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by

Dominic G. B. Edelen
The RAND Corporation
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SUMMARY

The Einstein theory of general relativity is shown to yield a general me-

chanics of continuous media under the assumption that the momentum-energy

tensor admits a unique time-like siegnvector. Physical interpretations of the

governing equations are derived, together with constitutive relations for goner-

&I and isotropic materials. It turns out that the mechanics can always be viewed

as describing the flow of rest-energy. Invariant requirements for the existence

of a stress potential are obtained, the satisfaction of which leads to a decom-

position and partial evaluation of the rest-energy. The Einstein field equations

are shown to imply the existence and uniqueness of an intrinsic energy density

for any material medium (intrinsic immutable mass). The usual procedure of

adding conditions to the Einstein theory in order to obtain an analogous intrinsic

quantity is thus unnecessary. The path density, which defines the intrinsic

energy, is shown to be path independent in an appropriate sense if the stresses

admit a stress potential. This suggests a decomposition of the ge~oralized

stresses and leads to a fundamental differential relation on the trajectories of

the energy flux. Natural definitions of intrinsic temperature and intrinsic en-

tropy density are direct consequences of the fundamental differential relation

and lead to generalized thermodynamic descriptions which include the effects

of gravitational radiation.
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1. INTRODUCTION

Since the promulgation of the general theory of relativity, science has come

to view the problem of describing general media as equivalent to the problem of

stating the momentum-energy tensor for such media. For certain special cases,

the appropriate forms for the momentum-energy tensor are known. These have

been most useful in gleaning the dynamic interplay of geometry and physics.

Unfortunately, without significant extension, these cases regulate the inve*sti-

gator to the consideration of only the simplest of possible physical models. In

view of the fundamental nature of the Einstein theory, it should be possible to

develop a simple and consistent mechanics of general systems which involves a

minimum of assumptions and which yields direct physical interpretations of all

quantities involved. The purpose of this paper is to lay the requisite foundations

for such a mechanics.

2. THE MOMENTUM-ENERGY TENSOR OF A MATERIAL MEDIUM

Let f be an Einatein-Riemann space* with metric tensor hAB and

associated momentum-energy tensor TAB. Capital Latin indices are assumed

to range through the integers from one to four. A semicolon will be used to

denote covariant differentiation, the comma being reserved to denote partial

differentiation. The usual notation for mixing and alternating will be used.

Following the line of thought introduced by Synge**, it appears natural,

and indeed necessary, to require that any region of 0 which is filled by a

A four-dimensional metric space of the hyperboli-normal type in which
Einst*g's field equations are satisfied. The signature of f is therefore -2.

Synget J. L., Relativity: The General Theory, North-Holland Publishing
Co., Amsterdam (1960), pp. 165-169.
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material medium be such that its associated momentum-energy tensor admit a

unique time-Uke elgenvector. The precise characterization is as follows:

DEFINITION 1. A symmetric tensor field TA is a material momeatum-energy

tensor associated with a region e of if and only if

(2.1) TAB •0

and there exists a unique, time-lUke, unit vector field WA and a nonzero scalar

,i on •' such that

AA B(2.2) TB W 86W.

Careful attention should be paid to the requirement that the vector field

WA be unique. This uniqueness states that any point P of the region 4" has

associated with it a unique time-direction defined by W A, and hence the material

medium filling 6 has a uniquely defined time-orientation. Without such a result,

it is difficult, if not altogether Impossible--to speak meaningfully of the simplest

everyday properties of what we are accustomed to think of as material bodies.

Care must also be exercised in the use of Def. 1, for we have to distinguish be-

tween the various cases which may arise.

DEFINITION 2. A material momentum-energy tensor is said to be of class

m(m ,,, I, 2, 3, 4) Hf and only Uf the multiplicity of the elgenvalue I& Is m.

In order to guarantee the unicity of tbe elgewvector WA, material momentum-

energy tensors of class m must be such that their characteristics (referred to

Jordan normal form) commence with the integer m. * Since space-like and

For a detailed discussion of such characteristics see Hlavati, V.,
"Contribution to the Theory of General Geometrodynamics" (to be published).
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time-like quantities usually differ markedly in their numerical values when

calculated with other than what may be termed exotic units, It is natural to

expect that material momentum-energy tensors of class one predominate.

For this reason, we confine our attention in the remainder of this paper to

such momentum-energy tensors.

3. CHARACTERIZATION OF MATERIAL MOMENTUM-ENERGY TENSORS
OF CLASS ONE

The definitions given In the previous section are implicit, for they do

AB
not exhibit the detailed form and nature of T . This section is devoted to

developing the explicit characterization which is needed in order to obtain

physical interpretations.

Consider the idempotent tensor field

(3.1) rB a 6A--W B
A A A

on "3. With it we may define a projection operator v over the set of all

geometric objects on 6 an foUows.

A D... B... C.•

In particular, we have

(3.2) r(WA;B) uW(A;B) - W(A'*)+ W[A;B] +W(AWBI,

where

(3.3) Adf W;f W
A A;B

(Here we have used the fact that W WAA I implies WAWB;C 0.) A direct

application of weUl known techniques together with definitions 1 and 2 then yields

the following result. The most general symmetric tensor field of class one

which satisfies (2.2) is given by



AS A WB AS]
(3.4) TAB W W + , A

where a is any symmetric tensor field such that

(3.5) 1(" AB) a OAB

and

(3.6) aAS VBB iV

ifandonlyIf V B 0.

With the above result, all that remains in order for T to be material

is satisfaction of equations (2. 1). Substituting (3.4) Into (2. 1) gives

(3.7) L *A + WA (wBB + AB;B a 0.

Now, by assumption we have WA WA 0 1, while (3.5) implies that aAS WB a 0.

