Vibrating Sheroid

In the cases of the infinite plate and the Infinite string vibrating

in a fluid, it has been possible to obtain exact solutions for the natura fre-

quencies. Since the principal purpose of the present work is to illustrate an

approximate numerical procedure for obtaining these frequencies., it would be

of interest to compare the results of this numerical procedure, applied to

either of the previous cases, with the knovn exact solution.

Although it is lanned to undertake such a calculation in the contin-

uation of this study, to date attention has been devoted to the development of

procedures for obtaining the added-mass function for several cases of more

practical interest than the preceding ones - viz., a circular bar of finite

length, a spheroid, and a ship form. Of these, only in the case of the finite



bar, discussed in Part 3 of this Final Report, has a complete application

of the theory, taking into account the inertla and elastic properties of

the bar, been consummated. The results obtained in the case of a vibrating

spheroid will first be presented.

It has been shown (9] that the kinetic energy of a liquid,, for a

spheroid vibrating at its free surface, is expressible in the form

AT=WKklt''t ,, 21LI•c•s "
2 -T [fo l "z, ()

where

u+ ( -,e)"• ( ., ÷•. 4, e)
Here (ý ,pt , 9) are the spheroidal coordinates of a point with focal dis-

tance 2k . The surfaces ý - const. are prolate spheroids, the value

0 denoting the equilibrium surface of the vibrating spheroid. The

polar and equatorial radii of the spheroid 0 are

8 sThe functions and are the associated Legendre functions of thePn
first and second kind [103, and ue , ye , we are the components of the

velocity vector v related to the velocity vecto:e V-e of a point on the

surface by

Tje) 4"n cot (55)

Let us consider a pure shear motion with

0 / e 4 (56)

Then (54) becomes

where A9 -l)"(57)

Nv3 o

/
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Let us write the kinetic and potential energies of the elastic

spheroid in the tonm

*2 V4 f

vbere x9, is the aailitude of the vibratIon, given by

From the conservation of .the total energy we then have

JOý0SMA.ý+jjVjX)X()cýd9 0 (8

,where F

The Rayleigh-Ritz method will now be applied, assUting

Ee)'

Then ( 58) becomes

WEEIc ,AýAv 4111 (59J)i(')

where

The integrals occurring. in (59) can be siMplified by means of the relations

[8]
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Applying these yields

' P 9A. =

Hence,. suinig with respect to r, we obtain

and the term conftining the integrals in (59) reduces to

~ ~L __ ~(80)

The condition that the eigenvalues W awe stationary with respect
to variations in the coefficients c r applied to (59) yields a set of homo-
geneous linear equations and the secular equation for determining the eigen-

values. The form of (60), which represents the contribution of the fluid iner-
tia• indicates that there viii be several nondiagonal elements due to the fluid
in the secular equation. This will be studied In the continuation of the
present work. In the reminder of this section the properties of the added-

mass function will be developed.

Convergence of A(M .i')
F

For large values of n we have the asymptotic formulas [8]

27L+I

p~9A~~f~(4~W, 0. 2-AIwI



vhere/ -/A coo 0 - coo * ence the nth term of the serie, for

A9*,9) isj, asymptotically,

Thus the series for A%4.) converges,, except vhen/• . * Comparison vith

(30), the added-mass function for the infinite plates indicates that the pres-

ant function also has a logarithmic singularity at V * and consequently,

if it were replaced by a quadrature formula, the resulting added-mass matrix

A w would have a strong principal diagonal.. This indicates that perturbation

methods should be suitable for deriving corrected values of the frequencies

from those obtained by strip theory.

Evaluation of

Tables of values of %n ) and vhich are required for

the numerical evaluation of the added-mas function (57), do not seem to be

available for the values ofk near unity associated vith elongated spheroids.

