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"RIDGE ANALYSIS" OF RESPONSE SURFACES
Norman R. Draper

University of Wisconsin

0. Introduction. In a 1959 paper, A. E. Hoerl discussed a
method for examining a second order response surface. This paper
provides a mathematically simpler derivation of the technique
and proofs of some stated properties.
1. Lagrange's Undetermined Multipliers.

A well-known (e.g. Kaplan, 1956) method of obtaining the
scationary or turning values of a function f(x;,xz,...,xk) of k
variables xj,X2,.¢0, Xy subject to restrictions on the X, such

as gj (x1)x2l”' x‘k) = o’ (j - 1,2,000“)

is the following. Form the function

n
F=f- 2 A,g (1.1)
=l 3®3

vhere A1, Az, ... A are arbitrary. Differentiate (1.1)
partially with respect to eachxi and set the results equal to

zero. This will provide the k equations

*This research was supported by the United States Navy through
the office of Naval Research, under Contract Nonr - 1202(17?,
Project NR 042 222,




n
- 2 A y = 0, (1.2)
ox, . 3;*

(i =1,2,..., k)
These k equations, with the additional n eyuationz
gJ =0 (=1, 2, ..., n). (1.3)

provide (n + k) equations whicii can be solved for the (n + k)
unknowns X1,Xz2, 05K, xl,xz,...,xﬁ. CGften the guantities
Xj are eliwinated and not actually found; £for this reazon the
words ‘'undeterisined wultipliers’ are used to describe thew.
In sone casez, however, the colutions for X1sX2, o X, are easier
to obtain if the Xj are evaluated fir.t; in other caues, as
below, it way be eacier to specify value: of Xj in equations
(1.2) and regard other quantities in equations (1.3) a: ‘‘unde-
termined”, in their place.

Suppose, now that (xl,xa,.?:,xk) = (al,ag,...,ak) iv a

solution of eguations (1.2) and?(l.S) after eli:ination of xj.

Let H(x) = M(xa,Xz,...x,) = |9%F  3°F 3%F
k S ook Smaew, | (MM
J%F J°F O°%F
Ox20x; Oxg= " 5x25xk
ééé' J%F J%F
—akax; Ox, Ox2' """ W
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be the matrix of second order partial derivatives. Then if
g(al,az,...ak) = M(a), the'resulting matrix after the golution
a' = (a;,ag,...gk) has been substituted into (1.4) is

(a) positive definite, ie y* My > O,

(b} negative definite, ie y* ¥ y < O
where y' = (yl,yg,..., yk) is any 1-5y k real vector,
the function f(x;,xa,...,xk) achieves

(a) a local minifawa

(b) a local maximum.
respectively. For, if we expand F about a as a Taylor gerieg
of partial derivatives, remenbering that all first partial de-
rivatives of F are zero at x = a, we see that

F(ath) - F(a) =4 h' M(a)h + 0o(h?)
wherz h represents a vector of small increnents hi all of the
sane order and O(h®) represents a remginder of third order in
such increments. Thus, to order h®, if M(a) is positive definite,

F(a + h) > F{a) , for all smell h.
If h varies only in such a way that the restrictions are still
satisfied, this implies that
f£(2 + h) > £(a)

ie, f£(a) iz, locally, a winimum, subject to the restrictions

-holding. As we can see from this discussion, it might happen




that
F(a+ h) $ F(2) , for all small h
but f(g + h) > f(a) , for all h which gatigfy the

regtrictiong. Thus "M(a) is positive definite" is sufficient,
but not necessary for a local restricted minimum of £ at x = a.
Similar remark: apply to the negative definite case. If lM(a) is
indefinite, further investigation of the function neaf the point
a 18 required to determine what sort of stationary point has

been obtained.