It thus follows that WA WA 0 0 and
oAB WA _-A WD*AB WAB )
A ;B WA;B a -Ba W(A;B)

since aAS is symmetric. Noting that aAS W a scalar and that aW(A;B) i clradta

satisfies (3.5), we have
(38 AB AD

(3.8) a ;B WA -- 0 A AB'

wire (vid 3. 2)

(3.9) 4~ oW -W WAS A;B) (A;B) (A B)
Ais the Born rate-of-strain tensor associated with the vector field WA.*

Hence, if we contract (3. 7) with W we are Led to the scalar equationA
(3.10) (P WB)B AB AD

With the aid of the Lie derivative,* we can write (3. 10) in the more suggestive

Synge; ojp. cit., p. 172, eq. 62. The difference in sign between our
statement and that of Synge arises because Synge assumes a signature +2 while
we have assumed a signature -2. The physical Interpretation of o is dis-
cussesn Sec. 7.

Yano, K. The Theory of Lie Derivatives and Its Applications, North-
Holland Publishing ,o .#, Amaeralm UzaVit.
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form

(3.11) A(h ) a) -AB

where

hdIf (-det(hAB))

Substituting (3. 20) back into (3. 7) then leads to
(3.12) *t *A + wA OBC 0W +.rAB ; O.

ILW q ~ ;B

We have thus established the following result. The most xen~ral material

momentum-energy tensor of class one is given b)

(3.13) TAB W WB +aAB

where aAB is a symmetric tensor such that

(3.14) V( AB) -AB,

(3.15) aAB VB• V A

if and onlyv if VB a 0 and the quantities P&, W A, and aAB are such that

(3.16) £(hpA) - hoAB 'AB'
(3.17) *A A BC + A;B

4. PHYSICAL INTERPRETATIONS

The question naturally arises "s to just what physical interpretations

A ABcan be attached to the quantities p&, W , and oA. We take here the view-

point that physical interpretations should be consequences of the mathematical

model employed.

We first show that the vector field WA may be interpreted as a velocity

field. Since WA is assumed to be known throughout the region -@ we may

define a system of fibers in e by

WA is uniquely determlnedby TAB and WA WA a 1.
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(4.1) dx Adi1 -W A(x)

where qI is the fiber parameter. Computing the differential element of arc

length along any fiber in 7, we are leads to

do2 hAB dq12 2 dj 2

Hence (4. 1) shows that WA satisfies the definition of a velocity field in gen-

eral relativity.

The next question is what physical quantity admits W A as its velocity

field. From (2.2) we obtain

(4.2) IL a TAWAWB.

Transforming to a frame of reference in t"' such that*

(4.3) W a A

equation (4. 2) reduces to IL : T 0 0 . Thus, since (4. 2) defines a rest frame

relative to the velocity field W A, and the Too appearing above is the energy

in this rest frame, * the scalar character of 0 shows that IL is the rest-energy

in all frames of reference. Writing (3. 16) in the equivalent form

( h WA) A a h AB 4AB

shows that p h WA is a flux of rest-energy density that is created in an amount

AB 1 2 3 4equal to t7 AB plr unit of geometrical volume h dx dx dx dx . From the

obvious analogy with fluid mechanics, equations (3.17) may be interpreted as

A This can always be done for any vector field with the properties exhibited
by W : see E. Goursat, rA.,n^na star I, p,.nhl,,in, d•m BLAU, Herman et Cie.,
Paris (1922), p. 117. The symbol * will be used to denote evaluation in this
frame.t# reference.

From(4.3) and W WAm I we obtain h 1. Hence, T in the
frame defined by (4. 3) is .n erically equal to the1 kinkowskian valuOof
T0---tbe energy.
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describing the motion of a fluid with mass density p and stress tensor aAB

where the mass density is created in conformity with equation (3. 16). The

interpretation of aAB as a generalized stress is also operationally admissible.

This follows from the fact thatt by (3.14), the support of AB is the generic
* .- AB

three-dLmenslonal space -A orthogonal to W A and hence A may be

A* A
determined Lathe fram* W 8 60 by only space-like measurements. Thus,

since the quantity p has been shown to be the rest-energy, we may interpret

the vector field WA as the velocity field associated with the flow of rest-

energy In the region S and a AB as the generalized stress that gives rise to

this energy flow.

The above interpretations have been drawn in a manner which Is in-

dependent of what actual physical processes occur In 65; the only proviso being

that TAB be a material momentum-energy tensor of class one. We may thus

view the dynam.ical processes in any region 6" with a material momentum-

energy tensor as the flow of rest-energy regardless of what actual physical

processes occur. The continuum In relativity theory thus turns out to be an

energy continuum--hus the name relativistic ener&y mechanics.

5. BOUNDARY CONDITIONS

The next problem to be resolved in the resultant energy mechanics Is that

of formulating consistent boundary conditions. Let 6 be a region of ,;" which

supports an energy mechanics (i. e., the associated momentum-energy tensor

of Z; is material and of class one), and assume that exterior to 6', TAB

The genaric space /• becomes a proper space if and only if ,(W A;B] * 0:
see D. G. B. Edelen, "Rotation Tensors and Irrotational Motions in
Einstein-Riemann Spaces," Proc. Nat. Acad. Sod. (1963) (to be published).
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is not material. If we denote the boundary of 6 by a6 and the outward normal

to 86 by NB , then a necessary condition* for the solution of the Einstein field

equations is

AB A~~df +. B A
(5.1) [TAB] NB a 0, ([T AB I T T AB).4 . AB ATAB_

Here TAB (T AB) denotes the value of TAB just exterior (interior) to 8Z'.

AB
Under the above assumptions, we may use (3.13) to evaluate TB . When this in

substituted into (6. 1), we obtain the conditions

.) A ---B -A B AB
(5.2) (1 W W +0 )N B T N B

Hence, if we operate on both sides of (6. 2) with ir, set

(5.3) FA a •TAB NB),

and use the projective invariance of a as stated by (3. 14), we are led to

-AB A
(5.4) AB r(NB) F

Equations (6.4) are just the relativistic analog of the classical stress boundary

Aconditions, as is easily seen by referring (5.4) to a rest frame relative to W

A
Combining (5.2) and (5.4), the corresponding boundary conditions of the W are

easily obtained; namely

.- B -- A • AB A
(5.5) ,(W N B)W ST NB

Hence, since "& i' 0, a necessary and sufficient condition for W to be tangent

to 8.6 is
+AB

NA (l0-)(T(T N B 0.