The functions %1(ý) may be successively coupted from the recurrence formu-

"where o (1

Also ve. have

end hence

((Z2

An alternative form, which will be useful in deriving an asymptotic formulaa,

is obtained by means of the relation [8]
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and

These yield the formula

-- - 2(" + - (63)

- ~ ~ ~ )(ý_ 21tQn) +~I~Q

From equations (58) and (59) values of %l/k1 can be successively computed.

It is of interest to derive a series expansion of Qn(ý) about

1 in order to obtain an asymptotic formula for 'Q / 'l for values of

near unity. It will be shown that

Q0•H+.2,, ... (64)

where

and

It is interesting to observe the identity of the coefficients in

(61) with those of the known. expansion [10]

I-i-=• 2~ C--O-,,,+ (4•lf.()i•. )(- 1 +'-" (65)

In proving (61) we will make use of the differential equation satisfied by

the Legendre functions

(•-,~) G -2 2• )-t m-+,)Q+ )=o f.
and the relation

) (66)



Let us also write W as the Taylor series

'v~f~- 21~ (xi) -(67)

Since Pn(1) - 1 , we. immediately have from (64)

H'K (68)

From (66) and the above differential, equation, we obtain

which, by (65) and (67), can be expressed as the series in terms of ?\s -l ,

- ~~~a)L ~ ~ (A 1A2~-- )~jŽ4) L

Equating coefficients of r- now gives, after simplification,.

1-l 2. •4•

or, from (65)

2A, ~ -T ~ A

Thus, when r 1 1 , we have by (68)

_¢,= 2 • -• = •

and similarly, continuing successively with r = 2 , 35, ... we obtain

ti" "- (69)

It is now seen that (61) is derived by substituting the expansions (64) and

(.67) into (66).
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2he desired asymptotic formulas for is obtained by- substi-
tuting (64) into (63) and neglecting powrs of greater than the

first. The result is

- - 2 LFv% +-1)YoI1.,) (o0)7 Zi4#7

It does not appear to. be useful to extend this asymptotic formula to highser
powrs of (I - 1) since, at the afl values of n at which the forul,
gives sufficiently accurate results, better results are obtained from the
recurrence relations (61) and (62). zquation (70) is valuable in that it dig-
plays the analytical behavior of'./ when n is smal.

At large. values of n the iteration procedure for computing %/4 ,
becmes inaccurate because of the aocuulstion of errors and an asymptotic
formula suitable for large values of n is desirable. Available for this pur-

pose is the expansion [n1]

where

and F is the bypergeonetric series

F~vtq,,-A.÷ =Ii (. ...~)-4 _ ,•(-

The series (71) converges vhen . -)V- 1.061 ... hen V , the
remainder after r terms of the series is less numerlcally than the (r + 1)th
term i.e., the series is asymptotic. The limiting value €o +-' corre-
sponds to a spheroid of length-diameter ratio a/c a 3.0, so that, for elon-
gated spheroids, the asymptotic property of the series is very important.

For m - 1, the hypergeametric series becomes

F I 2 ( 2 t3 ) T 1) (1tXJ+)y.) 4
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and hence, vhen k 3 the first two tames of 7 will. give a good
approximastion provided the last term is very much less than unity. Fram the

form of this last term it Is seen that a nearly equivalent condition Is

3 .

But from the relations

ve have

2.C.
Hence the above condition becomes

•>>• (72)
2c

For sufficiently large n ve have then

Z~u4I: e Z!1.I)3. - t$ e

and hence, from (60), ve obtain after sui•Oification

__,__.-_,+ , ,. c(73)
~~V (2iiiIj. ni+Q+

Values of Q~/lcalculated by the exact, iteration formulas, (58)
and (59), and by the two asymntotic formulas, (70) and (73)., are coepared in

the following tables for spherolds' of length-diamet ratios 7.1 and 71. In

the former case it is seen that (70) agrees vell vith the values from the Iter-

ation formulas only up to n - 3; equation (73) becomes a good approximtion

for values of n > 10 , and Indeed yields values more reliable than those from
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the iteration formula, because of error accumulation, for n > 40 . For the

