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"RIDGE ANALYSIS" OF RESPONSE SURFACES

Norman R. Draper

University of Wisconsin

0. Introduction. In a 1959 paper, A. E. Hoerl discussed a

method for examining a second order response surface. This paper

provides a mathematically simpler derivation of the technique

and proofs of some stated properties.

1. Lagrange's Undetermined Multipliers.

A well-known (e.g. Kaplan, 1956) method of obtaining the

stationary or turning values of a function f(xl,x2,...,xk) of k

variables x 2 ,x 2 ,..., Xk, subject to restrictions on the xi such

as gj(x1,x,,... Xk) - (j - 1,2,...n)

is the following. Form the function

n
F-f- Z (g11)

j-l

where X1, %2 see Xn are arbitrary. Differentiate (1.1)

partially with respect to each xi and set the results equal to

zero. This will provide the k equations

This research was supported by the United States Navy through
the office of Naval Research, under Contract Nonr - 1202(17),
Project NR 042 222.
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= a n - 0, (1.2)

1i = ,2,..., k)

These k equations, with the additional n equations

= 0 , ( j 1, 2, ... , n) (1.3)

provide (n + k) equations which can be solved for the (n + k)

unknowns xl,x 2 , • .,Xk, > 1 ,X2 ,. .. ,X n. Often the quantities

x are eliminated and not actually found; for this rea.-on the

words, :'undetermined w.ultiplier3. are used to deocribe the'si.

In scr-e cases, however, the solutions for x1,x 2 ,... ,xk are eaoier

to obtain if the X. are evaluated fLr..t; in other ca;.ej, an

below, it wiay be easier to specify values of X, in equations
J

(1.2) and regard other quantitie. in equations (1.3) a., "'unde-

tera.ined', in their place.

Suppose, now that (xl,x2,..,xk) = (al,a2,...,ak) iz, a

solution of equations (1.2) and' (i.) after elti-nation of V...J

Let K(x) = M_(x,x 2 , . .X.Xk) = a2 _F F (1.4)
7X7 Yxx 2 2 ax•axk

6X 2 aX 1 7X -

c) F X 2F •FaXSXx 731' ... •-
ax k k-V
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be the matrix of second order partial derivatives. Then if

M(al,a2,...ak) = M(a), the resulting matrix after the solution

a' (.(a,a,...a.k) has been substituted into (1.4) is

(a) positive definite, ie y' M y > 0,

(b) negative definite, ie M y < 0

where 1' - (YlY, Yk) i L any 1 by k real vector,

the function f(xl,x 2 ,. • .,xk) achieves

(a) a local minimitu

(b) a local m.aximnum.

respectively. For, if we expand F about a as a Taylor series

of partial derivatives, remembering that all fir3t partial de-

rivatives of F are zero at x = a, we see that

F(a+h) - F(a) = + h' M(a)_h + 0(h')

where h represents a vector of small increments h. all of the

Same order and O(h3 ) represents a reidnder of third order in

Such increments. Thus, to order h 2 , if M(a) is positive definite,

F(a + h) > FZa) , for all small h.

If h varies only in such a way that the restrictions are still

satisfied, this implies that

f(a + h) > f(a)

is, f(a) 18, locally, a minimum, subject to the restrictions

holding. As we can see from this discussion, it might happen
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that

F(a + h) s F(a) , for all small h

but f(a + h) > f(a) , for all h which satisfy the

regtrictions. Thus "M(a) i& positive definite" is sufficient,

but not necessary for a local restricted minimum of f at x = a.

Similar remnark3 apply to the negative definite case. If M(a) io

indefinite, further investigation of the function near the point

a is required to determine what sort of 3tationary point has

been obtained.

2. Improved derivation of the technique.

Consider the second order response surface in k variables

Xlx2,...,xk' given by

y = bo + bIx 1 + b 2 x 2 + ... + bkx,

+ b JxX2 + b 2 2 x 2
2 + ... + bk~kX2  (2.1)

+ b 1 2 x 1 x 2 + ... + b. 1,k Xk-1Xk'

The point (0,0,...,0) iz the origin of mea3ureanent o-E the

variablea x 1 ,x 2, ... Xk If the data used to obtain (2.1) re-

uulted from a deceigned experinent, it would u~ually be the center

of the design al,•o. Suppose now we imagine a ;phere, center at

the origin (0,0,...,0) and of radius R, drawn in the x-space.
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A

Then at .ome points on the sphere the-i:e will be a iciaxinuim y and

elsewhere a miniurit y, and possibly also (depending on the type

of quadratic *,urface (2.1) obtained and the value of R) values

of 9 which are local raaxima or minima, that is, maxima or minima

for all nearby points on the sphere, but not absolute maxiIma and

minima when all pointŽ of the sphere are taken into consideration.

