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ABSTRACT

A general method to compute the parameters of microstrip
transmission lines is described. Here, the values of the
potential function are estimated by solving the Laplace
equation using the Monte Carlo method. The electric field
strength is then computed by differentiating the potential
function. From the electric field distribution, the charge
density on the surface of center conductor, the associated
capacitance per unit length of the line, the characteristic
impedance, and the conductor loss of the line is computed.
A Fortran program has been prepared and the flow chart of
the program is included and described in this paper. The
program was used to estimate the characteristic impedance
of lines of three different geometrics. Results are within
ten percent of the experimentally measured values.

" ~iii



W-5490 1.

INTZODUCTION

This paper is concerned with a general method to compute the

characteristic impedance and conductor loss of microstrip transmission

lines consisting of either a conductor strip above an infinite ground

plane or a strip between two ground planes. It has been proven, both

experimentally and theoretically, that for all practical purpose we may

assume that the conductors are perfect and are imbedded in homogeneous

and lossless dielectric material. Therefoze, TEM mode may propagate in

these types of lines. Thus the analysis of the parameters of these

lines is essentially reduced to the investigation of the electric field

distribution in the transverse cross-sectional plane of the line. From

the field distribution, the charge density on the surface of the con-

dJctoi capazitance per unit length of the line, and the characte,-

istic impec.ancF . '-r- line can be determined. This problem is. th~.e-

fore one if static elec;',magnetism.

However, even after this simplification is rida, to derive an

analytical exp- -,%) i . the parameters of such miczo.rrip linez Is

still rather difficult. By making approximations in one way or another,

many people have worked out solutions which give the pnrameters of lines

with specific geom.rries. For the lines where the widt of the conductor

strip (hereon denoted as 1) is large comparing with the spacing heýween

the strip and the ground olane (hereon denoted as H), e.g., B Z. 3.0 H,

the edge effect is negligible at the center of the strip. This case has

been solved by using the conformal mapping method. Powever, in the cases

where B is not large comparid with H, the solution thus obtained are

certainly not accurate. This problem has also been solved using conformal

mapping method for any ratio of B and H; however in these instances, the
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thickness of the conductor D is assumed to be negligibly small compared

with other dimensions.

The analytical sol.tion for the moit general case is just too

complicated, especially since we want this solution to be valid for

both cases of open strip lines and sandwich lines. In view of the other

approximat,.on wethods, it seems to be most suitable to solve our problem

by solving the two dimensional Laplace's equation numerically since a

computer prograir may be prepared for the most general case so as to

include all possible geomezries of the line.

Theorecicaliy, in our probl.-ni, the boundaries includes points

at infinity. Because only at these p ints do the fields due to the

charges on the conductor strip vanish. However, at a distance large

enough away from the strip, the electr'>; fiefl is practically zero.

Therefore, we can approximate the boun z.r- conditions as that shown in

Fig. 1, where . and p are large numbers to c' asen that at y - oX and

x = + -!B , the field strength is pracically ýero. Also, since all
2H

parameters we want to compute except t: 1, pcwer loss per unit length of

the line, are funtions of the ratios B/H And b/H, no generality is

lost by letting H = 1. Then, f:,r any given H, the power loss per unit

length can be easily obtained b) multiplying the power loss obtained

from this gecmetry by the proper multiplication factor.

4 .urfaý.e ciarge de,,,i t'a center conductor and the

associated capacitance can be determined from the field distribution

just outside of the strip. From the value of the capacitance and the

charge density, the characteristic impedance and power flow may be

determined. Therefore, it is only necessary to find the electric

potential at points closp to the can, r conductor. For this reason, the
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Monte Carlo method was chosen to solve the Laplace equation, because

this method enables us to obtain the solution of the Laplace's equatic

at these points without having to obtain the solution at any other points

at the same time.

bOUNDRY FAt. AWAt FIOM
TL4E,¢ T 6A STRIP O••__w•T
"TH-. eL.CTrItC FICLD is

.SCCWO~ GROUW~D PLAMI~
QKJ4CAJ's O'F 6AWWIVA Oka)

--- I-

(W CASCIA

V H

Fg./ ,1.

Fig. 1
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DESCRIPTION OF MONTE CARLO METHOD FOR SOLVALi~G THE LAPLACE'S EQUATION

It may be helpful. to describe the well known Monte Carlo

Method briefly. Given a Poisson2s equation

'i 2 v + 2 2~±

2 ýý 2 -4ý - F(x, y, z)

where F (x, y, z) is a function specified within a closed boundary

surface S, V(x, y, z) is the potential at the point whose coordinates
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are x, y, s. On the boundary surface S, the value of the potential

function, V, is given.

Consider that the region inside the surface, S, is divided

up into small cubical lattices of sides -. And the boundary surface

is replaced by a set of boundary points P .1 as shown in Fig. 2.