The evaluation of the corresponding conditions for the hAB's and the resulting

* Edelen, D. G. B., and T. Y. Thomas, "Discontinuities in the Einstein
Field for General Momentum-Energy Tensors," Arch. Rational Mech. Anal. 9
(1962), pp. 153-171.



-10o-

surface dynamics has been treated elsewhere,*

6. CONSTITUTIVE RELATIONS

The relativistic energy mechanics established in the previous sections lacks

ABconstitutive relations whereby the generaliaed stresses a are related to the

velocity, the velocity gradient, and any other fields which may be present. Such

relations are a necessary part of the theory, for without them the Einstein field

equations and the basic equations of relativistic energy mechanics would be in-

sufficient to determine a tensorial solution manifold.

DEFINITION 3. A relation of the form

(6.1) aAS "QAB(WC' WE;F' KL'

is said to be a constitutive relation in the relativistic energy mechanics.

The point of departure in constructing such relations is the data supplied

by section 3; namely, a is symmetric and such that

(6.2) W(qAB) M OAB

(6.3) aAB VA

if and only if VB w 0. Since (6.2) requires the support of aAS to be the generic

three-dimensional space Zj orthogonal to the vector field W A, it would appear

natural to confine our attention to quantities whose support is also Z.
Edelen, D. G. B., and T. Y. Thomas "The Dynamics of Discontinuity

Surfaces in General Relativity," (to be published).

The Einstein field equations together with basic equations of energy
mechanics constitute a system of It independent equations for the determination

•A AB
of the variables hA, P1, W and a among which there are only 25 independent

ones. Thus, if we append ten equations for the determination of the ten aAB's
without introducing any new variables the solution manifold would be tensorial
because of the occurrence of four arbitrary functions of position, the latter being
determined by the choice of the coordinate system.
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Physically, this would mean that an observer in a frame of reference at rest

with respect to the velocity field WA could determine both constitutive relations

and stresses by measurements of only space-like quantities. This, however, is

exactly the state of affairs in the classical mechanics of deformable continuua.

We are therefore led to the following definition.

DEFINITION 4. A relation of the form

(6.4) aAB a CAR( M;),r (bAR),h

is said to be a classically admissible constitutive relation in the relativistic

energy mechanics, and the resulting energy mechanics is said to be classically

admissible.

It is to be expected that only in the cases of classically admissible con-

stitutive relations will the relativistic energy mechanics reduce to classical con-

tinuum mechanics by an appropriate limiting process.

The simplest kinds of classical continlia are those referred to as isotropic.

Although the idea of Isotropy is well defined in the classical theory, there are

several possible formulations available In the space-time of general relativity.

The simplest and most obvious intuitively is that associated with the Idea of

coincidence of the principal directions of stress and the velocity gradients. A

necessary and sufficient condition for coincidence of the principal axes of aAB

and WA;B is that a AB be a power series in WA;B and WB;A, with scalar

functions of W A; as coefficients. This would violate the symmetry of a AB

Hence we can at most require that the principal axes of aAB and W(A;B) coincide.

Applying the same reasoning in conjunction with the condition (5.2) shows that we
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can at most require coincidence of the principal axes of a and r(W

Hence we are led to the following definition of isotropy.

DEFINITION 5. A relativistic eneru continuum is isotropic if and only It the

axes of AB coincide with the axes of 'AB

If we sot

(8.5) 4B CB AS 3  kCAkDB
A 4 AC ' CD

where

(6.6) kAB a W(hAB), kAB ffWhAB)I

then the most general constitutive relations for an isotropic continuum which

satisfy the conditions a [ABJ a 0 and (6. 2) are given by

AB AB AB AC B
(6.7)~~Sms ae(.S 08 I 24

where the coefficients &A ae scalar functions of W A;B. Since deti4AB)DO

and 'AB satisfies its own characteristic equation, we have

ACD ,ACB + ABI a0
(6.8) C 'CD I1 C 2 3

where

AI1 ' A'

(6.9) 12 1 h-2 oABCD FGHK
(6.9) 1 2 4 !h e hAF hBG CH bK,

1 2 SCCFD

and 0ABD is the Levi-Civita indicator. Hence, since the WAB dependence

of the scalar functions tA Can be written In terms of the invarlants
S A'

1 --2 ABCD F.HK

(6.10) •2 71 AF hA GWC;H WD;K,
. I h-2. ABCD 0FQHKh W W W ,U3 - 4  AF W3;G WC;H D;K,

-2
U4 uh det(WA)
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the most general Isotropic energy continuum admits the coustitative relatieos

AB AS AB AC B
(6.11) A ,0 k + (P + (2

(6. 12) q"fA ' I2' 13' i' 112' II3 ' 1 4 .", ' A 0, 1,2,

and the f's are scalar functions of their indicated arguments. If we require the
AB

continuum to be classically admissible, then o is again given by (6. 11), but

the fA are no longer functions of the Ils, and the h's appearing in (6. 9) are

replaced by k's.

We still have to satisfy the requirement (6. 3). Let a 10 a 1, 2, 3) beI

defined by

(6.13) AB V *O VA, (I not summed),

LB I

where A(VA) " Av Since the projective invariance of the Vi'a implies

V AB B i
my A, (G. 11) gives

I i

(6.14) aAB VB a (90 + PI e + 12 a2)i VAI (i not summed).

Hence we must require that the I ns and the e be such that
i

If the above results are examined in a frame of reference at rest with

respect to the velocity field WA, the classically admissible constitutive re-

lations are easily seen to be exactly the results known in the classical theory.

As an example, consider the relatior.

AD C AB
(6.16) a (p +. X ,C) k" +2q 4,

where X and vi are constants. This is clearly classically admissible. An

obvious calculation based on (6.16) yields
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(6.1?) q3 • 7 AB Ah.Q AB • p(•÷ A).e

(FAB b (AB k Sp (2 qj + U) A

We thus obtain an immediate basis for examining the energetic analog of a general

viscous fluid it we make the stokes assumption that 2 *1 + 3 X a 0.