If we investigate the stationary value• of the function y on the

sphere, 'e the stationary valuei.- Nubject to the restriction
g(x,x 2 ,..., xk) -x� 1

2 + 2 + ... +x 2 
- R2 = O, (2.2)

we shall be able to find all these local and abjolute m-axima

and minima.

We can then plot against R as abscissa the following (k+l)

Aordinateo: xl,x 2,..., Xk' y for, say, the absolute maximium of y

found on the sphere radius R.

If we change R Alightly the appropriate values of xl,x 2 ,...,

A
xk and y for the absolute maxirLium will also change slightly and so,

by varying R, we can construct (k+l) curves ihowing how the

Aposition and magnitude of the absolute maximum y change as R

changes. We can thus find, for any selected R, the place of

maxiaum. yield on the re,,ponse ;;urface. Such a plot can also be

made of absolute minir~umor of the loci of intermediate stationary

value&, as desired. Mathematically, then, we wish to fmnd the

A
stationary values of Y = f(XlX 2 ,.-- k x ), from equation (2.1),
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subject to the restriction g(x,x 2 ,..., = 0 as in equation

(2.2).
A

Using the method of Lagrange multipliers we set F = y - Xg

and equations (1.2) after. rearrangement and division by a factor

of 2 become

(bil -x) X1 + +b1 2 x 2 + ... + •bx:x = -

.4bl2X1 +'(b 2 2 - )Xx2 + +. + .b2kxk +b2
• . .... (2.?)

* 1b'kx1 + +b2k + .... + (bkk-x)xk -. bk

or in watrix notation.

(_B- X _) = -. 4 (2.4)

where

B lb11  4*2....i rbi

+b 1 2  b2 2  ... *b2k b2(.5

'k .... bkk Lbk

and I is the k by k unit matrix.

*Note: If we set k=3 and a = 2(X b3 3 ), ie X = Ja + b3 3 ,

we reduce to the unsymmetrical equations obtained by Hoerl

with a as parameter.
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Then, theoretically, the (k+l) equations (2.4) and (2.2) can be

solved for sets o0 x 1 ,x 2 ,. .. Xk, and X corresponding to the vari-

ous stationary values of y on the sphere radius R. Since the

solution in this form leads to involved calculations, a simpler

and equivalent method of solution may be used as follow..

(1) Regard R ao variable, but fix X instead.

(2) Insert the selected value of X in equations (2.4)

and solve them for xl,x 2 ,...xk. The solution is used

In steps 3and 4.

(3) Compute R = (xi2+x2 2+...+ xk2)+= (x&x) where x-

(x 1 ,x 2 ,... ,xk)

(4) Evaluate y.

We now have a get of nunberg (X, x1 , x 2 , ... , xk, R, y)

and know that on the iphere radius R, center the origin there

ig a gtationary value of 9, value determined, at the point

(X, X21 ... , Xk). Several different values of X will give rise

to several stationary point• which lie on the same sphere radiua

R. Whether a particular stationary value i the absolute maximum,

absolute minimum, a local maximum or a local minimum is deter-

mined, as we shall see, by the value of X.

3. Properties of the stationary values.

Let the eigen values or latent roots of the matrix B be

denoted by 41 (i = 1, 2,... k). Then the 4. are such that
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xB x_-- x, (3.1)

or (I_- x i) = -- (3.2)

Hmce det (B - ýL I) = 0, (3.3)

where "det" denote:s "the detezminant of", provides a kth degree

equation with root. Lj, ýL, ... jk' say. Note that when a

standard canonical reduction is made of equation (2.1), 42,

"Pk are the latent root.ý needed to reduce y to the form

A + -X 2
2 + "'" + '. X 2

Y Yo 4X I +X1 4 X2 k k

Canonical reduction is another way of examining a second order

re sponse sirface for its main features (C. L. Davies, 1956).

By comparing the value X, which corresponds to any part•icular

*tationary value of 'y on a sphere of radius R, with the latent

roots 4. we $hall be able to determine what Sort of stationary

value haLs been obtained.

