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AN ABSTRACT

THE IDENTIFICATION OF OVERDAMPED PROCESSES
IN THE TIME-DOMAIN

by
Jerry M. Mendel

Advisor: Dr. Ludwig Braun, Jr.

The problem of characterizing overdamped systems, from data in the time-
domain, by means of exponential functions is studied, Particular attention is given to:
(1) the choice of a suitable error criterion based upon performance measures the approxi-
mate system is to meet, (2) the choice of weighting functions and their effect on the
approximations, and (3)the extension of the orthonormal exponential approximations of

Kautz and Huggins to approximations of any asymptotic-order in the s-domain.

The spirit of the research carried out is in keeping with the philosophy that

the approximate system will replace the actual system in practical analyses. For ex-
ample, the actual system may be embedded in the forward path of a positional servo-
mechanism. If a stability analysis of the closed-loop system is to be performed then

it is desirable for the approximiate plant, which will be used in the stability analysis,

to indicate the correct stability behavior within an allowable margin of error. Since
stability is intimately connected with high-frequency behavior it appears to be desirable
to be able to match the high-frequency behavior of the avctua.l and approximate systems,
This naturally leads to the choice of exponential approximants of asymptotic-order, in

the s-domain, greater than unity.

In each of the above areas of concentration, emphasis is placed on the effects
that the asymptotic-order will have on the utility of the approximations in further

anaylses.
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CHAPTER 1. INTRODUCTION

1.1 Introductory Remarks

In both analysis and synthesis, it is necessary to be able to characterize
a system by means of a mathematical model. In simple cases, this can be done by
writing the differential equations describing the system and then solving them for the
desired input-output ratio. In many cases, however, the system is so complex that
the only feasible methods for obtaining a model are experimental in nature. These
measurements can be made in either the frequency-domain or in the time-domain.
Many problems, such as determining what measurements to make, whether to use per-
iodic or aperiodic inputs, etc,, exist in connection with the practical aspects of making
these measurements. Assuming that the correct measurements have been made, it
shall be our purpose to concentrate on the representation of these measurements by

means of a suitable working model. This is the "identification problem".

Within the last decade a great deal of attention has been focussed upon the time-
domain characterization of processes, Obviously, one important reason for such a
characterization has to do with the economy of a single transient test as compared to
the multitude of frequency tests necessary to obtain the same amount of information.
This trend has been noticeable not only in the field of network synthesis, where it
originated, but also in the areas of adaptive control, optimal control theory, electro-

cardiography,and speech-signal representation.

Most of the past research, in the area of identification of processes in the time-
domain, has been concerned with achieving a close fit between the model and the data,
the closeness of fit being measured by the integral-squared error criterion. The in-

troduction of the orthonormail exponentials by Kanutz18 and Hugginsls’ 1

aided the approxi-
mators immeasurably, for their work enabled one to approximate exponential responses
by exponential signals. These approximations not only lend themselves quite nicely

to further analysis involving transform techniques, but are also in a form amenable

to network realization; hence, they are useful in both the analysis and synthesis

problems,

Unfortunately, ensuring a close fit between the approximation (model) and the
actual system does not necessarily lead to a close correspondence between the two with
respect to other properties of the system. For example, approximating the plant
£(t) in Figure I1.1.1 may only be the first step in a detailed analysis of the closed-loop

system in which this plant is embedded.
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Figure I.1.1. A typical feedback system in which the plant £(t} in (a)
is approximated by f_(t)in (b).

In particular, if one is interested in the stability of the closed-locp system,
then there should be some correspondence between A. O, (Fa V¥ and A.O. (F), since the
high-frequency behavior of the plant determines whether or not the closed-loop system
becomes unstable as the loop gain increases. To illustrate the importance of this last
sentence, consider a plant f(t) whose poles and zeros all lie in the left-half of the
s-plane, and whose asymptotic-order is four, Not knowing the value of A. O. (F) ahead
of time, assumec that a model, £, {t), has been chosen to approximate the actual plant
where A.O. (F,.)= 2. Itis well known that for large enough values of the loop gain
the actual closed-loop system does become unstable. The approximation, on the other
hand, which may give a very good fit to £(t), indicates that the closed-loop system
never becomes unstable (this last phrase tacitly assumes that F  (s) has no zeros in the
right-half of the s-plane); thus, when one plans to utilize the approximation in future
analyses, there appears to be more to the identification problem,in the time-domain,
than merely achieving a close fit between the approximant and the true response. In
control systems analyses, the asymptotic order of the plant' s model is of great impor-

tance, as has been mildlydemonstrated in the preceding sentences.

Rather than belabor the point at this time, the interested reader is referred to
the introductory sections of Chapters 1-4 for more detailed introductory remarks. This
chapter is concluded with a brief discussion of the actual problem studied and some of

the assumptions made in the formulation of the problern.

* A, O, (F_)is read "asymptotic-order of F, (s)" and is defined by looking at the
léi—l;réo Fy(s) = —SXE and letting A.O. (Fa) =n.




1.2 Statement of the Problem

An identification of the system in Fig. I.2.1 is desired. The transfer func-

tion chacacterizing the system is to be of the following form:

8 + a 8 +...+a»ls+a0 (L. 1)

(s + m, )
N = 0
Only the poles of T (8) must lie in the left-half of the s-plane. The zeros may be

negative and real, positive and real, or complex. Since the impulse response of this

a, {t) £ (t)
o—— ] SYSTEM L e 5
T(S)

Figure I, 2.1, A description of the system which
is to be identified.

N
system, quite obviously, is of the form Z Ak €~mkt , where the m, are real,
k=0

it shall be approximated by a similar set of functions, that is

(1. 2)

B

£(t) % £ (¢) Z, c, fak (t)

where the f_  (t) are linear combinations of exponential functions. This study is

limited to real exponents (overdamped processes) for two reasons. First, almost
no work has been done in the area of approximating overdamped processes of high
asymptotic.order, and secondly, the introduction of complex poles into Eq. (L. 1)

vastly increases the analytical complexity of the problem.

It was felt that a concentrated study in one aspect of the more general identi-
fication problem might lead to results that could easily be extended to the more s
general case. [t is also possible that by narrowing one' s objectives he will discover
theory that is particularly amenable to the case of real exponents. This may be com-~
pletely overlooked in a more general study. As it turned out theory was developed
that justified narrowing the scope of the problem. Actually, there are many systems
that occur quite frequently in practice satisfying the requirements of Figure L 2.1,

as stated in Eq. (L 1).



It is assumed that the internal construction of the system in Figure I.2.1is
unknown and that only the external terminals are available for the application of
test signals, In order to determine whether or not the system meets the requirements

of Eq. (I.1) one must be able to correlate the form of the time response y(t) with

possible pole-zero locations in Y (s). Table I. 2.1 presents a number of t-domain

~- s-domain correlations which are useful in the analysis. It is based upon a set of
ingenuous theorems proven by Brulé 7 in his Ph. D dissertation.

The problem before the analysist is one of choosing a proper set of £ (t) in

N
Eq. (I.2) and then determining the Ck based upon a minimization of some measure of

the error between £(t) and fa(t). This error, e (t), is defined in Eq. (L 3)

eft) = £(t) - £ (t) (1. 3)

It is convenient to use the functional notation F[Lp (e), w (t)] to represent a measure
of the error that must be minimized, in order to find the Ck . The Y {e) notation is
short hand for "an operator  acting upon e(t)" , and w(t)is known as a weighting
function, w(t} can be chosen g0 as to weight the approximation heavily over certain
intervals of time and lightly over others, F[q; (e}, w (‘t)] is;k more commonly known

as an error criterion. As an example, consider the I T E” criterion defined in Eq.(l. 4).

1TE? = [ tefat (1. 4)
o

This equation can be put into the functional form F [q; (e), w(t)] by letting w(t) = t,

2 . .
g {e)= e2 , and F = f dt. Note that the functional notation for the ITE  criterion
"o
is consistent with the mathematical definition of a functional, that is to say, itis a

pure number. The weighting function, in this case w(t) = t, quite obviously emphasizes
large values of t.
In the following four chapters, the choice of the approximants £ (t) [chap-

N
ters 1, 3 and 4] , adiscussion of weighting functions [ chapters 2 and 4] and their

design [ chapters 2 and 3], and the choice of error criteria leading to optimal approxi-

mations (chapter 4) are discussed in detail.

* ITE2 is read, "Integral-Time-Squared-Error". Some authors prefer the
abbreviation ITSE instead of ITEZ . Both abbreviations, however, are merely
shorthand notations for the integral in Eq. (I. 4).
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CHAPTER 1. UNIFORMLY-WEIGHTED, ORTHONORMAL,
EXPONENTIAL APPROXIMANTS

In this chapter the integral-squared-error criterion is reviewed and a proce-
dure for constructing sets of orthonormal exponential approximants is developed, in
which any desired asymptotic-order may be designed into the l.aplace transform of
the approximants, ahead of time., These approximants are summarized by a recur-

sion equation in the time-domain.

1.1 Introduction

The integral-squared-error criterion (IEZ) is perhaps the most widely known
and used measure of performance for time-domain approximations. The term
"time-~domain" is used here to denote the interval of time from zero to infinity, that
is te(0, o )yf A function f(t)}is said to be approximatedhin an " integral-squared

sense" when it is approximated by the function fa (t) = Z Ck by (t}) in such a way

that the IE~ is a minimum. Given the definition of the IEZ criterion,

oo 2
E? = f w(t)[f(t) - fa(t)} dt (L.1)
(¢}

18, 28

it is well known that the minimum IE2 is

2 s 2 a
min (IE”) = f w(t) £7(t; dt -~ Z
o k=0

provided the elements die (t} form an orthonormal set with respect to the weighting

2

Ck (1. 2)

function w (t) over the interval of time ( 0, o). The condition for the orthonormality
of the by (t) is stated in Eq. (1. 3).
© 1, i =j
= = 1
[ owit) o) $y(e)dt = 5, 0, i o (1. 3)

o}

[Strictly speaking one should indicate that min (I EZ) is the minimum IEZ with respect
to the coefficients Ck in fa(t). It will be shown that, under certain co?s.iiions, the
¢k (t} can be formed from linear cor;ﬂg inations of terms of the form € "k, where
the exponents o, are unknown, Liu”" points out that the determination of the oG from
a minimization of the IE2 with respect to the o4 involves lengthy and laborious com-
putations, and what' s more, the solution is not unique, It shall be assumed, through-

out this entire dissertation, taat the 9 have been specified a priori (see Appendix A

% ¢ is a mathematical shorthand notation for, "is an element of"




for a discussion of a restriction pertinent to the choice of these exponents). The
notation min (IEZ) will therefore always denote a minimization of the IE2 with re-
spect to the coefficients Ck ] As a result of the minimization the coefficients Ck
are found to be ‘

© -

Cp = [ wit)£(t) ¢y (t) dt (1. 4)

Q

-It is quite evident from this equation and Eq. (l. 2) that the addition of an extra term

C (t) to fa (t) in no way affects any of the previously calculated Ck' s and

n+1 ‘bn +1
will tend to decrease the min (IEZ) by (Cn + 1)2. This represents the advantage of
choosing an orthonormal set of functions ¢k (t) as compared to a non-orthonormal

set of approximants.

Before proceeding to a discussion of how one constructs the orthonormal set
of functions ¢k (t), it will be well to point out the importance of the infinite interval
(0, ©). The following discussion is taken directly from Kautz' s original research

report, "It may be safely said that the number of practical problems in which pre-
cise transient behavior is desired over the entire interval (0, o) is extremely small,
Furthermore, for sufficiently large t, the response must drop off to zero either
exponentially or as an exponentially damped sinusoid, so that no other type of behav-
jor at infinity can be obtained, even if it were desired." (Kautz has tacitly assumed,
in this last statement, that all recognizable components of the response being identi-
fied, such as a d-c component or a sinusoidal steady state component, have been
removed by means of subtraction. The approximation is then made upon the remain-
ing signal. )} "One might very well reason, then, that methods for approximating a
function should be developed ovVer only a finite interval. That this conclusion is in-
correct is brought out by the following three facts:

(1) If a finite interval is employed, almost nothing can be specified about the tran-
slent outaide of this interval using existing approximation methods. It may behave very
erratically, and as a rule it cannot be controlled,

(2) The use of an infinite interval does not imply that equal emphasis is given in the
approximation to all sections of the time scale. In fact, normally very little weight
is placed on reproducing the response for large values of t.

(3) It is difficult to carry out the analytical approximations over a finite interval.,"

The problem now is, "how does one construct the orthonormal set of functions
¢k (t) ?ll

The answer to this question can be given by appealing to the Gram-Schmidt

Orthonormalization Procedurelg’ 28

, which states that a unique set of orthonormal
functions cbk (t) can always be formed from a set of linearly-independent functions

g, (t) , in the following way:




o, (th = A, g, (t)

b8 = Ml ()42 gy (1)) S

L

A [go () +hg g (1) 4. .. N g (t)]

2.
lal
-
1

m

The constants }\1 are determined by substituting these equations into Egq. (1. 3),
which, depending upon the choice of the g](t), usually represent a formidable set of

simultaneous linear equations in the X\ from which these constaats must be solved

!’
for.

Since this discussion is being limited to the identification of the functions

N
f(t)=kzo Ake_mkt, m, real (1. 6)

it seems natural to choose the g (t) as an exponen.ial set of functions. If in particular

-a,t
g(t)s{s }£=0,1,..... (1. 7)
t °
Ka.utz18 has shown that the result of the Gram-Schmidt Procedure can be expressed
very neatly in the frequency-domain, provided a constant weighting function, w (t),
is used. This is the "uniformly-weighted" case. As a matter of fact, he has shown
that the entire orthonormalization procedure can be carried out in the s-domain by

means of Parseval' s Equationz‘ and Cauchy' s Residue theorem, the results being

1
@o (s) = /2 ao s +a
[¢]
(s -~ca))
5[71 (s) = /2 0,1 154_0.0)(5 +QD_ 3 (1-8)

5 (s) - /7a (s-ao)...(‘s-ak_l)
"k k (s+a0)(s +a1)...(s+cxk)
for w (t) = 1.
. .22
*Parseval' s Equation = states that
00 ] ctjoo
h {t)h (t)dt = —— H (s)H, (-s)ds

fo 1 2 27j fc—joo 1 2
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Braun 22 has extended these results to an exponential weighting function,

G_th. In this case
® (s) = /2(b +a_) !
o ° (s Fa_)
o
(s—2b—tlo)

: - 1.9
2 (s) 5/2(b +q)) CEEIcEr L (1. 9)

(s—Zb—ao)...(s—Zb—o.k_I)

3 (s) = /205 + o)

(8 + ao)(s + ai),.,,(s + a.k)

A discussion of choosing one form for the weighting function over another
will be put off at this time until Chapter 2. In that chapter a great deal will be said
about weighting functions, in general, including the two cases of a constant and an

exponential,
Credy (£)

that Fa(s) will always have an asymptotic-order equal to unity, since A, O. (Fa) equals
A, O. (Qk), and A. O. (<I>k) is equal to unity. It is also interesting to note that if

]

n
It is obvious from Eqs. (1. 8) and (1. 9) and the fact fa(t) = z

9
Qk(‘s) is considered to be the transfer function of a linear filter, then ¢k(t), which is
the impulse response of the filter, will be oscillatory {Table 1. 2.1), and in fact will

contain exactly k internal crossings of the t-axis, provided k > 1.

Practically speaking, if the function f(t), which is to be approximated by

fa(t), has a non-zero initial value (at t = O+) then Kautz' s (Braun' s) results represent

the natural choice for the rhk(t). This does not mean that the one term approximation

Co ¢o (t), or the two term approximation Codpo(t) + C1 q)l (t), or even the ten term approxi-

mation Co¢0 (ty +... + Cg $g (t), where the by (t) are found from Eq. (l.8) [or Eq.

(1. 9)], will match the initial value of f(t) exactly. What is meant, is that in the limit,

as more and more terms are added to the approximation, the initial value of the ap-
proximation will coincide with the non-zero initial value of f(t). This is due primarily

to the facts that A, O, (Fa) = A.O. (F), and that both of these are equal to unity.

On the other hand, if £(t) has a zero intial value, and (v - 1) zero initial
derivatives at t = 07 , where r must somehow be determined from the given f(t)
data, it would make much more sense to choose a set of ¢k(t) having a similar behav-

jor at t = 0+. This means choosing a set of ¢k (t) such that A. O, (Cﬁk) = r+l.
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[This last result was found by applying the Initial Value theorem, from Laplace
Transform Theory, r times to a function of asymptotic-order r + 1, and observing

that the initial value and exactly (r - 1) initial derivatives of that function vanish.

This argument can be amplified by consideving fa (t) to be the identification of a plant
f(t), such as the one shown in the forward path of the simple positional servomech-
anism, Fig. 1.1.1. The absolute stability of this closed-loop system [using the approxir
mate plant f_ (t)]will depend upon the asymptotic-order we have chosen for £ (t),

as we have already indicated on page 2. It is well known that if the A. O, (F) > 3

the servomechanism will always become unstable for sufficiently large values of loop

gain., The use of an approximation having an asymptotic-order equal to unity, on the

)+ cit)  r(t) 4 ‘c(f)’

K > £(1) ~— K falt) >

!’

(a) (b}

Figure 1.1.1. A typical feedback system in which the plant £(t) in (a)
is approximated by fa(t) in (b).

other hand, implies that the system is absolutely stable; that is, no matter how large

one makes the loop gain, the closed-loop system is stable.

It seems very desirable, therefore, to be able to extend Kautz' s and Braun's
results to cases where A. O, (Gék) > 1. It also would be particularly advantageous to
the user to have such sets summarizable either ih the s-domain, by a recursion equa-
tion similar to Egs. (1.8) and (1. 9), or in the time-domain, whichever may be more

appropriate,

In gaest of auch relationships, Braun5 considered the general set of q)k(t)
where A.O. (9‘%() = 2, and atternpted to perform the orthonormalization (with respect

to a unity weighting function) in the s-domain by assuming

E
)
2, (s) 5 F @) (s Fa)
°
AL CEIN *‘ n10
1 (s + ao)(s + ul)(s +o, )
... - .0 . . s ;fj )
k k-1
B (s) = E'Ijl Ty (s) (s + uki
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Substituting these equations into the s-domain version of Eq. (1. 3),

o tjoo
— o, (s) @ (-s)ds = 6. (1.11)
LI - o0 i ] j

and applying Cauchy' s Residue Theorem, by closing the contour in either the right-
half or the left-half of the s-plane, [due to the analyticity of <I>i (s) and <I>j (-s) in the
right-half and left-half of the s-plane, resPectively] one is confronted with a very

for:nidable set of equations which r.ust be solved for the zeros Bk and the constants
E,
E,, Braun concludes that it is difficult to derive a general recursion formula for a

in terms of the poles 4 - After obtaining a few of the zeros, [3k, and constants

set of by (t)} in the s-domain in terms of the %G when the A. O. (<I>k) = 2, This does
not mean that such sets are impossible to construct. On the contrary, it implies

that one should choose the Q. first and then orthonormalize the elements by (t). Natu-
rally, this means that, each time the set of ok' s is changed, the entire orthonormal-~
ization procedure must be repeated. In general, these conclusions are valid and apply

to the construction of any set of ¢k (t) when A. O. (<I>k) > 1.