much more elongated body, a/c = 71 , equation (70) yields acceptable results

up to, n = 30 . At na- 70 the value from (73) is high by about 4 percent,

the deviation from the value from the iteration formula reducing to about 2

percent at n 100.

/Qn I A = 1.01 , a/c 7 7.14
n 0

__ES. (5_ 59) Eq. (70) Eq. (73)

1 0.01860 0.01857 0.01584
2 0,01713 0.01712 0 01528

3 0.01572 0.X1595 0,01446

4 •0.01444 O.01533 0.01356

5 0.01330 0.01546 0.01268

6 0.012S0 0.01649 0.01185

8 0.01065 0.01039
10 0.00935 0,.00920

12 0.008325 0.00822

16 0.00679 0.00675
20 0.00575 0-.00571

30 0.0010O 0.00409

40 0 -00322- 0.00319

50 0.00261

60

70 .'0.00191

so80 O-.00168

I,

}I -
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1. 0001., a/c 71

O IS. (58, 59) Eq. (70) Eq. (73)

1 0.0001997 0.0001997 0°0001588

2 0.0001992 0.0001992 0.0001399

3 0.0001985 0.0001985 0.0001414

4 0.0001977 0.0001977 0.0001427

5 0.0001969 0.0001969 0.0001439

6 0.0001958 0.0001958 0.0001449

a 0.00019,36 0.0001936 0,00014-66

10 0M0001912 0.000191i 0.0001478

12 0.0001886 0.0001885 0o00014-86

16 0.0001830 0.0001829 0.0001492

20 0. 0001773 0.0001772 0.0001485

3 30 0.0001630 0.0001644 0'.0001437

40 0,0001497 0.0001956 0.0001365

.50 0.0001377 " 0.0001286

60 0.0001272 0.0001208
70 0.0001179 0.0001131,

,80. 0 ,0001097 0.0001070

90 0.0001024 0.0000997

100 0.0000,960 0.0000941l.
- -'-~~,.-~~--,--.- . -- '--. ~ ... . .-.-.... _______ .. -. -._______ ........ ___________



-26-

One final interesting property of the added-mass function APY)
in (57) will be derived. From the recurrence formula [8]

Y' f.$9~) -(2" , ) + ( R'1P)-,WA 0-

we have

-n+ + I + OY

flL'1PI) ) . '~

"2,,(1÷A) = " i ,,,

Hence

""n'V) P-'o) ,-I(,k

and consequently

RI- ZLt 7  
T.PL.Y 'A+F'0Pn V)

Z:: •* •,-,,' k-• [P, PP,, 0160

But we have

,p,•) =(/,p.Z)PIJ

and then

tea )P 2 6)P) I 'p

Hence, finally

,•:,0+9, (ff-V) (74)

This gives the sum of the first n terms of the series for A(/,L)) -when
I << I and n is chosen sufficiently small so that %2/Q'l • 1



-27-

Kinetic Energy of a Vibrating Ship

The equation of the ship surface in its equilibrium position will

be taken in the form

+/

where x , y , j are rectangular Cartesian coordinates with the x axis in

the free surface, the axis positive vertically upwards in the centerplane

of symmetry of the hull, and the y axis completing the right-handed coor-

dinate system. From (75) one obtains for the -direction cosines ;'--2

of the outward normal to the surface

~ (75)

according as yrO , where fx - ,f/Z)x , etc.

It will be assumed that the fluid is incompressible and inviscid,

and .that the flow is irrotational. These are reasonable assumptions for vibra-

tions of very small amplitude. Then there exists a velocity potential which,

for vibration in a particular mode at an angular frequency W.# may be written
in the form

The vibration will be assumed to be one of pure shear, expressible in the form

- VP(X,t) = VK e
It is required, then, to obtain a solution of Laplace's equation

which on the surface (1) satisfies the boundary condition

where n denotes distance in the direction of the outward normal, and on the

free surface the condition

4 (77)



The amplitude of the kinetic energy of the fluid associated with the vibra.

tion is given by

2T~~fjP~-d5(78)

the integration extending over the surface of the hull.

Two alternative methods for obtaining the kinetic energy of the

fluid vill now be formulated. The first method,, in which it is assumed that

the flow is generated by a distribution of sources on the centerplane, requires

the solution of a Fredholm integral equation of the first kind; the second, in

which a distribution of sources on the. hull surface is sought, leads to one of

the second kind. In principle, an exact solution for the latter equation ex-

jots and can be found by iteration. For the former, in general, only approxi-.

mate solutions can be found, although for elongated bodies these approxima-