It must be clearly borne in mind that we are dealing with an energy con-

tinuum. The function p is thus not necessarily the relativistic analog of

hydrodynamical pressure. If p were assumed to be the pressure, aa in the

usual discussions, certain problems arise for which there is no simple answer.

Einstein clearly saw these problems and chose to follow an interpretation similar

to that taken in this paper. "This [ referring to pI must not, however, be con-

fused with a hydrodynamical pressure, as it serves only for the energetic pre-

sentations of the dynamical relations inside matter."

7. STRESS POTENTIALI

Many problems in classical continuum mechanics are significantly simplified

when the material medium is such that It admits a stress potential E. The con-

dition for this to be the case is
-1

(7.1) 00 th rm

for all d,,, where t is the Cauchy stress tensor, d is the rate of deformation

teusor (following the motion), p is the mass density, p0 is the valu of p in

the reference state, and t is the time derivative of 1: (following the motion). **

In the hope of achieving a similar simplification for problems in relativistic energy

mechanics,, we shall look for a suitable generalisation of (7, 1).

inste•n, A., The Meagigg of Relativity Third Edition, Princeton University
PreesJjIO), p. 106.

5e C. Truesdell, "The Mechanical Foundations of Elasticity and Fluid
Mechanics," J. Rational Mech. Anal., 1(192), p. 170.
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The first problem to be resolved is that of obtaining an acceptable genera-

lization of the left-hand side of (7. 1). Since (7. 1) is an equation following the

motion of the classical continuum (Eulerian specification), we refer the energy

continuum to a frame of reference at rest with respect to the velocity field WA

A* A 0(that is, W a 6 0). In this frame of reference, x is the natural time variable

of the material. Hence, differentiation with respect to x0 is the relativistic

analog of the classical time differentiation following the motion. We now need to

express x differentiation in the rest frame by means of an Invariant differentiation

A dx A 0 *
process. Now W dT' ; hence, in the rest frame, dx * ds. We thus have

established the correspondence t --- , for A a scalar function. Indo
classical mechanics, the density p is the reciprocal of the element of convected

volume. Thus, if denotes tLe slice of over which the initial data is specified,

and h0 denotes the image of h in F under the inverse of the motion defined by

the trajectories of the WA field, we have the natural correspondence

-l7 -- h0 h"I. Combining the above results, we obtain

0 dA
(7.2) , -- h

Because of the occurrence of the ratio h0 h", it would seem appropriate to rotor

to A "s the convective stress potential (classically, the quantity E should also

be referred to as the convective stress potential due to the factor p p-O

Turning to the right-hand side of (7. 1), we note that*

(7.3) 2 W(A;B) £(hAB),

and hense

See J. A. Schouten, Ricci-Calolu (Second Edition), Springer-Verlag,
Berlin (1954), pp. 102-111.
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(7.4) 2 'AB air (hAB).

Evaluating (7.4) in the rest frame gives*

(7.5)2
AB2 ' (hAB - hAO haO), x 0d t

(Remember that h0 0 w 1.) The tensor tAB is thus a time derivative following

the motion. The question is whether hAB - h0A hOB may be looked upon as an
Eulsranrate-o/•-strain tensor In the rest frame. Since W oA i a time-dlike unit

AA

vector, we may pick a system of four vectors v (b a 1, ... , 4) and a reciprical

b b

system VA such that

(76) Aa A A a a vA wA.
a VB 6 B, v and v o *a b A0 "

We then have

00 3 ii
(7.7) hAB 0 00vAvB + . PiVA VB"

Using (7.6) and the fact that h AB W W a I gives 0 1 1, and hence we haveAB 0

(hAB - hAO hBO) i vA VB"
j-l

I I a

Thus, noting that w (vA) a vA and that the P, are the nonholomonic components

-iA iI
of hAB in the generic space t"• normal to V , we see that Pi VA vB may be

looked upon as a classical strain tensor in the three-dimensional space * , the

exception beig that the vA are in general nonintegrable (i. e., vA 0 u A). The

tensor 2 'AB is thus *eon to be the natural generalization of dI.

In view of the above results, we have the following characterization of a

convective stress potential in general relativity.

Edelen, D. G. B. and T. Y. Thomas, "On the Characterization of Born
and Contemporaneous Rigidity and the Question of Their Equivalence," Tensor
(to be published).
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DEFINITION 6. A scalar function A is said to be a convective stress potential

of a relativistic continuum if and only• if

(7.8) ho - 2 ABA

is an identity in 'AB"

The explicit occurrence of the factor h0 in (7.8) renders this equation

difficult to deal with. For this reason, we transform (7.8) into an equivalent

form which does not contain h0 explicitly. One may easily verify that

(7.9) £ (h exp(- t do)) 3 0,

where

(7.10) A h A , A ;A

and the Integration is to be performed along the trajectories of the WA field.

An integration of (7.9) thus leads to

(7.11) h exp(- do)ah0 '

In view of (7. 11), we introduce the scalar density P by
def

(7.12) P a h A exp(-i ds).

dANow of (A), and hence, by (7.9) and (7. 11),

'C(P)-ahexp(- a do) R(A)-ah0d.

Substituting from (7. 8) into the right-hasd side of the above equation, we establish

the following result.

A convective stress potential A exists if and only if there exists a scalar

densit P such that

(7.13) i,(P) 2h aABIA
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is an identity in aAB. If this condition is satisfied, then A is given by

(7.14) A a h61 P exp(J • do).

For obvious reasons, we shall refer to P as the stress potential.

8. STRESS POTENTIALS AND CONSTITUTIVE RELATIONS-AN EXAMPLE

It is shown in the Appendix* that necessary and sufficient conditions for

the existence of a stress potential is that the following equations be integrable

for P:

(8.1) h 0 AB A ,(P, h A S

(8.2) K+2A A *A 0.
AB

If P exists (that is, if a satisfies the conditions (A. 13)), equations (8. 1) are

a system of 10 constitutive relations which determine the generalized stresses.

