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RADAR REFLECTION FROM A PLANETARY SURFACE DESCRIBED BY
A COMPOSITE CORRELATION FUNCTION

Fred B, Daniels

DA TASK 3A99-25-003-04

ABSTRACT

An earlier theoretical study of radar reflection from a
rough planetary surface is extended to include the case where
the surface correlation function consists of two or more com=
ponents. When both large-and small=scale structures are si=-
multaneously present, it is found that the latter may com=
pletely dominate the autocorrelation function of the echo
and thus render the former undetectable by c=-w methods. An
additional finding is that the large~scale structure may be
detectable in the angular power spectrum obtained from very
short pulses as a separate "pip" at the origin. Experimental
confirmation for the lunar case is described. The effective
radar gain of the surface derived by the methods of physical
optics is found to have a maximum value of unity which leads
to a minimum value of 3 for the dielectric constant of the
surface. The spectrum of the surface fluctuations inferred
from the wavelength-dependence of the surface slope is found
to have a gap for components having a scale of the order of
a few meters. Radar studies of larger=scale roughness by
means of wavelengths much longer than ten meters would pro-
bably be rendered impossible by the terrestrial ionosphere.
The shorter wavelengths demonstrate the existence of rough=
ness having a scale of a few centimeters or tens of centimeters.
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RADAR REFLECTION FROM A PLANETARY SURFACE DESCRIBED BY
A COMPOSITE CORRELATION FUNCIION

INTRODUCTION

In a series of earlier USAELRDL reports"‘ a general theory of radar
reflection from a rough planetary surface was developed and applied to the
interpretation of lunar radio echoes. The most important parts of these re-
ports have been published in the Journal of Geophysical Research? 7 and, since
this publication is generally available, needless repetition will be avoided
by referring to it, when applicable.

The purpose of this report is to consider the application to the moon
in the case where the surface contains several different types of structure
which may be represented by different terms in the surface correlation func-
tion. One of these terms is found to lead to a peak in the angular power
spectrum which was only recently detected experimentally. The method used to
compute the dielectric constant of the surface will be discussed, and it is
found that a rigorous determination of this quantity would be quite difficult,
but that an approximate result can be obtained bx the methods of physical
optics. N
SYMBOLS \

The following table defines the symbols used in this report. Additional
symbols will be defined as they occur in the text. |

§ displacement measured horizontally along the mean planetary sphere

T time coordinate

N radar wavelength _ ,

h? mean square surface amplitude (=~ 1.85 x 108 m?® for the lunar surface)

a 16m2hZ/\2

fo 2v/\, the Doppler shift at the moon's 1limb that results from the

libration veleocity v
R lunar radius
r distance measured along the lunar surface from the subterrestrial
point

SOME EARLIER RESULTS

If Yér) is the normalized autocorrelation function of the height=-varia-
tions at the subterrestrial point that result from the lunar libration, the
normalized autocorrelation function of the envelope of the radar echo will be?

P(r) = expf{-a[1 - v(x)]} . (1)



Because of the relstion 2(/AA = £.1, vfr) is the same function of f T that
p(€), the normalized spetial correlstion function of the surface, is of 28/,
and the two functions mey therefore bs used interchangeably.
The angular power spectrum of the scattered radiaztion has been shown
to be’ -
pi/8) « cos?(x/R) [ € J_(2t/R) cos (kE2/R) p(E)eE 2)
[}

where p.(€) = exp {41 - p(®)] } . (3)

(In earlier publications by the author, the term before the integral sign
was given as cos 6, More detailed consideration leads to the result that
it should be cos28.) At wavelengths used in lunar experiments, pE(E) is found
to fall to very small values before the cosine term in the integrand has de-
parted appreciably from unity. The latter may therefore be omitted and, plac-
ing r/R = 8, we obtain ©
p(8) « cos20 [ € J (2E6) py(E)dE . (4)
)

It should be emphasized that omission of the cos (k¥3/R) term will cause the
so-called "residual smooth surface reflection” to be missing from the final
result, Since some of the recently published theories®'%:'° do not have this
term in the integrand, the results obtained are incomplete in that they do not
approach the Fresnel-zone oscillations of the smooth surface reflection as the
amplitude of the surface irregularities becomes vanishingly small, It should
also be emphasized that a number of approximations were made in deriving
equations 1 to 4, among which are the assumptions that sin @ = @ and
cos 8 =1 - 62/2, 1In addition, the slope of the surface elements relative
to the mean sphere was assumed to be small relative to unity.
THE COMPOSITE SURFACE CORRELATION FUNCTION

