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ON THE, DETERMINTIOINT OF VERTICAL SETTLING OF TIE BOUNEARY
OF A HALF SPACE IN THE CASE OF PLANAR DEFORMATION

(A Dymanaic Problem)

Sly

N. M. Borodachev

I. WE USE AN ORTHOGONAL SYSTEM OF COORDINATES (x,y,z) THE y-AXIS OF WHICH
IS PERPENDICULAR TO THE BOUNDkRY OF A EALF-SPACE.

Lame's equations for the elastic isotropic half-space in the planar

case have, in the absence of volumetric forces, the following form:

(X+,1) •+• 2-- =P&

+± + 1V2 V= ( .1)

where X, v ar• Latoe's constants of elsticity; u, v are the projections of

the displacement vector on the axes of the coordinates x, y;

ax ay

p -iL the dcnsity of the ,a-tcrial and

, 2 0"y,2-

The stre.'s coniponents are connected with displacement components by

correlatioaG for zlanur defor;:_tion3 ';Jch appear as:

ay =XO+ 2 ,•z - ,
ay t o• T
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where

I (I y 2P)- = - $ dxf I-P''`Q)(x, y,t)dt.

-0

The solution of equation (1.8) which is bounded at infinity appears as:

?(a,Y, P) =Aexp ~ )BXP y/~+ (1.9)

where A and B are determined from.conditions on the boundary of the half-

space.

Successively applying to (1.3), (1.6) and (1.7) a Laplace transform

with reference to the variable t, and a Fourier transform with reference to

the variable x., we shall have the following relationship between the

aiolace-Fourier transformants of the functions v (x, yt), uj (x, y,

"Z/(x, y, t), and'of the function F (a, y, p). Substituting into these

relationships functions P (a, y, p) from (1.9), and also assuming that

y = w,•we obtain the following expression for t6he Laplace-Fourier transfor-

mFsnt of the functions v (x, 0, t), G (x, o, t-) and XY (x, 0, t)t

V- 0,P) C2P )+-, (1.10)

""Op + + p2 P A + (a+ B], (I. 11)

1-1. GJR' PROB.M CONSISTS IN DETEFR}DXIMG T•I• FUNCTIONS v (x, 0, t) IF

We obtain the solution of this problem by utilizing the results of

rara~ph i of this article. In fact, when the functions oy(x, 0, t) and

'w (x0 J, t) arc knon, thea the Laplace-Fourier Transformants of the.

a (y ( 0, p) and Thy (U, 0, p), generally speaking, also may be
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considered as know-,n. On the basis of this, from (i.11) and (1.12) expressions

for A (aK, p) and B (a, p) can easily be found. Substituting the expressions

for A (a, p) and B (a, p) into (1.10) and successively applying the inversion

theorem for the Laplace and Fourier transform /2/, we can obtain the formula for
the determination of the function v (x' 0, t).

Let us examine in more detai1 the case xy (x, 0, t) = 0. Substituting

the expressions A (a, p)and B (a, p) from (1.11) and (1.12) for the case

0, (x 0, t) 0 in (1.10) after algebraic .t.rdisformations, we obtain the

Sfollowving formula for the Laplace-Fot3rier-trangforms of the function

11 (da, ',; [ o; t):

k=1

where xk. are the roots.of the equation.

'AG 16 6 0. (2.2)q ) . i .( C

The roots of equation (2.3) depend on the relation

I. _ -2v
1.,)+ 211 2--2v'

where z/is the Poisson's ratio.

Successively applying the theorems of inversion to (2.1) for the Laplace

and Fourier transforms, we obtain:

v,(x,O t) - 40, ( P) X
0, t) - - rI (p--irc2XK)

,1 ,, k-I

a2 +2 (c3,.02~+ + p2
2 (a2 + Pý dp. (2.3
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The final stage of solving the present problem is the calculation of

the contour integrals entering into expression (2.3). However, for practical

use it is better to have a formula for function v (x, 0, t) into which real

integrals - not contour integrals - enter. For obtaining such a formula,

we apply successively to (2.4.) the theorems about the convolutions for the

Laplace transform in reference to the variable t, ana for the Fourier trans-

form in reference to the variable x /2/. As a result we get:

S(X, 0, t) -2 T (e j x 0 A 24

0

where

.. .", 0 at 0{<-~,<.
C1

-t C, C-2

'P( .t= * A(f, ± +)A, (?,-l)+A.,(?o2 - )±A3(Qa±'+ih). (.)

l•i . 1.-:L I < -< lI ,
at C' %3C2

Ao (f, +.f) -A 1 (A , ,) +A, (y- 2 ) +A 3(?3 '

.I.• •**- C
• . . . . . . . . . 2 \ /]' .