Now, if P depends only on hAB and 'AB' the generalized stresses given by

(8. 1) will be uniquely determined functions of the dynamical state of &. In this

case (8. 2) represents an additional condition to the Einstein theory. On the other

hand, if P depends on at least one other function, the relation (8. 2) is consistent

with the Einstein theory; in fact, it provides a natural additional constitutive

relation.

We shall illustrate this result by the following example. Let

(8.3) P--2h(p- ke);

then (8.1) and (8.2) give
AB ABCA BD

(8.4) a A-k A(p-).)- 2-k 4CD k k

and

(8.5) 0 - (p) +C f (k) +hCD D
Apply the substitutions L. a P and 0 • 1, to (A. 2) to obtain (7.13).
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respectively now, we have

£(d) . hCD £ (4CD) + ICD £ (hCD),

so that (8. 5) may be written in the equivalent form
(8.6) £(p - W4) a XhAE hBF AB t (hEF)

Also, however, we have

"2'EF a r (L (h F)>

and hence a direct calculation leads to
hAEhBF hABEhB
h AEh ABI(hEF) 2 h Ah BABEF

Thus (8.5) is equivalent to

(8.7) * (p -)Xu 2Xh AEhBFAEF

Since p - ka is a scalar, integration of (8. 7) leads to
/ •AEhB?

(8.8) p a p 0 - XO40 + K+2 1/th B *ABIEFdo,

where the integration is to be performed along the trajectory of the WA field

from the appropriate point in Jf 9 to the point in 8 at which the left-hand side

of (8. 8) is to be evaluated. (Here, p0 , X0, and 40 are the values of p, X, and

* in ,I' 8.) Hence, for given X, both the generalized stresses aAB and the

function p are uniquely determined functions of the dynamical state of ?

On the other hand, if we were to set p a 0 and consider X as given, the above

analysis would yield

(8.9) aAB *XtkAB _ 2X4CDkCAkBD

and

(8.10) d . 2*hAEhBFdo h AB'EF (O b.().))
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In this case we again obtain a determination of the generalized stresses, but

for those motions which are such that (8. 10) is satisfied.

Consider now the case for which X a 0. This gives

(8.11) P -2 hp, AB -pkAB

and

(8. 12) f" (p) • 0.
AB

With aA given by (8. 11), the basic equation (3. 16) leads to

(8.13) -(h 10) a-p £(h).

Thus, applying the result (8.12) we have the following conclusion. The existence

of a stress potential for -p kAB implies the conservation law

(8.14) (P WA).A n 0, P " I + P.

Combining this conclusion with the results of Thomas* we see that a region "t

of F with the material momentum-energy tensor

TAB PW AW B-ph , BPaI +p> 0

contains a material point whose trajectory is a geodesic if the stress tensor -p kAB

admits a stress potential.

*T. Y. Thomas, "On the Geodesic Hypothesis in the Theory of Gravitation,
Proc. Nat. Acad. Sci. (U.S.A.), 48 (1962), pp. 1567-1569.
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9. PATH DENSITY

The statement of a material momentum-energy tensor of class one is

seen to require the statement of the generalized stress tensor a AB. In general,

the stress tensor characterizes the resistance of the energy continuum W to

deformations; as such, this tensor depends on the particular properties of the

energy continuum under consideration. Statement of A B is thus not an appended

condition to the Einstein theory; it serves to characterize the actual properties of

the particular energy continuum under investigation.

We shall henceforth assume that the AB are known functions of the

ABstate of mi )n of '. Since a has the generic three-dimensional space 2/
*F B kABnd

as support, this tensor will, in general, depend on kAB, 'A' k , and B

as well as any other fields which are considered in the particular problem under

AB
investigation. Hence, under solution of the Einstein equations, the tensors a

and i AB will be known functions along the trajectories of the WA field.

The state of motion of an energy continuum 0I is determined by solving

the Einstein field equations together with the basic equations of energy mechanics

given in Sec. 3. In order that this may be accomplished, appropriate initial

(Cauchy) data must be specified. Let /be the section of 40over which the initial

data is specified. In addition, let 9 be the assigned value of " on ,41n b".

A function fundamental in our consideration is the path density S. This

function is a scalar density defined on the trajectories of the V&A field by the

conditions

*The generic space 4r is unique owing to the fact that the vector field WA

is unique.
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(.) £(S) - h aAB A'B, h - (-det(hAB)) 1/,

and

(9.2) Si . 0.

By definition of the Lie derivative of a scalar density, we have
d(S).+ WA daS+ S,

(9.3) £(S) a !L + S WA _ d-s" +S

do ;A do

where s is the arc-length parameter along the trajectories of the WA field

and

AB AB
(9.4) X - AB h x4AB k

Substituting (9. 3) into (9. 1) and using the condition (9. 2) to evaluate the arbitrary

function which arises in the integration process, we obtain the following explicit

evaluation of the path density:

(9.5) S - exp(-rtds) rexp(.rt ds) h a AB ds,.J _ AB

the integrations being performed along the trajectories of the WA field from the

appropriate point in t/n 67 to the point under consideration. Since the generalised

stresses are assumed to be known on the trajectories of the WA field, (9. 5)

determines a unique function on the trajectories of VkA.

There are several transformations of the path density S which will be

useful. If we set

(9.6) S - hQ,

then Q is a scalar function and (9. 1) becomes

(9.7) f(Q) a ,A B

P n iAB"

Proceeding in the same manner as above, we then obtain
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(9.8) Q - exp(- tds) Fexp0 ds) v ,A BI do.

The function Q will be referred to as the path function. If we set

(9.9) S a qhexp(-,fuds),

then q is a scalar function. By the identity

(9. 10) £(h exp(-Jtds)) 9 0,

equation (9. 1) becomes

(9. 11) exp(-reds)f(q) -AB .= AB'

Integrating (9. 11), we then obtain

(9. 12) q - jexp(rtds) dAB t ds.

This function will be referred to as the path kernel.

10. CONSERVED QUANTITIES

Knowledge of the path density S allows us to prove the following

fundamental result.

The Einstein field equations imply the existence and uniqueness of the

scalar density

def
(10.1) 93 h"-S

such that

(10.2) £(f) ! (0WA),A 0.

