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ABSTRACT

Examination of the two electron density matrix in the
alternant molecular orbital approximation for a large system

in a singlet state, reveals that there are both short and long
range correlations between the electrons of opposite spin. There

is also a long range correlation between electrons of the same

spin. These correlations are not found when the Wave func-

tion for the system is approximated by a single determinant
of alternant molecular orbitals.
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1. INTRODUCTION

One of the more practical methods that has been suggested for

including some correlation between electrons in a system of many

electrons, is Lowdin's alternant molecular orbital (AMO) method. I In

this paper, we show that using the AMO method for a large system in

a singlet state, it is possible to give general and easily interpreted

formulas for the spin components of the one and two electron density

matrices. Examination of the spin components of the two electron

density matrix, reveals both short and long range correlations between

electrons of opposite spin, and a long range correlation between elec-

trons of like spin in addition to the short range statistical correlation,

or Fermi hole. Our discussion serves to emphasize the differences

between the spin properties of approximate wave functions which are

eigenfunctions of the total spin angular momentum operator S2 and

those which are not.

In the next section we briefly describe the properties of AMO's

and then write out formulas for the spinless one and two electron

density matrices of a system of many electrons in a singlet state. In

Section 3 we define correlation functions for electrons of like and opposite

spin, and give the formulas for these correlation functions in a system

of many electrons in the AMO approximation. The physical significance

of these formulas is discussed. Appendix A contains exact formulas for

the one and two electron density matrices in terms of the two fundamental

invariants of the AMO rr thod. Appendix B contains a discussion of the

limited usefulness of the approximate formulas for the density matrices

introduced in Section 2.

2. THE ONE AND TWO-ELECTRON DENSITY MATRICES

1

The AMO method involves two fundamental invariants, which

are defined in terms of two sets of orthonormal orbitals aK and aK ' In

a system of N = 2n electrons, there are n orbitals in each set. The 2n

orbitals are required to satisfy the further orthogonality relation

(aK.IL) a k 6KL * The fundamental invariants are p = *aKa*K and
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S= Za Ka* K • (The AMO method can be generalized by allowing X

to depend on K .2 In this case it is required that the Zn orbitals

be linearly independent). In the AMO method for singlet states, the

a K are assigned up spin, the a K ' down spin. From these N

spin orbitals one constructs the AMO wave function for a singlet

state of an N electron system by taking the singlet projection of a

determinant of these spin orbitals. The spinless one and two elec-

tron density matrices can be derived from the general expressions

which have been given for the expectation values of one and two elec-

tron operators, using the AMO, singlet state wave function. 3 If we

assume that X n << n" I << I and neglect as small all terms of the
-I

first order and higher in n , we obtain the following expressions

for the spinless density matrices;

7 4 tll') i)

These are exactly the expressions one obtains from the unprojected

single determinant of AMO's. One cannot conclude from this that

for n -w• o, the single determinant of AMO's and its singlet projec-

tion are degenerate, however. We discuss this point in Appendix B.

The correlation energy in the Hartree-Fock (HF) approxima-

tion is due mainly to the lack of correlation between electrons of
4

opposite spin. Thus we want to show that the AMOmethod intro-

duces such a correlation. The physical idea behind the AMO method

is that by assigning electrons of opposite spin to orbitals localized

on different sublattices of the alternant system, one insures that on

the average the electrons are further apart. (An alternant system is

one whose lattice can be constructed from two equivalent, inter-

penetrating sublattices). In the AMO method p is large about the

nuclei of one sublattice, p about the nuclei of the other sublattice.
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3. ELECTRON CORRELATION

Before we can properly discuss correlation between the elec-

trons, we must discuss the one-electron density matrix. We have

given a formula for the spinless one-electron density matrix. One might

from this formula naively conclude that p gave the density of up spin

electrons, and p , the density of down spin electrons. This is just the

result one would have gotten if one had not taken the singlet projection

of the determinant. [We know of course that P,(l; V') = P 1 (i; t') +

+ P 1(1; r'), i.e., the one-electron density matrix is the sum of an up

spin density matrix and a down spin density matrix. We have adopted

the notation of McWeeny and Mizuno 5 for the spin components of the den-

sity matrices]. It is well known that in a singlet state the spin density

is zero everywhere i.e., P (I; V) = P (i; ') • Thus the density of

up or down spin electrons is just 1/2(p + P) . This suggests that the

use of an unprojected determinantal wave function of AMO's will give

misleading results concerning the spin properties of the system,

although it may give a quite accurate result for the energy. 6,7

For our purposes it is sufficient to define two correlation func-

tions,

+- -+-_ •. _

+ +•. + +/,, (U;. 2') ( / (/P;/+. - ,2),.i'(.2;,')

In other words, we say that two particles A and B are uncorrelated when

A is at point IA and B is at point rB , if the probability of that con-

figuration is equal to the product of the probability of finding A at ZA

and the probability of finding B at EB " To obtain the correlation func-

tions we have defined, we need some spin components of the two-electron

density matrix. Fortunately for the singlet state they are easily obtained

from the spinless two-electron density matrix by using McWeeny's and

Mizuno's Eqs. (3.2) and (3. 5). 5 This leads to the following expression:

(2)
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For r_ = , one sees that g 2(i1; 1)= -- I-(111) 1 0 . Thus the

electrons of opposite spin are correlated at very short distances. One

feels that this is the energetically important correlation. From the

unprojected deterrninant one finds g,( 1 2; _1) ra 0 , i. e., the electrons

of opposite spin are uncorrelated in a formal sense, although the

energy per electron in a many electron system is approximately equal

to that of the singlet projection. One can argue that to discuss correla-

tion between electrons of opposite spin using an unprojected determinantal

wave function is not meaningful since the eigenfunctions of a spinless

Hamiltonian must be spin eigenfunctions. This is consistent with our

observation on the properties of the one-electron density matrix.