A0  /t2- l (2 2)

* ~ "ý iýq2 2 7C;'( 122 (26

C2C 2

I A7
1 2. -i- -3-, 2

•~ (t,: lei"

(2.7)

fI (, .) = C2
I•1



) +arcsin C!

Y2 (E, ,) "- +arcsin e

•: - I-•I•- - • ( . -:

2:

l (2.8)

Y 3  I) n -. Ci- - ,•b +acsin-1•

In - - -2

Thus, a general solution to the problem of determining the vertical

components of the displacement vector of the boundary of the half-space in

a planar case is reached by formula (2.4) when t > 0 stress acts on the

boundary of the half-space at a*y (x, 0, t)and ' y (x, 0, t) = O.

The obtained solution is valid when the following conditions are fulfilled:

a. At t - 0 the half-space is in the state of rest;

b. 0•j ( , O, 0) = 0;

c. All roots of the equation (2.2) are simple and real;

d. When the inequalities are valid 0 < X3 C2 < c2 < C1 < 2 C2 < X1 C2,

where 7 3, , X• are the positive roots of the equation (2.2). For instance,

at y 0.25 conditions s and _ are fulfilled. However, in case of necessity

this method will give a corresponding solution, also, when the above enumerated

conditions are valid.

III. IN TIT FOLLCWrING IS SHCWN AN APPLICATION OF THE GENERAL FO913 -IA (2.4)
FOR THE SOLUTION OF INDIVIDUAL PROBLEMS.
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_rob!em a. L'et

0 (x,O, t) - P (x)H(t), (3. 1)

w'.icre 6 (x) is the Dirac delta-funct-ion, and H (t) is a discontinuous

function determined by the correlation

at t>O.

The case under examination is graphically depicted in Fig. 1.

Pq H (t)

Y1

Fig. Fig. 2

in this case

at . (x. 0, t)= P_ a(x) (t)

and formxia (2.4) gives

Utilizing the proparties of the delta--'anction /4/ we finally get

V (X, O, t) = Ir (x, t), (3.2)

w'~re tho iLinction 0 is determined by the formulas (2.5)-(2.8), wherein the

varia'bles r and I are substituted by x and t respectively. When the boundary
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value is calculated by the function v (x, 0, t) determined by the expression

(3.2) at-- 'C then we zr:ive at a known fornmla

limv(x,O, t) = 2P (I In Idl (3.3)
-tE 1xI

w•hich is obtained from the investigations of Flamant /5/, and which corres-

ponds to the case of a statical application of stresses ay (x, O) -P & (x).

Here the expression E = 2 (1 + v) It is the modulus of the normal (perpendi-

cular) stress. It must be noted that formula (3.3) does not determine the

absolute value of the vertical component of the displacement vector of any

arbitrary point located on the boundary of the half-space, but the differ-

ence of the vertical components of the displacement vector at the point with

the abscissa (x) and a certain point also located on the boundary but removed

at a distance of (d) from the origin of the coordinates.

Zroblem b. 1ot

., (x, 0, q) H -- -(a - Ix]) Hr() (3.4)

The examined case is graphically depicted in Fig. 2. In the given case

C) a (x, 0, t) - - q H- (d - ll t

and formula (2.5) gives

t x+a

0 X--a

Changing the order of integration in this expression and accomplishing the

integration by 1 , we get

X +a

V (X, o, t) = 9q , (3.5)
x-.-a



Integration in formula (3.5) can be accomplished without undue difficulties.

But since the final expression in this case for function v (x, 0, t) is too

cu•ibersome, we will not write it out.
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