The proof is as follows. Let S be given by (9. 5); then (9. 1) holds.

By (3. 16), the Einstein field equations imply

(10.3) f(h w) - AB
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Eliminating the expression 0AS 'AS between (9. 1) and (10. 3) gives

(10.4) £(.h-S) a 0.

Now, A isaneigenvalueof TAB, so that k w + R is an eigen value of the
2

Ricci Tenson. * Hence " is a differential invariant of the Einstein-Rlernann

space under consideration. The density " h is thus uniquely determined by the

geometry of the space-time continuum. The path density S is also unique.

Hence the scalar density f a 6h - S is unique and satisfies (10. 2).

There are several transformations of # which will be useful. If we set

f z h m, then 4 is a scalar function such that

(10.5) 0 ( WA) - ds" +* £(+I) + I ýP
;A do

and cp a - Q. In obtaining the last result we have, of course, used (9. 6). If

we set I a * h exp(-f i ds), then t is a scalar function. By use of the identity

(9. 10), equation (10.2) reduces to 0 • £(t) d L# . Hence * is always a constant

of the motion. On the other hand, x is a constant of the motion only if the motion

is incompressible, that is 4 a 0. In an obvious manner, we also obtain

P *exp(-St do) - q, when use is made of (9. 9).

11. THE EXISTENCE AND UNIQUENESS OF INTRINSIC ENERGY

As a consequence of Einstein's fundamental discovery that mass and energy

are equivalent, any change in the energy of a body results in a change in its mass.

Since the energy of a body is a function of its dynamical state, so is its mass.

Fundamental to the idea of a material body, however, is the existence of an intrinsic

mass (or energy) which is immutable. Accordingly, when discussing material

*This is an immediate consequence of the Einstein field equation

RAS - R kTAB'
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bodies in the general theory of relativity, additional conditions are often imposed

so as to secure an intrinsic mass. This section shows that it is unnecessary to

impose such additional conditions - the Einstein field equations imply the exist-

ence and uniqueness of just the required intrinsic quantity.

We have shown that if a region W of an Einstein-Riemann space is

occupied by a material body (that is, the associated momentum-energy tensor of

40 is material and of class one), then there exists a unique scalar density f on

1 'such that

(11. 1) (WA) A 0

and

(11.2) hg- 4 + S.

Equation (11. 1) states that the flux of 4 is conserved during the motion of the

body. Since h " is the density of rest-energy (that is, the energy which would

be observed in a coordinate system such that W0 : 6A), equation (11. 2) states

that the density of rest energy is uniquely representable as the sum of a path-

dependent density S (the path density) and a density t which is conserved. Now,

by (9. 2) and ( 1. 2), we have

Thus, # is a density of energy. Since $ is conserved, it is intrinsically

associated with the body. Hence, the Einstein theory implies the existence and

uniqueness of an intrinsic energy density of a material body, namely C.

The functions 0 and I introduced In the last section may now be

' interpreted. Since
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and

(11.4) (r4wA) A a

we may identify o with the intrinsic rest-energ. Noting that u is the total

rest--energy, we see that Q is the expendable rest-energy; namely, that part

of the rest-energy which is a consequence of the dynamic processes to which

the body is subject. From the identify

(11.5) £(h exp(- FIds)) a 0,

we see that exp( fI ds) is proportional to the convected element of geometrical

volume; that is, we have exp( rids) a h/h0 where h0 is the value of h at

the corresponding point in Y. Thus since =exp(-f ds) - q and AL - 0,do

we see that * is the intrinsic rest-energy per unit of convected geometrical
-1

volume. In particular, we have h0 (iA h - Ch0 ) - q, so that q is the total

change in rest-energy density per unit of initial geometrical volume.

12. THE QUESTION OF PATH DEPENDENCE

We have seen that the path density S in given by

(12.1) S a exp(-J d) d) h aAB d,

and that this quantity together with h " serves to determine the intrinsic energy

of an energy continuum. In general, the path density will depend directly on the

trajectories of the WA field in addition to the quantities appearing in the integrands

of (12. 1). In this section we examine the conditions under which S is path inde-

pendent in an appropriate sense.

If S is to be path independent, we must require the integrand
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exp( S eds) h CAB tAB to be a total differential. We thus suppose that the gener-

alized stress field is such that there exists a scalar function A on e with the

property that

(12.2) dAd (hexp(ds)A) - hexp( rods) AB AB

holds for all kinematically possible motions in 4' . If this supposition is satisfied,

(12. 1) gives

(12.3) S a hA-exp(-Jads) h0 A0 ,

where h0 and 10 are the values of h and A at the corresponding point in P in

We thus have to examine the conditions under which (12. 2) holds for all

kinematically possible motions in d. Now,

d Fh exp( tds) A! a h exp(Jeds) A + d-s J
Ts -j a)L'

and hence (12. 2) is equivalent to

(12.4) 0AB ds+ A
AB dB

Noting that £(h) i h, we finally obtain the condition

(12.5) £(Ah) - hrABA

for all kinematically admissible , AB' This, however, is exactly the requirement

for the existence of a stress potential P. Hence, setting P a 2h A, we have the

following result: A necessary and sufficient condition for S to be path independent

in the above sense is that there exists a stress potential P. If this condition is

satisfied, then

(12.6) S a P/2-exp(-Mids)P /2.

We have seen that in the case of a path density, we have the intrinsic

density function
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(12.7) f - h"-S.

Under the above result, (12.6) and (12.7) give

(12.8) 0 x hu- P/2 + exp(-j-eds) P 0/2

However, i4exp(-,eds) P 0/2)-! 0, and hence the quantity hi - P/2 is an

intrinsic quantity. In addition, since P/2 is path independent and hence a

function of position only, we have the local conservation law

(12.9) ((h -P/ 2)wA) A a 0

at all points in d. We thus see that path independence of the path function

implies the existence of a local conservation law.

13. A FUNDAMENTAL DIFFERENTIAL ON THE TRAJECTORIES OF WA

(THE LAW OF THERMODYNAMICS).

