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Abstract

The stability of an inviscid fluid between rotating

cylinders with an axial flow is considered under the small gap

approximation. When the axial flow is small compared to the

rotational velocity, a new perturbation method differing in

several respects from the conventional method has been devised.

It is found that the presence of the axial flow has a stabiliz-

ing effect, and that the correction to the growth rates of the

pure rotation case is of second-order in the axial to rotational

velocity ratio. Furthermore, the instabilities are confined

to only a finite range of wave numbers.
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1. Introduction.

The effect of an axial pressure gradient on the

stability of viscous flow between rotating cylinders has

recently been studied both theoretically by Chandrasekhar

[1-31 and Di Prima [4] and experimentally by Donnelly & Fultz

[5] and Snyder [6]. This problem is of particular interest

because of the interaction it exhibits between the Tollmien-

Schlichting mechanism of instability associated with the axial

flow and the Taylor-Q&rtler mechanism associated with the

rotational flow. As in the usual stability theory for parallel

flows in which the inviscid form of the Orr-Sommerfeld equation

plays a central role, the corresponding inviscid analysis for

the present problem may be expected to be of comparable

importance.

In the present discussion we will make the usual small-

gap approximation, i.e. we assume that the spacing between the

cylinders is small compared to their mean radius. We will

also restrict the discussion to velocity distributions that

are physically realizable in a viscous fluid so that the

angular and axial velocity distributions are given by

and W(r) -. 6WmC(lr), (2)

where . = (r-R_)/d, g =2/g'3l, and W is the mean velocity

of the axial flow.
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For an inviscid fluid, the stability of a purely rota-

tional flow is determined by Rayleigh's circulation theorem

which states that a necessary and sufficient condition for

stability with respevt to rotationally symmetric disturbances

is that the square of the circulation should increase outwards

from the axis of rotation. On this criterion, the distribu-

tion of angular velocity given by equation (1) is unstable if

p < 1 and stable otherwise. On the other hand, the stability

of a purely axdal flow is governed by Rayleigh's inflection

point theorem which states that a necessary condition for

instability is that the velocity profile have an inflection

point somewhere in the flow region. For the sym-etrical

velocity distribution (2), this condition is also sufficient.

We would expect, therefore, that the stability or instability

of a basic spiral flow would be determined solely by its

rotational component as was first suggested by Chandrasekhar [7].

Since the axial flow is stable in the absence of rota-

tion, we might expect it to have a stabilizing effect on an

unstable rotational flow in the sense that the growth rates

of the disturbances, if positive, would be decreased when an

axial flow is also present and that the instability would then

extend only to a finite range of wave-numbers. This conjecture

is borne out by the present calculations.

When the axial flow is dominant compared to the rota-

tional flow, however, the situation is more complicated for

the governing equation then possesses a singularity in
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the region of flow. In the total absence of rotation, the

roots of the indicial equation relative to this singular point

differ by an integer and, consequently, one of the solutions

(commonly denoted by cP2) has a logarithmic singularity. When

rotation is present, however, the roots of the indicial equa-

tion no longer differ by an integer and the singular point is

than a regular one. Thus, even a small amount of rotation

must result in a large modification of the solution T2 in the

neighborhood of the critical layer. This aspect of the problem

will be considered further in a later paper.

In the existing non-dimensional formulations of the full

viscous problem two parameters appear: the axial Reynolds

number

R = Wmd/V (3)

and the usual small-gap Taylor number

T (4_)
V1

In considering the approximate solution of this problem by

asymptotic methods it is convenient to replace either R or T

by a new parameter that is independent of viscosity. Thus,

we define the quantity

P a I(5)

When the effects of rotation are dominant, the relevant

parameters are clearly T and P; conversely, when the axial

flow is dominant we would use R and i/P. The related inviscid

problems are then obtained by formally allowing T or R to
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become infinite for fixed values of P. Both of these limiting

procedure are, of course, singular since the order of the

governing equations is thereby reduced from six to two.