This set of points, {Ph} includes all-nearest exterior neighbors

to all lattice points witnin S and the rnearest exterior points

diagonally across the lattice points in S. The values of the potential

function Vat all boundary points {Ph I are given as yh' zh)

Then the poisson's equation may be approximated as tne difference equatior

A V + V +AV- F (x,.y,z) ............................. (1)
x y

where

AxV"-4 {V (x + h,y,z)v + V (x-h,y,z' - 2V ,x,y, z.)

y hV- IV (x, y + b, z)+ V (x, v-h, z) 2V (x, ,.

hV " V (x, y, z +h) + V (x, y, z-b) 2V (x, ,, z)

Denote the point whose coordinates are x, Y, 2 as P and Its 2losest

neighboring points as Pl, P2 ........ P6. Equation (1) becomes:

V (p) = L• (pi) h h2 F (p 'j ............. (2)

Note that the difference equation (2) gives the relation between the

potential at any point P and those at its adjacent points. In the

Monte Carlo Method, we shall consider the coefficients of the difference

equation as transition probabilities from one point P to its six
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closest neighbors. Then for a set of fictitious particles taking

random steps at the point P, with the directions of their steps

governed by random sampling technique, the probability for these

particles to step to any one of the neighboring points is given by

the coefficient of the difference equation. In our case, the par-

ticles have equal probability to step to any one of the six nearest

neighboring points.

Now consider a particle is allowed to take X random walks

where all walks starts at a lattice point P0 and terminates whenever

the particle reaches the boundary. As the particle is momentarily

at a point P, the probability that it will step to each one of the

six closest neighbors of P is 1/6. A tally of the value of the

potential function made for each walk will depend on the transition

probability between successive points and the value of F(P) at the

points which the particle reached in the walk. It also depends on

the value of the potential at the boundary point, (xh, Yh' zh),where

the walk is terminated. Here for the jth walk, the expected value of

the tally Z is given as

Zj " - hh2 "F (Pi) + (xj, Yj zj).. .................. (3)

where q (xj, yj, z ) is the boundary point at which the jth walk is

terminated and Pi 's are points reached in the walk. The solution of

equation (2) at the point P. can be estimated as:

(P () -. 1
0 ;7zi



W-5490 7.

And the error of the solution • estimated by the varian:e

x

It is obvious here that the larger X is, the highey the ac:uracy will

be.

As mentioned in the introduction, the analysis of the micro-

strip line is simplified as a two-dimensional problem. Also, with

the dielectric being homogeneous and lossless and the conductors being

perfect, the function F(p) in the poisson's equation is zero at all

points in the boundary. Hence equations (2) and (3) becomet

4 7 V(1I)...........................(4)

And

Zj (xj yj)..... ............................... (5)

DESCRIPTION OF THE COMPUTATION PROCEDURE AND FLOW CHART

First let us redraw the cross-seztion of a microstrip line

in Fig. 3, where all dimensions all indicated bv the number of meshes

of sides h. It is clear tmat h is equal to . The coordirates of

each of the boundary points are indicated in ttis figure in terms of

the indices I and J whiý.zh denote the lattize point representing the

boundary according to the rule des:ribed. Obviously, from the rule,

( 'l ) is the largest integer A W N. N)I. and (M) are the

largest integers equal to or smaller than 11 and D' respectively.
211 14, petvey

With P being large and arbitrary, we can always make an integer.
2H
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* L~~t-may..slsoobe helpfu&l to list here. a ew-wel4Iont'ltn

which give us the parameters of interest in terms of the scalar potential,

V.

The electric field intensity, 9 1 - Grad V ...................

The charge density ....... D l R .......................

The total surface charge on the strip per unit length, q,

'JACDFA (Don)ds ........ (c)

(where i is a unit vector pointing outward of and

being perpendicular to the surface of center conductor.)

Therefore, q ac +t

The characteristic impedance, Z ............ (d)0 q

Alpha = max. possible power loss/power transmitted

J C ,Elt4d , IY ..4 (e)

From these relations we can derive all parameters of interest once

the electric potential at points just outside of the center strip is

known. Because of the syrmetrý of the geometry of the line, it is

sufficient to compute the potential at points whose coordinates are:

1) from I - IA to I - LAP and J w N, 2) from I - IA tot - LAP an-

J - FDI and 3)i= LAP+l and J -N to J - NDI.

We shall describe the flow chart in detail.
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Box 1. Input data:

a) Dimensional constants: H (in meters),-, R, N, and
Hf H'N H

(for sandwich lines only)

b) Number of walks to be made, X

c) Arbitrarily chosen constants c( (for open line) and

d) Dielectric constants, . , permeability p, conductivity

of the conductors c,, and frequency at which the power

loss is of interest,

Box 2. a) Compute constants and boundary points LA, NP, L, etc.

and express them in fixed point numbers conforming with

the rule mentioned above.

Box 3. Register Y is set to one, and solution point P (I,J ) is

assigned to be P (LA,N). Register, P, for integral of

electric field strength E and Register,Q, for integral of

2
the square of the electric field strength, E , are set to

be zero.

Box 4. Sum register, G, for tally Zi and sum of square register C
2

for tally Z are set to zero. The counterIX indexing the

walks is set to one.