2. Improved derivation of the technique.

Consider the second order responce surface in ik variables

il;ka"'f’xk’ given by
Y = by + baxy + baxa + ... + b, X,
4+ b11%X12 + boox2® + ... + bkkxk2 - (2.1)
+ bisxixz + ... + b

k=1,k *k-, %

The point (0,0,...,0) i8 the origin of measurement of the
variables X1,K2, .« Xy o 1f the data used to obtain (2.1) re-
sulted from a designed experiment, it would usually be the center

of the design al:o. Suppoze now we imagine a sphere, center at

the origin (0,0,...,0) and of radius R, drawn in the x-space.




. , A
Then at some pointg on the gphere there will be a waximu y and

elsewhere a minimum §ﬁ and poggibly 2lso (depending on the type

of quadratic surface (2.1) obtained and the value of R) values

of Q‘Which are local waxima or minima, that is, waxima or minima

for all nearby points on the sphere, but not absolute maxima and

minima when all point:s of the gphere are taken into consideration.

If we investigate the stationary values' of the function 9"on the

sphere, ie the stationary value: gubject to the restriction
g(X1,X2,..., xk) = X2+ %22+ ...+ x.K2 - R® = 0, (z.2) -

we shall be able to find all thece local and ab.solute :maxima

and uwinina.

We can thien plot. against R ag abuzcissa the following (kfl)
ordinates: Xi,X2,..., L ? for, say, the abgolute maxiium of ?
found on the sphere radius R.

If we chénge R slightly the appropriate values of X3,Xz2,...,
L and 9 for the abgolute waximum will algo change slightly and so,
by varying R, we can congtruct (k+l) curves showing how the
position and magnitude of the abgolute maximum ? changé as R
changeg. We can thus find, for any gelected R, the placz of
maximun yield on thé‘response surface. Such a plot can alpo be
wade of ab8olute minimmmoyr of the loci of intermediate stationary

values, a8 desired. Mathematically, then, we wish to find the

stationary values of §’=‘f(x1,x2,...xk), from equation (2.1),
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subject to thé restriction g(xl,xz,...,xk) = 0 as in equation
(2.2).
Uging the method of Lagrange multipliers we seot F = S'\ - g

and equations (1.2) after rearrangement and division by a factor

of 2 become

(bax = 2) %1 + ¥byoxa + AR + %blkxk = - 4by )
: ,«}b;le .+' (bzg - )\)XZ + .. .. + 'é’bak}(k = = -é'be
'.II..‘. ' ) . . ’ . l', (2'3)
) "é‘blkXJ_ + 'é’bgk + e - + (bkk-l)xk =I‘é‘bk
or in mat;ii.notatioh:
(B-XIx=-4%b (2.4)
wﬁexje . - '
B = biy #bi2  .... Hby b= (D2 B
: ) - o .E
#b12 b2z ... Bzl , bz (2.5)
L&blk ébzk LR A ‘ bkk bk
and I is the k by k unit watrix.
Note: If we set k=2 and a = 2(: - bags), ie A = da + baa,

we reduce to the unsymmetrical equations obtained by Hoerl

with a as parameter.




Then, theoretically, the (k+l) equations (2.4) and (2.2) can be

solved for sets of x3,X»2,...X,, and A corresponding to the vari-

k
ous stationary values of 9 .em the sphere radius R. Since the
solutioﬁ in this form leads to involved calculationg, a simpler
and equivalent method of soiution may be used as follow:.

(1) Regard R as variabla, but fix ) instead.

(2) Insert the‘seleéted value of )\ in equations (2.%4)

and solve them for X1,X2,. . Xy o The solution is used

in steps 3and 4.

(3) Compute R = (x:%4x.%+...+ xkz)é = (5'35)%, where x' =
(xl‘:x2: LR :xk)

(4) Evaluate §¥.

We now have a get of nunsberg (A, x1, X2, ..., X , R, 9)

k

and know that on the sphere radius R,:center the origin there’

ig a gtationary value of 9, value determined,  at the poiﬁt

(%1, X2, «.., xk). Several different values of A wili give rise
to several stationary points which lie on the same sphére radius
R. Whether a partiéular stationary value is the absolute maximum,

absolute minimum, a local waximum or a local minimun is deter-

mined, és we shall see, by the value of ).