As a consequence of the Einstein theory and the requirement that a

region h' have an associated momentum-energy tensor which is material and of

class one, the dynarnical processes interior to /4 can always

be viewed as an energy mechanics. In the customary approach, any basic energy

mechanics is governed by the laws of thermodynamics. One is thus led to inquire

as to the relations between the previous results and the laws of thermodynamics.

Although it may have seemed disguised, we have already derived the

first law. One of the basic equations of relativistic energy mechanics reads

(13.1) £(hJ h AS

Since the Lie derivative formed from WA is the relativistic analog of the time

derivative following the motion, equation (13. 1) states that the time derivative of

the rest-energy density following the motion is equal to the power developed by the

generalized stresses per unit of geometrical volume dxIdx 2 dx 3 dx 4
- the first law.
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In order to proceed further, we must use the results of the Appendx to

decompose the generalized stress tensor. Set

(13.2) a AB a LAB+ MAB+ NAB,

where LAB and MAB are those parts of OAB for which

(13.3) i(P) a2 h L AB

(13.4) (E)a2 e hMAB -AB" •AAB

are identities in 4AB' and NAB is what is left. Thus, LAB satisfies

ABDMB L-ABC G CDFG A+
E (L) = 0, and M satisfies EABCD(M) MFG + E (M) MAB+

EFGAB( M) MCD = 0 where EABCE (C is the operator defined by (A. 12).

Now, if we substitute (13.2) into the right-hand side of (13. 1) and use (13. 4),

we are led to the expression

(13.5) ithu) - f(P/2) + C1 £(112) + t

where

(13.6) 'AB

By definition, D(B) r- £ (B) ds is the Lie differential of any geometric object B

with respect to the trajectories of the %-A field, and hence is a differential

following the motion - a convective differential. Thus, equation (13. 5) leads to

Athe following fundamental differential on the trajectories of WM

(13.7) D(h0) - D(P/2) + 01 D(E/2)+ ids

Associated with this we have the intrinsic quantity

(13.8) $ * h -P/2 + exp(-%, ds) Po/2- ',ds

-iexp(-J4do) e- 1 d(rexp(."'ds))

We now have the desired result. Equation (13. 1) states that the convective

differential of the density of rest-energy is equal to the convective differential of
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the recoverable energy stored in the deformations of the energy continuum (i. e.,

the energy represented by the path independent potential P/2) plus the irrecoverable

energy increments represented by the convective differential form e-1D{Z/2) and

Sds. The convective differential form P-1 D(0/2) is, however, exactl) analogous

to that encountered in classical thermodynamics - the convective differential

operator D being that which is used in proper formulations of thermodynamics.

We are thus led in a natural fashion to define P as the intrinsic temperature and

E/2 as the intrinsic entropy density of the energy continuum. In fact, if we insist

that

(13.9) D(L/2) > 0,

then (13.7) and (13.8) state the relativistic analogs of the first and second laws.

A general material region of an Einstein-Riemann space will not

necessarily be such that (13. 9) is satisfied. The relativistic energy mechanics

is thus a richer subject than that which would be obtained through a purely thermo-

dynamic description. This added richness is, however, no blessing in disguise -

if anything, relativistic mechanics is all too rich for our analytical blood. We

therefore take the opportunity afforded by the above result to constrain the universe

of discourse of our mechanics.

DEFINITION 7. A material region of an Einstein-Riemann space Is said to be

thermodynamically admissible if and only if D(E/2) > 0.

The differential form 't ds may cause some pause to those accustomed

to the classical notations of thermodynamics, to say nothing of the fact that D(h &)

is generally not an exact form. The inexactness of the form Dh ,,) is easily

dispensed with on noting that, contrary to classical notions, the mass of a
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relativistic body depends intrinsically on its history, and hence the system is

not locally closed with respect to the measure P,. If one desires, the existence

of intrinsic energy can be used to reformulate the description in terms of a

system which is closed w tth respect to its history. At this point in our work

we can only conjecture the significance of the form i ds. If * i 0, (13. 7)

gives D(hw) - D(P/2)+ 6-1D(E/2). Now, D(h) hoAB ABd by (3. 16),

so that the above equation becomes

(13.10) D(P/2) - haAB ABdS- 6-1D(E/2) .

In this equation, D(P/2) is an exact form while AB AB do has the dimensions

of work. Hence (13. 10) gives a description of a• which is locally closed with

respect to P/2 and which has the familiar form "dW - T dS". If, however, a

system emits gravitational waves, it should be impossible to obtain a locally

closed system with just the usual thermodynamic variables Hence we conjecture

that the differential form *ds describes the thermodynamic effects of gravitational

radiation.

14. AN EXAMPLE

The definitions of Intrinsic temperature and intrinsic entropy density

given in the last section are of a formal nature. In order to clothe this formality

with physical significance, we examine these concepts in the context of a specific

problem.

Consider a material region 9 of an Einstein-Riemann space with

generalized stress tensor given by

(14.) a AB p k AB
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where p is a scalar function. It has been pointed out that the stress tensor

(14. 1) admits a stress potential if and only if £(p) a 42 a 0 . If we substitute

ds

(14. 1) into (3. 16), we have

(14.2) -1 h (hdef

where p a P + p and h p is what is usually identified with the mass density

of the material region. I

If the conclusions of the last sections are correct, we should be able

to obtain all significant thermodynamical variables as consequences of the

Einstein theory. Let 'p be defined by 'p * J x do , where x is given by

h- £(hp) and the integration is to be performed along the trajectories of the

WA field. We then define the scalar "p by "p a p - 'p, so that p x 'p + "p

and d"p a 0. The decomposition (13. 2) gives
do

(14.3) C AS - 'p + "p) kA ,

from which it may easily be verified that the equation

(14.4) f(P) - - 2 h("pkA ) aAB

is satisfied for all kinematically admissible tAS with P - 2 h "p . Hence,

by (13.3) and the above result, we have LAB a -ipkAB and SAS --pkAS

di. q , it being assumed that * • 0. We therefore look for functions 9 and
ds

E such that (13. 4) is satisfied. This leads to the relation

(14.5) £(E) 2 h 6 MABAB -- 2 h 6'p.