In all of the existing work on the viscous problem it

has been assumed that the axial Reynolds number is small so

that the effects of rotation are dominant. The present

inviscid analysis will also be confined to this case where

P< <1. Even in this very restricted form the problem presents

a number of difficulties and it has been necessary therefore to

resort to a perturbation method.
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2. The governing equations.

If the steady basic flow given by equations (1) and (2)

is subjected to a rotationally symmetric disturbance whose t

and z dependence is of the form

exp(pt+ikz), (6)

then the linearized equation for u, the radial component of

the disturbance velocity, can be written in the non-dimensional

form (cf. [2])

(d+iapw)2(D2-a2)u-ia(d+iapw)(D w)u - -a2wu, (7)

where

D = d/dC, a = kd, and d = p/(-41A)1. (8)

In equation (7), w and w are the non-dimensional forms of the

angular and axial velocity distributions:

w(C) = 1-(I-p.)C and w(C) = (l-Q). (9)

The parameter P, defined by equation (5), can also be written

in the form

S= 6(WmA2ld) (-4AA2 1)' (10)

in which there is no longer any explicit reference to the

viscous problem. The boundary conditions that must be satisfied

by u are

u=O at C-0 and 1. (11)

The purely rotational case (p-0) has been considered by Reid [8]

who obtained an exact solution for -c < L < 1 in terms of Airy

functions.
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If we confine our attention to the case in which the

cylinders rotate in the same direction, i.e. to the range

0 < ýL.5 1, then w(C) is of one sign and, to a good approxima-

tion, can be replaced by its average value w- More

precisely, if we write

WQ - wfi-eU-4)J, where e - 2 (12)

then it has been found, in both the viscous (2] and the

inviscid [5] problems for the purely rotational case, that the

correction to the elgenvalues is only of second-order in e.

This approximation is, of course, no longer valid when p < 0,

since w(t) will then change sign in 0 < C 1 1. The simplifica-

tion that results from this approximation can be readily seen

if we note that, in a perturbation method based on the small-

ness of the parameter P, the lowest approximation will be the

purely rotational case with w a constant, the solutions of

which will be simply sines and cosines rather than the more

complicated Airy functions. Furthermore, the analysis to be

described can, in fact, be carried through for the general

case with but slight modifications, and it is found that most

of the important features of the problem are already exhibited

in the simplified case.

Thus, with w(C) replaced by its average value wn, we

have the governing equation in the final form

(o+iapw) 2 (D2 -a 2 )u-ia(d+iapw)(D2 ?)u = -a i.mu. (13)

For P « 1<, an approximate solution of this equation can be

obtained by the perturbation method described in the following

section.
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3. The perturbation method.

The method to be described here differs from the usual

perturbation methods, as described, for example, by Courant

and Hilbert (9], in a number of important respects the most

important of which is the elimination of the crucial require-

ment that the normal modes of the unperturbed problem be

complete. In the present unperturbed problem, for example,

when the cylinders rotate in opposite directions (i.e. p < 0)

the completeness question has not been satisfactorily answered.

In addition to the discrete spectrum of positive and negative

eigenvalues (with limit points at +oo) that has been found, the

problem may also possess a continuous spectrum (though this

later possibility has not yet been investigated).

To avoid this difficulty, we shall fix our attention on

a particular mode and show that it is possible to obtain

corrections to the eigenvalue and eigenfunction of that mode,

to arbitary orders in P, without any knowledge of the other

modes. From the point of view of stability theory this method

provides all of the information that is usually required. When

the cylinders rotate in the same direction and w is replaced

by its average value as in equation (13), the eigenfunctions

of the unperturbed problem are clearly complete and there

would be no difficulty in applying one of the usual perturba-

tion methods. Even in this case, however, the present method

has the important advantage that the corrections to the elgen-

value and eigenfunction of a given mode can be obtained in

terms of finite sums rather than infinite series.
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The success of the present method depends crucially on

being able to solve explicitly the inhomogeneous equations

that result from the expansion. This has, however, proved to

be possible not only in the present problem (for arbitrary

rates of rotation) but also in Bisshopp's work (10] on non-

rotationally symmetric inviscid modes in Couette flow. In

fact, Bisshopp's work provides an example in which the "averag-

ing" approximation was not made and the analysis was carried

through in terms of Airy functions.