In recent theoretical studies, the lunar surface has been described by
a single Gaussian or exponential correlation function,®"'? or else by one such
component and a second diffusely scattering component that was not expressed
in terms of a correlation function.?»'' Since telescopic studies of the moon
show the existence of structures of two different magnitudes, namely, a) the
mountains and maria, and b) the craters, it would be more realistic to adopt
a composite surface correlation function having at least two components. If A’
and A’ are the relative contributions of these two components to the normal-
ized surface correlation function p(E), we can write

p(E) = A’ p/(¥) + A" ' (¥) (5)
2



where A’ + A" = 1, In order to do this, p’(€) and p” (£) must be assumed t- o
uncorrelated, since only in this case will the function p(E) be equal to the
sum of the component functions. The functions p'(E) and p”* (%) may have any
functional form but, in the following discussion, will be assumed to be
Gaussian, because of the ease with which this form can be treated mathematical-
ly. If an exponential correlation function were assumed, the angular power
spectrum p(6) could be obtained only as a doubly infinite series which would
converge very slowly unless the rms amplitude were much smaller than the radar
wavelength. This obviously would not be true except, possibly, for the diffuse
component,

EFFECT OF THE COMPOSITE FUNCTION ON THE SPATIAL CORRELATION FUNCTION
OF THE WAVEFRONT

1f p’(€) and p” () in equation (5) are assumed to have Gaussian form, the
spatial correlation function pE(E) of the reflected wavefront becomes

pE(E) = exp {»a[1 - A" exp (=E3/L?) - A" exp (_Ez/zz)] } (6)

where L and 2 are the structure sizes of the two components, and L is assumed
to be much larger than &. The additional assumption is made that Al OS> AT,

An autocorrelation function has already bezn computed from Hayn's map
of the limb regions of the moon” and, since the ordinates were taken at points
separated by one degree (= 30 km) along the periphery, it may be assumed that
this correlation function is mainly representative of the major structures
(the mountains and maria) and is not greatly affected by the craters. If a
Gaussian is fitted to this correlation function, we find that L = 10% m,
Furthermore, the value of ;! {s found to be 1.85 x 108 m?, which leads to
a = 6,3 x 108 at 68 cm wavelength, one used by Evans and Pettengill for much
of their work.'?

It can readily be seen that, as the variable £ runs through a range of
values from zero to one somewhat larger than 2, pE(E) will asymptotically
approach exp -a(1-A’), 1f A’ is not too close to unity, this asymptotic value
will be quite small because of the large numerical value of c. This result
shows that, when large and small structures are simultaneously present, the
latter will completely dominate the function pE(E), since exp (-Ez/Lz) will
remain near unity until pE(E) has become vanishingly small. The practical
significance of this result is that no information can be obtained about the
existence of the large-scale structure from observations of P(fdr), the auto-
correlation function of the signal,since P(fér) is the function pE(E) with

3



a change of variable.
EFFECT OF THE COMPOSITE FUNCTION ON THE ANGULAR POWER SPECTRUM

To examine the effect of the composite surface correlation function
on the angular power spectrum p(e) s we shall introduce the expression for
PE (€) given by equation(6)into equation(4) and use the second law of the mean
for integrals to separate p(8) into two functions, one of which represents
the large=scale structure only. To carry out this procedure, pE(E) is first
rearranged to read

PE (€) = exp {- a [1 - A exp (- Ez/Lz)]}

* exp [a A" exp (- Ez/%z)] . )]
When the numerical values of L and a are substituted into this relation, it is
found that pE(E) is not appreciably altered when exp (- £2/L2) is approximated
by the first two terms of its series expansion and this simplification leads to

pE(E) = exp [- a(l - A')] o exp (- a AE2/L2) ¢ exp [a A" exp (- Ez/&z)J . (8)
After substituting (8) into (4), we obtain

p(8) X cos?® [ o(£) £ (£,0) at )
0
where o(E) = exp [u A" exp (- E’/z’)]
and £(£,0) = exp (- a A’ E2/12) ¢ J°(2k59) .