The remaining sections of this chapter are devoted to the case of "equally-
spaced" poles, where the term "equally-spaced” implies that T constant,
in Egs. (L.8)and (L9)"."

can be found from a very general recursion equation in the time-domain, What is

It will be shown that, in this case, the elements ¢k (t)

more, it will be proven that the generality of this equation enables one to use it to con-
struct sets of orthonormalized exponentials whose Laplace Transform 8 (s) can be

of any asymptotic-order, whatsoever. Rather than present the theory, theorems and

proofs in their entire generality all of the important results shall first be developed
for a set of by (t) orthonormalized with respect to a unity weighting function. A dis-
cussion of a weighting function which is much more general than the type Braun has

-2bt 2bt nder special circumstances, is the

used (e ), but one which reduces to ¢~
subject of Chapter 2, The design of this weighting function will occupy a large portion
of Chapter 2 since its design is necessary for the synthesis procedure developed in
Chapter 3 for obtaining a set of functions, by (t), which are orthonormal with respect
to this more general weighting function. Here, again, it will be shown that the asymp-

totic-order of the <I>k (8) can be chosen with complete freedom.

0 r
* The zeros P, are the orthogonalization constants while the constants Ek ensure
the normality of the ¢, (t).

**More will be said about this type of pole spacing in Sections 1.3 and B. 5.




12

To set the stage for Section 1. 3, in which the recursion equation for the
elements q)k (t) is derived, one must first discuss a set or orthonormal polynomials
known as the Jacobi Polynomials, since the recursion equation will be expressed in

terms of these polynomials.”

% Actually, Armstrongz’ 3 as early as 1957 indicated a correspondence between
the orthonormmal exponential set and the classical Jacobi Polynomials for very

special sets of pole locations (see Section 3.1); however, he never considered

the more general nature of this correspondence or the possibility of extending

Kautz' s work to the case of a more general weighting function.
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1.2 Jacobi Polynomials

The Jacobi Polynomials ?m (a,cijx) are m*th degree polynomials in x which

are defined21 by the following series:
& I3 T{a+m+4)T(c) _.¢
fffm (a, ¢3x) = 12 (-1) <’T> miAiTic) (1.12)
=0 T(a+m)T(c+2)

(-e F0,1,2,...,m-1)

They are orthonormal with respect to the weighting function x ¢l (1 - x)*"C over the
interval (0,1), * that is

fl X e-1 (1—x)a—c~7m (a, c; x)~7n (3, eix)dx = Km 6‘mn (*13)

o}

provided that
¢ > 0, and a ® ¢ -1 (1. 14)
Km is the orthonormality constant and is shorthand for

2
K = M ![1" (c)] T'{im +a-c +1) (L. 15)
m (a+2m)Y T'(a+m)T ¢c+m)

In Table 1, 2.1 one can see the relationship between the Jacobi Polynomials
and some of the more classical polynomials of mathematical physics. Actually, the
Legendre polynomials are merely special cases of the more general Gegenbauer
Polynomials, which are in themselves a special case of the very general Jacobi Poly-
nomials. If one considers the two constants a and c, in jm(a, Cc;X), as represen--
fting two degrees of freedom, then the Gegenbauer Polynomials are a set of polynomi
als having one degree of freedom ( y ) while the Legendre and Tschebyscheff poly-
nomials have zero degrees of freedom in the sense that they are defined by assigning

numerical values to both a and c .

The purpose of relating the Jacobi Polynomials to the polynomials listed

G Szego28 defines the Jacobi Polynomials orthonormal over the interval (-1,1);
however, to differentiate between this set and the one defined above, he uses

the symbbl P_\% B (z). A linear transformation exists between the variables
z and x, which enables one to use either notation. Specifically, P He)(2x-1)

=~7m (a, c;x).
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in Table 1. 2.1 will become clear in Section 1. 4, where it will he shown that many of
the familiar orthoganal polynomial approximations of a function can be rephrased in

terms of the orthonormal exponential approximation.

Table 1. 2.1, Relation Between Jacobi Polynomials and More Familiar Polynomials
*
Polynomial Relationship to Jacobi Polynomials
(2v)
L Y B m mf 1+x
Gegenbauer, Cm(x) Crl’l (x) = (-1) T m (2v, v+1/2; )
‘ 1/2
— . 1 T x —_
Legendre, Pm (x) Pm(x) Jm (1, 1; ~2——-) = Cm (x)
ok 1 x
arhel - . -
Tschebyscheff, T (x) T, (%) = " {0, 1/2; —z—)

Recurrence formulae, integral relationships, and other facts about Jacobi Polynomials
may be found in references 10, 21 and 28, Page 300 of reference 9 is very useful for
the evaluation of the Gamma functions appearing in Eqs. (l.12) and (1.15). Of course,

when the argument of the Gamma function is an integer, say v, then T'{v)= (v-1)! 27.

One is now in a position to derive the recursion equation for the elements
LN (t) of the set of orthonormalized exponentials in terms of the classical Jacobi

Polynomials,

% For the standard definitions of these polynomials see Magnus and Oberhettinger21

wk (2v) = 2v(2v+1) (2v+2)... @V+m - 1) (2Y) =1

Rk Tm (x) is a Tschebyscheff Polynomial of the first kind to be distinguished from
the Tschebyscheff Polynomials of the second kind, Um (x) (Ref. 21, pg. 78)




1.3 ¢, {t): A Recurrence Equation in the Time-Domain

By transforming the domain of orthonormality for the Jacobi Polynomials

Tm (a, c; x) from (0, 1) in the x-domain to (0, ») in the t-domain, letting

x = ¢ Pt (1.16)

where p is some pousitive constant, Eq. (1.13) becomes

F ¢ “CPt (1—€_pt)a—C {a, c; —ptgf (a C'e'pt)dt = ——Km 5 (1.17)
Yo ?m Y a P

1f the form of this equation is compared with the form of Eq. (1. 3)[ with w(t) = 1],

T, ’

a(t) = (1) Rp; ¢ (1-¢7P fk (2, c; € P (L.18)

it is clear that

'

whick is a recursive equation for the elements q;k(t) in the time-domain.

Starting with the recursion equation relatingfk+ 1 (a, c;x),\?k (a, ¢; x)
andffk 1 (2, c;x) given in Section 10. 8 of Ref, (10) one is able to derive a similar

equation for the elements by 41 (t), e (t), and by 1(t) .

2k +1)k +atc+ ok tatc) /Ko, b ()

- x
—(2k+a+c+1){(2k+a+c)(2k+a+c+2)(2e pt—1)~l-az-ch °

\/K—k b () -2 (e a) (k#e)(Zk+atek2) /K ) ) (1. 182)

*his equation might prove to be useful in a computer simulation of the set ¢k(t). 1f,

A
on the other hand, the (k + l)th element ¢k +1(t) is to be found via manual calculations
then it is usually easier to find it directly from Eq. (1.18),merely replacing k by k + 1

in that equation.

One obvious advantage of determining the elements by (t) from Eq. {1.18)

% Strictly speaking, when one compares Eq. (l.13) with Eq. (1.17) he can only
derive a proportionality relationship between the¢ (t) and the terms in Eq. (1.17).
The constant (-1) is the proportionality factor,
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is that it has completely removed the difficulties inherent in the orthonormalization
of the ¢k(t). Essentially, this was accomplished by introducing the well-defined
Jacobi Polynomiale in whose definition, Eq. (1.12), the orthonormalization has already
been carried out., One is, therefore, able to express an unknown set of orthonormal
functions in terms of a well-known set of orthonormal functions, and, in so doing he
has eliminated a lot of the algebraic tedium that is usually a part of an orthonormali-

zation procedure.

In the following section some of the properties of the ¢k(t), in Eq, (1.18}),

will be studied in order to throw more light on the significance of these functions.
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1.4 The Nature of the ¢k(t) .

This section is begun with a theorem which states the most significant
property of the functions ¢k(t)>f
Theorem 1, The asymptoticrorder of r]}k(s), the Liaplace Transform of ¢k(t), is

-?-‘ig + 1 for all k, provided that 3’2::—9 is either a positive integer or zero.**

Proof:

. A"
Consnder[ by ‘(t)] N = (-1)\/:3—_ by (t) [the subscript N denotes a normal-

ized version of ¢k(t)] as the product of two functions h(t) and g(t) where h(t) =
a-c

-c
{1 - E-Pt)T and g(t) = € 'th:}'k (a, c; e PYy,

The 1' th derivative of [¢k(t)] N with respect to t, [¢k([) (t)jlN , can then be expressed
in terms of h(t), g(t), and their derivatives by means of the Liebnitz differentiation

formula,

[ L 1 '~
S e e R T (1.19)
) r=0

from which one sees that

- (t)]N = a Mg +n g

82 (t)}N = 1@ g+ 2n ) M en 0 g o)
L

z ? |

a-c

roa-c a~-Cc
L4’1(<—2— -1 (t)}N w7 " Vmgwt. . +ngz Ve | 020

(=5 &5=) (=)
‘¢kT (‘t‘)N = W2 ) (t) + . . . +hit)g 2 ‘(t)
provided that ii—i is a positive integer.

% Henceforth, when the functions ¢ (t) are referred to, they are taken to be
synonomous with the set defined in. Eq. {l.18), unless otherwise stated,

#% Choosing integer or zero values for ai_c_ ensures one of a finite series in
-pt
e P for by (t).
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Substituting the expressions for h(t) and g (t) into these equations and setting

t= O+ one can easily show that

[q)k(l) (0+)]N = 0

(2) ot ;
.[cbk (0)]N = 0

{1. 21)

It is also true that (0+) = 0. Next,one appeals to the Initial Value Theorem
k N PP

from Laplace Transform Theory which states that N
oh = 1 5. ()"
b (O] = fimg s m (e

E3$3

|:¢k(1) (O+)]N = sli_x"noo s|s @N (S) -[4)1{ (0+)]N
k

(1. 22)

»

. .
y -

a-c a=-c
5 0], < o P gy 00 F )

* oy (s) is the Laplace Transform of the k' th normalized element [¢k(t)]N .
k
sk : : . a-Cc . far P
Due to the continuity of the [¢k(t)]N and their —- - 2 derivatives at the origin,
the 07 notation in all of the derivative transforms has been replaced by the
0% notation.
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Substituting Egs. (L. 21) into these equations one can show that, at most
lim s LN (s} = 0 (1. 23)
§—= 00 k
. ' ' a-c
which implies that the degree of the denominator of <I>Nk (s) must be exactly > +1
larger than the degree of its numerator. It has, therefore, been proven that, for

- a-c . : : :
positive integral values of i[c_ , A0, @N = —— +1. Itis quite obvious that
k

for —?’-éc— =1 2,..., 1% A O. <<I>Nk> = 2,3, .. .1+l To complete the pic-
ture let _?;if = 0. From the asymptotic-order equation, one sees that this is the

unity asymptotic-order case, That this is correct can easily be seen by setting

3,25 = 0 in the formula for the [q;k (t)] N.

In order to obtain a simple visual interpretation of this theorem, the results
were plotted in Figure 1. 3.1. From this figure one sees that after the asymptotic —
order is specified he is still free to choose either 2 or c.  Note also that the results
of this theorem in no way violate the earlier constraints on a and C[Eq. (L. 14)] which

are shown by dashed lines on this figure,

The true significance of our recursive equation for the ¢k(t) is now clear. By

properly choosing a and c one can generate sets of orthonormal exponentials whose

Laplace Transforms are of any asymptoticorder whatsoever, without having to go

through the usual orthonormalization procedures.

!
Unfortunately, however, there is a severe restriction on the pole locations

of the d’zk {s) - - - they can only be equally spaced. This will be proven in the foliow-

ing theorem,

Theorem 2. The poles of R (s) are located along the negative-real axis in the s-do-
main at - (g +—§- ) p, where 0 < g < A.C, (@k) +k ~ 1 and is integral. These poles
are equally spaced, p units apart.

Before the proof of this theorem is presented, it will be instructive to illustrate

the application of the theorem by means of an example.
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Example

For A, Q. (<I>k) = 3 the poles of Qék(s) are located at - (q + -;—)p, where

0 < q < k +2; thus, the poles of @O(s) are located at - —;7 p, -(1+ —;-)p, and
- {2+ —29-) p while the poles of &, (s) are located at - —%- p, - {1+ —%) P,
c - =
-(2+3=)p, and - (34 — )p.
Proof:
Writing dpk(t) as } _CZE.
. k - t
b () = (-1) \Ap—-_’ € hy (t) (1. 24)
k
where
a.:-c
ept. 2 -
b () = (1-¢eP Fi @cie pt) (1. 25)

it is quite simple to showa}zxé expanding h.k(t) that it contains the terms 1, € -Pt, € -2pt’

ekt (B e
poles situated along the negative-real axis (including the origin) of the s-plane at
0,~p, ~2p, « « «, ~kpy « v . . ., = (k+ a-¢

This means that Hk (s) will have all of its

} p; or alternatively, one can state that
a-c

the poles of Hk(s) are located at - (gp) where 0 < q < k + and is integral.

Taking the Laplace Transform of Eq. (1. 24), one is able to conclude, in a rather
straight forward manner, that the poles of o (s) are located along the negative-real
axis of the s-plane at - {q + —(-2:— )p where 0 < g ¢ k + 3—;3 and is integral; but by
Theorem 1, the range of values q may take can be writtenas 0< g < 4.0, (Qk) +k-1,
That the pole spacing is p is obvious from the location of the poles of Hk(s) which

have been enumerated in detail,

If one does not wish to use a set of evenly-spaced poles as the basis for his
approximation then, of course, the orthonormalization procedure must be carried out
anew every time a different set of poles is used. It has been shown that this becomes
more tedious to accomplish the larger A, Q. (ibk) becomes. The only exception to
these last statements occurs when A, O. (G@k) = 1, for in this case one can fall back
upon Kautz' s recursive equation, (1. 8), which is in a form that is independent of the
spacings of the 4 -

Generally speaking, one has a great deal of latitude in the choice of the a
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the only restriction having to do with the .comgleteness* of the set ¢k(t). The work of
Reiss24, Leightw, and Brown seems to indicate, however, that a geometric pole
spacing may be the optimum one to choose. Unfortunately, their conclusions are based
upon the identification of such a simple plant (the impulse response of the plant is

€ -rnt) that one questions the extension of their results to more complicated situations.
At the present time, no other literature is available on the topic of optimum pole loca-
tions (as far as the author knows) for the approximations of processes having more than
a single pole; thus, it is not possible to arrive at a final conclusion about the optimum

locations of the a If one should decide to choose an equally spaced set of a, as the

poles of his approl)iimation, then, of course, the theory and methods developedlzn this
chapter and the following two chapters would be directly applicable, If, on the other
hand, a set of non-equally spaced o, were chosen, then, based upon the asymptotic—
order of the approximation and the location of the I the approximants (’pk(t) could be
constructed via Eq. (1. 3). Naturally, this procedure would have to be repeated in its

entirety for every different set of a4

Let us remark, at this point, that two ways for constructing the functions ¢k(t)
whose asymptotic-order is unity and whose poles are evenly spaced have been presented
- - - Kautz' s equation in the s-domain and the recurrence cquation, (L. 18), in the time-

domain. It would be reassuring for us to know that both results are equivalent,

Before stating and proving that this is so, the following notation, which will be °
used in the statement and proof of the theorem below, is introduced: ¢lg (t) and

(;bK (t) correspond to the orthonormal exponential approximants given in Equations (1. 18)
k )
Jacobi Polynomial representation (J)|iand (L. 8) | Kautz' s representation (K)|, respec-

tively, @k‘T (s) is the Laplace transform of (?51‘1 (t) and Q%(K {s) is the Laplace transform
K
of ¢k (t)

Theorem 3. (Uniqueness Theorem)
1
b J( ) e cpK( )
t) s
k a=c ‘ k a = (k+ —;—)p‘ (1.26)

% See Appendix A for a discussion of "completeness™ and its affects on choosing
the sets of a -
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b
does not contain any null functions,

provided (}SKK (t) e
& = (k + VA r

The constraint a = ¢ on the qSkJ(t) set is a direct consequence of Theorem], while
constraining the poles of the(IDkK(s) set to be equally spaced at - (k +—-§— )p is a direct
consequence of theorem 2,

The method used in proving the theorem is a simple one: first, it shall be shown

J : K
h = (
L D o = (k+5)p

: the converse will then follow.

Proof:

For a= c, Egq. (1.18) becomes

cp
. _
¢kJ (t)'a =c (-1)k\/é——k’ € ’ ?k (e, ci e Pt) (1.27)

where, from Eqs. (1.12) and {1.15)

k .
. _-pt, _ ! (k T{c+k+2)T{cy _-Ipt
F o e e _zz’o(l) <1> CET R I (1. 28)
and
= k! T(c) \
‘\/{{: - I'(c+k) £+ 2k (1.29)

Substituting these last two equations into Eq. (1. 27) and taking its Laplace transform

one finds that

k Wb (c+2k) T (c+k+2) 1
J Kk + ¢ [
({ = 1 ; - X (1. 30)
cpk s) e z§=o( ) 2V (k-2)! (c+12) [H(“ E)P]‘

One must now demonstrate the equivalence of Eqs. . (1. 8) and (1. 30). This will be done

by means of an inductive type argument. In particular, whenk = r

dE (s) =via o -og)e-er oo y) (1. 31)
£ r (s+ao)(s+ul),,, (S+ar)
and
T (s) _ i (1)t JP{c ¥ 2r) Tle +r+14) 1
¢)r s.a=c__e=0- LT -yt Tlc+t) x[S+(£+—§-)pJ
(1.32)

% A "null function™ is a function whose area, in the range from 0~ to «, is zero .
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Equation (1. 31) can now be developed into the partial fraction expansion

K _ Yo ! Vr-1 Yy
S - =+ s S - L)
o 1 r-l r

This equation shall be compared with Eq. (1, 32) verifying the equality of the coefficients
Yg» Yr-l , and Yr and their respective counterparts in Kq. (1. 32) under the condition im-
posed by the theorem, that o, = (r + ~§— p. If thls is 8o then the QDJ (s) _ are

= ¢
merely the partial fraction expansions of the zI) (s)

- 4§

e
1, Yo (the residue of the zeroth pole)

From Egs. (l.31) and (1 33) it can be shown easily that

(0. +a1) (o +a

)
/2 o r-1 1. 34
Yo 7 (-1)" q -a )(a -c.o)... (ar-ao) ( )

which reduces to

T(c+r)

Vo = (U2 rt ) e (L 35)

when o, = (r + 7(:- )p is substituted into Eq. (1. 34).

To find the corresponding value of Yo from Eq. (l. 32} r is set equal to zero.
Doing this and comparing the coefficient of the ——— termto Eq. (L. 35) one con-

S+Tp

cludes that they are the same.