In addition to the short range correlation between the electrons,

there is also a long range correlation. For yr .- so large that

p( 12) and P( 12) are negligibly small in comparison to p(iI 1) and

p(I), the correlation functions are related,

z a) - J/1/) )(2) (3)

The physical meaning of this equation is easily extracted by recalling the

properties of p and p in alternant systems. If we choose r so that

p(11I) isamaximum, g,('2•-:) has a mraximum wherever p(ZJZ)

has a maximum, and g1 ( 1;2) has a maximum wherever p(212) has

a maximum. If r1 is chosen so that p(I 11) is a maximum, then

g(? 2 ; 1-) has a maximum wherever p(ZIZ) has a maximum, and g,(12; iZ),

wherever p(Z 12) has a maximum. Thus in this relative sense, electrons

of one spin are localized on one sublattice of an alternant system, electrons

of the other spin on the other sublattice.

Although we have explicitly used the AMO approximation in the

preceding discussion, similar conclusions would be reached if one took

the singlet projection of an unrestricted Hartree-Fock (UHF) wave function. 8

In that case, however, one would not be able to say in general that tle

electrons of opposite spin were localized on different sublattices of the

system, i.e., you would need information about the p and p of the UHF

approximation.

In conclusion, we remark that the results of this paper provide a

physical understanding of the AMO wave functions which the author has con-

sidered for the electron gas.
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APPENDIX A

Exact Formulas for P 1 and P 2 for the Singlet State

In addition to p and p , we introduce the functions

I-(11 /2) = L 61)(2 J~ (AZ)

The spinless one-electron density matrix is

fP(A/) = •-)[(/--•/)' ///.) j f)-6 + (A4)

J• (;2)J : • aj'(i- 9-'(i-2-> /-[I - 'n i A2,7+2] (A 5)

The spinless two-electron density matrix is

•0x,;•9-•(oJ [f~l r ; ¢ I/ 117---[f(212J +4- .1'_7

(A [f 2 ) ((/9 * / '][ 12'; + m(.2l• 1 _
*k)('10/0' + 1(0Ii 27/ 2'j + -f .Zl(2/•2'J (A6)

- (/z9 +2/i)[f) 1) ++

- - +l (12')+ [614'

Ia1 )Ji' W (211i'J(+ 2-ik 'J (ýi1'.14
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(A8)f5 (A) 4 (A'(7n-)Y'(/_• )- (/i- n42i)- A

(AB)

- n -)x (A9)

APPENDIX B

Validity of Formulas for P and P 2 for the Case of Large n

n - -I
Assuming that << n << 1 , one finds to order n

-A2-)fQ2)-)

- (Bz2)

If we write P 1 as a power series in n 1 , then to order n

I po~~?'~' (B 3)

(In Eq. (1) we took the limit n - o, so that the P, given there corre-

sponds to P (0) in the above equation.) From Eq. (A3) we see that term
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by term p (1) is proportional to the electron density. Integrated over

all space P( gives zero, as is implied by the expansion in n .

(The trace of P 1 0) is equal to 2n). Thus P 1 ) corresponds to a

charge distribution of zero net charge. To the expectation value of the

nuclear coulomb potential, n"- 1 PI(I gives a contribution independent

of n since the number of nuclei is proportional to n . (If the trace of
P 1 (1) were proportional to n as a term by term inspection of P 1 (1)

would imply, then it would contribute to the expectation value of the sum

of the nuclear coulomb potentials, a term proportional to n . On the

other hand to the trace of PI1 it would contribute a term independent of

n , which would be negligibly small in comparison to the trace of P(O)

for large n . This suggests that the direct, numerical calculation of

density matrices for many electron systems could give expectation values

in error by terms proportional to the total number of electrons, although

the error in normalization would be negligibly small).
0

A similar analysis may be carried through for P 2 . In that case

the part of P 2 (1) which is term by term of the order of magnitude of the

electron density squared, can be factored into two parts. The one part

is a charge distribution of zero net charge, the other has a net charge

proportional to n . Thus P 2 (I) contributes to the total energy a term

independent of n for the singlet state.
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FOOTNOTES
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computing spin densities have been given recently by R.F. Wood and
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7. See, however, the discussion given by W. Marshall, Proc. Phys.

Soc. 78, 113 (1961).
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00 OI C. C. o hC

a U3 0 oO

ft ~tij 41 e(D-~'
go n n 0 l

0t 0 0  
> 0 M 4t

ft OA ftC:0

0 N3

- z H-+C sZ HM 1

> 5 ..

V4 0 N0 ý m.0

bi0 ft f+t

tI' Hj > CCt' II H H H>

C: N 0 0 (T C

0- 4
44 0 n

0 00V
n~ M

0n 10 OQ

0' tI1 t~

" p 
or-

0* ( M~'- r+ ft -- " n

824 0 O

fN 0'. z

0 C+Wlu m > 0 C