Suppose X = X, and X = X2 are substituted in equation (2.4)

and the solutions xi' = (as,a 2 , ... , ak) and x 2  (c2,c ,...ck)

A ,result, thus providing two stationary values yf and y2 of y on

the spheres x'x = R2 *and x'x = R•, respectively. Then the

following results are true.
h A

Result 3.1: If Rl.= R2 and Xl > X2 , the yi >Y2.

Proof: *We know that

(BX- X I) _1  - , (+...1)

( XB- • )E•:- , (+1..2)
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_x'x_ x 2 R=• say,.

Yj= x' B x21 +xl' b + bo •

and Y2 = X2 ' B x2 + x 2 ' b + b O(3.15)

Premultiplying (?.l.1)and (3.1.2)'by x2i and x2 1 respectively

and gubtracting, and remembering (3.1.3),, gives

jx1.'B Xj -2S21B X2 + - x2 ) b = (X. - X2 )R 2  (3.1.6)

whence, using (3.1.4) and (3.1.5),.

Y- Y = +(I - x2 )' b . - 2) 2  (3.1.7)

Premultiplying (3..1.1) and (3.1.2) by x2 ' and.x]1 re.ipectively

"and subtracting gives

(X2 X-.) Xx 2 = (x2 -2x 2 )' b (3.1.8)

since x2E' B XE= x2i B xa and x2 Ix = !II '. Hence from

(3.1.7) and (3.1.8) ':

"Y 1 (x211 x2) R x2'l) A(31.9)

But R2 - x 'x 1•- (a 12 + a2
2 + a... + .) (c 2 + c2. •_. .+ Cka)+

- (alc1 + a 2 C 2 + "' + c) > 0, always, by a well-known

inequality (Hardy, Littlewood and Polya, 1952).

A
Hence X, > X2 linplies Yi > y2 .

Result 3.2:. If R, =R 2 , M(x 1 ) is poaitive definite and M(x 2 )

ig indefinite, then yi < Y2 .

Proof: By hypothsis

2'(B-Xa y 0, .for at least one y im q, may

y'(B - X3 I) y > 0 , for all y, including z-.
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Hence X2 Ž 'B_ > Xil'

which implie3 X2 > X1'.

AABy Result q.1 then, . < y 2.

Similarly, 'f R, R2,. M*(x1 ) is negative .definite and M(x.2 ) is

A 1\indefinite, then y' > .Y2.

Result 3.-: If X.,,> ai (all i) •then x1 i a .point. at which

y attain.3 a local maximu on the _%phere radius R, if' Xl < •.i

(all i), then x, is a point at wiihich 9 attains a local minimum
on the •phere radius R1 . -(A, will .be '•een later, .we obtain the

aboolute 'maximumr. and .minimum in this way, not only the local

maximum. and minimum.)

Proof: It will be •een that e quaation (l.4).become.]

M(a) B- XI .

for the stationary point x1. Then if y i3' any n by 1 vector, the

quadratic form

= 'By X, y•'

if . is any latent root of B.

Thus, if X, > p. , (all i), M1(x1 ) i3 negative definite and

hence x, i6 a point on the sphere radius R at which ^ attains

a maximum, if X I < pi all i, M.(EA) is poAtive definite and

hence x, is a point on the *•phere, radiu3 R at which t attains a



minimum.

Result 3.41: Suppose, aj R increa.,el.ý, we trace a 1ocu,ý of

Atationary pointo (the ab~olute max-imum, ab.~olute minimum, or

a local maximum, o-- xnnimuum') and e~xamine the changing

values-of y.Then,, as R. inicreases, ý. changs ii -one. of

the followilng was '(wh~en' the re.~ponse- surface'iF, quadratic.):....

*(a) decrea..eý monotonically ,

*(b). increa,-eo mono toniical ly

(c) pa ; through a" maxiiiiurnY and then: decr~eaL~e. mono~tonically

d)pas.-ej- through- a minimum-and. then. increaoe,ýmonotonically

If c) and (d) happen, it iz, because thie lo~cu3 ha.; pas3.-ed through.

*the center-of thile. quadraiic .3y Lý,t em.

proof: -Y.=b .-- Bx2ix+ x, b .

0

=b + Xx.x ++Ax'b 4.; 1).~.

u3 2ng equation (2.41)'.

Suppose we make a small change '6X in X; this will induce cimall

changes; 6x in xc, in'equations (2.~4)-, a Gmall change 6R in R and

finally a *;imall change 60 in 9~. Then, from (~4.1) ,

+ (X6X) (x + x)' (+ 6x) ++(2E+ 6x)'b

Subtracting (`1.4.1) from ('>.4.2) and rearranging the reoult, we

find

= 2X~ +~ 8x6 xx~ t Q 2 (-.43
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* where q2 denotes terms of second order i~n 6X.-,and 6x.