2. [the residue of the (r - 1)th term]

Yr-1,
Proceeding in exactly the same fashion as in the preceding case, it is noted

that the residue vy__; in Eq. (L 33)is

(¢ +a e, + o }... (2a )
~17M1 r-1 r-1
= (-1 T > o) r 1. 36)
Y-l (-1) Ve (ao - ar—l)(a1~ar—1)" v (ar—Z -ar-l)(ar "%t (
which reduces to
_ < Tic+2r-1) (. 37)*
Vel T WU S) T T e o)

% Great care must be taken when factoring (-1) out of the terms in the denominator
of Eq. (1, 36)after a, has been replaced by (r + __)p In this case (-1)*~* was
factored out.
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This co: responds exactly with the residue of the pole at

s=-a ;= -(r -14 % )p in Eg. (L 32), which can be found merely by substituting

k = r -1 into that equation

3. \ {the residue of the rth term),

Finally, it can be shown that the residue Yy in Eq. (1. 33) becomes, after

replacing a by (r +% )P,

- /) < T(c+2r) (1. 38)
v, = /2P (L + 5) T Tler ) .
which, once again, can be shown to correspond exactly with the residue of the pole at

c .
s=-oa = -(r 4+ —i)p in Eq. (1. 32)

The first part of the theorem has now been proven, that is, it has been demon-
strated that

J = K
(t) (s)
qbk Ca— Cbk °

C
a=c¢ ak=(k+ 'E)P (1. 39)
since it has just been sh.:wn that
7 K '
. 40
SO = &, (9 (1. 40)
k k c
a=c o = (k+ S)p

That
K

D (s) ¢ (L 41)
s t . 4
k ak=(k+%)p:>k A= o

follows at once from Eq. (1. 40) and the uniqueness theorem from Laplace Transform
Theory27 which states: "Two functions of time having the same Laplace Transform are
equal almost everywhere in the range from t = 0  tot= oo differing at most by a

- o . K
null function" ., Since null functions have been excluded from (ka (t)|'ﬂk = (k + % )p
one can be assured that Eq. (1. 41) is true. This completes the proot.
The significance of this theorem should not be underestimated. If, for example,

the inverse were true then the statements made on page 8 (in connection with the Gram-

Schmidt Procedure), regarding the uniqueness of an orthonormal set would be violated.
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There, it was pointed out that the uniqueness of an orthonormal set ¢k (t), formed
from a collection of functions gy (t) depends solely upon the linear independence of

the elements g, (t). Since the set of elements in both the Kautz expression, Eq. (1.8),
and Eq. (L. 18} are édentically the same (under the conditions of this theorem), that is,
g (t) e{ € (e + 2 )pt} , the sets must be identical, It has just been proven that

they are indced equal,

This section is concluded with an example illustrating the results of Theorems

1 and 2.

Example: Special Sets of Functions (bk (t).

It has been shown in Section 1. 2 that the Gegenbauer and Legendre polynomials
are special cases of the more general Jacobi Polynomials (Table 1.2,1), In this exam-
ple the relationships existing between the orthonormal exponential approximants q;k(t)
and the Gegenbauer and Legendre Polynomials are summarized. This summary serves
to relate the Gegenbauer and Legendre Polynomial approximations of a function, f (t),
to the exponential approximations of f (t)., Table 1. 4.1 presents the results and is
self-explanatory. Figure 1, 4.1 compares the asymptotic-order behavior of the Gegen-
bauer and Legendre sets with the asymptotic-order behavior of the Jacobi set. Essen-
tially, it is a reproduction of Fig. 1. 3.1 upon which the asymptotic-order relationships ’
for the Gegenbauer and Legendre sets have been superimposed. Note that the asymp-
totic order of the Legendre set is fixed at unity, while for the Gegenbauer set 1t; may
assume any integral value; however, once the asymptotic order of the Gegenbauer set
is specified, a and c are both fixed. This is in centrast to the Jacobi set where one

is still free to choose either a or c,

It would be desirable now to extend all of the results presented in this chapter
to the case of a weighting function which is much more general than the uniform weight-
ing function used in this chapter. The next chapter discusées just such a weighting
function. In chapter 3 the results of this chapter are extended with the aid of the results

nresented in chapter 2,



27

*sTeTwouliod Jo 3@s SIY:

pue sTeTwiouk[od TODE[ 9} USIM]DQ UOIIEsT SY3 I0F 1°7 °1 91qel 03 I19F3Y x%

z x>0 3>
*198 sipuadet nHlH
dq z ., 0y sapuslarT
93 0} S9OonpaI 1
Yoz
195 xanequeSen . 2 3 1 a £ >0
(2 + %) .
e WH = 4 usgm 1 d s.m. + W +0) zenequadan
SIUI WO Od JO UOTIBDOT] Vﬂo ‘suoije207T s10d 19s :VM%
1 1 1 (g.?22-1)a > (wz tO 4/ (1) 3
ad- u.m. - o /X sxpuslaT
. . . - 1 w 14 W [1 |N - ;
6 S 1
L 21 244 iy Maz) ‘
c t o1 Tt a? (1-,4- 2 NVM«U z ‘ﬁumu 2-1) u.w AN.* >v| > 5 TH 1emequefan
Z._4 1 %
1
3 ee e ¢ ¢ ¢ - c b
(Te) oy ° € 2T = %1 ‘()% 195 (1)

“(3) % suonoung o1 Jo s3ag feroeds 1F 1 °lqEl



28

a AO.(CIJk: I)
A 4 3 2 ’ )

AR
SRR R W\QW |
AR
AR
APV e
. \\ \ %\y ASYMPTOTIC-ORDER DEFINES
AR

THE GEGENBAUER SET.‘
RN
2
N

\ ™ LEGENDRE SET

0 ' l -

o>\>‘1 2 3 4 5 6 7 8 9 10 U 12 ¢
)

Figure 1.4.1. Summary of Table 3, indicating the locus of A.O. (<I:k)
for the Gegenbauer and Legendre Sets as compared to the more
general results of Theorem 1.
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CHAPTER 2. GENERALIZED WEIGHTING FUNCTIONS AND THEIR DESIGN

2,1 Why a Weighting Function?

The unweighted * integral-squared error criterion emphasizes large errors
heavily and de-emphasizes small errors, for all time greater than-zero. This is due
to the squaring operation. If one assumes for the moment that w{t) in Eq. (1.1) (re-
peated below) is unity, as was done throughout Chapter 1,

0 2

=X = [ w(n) [f(t)-fa (t)} dt (L.1)
o .

he is in effect stating that £a(t) is to approximate f{t) closely over the entire range of
time (0, o). To require this may, in many cases be unnecessary, impractical, and
even undesirable, For example, suppose one needs only to obtain a close fit over a
finite range of time, Two cases of this are shown in Fig., 2.1.1, The impulse response
in Fig. 2.1l la is typical of systems having a very high asymptoticrorder, Since much
of the important information is concentrated in the interval (1:1 vty } it seems wise to
emphasize this region in the IE2 criterion. The only way one can introduce a time de-
pendence effect into the IE2 criterion is to choose a weighting function dependent upon
time. Choosing the weighting function shown in Fig. 2.l.1lc gives the desired effect;
for, the product of this weighting function and the error function fl (t) - fa1 (t) [in Eq.
(1. 1)] tends to emphasize the error in the interval (t1 - ) and to de-emphasize it out-

side of the interval,

The system characterized by the impulse response in Fig. 2,1l.1b contains a
delay; that is, for an input applied at t = 0 there is no output until time T. To empha=
size the fact that the response is actually zero in the time interval (0, T') one might
choose a weighting function of the form shown in (d) of Fig. 2.1.1. Once again, it is to
be noted that in both (a) and (b) of Fig., 2.1.1 the emphasis and de-emphasis of the
error function has been accomplished by means of a time-dependent weighting function,

oK i
and not by changing the limits of integration in Eq. (l.1).

% By convention, the term " unweighted™ reférs to the case where wlt}is independent
of time. It is a bit misleading, however, since the prefix un - would seem to imply
zero weighting. Perhaps "uniformly - weighted"would be a more appropriate choice
of terminology.

#% The emphasis of the time interval {t) , tz} in Fig. 2.1L 1(a) and the de-emphasis of
the interval (0, T)in Fig. 2.1.1(b) could also have been achieved using rectangular-
pulse weighting functions. A rectangular weighting function, unfortunately, introduces
considerable analytical difficulty. This is further discussed in Section 2. 4.
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So far, it has been indicated how one might choose a weighting function from
the viewpoint of obtaining a close fit between fa (t) and £(t) . In many cases, one is
also interested in using the identification, fa (t), in afrequency-domain analysis, If,
in particular, high-frequency effects are important, then one must weight the error
function quite heavily for small values of t. This can be dedeuced from the Initial-
Value Theorem?

£.007) = lim s F_{s) (2.1)
§=='00 a

On the other hand, if it is the low-frequency effects which are of primary con-

cern, then, from the Final-Value Theorem
fa (0) = s1_i_.r:no 8 Fa {s) (2.2)

one concludes that a weighting function emphasizing large values of t should be chosen.

Heavy weighting of small values of time is also very important in the identifi-

cation uwed in adaptive control SYStems4’ 22, 32

where one is primarily concerned with
characterizing a plant as quickly as possible and over a short interval of time (0, T).
This has been done in the past by choosing an exponential weighting function, Increas-
ing the amplitude and decreasing the time constant of the exponential function provides

the desired emphasis in the interval (0, T)rr‘.

Weighting functions emphasizing large values or small values of t will be dis-
cussed at greater length in Chapter 4. In the remaining sections of this chapter weight-
ing functions of the form shown in Fig. 2. 0.1 c and d shall be studied in greater

detail.

% For a discussion of other weighting functions that might prove to yield far superior
results in the Adaptive Identification problem see Chapter 5.
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2.2 wit) and its Properties

In this section some properties of the weighting function in Eq. (2.3) shall be
investigated. ’

ky

¢ Kokt ) 2.3

€ -kt

wt) = (1-

kg, kp ky > 0

Typical portraits of w(t) appear in Fig. 2.2.1, from which it is evident that, when
kZ is zero, wit) reduces to an exponential weight function, while, when both kZ and ko
are zero, w(t)is constant, The general form of w(t) appears in (d) of Fig. 2.2.1.

It has a single maximum at time t,,,x,' where

1 kp
tinax, = Iq— In| 1+ -IT; (2. 4)

Depending upon the choice of values for ko, kl, and kZ’ w(t) may be made very
narrow or very wide. A measure of the widtbh of w(t) may be formulated in terms of
the distance between the two inflection pcints of wit). If t1 and tZ are the times of the
first and second inflection points respectively, (see Fig. 2.2.2) then AT, the distance

between these inflection points is

AT = tz -t (2.5)

t1 and t2 are found to be the two solutions of the equation

djtZW(t) =0 (2.6)
and are
tas - % L 2 koz t2k k, +k, iA/(ZZ(AlkOZ t4k k, +k;2‘)-'. 2. 77
L 2 (k +k,)

¥ 1t is tacitly assumed throughout the remainder of the dissertation‘thaF wi(t} Is ampli-
tude normalized, that is, its amplitude is multiplied by unity. Multiplyiny wit) by

a coustant does not change any of the results presented in this chapter.

%% To calculate t1 (tz) use the positive (negative) square root in the numerator of

this equation.
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A v w (1)
2 o]
t ' t °
{a) kp=0 {b) kg=0
Awm A w
l
|
|
|
- ' -
t tmox‘ t
{c) ky =kg=0 {d) kg, kp 20

Figure 2, 2.1 Some typical portraits of wi(t).

Awit)
w(Z)(fz) =0
w(Z)(f|)=o |
h____é_T______’
| -
f 2 t

Figure 2.2.2. Relationship of AT to wi(t).
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whereupon AT becomes

2 2
R " fzko +2k k, tk, +/\/k2 (4k " +4k_k, +k,) (2. 8)%
- E_ 2 “ _ F
1 2k &+ 2k k, tk, ﬁz (4k 2 +4k_k, +k,)

kZ :;’ 0
This equation and Eq. (2. 4), for t max.’ will be very useful in the design procedure

developed in the following section for selecting the constants ko, kl’ and k2 .

- k . .
% When k, = 0, AT has no meaning since wi(t) = € ko Ky t has n» inflection points.

Under this condition AT = 0 in Eq. (2. 8) which is meaningless.
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2.3 The Design of w(t)

In this section, a method for determining the constant_s ko, kl' and kZ in
Eq. (2.3), from a given set of specifications on wf(t), will be discussed. It is by no
means the only method which may be devised, but, rather, is one which sheds a great
deal of light onto the effects which these constants have on the shape of w(t). An alter-
nate procedure which is more germane to the theory presented in Chapter 3 will be
discussed in that chapter; however, most of the results of this section will be directly

applicable to that method also.

Three constants are to be determined; therefore, three independent specifi~
cations on w(t) must be given. The three conditions listed below are only one set out of
many possible sets; however, they are a particularly advantageous set in that they en-

able one to readily control the shape of w(t).

L The initiat behavior of w(t) may be accounted for by pre-specifying kz;
since, quite obviously, from the form of w(t), the number of derivatives of w(t) which
are zero at t = 0 depends solely upon its value. kz also controls the width, AT, of
w(t) as shall be shown. Th'e.pre—specified value of k, shall be designated as kz o,

where in general k, > 0 e s

s

2, After a region of maximum emphasis of £(t) has been decided upon, tmax.
is chosen so as to coincide with the center of this region. By locating t .. in this
manner, it is possible to design w(t) in such a manner that it emphasizes the desired
region of maximum emphasis of f(t), The pre-specified time tmax, shall be desig-

nated ts‘ .

3. It shall be desirable to have the amplitude of w(t) become approximately
zero within some pre-specified time interval, say 4 v, . Naturally, 4 v, must be
chosen such that 4+, > tg . This condition prevents one from attempting to design a

weighting function where, for example, 7 = 1T second and t .. =1 second,

These 3 conditions-can be expressed in terms of ko, kp and kZ as follows:

% The subscript s stands for "specified a priori".

%% Choosing integer values for k2 usually results in numerical simplifications and

also enables one to correlate the iftitial behavior of w(t) in the time-domain to the
asymptotic-order of W(s) in the s-domain.
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Lk, =k, (2.9)
S
k
2.t =t = L 1 |1 %5 ' (2.10
©o'max. TYs TR + BN 2.10)
3 T = L (2.11)
: s ko El .

Procedure for Designing w(t).

1. Values for L ax’ kz and T are chosen based upon the specifications for
wit)
2. By trial and error, k1 is found from the equation
kl ts
k. = € -1 (2.12)
1= ———
k2 Ts
s
3 Finally, k_is determined from the result of step 2 and Eq. (2.11), that
is
k, = (2.13).
° 1 s )

That the actual process of determining k; from Eq. (2.12), by trial and error,

is a rapidly conveiging one can best be illustrated by means of an example.

Example 1.

The impulse response of the overdamped process shown in Fig. 2.3.1 is to be

At

= { (sec.)

N ——

0.25

Figure 2.3.1. Impulse response of an overdamped
process.
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appréximated in an integral-squared sense, such that the approximation is particularly

accurate for 0.25 < t < 0.75 sec. As the first step in the approximation procedure

(to be outlined in Chapter 3) a weighting function must be designed.

*
L. The center of the region of maximum emphasis of f(t) occurs att = 0.50

sec; thus, based upon the discussion on page 35 ts is chosen to be 1/2 sec. At the
moment, there is no basis for the choice of one value of k2 over another, however, such

a basis will be established shortly. Here kz is arbitrarily chosen to be two, i.e.,

kz =2, In order to make sure that w(t) emphasizes the entire region 0.25 < t ¢ 0.75
s
heavily, as desired, T s is chosen to be 0. 3 second.
1 ..
< E 1 (2.12a)
7 - e a
2 k1 A
Table 2. 3.1, Calculation of k1
7%
Assumed Value € -1
of k 0.6
1
1. 0 1. 085
0.9 0.950
0.8 ‘ 0. 816
0.7 0. 700
3. With k1 = 0.7 and T s 0. 3, ko’ in Eq. (2.13), is found to be 4, 76,

Summarizing, one can easily verify that the weighting function w(t) is

x

2
wit) = < 2:33t g -0 Tty (2.14)

%* These numbers correspond to the numerical designations assigned to the steps in
the design procedure on page 36,
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One now may pose the following question: "Having designed a weighting function
via the trial and error procedure outlined above, is there any shortcut available for
designing other weighting functions based upon the information available from the

design of the first one?". The following theorem presents just such a shortcut.

Before stating and proving the theorem some new nomenclature will be intro-~
duced, Associated with a weighting function wl(t), where the unity superscript indi-

cates that this function was actually designed by means of the trial and error proce-

dure, are the following constants: the pre-specified ké , tls and T]é and the calcu-

s .
lated ki and k{ . Similarily, associated with the j'th weighting function w‘]‘(t) are
the constants KJ , ¢ , 'r‘] y k' and kJ .

2 max, o 1

Theorem 4. Given ki , # = t' andkd = k!, then
— Zs s 8 1 1
J
s[5} o
154 T K, (2.15)
2
5
and
WL
j 2s 1 e
s ; - (2.16)
k3
s
A wit)
j
k
| 25
I
|
k5
| 25
I J
| 2g
I
| ———
| e -

ts

Figure 2. 5.4, 1llustration of Theorem 4.

%

This theorem can also be used out of the context of the design procedure presented

in this section. Such an application is discussed in Chapter 3, Section 3. 2.
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A graphical interpretation of this theorem is given in Fig. 2. 3.2. One sees,
from this figure, that the theorem enables him to construct a family of weighting
functions, each having its maximum at the same value of time, and, each having a
different value of kzs » It was pointed out, in Example 1 of this section, that, while

there exists a practical bawsis for the pre-specification of trrl , there does not yet

ax,
exist a practical basis for the way in which to pre-specify k2 . In Example 1 a weight-
ing function was designed for a specific value of tnax and an arbitrarily chosen value
of kZ' Theorem 4 now enables one to rapidly determine the effect of an increase or

decrease in k2 on the shape of w(t), for a specific value of o

ax. '

it

The seerningly stringent requirement that all of the k{ s be identical for all of
the wJ(t)| s actually is a direct consequence of the general theory presented in Chapter
3. There it will be shown that this constant equals the pole spacing of the elements
@k(s) and that this spacing is usually fixed a priori; hence, for a given pole spacing, a
family of weighting functions may be constructed, but they must all have the property
o =k

177
The proof of theorem 4 follows.

Proof:

From Eq. (2.10) and the given information one finds

ké - (2.17)
k1 t
€ S -1
and
j
. kZ
W s (2.18)
R H
ki t
¢ 1 s _1

. j
j k
Yo % (2.19)
Py W
o ZS

which proves the first part of the thecrem. If one proceeds to substitute

3 1 (2.20
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and

1

B (2.21)
kl kg_

E
—
1§

into Eq. (2.19) one obtains the expression

kl
26 1
- ; T (2.22)
kz
]

which verifies the second part of the theorem.

Before illustrating the use of this theorem by means of an example, it will be
useful to try and gain a bit more physical insight into how the choice of the constants
k% affects wi (t). It has already been pointed out {page 35 )} that k2 controls the in -
itial and final behaviors of the weighting function w(t). It shall presently be shown that,
under the conditions of theorem 4, k2 also controls the width of w(t), as measured by

AT in Eq. (2. 8).

Corollary 1. Under the conditions of Theorem 4 and by the definition of AT in Eq. (2. 8)

(2.23)

where AT? is the width of the j' th weighting function.

Proof:

The proof follows directly from Eq. (2. 8) and the statement of Theorem 4.

Utilizing this information one can show that

2¢' k'] /Xl kJZ +1
(2. 24)
J
2¢' K

AT =

+1 '\/

N\,
ki /ki . 25)
= =] = 2.25
ks, ) K
5 S

where
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Dividing numerator and denominator of the logarithmic argument in Eq. (2.24) by

k']2 and letting sz become very large it is easy to show, by means of limit arguments,
. s

s
that

lim AT = 0

k‘]z—-oo
s

(2.26)

In a similar fashion one may also show that AT) is a monotonically decreasing

J J
2 2g

. “s
it widens wJ{t). This is borne out in the following example.

function of k3 ; that is to say, increasing k always narrows wl(t) while decreasing

Example 2.

