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ON THE DETERMINATION OF VERTICAL SETTLING OF THE BOUNDARY
OF A HALF SPACE IN THE CASE OF PLANAR DEFCRMATION
(A Dynamic Problem)
By

N. M. Borodachev

I. WE USE AN ORTEOGONAL SYSTEM OF COORDINATES (x,y,z) THE y-AXIS OF WHICH
IS PERPENDICULAR TO THE BOUNDARY OF A FALF-SPACE.

Lome's equations for the elastic isotropic half-space in the planar
cese have, in the absence of volumetric forces, the following form:
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where A, I are Lame's constants of elusticiby; u, v are the projections of

tne displacement vector on the axes of the coordinates x, y;

0 = 2« dv
ox dy ’

P is the dousity of the material; and

The stihacs components are connzeved with displacement components by
correlations rov olenar derorrations w.o.lch appear as:
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where -

-

Flay,p) = V‘_ jdx\g' [P, v, 1),
2z
Bt 0

The solution of equation (1.8) which is bounded at infinity appears as:

— ) 2 . — % ’
F(a,y,p) = Aexp (,—yg/ﬁ+ -’;;r)+8exp(—>'}/«*+fg-). (1.9)

Wheré 3 anij are determined from.cqhdifions on the boundery of the half-
'spa.ce.-l - _

Buccessively aﬁ?lying to {(1.3), {l.6) ana (1.7) g.LaplaceAtransform
wiﬁa rei‘érer‘;ce to tnc vér‘iél.ale T, aqd a FOufier transform with reference to
the varigble %, we shall have tﬁe:foiloﬁing :elétionship between the
Laplace—Féfariér tra_nsformanfs of %',he 'flmc.tipn_s v (x, y,.t.),‘ ay (x, ¥, t),

%Xy(x, v, t); éndfof the fgnctign'f (e, v, é).. Substituting into these
relationéhips functions ¥ (a , ¥, ») from (1.9), 'and also >assuming that.
"y = 0, we cbtain the following .express.ion for the Laplace-Fourier transfor-

ment of the functions v (x, 0, t), o,(x, 0, t) and Ty (%, 0, )3
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T (5,0,p) = 2(h+p) ia] [a® + 2 A+(a-’+-’i§>3} (1.12)
Taa0p)=2040) %) 5

7. OUR PROBIZH CONSISTS IN DETEEMINING THE FUNCTIONS » (%, O, t) IF

oy{x, 0, t) & v, (x, 0, t) ARS KWCIN.

Fl

Ve obtain the solution of this problem by utilizing the resulits of
perageaph T of thie griicle, In fact, when the functions O'y(:c, o, t) and

fexy(:-:, 0, %) arc knowm, thea the Laplace-Fourier Transformants of the.

fusesicas oy (G,.0, ) ond Txy (e, O, p), generelly speaking, also mey be
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considered as known., On the basis of this, from (1.11) and (1.12) expressions
for A (a, p)_and B (a, p) cen easily be found. Substituting the expressions
for A (a, p) and B (a, p) into (1.10) and successively applying the inversion
theorem for the Laplace and Fourier transform /2/, we can obtain the formula for
the determination of the function v (x) 0, t).

Let us examlﬁe in more detail the case fx/(x, 0, t) = 0. Substituting
the expressions A (a, p) and B (a, p) from (1.11) and (1.12) for the case

(h O t) = 0 in (1. lO) after algebralc transformatlons, we - obtain the

. Tollo\nnsr Lormula for the Laplace Fourler transforms of the function

% (x, 0; t):
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- where xg are the roots of the equation . _
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The roots of equation (2.3)'depend on’ the relation
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vhere v is.the Poisson’s ratio.
Successively applying the theorems of imversion to (2. l) for the Laplace

and Fourier transforms, ve oLtaln.
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The final stage of solving the present problem is the calculation of
the contour integrals entering into expression (2.3). However, for practical
use it is better to have a formula for function v (%, O, t) into which real
integrals - not contour integrals - enter. TFor obtaining such a formula,
ve apply successively to (2.14) the theorems about the convolutions for tﬁ;
Laplace transform in reference to @he variable 4, and for the Fourier trans-

form in reference to the variable x /2/.. As a result we get:
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Thus, a general solution to the problem of determining the vertical
components of th¢ displacement y*ector of the boundary of the half-space in
& planar case is reéched by f_é)rmula (2&) when t > O stress acts on the
boundary of the half-spaceat Gy (x, O, .t_)and Tyy(x, 0, %) = o

The obtéined solution is valid when 'the following conditions are fulfilled:

a. At t >0 the half-space is in the state of rest;

b. 7, (x,'o, 0) = 03

c. All roots of the equation. (2.2) are simple and real;

d. When the inequalities are valid 0< y < ol e <yt i 2
where vy, %2 %3 are the positive roots of the equation (2.2). For instance,
at v = 0.25 condi’éions g and £ are fulfilled. However, in case of neéessity
this methed will give a corresponding solution, also, when the above enumerated

conditions are valid.

III. IN THE FOLLOWING IS SHOMN AN APPLICATION OF THE GENERAL FCRMULA (2.4)
FOR THE SOLUTION OF INDIVIDUAL PROBLENMS.



froblem a, Let

o, (x,0, 8y = — P (x) H (£), @1

where § (x) is the Dirac delta-function, and H (t) is a discontinuous
function determined by the correlation

— /0 a—""f<0,
Ht_m{l ot 10,

The casc under examination is graphically depicted in Fig. 1.

PHR) : 9H(t)
T I I = LaL24A *//0 4 :f77/ =
0 Lalla /

Y d
Fig, k Fig, 2

24 (x.0,8) =—P3(x)3()
of

and Tormula (2.4) gives

{

v (%0, t;:—{“’fﬁ' s § ¥ (553 (= (x =D b

—

wp

fat

» She properties ol Tthe

elta-function /i/ we finally get

2(x0,8) = Q—’E ¥ (x, 1), (3.2)

whare the fusction ¥ is determined by the Formulas (2.5)-(2.8), wherein the
variebles & and 7 are substitubed by % and t respectively. When the boundary
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value is calculated by the function v {x, 0, t) determined by the expression

(3.2) at t = ©, then we wrrive at a known formula

- _ 2P 4 3.3
lim ;)()i, 0,t) = ——1n R )

which is obtained from the investigations of Flamant /5/, and which corres-
ponds to the case of a statical applicatiou of stresses oy (x, 0) = -P & (x).
Here the expression E = 2 (l A v) 4 is the modulus of the normal (perpendi—.
culer) stress. It must be noted that Formula (3.3) does not detérmine the
absolute value of the vertical component of the displgcement vector of any
srpitrary point located on the boundary of the half-space, but the differ-
ence of the vertical components of the displacement vector at the point with
the abscissa (x) and & certain point also located on the boundary but removed
at a distance of (d) from the origin of the coordinates.

Problem b, Iet

cy(x,O‘,t):——-qH(a—-lx])H(t). (3.4)

=3
5
5

. examined case is graphically depicted in Fig. 2. In the given case

_;’;cv(x,o,t) =—qH(d— %) ()
and formuls {2.5) gives

: ! x+a
fu(x,O,t)z-Q-‘L d:j‘ (£, <)8 (f — =) dt.
=

0 x—=a

Changing the order of integration in this expression and accomplishing the
& O & &

integration by © , we get
X+a
v(x,0,8) = —)ig T (5, £) dt. (3.5)
=

X—a



Integration in formula (3.5) can be accomplished without undue difficulties.
Put since the final expression in this case for function v (x, 0, t) is too

curibersome, we will not write it out,
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