tions may be adequate for practical purposes. Furthermore, because of the

avoidance of a mathematical singularity, the formulations of potential-flov

problems by means of integral equations of the first, kind have resulted in

briefer numerical computing programs. There is a possibilityT however, that

a procedure for eliminating the singularity in the kernel of the integral equa-

tion of the second kind, which is presented in the following, may make the labor

of solving this type Integral equation more nearly comparable.

Distribution- on Center Plahe

The boundary condition ( - 0 on the undisturbed position, of the

free surface, y 0 , can 'be satisfied at each instant by adding. to the sub-

merged portion of the hull ita .irr6r image in the free surface. and treating

the double form as a single body, completely immersed in an infinite fluid,

and undergoing Vibration. In order to satisfy the boundary condition on the

hull surface (76), assume that the flow is generated by a distribution of

sources on the center plane of the hull and -its image, of strength (k,) ,
where • and ý are used to denote values of x and ý on the center plane,

to distinguish from the coordinates of points on. the hull surface.

In terms of this distribution the potential at an arbitrary point

(x, y, ) of the fluid is gven by



-es.

where

and the boundary condition (6) at a point of the surface S yields the

Predholm integral equation of the first kind

= (80)

In both, (79) and (80) the integration extends over the surface of the center

plane and its image in the free surface. The integral equation may also be

expressed in the form

where (1

If (81) were solved, its solution would be of the form

Through use of (76) and (79) one obtains for the kinetic- energy of the fluid

(78)

where

Here the bull-surface elements dS occurring, in (78) have been projected on

the x-ý plane, and only the projection from one side of the doUble hull, form

(yý0) haa been takeno since the energy calculated with, the Image included

is twice the actual energy. The function A(xx-*)' in (83), is the desired

quantity from which an added-mass matrix can be obtained.
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An explicit solution of (81) can be obteained for a very thin ship

(y<<l). For this case the kernel of (80) behaves like a Dirac delta function

and we obtain

But by Gauss's flux theorem we have

-U [f~td~~ 211'

according as y ý 0 , and, except near the borders of the center plane, the

corresponding integrals containing derivatives vith respect to y an4 d are

zero. Hence,, since

= .4 4 °'

we obtain from (84)

'Ym~z,) ~ ~(86)

Comparison of (88) vith the form. of the solution assumd in (82) shows that

i~~; ~ is a Dima S function which has the properties that it vanishes

except Mhon X and that,

iYr (8?)

Hence we obtain for the added-was function (83)

if

The equivalent matrisx obtained by replacing the double Integral by a quadra-

ture formula, vould have strong diagona elements (x = x") , although the non-

diagonal elements would probably not be negligible.

Better p•:roximaItons are obtained by solving (81) by iteration.

Sice kk , peakshar•ly•in the neigh1borhood of xj, . ,



and is e=al elsewhere, It is seen that the value of the integral Is affected

onl1y &Ughtly by replacinig m(ý.. ) by zn(s k) in.(81); i.e., the proedure
which gives an exact solution when the kernel is a Dirac delta function will

now be used to obtain a first approximation. Instead of (85) we now employ

the actual value for the given ship form of the double integral of the kernel.

This yields for the first approxition

"- - W (7,), VA',s)VIX)
W h o " ( 8 9 )

and for the corresponding added-mass function

A L_ 1  W(')1'dL~dy (90)

In order to obtain a, second approximstion we write (81) in the form

Mhen, by the eame reasoning as we used to derive i,.x, , we obtain the

second approxization

IV (f ffVW~ i4nMekAL0d (91)

or, from (89),

Y4 = 2 -t (c (92)

The resulting added-mass function Is then,, by (82),. (83)., and (90).,