In this example the design of weighting functions based upon the specifications
given in Example 1 is continued. Here, as in Example 1, weighting functions are de-
signed such that b nax.” 0.50 second. The effect of choosing values for kZ other than
two, in the design of these weighting functions viaTheorem 4, is studied in detail,

Table 2. 3.2 summarizes three designs and their properties, wl(t) is the weight-
ing function designed in Example 1. wz(t) and w3(t), on the other hand, were obtained
directly from the entries in the first row of Table 2. 3.2 and Egs. (2.15) and (2.16) of
Theorem 4. The properties of wz(t) and w3(t) are listed in the second and third rows
of Table 2. 3.2 respectively. Figure 2.3, 3 presents a graphical summary of the re-
sults, For clarity, wl(t), wZ(‘t), and w3(t) have been scaled up by factors of 100, 20,
and 2000 respectively, Note that wz(t) is the widest function and that this corresponds
to the unity k‘; case; thus, the example substantiates the theory, If the width of the
weighting functsion is used as 2 measure of the time of maximum emphasis of wj(t), then,
based upon the specification stated in Example 1, that £(t) is to be approximated most
accurately for 0.25 < t ¢ 0.75 sec. (see Fig. 2.3.1), and the widths of the three
weighting functions listed in Table 2. 3.2, one concludes that w3(t) is the most satis-

factory design, of the three weighting functions listed,
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Figure 2.3.3 A comparison of the three weighting
functions listed in Table 2. 3. 2.
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k

, “k, k1t< -k1t> 2
2.4 Why the Weighting Function w(t) = € l-¢€ ?

Thus far, no mention has been made of the reasons for choosing the particular

weighting function

kKt -kt k2 .
wit) = € 1-¢€ (2.3)

or for spending so much time discussing its properties, and a procedure for design-

ing it based upon these properties, What makes this weighting function so useful?

It has already been indicated, in Section 2.1, that, many times one is merely
concerned with the problem of fitting or approximating a function closely over a closed
time interwval, (tl , t2 ) If this be the case, then the most desirable form to choose
for w(t) is the rectangular gating function in Figure 2.4.1a . This is equivalent to
changing the domain of integration in Eqs. {1.1), (L. 3) and (1. 4), from the interval

(0, o) to the interval (t tz) . Chanrgzing these limits results in very tedious compu-

l'
tations. It is also interesting to note that Kautz' 8 results and all of the results pre-

sented in Chapter 1 are useles~ in this case.

| wit) w(t)
[ )

i) € -kok'f('_e—klt)kz

- 1 I
ty ts t h t t
(a) (b}
g‘igure 2.4.1. weighting functions emphasizing tne interval of _ K.t k2
time (t,, t,). (a) Gating function, (b) w{t) = € “ko ki t(l - € 1>

approximating the gating function,

One must therefore conclude that the analytical difficulties encountered when
gating-type weighting functions are used precludes their usefulness. This does not
mean that the idea of a gating function is incorrect; it suggests, rather, that one
might choose a weighting function approximating the gating function in shape - - -
one which is more manageable in the Eqs. (L. 1), (1.3), and (1. 4) than the gating function

is, The weighting function in Eq. (2. 3) is just such a function, That this is 8o is
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amplified in Fig. 2. 4.1b where the gating function [u_l (t - tl) -u (t - ty )] is

-ko klt —klt 2
approximated by w(t) = € l-e€ .

A second reason for choosing w(t) in Eq. (2. 3) is that this is the natural choice

to make if the results of Chapter 1 [where w(t) was unity] are to be extended to a

more general weighting function, This is perhaps the more important of the two

reasons as will be seen in the next chapter.
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CHAPTER 3. THE ORTHONORMAL EXFONENTIAL SET FOR
EXPONENTIAL WEIGHTING FUNCTIONS

3.1 Introduction

The purpose of this Chapter is to extend the results of Chapter 1 to the cases
of exponential weighting functions., This is accomplished with the aid of the theory

presented in Chapter 2.

Recall that the elements, ¢k(t), of an orthonormal set satisfy the relationship

0
RUR AU UL IR (3.1)

and, in particular, recall that if the q) (t) are chosen from a set of exponential functions,
wherein the poles of the B (s) are evenly spaced along the negative - real axis of the
s-plane, Eq. (3.1) can be written in terms of the classical Jacobi Polynomials,

gm {a, c; x), given by

T -cpt -pt," "¢ -pt -pt 5
J TP S (e e VF e Phat = s 5,

When w(t) = lin Eq. (3.1) it is shown in Chapter 1, that
cp a-c

o) = (1 LB e T HE T (e o P (3.3)

This was obtained by comparing Eqs. (3.1) and (3, 2) after the weighting function

~-cpt -pt (a—C)
e Pt (1 - ¢ P , in Eq. (3.2), had been split into two equal portions
ep (a-c)
e"Z " (1-¢€ -pt) ; the twe equal portions of the weighting function
(a-c)

-cpt (1-¢ 'pt) were first associated with the factors "“/fx (a, c; € —pt) and

. {a, c; € —pt) in Eq. {3.2), before the comparison of Eqs. (3.1) and (3. 2) was made.
j q P q
If, instead of splitting the entire weighting function in Eq. (3.2) into two equal

-\1 cpt —pt M2 (3-¢)
parts, a portion of the weighting function, say ¢ 1 P (1 - ¢ Py , is first

removed then, upon comparison of Eqs. (3.1) and (3. 2), it is possible te conclude that

(17\ (T)

ok /o T MIT Eh -pt . -pt
¢ () = (-1} ol l-¢ ;}fk (a,cpe PY)  (3.4)




where < (3.5)

and
- xl cpt )\2 (a-c)

; -pt
wit) = € 1-¢7P (3.6)
Equation (3.4) is an equation for the elements q;k(t) of an exponential set which are
orthonormal with respect to the weighting function in Eq. (3. 6). When both Ay and N,
are equal to zero, Eq. (3.4) reduces to Eq. (3.3). For all values of xl and )\2 , as

defined in Eq. (3.5), w(t), in Eq. (3.6), corresponds exactly to the weighting function

kp
—koklt -k1t>
€ l-¢€

discussed in the previous chapter, provided

ko = )\lc
kl = p (3.7)
= - ®
kZ = )\Z(a c)
-koklt
X

Thus, all of the results pertaining to the properties, and to the design of €

2
~kt
(1 - € 1> , apply directly to w(t) in Eq. (3.6) provided the transformations in
Eqg. (3.7) are employed.
Equations (3. 4) and (3. 6) form the basis for the remaining sections of this chapter.
First the properties of the by (t) shall be reviewed in the light of the more general
weighting fundétion, Eq. (3.6). Then a design procedure for uniquely determining the

constants X\, A,, ¢, a, and p in Eqgs. {3.4) and (3. 6) shall be developed. ¥Follewing

the steps of this procedure it will be straight forward to construct the set of exponen-

tials, in Eq. (3.4), orthonormal with respect to the weighting function in Eq. (3. 6).
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3.2 The Nature of the ¢k (t) .

The format of this section is similar to that of Section 1. 3, wherein the asymptotic-
order of the & (s), the pole spacing of the tI)k(s), and the conditions under which Eq. (1118)
reduced to Kautz' s results, Eq. (1. 8), were investigated, There the results were
stated and proved in the form of three theorems. Here the corresponding results for
the more general set of elements in Eq. (3. 4) shall merely be stated. The proofs of
these statements are identical to those of their special counterparts in Section 1. 3,
except for some symbolic changes due to the inclusion of the more general weighting

function, Eq. (3. 6).
:<
Theorem 1G. The asymptotic-order of tI)k(s), the Laplace Transform of ¢k(t), is

(1 - )\2)( %—S) + 1 for all k, provided that (1 - )\2)( E—é—c—) is a positive integer or zero,

Theorem 2G. The poles of the & (s) are located along the negative-real axis in the

o k
s-domain at -[q +-§ (1- xl)]p where 0 < g < A.O. (@k) +k -1, and is integral,
These poles are spaced p units apart. -

Table 3. 2,1 summarizes the results of these theorems. The weighting functicns

listed in the first column correspond to the four functions sketched in Fig. 2.2.1.

The results of Theorem 1G can also be summarized as in Fig. 1.4.1if a and ¢
ek

are replaced by a' = a (1 - )\2)‘ and c' = c (1 - )‘2) respectively in that figure,

Theorem 3G. (Uniqueness Theorem)
J B
o)
AN T Tk e s O0-a e
l‘ . _xlcpt‘ -)"1 cpt g ookl
wit) = € wit) = € ;(3 8)

to within a set of null functions.,

% The "GW notation indicates that this is the general form of the corresponding theorem
presented in Section 1. 3,

%% See Appendix B for a more extensive discussion of the pole spacing question.

#%% The inequality a > c - 1becomes a' >c' - (L -X2) which actually is a
family of constraints dependent upon A,. When X, = 0, a' >c' -1 and for all
0 <\, <1 this line moves to the left approaching the line a' = c!' as Ao

approaches unity,
A%k The J superscript in J t) refers to the Jacobi Polynomial equation for &, (t),
P P by y k

Eq. (3.4). The B superscript in @; (s), on the other hand, refers to the set of @k(s)

in Eq. (1. 9) deveioped by Braun 4,2
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Table 3.2.1. Summary of Theorems 1G and 2G.

)\1 N, w (t) A. O, (@k) Pole Locations
of & (s)
k
a-~C [ *
0 0 1 5— t1 - (q+ z)p
- \,cpt
A, #0 0 ! 22 41 - la+ S -
1 € 5 gt (1-2))p

A, {a-c)
0 A, 20 L1 ‘9“> z 2 c
2 - € L-r o\ ! *<q+ -2->p

-\,cpt \,(a~c)
1 - 2 -
M FO| A, 40 e (].—E Pt) (1-x2)<iz_‘i>+1 —{q+%(1-)\1ﬂp

In effect, this theorem states that Eq. (1. 9), obtained by Braun for the weight-

ing function € -2bt , is identical to the results given by Eq. (3. 4), provided, of course,

it is understood that this is only true for the set with unity asymptotic-order and evenly-

spaced poles - - where b = My cp

2

* 0< q< A.O. (d}k) +k -1, and is integral
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Armstrong' s Example.

In a Letter to the Editor2 appearing in the I. R\ E. Transactions on Circuit Theory,

Armstrong compares the integrals

) 3 |[ ]‘2 (3. 9)
[ e - wae Ty (a3eha= TGN Tt2)
o 2(2+n) Tn+4) T(n+3) 70
and
-t -t
[elt-eDeg e mar =5 (3.10)
from which he concludes that a suitable representation for the elements q,k (t) is
3 ‘|1 2
k k +1 2 + 3 -t -
bt = (pi | Ledlet2) (o b 3) A CR T t) (3.11)
2
It is easy to show from Eqs. (3.1), (3.4), (3.6), (3.10), and (3.11) that this
example is the special case
- - - = = 3.12
a=4, ¢c=3, p=1, )‘Z_l’and)‘l"f ( )

It is interesting to note that by choosing Ay = 1 Armstrong has constructed a
set of orthonormalized exponentials where A, O. (@k) = 1. This set, however, is
orthonormal with respect to the weighting function € ti-e —t) which is a more

2z used., Armstrong s .

1

complicated weighting function than the exponential weight Braun
weighting function emphasizes a region of time in the vicinity of its maximum, which

occurs at t = 0.693 second,
max.

From Table 3. 2,1 it is seen that the poles of Armstrong' s set occur at - {g + 1),

0< g< k: the first pole, e being at - 1.
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3.3, A Design Procedure for Constructing the q;k(t) .

For convenience, Eq. (3.4), for the elements cbk (t), is repeated below.

“(1-n,) SEe
gl = (0 LB TR T P
P

(12,0 255 .
2 7T :fk(a’c;e_pt) (3.4)

In order to carry out the numerical computations indicated in Eq. (3. 4) one must some-
how choose values for the constants a, c, p, )\1 and >\2 . In this section, one procedure
for determining these constants, from a set of specifications on both w(t}, in Eq. (3. 6),

and ¢k(t), in Eq. (3. 4), is developed,

(2) First-pole location.

From the pole-location theorem, Theorem 2G, it can be shown that the first

pole, L of cbk (s) will lie along the negative-real axis of the s-plane at

C
a, = 3 (1—)\1)p (3.13)
It should be possible to roughly locate this pole from an inspection of the portrait of

f (t). As an example, suppose that { (t) approaches zero amplitude in about 8 seconds.

It is safe to assume, then, that if a single term in f (t) contributed the 8 second response
- /2t

it would be of the form € . Based upon this assumption one might choose

a = l .
o 2

(b) Specification of p.

It has been shown in the pole-location theorem, Theorem 2G, that the pole-
spacing of the poles of <‘I:vk (s) exactly equals p. p must be chosen a priori based upon
a consideration of the accuracy required of the approximation fa (t). It can be shown
that choosing one value of p over another affects the rate of convergence of £_(t) as
measured by the IEZ numeric. For example, it may take 3 terms in fa(t)

[fa(t) = G0 q;o(t) + C1 c[)l(t) + G2 4)2 (t):l with p = P before the integral-squared error
numeric is less than or equal to some pre-accepted accuracy level, while it may only
require 2 terms in fa(t) with p = p, , before the integral-squared error numeric is
less than or equal to the same pre-accepted accuracy level. It has been found that
choosing the value of p such that the poles of & (s), and consequently the poles of
Fa(s), lie in the vicinity of the poles of F(s) and surround the poles of F(s) leads to
approximations that converge very rapidly, Naturally, this choice of p depends upon

1
the analysts understanding of the dynamics of the system being studied.
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(c) Specification of A, O. (Fa) .

It has been shown that specifying A, O. (Fa) is equivalent to specifying
A. O, (@k), and that

A 0. (3) = (L- 1) a_25> +1 : (3.14)

In general, A,O. (Fa) must be stated a priori. For systems of low asymptotic-
order this is not too difficult to do. One need only look at the portrait of f(t) in order
to determine whether or not f(o) and/or £(1) (o) are zero. On the other hand, it is
usually impossible to determine directly from £(t) the asymptotic-order of systems of
high asymptotic-order, In these cases, one may have to resort to a rather detailed
preliminary analysis of the system involving, perhaps, high-frequency testing, since

the asymptotic-order is related to the high-frequency behavior of a system,

The determination of the asymptotic-order is probably the most difficult problem
that the analyst faces, Much more work needs to be done in the areas of experimental
and analytical methods useful in the practical determination of the asymptotic-order

of a system.

(d) Design of the weighting function.

The constants xlc and )‘Z (a-c) in Eq. (3.6), which is repeated below for con-

venience, must be determined.
-\, cpt oot A2 (a-c)
wit) = € 1-¢ P (3. 6)

It has already been pointed out that for

xlc = k0
p = kl (3. 7)
and )\2 (a-c) = k2

the design of Eq. (3. 6) is identical to the design of

k
-k Kyt -kt 2
wit) = ¢ ° l1-¢ (3.15)

which was studied in Chapter 2. The design procedure developed in that chapter must

be modified in this case to accommodate the requirement that p be specified a priori
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[step (b) on Page 51]. The procedure is outlined below, First the specifications
on w(t) are stated: '

1. ]‘<1 is specified at the outset as the spacing of the poles of & (s).

2, tmax , in Eq. (2. 4), is chosen so that w(t) emphasizes a region of time
necessary to effect the maximum emphasis of £{t), over that same region of time.

It is designated ts -

3. w(t) must approach zero in 4 T ¢ seconds (see page 35) for a more com-
plete discussion o,é the choice of Ts ).

Procedure for designing w(t).

Based upon the above specifications on w(t), calculate

1. kl = p (3.17)
1
2. _ko = —st (3.18)
Pts
€ -1
3. kZ = Ty (3.19)

4, Evaluate AT from Eq. (2.8) in order to determine w(t)' s width, If,
for example, AT which is repeated'beiow for cohvenience,

2
2 k™ 4 2k0k2+k2+ﬁ2(4k0 +4kok2+k2)

3
¥ 2k K, +k, -/kz(ako Fak Kk, 4 k)

1
AT = k—ln

1 2 k

(2.8)

O o N

tstoo small, decrease k., , and, with k, and t fixed, re-evaluate k_ and v using
2 1 max., o}

Theorem 4.

Designing w(t) by this method one determines the constants ko and kZ’ as

desired. Substituting the results of steps (a) through (d) into Eqgs. (3.7), (3.13), and

(3.14) one is able to determine the four constants c, )\1, a, and )\2 uniquely.
2 o
c = ko + 5 (3.20)
1
)‘1 = e _ (3.21)
1+ o
Pk



(3.22)

(3.23)
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3.4 Summary.

It has been the purpose of this chapter to present a general method fo. con-
structing sets of orthonormalized exponentials so that these sets may then be used
as the approximants in the identification problem. By introducing the classical
Jacobi Polynomials one has been led to a recursion equation in the time-domain for
determining the elements of the exponential set, In particular, these elements have

the properties that,

kK, t
1. they are orthonormal with respect to the weighting function € o'l %
k
< -k t> 2 "
1
l-¢ ,
}

2. their Laplace Transform!s may be of any desired asymptotic-order, and
3. their poles lie along the negative-real axis of the s-plane and are equally

spaced.
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CHAPTER 4. THE CHOICE OF A SUITABLE ERROR CRITERION

4,1 Introduction

Thus far, the discussions in Chapters 1 .and 3 have considered the approxi-
mation of a function, f(t), in an integral-squared sense. It was pointed out in those

chapters that the addition of more and more terms to the approximation fa (t) =
m

kz 0 Ck by (t) resulted in an approximation that fitted f {t) closer and closer.

It has been mentlioned that, in many circumstances, a close fit between fa(t)
and f(t) is not the only measure of performance that must be satisfied by the approxi-
mation. In Fig. 4.1.1 fa(t) represents the identification of a plant, f(t), located in
the forward path of a positional servomechanism. The characterization of the plant
by fa(t) is merely the first step in a study of the closed-loop system. Ideally, it would

be desirable for the results of such a study to agree in some way with the actual results

t (t) % (t)
f(t) C( )\ T fa(t) [of .

(a) {b)

Figure 4.1.1. A single-loop feedback system in which £(t}, in (a),
represents the plants actual characteristics while fa(t), in (b),
approximates these characteristics.

that would have been obtained had £(t) been known and used in the analyses,

One may, for example, be interested in performing a stability analysis on the
closed-loop system. Two types of problems occur in this case, The first can be called

the absolute-stability problem and has to do with whether or not the system ever

becomes unstable and for what values of gain, K, it does so. Here it must be assumed
thatK takes on all values. Practically speaking, if the actual plant, f(t}, causes the

closed-loop system to become unstable for gain K, it would seem desirable to have the

}

approximate plant indicate a similar behavior, within a certain allowable margin of

exrror.

The second type of problem can be called the relative-stability problem. Here

one is interested in the behavior of the closed-loop response as K varies over some
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known finite rahge of values. Is c(t) always overdamped or underdamped for the
range of K of interest, or is it overdamped for some values of K and underdamped for
others? These are some of the questions that a relative;stabilit}'r analysis answers.
If, for example, the dynamics of the actual plant cause c(t) to be underdamped for

K1 < K £ KZ then it would be desirable to have the approximate plant indicate a

similar behavior over this range of K, again within an allowable margin of error.