3. Properties of the stationary values.

Let the eigen values or latent roots of the matrix B be

denoted by Wy (=1, 2,... k). Then the u, are such that
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BXx=ux, (2.1)
or (B-ul)x-=0. (3.2)
Hence det (B - u1I) =0, (3.3)

where '"det" denotes "'the determinant of'", provides a kth degree
equation with roots Wi, pz2, ... s 835 Note that when a
standard canonical reduction is made of equation (2.1), MHi;yda,
ey Wy are the latent root:s needed to reduce 9 to thé farm

¥ = Yo + maKa® 4 uaXa® 4 L.+ X 2
Canonical‘:educgion is another way of examining a gecond order
regponge surface for its main fe;turés (C. L. Davies, 19:6).
By comparing the value A, which corresponds to ény pﬁrticuiar
staticnary Galue 6f'9~on a uphére of radiug R, with thé latent

roots i, we ghall be able to determine what gort of gtationary

value haus been thaingd.

Suppose A= A and.i = Ap are 3ubs£ituted in equaticn (2.%5'
“and the sqlutioné x:' = (ai,az, ..., ak) and x% = (cl,cé,...ck)
regult, thus providing twc stationary'values 91 énd 92 of.9 on
the spheres x'x = Rf and §j£:=.R2" regpectively. Then the
follqwing regults are true.

Result 3.1: If Ri-= Rz and Xy > Az, the yi >92-

Proof:. ‘We know that
(B-x11)x,=-% |, ' (2.1.1)
(B-X21)x2=-%, (3.1.2)
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X.'x: = xb xo = R®, say, (§-1.3)
$1=x1'" Bxi+xi'b+by, (5.1.4)
and 92 = 1_(.2' B xo + _)Eg' _b_ + bo. . (3.1.5)

Premultiplying (3.1.1) anci (3.1..é)'.by X! atid x2' respectively
and aubtract:mg, and remember ing (3. 1 3) gives
. xl B x1 ."'xz B X2 + é’(xl - xz) b (>~1 - 12) R2 - (3.1.6)
.'whence, ucxng (3 1.4) and (3 1. 5) | o | A
-Y;._" Yz = ‘Q‘(?_(_:.' x2)" b + (’»1 - Xa) R? .-".: ‘ | (3.1.7)
'Premult:ip.l_y'ing (3‘._1.1) taﬁd (3.1.2) by xz! éﬁd.;_gi' respecti.\}'ely.
and lubi;ra.é:tit;g glves - R R _

(o =) Bi'ke =¥ - xR . (3.1.8)
s‘ince x2' B %)= X3 42 _)5 aﬂ;i 'xg"xl = gl'gar- . '_.Héncg from
(3 1.7) and (3 1. 6) | L

Yl - Ya = ()»1 - >~2 (R2 - -ﬁe'}sl) ] B . (3.1.9)
But RZ - x2'x: = (31 + a2% 4+ + ak 2 ++ cl‘(z)éu ..

- .(alc; + 22C2 + .- l%—_-'éi{c':k) > 0, .alwgys,"by AAWéll-known: .
.inequ'ali‘ty (Hazdy, Licclewéaod and Polya, 1952). |

Hence iy > Xz implies 91 > 9;.

Result 3.2: If Ry =Ry, 5(51) is pqs;tive .defl:l.nite and _11(3(_2-)
ig indefinite, ‘t':hen 9; < ’92.
_I_’:gﬁ: By hypothesis

yB-221)y g 0, forat leagt one y = q, §ay

y*(B -2 I)y > 0 , for all y, including 1 = g.
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Hence e q'a 2 §'Bg > gy

By RésultVS.l ﬁheﬁ, §1J§ 925
| Si&xilarly, Lf Ry = Raj: M(x:) i..:;:x'ua..gat.ivé',dééiﬁi’;_e and M(ge) s
1ndef1n1te, then y1 > yz L | | -
Result 3. {:. IE gy > u (all 1), then X1 1s°a pclnt at® wh;ch