Before we consider the expansion for the solution u,

it is convenient to introduce the transformation

x = x1 c, where xI =- (WM-2)j. (14)

As a result of this transformation the value of x correspond-

ing to C=- at which one of the boundary conditions must be

applied will depend on P. The function u is now of the form

u=u(x;a,jI.,df) with d=d(a,,+ ) but their dependence on a

(supposed fixed) and p(which occurs only through wm) need not

be indicated explicitly in what follows. We now expand u in

the form

u M u0(Xcs) + PU1 (Xjd ) + 2 u2 (x,d ) + ... (15)

but do not expand d until a later stage in the analysis. On

substituting the expansion (15) into equation (13), and collect-

ing terms of the same order in P, we obtain
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(D2 +1)uo W 0, (16)

(D2+l)u 1 = u0 2 cix , (17)
i=o

(D2 + ' )u2 -u 1  2 x 3 uo0j dix (18)

i=O i-O

etc., where D . d/dx, Ci = ci(apcxl), and di - di(a,d,xl).

To avoid going into too much detail, we will not give the full

expressions for cj, di and the other coefficients that will

appear later; it suffices to indicate the parameters on which

they depend. The boundary conditions now require that

u0 +PU1 +P u2+... - 0 at x=O and x=x1 , where xl=Xl(d) and d, in

turn, depends on P. Thus, in contrast to the usual perturba-

tion methods, the position of the outer boundary is not fixed

and we cannot separate the boundary conditions to obtain inde-

pendent conditions for each ui(x). Instead we first construct

two linearly independent solutions of equation (13) correct to

0(0 2 ), and the subsequent expansion of % then allows the

boundary condition at x1 to be satisfied to 0(0 2 ).

Two linearly independent solutions uoi(i=l,2) of equa-

tion (16) are simply sin x and cos x. Due to the linearity of

equations (17) and (18), particular solutions* of the inhomo-

geneous equations can be generated from the solutions of

(D2+l)fn = xnu (19)

The solutions of the homogeneous equation for uI and u2 need

not be considered.
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and

(D2 +l)gn = xnul, (20)

which are, as can be easily verified,

fn 1 [xnu ' - n xn-luo + n(nl-2) fn-3f (21)

and

1 [xn+luo .- xn(n+l) n-luI + (n+l)n(n-l)(n-2)
gn =T 2 [nl n 2n-1 0 2n-1 gn-3

(22)

In the above formulas n is a non-negative integer, fn and gn

with negative subscripts are to be regarded as zero identically,

and fl is to be taken as xu0/3 instead of (xu'/3 - u16) since

(D2+l)uo = 0.

Thus, corresponding to u0 --uoi, we have, for a particular

solution of equation (17),

2
uli = Z Cnfni, (23)

n=o

where fni is the solution (21) of equation (19) when u0 is Uoi.

Collecting terms we obtain

Uli = Pl(x)uoi + P2 (x)uoi, (24)

in which
2 3

PI(X) = Z PlJX P2 (x) Z P2 jX * (25)
J=l J=l

and the Pij=pij(a,o,xl) are linear combinations of the Ci's.

Equation (18) then becomes
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2+ 4, 5 (26

(D +i)u 2 ' 5' m~xj + . n~x, (26)

where m and n are combinations of cipdi, and Pij. Its

particular solutions must therefore be of the form

4 5
u 2 1 = Z m f . + Z n g i

SQl(x)Uoi.+ Q2(x)uo0 , (27)

in which
6 5 3 a,(8Q_(x) =z~ J , Jx Q(X)= ZqJxljz (28)

and the qij = q1 j(a,d,xl) are linear combinations of mi and ni.