Box 5. Current point counters I and J3 are set to the indices of

the solution point P(IJ ). Register Z for tally during a

walk is set to zero.

Box 6. Two random number Ua and E are generated. Here the sub-

routine RANF already in Fortran Library which generates

floating random numbers of magnitude between 0 and 1 with

even distribution are used.



W-5490 13

Box 7. .mpute A I and A J according to the table below:

S S

S0.5 0.5 1 0

(0.5 (0.5 0 1

)0.5 ) 0,5 0 -1

)0.5 ( 0.5 -1 0

Box 8. The current point are advanced to where I - I + A I8,

j -j + &J
S S S

".ox 9. Test if the new current point coincides with any of the

bo.ndfry points. Tf it does not, step back to Box 6. if

it .,)es, proceed to Box 10.

Boy 10. The ;'oundary value at the boundary point rea-hed is tra!i.-

ferred to the tally register Z.

Box 11. The ccttent cf the tally register Z is added tc that of rre

sum register G. And the square of the zon.ent of register

Z is aided to that of the sum of square re•;. C.

Box 12. If : walks are :Dmpleted, proceed to Bo\ 13. Otherwise,

srep to Box 14 where the registeriX is in,,'xeabed by one.

Th.,-ý , -p 1)a-,- t , ',-Y. 5 to t -trr a n-.o walk.

Ecx 13. Est i,'"e of the solution at the point (I, J) 1• ,iemputed ard

store in V(I, J).

Box 15. Thc. !.;riance of the estimated solution is cc.uputed.
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Box 16. If the content of the register Y is one (solution points

are on line E'D' in Fig. 3, proceed to Box 17. If it is

two (solution points are on line B'C') go to Box 26. If

it is 3 (solution in points are on line C'D' ) go to box 27.

Box 17. Compute the electric field strength using the approximated
V(1.J) - V(I, J+l) Heeontele

equation E (I,J ) - h ) Here (on the line

E'D') the x-directional electric field is zero. V(I, J+l)

is given as boundary value.

Box 18. If I is equal to LA, increase the register I by one and step

back to Box 4 to compute the solution for the next point.

Otherwise, with solutions for more than one point are avail-

able, go to Box 19.

Box 19. Compute the average field strength between the two adjacent

points (I, J) and (I-1, J).

Box 20. Compute the line integralF I EI ds by using the
J ACDFA

trapezoidal rule of integration.

Box 21. Compute the line integral r 1E1 2 ds by using the
JACDFA

trapezoidal rule of integration.

Box 22. If the solutions for all points with coordinates I - LA to

I - LAP and J - N are obtained, proceed to Box 23. If other-

wise, stop back to Box 18b.

Box 23. If register Y contains the number one, go to Box 24. If it

contains the number two, go to Box 25.

Box 24. Solution point registers I and J are assigned to be LA and

ND1. And the register Y is increased by one. Then, step

back to Box 4.
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2t . '-,te electric field strength at points on the line B'C'

in *.., 3. Here the point (I, J-1) is on the surface of

;-!e center strip.

Box 27. U.-.•ti electric field strength at point on line C'D' where

the vfrtical electric field is zero (1-1, J) are boundary

points,.

BoA 2. It J is smaller than NP+I (the solution for only one point

on the line C'Dt is available), step back to Box 28b where

the register J is increased by one. Then, step back to Box 4

to compute the solution of another point. If otherwise,

proceed to Box 29.

Boxes29, 3U & 31. Same as boxes 19, 20, and 21 respectively.

Box 32. It the solution of all points are obtained proceed to Box 33.

If not, step back to 28b.

Box 33. Compute the characteristic impedance of the line.

Bcx 34. Cocpura the •[x. posuible power loss e Alpha)
power transmitted

Box 35. ?'1 nt out the estimated potential at all points on the lines

B'C, V'D' and D'E' with the variances of the estimated

-,tions. The characteristic impedance of the line and the

i io -.LPHA.

LIMITATION %4e THE PROGRAMd

i*.•. •- the limitation of the storage space, using an

IBM 7090 -,:,iputer with 32K words storage, the maximum number of meshes
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the dimensions H, B/H and D/H may be divided into are as follows:

dN (a 2,000

B 6,000

Therefore H - 2,000/&L , B/H - 6,000/(PN)

This program was used to estimate the characteristic

impedance of open strip lines of the dimensions: B/H a 1.0, 2.0,

and 3.0 and D/H - 0.3. H was divided into ten increments. Both *.

and P were chosen to be ten. For one hundred random walks, the

results obtained are within 10% of the experimentally measured values.

Although dividing the region into fewer meshes and increasing the

number of walks will certainly improve the accuracy, the computing

time have been found to be extremely high (say, one hour on the IBM

7090).

More accurate results will be obtained in a reasonable amount

of computing time in the cases where the lines are the sandwich type.

The reason is that with the spacing between the two horizontal boundary

lines at ground potential being not more than two to five times the

spacing HP the mean distance of the random walks is shorter; therefore

each walk will take less time.

Jane U. S. Liu

JL:tjm
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