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On the Solutions of the Differential Equation yvi = xy.

I. Analysis*

R. L. Duty** and W. H. Reid

Brown University

Providence, Rhode Island

Abstract

The differential equation yVi = xy plays an important

role in the asymptotic treatment of the stability of viscous flow

between contra-rotating cylinders and, in one limiting case,

solutions of this equation are required that remain bounded as

x -> +oo. A set of standard solutions have therefore been defined

such that three of them, denoted by Ak(x), are bounded as x -- >+cD,

while the remaining three solutions, denoted by Bk(x), are

unbounded as x -- >+oo. The contour integral representations of

these solutions are given, together with their power-series and

asymptotic expansions. It is also shown that a slightly modified

set of these solutions provide a "numerically satisfactory" set

over the entire interval -co < x < +o.

This work was supported by the Fluid Dynamics Branch of the
Office of Naval Research under Contract Nonr 562(07) with
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1. Introduction.

In a recent study of the stability of viscous flow

between rotating cylinders (Duty & Reid 1961) it has been shown

that, when the cylinders rotate in opposite directions, the solu-

tion can be expressed asymptotically in terms of the solutions of

the comparison equation

yVi = xy. M

This equation clearly plays much the same role in the present

theory as Airy's equation (y"=xy) does in the asymptotic theory

of second-order differential equations with a simple turning point

and, once a suitable set of solutions have been defined and

tabulated, the solution of the stability problem can be made

explicit. For the present purposes it is sufficient to consider

only real values of x though, more generally, if allowance were

to be made for the possibility of overstable modes of instability,

it would then be necessary to extend the analysis to complex

values of x.

There are, of course, many different ways of defining

a standard set of solutions of equation (1). Heading (1957), for

example, has recently studied a class of differential equations

which includes equation (1) as a particular case. The solutions

defined by Heading, however, are not the most convenient ones for

the present purposes since they are not all real for real values

of x. We shall instead find it convenient to define a standard

set of solutions in such a way that three of them remain bounded
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as x ->+co (tlhe remaining three being then necessarily unbounded

as x -- +o). The solutions defined in this way are thus analogous

to the solutions of Airy's equations usually denoted by Ai(x) and

Bi(x).

The relevance of equation (1) to the problem of the

stability of Couette flow was first recognized by Meksyn (1946,

1961) who attempted an asymptotic treatment of the problem on

the hypothesis that the wave-number of the disturbance (rather

than the Taylor number) is large. Although there are many super-

ficial similarities between these two approaches, there still

remain some important differences that have not been fully

resolved. Furthermore, Meksyn's analysis of both the stability

problem and the comparison equation was limited to the leading

terms in the asymptotic expansions of the solutions and so gave

no information on their behavior near the turning point.
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2. Power-series solutions.

Six fundamental solutions of equation (1) can be found

in the form of power-series by elementary methods (cf. Heading

1957). They can conveniently be written in the form

Yn(x) Exn1  asx7 S (n=l,2,...,6) (2)

where a0 = 1

and a = (n+7p) for s .
p=o

We now wish to determine those combinations of the power-series

solutions that remain bounded as x --> +oo and for this purpose

we turn to a discussion of the solution of equation (1) by the

method of contour integration.
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3. Contour integral solutions.

The solution of equation (i) by means of a Laplace

contour integral leads to the integral representation
y(x) = f exp(xt-t 7/7)dt, (3)

C

where C is any open contour that starts in one and ends in another

of the shaded sectors shown in figure 1. If we now let Lrs denote

a contour starting in sector r and ending in sector s then, since

the integrand of (3) has no singularity in the finite t-plane,

all contours for given values of r and s are equivalent by Cauchy's

theorem.

We shall be particularly concerned with contours Lrs

for which s=r+l and r=l,2,...,7 with:L78 a L71. For such a

contour we will denote the solution by

Ur(x) = I exp(xt-t 7/7)dt (s=r+l). (4)
Lrs

Note that in this way we have defined seven solutions. But again,

by Cauchy's theorem, we have

7 Ur(x) = exp(xt-t7/7)dt = 0.
r=l

We now wish to obtain the asymptotic behavior of the

solutions (4) as x --> +o for we can then define a set of standard

solutions that are real when x is real and that have the desired

behavior as x --> +oo.
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4. The asymptotic expansions of the solutions as x -- +oo.