We have thus obtained two fundamental solutions of

equation(13)which, correct to 0(32), can be written in the

form

U,(x) = Uoi + p(Pluoi+P2 uoi) + p2(•auo*+Q2uo) + ... $

(29)

in which uol(x) = sin x and uo2 (x) = cos x. Since

Pi(O) = Qi(O) = 0 and uol(O) = 0, the characteristic equation

is simply

ul(xl) = 0, (30)

and the required eigenfunction is a constant multiple of

ul(x) = sin x + P{Pl(x)sin x + P2 (x)cos x)

+ P 2 {Q_(x)sin x+ Q2 (x)cos xj+ ...j. (31)
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We may remark here that in the general case where w(C)

is not approximated by its average value, a different trans-

formation x=x(t;a,p,d) must be used with the result that both
boundary positions are then functions of d(p). The character-

istic equation will also involve both of the boundaries, x0

and xI say, and the required eigenfunction will then be a

certain linear combination of the corresponding fundamental

solutions ul(x) and u2 (x), the leading terms of which will be

the Airy functions Ai(x) and Bi(x) respectively.

It is at this stage that we will expand the eigenvalue

d in powers of A, and thereby find corrections to the growth

rates of the unperturbed problem. Thus, we let

d (1) = d p, + P 2 d 2 + o(00 2 ), (32)

and we can then obtain the corresponding expansion for the

boundary position xl(d), in the form

X1(d) = xI + Pxl(3)S

+P{xlo)O 2 + x(($0)0 3+ o(p 3 ), (33)
I I

where X1 = xl(o), xl(o) = (dxl/dd)p 0o, and Xl

= (d2 x 1/dd 2 )o. In a similar manner we obtain,

sin x1 = sin X1 + •xl(o )51 cos1

+2 {[x'(d)d + ½ xfl(d)d ]cos XI - j[x(dio)O,]2

"+ o(p 3 ),
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coo x C -Cos X 1 Xl(do)dlP sin X, + 0(08)..
dP i(x 1) op) (

Pi(xi) = Yj(x 1) + P[ dPPo] ld + *(P?),p=o

and

Qi(xl) = •(X 1 ) + o

where li (Xl) = [Pi(xi) I and 4(X1 ) = [(Q(xz)J P=o On

substituting these results into the characteristic equation (30)

and collecting terms of the same order in P, we obtain

sin X= 0, (35)

I= - 1 2 (Xi)/x!(do)" (36)

and

d2 = - 1 do + 2(x)

dd1 1

Equation (35) requires that --±n7 (n=l,2,...) and

from equation (14) we then obtain

do W , (38)

where

X = a/IXzl = a/nr . (39)

Thus, in the absence of an axial flow, there exist two modes

for each value of n, one being stable and the other unstable;

these modes correspond to the so-called "convective modes" in
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the viscous treatment of the problem. By using the expressions

for PJUP x,(co), and do, we obtain the first-order correction

to the growth rate in the form

dl aX (40)r-x2 I t (1+ Xo

Since 0 is purely imaginary, the correction to the growth

rate is of second-order in P. Only one value of d1 obtains

for each n, and it is independent of the rotation rate IL

since wm does not appear in equation (40). The required

expression for a 2 can conveniently be written in the form

(l+%22 ) 0o 2 = - [A(l+%2 ) 3 + B(l+X2 )2 + (41)X2 o =2 -

where A = -2 + - _-4 and B + i (42)

Thus, for each value of n, there are also two values of d2 ,

the signs of which depend on those of o0 ; d2 also depends on

V, but this dependence is only through d0 .