Some of the techniques applicable to both types of stability analysis utilize
the frequency response of the plant (Nyquist-polar and Bode-logarithmic plots, for
example). F(jw) can be found analytically if f(t) is known (which, of course, is not
the case here, since f (t) is being approximated), or experimentally, if the plant is
available for frequency-response measurements. In any event, it also appears neces-
sary to have some correspondence between both the magnitude and the phase of
E‘a (jw) and of F (jw) over some range of w if Fa (jw) is to predict the stability of the

closed-loop system correctly.

Tigure 4,1. 2 summarizes some of the performance criteria used by the author
for choosing the functions that best approximate the piant f{t). These are by no means
the only measures of performance that can be chosen and, in some circumstances,
they may not be appropo at all. We scc»tt"’1 summarizes the difficulties of choosing a
performance measure when he states: "The ultimate decision of what constitutés good
performance is based upon human judgement or even personal opinion . . . . the end
result is in the nature of a hit or a miss ., . . It is not possible in a general way to

legislate for all cases, and the field must be narrowed. "

There is no reason to assume that the IEZ criterion should lead to approxi-
mations which simultaneously minimize the IE2 and the performance criteria of
Fig, 4.1.2.

The purpose of this chapter is to present the details and the results of a study
carried out to determine which error criteria (many of which are well establiched in
the field of Automatic Control) out of a selected group of eleven lead to approximations
which best approximate £(t) - - best in the sense that these approximations satisf{y one
or more of the performance measures listed in Fig, 4.1,2. Also of concern will be
the effects on the performance of the fa(t), as measured by these same performance
criteria, of choosing approximations of incorrect asymptotic-order, as compared to

approximations having the correct asymptotic-order,

The eleven error criteria employed in this study were subdivided into three

families of error criteria: the ITnE, ITnE2 and AE - ITAE families, where
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The best fa(t) chosen on the basis of a comparison of the closeness of

fit between the approximations and £(t).

The best £a(t) chosen on the basis of a comparison of the closeness of
fit between the ‘Fa(jw)‘ and the | F (jo)].

The best fa(t)‘ chosen on the basis of a comparison of the closeness of

fit between the fFa(jw) and the fF(j“’) .

The best fa(t) chosen on the basis of a comparison of the similarity

between the relative-stability of the closed-loop systems in Fig. 4.1.1 a

and b, for a range of loop gain, K, greater than zero.

The best fa(t) chosen on the basis of a comparison of the similarity
between the absolute-stability of the closed-loop systems in Fig.

4.1.1 2 and b, for a range of loop gain, K, greater than zero.

The best fa(t) chosen on the basis of a comparison of the similarity
between the absolute-stability of the closed-loop systems in Fig.

4.1.1 a2 and b, for a range of locp gain, K, less than zero.

Figure 4.1.2. Performance measures used in determining
optimum approximations.

o0
n n
IT"E = f €~ 1) dt (4.1)
(o]
0
Tt EY = f (-1 A (4.2)
o
E g | 4.3)"
A_u,—mtax If—al {4.3)
and
o0
IT"AE = [ " |£ - £,] at (4.4)
o

% The maximum is taken with respect to time as indicated by the t under max,
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2

Of particular interest to this study were the IE, ITE, ITZE, IT_I/ZE, IEZ, ITE
IT—]'/ZEZ, AE, IAE, ITAE, and I’.I‘—l/2 AE criteria. This choice of error criteria was
motivated in part by the works of Graham and Lathroplz, We scott31, HandaM, Newton
et al , and Walkovitch et a130 who investigated various means for designing the system
in Fig. 4.1.1 a, Their designs were based upon minimizing such measures of the
error e{t) = »(t) - c(t) as the IE, ITE, ITZE, IEZ, ITEZ, AE, IAE, and ITAE criteria.
It is interesting to note their common results in the light of what has been said on
page 57 about the IE2 criterion and the choice of the best fa(t)' These results are

stated below.

(1) While the IE crltcrmn is analytically easier to handle it does not
lead to the most selective design™ or to the synthesis of a system having the best
closed-loop performance (in terms of rise-time, bandwidth, etc.), and

(2) The optimal designs occur when the measure of e(t) is heavily weighted
for large time thus placing emphasis on "late" errors.

It is hoped that our study will lead to a similar set of conclusions. In particu-

lar, answers will be sought for the following 14 questions.

1. In each family of error criteria, which error criterion leads to approximations
of best fit between [ (t) and I{t}?

2. In each family of error criteria, which error criterion leads to approximations
of best fit between |F (Jw}] and |F(Jw)]’?

3 In each family of error criteria, wh).ch error criterion leads to approximations
of best fit between /F {Jw) and /F(_]w

4, In each family of error criteria, which error criterion leads to approximations
having the closest relative-stability (K > 0) correspondence between Fa(s) and F (s) ?

5. in each family of error criteria, which error criterion leads to approximations
having the closest absolute - stability (K > 0) correspondence between F (s) and
F(s)?

6, In each family of error criteria, which error criterion leads to optimum
approximations - - oplimum in the sense of one or more of the performance
measures listed in Fig, 4.1.2.7?

7. From the eleven error criteria, which error criterion leads to approximations
of best fit between f (t) and f(t) ?

8, From the eleven error criteria, which error criterion leads to approximations
of best fit between “Fa(jw ) and |F (jw)‘[ ?

POy

* By "selective is meant that a minimum value of the measure of e {t) is sharp
as system parameters are varied,
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9. From the eleven error criteria, which error criterion leads to approximations
of best fit between /Fa(jm and/F Jw) ?

10, From the eleven error criteria, which error criterion ieads to approximations
having the closest relative - stabilily (K > 0) correspondence between Fa(s) and F(s)?

11. From the eleven error criteria, which error criterion leads to approximations
having the closest absolute - stability (K > 0) correspondente between Fa(s) and F(s) ?

12, From the eleven error criteria, which error criterion leads to optimum approxi-
mations - - optimum in the sense of one or more of the performance measures listed
in Fig. 4.1.2, ?

13, Do the error criteria in the answers to the twelve preceding questions have any-
thing in common, such ag the same weighting function?

14. Does choosing an approximation of incorrect asymptotic-order have a noticeable
affect on the relative - and absolute - stability of the closed-loop system?

The answers to these 14 questions will be considered in Section 4.4 and will be
based upon the analyses discussed in Section 4. 3.

Before the eleven error criteria are discussed in greater detail let us reemphasize
the type of functions under study. Here,as in the preceding chapters, all conclusions

will be based upon approximations of the function
N - my t
f(t) = Z A € » my real (4.5)
k=0
by

m
£.(6) = kz=o C b (0 (4. 6)

where the L (t) are linear combinations of exponential functions. In order to utilize
the theory developed in the preceding chapters, for the IEZ criterion, the poles of the

d)k {s) are chosen from an equally-spaced set. In this case, the ¢k (t) become

k -1 )
- Bt g-1 ~{(v +2)pt
Py (£) = E B, € P Z (- 1)12 € ( Ip (4.7)
v=0 =0 £
where € pt is a factor of by (t), ~ B being the first pole of 3 (s),

p is the pole-spacing of the B (s) and subsequently it is also the
pole-spacing of Fa(s), and

g is A. O, (@k) which is the same as A, O, (Fa) .
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If the by (t) are orthonormalized, as must be the case in the ITHEZ family, the con-
stants B will be found using the orthonormalization procédure. If, on the other hand,
no such orthonormalization is utilized, as in the approximations involving the IR
and AE - IT"AE families, the B, will eventually be absorbed into the coefficients,

Ck’ of Eq. (4.6); hence, in these cases, all of the Bv , in Eq. (4.7) will be set equal

to unity, in order to simplify the algebra in the calculation of the Ck .

In any event, the coefficients C, in Eq. (4. 6) are found by 'minimizing one of the

error criteria in Eqs. (4.1), (4.2), (4. 3), or (4.4). These error criteria and the

calculation of the Ck are discussed in greater detail in the following section.




62

4.2 The Error Criteria

In this section the eleven error criteria are phrased in terms of the functional
notation used in Chapter I in order to obtain a graphical account of the effects the

various weighting functions have on these criteria,
ng2 :
(a) IT E* Family

Equation (4.2} can be expressed in functional notation by letting " (£ - fa)z:

[¢(e), tn]’ where e = £ - £ and y(e) = 2

o0
Here F = f dt.
o

The second column of Fig. 4.2.1 summarizes the effects of the three weighting
functions 1, t, and t 1/2 on eZ (t) while the last column illustrates exactly what is
meant by the IEZ , ITEZ, and IT" 1/2 E2 measures, Figure 4, 2.2 details the pro-

jective geometric techniques used for obtaining the entries in Fig. 4.2.1.

One of the major problems facing the analyst when using the I’I‘nE2 criteria
in signal analysis is the determination of the constants Bv in Eq. (4.7) via an or;ho-
normalization procedure. This problem has already been resolved for n = 0 (IE”) in
the first three chapters of the dissertation. Unfortunately, there is no simple way of
.extending these results to other values of n. For values of n not equal to zero one can
always fall back upon Eq., (1.3), which is repeated below as Eq. (4. 9),

[o0]
fo " ¢, (1) b; (t) dt = 55 (4. 9)

and carry out the orthonormalization of the ¢k(t) in Eq. (4.7) by first specifying P and
the pole spacing p. This procedure must be carried out anew every time one chooses
to use a different set of poles in B (s), for doing this,naturally,implies a change in f
and/or p in Eq. (4. 7).

(b) ITYE Family

Equation (4. 1) can be rewritten in terms of functional notation as

0
IT°E = £ [¢(e), tn] at = F[e, tn] (4.10)
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0
where e = f - fa, Jle) = e, and F = f dt. Figure 4.2, 3 summarizes the IT"E
family forn= 0, 1, 2, and - 1/2 . ©

Substituting Eqs. (4, 6) and (4. 7) into Eq. (4.10), it is straightforward to show
that the minimization of Eq. (4.10) results in a single equation in the {m + 1) unknowns,
c,C

o Pt 3

Cm . This condition occurs because the minimum value of Eq. {4.10)
can actually be chosen to be zero; hence, one needs m additional equations if one is to

obtain a unique solution for the (m + 1) Ck. These might be given in the form of con-
straints between fa(t) and f(t), and the derivatives of fa(t) and f(t), at various values

of time,

It is important to remember that the minimization of an ITnE criterion is not

- . m
sufficient for determining the constants in the approximation fa(t‘) = z Ck by (t) of £(t).
k=0

(c) AE - ITPAE Family

With[tp(e), tn] = t° |f-£,], e=f-£, andy(e) = |e| Eqs, (4,3) and (4,4)

can be written as

AE = roax [Lp(e)] (4.1

0
1M AE = [ [Lp(e), tn] dt = F[le[, tn] (4.12)
o
The dependence of these criteria on |e| and t" is illustrated in Figure 4,2.4 for

n=0,1 and - 1/2‘.

The minimization of Eqs. (4.11) and (4.12) to find the (m + 1) constants
c,C

o 1o
due to the fact that cne has chosen to work with a function of the absolute value of the

Cm in the approximation Eq. (4. 6) can not be done analytically. This is

error e{t) which is non-analytic. To be able to carry out the integration in Eq. (4.12)

by hand, one would have to know the internal zero crossings of e(t) along the t-axis.
Solving for these zeros is usually an extremely difficult tadsk. The determination of the
(m + 1) coefficients from the minimization of Eq. (4.1l) is an even more difficult task
than the determination of the (m + 1) constants in Eq. (4.12). This is due to the ad -
ditional maximization of ]e] with respect to t, in Eq. (4.1l). A trial and error (scanning)
procedure for the minimization of the AE and IT"AE criteria on a digital computer is
discussed in Appendix C. There, the problems of finding the coefficients in Eqs. (4.11)
and (4.12) reduce to the development of optimal computer programs and scanning

techniques.
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Based upon the discussions in this section and in Section 4.1, one is now in
2 position to set up a problem which, hopefully, will provide the answers to the ques-

tions posed at the end of Section 4.1. This is done in the next section.
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4. 3. The Error Problem

In order to answer the questions posed at the end of Section 4,1, the functions
£(t) listed in the first column of Table 4. 3.1 are approximated by the functions in the
last column of that table. Figure 4.3.1 summarizes the three major steps taken in

the analysis. These steps are:

Determina-
tion

of the
coefficients

C

Data
processing

Data
evaluation

k

Figure 4.3.1. Summary of the three major steps taken in the
error problem analysis.

(a) Determination of the coefficients Ck .

Corresponding to each entry in Table 4.3.1 eleven approximations were deter-
mined, one for each of the eleven error criteria, The calculation of the Ck , which
has already been discussed in some detail in Section 4.2 is summarized in the flow
chart of Figure 4. 3.2, A summary of the numerical values for the Ck, calculated as
indicated on Fig, 4. 3.2, corresponding to the approximations listed in Table 4, 3.1, is
presented in Appendix D. Two problems worthy of further discussion arose during

the calculation of the Ck .

The first of these has to do with the problem of roundoff effects due to keeping
only a finite number of decimal places in a computation. It was found that these effects
are particularly severe for the calculations of the Ck within the ITnE2 family. A desk
calculator was used to evaluate these constants and the results were rounded off to
four places during the calculations, which was well above the accuracy requirements
of other parts of the problem. Four places, although quite sufficient for the Ck' is
not nearly good enough for the calculations of the ITnE2 numeric in the three-term
approximations. In many cases negative values are obtained for these errors! The

inadmissability of such results is obvious from the definition of the I'I‘nE2 criteria in
Eq. (4.2).

Hamming 13 discusses a number of theories that have been developed by numeri-
cal analysts dealing with estimates of computational accuracies before a computation
. .13

is begun. The reader will find maay enlightening discussions of (to quote Hamming ")

"the round-off noise problem" in the textbook written by Hamming.
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The first of these has to do with the problem of roundoff effects due to keeping
only a finite number of decimal places in a computation. It was found that these effects
are particularly severe for the calculations of the Ck within the ITnE2 family. A desk
calculator was used to evaluate these constants and the results were rounded off to
four places during the calculations, which was well above the accuracy requirements
of other parts of the problem, Four places, although quite sufficient for the Ck’ is
not nearly good enough for the calculations of the I’I‘nE2 nume ric in the three-term
approximations. In many cases negative values are obtained for these errors! The
inadmissability of such results is obvious from the definition of the ITnE2 criteria in
Eq. (4.2).

Hamming 13 discusses a number of theories that have been developed by numeri-
cal analysts dealing with estimates of computational accuracies before a computation
. .13

is begun. The reader will find maay enlightening discussions of {to quote Hamming" ")

"the round-off noise problem" in the textbook written by Hamming.
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The second problem has to do with the limitations of the IBM 650 computer
which was the digital computer used to evaluate the constants, Ck’ within the AE-~
ITMAE family of error criteria. It is not feasible to perform a three-dimensional scan
on the 650 due to the prohibitive length of time such a scan requiree, The machine is
not fast enough for such a program; thus, most of the conclusions in this chapter are

based upon the one and the two term approximations,

(b) Data Processing

In order to determine which error criteria led to the best approximations as
discussed in Section 4.1, the eleven approximations corresponding to each entry in
Table 4. 3.1 were processed in the manner indicated on the flow chart in Figure 4. 3, 3.

A brief explanation of the calculations listed on Fig, 4. 3. 3. that are not self-explanatory
follows.

i}  Magnitude-and Phase-Error Calculations:

The magnitude and phase angle of F{jw) and F, (jo) were compared at
seven discrete values ofw {w = 0, 1, 2, 3, 4, 5, and 10 rad./sec. } by forming the magni-
tude and phase error functions, Eyv (w) and E¢ {(w) respectively. These calculations
were carried out on the IBM 650 computer. The seven values ofw (w = 0, 1, 2, 3, 4,

5, and 10 rad. /sec.) were chosen so that a comparison of the low-midband -, and high-
frequency [' high" in relation to the location of the two poles of <l (f(t) e —4t} )
at s = -2 and s = -4, and to the location of the two poles and single zero of

,,({f(t) = e %y —4t} , ats= -2, -4 and 5 = -3 respectively] behavior of the magnitude
and phase angle of F(jw) and F, (jw) could be made,

ii) Absolute-Stability Analysis:

Root-locus techniques were used to determine whether or not the system

in Fig. 4.1.1, which is repeated below as Fig. 4.3.4, became unstable when the actual

+ + (¢
x{t) e (o) g(t)r z(t) . [ c(t))

1 )

(@) ‘ (b)

Figure 4.3.4. A single-loop feedback system in which £(t}, in (a),
represents the plants actual characteristics while fa(t), in (b),
approximates these characteristics.
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plant was replaced by es.h one of the eleven approximations to the plant. If the system
became unstable the gain at which instability occurred was also recorded. This was
done for both positive and negative values of gain K. Figure 4.3.5 summarizes the
stability behavior of the system containing the actual plants under study; that is, for

f(t) = € 2t ¢ —4t, and for £(t) = ¢ -2t e 4t

iii) Relative-Stability Analysis:

By using root-locus techniques it was possible to determine the loop-gain K
required for the closed-loop response, c(t) [see Fig. 4.3.4 ,|to behave in some pre-
scribed manner, e.g. ¢ = 0.707. This was done for each one of the eleven one -,
two -, and three - term approximations listed in Appendix D, and was also done for
the actual plant, £(t), in order that the loop gain necessary for the actlual system to
achieve a prescribed value of damping ({) could be compared to the loop gain necessary
for the approximate system to achieve the same value of {. The purpose of such
analyses was to determine which error criteria led to approximations shose root loci
correspond closely to the loci of the actual plant over a reasonable range of gain K,
Stated another way, the purpose of the analyses was to determine which error criteria
led to approximations whose closed-loop response corresponded closely to the closed-

loop response of the actual plant over a reasonable range of K.

(c) Data Evaluation

The processed approximations were evaluated as indicated in Fig, 4.3.6 in
order to determine which error criterion or which groups of criteria, yield approxi-
mations satisfying the performance measures listed therein, This was done in two

ways,

First, the eleven approximations were split up into three families correspond-
ing to the three families of error criteria from which they had been derived. The data
was then evaluated by comparing only the approximations from within a family of error
criteria. This was done in order to determine which error criterion {or criteria),
from within a family of error criteria, leads (lead) to optimum approximations - -
optimum in the sense that the fa. (t) satisfy any one or more of the performance

measures listed in Fig. 4. 3.6.

As an example, consider the determination of the error criterion (or criteria)
in the ITVE family which leads (lead) to approximations having the "best {it between
fa (t) and £(t)". For each of the one-and two-term approximations listed in Table
4. 3,1 four approximations were calculated, one corresponding to each of the four error

criteria in the IT™E family. These approximations are summarized in Appendix D.




75

rity + clt)
— K f(t) —
- !
(a})
jw jw
[ f(t)=¢-2le~# [
K=o =-4
g ’:/*,‘L —- ¢ * — >
-4 -2 -4 -2
Y
(b)K20 (c)KgO
jw _ _ jw
) fih)ze 2 e )
/K=—2
———— e N——— ——M—*———‘* o
-4 -3 -2 -4 -3 -2
(d)K20 {e) K€ O

Figure 4.%.5. Stability analysis of the closed-loop system in

(a) for {{t) = ¢

£ = e "2t e it

€

-2t -4t
- €

» (b) K> 0 and (c) K <0 and for |
, (d)K_>_Oand(e)K_<_0.