In the application of the saddle-point method (or, more

generally, the method of steepest descents) to the solutions (4),

it is convenient to let t = x/6,r so that

Ur( = x1/6 exp fx7/6w(,c)]d¶ (s=r+l), (5)

rs

where W(T) = '--7 /7. (6)

The saddle-points, which are located at the roots of w'l() = O,

therefore lie on the unit circle in the T-plane at the positions

given by the six roots of +1 (see table 1). If these saddle-

points are denoted by T i (i=0,l,2, ... ,5) then we may note that

w('r) =6 and w"(=i) -6•i, (7)

where i denotes the complex conjugate of T i" If we also let

w = u+iv and T = ý+iq, (8)

then u(iE) = 6 -_( 21-4 2 + 35ý 2q _ 7 6)

1 6 _ 2 24 4 2} (9)

and v(,CJ) = n + 1(q6 -21e + 35I - 76

The curves u(ý,q) = constant form a family of contour lines in

the ¶-plane and the curves v((,q) = constant are their orthogonal

trajectories (except at the saddle-points). In particular, the

steepesb paths through Ti are given by

v(-,) = v(isii). (10)
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The explicit determination of the contour lines and steepest

paths that pass through the saddle-points is clearly a complicated

matter and only a qualitative picture of them, adequate for the

present purposes, is shown in figure 2.

When a path Lrs (with s not necessarily equal to r+l)

is deformed into a path of steepest descent,* it may pass through

one or more saddle-points. The dominant contribution to the solu-

tion associated with such a path then comes from the highest

saddle-point on the path. Since the elevations of the saddle-

points are determined by re[w(¶i)3, their relative heights can be

ordered according to the following scheme:

•o : +1

0

-riand T: 2(1

T. and T:

¶3: -l

Consider now the solution ul(x) associated with the

path L1 2 . This path can be directly deformed into a steepest

descents path passing through r3 and, by the saddle-point method,

we then obtain

U,(x) - i(n/3)I/2 x-5/12 exp(- § x7/ 6 ). (12)

It may not, in fact, be so deformable and in such cases an

equivalent path must be chosen that is deformable into a
steepest descents path.
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The descending series associated with this solution could be

found, if necessary, by the method of steepest descents but this

is somewhat difficult and not necessary for the present purposes.

Although we are concerned here with real values of x only, it

can be shown (cf. Heading 1957) that the expansion (12) remains

valid (in the strict sense) in jarg xl < 2v,/7. In the Poincare

sense, however, it is valid in the larger range larg xl < n.

The solutions u2 (x) and uT(X) associated with the paths

L23 and L71 respectively can be treated in a similar manner to

yield

U2 (X) - + e+li/3(7/3)1/2 x-5/12 exp(+ § 'u2x7/ 6) (13)

and u.(x) - - e-Ri/3(lI/3)I/2 x-5/12 exp(+ § ' 4x7/ 6 ). (!4)

Since re (T2) = re (TO 2-$ these two solutions are dominant

with respect to u1 (x) but they are subdominant (though not

maximally so) with respect to any solution whose path starts or

ends in sectors 4,5, or 6.

Thus, from these results, it is clear that any set of

solutions that is bounded as x --> +co must be formed from linear

combinations of u1 (x), u2 (x), and u7(x). The further requirement

that the solutions be real for real values of x then suggests the

choice:

A1 (x) =2 U

A2 (x) = 2 (u2 +u7 ), (15)

and A3 (x) = 2- -i (u2 -u7).
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The leading terms in the asymptotic expansions of these solu-

tions are then given by

A1 (x) - ½(3a)-1/2x-5/12 exp(- _. x7/ 6 ),

A2(x) - (3A-1/2x•5/12 exp(--a x•7 6 )sin(I-V '7/6 + (• (i6)77 3,

and

A3(x) _ (3n Y1/ 2x 5/ 12 exp(-_ x7/6)00 8(o1 / 6 +

Although the choice (15) would appear to be the most

natural one in view of the symmetry that has beei achieved,

these solutions do not, unfortunately, form a "numerically

satisfactory" set of solutions for large negative values of x.