2y attain; a local maximum on tne. phere radiuo Rl)iALf xl < u
‘(a11 1), then x, iz a p01nt at v Jhlch y attains a 1oca1 anLmum
"on the uph re radluk Ri. (A: will be seen later, we obtaln the: '
'.aboolute max Lmuis and minimum in thl"'way, not only the lucal |
maxlmum-and mxnlmum.) . |
5 ggggg:. It ﬁill be seen that equation (1.4),bécome;

. M(XJ,.,A= _B_-V >"ll

for tne utataonary p01nt x;.: Then if xﬁi; ég1_‘n by 1 Qector; the -
'quadratic form ‘ - :

Y ME) y = 3'E-nmDy

| 1'By -mylyc
2 (- A

£ u i; aﬁy latent root.of B.

Thus, if A; > b (all 4i) M(x1 is négative definite and
"hence x; iz a point on the sphere radius R at which § attains
a maximum, if Ay < by all i, M(x;) is positive definite and

hence x; is a point on the sphexe, radius R at which 9 attains a
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minimum. _

Result 3.4: Suppose, as R increaaeg, we traee a iocus of
',tatlonary po;nL“ (the abuolute max_mum, ab;olute minxmum, or
a lccal maximum ot mlnlwum) and examine the changing

values" of y. Then, as R tncreases, 9 changcs in one of

’ the followung wayu (when the re,ponae Jurface im quadzatlc)
;(é)f decreaueJ monotonlcally |

. - (B). anrca,ed mono;onlcally

(e) pa,weg through a" maximum and then decreagea mcnotonlcally

:(d) pag>eu,through .a mlnxmum and then 1ncreaue, monotonically

'“'.If (c) and (d‘ happen, it io because the 1OCUa ha, pag,ed through:

. the center OL the quadratlc ay<tem

lO“'

“inoof: ::.' L'ijgn;'bo. + x' Q 5 _'

o

SR -,__ ‘ éz.lz. R N R Y]

--naing equation (2.4).

Suppose we meke a smali'chenge‘eéx in.X; this wiil in&uce snail‘
change:z 6x in X, in equations (2 4), a small change éR in R and
finally a small change 69 in 9 Then, from (3.%4.

P+ of=b_ + (ha 81) (x+ ox) (x+ox) +4}(5+ 6x)'b

Subtracting (?.4.1) from (*.4.2) and rearranging the result, we
find

5y = 21 x"ox + o) X'k +

Ap-
I,
o
+
~
N

(:.4.3)

s .

bk
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where Qa denotes te“ms of gecond opder in OX.and ‘&x.

_Butﬂlf we get Ao = A+ bk, Ay =X\ Xe=X + 6x and X3 = X in
.equation (3.4.8), we sde that" B |

; where' Qg denotes (other) terms oi second order in éx and ox..
:;:Thul (3 Y, 3) and (3 4, 4) mely that ST
;':?9f

i

--8ince §'5ﬂ='Rér'-D;vxd1ng by 6R and 1ett1ng a11 LnCrements

“tend to mero gives

ap e ',:_;5.: ";.ﬂ_ e

"fwhith ié'zefd-whéth éfO dnd when Py —30. When R O we are at .
ithe o:;gln and the value of y Wuen R O 18 the sta;txng xalue

for the locus of absolute max;mum and absolute minimum y When

:'-,R i 0, y 1s statlonary w;tn roapect to R only when A= 0' but

CifA = O, equations (2. h) y1e1d as aolutxon, the center of the

:-second order surtace, slnce we shall obtaln the point at which

3 . | -
5}%" =0,  (i= 1,2,...‘.,'1() (3.3.8)
. ) . o . i
The stated result follows Any locus pasalng through the centev
ot the’ lurface satilfiea (c) or (d) Otherwise.it latiafiol

(a) oc (b).

2% x‘éx +, Q" {ij: jf- 'ﬁf.i:?_: '(314-5).