*But if we set X2 =X -- 6X, X1 Xi x2E2= E + 6x and x, in

equation (3.4.8), we see that'

+ (M3.4L)

*where'-Q~ denotes (other)-terms of second order. in 6 X and .6x.

Thus '3i.)and. 43. 4) iLmply that

2X 11x.x + -7. . .(J5)

y. i 6=,2 V.,AM Q,. .... 3.4-6)

s.Lnce x x= R2 .- .Dividing by 6R and letting all increments

tend to zevo giv~es

wtuLch is zero -Vh4-n ;R =0 and when X =0. When.R 0 Owe are at.

*te prigin 'and the'value-of9 w.hien R = 0 in the Gtairting'value

for the locus of absolute niaximuam and absolute minimum y. W1hen

R 0, is 'stationary. with respect to R only' when X =0, but

' if -X =-0, equatjons.(2.'4) yield,' as solution', the center o f the

'.second order surface, since we shall1 obtain the point at which

.0. (i =1,2,.. .,k) (3.3.8)

The stated result follows. Any locus passing through the center

ot the'surface satisfies (c) or (d). Othervioe~it satiofies

(a) or- (b).
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4. Comments

Hoerl (1959) states similar but not quite identical properties

and ascribes their proof to Dr. R. Jackson of the University of

Delaware. No proof, nor any reference, is given in the paper

however.

The four results have the following implication. If we wish

to follow a locus of the absolute maximum y for increasing R, we

".should substitute in equation (?..) only values of X greater than

all the latent roots, of B. This will make MEx) negative definite

and will ensure that y is a local maximum for every solution x.

(It is in fact an absolute maximum as we shall soon see.) No

value of X less than the greatest latent root should be consider-

ed in such a case for, while values of X between' eigen values may

provide a local maximum or minimum they cannot provide an absolute

maximum or minimum.

In fact the total range of X, namely -co to co is divided

into sections by the latent roots i, P 2 , ... , ik. Suppose

P1 <.2 < ... < Pk" Then we have (k+l) intervals C" o,pl),

As X -*•(i=l,2,...,k), the resulting solution x -+ o so

that R- co. As X-% + oo, x 0-0 and so R- 0. Furthermore the
62R

value of Z is positive forall R .0and is zero when R - 0.

For we know that
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(B -xI) 4_. _ (4.1)'

x'x = 2 (4.2)

Differentiating once with respect to X give•
ax

=-x, (4.3)

and

- • = R(4.4)

A 6 econd differentiation with re,;pect to X give:ý.

and
"a2x ax, ax a2  + k 2 (4.6)

•~2X t

If we prewultiply (4..'-) and -4:)),by

and S eLpectively, Lubtract, and tran po.pdýe, we find
""2x 2x' ax' .7)

This, ;ýub*tituted in (4.6), lead.; to '

a
2 R ax, ax _ ~\2

R = " .-- (4.8)

Now aR a ax
2i • X' - (xtx (4.9)

Thus, using (4.9) in (4.8),

xr j (

Td~X x
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The first part of the right member of (4.10) is always non-
C-x

negative and is zero only when R-0 or when 0- . The second

part of the right member of (4.10) is always non-negative by

a well-known inequality (Hardy, Littlewood and Polya, 1952) and
i•x ax

is zero only when x =, ie R - 0, or when 0=. When Oj0
0 by (4.3) if X • •, and thus R =0 . Thus R is positive

except when R = 0, when it takes the value zero.

Note that = 0 does not imply that = 0 (and so that

x - 0 and R = 0) because the left member of (4.4) can be zero

due to the cancellation of positive and negative cross-products.

From the above, we see that the graph of R, plotted as ord-

inate against X as abscissa, acts as follows.

At X = - co, R = 0 and R increases steadily to infinity at

X = •; between pairs of latent roots, R passes down from infin-

ity at ILi through a stationary value and up to infinity

again at pi+,. Finally R passes from infinity at Ik to zero at

"X 00. (so'ee•Figure 1).

Suppose we consider what happens for various values of R.

Each value of R can give rise to, at most, 2k corresponding values

of X. The number will be less if some of the loops in Figure 1

have their lowest point above the value of R being considered.