This matter will be examined more fully in the following

section where advantage will be taken of the fact that an

arbitrary multiple of Al(x) can be added to A2 (x) or A3 (x)

without changing the dominant series in their asymptotic

expansions.

To complete the set of standard solutions we must now

consider the solutions u 3 ,u4,u 5 , and u 6 . Consider first the

solution u 3 associated with the path L 34. This path can be

deformed into a steepest descents path but it is seen from

figure 2 that it must then pass through two saddle-points with

a right angle turn at the lower one. The contribution from

the saddle-point at T2 is subdominant so that if we retain

only the dominant term in the expansion arising from ri then

we have
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u3 (x) - + e+:I/ 6 (,K/3)1/2 x5/12 exp(+ § ,r1x7/ 6). (17)

In an exactly similar way we obtain

u6 (x) ~ - e"7i/ 6 (7t/3)1/2 x-5/12 exp(+ 6 x7/6). (18)

Consider next the solution u4 associated with the path

L4 5 . This path is not directly deformable into a steepest

descents path and we must therefore choose an equivalent path

that is so deformable. A suitable equivalent path is seen

from figure 2 to be L42 + L2 5, each of which is deformable

into a steepest descents path. Each of these paths must again

pass through two saddle-points with a right angle turn at the

lower one. If only the domaniant term is retained then we

have

u4(x) - + (n/3)1/2 x-5/12 exp(+ 67/6). (19)

In a similar way we obtain p+ 7/6)
u5 (x) - (n/3)1L2 x-5/12 exp(+ . (20)

From these results we can now define a set of standard

solutions that are real and unbounded as x -> +oo. The form

of the asymptotic expansions (17) to (20) suggests the follow-

ing choice:

P'1(x) = 2 (u4-u 5 ),

B2 (x) = 2-1 (u3+u6 ), (21)

and B3(x) = A (u3 -u6).



562(07)/1441

The leading terms in the asymptotic expansions of these solu-

tions are then given by

B,(x) - (370-1/ 2 x-5/12 exp(+ § x7/6).
7

B2 (x) - (3ny)-1/2 x-5/12 exp(+ _ x7/ 6 )sin("-A x7/ 6 + E), (22)

and

x3 -x)5/12 exp(+ a x7/6) 0o 8C VI X7/6 (2 77

Having thus tentatively defined a set of standard solu-

tions with the desired asymptotic behavior as x -- +oo, we

turn now to a study of their behavior as x -4 -o.
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5. The asymptotic expansions of the solutions as x --> -co.

In discussing the behavior of the solutions as x -- -co

it is convenient to first replace x by -x in equation 0() so

that

ur(-x) = f exp(-xt-t 7/l)dt (s=r-l). (23)
Lrs

We again let t=xl/ 6 r so that

ur(-x) = xI/6 f expfx7/6wr))d-r , (24)
Lrs

where w(-) now has the meaning

w(¶) = -'r-J/7. (25)

The saddle-points therefore still lie on the unit circle in

the T-plane but at the positions given by the six roots of -1

(see table 2). The discussion of the level curves and steepest

paths through these saddle points then proceeds as before and

leads to the qualitative picture shown in figure 3. It is

useful to note, however, that the relative heights of the

saddle-points are now given by the following scheme:

S2 and ¶3 : +1

I and -": 0 (26)

I0r and " 5: -1

Consider now the solution Al(-X) which is still

associated with the path L1 2 . This path is no longer directly
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deformable into a steepest descents path, and it is seen from

figure 3 that we must therefore choose the equivalent path

L 2 = L515 + L552P (27)

where the paths L15 and L5 2 are sO deformable. They each

pass through three saddle-points and make right angle turns

at two of them. The contributions to the asymptotic expansion

of ul(x) from the saddle-points at T2 and r3 are dominant

compared to the contributions from the other saddle-points.

Thus we have

AI(-x) - (3,)" 1 / 2 x-5/12 exp(+ 3 x7/ 6 )sin(-I x7/ 6 + _), (28)
7 7 1

where we have omitted the neutral contributions from the

saddle-points at r 1 and T4 and the subdominant contributions

from - and T5 .