The form given by equation (31) for the eigenfunction

is not er tirely satisfactory since the parameter P occurs not

only in the coefficients Pij(adX1 ), qij(a,o,xl), but also in

the variable x=xi C,. We would, of course, prefer to have u

expressed in the form

u• u•(o) + Ou(l) + p24 2 ) + 0(p3), (43)

in which the u(i) are independent of •. This can, of course,I
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be achieved by employing the same expansion procedures as

those described above in obtaining dI and d2. The details of

this calculation are somewhat lengthy and in the following

section, therefore, we will present only the results for a

particular wave number, namely a-it.



562(07)/52 17

4. Results for the first unstable mode.

We are mainly interested in the first unstable mode,

for which X,-+,x. For this mode, the dependence of do$ d1 and

d 2 on the wave-number a is shown in Fig. 1. We note that a2

is negative for all wave-numbers, so that the axial flow does

have a stabilizing effect as expected. Over most of the range

of wave-numbers, the values of d0,01 and d2 agree very closely

with their asymptotic behaviors:

d T a[J a + O(a 4 as a --->•0,= 1: - + o~a'•,., as a ----o,

= [( ) + + O (a)], as a--> O,

<1f5)
-- - i [a ) -~ + O a"4)J, as a -• D,J

2a

and
•( A1 +B1 ÷½ ) 3Al÷2B1 -3.) a2 a)

S= ~ ~a~l.+ (AI+BI+* ' 0a;•]

as a -- 0,

A1  1 2 (J•6)" a a +K0(a-)]

""64. - 1 ~ sa o

as a ----> 0,

where A1 and B1 are the values of A and B when Xlf=ix, namely

A1 = 0.03558677 and B1 - 0.2193413. (47)
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For this mode, we have also obtained the corrections

to the unperturbed eigenfuncticn,. ul an 12) for one

particular wave-number, a=7E. These results can be written

in the form
2 3

-i /Z U~l) ,/ff [sin 2 + cos %tlZ 3j= J ] (48)

in which

K 1 = 1K12 n -1( 49111

K2 1 = /3, K 22 =-, K2 3 =27/3 )

and

u(2) 6 5
WmZ 1 = y, R-•Jc + cos , Z R2j (50)J=Z J=l '

in which

H11 = (.2ý - 6) R ~12 JE7 2  6 R13 r- 7. _5-4.

R = _E2( 2 2),,RI5  = 4 R 4 7

2 (51)
1E +2), 22 = -. (½-6) , l9=¢ -4)

3  141E3R24- = 2V ' R2=5 =5--

These results are shown in Figs. 2 and 3. We note that u4I)

11is imaginary while u (2)" is real, and that both are symmetric

with respect to C= 1/2. Indeed, this symmetry holds for any

mode X, = +nE and any wave-number a, since both the differ-

ential equation (13) and the boundary conditions are symmetric.

This value of a was chosen partly for convenience and partly
because it closely approximates the critical value of a in
the related viscous problem.
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Such symmetry will of course not obtain if w(C) is not

approximated by its average. (At this stage it might seem

that the algebra involved would have been reduced had we

carried through the analysis on the interval (-4,+J) rather

than (0,1). This is not so, however, for the characteristic

equation would not then be as simple as equation (30) and the

eigenfunction will be a linear combination of both uI and u20

thus doubling the number of polynomials involved. Furthermore,

the symmetry condition provides a useful check on the analysis.]

From Figs. 2 and 3 it may also be noticed that the

functions in)- and u2), if suitably normalized, are very

nearly sine curves. This means that the actual deviation of

the eigenfunction from that of the purely rotational case is

much slighter than might at first have been expected.
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5. Concludinr Remarks.

In the general case in which w(t) is not approximated

by its average value, two distinct types of modes may be

present in the purely rotational case (8]. For 0 < p < 1,

only the "convective modes" (02 > 0) are present, whereas for

p < 0, there also exist "oscillatory modes" (d < 0). The

same perturbation scheme can equally well be employed here,

though it will be more laborious to obtain numerical results.