2 ARER 4 Q. ‘jg_‘.- ;”*“~f§‘ -(3.4.6)

By
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4, Comments

Hoerl (1959) states similar but not quite identical properties
and ascribes their proof ﬁo Dr. R, Jackson of the University of
.Dela'ware. | No proof , nor any refei'enee, .18 given in the paper
: however. 3 o -

The four results have t:he following implication. ‘If we wish
to follow a8 locus of the absolute maximum y for ,increasing R, we
",should substitute in equation (2.4) only values of A greater than
“.all the latent roots of B. This will make M(x) negative definite |

: and will ensure that 18 a local maximum for every solution x. .
(It: is in fact ‘an absolute maximum as we .shall soon see.) No
ualue of ) less‘ than the g'rea;t‘:est“ latent root should be consider-
| ed in such a case for, whil'e:val'ues of A betueeﬁ'eigen values may
provide a local maximum or minimum t:hey cannot provide an absolute
maximum or minimum. | |

In fact: the total range of A, namely -0 to oo is divided
~ into sections by the latent roots His K2, «os, “’k Suppose
W1 € k2 < sos < by Then we have (k+1) intervals (- ©,K1),
(TRUSTPY SR .(uk_ ) (uk. ). | |
| As A~ ui( i=1 2,...,k), the resulting solution x — + © 8o
that R~ ®. As A==+ 00, x =0 and so R = 0. Furthermore the
value of %;% is positive for all R' # 0.and is zero when R = O,

For we know that
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-#b (4.1)

B-»1x
x*x = R® (4.2)

Ditferentiating once w1Lh vespect to A giveu

a0 X

. and

_A sécond differentiation with re.pect ﬁo'x éivé;, - .

B (B - 1)-525 ;».Q_aﬁ SR ..(4-,

'ﬂ?nyépdl: . f | ;—i'zgy»f-“‘_E?i.: _J_,i. |

i .‘ aunlti 4.3.~) aﬁclhll(ﬁ':'-l;)j-'by" »aé,ﬁ"‘-_.
;F'we prauu%%;ply ( AT v

. L ] s " - N PRI ) . .

. and % . Tezpectively, aubtrart, and Jfran:pose, we fiqd
x! 52 ax' ax

Thl;, substituted in (4. 6) leads t

3R - ox' . 9o . .aR 2
B g %x.ﬂ-fa)

o A e
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The first part of the right member of (4.10) is always non-
negative and is zero only when R=0 or when % = 0, The second
part of the right member of (4.10) is always non-negative by
8 well-known inequality (Hardy, Littlewood and Polya, 1952) and

is zero only when x = 0, ie R = O, or when g"f = 0, When g{-=o,

x =0 by (4.3) if A # Wy and thus R = 0. Thus g;% is positive
‘exéept when R ; 0, when it takes the value zero.

Note that %% = 0 does not imply that §§_ = 0 (and so that
X = 0 and R = 0) because the left member of (4.4) can be zero
: due éo'the.céncéllation of positive and negative cross-products.

From the above, we see that the graph of R, plotted as ord-
inate against A as abscissa, acts as follows. |

At A = = @, R =0 and R increases steadily to infinity at
X = g1} between pairs of latent roots, R passes down from infin-
ity at g through a stationary value and up to infinity
’.igaih ét'ui+ . Finally R passes from infinity at u, to zero at
A= .. (See Figure 1),

© Suppose we consider what happens for various values of R.
* Each valﬁe éf‘R can give rise to, at most, 2k corresponding values
of M. The number will be less if some of the loops in Figure 1
have their lowest point above the value of R beihg considered.

It is clear too, that if we wish to find the locus of the absolute

minimum of § as R varies we can substitute any values of A less
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than the ssallest latent root u; into (2.4) and obtain a point

on the locus, since there is only one such locus and thu: theve
can be no ambiguity. A similaz rveuark is true for the locus of
the absolute waxiwun 9 a: R varies. When we choose value: of A
between latent ioots, howéver, we iuay be on either of two loci

of stationmary value: , dependiﬁg on whether we are to the right
or left of fhe value of XA for which R is stationary.