Consider next the solution A2 (-x) associated with the

paths L 2 3 and L 71 These paths are directly deformably into

steepest descents paths, each of which then passes through two

saddle-points with right angle turns at one of them. The

saddle-points at T2 and T3 therefore make the same contribution

(except for a change of sign) to A2 (-x) as they do to Al(-X)

and thus we have

A2 (-x) - -A,(-x). (29)

This does not mean, of course, that A.(-x) and A2 (-x) become
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linearly dependent* as x -4 +co, but only that they differ by

an amount that is exponentially small compared to either of

them. To investigate this situation more precisely, consider

their sum which can be written in the form

A.(-x) + A2 (-x) = 21 f exp(-xt-t 7 /7)dt. (30)
L73

The major contributions to (30) come from the saddle-points

at T, and T4, the contributions from or and r5 being sub-

dominant by comparison, and yield a neutral expansion, the

leading term of which is

A•(-X) + A2 (-x) - (370-1/2 x5112sin( 6 x7/ 6 + -1. (31)

This situation does not occur for A3(-x), since the direction

of integration along one of the paths is reversed, and we have

immediately the dominant term

A3(-X) - (30-1/2 x-5/12 exp(6 7+ a ). (32)

This solution therefore has the same exponential behavior as

AI(-x) but differs from it by n/2 in phase.

Turning now to the B-type solutions we encounter no

further difficulties. In the case of Bl(-X), for example, we

find that it is subdominant (since only the saddle-points at

Io and r5 are involved), with leading term

Numerically, of course, they bocome indistinguishable, and
this is confirmed by the existing tables (Hughes & Reid 1961).
The set of bounded solutions Ak(-x)(i-l,2,3) do not there-

fore form a "numerically satisfactory" set. A method for
avoiding this difficulty is discussed in section 7.
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tE())-1(,~~/2 X-.5/12 exp(_ _Jj~ x7'6)0os(_l X7/ 6 + '53~). (33)

Similarly B2 (-x) and B3 (-x) are neutral (because of the contri-

butions from T1 and TO), with leading terms

B2 (-x) - _ (3n)-1/2 x-5/12 sin(§ X71 6 + a) 1
and B3 (-x) + (3O-y1/2 x-5/12 oos(§ x7/6 + n).

On comparing these results with equation (31) we see that

B2 (-x) - - A,(-x) - A2 (-x) (35)

or,. more precisely, that

Al(-x) + A2 (-x) + B2 (-x) = -ii A exp(-xt-t 7/7)dt (36)
L64

and this is asymptotic to the subdominant term
(3n)-1/2 x-5/12 exp(- 337 x7/ 6 )sin(47 x7/ 6 + ) (37)

7 7 12

Thus, the combination of solutions (36) has the same

exponential behavior as B1 (-X) but differs from it by it/2 in

phase.
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6. The power-series for the standard solutions.

In order to obtain the power series representation for

the standard solutions defined in section 4, we now consider

a path Lrs (with s not necessarily equal to r+l) to consist

of two rays from the origin which bisect the sectors r and s.

The sense of the path is from infinity to the origin along the

ray that bisects sector r and from the origin to infinity

along the ray that bisects sector s. If we now define the

functions Ik(x) by the relation
co exp(2cikl/7)

Ik(x) = 1 f exp(xt-t 7 /7)dt (38)
0

(k=O,l,2,...,6) then the standard solutions can be expressed

in the forms

A1 = I3-I4

A2 = I2-I3+I4-I5 (39)

A3 = (I2-I3-I,+45)

and

B1 =J(21o-I-I6)

B2  II-12+I5-I6 (40)

B3 =i(Ii-I2-I5+16).