Qualitatively it has been found that, for the convective modes,

d1 is imaginary and has two values, one for each value of do.

For the oscillatory modes, ol again has two values, one for

each do, but they are real and therefore the effect (stabiliz-

ing or otherwise) of the axial flow on these modes can be

determined without going to second-order in P. The values

of 6l will, however, depend on p in the general case.

One of the main qualitative conclusions that can be

drawn from this work is that, when an axial flow is present,

there is only a finite range of wave-numbers with positive

growth rates. Indeed, we can easily show that the equation

0o + P2 2 = 0 does possess a positive root, a=ao say, and

hence for a > ao the flow is stable. From equations (38) and

(4i), it is more convenient to find first the real roots of

Ala3 + Bla 2 _ C 1a + I . 0, (52)
1 1 1 2

where a -1 + a2Ac2 and C1 . ¶&,W/p2. It can then be shown
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that only one root of equation (52) leads to real positive
2

values of a2, and from this root we obtain

mx/4 3. 1-j1 ~(l + ~ ~ 2) *()

Thus, the range of wave-numbers with positive growth rates

will be smaller the more dominant the axial flow is relative

to the rotational flow.

The differential equation (13) possesses a singularity

whered +iaw - 0. Since d is complex, this singularity does

not enter the flow region. Nor will the real part of the

singularity lie in 0 < t < 1 if 0 <<«. Indeed, if we write

x - I- and denote the position of the singularity by

x-x*-=x i (4 and x2 real), it can be easily seen that, for

wave-numbers a << P-, (Xl)2 _ (d/2a)p-1 (I + 0(P)1 , while

for a - o(P"1 ) or larger, (Xl)2 is at least of the order of

P Thus in any case (Xl)2>> I/4.

The present paper deals with only one extreme case of

the problem of spiral flow. The other extreme is the case

where P-1 << 1. As mentioned in the introduction, the presence

of even a very slight amount of rotation will drastically alter

the nature of one of the solutions (viz.cP2 ) of the case P-1-0.

This problem may presumably also yield to a similar perturbation

method, but complexities of a higher order must be expected.

The general case of arbitrary P is of course of more interest

and greater importance. A simple scheme such as the one used

here certainly will not apply, and a detailed study of the

singularities of the differential equation must first be made.
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Table I

The values of do Ol, and d2 vs. a for the first amplified mode

(XL-X)

m/7 I " 2

0. 00950372 -0.03675 954 -0.007 0476
0.2 0.19611 61 -0.07533 730 I -0.019 087

0 .87479 1-0.11721 79 -0.02154 6950.37139 06 -0.16333 9? -0.02759 600
0.5 o0.4721 36 -0.21.05 29 -0-03306 799

0;.6 0.51449 58 -0.26922 14 -o.o3.81 681
0: 0.7346 24 -0.32838 61 -0:043077

09 0.668 -0 -005353 535
13 0.70710 -0.52359 88 I -0.05953 901
2 0.8942 72 -1.23818 4 -0.18907 66

0.894 3 -1 92765770 69
0.97868 33 ,-2.9611 --o 9

5 098058 07 -3.35255 6 -2. 7

6 0.98639 39 - 4.o*90 4 -5M 1

8 0.99227 79 -Z:42285 4 -16.299!10 0.99503 72 -679602 4 -38.890
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Table II

ui4) ad 42) vs.• for the first amplified mode (x1 m)

0 0 0
0.1 o. 4421 53  0.721225
0.2 0.779177 1.26810
0.3 0.984f531 1.63120
0.4 1.08311 1.84136
0.5 I 1.11072 1.91127
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FIG. I THE GROWTH RATES FOR THE FIRST UNSTABLE MODE
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0 0.5

FIG.2 -y'WU(')(SOLID LINE) COMPARED TO
1.11072 sin 7r. (DASHED LINE)
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c

FIG. 3 Wm~(SOLID LINE) COMPARED TO
1.91127 sin 7r (DASHED LINE)