Since 1(h) * h4 , the most general integral of (14.5) is

(14.6) E 2 -2h6'p+U,

where

(14.7) 2 h 1('p 0) - Z(U)
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the latter equation being nothing more than the condition stated by (A. 8).

Equations (14. 6) and (14.7) are two relations between the three unknowns E, r,

and U. We must therefore have one additional relation. Now, as previously

noted, the stress tensor (14. 1) requires the specification of one additional

constitutive relation in view of the occurrence of the function p. This is

exactly reflected by the need for one additional relation for the determination

of t,, E, and U. We thus see that we may prescribe the function U, and

thereby prescribe the required constitutive relation. This amounts to pre-

scribing the equation of state for the material. In the simplest case, namely

U a 0, (14.7) leads to p, p 0 0 , which may be written in the more

suggestive form

(14.8) PO
BTO '

0 1 djfwhere the definition of intrinsic temperature is used: T - • intrinsic

temperature. If we take
X£• h exp(-_f4 do) r:"p

(14.9) ;E( ! P £(p) - 'p 4

where ds = 0 , then (14.7) yields p e a )X exp(- fd ds). Rewriting this withdos

T instead of 0- and i.- ultiplying by h gives a X h exp(-rdo), so that WeT ex(id),staw

have £(-1) 0 , the state equation for a "perfect fluid. " From the aboveT

examples, we see that not only do the ideas introduced in the last section make

sense for the case of a general gas; they also provide a natural manner of stating

relativistically valid equations of state.

As a last note, we examine the implication of the requirement that the

region be thermodynamically admissible. From (14. 5) we have £(i) M - 2 he 'p ,
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and hence the requirement (13.9) reads h 6 'p t < 0. Now, h is strictly

positive and B may be taken as strictly positive since the reference value of

0 is undetermined by (14. 7). Hence, (14. 1) describes a thermodynamically

admissible region if and only If 'p 4 < 0; that is, if and only if a positive

"pressure" can only produce a negative dilatation.

APPENDIX. EXISTENCE REQUIREMENTS

Let the symmetric tensor aAB be given and such that

(A.1) r{ AB) . CAB.

We examine under what conditions a scalar 0 and a scalar density E exist

such that

(A. 2) £(E) - 2 9 h a ABAB'

is an identity in the Born rate-of-strain tensor

(A. 3) 4 AB a F(W(A;B)) " h AB)/2

Set

(A. 4) ()- E, hABL (hAB) + K

where K it defined for any P be formal expansion of the left-hand side of (A. 4).

If we decompose the product in (A. 4) with the projection operator r, we have

(A. 5) L(M) a u(E, ) • (£hAB) + K + l-) "I hB R " - hAB
hAB AB

so that (A. 2) and (A. 3) lead to

(A.6) 2 (r(E, hAB) - eh oAB) AS+ K

+ AD1-) (E, hA) V (1) (1 hAB 0.

AB
If (A.- 6) is to be an identity in 4 AB' it must hold for Born rigid motions (that Is,
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motions for which *AB - 0). Hence we obtain the condition

(A. 7) K +(I - r) (E,,h AB (I -i) V h AB) a O.

Now,

(1- (9 hAB) 2 2 (A WB)'

while (I - r) (E, hAB ) admits the representation

(l-w) (,h h ) A 2A (AW B)+ wAwB

with

B WAWB (I-f) (,hAB), A .WB (I -)E,hAB )-BWA.

Hence we have

(lV-r -0 , h ). C- )( (hAB) - 2AA *A

AB

on noting that WB ýB a 0 as a consequence of WA WA . 1. Combining this

with the above result shows that a necessary condition for the existence of 9 and

E is

(A. 8) K+ 2AA WA a0.

If this condition is satisfied, (A. I) and (A. 6) imply that*

AAS
(A. 9) 9 h o r (E, h.

ABS
Conversely, if o is defined in terms of E and 8 by (A. 9) and (A. 8) is

satisfied, then (A. 4) reduces to an identity in tAD. Hence, a necessary and

sufficient condition for the existence of functions 6 and E such that (A. 2) be

an identity in e AB is that (A. 8) and (A. 9) be integrable for E.

'Since the rank ( AB) 3, (A. 6) implies Oh d A a(E, hAB) + MA 0

where MAB IAB a 0. The condition (A. 1) together with the fact that (A. 6) is

to be an identity in 4AB, and hence must hold for IAB Of maximum rank, then

yields -MAB . 0.
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In view of the above results, we would like to establish conditions

under which (A. 9) holds. The first thing we must do is to bring the right-hand

side of (A. 9) into a more tractable form. From the definition of kAB, namely

kA x • (hAB), we have hAB kAB +W W B Hence, since the projectors

S. B BrA 6A - WA W are idempotent and kAB is a projection, we have

h C D k +W W
hA 'A 'B C aB

which describes the projective decomposition of hAB. From this equation we

formally obtain

h C 2 CD
AB, kCD A B"

Hence, if we replace all functions of h appearing in E by k +W W
AB .AB A Bl,

we have

E:,k E: hD =AC •D E, ,(E, )
kh CD CD'r '

AB CD D AB ACB hCD hAB

The system (A. 9) may thus be written in the equivalent form

(A. 10) e h aAS - r, kA .

The integrability conditions for such systems are well known* and all that must

be done is to translate these conditions into a form appropriate to the problem at

hand. Define the quantities EABCD (o) as follows:

This is seen from the fact that r CD G +WW vesa
hAB *'A 'B CD + A B gve

representation of hAB for any symmetric, nonsingular tensor GAB .

Forsyth, A. R.: Theory of Differential Equations, Vol. 1, Dover

Publications, Inc., New York (1959), p. 12.
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(A. 11) EABCD (c) =(h a AB), k CD- _(h a CD)kAB

We then have the following resalt. Necolo,.ary and sufficient conditions for the

existence of functions 8 and E that sails ;fy (A. 10) are

(A. 12) EABCD 0 FG + ECDFG B •+ EFGAB aCD =0.

It is also to be noted that the above cofdittl, 5 1 reduce to

(A. 13) EABCD a 0

for the case 0 I.