MR.L-i9134



11

GRSl 'YW

‘suonewxaxdde pesssd0ad syl jo OWRNTRAD A3 pue {1) g MU

suopzewiixoxdde ay1 yo SBuiesonoad sy Sune

“@J@ESGMEE «:um@ @uwmm _

@d@ WU pue @ 1sag _

_r ] @ pur o 15ag _

| wnunnpy pue EEL] “
{ ® ©rs0u

@ LUTRTIUT I Tnd

©
g
q

©
L‘,
°
0

o3
|
o3
v
e liuct
¥
jaJic
\ 4
I
RIRC! 1
Y
S 3
1 crezcery cshy Y
. A0S Y f
i wuing 03 |
4
f
e lc
Aﬁ
- _
5F L
4
- I
5E L
4
]
>3 L
Y
e
A
{*D =) ='raa:ariny a0

(2); pue .:mu uasmieg 3135 152g

0 <X xotamyag

A1r1qe15- 2A1IRI9Y 1599

0 >3 Iowaeyag

Arpigeig-smesqy 1sag

0 < M aotaeyag

Aiiqeig-sinjosqy 1sag

_ (M0 A‘M wInwTut

UOLIBIID J0IIF

{mi) ~ "3 wmunmpy

=y
<= %
&

1]
"9 ¢y sxndry

SIPUT 313BYD MOLT

xandwoy (23St

3Yj Uo ‘1 JO SANIRA H

e {3) m.« Jo uonenjeaxy

Moeqpesd sanefon “
siskjeuy Kitjiqeig-sateiay _ N
“ ¥—
NOEqPesJ salntsod \m ~
I - = — I | s) °5
¥orqpasd saneBoN _
— - 0=
[f ] T i — 2% I
—’ stsdyeuy ESENUm.quo.nnﬂTTI M3 e u | "D
T TTSushEInSES [eRueiy T T I_
| {(m0)e ° |
e . = a
(") e - (m)o }
i
uoneINd(E) 1011F-aseqd _
o0 aj - | ©*®
= Nz s) a1
[0 %3] - (0 g] . o
| sy a
_ uorieINOIRY X0I1F-spmatufey | uonETIEAY

W T ——

zayndwro) jendig



77

Each set of four approximations was then compared to f(t) at the 19 values of t at
which these functions had been evaluated. Based upon this comf)arison the function
(or functions) that best approximated f(t), in the sense of the best fit between fa(t) and
f(t), was (were) found., Corresponding to this function {or these functions) was one of
the four error criteria (or more than one) within the IT'E family., The result of in-
terest is the frequency (number of times) with which an error criterion within the
IT'E family leads to an optimum fa (t} - - optimum in the sense of the closest fit be-

tween fa(t)‘ and f(t) .
!
The frequency with which an error criterion leads to optimum approximations --

optimum in the sense of any one or more of the performance measures listed in Fig.
4,3.6, versus error criteria, is tabulated in Appendix E. Tables E.1, E. 2, E, 3, and
E.4 summarize the frequency with which an error criterion leads to optimum approxi-
mations when the sample-space is restricted to the error criteria from within a family
of error criteria, The frequency, that a particular error criterion produces the closest
fit bet;:'zeen fa (t} and £(t), that a particular error criterion produces the closest fit
between |Fa (j“’)l and |F (jw)l, that a particular error criterion produces the closest

fit between /Fa (jw) and /F(jw), that a particular error criterion preduces the

closest relative-stability correspondence between Fa(s) and F (s), and, that a particular
error criterion produces the closest absolute-stability correspondence between Fa(‘s)
and F (s), is plotted versus error criteria in Figures 4.3.7a, 4.3.8a, 4.3.9a, 4. 3.10a,
and 4. 3.1lla respectively, These plots were obtained by adding the tabulated data in
Tables E. 1, E. 2, E. 3, and E4 for each one of the above performance measures and
for each error criterion; these sums were then plotted versus their respective error

criterion (for a particular performance measure).

Returning to the example of the determination of the error criterion (or criteria)
in the IT"E family which leads (lead) to approximations having the "best fit between
1/2
E
criterion leads to more approximations having the closest fit between fa(t) and £(t) than

do the I1E, ITE, and ITZE criteria.

fa(t) and f(t)", one is able to conclude, upon inspection of Fig. 4.3.7a, that the IT~

A summary of the conclusions which one is able to draw from Figures 4. 3. 7a,

4.3,8a, 4,3.92, 4.3.10a, and 4. 3.1la is presented in the next section, Section 4, 4.

Figures 4.3.12a, 4.3.13a, 4.3,14a, and 4. 3.15a present an alternate display
of the results tabulated in Tables E.1, E. 2, E. 3, and E, 4 respectively. These figures
were obtained by first summing the numbers in each error criterion column, in each
one of the tables, E.1, E.2, E, 3, and E. 4 respectively, and by then plotting each one

of these sums versus its respective error criterion. The sum of these numbers
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corresponds to the frequency with which an error criterion leads to an optimum fa(t) --
optimum in the sense of any one or more of the performance measures listed in Fig.
4.3.6. Figure 4.3.16 is an additive summary of Figs. 4.3.12a, 4.3.13a, 4. 3, 4a,

and 4. 3.15a, The important conclusions drawn from all of these figures are discussed

in the next section.

In the second method of data evaluation, the data was evaluated by comparing
the approximations from all of the error criteria. This was done in order to determine
which error criterion (or criteria) leads (lead) to optimum approximations - - optimum
in the sense that the fa(t) satisfy any one or more of the performance measures listed

in Fig. 4.3.6.

As an example, consider the determination of the error criterion (criteria)
which leads (lead) to approximations having the "best fit between fa(t) and f£(t)" . For
each of the one - and two-term approximations listed in Table 4,3,1 eleven approxima-
tions were calculated, one corresponding to each of the eléven selected error criteria
(E, 1TE, IT%E, 17°Y %5, 12, 17E2, 17 Y252, AR, 1AE, ITAE, 17"Y2AE). These
approximations are summarized in Appendix D. Each set of eleven approximations was
thén compared to f(t) at the 19 values of t at which these functions had been evaluated.
Based upon this comparison the function (or functions) that best approximated £(t), in
the sense of the best {it between fa(t) and f(t), was (were) found. Corresponding to this
function {or these functions) was one of the eleven error criteria {(or more than one),
The result of interest is the frequency (number of times) with which an error criterion
leads to an optimum fa(t) - - optimum in the sense of the closest fit between fa(t) and
£(t).

Tables E.5, E.6, E. 7, and E. 8 summarize the frequency with which an error
criterion leads to optimurn approximations when the sample-space includes all eleven
error criteria. The frequency, that a particular error criterion produces the closest
fit between fa(t) and £(t), that a particular error criterion produces the closest fit be-
tween ‘Fa (jw)l and “F(jm)], that a particular error criterion produces the closest

fit between/Fa(jw) and /F (jw) , that a particular error criterion produces the closest

relative - stability correspondence between Fa(s)‘ and F(s), and, that a particular error
criterion produces the closest absolute - stability correspondence between Fa(s) and
F(s), is plotted versus error criteria in Figures 4. 3. 7b, 4.3.8b, 4. 3.9b, 4, 3,10b, and
4.3.1lb respectively. These plots were obtained by adding the tabulated data in Tables
E.5, E.6, E,7, and E. 8 for each one of the above performance measures and for each
error criterion; these sums were then plotted versus their respective error criterion

(for a particular performance measure).
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Returning to the example of the determination of the error criterion (or criteria)
which leads (lead) to approximations having the "best fit between £;(t) and £(t)" , one
is able to conclude, upon inspection of Fig. 4.3.7b, that the 1’1‘-1/2 AE and IT—1 2E
criteria lead to more approximations having the closest fit between fa(t) and f(t) than

do the other nine error criteria.

A summary of the conclusions which one is able to draw from Figures 4. 3. 7b,

4.3.8b, 4.3.9b, 4.3.10b, and 4. 3.11lb is presented in the next section, Section 4. 4.

Figures 4. 3,12b, 4. 3.13b, 4,3,14b, and 4. 3.15b present an alternate display
of the results tabulated in Tables E.5, E. 6, E. 7, and E, 8 respectively. These figures
were obtained by first summing the numbers in each error criterion column, in each
one of the tables, E.5, E. 6, E.7, and E. 8 respectively, and by then plotting each one
of these sums versus its respective error criterion, The sum of these numbers corre-
sponds to the frequency with which an error criterion leads to an optimum £t - -
optimum in the sense of any one or more of the performance measures listed in Fig.
4,3,6, Fig, 4.3.17 is an additive summary of Figs, 4.3.12b, 4. 3.13b, 4.3.14b, and
4,3.15b, The important conclusions drawn from all of these figures are discussed in

the next section,

While it was not possible to calculate the three-term approximations for the
AE, IAE, ITAE, and I'I'_l/2 AE criteria, due to the limitations of the IBM 650 comupter,
it was possible to calculate the three-term approximations, listed in Table 4. 3.1, for
the other seven error criteria. The results of these calculations can be found in
Appendix D. These approximations were processed (see Fig. 4.3, 3) and the re suléing
data was then evaluated by using the second method for data evaluation, described on
page 78. Naturally, the sample - space, in this case, consists only of seven
error criteria: IE, ITE, 1T2E, I1T-Y%E, 1E%, ITES, and 1T"Y/2E2 criteria. Table
E. 9 summarizes the frequency with which an error criterion leads to optimum three-
term approximations when the sample-space includes these seven error criteria.
Figure 4. 3.18 presents a graphical summary of Table E. 9. It was obtained by first
sumining the numbers in each error criterion column in Table E. 9, and by then plotting
each one of these sums versus its respective error criterion, This sum corresponds
to the frequency with which an error criterion leads to optimum three-term fa (t) - -
optimum in the sense of any one or more of the performance measures listed in
Fig. 4.3.6.
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restricted to a family of error criteria (indicated by dashed
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Figure 4.3,13, Frequency (number of times), that a particular error
criterion led to an optimum f_ {t) [ A. O, (.Fa) =2| - - optimum in
the sense that the f_(t) satisfied any one or more of the performance
criteria listed on Fig. 4.3.6, versus error criteria. Here f(t) =
€ -2t € -4t . (a) Sample-space restricted to a family of error

criteria (indicated by dashed lines); (b) sample-space included all

eleven error criteria,
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-4, 4 Results

The results of this study are presented below as answers to the fourteen ques-
tions posed at the end of Section 4.1, They were obtained from the evaluated data,
most of which is presented in tabular form in Appendix E and in graphical form in
Figs. 4.3.7 - 4.3.18,

A. Approximations of best fit between fa(t) and f(t): Within each family of error

criteria, weighting small-time heavily leads to approximations of best fit to f(t)
[If‘ig. 4, 3,7af{. More specifically, within the IT"E family of error criteria, the IT_l/ZE
criterion leads to approximations of best fit to f(t}; within the ITnEZ family of error

-1/252

criteria, the IT criterion leads to approximations of best fit to f(t), and; within

the AE - IT"AE family of error criteria, the IT—l/ZAE criterion leads to approximations

of best fit to £(t).

From the eleven selected exrror criteria, the IT—l/ZAE and the ITnl/ZE criteria
lead to approximations of best fit to £(t) [Fig. 4. 3. 713 .

B. Approximations of best fit between |F_ (jw)land |F (jw)|: Within each family

of error criteria, weighting small-time heavily leads to approximations having the
best fit between lFa (jm)' and ‘F (jw)[ (Fig. 4.3,8a), More specifically, within the
IT"E family of error criteria, the IT /7 “E criterion leads to approximations of best
fit between [Fa (jm)l and [F (ju))l; within the ITnEZ family of error criteria, the
I'I‘-‘I/ZE2 criterion leads to approximations of best fit between |F (jw)| and |F (juw)|,
and; within the AE-IT"AE family of error criteria, the IT_1 AE criterion leads to
approximations of best fit between |F_ (jw )l and |F (jw)‘ .

/2

From the eleven selected error criteria, the IT ' “E criterion leads to approxi-

mations of best fit between ‘Fa (jw)] and |F (jw)l (Fig . 4.3.8b),

C. Approximations of best fit between /FaL (jo) and /F (jw): Within the IT"E,

1TPE%. 7nd AL - ITPAE families of error criteria, the IE and IT-Y 2E, 17°Y2E?, and

AE criteria, respectively, lead to approximations of best fit between Fa (jw) and

/F (ju) [Fig, 4.3.9a].

From the eleven selected error criteria, the AE and the I.T"l/ZE? criteria lead

to approximations of best fit between/Fa {(jw) a.nd/F(jw) [Fig_ 4,3. 9b:l .
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D. Approximations having the closest relative-stability correspondence between

Fa(s) and F(s): Within the IT"E and ITnE2 families of error criteria, weight~

ing small-time heavily leads to approximations having the closest relative-stability
correspondence between Fa(s) and F(s). More specifically, within the IT™E and

ITPE? families of error criteria, the 1T~ 2E and 11T/ 252

criterion, respectively,
lead to approximations having the closest relative-stability correspondence between
Fa(s) and F({s). Within the AE-IT"AE faruily of error criteria, the AE criterion leads
to optimum approximations ~ - optimum in the sense of the closest relative-stability

correspondence between Fa(s) and F(s) [Fig. 4.3, 10a].

From the eleven selected error criteria, the AE and IT—l/ZE criteria lead to
approximations having the closest relative-stability correspondence between Fa(s) and -
F(s) [Fig. 4.3, 10b].

E. Approximations having the closest absolute-stability (K > 0) correspondence
between Fa(s) and F(s): Within the IT"E and I’I‘nE2 families of error criteria,

weighting small-time heavily leads to approximations having the closest absolute-
stability correspondence between Fa(s) and F(s). More specifically, within the IT'E
and ITnE2 families of error criteria, the IT_I/ZE and I’I‘-l/ZE2 criterion, respectively,
lead to approximations having the closest absolute-stability correspondence between
Fa(s) and F{(s). Within the AE - ITRAE family of error criteria, the AE criterion leads
to optimum approximations - - optimum in the sense of the closest absolute-stability

correspondence between Fa(s) and F(s) [Fig. 4. 3. 11a] .

From the eleven selected error criteria, the AE and I’I‘"l/ZE2 criteria lead to
approximations having the closest absolute stability correspondence between Fa(s) and
F(s)[mg. 4.3, nb].

F. Approximations which are optimum in the sense of one or more of the performance

measures listed in Fig, 4.1.2: Within the IT'E and ITnE& families of error
-1/2

criteria, the IT E and I'I‘—l/Z'E2 criterion, respectively, lead to approximations
which are optimum in the sense of one or more of the performance measures listed in
Fig, 4.1.2 (Fig. 4.3.16). It would not be fair to make a similar statement for the
I’I‘-1 2AE criterion without first explaining the extraordinarily strong showing made by

the AE criterion,

The reason, for the very strong showing made by the AE criterion, is evident
as a comparison of Egs. (4.10) and {4,11) reveals. Consider, for the moment, a two-
term approximation in which the coefficients Co and C1 have been found by a minimization

of either the AE in Eq. {4.10) or one of the criteria in the ITP AL family in Eq. (4. 11).
q Y q
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The minimization of the AE actually involves a three-dimensional computer scan of
-1/2

the Co - G, - t space while the minimization of the IT AE, for example, merely

involves a two-dimensional scan of the C, - C space yf It would appear from this

and the results of Fig. 4.3,16a that the extra dimension involved in the minimization
of the AE criterion is sufficient to enhance the selectivity of this criterion; however,
the IT-I/ZAE criterion still leads to 15% more of the " optimum approximations", on

the average, then the AE criterion does, as is borne out on (a) of Fig, 4. 3. 16.

From the eleven selected error criteria the IT_l/ZE, IT_I/ZEZ, AE, and
IT-l/ZAE criteria lead to approximations which are optimum in the scmse of one or
more of the performance measures listed in Fig, 4. 3.6. While a selectivity of error
criteria exists on the "family of error criteria level, this selectivity no longer seems
to exist when the sample-space is extended to all eleven error criteria, Based upon the
summary in Fig. 4. 3.18, for the three term approximations, and the results presented
in A through E, on the preceding pages, one is led to the conclusion that the IT—1 2E
and the AE criterion seem to be the most selective error criteria; they lead to approxi-
mations that are optimum with respect to more of the performance measures listed in

Fig, 4.3.6 then do the other nine error criteria,

G. Common properties of the error criteria in A - ¥, on the preceding pages:

The results in A-F, on the preceding 2 pages-clearly indicate that it is,” in most

cases, the same weighting function that these error criteria have in common, The im-

portant fact, however, is not that the common weight is T_%—— but rather that empha-
sizing small-time heavily leads to optimal approximations. This seems plausible,

since many of the performance measures in Fig. 4. 3.6 involve the concept of stability
which, as has been pointed out in Section 2.1, is intimately connected with high-frequency

behavior or, by the Initial Value Theorem, with small-time behavior.

H. Approximations of incorrect asymptotic-order: From the large amount of pro-

cessed and evaluated data involved in this study it was possible to conclude that, on the
average, the numerical values of the error between the ac1;ua1 loop gain necessary to
achieve a specified c{t) and the loop gain required by the approximate plant to achieve
the same closed-loop response were smaller for the approximations of correct
asymptotic-order than they were for those of incorrect asymptotic-order.

As an example, consider the plant £(t) = € -2t € "4t and the loop gain required

to cause the closed-loop response c(t), in Fig. 4. 3.4, to oscillate with a damping

% Tor an extensive discussion of multi-dimensional computer scanning, see
Appendix C.
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ratio £ = 0.707. The loop gain required of the output of the system for it to oscillate
with € = . 707, when the actual plant is embedded in the forward path in Fig. 4. 3. 4a,
is K = 5, The loop gain closest to the actual gain’ of K = 5, when A, O, (Fa) = 2 in
the system of Fig. 4.3.4b, is produced by the ITE& approximation listed in Table D. 11,
and is K = 4,63, The loop gains closest to the actual gain, when A, O, (F_) = 1 and 3,
on the other hand, are produced by the IT~1/2E and IT-l/Z .
Tables D. 4 and D.14 respectively and are K = 2.6 and K = 2, 88. In this case the

E2 approximations listed in

superiority of the approximation of correct asymptotic-order as compared to those of

incorrect asymptotic-order is quite obvious.,
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CHAPTER 5. CONCLUDING THOUGHTS AND RECOMMENDATIONS

The primary purpose of the research described in the preceding chapters was
to investigate some of the considerations which influence the choice of method for the
identification of signals in the time-domain, Particular attention has been given to
the asymptotic-order of the approximation, weighting functions, and the choice of a
suitable error criterion,

It has been shown. in Chapters 1-3, that the sets of orthonormalized exponential
approximants developed b}; Huggins”, Kautzlg, and Braun4, whose asymptotic-order,
in the s-domain, is unity, are not always applicable to the "identification" of a process
which is embedded in the forward path of a positional servomechanism. Stability con-
siderations, in many instances, necessitate the use of approximants of asymptotic-

order greater than unity; such approximants are developed in the first three chapters,

It has also been shown that weighting small-time heavily leads to approximations
(of a process) which satisfy many of the performance criteria necessary for not only a
close correlation between the approximations and the process in the time-domain but
also for a close correlation between the approximations and the process in the s-domain,
the latter correlation being very important when the identification of the process is
merely the first step in an analysis of a closed-loop servo in which the process is

embedded,

Rather than formally summarize all of the results of the preceding four chapters,
some of the problems which remain to be investigated, many of which are natural ex-

tensions of these results, shall briefly be indicated.