2A~fr~') ~Jf LIN~' ' F ()
L1+T((93)I



This procedure could be continued to obtain additional successive approxima-

tions, but the second approximation Al-l probably suffice.

Distribution on Hull Surface

It will now be assumed that the flow is generated by a distribution

of sources on the surface of the hull and its image, of strength m( ,)

This gives for the potential at an arbitrary point (x;, y, ) of the fluid

where ( (94)

The boundary condition (6) at a point of the surface S now yields the Fred-

holm integral equation of the second kind

where (.95)

A procedure for eliminating or reducing the order of the singularity

ýof -the integrand in (095) when the points (x, y~a and (~~,)coincide
will now be indicated. By Gauss's flux theorem wve have

= 21 (96)

where V) denotes distance in the direction of the outward normal at a point
, ) of the hull surface. Thus the integral equation (95) may be ex-

pressed in the form
~~e~4jntbefoAS -n ,) ýij~ 3V~x (97)

[ which accomplishes the desired purpose.

1'



An apProximate solution of (32), obtained by neglecting the surface

integral, is given by

Successive approximations are then obtained from the iteration formula

Yn. (99)

which yields a solution of the form

M(1 d-%~)() d- (100)

Substituting (76) and (94) into (8), we obtain for the kinetic energy

of the fluid

In.i.ich, by symmetrY, only values of corresponding to y > 0 need be

taken, the resulting quadruple integral being multiplied by 2 instead of by

4, since the energy calculated with the image included is twice the actual

energy. Substituting for m(x,•) from (100) gives then

4T'r

which yields the added-mass function

A@~)- pz+2fff (tc~ L~c ~ (101)

where

2TrR(1)



Sand Recowerndations

A dynamical theory of ma elastic body vibrating in an incompressible,invisciA_ fluid hae appli ed in five examples; vis_ýa systemn of three de-.

gre~es, of freedom., an inftinite plate., a taut string., a. spheroid, and, a shi
The case of a circulzr int_length iaj rtl--oslee•i•Pr

of this Final Report, 4•iirt of these pioblems is solved by employing uatr.

theory, the second and third by means of the method of Rayleigh-Ritz.)

(Since one of the purposes of the present work. is to compare the Ray-

leigh-Ritz method with the proposed one of replacing surface integrals for the
kinetic and potential energies by quadrature formulas so that matrix methods

become applicable, it would be of interest to obtain solutions for the same

problem by both methods.. These can readily be performed for either the infinil

plate ot stringo In the case of a vibrating sphleroid, the mdthematical proper-
ties required for aplication of either method have already been developed. aný

it remains to perform the nomerical calculations for the eigenvalues. In the

last case a way of applying the Rayleigh-.,itz method is not apparent., and only

the formulation for the mtrtix method has been accomplishedo

Vari6us :expressoons for the added-mass function for a ship form, (88)
(90), (93), (101), and (102), have been derived. It appears to be desirable

to 'undertaee a numerical study of these functions for a. particular ship týorm,

possibly one defined by simple mathematical formulas. The functions defined
by (88),. (90),. and (102) are .much simpler than those given by (93) and (101),

although the latter two are more accurate and, in principle. that given by

(101) is exact. A num=erics! study wmuld indicate i.;hether the simpler but less
accurate forms vere adequate for practical purposes.

it would also be of essential interest to compare the natural fre-

quencies obtained with. the added-mass matrices derived from the aibove added-

mass functicons w.th those coaputed by strip theory. T'his would show lfhether

there is any practical arvanstage over strip theory of the present developmnt

of a more rational procedure for the inclusion of bydrodynanic inertia effects

in vibration aealyses.
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