Since 9(E) is a positive monotonically decreasing function of &, the second
law of the mean for integrals is applicable and equation (9) can be expressed
as x

p(8) % 9(0) cos26 [ £(£,0) d& (10)
0

where 0 < x o . The integral in (10) can be expressed formally as the dif-
ference between two integrals, one from O to o, and one from x to o . The
first of these can be evaluated in closed form and the second is a function of
@ which cannot be evaluated because the value of x is unknown., The final re-
sult is found to be

L2
p(6) « [m exp (-62/903) + F(Q)] cos28 (11)

where 902 =4 A’ h%/L? and F(6) is an unknown function of 8, The first term
on the right is approximately the angular power spectrum that would result from
the large-scale structure alone (since A’ =~ 1), We have therefore shown that
it is possible to exhibit p(O) as the sum of two functions, one of which rep-

resents the large=scale structure., Whether this procedure has any physical
4



significancé, however, could only be determined by experiment.
COMPARISON WITH EXPERIMENTAL RESULTS

When numerical values are substituted into the first term of equation(11),
it is immediately apparent that experimental confirmation of the existence of
this component might not be possible with low resolution radars. Expressed in
terms of delay, this term becomes, for small values of o,

10 log  exp (-92/9:) = =1,2 ¢ (db) (12)
where T is given in microseconds. Most experimental work to date has been
done with range resolutions of 10 psec or more and equation (12) shows that the
angular power spectrum would drop off 12 db during a 10 psec interval.

Some recent lunar results have been reported by Mehuron'? that were car-
ried out with equipment havinj a maximum resolution capability of 1.8 psec.

In the case of the reported experiment, however, the equipment was operated
with a resolution of 3.1 psec. Since the frequency of this radar is 425 Mc,
the foregoing calculations (which were based on 440 Mc) are applicable. Fig-
ure 1 shows the observed angular power spectrum plotted as a function of delay,
together with equation (12 (plotted relative to an arbitrary level). The agree-
ment is seen to be quite good in view of the approximations made at various
stages of the analysis.

A different interpretation of the experimental result was offered by
Mehuron, who suggested that it might be a specular reflection from a flat area
near the leading edge of the moon. However, on one of the occasions when this
reflection was obtained, the subterrestrial point fell on the rim of the crater
Pallas, in the midst of generally rugged terrain, and it does not appear pro-
bable that a flat surface large enough to reflect much energy (1.e., one as
large as the first Fresnel zone) could have existed in this region.

With the addition of the new information provided by Mehuron's data,
it now appears that the angular power spectrum of the lunar echo has three
distinct components. One of these has now been shown to be attributable to
the largest surface features, i.e., the mountains and the maria. In the light
of this interpretation, we can be reasonably certain that the second component
can be attributed to the lunar craters. The third component (the so-called
"diffuse" component) must still be accounted for, and this will be discussed
in the next section.

THE DIFFUSE COMPONENT

The diffuse component, which accounts for about 20% of the radar echo at

é8-cm wavelength and 30% at 3.6 cm, has been attributed by Evans and Pettengill'?
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to scattering by surface irregularities of the order of magnitude of the radar
wavelength, However, the theory upon which the present report is based is not
rigorously applicable to scattering by objects whose horizontal and vertical
scales are both of the order of the wavelength, since this would vioclate the
original assumption that the average slope is small. The following discussion
shows how the angular power spectrum derived by the methods of physical optics
behaves as the horizontal scale of the irreqgularities decreases, and this is
followed by a discussion of a modification which takes into account the in-
crease in the slope which results as the horizontal scale approaches the ver=
tical scale,

If only the small-scale component is assumed to be present and its cor-
relation function is exp (- £2/t2), substitution into (3) results in an ex-
pression for pE(E) that can be expanded into an infinite series., If this
series is then substituted into (2) and a term=by-term integration is per-
formed, the final result becomes

p(6) « e': cos20 { (R\/4n) sin (2m62R/\)

#2027 = exp (kRY/n)) (13)
n=1

The sine term represents the residual smooth surface reflection and gives the
Fresnel-zone oscillations of this component. If hZ < 22, a will be small and
the series will converge so rapidly that the remainder of the solution can be
approximated by the term for n = 1, For small values of 2nt/\, this term in-
dicates that contributions are received over a wide range of values of 6, and
this portion of the solution therefore represents the diffuse component.