Prom the definition of Ik(x) it is evident that

Ik(x) - e2nik/7 Io(xe2iik/7), (41)

and this relation can be used to express all of the functions
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Ik(x) (for W•O) appearing in equations (39) and (40 ) in terms

of Io(x) which can, in turn, be expressed as the infinite

series

I W id 7-6/7 0(r-6E), !I.4T7xi-. (4&2)

By using these results we can now relate the standard solutions

to the power-series yn(X) defined in section 2 in the follow-

ing manner:
6

AI(X) = z an'sin(6n=/7)yn(x)
n-1

6
A2(x) = Z anfsin(4nn/7) - sin(6nx/7)jyn(x) (43)n=l

6
A3(x) W nz anfcosC4rn/7) - cos(6rfE/7)]YnCx)

6
and B1 (X) = E an(l - cos(2rn/7))yn(x)n-l

6
B2 (x) - n an[sin(2rm/7) - sin(4rl/7)lyn(x) (44)

n--l

6
B3(x) = zn anacos(2r1r/7) - cos( 4Crm/7))yn(x),

where the coefficients an are given by

(n-7)/7 ( n -)an = r( (-45'

It is also interesting to note that the particular combinations

of these solutions considered in equations (30) and (36) are

given by the series
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6
Al(x)+A2 (x) = Z an sin(4nl/7)yn(x)

6 (416)
and Al(x)+A2(x)+B 2 (x) = E an sin(2nr/7)yn(x)

n=l

The Wronskian of the solutions (43) and (44), which is,

of course, a constant, is given by

W(AIA 23 A3 ,BIB 21 B3 ) = -i,/ 3 . (47)

Some relations which are useful in checking the numerical

values of the constants appearing in equations (43) and (44)

are
687 1

n-i

sin 2R in 4Rsin AL= 4
7 7 7o

cos 2ncos4t2LCos = 14118)7 7 -

sin + sin sin -

cos2n+ cos4n+ cos~ 67 7 7 2
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7. Discussion

The standard solutions Ak(x) and Bk(x) (ki-l,2,3)

defined in section 3 were the ones tabulated by Hughes & Reid

(1961) and used by Duty & Reid (1961) in their study of the

stability of Couette flow. Although the results obtained

would seem to be entirely satisfactory, it is now clear from

the discussion given in section 5 (cf. equation (29) in

particular) that the bounded solutions Ak(x) do not form a
"numerically satisfactory" set of solutions for large negative

values of x.

This situation can be improved, however, if we replace

A2 (x) by

1 2 (x) = AI(x) + A2 (x). (49)

The dominant term in the asymptotic expansion of 7K(x) as

x +aDo is, of course, the same as for A2 (x) but, as

x -- 0-c, 2(x) is asymptotically neutral and, hence, the

set of solutions AlpK 2 ,A3  do form a numerically satisfactory

set. Furthermore, if a complete set of six solutions are

required then B2 (x) is no longer satisfactory either (cf.

equation (35)) and we should instead use

112 (x) = X.l(x) + B 2(x), (50)

The asymetrical manner in which the solutions K2 and S2 have

been defined here would appear to be unavoidable if we wish

to have a set of six solutions that are numerically
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satisfactory over the entire interval -co < x < +oo.

Finally, it should be remarked that because of the

oscillatory behavior of these solutions it would be advanta-

geous to develop the equivalent representation of them in

terms of phase and amplitude functions along the lines

discussed by Miller (1946) for the Airy functions.
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Table 1. The saddle-point configuration for x > 0.

Saddle-point Angular argument of Angle which the paths
the position of the of steepest descent
saddle-point make with the positive

real 7-axis

T 0 0 and 7c

i 'E/3 iE/6 and -57/6

'227t/3 ir/3 and -2 7t/3

'u3 7E +±7/2

'r4 -27/3 27/3 and -c/3

75 -3 57/6 and -�V6

Table 2. The saddle-point configuration for x < 0.

Saddle-point Angular argument of Angle which the paths
the position of the of steepest descent
saddle-point make with the positive

real 1-axis

To %/6 7E/12 and -5n/12

l t/2 3t/4 and -7E/4

2 51E/6 117t/12 and -7E/12

T 3 -5,E/6 7c/12 and -117c/12

¶4 -7E/2 Ir/4 and -37/ 4

"or5 -7,/6 5v/12 and -77c/12
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FIGURE I The r- plane
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FIGURE 2 The saddle-point configuration for x>O
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FIGURE 3 The saddle-point configuration for x<O