1.  The importance of matching the asymptotic-order of the process being
identified has been demonstrated throughout Chapters 1-4. The determination of the
asymptotic-order of a process from practical, experimental, time-domain measure-
ments made upon the process, under the assumption that the process may be repre ~
sented by a lumped-parameter model, remains one of the most challenging problems

facing the analyst.

2. The approximants developed in Chapters 1 and 3 are useful in the identifi-
cation of overdamped processes. The extension of these results to the undefdampéd,
or complex-pole case, if at all possible, would be of interest, since many systems are
indeed characterized by underdamped impulse responses. At the same time, the
feasibility of using complex-pole approximants should be investigated; they generally
lead to much greater computational difficulties, as compared to the real-pole approxi-

mations,
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3. The matrix weighting function developed in Appendix B, in connection
with the pole-spacing question, while attractive on the one hand, in that it enables
one to obtain unevenly-spaced poles in Fa(s), involves an excessive amount of compu -
tational effort, on the other hand. Might this difficulty be overcome by adapting the

matrix weighting function to a computer solution of the problem?

4. Weighting small-time heavily is important in the solution of the identifi-
cation problem in adaptive systems. The possibility of extending the discussion of the

{

-k koot ~leg t kZ
weighting function € o1 (1 -c ! > to negative values of kz would provide one
with a basis for extending the results of Chapters 1 and 3 to.northonormal exponential
approximants - - approximants which are weighted most heavily for very small time --
of any asymptotic-order. These approximations would then be consistent with the
requirements demanded in the solution of the identification problem in adaptive control

systems.

5. Based upon the "small-time" weighting results of Chapter 4, one must
ask whether or not it is possible to develop analytical solutions of the identification

problem which are based upon error criteria incorporating weights of the form
1
+ ™ ,n=2,3,4, ... . If this could be done then it might be possible to substanti-

ate (or disprove) theoretically the results of that chapter.

6. The results of Chapter 4 were based upon a set of performance measures
suited to single-loop feedback control systems. Given a particular application {network
synthesis, stability analysis, adaptive control, etc.), the determination of what consti-
tutes an optimum set of performance measures which the approximation must satisfy
in order for it to "best" represent the time signal remains to be answered, These

sets of performance measures will most likely be different for each application.

7. Based upon the results of item 6 above, one could ask what the optimum

weighting function to be used in each application should be.

8. The determination of the coefficients Ck in the approximation fa (t) =

m
E. Ck by (t), using an error criterion from within the AE - IT"AE family of
k=0 B
error criteria, involves multi-dimensional computer scanning techniques, as discussed

in Appendix C. Bellman's Dynamic Programming34 might provide a useful alternate
approach to the problem of the determination of the Ck, in contrast to the more direct
approach described in Appendix C, The dynamic programming approach would lead
to a complete set of one, two, and three term approximations naturally, due to the

very nature of the dynamic programming approach.
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9. ReissZ4 and Leight19 have investigated the optimum pole locations for
the poles of Fa(s) when f(t) = € —mt. The choice of these optimally located poles
" depends upon a priori knowledge of a range over which the pole of F(s) is known to
vary, and upon a minimization of min (IEZ) with respect to the poles Qgr s een s
of Fa(s) . An extension of their results to more complicated processes would be in-
valuable. Since it has been shown that weighting small-time heavily leads to approxi-
mations which "best" represent the actual process, for the positional servomechanism
application, it would be very valuable, to the control analyst, to know the optimal
pole locations of the poles of Fa(s), where, in this case, these locations would be
determined in part by minimizing an error criterion, weighted heavily for small time,

with respect to the poles of Fa(s).

The solutions to these problems should throw considerably more light upon the

overall identification problem.

It is hoped that if anything at all has been achieved in this dissertation, it has
been to make the reader aware of the distinction that exists between the "approximation
in the time-domain" problem and the "identification in the time-domain" problem.

In an area such as Numerical Analysis the analyst is often interested in "approxi -
mating" a signal. He does this by choosing an approximation, fa(t), such that the fit
between fa(t) and f(t) in the time-domain is close. The systems engineer, on the other
hand, "identifies" a process, He does this by choosing an approximation, fa(t), such
that there not only is a close correspondence between fa(t) and £{t) in the time -domain,

but such that there is also a correspondence between fa(t) and f{t) in the s-domain.
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APPENDIX A, COMPLETENESS AND THE CHOICE OF THE o

Definition, Whenr}i_}poo {min IEZ) = 0 for any square integrable ¢ (t), one says that
o0

the set {d)l (t)}g— 0 is c'LosedZ0 in the space of all square integrable functions over the

interval t ¢ (0,). The notation LZ (0,) is shorthand for, "the space of all square

integrable functions over the interval t ¢ (0, )" .

® 20
Definition. A set {4)2 (t)} 120 is complete in L, (0, 00) if no non-zero element
exists which is orthogonal to every other element of that set.

sheske 00
Theorem A.1 Any arbitrary orthogonal system {¢y (t)} -0 in L, (0, o) is capable of
béing completed to an orthogonal system, which is com 1£fe in L 0,00)1.

g P g Y p 2

Theorem A.2 A system of functions of L, (0, is closed if and only if it is completel.

! . .
Alexits  summarizes these concepts in two profound sentences.

The completeness of an orthonormal system is of great consequence for the
theory of convergence of orthonormal expansions. For instance, assuming the
expansion of a given L., (0,0) - integrable function £(t) in the functions of an
appropriate orthonormal system{¢£(t)}£=0 to be convergent, itnis ensured only by

the completeness of this system that the sum of the expansion Z Cﬁ by (t) should
represent f(t} almost everywhere. . £=0
If the 4)12 (t) are formed from an exponential set of functions then alternate
statements comparable to the two definitions and two theorems above can be made.

Szaz's Theorem summarizes these statements.

Theorem A.3 (Szaz's Theoremzo) 1f ¢£ (t) is a linear combination of the elements

£ e
3 o ” —lll t} < ekl B
from a set of expon%ﬂ,lal functions {6 < k=0 ° Re 4 0, such tlgoat A, 0. (®,)=1,

then the set{¢£ (t)} is closed in L, (0, ) if and only if the series Z ﬁin‘z

2=0 m=90 1+‘u
m

diverges.
c0 n

% roin IES = [ wiy) fya- ) cl2
o k2o °

%% The theorems in this section will be stated without proofs. Their proofs can be
found in the references,

##% Generally speaking, the notation o, implies that o is a function of k. As an ex-
ample ak could be chosen to be k + 2. “In this case 0.0‘ = 2, al =3, ....,

QJZ = 4+ 2,
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Thus one sees that he is not completely at liberty in choosing the sets of .
<
The. set must satisfy the above theorem. Liuzo has extended this result to the case

where A, O. (ibz) > 2.

Theorem A. 4 (Generalized Szaz Theorem) If ¢£(t) is a linear combination of the

£
elements from a set of exponential functions {6 kakt}k_o, Re 9 >0, such that A. O, (3 )
- g

0
> 2, then the set[¢, (t) © is closed in L, (0, ) if and only if the set {¢ (t)}
£ =0 ot 22 £V 0e=0
formed from the same exponential set,le k k=0 such that A. O. (iQE Yy =1, is closed

in LZ {0, ) .

This means that the same sets of 9, can be used to generate the orthonormal

approximants ®,(s) of any asymptotic-ordenrn

i
By applying the integral test to the infinite series in Szaz' s Theorem one
arrives at @ more manageable test for determining whether or not the series in Theorem

A. 3 diverges.
a 0 a

1/2
-t o
Corollary A.1 Ifr%r_gw In —— — 0 (am real and positive)then Z —
ao + 1 m=0 1 +um

diverges, and the set{cbjz (t)}00 is complete5.
=0

Some complete and non-complete sets are listed below. In each case the

validity of these results can be checked by applying Corollary A.1l to the set of L

a. Complete sets
el Sedhddiiedhdl N
Lo =o (1L+bk)’, v=1,2 3 ... k=0,1, 2, ..., and
o . : .
Kk b is an arbitrary positive
2. a = a b constant.
k o

k

3 o, = a {1+bk)

-k
4 o = ao‘(1+bk)
a
5. o = ln(e © +bk)
J
b. Non-complete sets
L al(=a0(1+bk)_vr V=1,2,3, e 1 k=07 ]" 2""’ and b
L is an arbitrary positive
-k constant.

2. a =a b
o]



100

APPENDIX B. MATRIX WEIGHTING FUNCTIONS AND SPACINGS OF POLES OF Fa(s)

In this appendix the IE2 criterion is generalized to a matrix criterion by weight-
ing each element, dpk(t), differently in Eq. (1, 3). The individual weighting of the ¢k(t)

is achieved by introducing the concept of a matrix weighting function. The approximation

n
v Ck ¢k (t) is then reinterpreted in the light of the matrix IEZ criterion and the matrix

ot
kweighting function. The theory is then applied to the exponential approximation where,
in particular, the spacing of the poles of Fa(s) is investigated. It is shown that the

introduction of a matrix weighting function allows one to achieve pole-spacings in Fa(s)
other than the equally-spaced type of pole-spacing which the approximations discussed

in Chapters 1 and 3 are restricted to have.

B.1 The Matrix Weighting Function Defined.

%
W(t) is defined as an (n + 1) x {n + 1) symmetrical matrix weighting function

%00 Vo1 ¥oj ¥on
W10 WII le “ o Wln »
weos |0 51
W10 Wl]. . .o “1_] LN Wirl
L o0 Wl wnj R
g Vi (B.2)
whereupon Eq. (l.3) can be written as
w _ . otk
fo p Woey At =5y (B. 3)

* The overbar indicates a matrix while no overbar indicates an element of a matrix.

*% In general, w,, is a function of i, j, and t. The t dependence is omitted in oxder to
simplify the notation.

kk éij‘ is the (n+l) x (n+l) identidy matrix.
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Here ‘—7';1 and CFJ' are (n +1) x (n + 1) diagonal matrices,

[ 4 |
) Q

4 = by (B. 4)

_ "
For clarity Eq. (B. 3) is written in expanded form, using Eqs. (B.1) and (B. 4), in
Eq. (B.3a)below.

2

_4)0 WL)O’ .o ¢>0 d)j woj .. 4;0 ¢n WOn
00 . "
f d)i ¢O Wio ¢1 ¢_] wij 4 ¢n Yin dt = 61j (B. 3a)
o

)
2
¢n ¢0 Yno' - ¢ dJj wnj c (bn Yan B

In addition, if W is decomposed into the product of an (n + 1) x 1 column matrix, W

— c’
and 2 1 x {n + 1) row matrix, WR, in that order, where
I 1
w0
W1
WC = and WR = [WO’ Wy W., s Wn] (B.5)
W,
i
L w
n -l
B 0
' [ Tdt implies that every element in the matrix is integrated between the limits
o

from O to w,
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so that .

W= W Wp (B. 6)

~ then Eq. (B.3) can be written as

[+o]

fo (¢1W1)(¢_] WJ)dt = F’ij (B.?)

By introducing the matrix weighting function it has been possible to rewrite
Eq. (l.3) in a form where each element bre (t) is weighted by a different weighting
function, Wy (t}). The parentheses in Eq. (B.7) imply that wk(t) is to be associated )
with ¢k(t) and vice-versa. The significance of the matrix weighting function on the IE

criterion is discussed in the following section.
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B.2 The IEZ Redefined as a Matrix Error Criterion

In the light of the matrix weighting function Eq. (B.1) it can be shown that the
integral-squared error criterion [Eq. (1. 1)] becomes a matrix criterion, All of the

results obtained by minimizing Eq. (l1.1) hold in this case also provided one replaces

£ {t) by (ﬁa)ij and Ck by (Ck)ij_in Egs. (1.1), (1. 2) and (1. 4). fa and Ck are both
(n+1) x{n +1) matrices since W is {n +1) x (n + 1).
By postulating
2 0 2
(E%);; = fo [f - (fa)ijJ Wy de (B. 9)
where
n sk
(£ ). = C. )., . B.10
a)ij k2=0 (Colyy 4y (B.10)
Egs. (L. 2) and (L. 4) become
2 © 5 r, 2
(min 1845 = [ of wy et - kZ’O [(ck) 13'} (B. 11)
o0
(ck)ij = fo f Wi ¢y dt (B. 12)
An example will clarify the meaning of the subscripts in these equations,
Example.
"Consider a two-term approximation - - n = 1.
— L - - —
£, = kZO C & = Co b9 + Cp ¢ (B.13)
W, in this case, is a 2 x 2 matrix
[
Y00 Vo1 Yo Yo Yo ¥
W o= = (B. 14)
Y10 1 Y1 % 1 ¥

% To simplify the notation the t dependence is not indicated but Is to be understood.

*#% The meaning of a matrix approximation will be clarified in the next section.
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whereupon EO and 51, in Eq. (B.12), are found to be .
. — w w ]
f £ wy b dt f £ Wy by dt
(o] o]
—— CO —
Cy = f LW dt = (B. 15)
[o]
[Ve] 00
f fw) o by At f fw) ¢qdt
o) (o]
- —
o0 0
[ £ wog ¢y dt [ £wyy ) dt
(o] o]
— w ——
G, = f fW¢ dt = ‘ (B. 16)
© [+] o0
| fo fwyg ¢ dt fo fwy) ¢pat’

and Ss‘a, in Eq. {B.13), is found to be

0 0 0 o)

¢0 fo fogwpo dt + ¢ fo £ wp dt &g fo £4g wop At + ¢y fo £y wop 9t
P - (B.17)
o ) 00 0 ‘
% fo Eog wig dt + ¢, fof o Wi 4t & fo Edg vy dt + ¢ fof¢1 Wy At

7

In order to find (min IEZ) in Eq. (B.1l) the products 50 60 and El 61 must first calcu-

lated. Their sum will be an (n + 1) x (n + 1) matrix ¢ where

L —2 _ == == _| % ‘oj}_ -
» (G = Gy Cy+GCiC = = < (B18)
k=0
%40 ‘n
From Egs. (B.18) and (B. 11)
o0 [+e]
2 2 ‘
f f w0 dt - €00 f £ W1 dt - c01
e o [e]
(min IEZ) = (B.19)
00 o0
2 2
J £ wypdt - e J vy de-c
| © o _
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The addition of a third term to. the approximation fa not only adds a third term
to Eq. (B.13), but, what is more important, also increases the dimensionality of all
of the matrices in Egs. (B.14) (B.15), (B.16), (B.17), (B, 18) and (B.19) from two to
three. This obviously occurs because each one of these is an (n +1) x {n + 1) matrix,

(n + 1) being the number of terms in the approximation Eq. (B.10),

That E_a’ Ck and {(min IEZ) are symmetrical matrices is obvious from their

dependency upon W which is symmetrical[Eq. (B. 2)].
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B. 3 The Meaning of a Matrix Approximation

It has developed that, by weighting each one of the approximants dye (t} differ-
ently, fa(t) has become a matrix approximation function, fa(t). Basically, however, one
- seeks an approximation to f(t) which js not a matrix and, therefore, one must reinterpret
f:(t) in the light of this requirement. To do this, refer to the two-term approximation
worked out in detail in the preceding section. Egs. (B.17)and (B.19) are the important

results,

Quite obviously, associated with each element in_f; is a corresponding element
in (min IEZ), and vice-versa.
L. , 2
(£.),. 1) (min IET),, (B, 20)
a’ij et ij
Due to the individuality of the weighting functions wij (t), -f; in Eq. (B.17) will contain 3
completely different approximations, (fa)ll , (£) and (f_)

a1z’ a'z22’
be a different min IE2 asscciated with each one of these approximations. If one agrees

Naturally there will

that the smallest numerical min IE2 gives the best approximation, in the sense of a close
fit between fa(t) and f(t), one must choose the one approximation whose min IE2 is
numerically smaller than all others from the elements of fa . This means that one
seeks the absolute minimum integral-squared error from a matrix of relative minimum

integral-squared errors, that is,

£, () % £(6) <—> min (min 1B, (B.21)

Example Wij = w(t)

By choosing all of the elements wij to be the same function the matrix approx}—
mation should degenerate to the non-matrix version discussed in the body of the disserta-
tion. That this is indeed the case follows directly from a substitution of Wij = w(t) into
Eqgs. (B.12), (B.10), and (B.11).

o0

(ck)ij = fof¢k w dt (B. 22)
n n

(fa)ij = kZJo(Ck)iJ' ¢y = kZJo Cp. (B.23)

and

(min IEZ)ij = Zwdt- Y C (B. 24)
o]
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From Eqgs. (B.23) and (B.24) it is obvious that all of the elements 'm?a are identical
and all of the elements in (inin IEZ) are identical, One then argues that it doesn't

malter which approximation, (fl) .., is chosen to represent £{t) since they are all the
ali;
same. Thus one sees thal the malrix approximation reduces to the non-matrix approxi-

mation when Eqs. (B.12), (B.10) and (B.11) can be written as

C =G U (B. 25)
T =1 U
a a (B. 26)
and
. 2 . 2y
(min IE7) = {min IET) U (B.27)

where U is the unit matrix.
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B.4 ¢k (t): The Exponential Set.

Comparing Eqgs. (3.2) and (B. 7) one obtains the following recursive equation
for the by (t) in terms of the Jacobi Polynomials and a weighting function that is not only

a function of time but is also a function of k:

ilt) = (-1)“/1(24 € (e F, oo (8. 28)
ko W (t)
)\1 cp ¢ )\2 ( )
-— a-c
The properties of q)k(t) when Wl<(t) = | and wk(t) = € (1 - € —Pt>_z'— are

discussed in chapters 1 and 3 respectively of this dissertation. To indicate what
happens to the spacing of the poles of Fa(s) when a weighting function is chosen that is

a function of k, consider

- w(k)pt

wk(t) = € (B. 29)

From Eqgs. (B.29) and (B. 28)

a-c

C
- - wik)| pt 7
o (1) = (-nF /B e[z WQ]p 1. ¢ Pt F (s ¢ PY (B. 30)
k Kk k

This weighting function does not affect the results of Theorem 1 for A.O. ((’bk) .




109

B.5 The Spacing of the Poles of (bk(s) and F,l (s).

Theorem 2(B) The poles of the d’)k(s) are located along the negative - real axis
in the s-domain at -|q + % - w(k)Jp where 0 < g< A.O. (d?k) + k - 1 and is integral,

These poles are spaced p units apart.

One sees that while the location of the poles of rT)k(s) is now dependent upon k

their spacing still is constant. The spacing of all the poles of Fa(s), however, is not

necessarily uniform. As a matter of fact Fa(s), which is simply

n
Fo(s) = ),  C, & (s) (B. 31)
k=0
will contain (n + 1) unevenly-spaced clusters of equally-spaced poles. Fig. (B.5.1)
illustrates this behavior for a three term ajoroximation where A, O, (@k) =2, p=1
2

¢ = 2 and w{k) = -(k +1)7. The negative sign in w(k) is necessary if all the poles of
Fa(s) are to be in the left-half of the s-plane,

Properly choosing w(k) allows one to achieve a variety of spacings for the pole
clusters which appear in Fa(s). One measure of this spacingis the distance from the
center of one cluster to the center of an adjacent cluster. In this case, it can be shown

that w(k) must satisfy the finite difference equation.
AC 1
wik +1) - w(k) = —= + B. 32
(k +1) - w (k) R (B. 32)

where AC is the centroidal-spacing of adjacent clusters. Table B.5.1 presents a number
of w (k) which were obtained as the solutions of Eq. (B. 32) for the AC listed in the first
column of that table. With this type of spacing it is possible to lose the identity of the
clusters since overlapping of the poles in adjacent clusters may occur; thus, the poles

of Fa(s) will appear to be unevenly-spaced.