A: indicated above, not all of the loci appear for every
value of R, but a. R incréa;ed, wore and wore appear. GSince the
fltted'modellcan Be cohsidered accurate only witnin the region of
the éxperimentalvdesign, 1§ci witich do not appear except for large
R are ﬁaually of 1ittle interest.

o

" To summarize the main practical feature of thi: work: Suppose
: i,ﬁé wiéh to fo11Qw the absolute waxiwmum predicted value of 9 on a
.éphere 6£ radius R, as R increases. Find the latent roots of B,
cﬁoése Qaiﬁes of A greater then all of these root: and ubstitute
thégfinto (éi#).‘ Solve for x, evaluate R? = x'x and 9 and plot

,9’ k;,ié}...,xk against R. (Similar work, choosing value: of A
leé;':hen all of the latent root: of B, can be carried out for
an.investigation of the absolute winimum value of 9 on sphieres of

‘radius R).
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5. Example:

This example was uzed by Hoerl. Consider the response sur-

face in two factors

§ = 80+ 0.1xy + 0.2x2 + 0.2%;2 + 0.1x2% + x3%» (5.1)
Thus - -
0.2 0.5l 0.1
B - b-| (=.2)
0.5 0.1 0.2
Equations (2.4) become
(0.2 = A)xy + 0.8%x> = =~ 0.05,
' (£.2)
0.5x, + (O.l-)»)xz = -0.10,
with solution
xy = (9+10N) /2D ‘
(5.4)
X2 = (1L 4+200) / 2D

where
D = 100 det(B - X I) = 100A% - 30 - 23 (5.5)

The eigen values or latent root. of B are given by D = 0, whence
A = 0.652 or - 0.3%2. | (5.6)

(Note: Hoerl's parameter, which we shall call o, is such that

A = bos + ¥, ie a =2(x - 0.1) for the example. This will

lead to his corres;ponding eigen values of o = 1.105 and - 0.905,

apart from rounding error. Note that when A = 0.2, a = 0.2.

In general putting A and o equal to the zame number would produce

different stationary points in the two calculations and the fact

that our calculation below with A = 0.2 produces the same station-

ary point as Hoerl should have obtained with a = 0.2 is pure
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coincidence due to the number. involved.)
If now we wich to look for the locus of the absolute minimum
(or maximum) of 9 on circles x,% + x22 = R® of radius R, we should

insert in egquations (5.4%) values of )\ less(or greater) than both

eigen values (5.6), ie A < - 0.352  (or A > 0.652).

Suppose we select a value A = 0.2. Then equationz (5.4)
and (5.5) yield solution (x,,x2) = (-0.22, -0.10); there is a
calculation error here in Hoerl's papeii. | Then R = 0.242, vo that
on the circle x12 + x22 = 0.242, § is stationary at the p;int
(-0.22, -0.10) but, since -0.352 < A = 0.2 ¢ 0.652, this station-
ary value 9 = 79.99 is neither an absolute maximum ox minimum.

Continued substitution ofAvaluea of ) into equations (5.4)
and (5.5) will yield four loci of étationary values as R increases
and these, as evaluated by Hoerl, are shown in Figure 2.

The loci of absolute maximum and absolute minimum, curves
1 and 4, begin‘at R = 0 and correspond to values of A beginning
at » = 00 and A = - ®, respectively. The two loci of intermed-
iate stationary values do not begin until‘R‘= 0.195 and correspond
to A = -0.002, when g% = 0, ie we are at tﬁe bottom of the loop
of R, plotted against A, which lies between the latent roots
hy = -0.352 and pp = 0.652. Because of the scale of the diagram,

the difference in starting pointz cannot be distinguished.

| e e i e

The response suirface given by eguation (4.1) is in fact a

saddle, rising in the first and third quadrants of the (xj,x2)
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plane, falling in the second and fourth quadrants, with ridges
oriented approximately 450 to the axes and with center slightly
off the origin at (-~ 9/46, - 1/46). Thus the locus of absolute
maxima in Figure 2 passes from the origin out the first quadrant
of the (x1,xz) plane, the locus of absolute minima passes out the
fourth quadrant and the other two loci of stationary points,
which are loci of neither asbsolute maxima or absolute minima,

pass out the second and third quadrants.
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