It is clear too, that if we wish to find the locus of the absolute

minimum of y as R varies we can substitute any values of X less
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than the d•aalleit latent root •z into (2.4) and obtain a point

on the locus, s ince there is only one such locus and thus.• there

can be no ambiguity. A sixl:ehiack i3 true for the locus of

Athe absolute aaximwui, y a,: R varies. When we choose value.ý of X

between latent rooto, however, we ruay be on either of two loci

of Atationary valuea, , depending on whether we are to the right

oc left of the value of X'for which R ir• atationary.

Ao indicated above, not all of the loci appear for every

value of R, but a. R increase -, more and more appear. Since the

fitted'model can be considered accurate only withiin the region of

the experimental design, loci which do not appear except for large

R are usually of little intere.`t.

To suýinarize the main practical feature of thiL woz-ik: Suppose

we wish to follow the absolute Lnaxiium.- predicted value of y on a

sphere of radiu: R, as R increase5. Find the latent rootE of B,

choose values of X greater then all of the&e roota and r.ubstitute

them into (2.4). Solve for x, evaluate R2 = xlx and 9 and plot

y, xI,x 2 ,. .,xk again3t R. (SLm-ilar work, choosing valuei of X

lea..J then all of the latent root.- of B, can be carried out for

an investigat±on of the absolute wini-mum value of y on spheres of

radiuz. R).
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5. Example:

This example was used by Hoerl. Consider the "eponze sur-

face -in two factor&,

y - 80 + O.ix1 + 0.2x2 + 0.2x• 2 + O.Ix2
2 + xIx2  (5.1)

Thus 1
B_ = 0. 0.=b - .. (5.2)

Equations (2.4) become

(0.2 - X)xI + 0.5x2 = - 0.05, (5.?)
0.5x1 + (0.1-X)X2 = -0.10,

with solution

x= (9 + lOX) / 2 D
(5.4)

X2= (1 + 20X) / 2 D

where
D 100 det(-B j) . 10OX2 - 30X - 23 (5.5)

The eigen values or latent root. of B are given by D = 0, whence

X = 0.652 or - 0.35-2. (5.6)

(Note: Hoerl's parameter, which we shall call c, is such that

X = b 2 2 + +a, ie a = 2(X - 0.1) for the example. This will

lead to his correa;ponding eigen values of a = 1.105 and - 0.905,

apart from rounding error. Note that when X = 0.2, a = 0.2.

In general putting, X and a equal to the same number would produce

different stationary points in the two calculations and the fact

that our calculation below with X = 0.2 produces the same station-

ary point as Hoerl should have obtained with a = 0.2 is pure
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coincidence due to the number.. involved.)

If now we wish to look for the locus of the absolute minimum

(or maximum) of y on circles x12 + x2 2 = R2 of radius R, we should

insert in equations (5.4) values of X leas(or greater) than both

eigen value.3 (5.6), ie X < - 0.352 (or X > 0.652).

Suppose we select a value X = 0.2. Then equations (5.4)

and (5.5) yield solution (x 1 ,x2) = (-0.22, -0.i0); there is a

calculation error here in Hoerl spaper. Then R 0.242, Jo that

on the circle x2 a + x 2 = 0.242, y is stationary at the point

(-0.22, -0.10) but, since.-0.352 < X = 0.2 < 0.6P2, thic station-

ary value y = 79.99 is neither an abnsolute maximum oz- minimum.

Continued substitution of value3 of X into equations (5.•4)

and (5.5) will yield four loci of stationary valuej a- R increases

and these, a,, evaluated by Hoerl, are shown in Figure 2.

The loci of absolute maximum and absolute minimum, curves

1 and 4, begin at R = 0 and correspond to values of X beginning

at X = oo and X = - a, reiipectively. The two loci of intermed-

iate stationary values do not begin until R 0.195 and correspond

to X = -0.003, when r = 0, ie we are at the bottom of the loop

of R, plotted against X, which lied between the latent roots

4, = -0.352 and 42 = 0.652. Because of the scale of the diagram,

the difference in starting pointo cannot be distinguished.

The response suiface given by equation (4.1) is in fact a

aaddle, rising in the first and third quadrants of the (x.,x2 )
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plane, falling in the second and fourth quadrants, with ridges

oriented approximately 450 to the axes and with center slightly

off the origin at (- 9/46, - 1/46). Thus the locus of absolute

maxima in Figure 2 passes from the origin out the first quadrant

of the (x3.,x2) plane, the locus of absolute minima passes out the

fourth quadrant and the other two loci of stationary points,

which are loci of neither absolute maxima or absolute minima,

pass out the second and third quadrants.
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