As the quantity 2WL/X approaches zero, however, a smoothing of the wave-
front occurs, because the incident radiation cannot penetrate crevices which
are small relative to \/2r. Feinstein'# has found that this smoothing can be

allowed for by replacing the quantity a in (13) by
a

a! = . (14)
1 +(kz;=

That this correction is related to the increase in the slope as ¢ decreases
can be seen by noting that, for a surface déscribed by a gaussian correlation
function, the mean square slope m? is 23’7%3, and the denominator in (14) is
therefore 8m?. This procedure is not completely rigorous, however, since
Feinstein noted that cross-polarization effects may be expected whenever re-
placement of & by a' is necessary.
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A treatment of "slightly rough" surfaces (i.e., those for which h? << A?)
which includes polarization effects has been given by Peake,” who based his
work on an earlier study by Rice.'® Peake shows that the angular power spec-
trum is given by an integral similar to the one in equation (L), except that
there are separate solutions for vertical and horizontal polarization, the
integral being multiplied by a factor which depends upon the dielectric con-
stant, the angle 8, and the polarization. The work by Peake, together with
associated experimental work by Taylor,17 demonstrates that the diffuse com=
ponent of the lunar echo could be caused by surface roughness for which 2 << )\,
since the results for various surfaces for which this condition holds closely
resemble the diffuse component of lunar echoes. Even the polarization effects
observed (a relative decrease in the horizontally polarized component with
increasing obliquity) could account qualitatively for the decrease in percent
polarization towards the limb observed in lunar studies.'?

The work of Peake and Taylor leads to the conclusion that the diffuse
component may occur even for the case of small slopes as a result of £ be-
coming smaller than the wavelength. However, the preceding discussion based
on physical optics shows that it could also arise when both & and (ﬁ!)?& are
of the order of the wavelength. In fact, Rice'® has shown from physical con-
siderations that, for the case of vertical incidence, a surface roughness
component equal to the radio wavelength can cause considerable scattering out
of the main beam, and his argument can easily be extended to the case of ob-
lique incidence.

THE EFFECTIVE GAIN AND THE DIELECTRIC CONSTANT OF THE LUNAR SURFACE

When either physical optics® or electromagnetic theory'' is used to com-
pute the total average power reflected from 2 rough sphere having surface ir-
regularities that are larger than the wavelength, the result is found to be
the same as that for a smooth sphere. In other words, the effective gain
is unity. This result does not depend upon any assumption regarding the form
of the surface correlation function and would, therefore, hold for a com=
posite function such as that given by equation (5). The question arises, how=
ever, as to what happens when the structure size becomes as small as, or small-
er than the wavelength, because it is such structure that is presumed to be re-
sponsible for the diffuse component of the echo. Feinstein'# has computed the
effective gain of a rough infinite plane for small values of £/\ by computing
the total reflected power from the angular power spectrum after it has been
modified by replacing a by the a' given by (14), The result of this procedure

7



is that the gain is found to approach unity for & >> \/2 and also for ¢ <K \/2,
However, for ¢ =~ \/2, the gain decreases, attaining values of approximately G.8
and Q.7 for h2/A? = 1/8w2 and 1/1.6n2, respectively. The corresponding results
for a sphere could be obtained by suitably changing the parameters in Feinstein's
equations. However, since the predominating factor is an inverse distance ef-
fect which would be negligible for the moon, the gain in this case would be

close to unity over a wide range of values of h%/A2,

The gain computed by the foregoing method has been called the effective
gain12 rather than the reflectivity, since it would exist in the case of a
perfectly reflecting material with a roughened surface. For a surface having
a reflectivity p if perfectly smooth, the effective reflectivity would be the
product of p and the effective gain g. Since the effective lunar reflectivity
is 0,07 at 68-cm wavelength, we would have gp = .07 and an assumed value of 1.0
for g would give p = .07. Substituting this value of p into the usual formula
relating conductivity and dielectric constant x,leads to a value of ¥ = 2,95,
The smallest possible value of x based on the observed radar cross~-section
would therefore be about 3, even when the diffuse component is included.

Since the foregoing analysis is based upon physical optics, it is not
completely rigorous. Cross=-polarization and shadowing effects could modify
the result.

DETERMINATION OF THE SURFACE CORRELATION FUNCTION FROM RADAR OBSERVATIONS

In an earlier publication,‘ the surface correlation function p(E) was com~
puted from the observed autocorrelation function P(fdr) by means of eguation ().
The results were probably in error, because, as pointed out in a latexr paper,’
P(fdt) contained a considerable amount of high=frequency energy from the dif-
fuse component of the scattering, which should have been subtracted out. The
calculation could, of course, now be repeated, using the corrected function
P(fdt). This has not been done, however, because the result would probably be
of little practical value. The function p(E) is obtainable by this method
only for a very limited range of the variable § and furthermore, the vertical
scale of the correlation function is so greatly expanded that the small dif-
ferences between the curves corresponding to different wavelengths may be
meaningless. Information of much greater value regarding the surface rough=
ness can be obtained by studying the effect of wavelength change on the surface

gradient. Such studies indicate that the surface gradient remains constant
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as the wavelength is reduced from 784 cm to 68 cm,®7 but then increases as
the wavelength is decreased from 68 cm to 3.6 cm.'? This behavior would
appear to indicate that a gap exists in the spectrum of the surface fluct-
uations for components having a "wavelength® of the order of magnitude of a
few meters,

DISCUSSION

With the addition of the new experimental data of Mehuron,'? the angular -
power spectrum of lunar radio echoes is now known to consist of three distinct
portions and the spectrum of the surface roughness would, therefore, also have
three distinct regions. The physical features corresponding to these spectral
regions are a) the mountains and maria, b) the craters, and ¢) small=scale
roughness having a scale of the order of one meter or less.

The conclusion that the diffuse component arises from scattering by sur~
face elements having a scale not larger than one meter is supported by the
fact that the scattering properties deduced from both the autocorrelation
function and the two-frequency cross-correlation measurements appear to be
the same at 784 cm and 68 cm.%'2 This would imply that any small-scale
roughness present cannot have a scale appreciably greater than 68 cm. However,
a further decrease in the wavelength from 68 cm to 3.6 cm does result in a
change in the scattering properties,’'? which implies the existence of structure
having a scale smaller than 68 cm. Although the work of Peake'® and Taylor'?
indicates that the diffuse echo could be caused by structure of the order of
millimeters, the increase in the measured slope as the wavelength is decreased
from 68 cm to 3.6 cm'? would seem to indicate that structure of the order of a
few centimeters or tens of centimeters is present.

The lack of structure having a scale much larger than a meter is per-
tinent to recent discussions regarding the existence of roughness which might
affect the mobility of lunar vehicles.'®"29 Unfortunately, radar determi-
nations of surface slopes have not been made at wavelengths larger than 784 cm
and probably could not be made because of complications that would be intro-
duced by the terrestrial ionosphere. Consequently, there is still a large
unexplored region of the roughness spectrum extending up to a structure size
of the order of 300 meters, the diameter of the smallest craters that can be
seen telescopically.

The minimum value of 3 for the dielectric constant implies a fairly sub-
stantial surface. If the moon is covered by "cobwebby fairy castles" as re-
cent newspaper reports suggest, this fragile layer would have to be much less

9



than a meter in thickness, or else be so ethereal that it would not affect the
measurement of the dielectric constant of the underlying layer.
CONCLUSIONS '

Representation of the lunar surface by a composite surface correlation
function leads to several results that are of value in the interpretation of
radar experiments. One result is that when small-scale and large-scale struc-
tures are both present, the small-scale effects dominate the autocorrelation
function of the signal envelope, and the existence of the large-scale ir-
regularities cannot, therefore, be detected by c-w measurements,

A second result is that large=scale structures which have large vertical
amplitudes may produce a.detectable "pip" at the origin of the angular power
spectrum. Examination o the results of recent experimental studies made
with a high resolution radar confirms the existence of this pip, and com-
parison with theory demonstrates that it is derivable from the autocorrelation
function of the large-scale features. This shows that, in the case of the
moon, the two major types of surface formations are responsible for distinctly
different portions of the quasi~specular part of the angular power spectrum.

It is concluded that the diffuse component observed at meter wavelengths
probably results from structure of the order of a few centimeters or tens of
centimeters,

The methods of physical optics lead to 2 minimum value of 3 for the di-
electric constant of the lunar surface.

Studies of the wavelength~dependence of the average surface gradient
indicate that a gap exists in the spectrum of lunar surface fluctuations for
components having a "wavelength" of the order of a few meters. The region
from about 10 meters upwards, however, is still unexplored by ground~based
radar and will probably remain so,
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