On the other hand, if it is desirable to maintain the identidy of each one of the
clusters then the results summarized in Table B. 5.2 should be used for w(k) in the
equation for the approximants by (t), Eq. (B.30). Here w(k) is determined from the
condition that the distance between the pole furthest to the left for one cluster and the
pole furthest to the right for a second cluster, adjacent to the first on the left, be spe-
cified as AD. This condition can be expressed mathematically [from the results of

Theorem 2 (B)] as

w ok +1) - wk) = %P_-kH-A.o. (@, ) (B. 33)
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jw
FH—% o
5|
|
(a) CDO (s)
4\ jw
s o
(b) D (s)
A
A —-
-13 -12-11-10
()@, (s)
jw
S Jaray ragmrs ral —- O
-3 -i0 -7 -5 =3-2
(d) Fgls)

Figure B.5. 1 Pole locations for a three term
Expansion; (a), (b), and (c) B (s), (d}), Fa(s).

MR...~19140
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The type of pole-spacing obtained through the use of the w (k) from Eq. (B, 33)
is useful if one has a vague idea of the pole locations of F(s). By spacing the pole
clusters of Fa(s) at these locations it may be possible to improve the overall identifi-
cation of f(t), as measured by the performance criteria listed on Fig. 4. 3. 6.

It is important to remember that the results of this section are based upon the '

w (k) pt in the preceding section, and that they can

choice -of the weighting function € ~
be rederived for other weighting functions as well. It is also important to remember
that the two types of pole cluster-spacings discussed in this section - - the centroidal
spacing and the non-overlapping spacing - - are not the only types of pole cluster-
spacings that one might consider. Once a criterion for the pole cluster-spacing has
been decided upon by the analyst, a finite difference equation, similar to Eqgs. (B. 32)
and (B. 33) will result, from which he can solve for w (k). In short then, the results
of this section and the last, Section B. 4, have merely indicated the significance of a
matrix weighting function on the pole-spacing of the poles of Fa(s), for a very special
weighting function and for special prechosen spacings of the pole clusters of Fa(s).
These results can be extended in many directions, as indicated at the beginning of this

paragraph.

Table B.5.1 Summary of Results for the Pole Cluster-Centroidal -
Spacing Design,

£
AC _ wik) - wlo) [wlo) < 7]
P k(3 -K)
k K2
-kKp S (1+K) - = K
2 1 2 1 2 1, .3 K
-k +B)" Kp | k[-i*“K(f’ 'ﬁ‘*'?)]'k K(B'T)'K 3
k -1
_ etk k - K f_i__
€ P z ( et

* w(o) < -;— ensures one that all of the poles of Fa(s) are in the left-half of the

s-plane, for all k.
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Table B.5.2. Summary of Results for the Pole Cluster -
Non-Overlapping Design.

AD wi{k) - w(o) [w(o) < %]
3 L2
- K | k{z -K - A.O. (fbk)]—-—z——k
k 1
“kKp E[Z A0, (B) - 3 -K] - = K+Dk
2 3 2 1] 21 1 K 3
- (k +B)” Kp k[—Z—-A,O‘. (® ) -K (P -(s+_6-l]-k[-z—+x(ﬁ-7)}-3_k

L
- eMkkp k|2 -a0 (s - LkFog (&b
2 k 2 e 1

w(o) < % ensures one that all of the poles of Fa(s) are in the left-half of the

s-plane, for all k,




13’

APPENDIX C. THE TWO-DIMENSIONAL APPROXIMATION PROBLEM AND
THE ASSOCIATED TWO-DIMENSIONAL SCANNING ON A DIGITAL COMPUTER

C.1 In troduction

N -m, t
In this appendix two-term approximations of the signals Z Ak € k
k=0
(mk real), determined from a minimization of any one of the error criteria in

the AE - IT™ AE criteria family, are investigated; the approximations, fa(t), are of
the form

L —aot —alt
f (t) = Be + Ce (C.1)

For convenience Egs. (4.3) and (4. 4), which define the AE and the IT" AE criteria

respectively, are repeated below.

AE = max“f-fl (4. 3)
t a
[2e]
IT® AE = f t™f-f |at (4. 4)
o a

From Egs. (C.1), (4.3), and (4. 4) one sees that the AE criterion is a function
of three variables B, C, and t, while the 1T™ AE criteria are functions of only B and C.

To distinguish between the two cases, the following notation is introduced:

_ _ , M
AE = mtax E (B, G, t) = EK.B, C, tB,C) (C. 2)
and
n !
IT" AE = E' (B, C) (C. 3)
where tM is the time at which the absolute maximum of the AE occurs, The

B,C ‘
subscript, B, C indicates that this time is also a function of the values B and C assume.

Figure C, 1.1, illustrates the relationship of ¢ M

B.C to the AE for the arbitrarily chosen
values of B = B, and C = Cl'

Since an extra dimension is involved in the AE criterion we shall first concentrate

on its minimization. The reduction-of the AE minimization techniques to techniques
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useful in the minimization of a criterion from the IT™ AE criteria will then follow

directly.

A E(Bl,Cl,t)

AE
TN ot
Sl -7 tM N\ /
X A 7
Bl» Cl S

Figure C.1.1. Relationship of the AE to tM for B=B

B C 1andC=C1.
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C.2 Mathematical Formulation of the AE Minimization

Values of t, B, and C are sought such that nt)ax E (B, C,t) is a minimum with

-respect to B and C, that is, it is desired to find

M .

B, C (C.4)

min | max E(B,C,t){= min E|B,C,t
B,c| t . B,C

The numerical value of Eq. (C. 4) will be designated as min AE,
B,C

Maximizing E (B, C,t) with respect to t is accomplished by differentiating it
partially with respect to t, setting the result equal to zero, and solving the resulting

equation for the time at which the absolute maximum of E (B, C,t) occurs. If this time

is denoted tgi c then, it is quite obvious that, it will be a function of both B and C,

that is,

tB,C = f(B,C) (C.5)

whereupon Eq. (C.2) becomes

AE = E[ B, C, £(B,C) (C. 6)

To minimize Eq. (C. 6) with respect to B and C one may pursue the following course.
By differentiating this equation partially with respect to B and setting the result equal

to zero one should be able to solve for B in terms of C,

aE[B, c,f(B,C)]
9B

=0 -—* B=g(C) (C.7)
From Eqgs., {C.7) and (C. 6) one concludes that

min AE = E{g (), C, f[g (), c]} (C. 8)
B

Finally, anI& AE is found by differentiating Eq. (C. 8), setting the result equal to zero,

and solving"for C. Suppose C = 1. In this case

min AE = E{g (), n, £[g (n), n]} (C.9)

B = g (;’]) , C. 10)



116
and

t Iﬁd,c = f [g (n), n] (c.1)

To perform the operations indicated in Egs. (C.5)-(C.11) analytically is usually
impossible in even the simplest of cases. This is due primarily to the facts that these
equations are transcendental and E(B, C,t) is the absolute value of the error £(t) - fa(t).

To solve this system of equations, we turn to a computer simulation of Eg. (C. 4).
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C.3 Computer Formulation of the AE Minimization

The digital computer solution of Eq. (C.4) for B,C and t I];/[’ c is a discrete
solution in contrast to the continuous type of solution outlined in the preceding section.
Before outlining the major computer operations needed in the solution, one must re-
define the continuous variables B,C, and t as discrete variables. In the discussions

that follow B, C, and t represent discrete sets of real numbers,

B

{bz} L4 = 01,2, ... (C.12)
c ={cr}, r = 0,1,2, ... (C. 13)
t = {tq}

where, in general, the elements bz and ¢, may be positive, negative, or zero while the
q
t

9= 0,1,2, ... (C.14) ¥

-

must be positive or zero. Quite obviously the accuracy of the computer solutions
will depend primarily upon the increments chosen for the bﬁ’ € and t%, For practical

purposes the increments Ab and Ac are chosen the same, hence

sb = b, -b, | = § (C.15)
Ac = €.-¢C.q = 8 (C.16)
at = 2.2 o o (C.17)

The major computer operations, in terms of this notation, are summarized
below.

(1) The computer stores {bz} . {Gr}, and .{tq}.

(2) For an element of {bl} , say bo , and an element of {Cr} » 83y Cy the
computer evaluates E [bo » Cy {tq} ] for all q,/where At = T as in Eq. (C.17), and
it stores these values,

(3) The data from step (2) is. scanned by the computer in order to find
E (bo, Cyr t M) which corresponds to nt'acftx E[bO’ Cyo {tq} ] Since tM will be a

function of the bz and . it shall be designated as tivir . thr must be an element
of{tq} .

#* The use of the superscript notation will become < lear in the development of
this section,
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(4} The computer repeats steps (2} and (3) for all combinations of b, and e

yi
Naturally, the computational time in this step will be directly proportional to the incre-

ment § chosen for the variables bll and <. in Egs. (C.15) and (C. 16).

(5) The computer scans the complete set of stored numbers corresponding
to ma; E[b , C_, {tq} ] and chooses one of these numbers as the mi% AE, If this
{tqi( L lr . B,

. 1
occurs for £ = § and r = r , for example, fa(t) will have been found to be

N o' _ 1 :
fa(L) = bll € + e € (C.18)

completing the problem.

In practice, one would like the computer to complete these five steps in a
minimum amount of time. For a particular computer, this will depend upon the ranges
chosen for B, ¢, and t, the increments in the bz, Cs and tq, and the development of
2 judicious implementation of step (4). In regards to this last phrase,one must admit
that it may not be necessary to repeat steps (2) and (3) for all combinations of b! and
c_. The problem is, given a range for B and C how does one choose a minimum number

r

of combinations of the bJZ and c. such that the computer carries through the minimization

procedure in a minimum amount of time? The following discussion presents one such

method for accomplishing this.
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C.4 A Practical Computer Implementation

By reducing the three-dimensional scanning procedure outlined in the last
section to a manifold of two-dimensional scans, this scanning procedure can be system-
atized in such a manner that the computational time will be.minimized, This can be
accomplished by fixing either one of the constants bl or ¢ at the beginning of a run.

By varying the other constant over its range in step (4) of the scanning procedure, one
will be led to a family of numbers from which the computer will pick the absolute
minimum (the smallest number). As an example, suppose bg = b4 has been chosen
ahead of time; it would then represent a portion of the solution of the following two-

dimensional discrete version of Eq. (C. 4):

min max E (b4, c_, { td }) (C.19)
o T
{&} ({9
Associated with Eq. (C.19) is a value of c. which, for example, might be <y This

procedure is repeated for the elements of {bz} until the number in Eq. (C.19) is a
minimum; thus, the numbers in Eq. (C.19) represent the locus of the relative minima
of (nqa.x E[bl’ cr,{ tq}] ) ];2 fixed and c. variable, Figure C, 4.1 presents a typical
1ocu%, which, for clarity, is shown as a continuous curve, Actually, the locus of

relative minima, plotted on the b, - cr plane, is a set of discrete points whose b

2 2
coordinates are spaced uniformily - - § units apart. Associated with each point on the

locus is a number from Eq. (C.19). The point (C’ZO’ b9) is assumed to represent the

Figure C. 4.1 A typicall locus of the relative minima of
max E bz, C {tq} , b, fixed and c. variable.

{+} 1
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solution of the three-dimensional discrete version of Eq. (C. 4),

min ‘ min max E
o} [ {9

Of particular interest is the shape these loci may assume; for, if one can

b,y c {tq}) (C. 20)

correctly predict the shape of a locus of relative minima, then the number of two-
dimensional scans can be greatly reduced. The locus in Fig. C. 4.2 is certainly one

possible candidate for a locus of relative minima in the bz -c. plane. For b, equal to

b

4 by

Figure C. 4.2 A possible candidate for the locus of relative
minima of mc?x E[bl’ cr,{tq}] , b, fixed and cr variable.

fe ’Z

b7 there are three values of . each leading to exactly the same numerical relative

minimum of the discrete version of Eq. (C. 4), with bl = b7 . One sees, from Egq. (C.19),

that this means that

MY M\ M
E(br C 4o t?,c}) = E<b7’ 10° t7,10> = E("v’ <19 t7,17> (C.21)

which is illustrated in Fig., C. 4. 3.

It seems highly improbable that this locus could be representative of physical
reality, for the condition,'Eq. {C. 21),is so stringent that one must seriously question
its plausibility. A similar argument can be given for a parabolic locus. In this case
Eq. (C.21) reduces to an equality between two values of the error. Based upon these

arguments we shall hypothesize the following: the locus of relative minima of Eq. C. 4)

7 ’ . .
is either monotonically increasing or decreasing. While this has not been proven

A rigorously, it is interesting to note '‘that in every case {32 in all) the computer results

agreed with the hypothesis.




q
dbE®, ¢ {t7])
h
N YRR N S S -t
t7]4 \\_// \\N//
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Figure C.4.3. Sketches illustrating Eq. (C.21).
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By knowing the shape of the locus one is able to extrapolate it in either direction.
Thus, computational time may be minimized if the procedure outlined below is used

as the basis of the computer program.

(1) Obtain a rough idea of where the absolute minimum of Eq. (C. 4) is by
following the procedure outlined in Section C. 2 for fairly large increments Ab and Ac.
In this case, step (4) must be modified so that the computer will repeat steps (1) and (2)
for a fixed value of bl (cr) while scanning the c, (bl) space. The result in step (5) will
then correspond to a single point on the locus of relative minimia of Eq. (C. 4). This
entire procedure must then be repeated for a number of the fixed b2 . By properly
spacing the bl it should be possible, after five or six runs, to get a rough idea of the
shape of the lacus. Associated with every point on this locus will be a numerical value
for the error. By means of extrapolation this step can be repeated until the error

gives the appearance of having passed through an absolute minimum.

(2) Fixing our attention on a region in the vicinity of the point of the apparant
absolute minimum we can interpolate the results and then reprogram the computer so
that it repeats the entire procedure outlined in (1) above for smaller increments in the
bz and C. - This procedure may have to be repeated several times, where in each case
the Ab and Ac are made smaller. Of course, the number of times this is done is really

dependent upon the desired accuracy.

A word of caution is necessary here to dispel any thoughts of skipping this step.
It is possible that one may miss a very sharp absolute minimum by using the coarse
scan in step (1) and that one would probably also miss it in this step if Ab and Ac were
not chosen small enough. Examples as drastic as this are unlikely*; however, it is
important to realize they can occur. In general, if one is not certain about the location

of the absolute minimum, he should scan again,

Bellrnan34 points out that the problem of distinguishing an absolute minimum
from relative minima is one that plagues the optimization field. Computer results
indicate that this problem usually arises in step (1) of the above procedure. If this does
occur, step (2) must be repeated in the vicinity of each one of the relative minima.

While this sounds like a great deal of work it certainly is far less than would be required

had one scanned the entire two-dimensional bl -c. domain in a haphazard way,

These results may be carried over en mass to the IT®AE criteria; however, due
to the fact that the IT"AE criteria are only functions of Band C some of the computer

opérations in Section C. 2 must be modified accordingly.

% See ref. 34 for a complete discussion,
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APPENDIX D. TABULATION OF THE COEFFICIENTS Ck IN
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APPENDIX E. DATA EVALUATION RESULTS

The results tabulated in this appendix supplement the discussion cf "data evalu-
ation" presented in Section 4, 3, Tables E.1-E. 9 are the basis for the summary figures,

Figures4. 3.7 - 4.3.18, fran which the results in Section 4. 4 are obtained.

Tables E,1 - E, 8 are based upon only the one-and two-term approximations
tabulated in Appendix D, while Table E. 9 is based upon the three-term approximations
listed in Appendix D which were calculated for only seven of the eleven error criteria,
More specifically, Tables E. 1 and E.5 are based upon the six one-and two-term approxi-
mations listed in Tables D.1 - D, 6; Tables E.2 and E. 6 are based upon the four one-and
two-term approximations.listed in Tables D. 8 - D.1l; Tables E, 3 and E, 7 are based
upon the two one-and two-term approximations listed in Tables D.13 and D. 14; Tables
E.4 and E. 8 are based upon the six one-and two-term approximations listed in Tables
D.16 - D. 21, and; Table E. 9 is based upon the three-term approximations listed in
Tables D.7, D.12, D.15, and D, 22.

Strictly speaking, the sum of the numbers, for each family of error criteria,
in each row of Tables E.1, E. 2, E, 3, and E. 4 should be 6, 4, 2, and 6 respectively;
the sum of the numbers in each row of Tables E.5, E. 6, E.7, and E. 8 should be 6, 4,
2, and 6 respectively, and; the sum of the numbers in each row of Table E. 9 should be
4, These numbers correspond to the number of approximations used in the formation
of Tables E.1 - E. 9, as discussed in the preceding paragraph. There are many places
in these tables, however, where the row sums either exceed or are less than the ex-
pected total (which is listed in a footnote at the bottom of each table), The excess
occurred when more than one error criterion led to an optimum approximation, in the
judgement of the author. In these cases, the error criterion corresponding to each one
of the optimum appreximations each received a full point; thus, it was possible, in this
way, for the actual row sums to exceed the expected total. The defecit occurred when,
. in the opinion of the author, no error criterion led to an optimum approximation useful
from an engineering point of view, This does not mean that an optimum approximation,
based upon a comparison of a number of approximations with the actual function,did not
exist.‘ It means that, in the opinion of the author, the optimum approximation was too
poor to be considered "optimum" from an engineering point of view. Thus, it was

possible, in this way, for the actual row sums to be less than the expected total.

As can be seen from the preceding discussion, many human factors such as
judgement, opinion, and even bias and prejudice enter into the evaluation of data where

"optimum" results are sought, The results presented in Section 4. 4 naturally include
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the various human factors that entered into the author's evaluation of the data. These
results should be accepted bearing the preceding discussion in mind. To be more con-
clusive, this entire problem should be repeated by a group of randomly chosen investi-

gators, in order to average out the effects of judgement, opinion, bias, and prejudice,
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Table E. 9 Frequency with which an error criterion leads to three-term

approximations of best performance between f_(t) and £(t).

space includes seven ervor criteria.

1,2, and 3 (Tables D. 7, D.12, and D.15); f(t) = € ~

(Table D. 22).

HOKERS

+

Sample-~
e a0 (F) =
-4t &
e ¥, A0 (F =1

Frequency with which a . -
criterion l(':lr‘in tvo”i:;g:r::cicrrl:;fi;ns IE ITE H‘l[-: IT I/ZE ”.:2 I’I‘EZ ”-'1/252
of:
Minimum EM {jw) ES
)] 0 1 0 3 0 0 0
Minimum E ¢ {jw)
. @ | 1 0 0 1 2 0 0
Best absolute-stability
behavior, K> 0 (3) 1 0 0 2 0 2 1
Best absolute - stability :
behavior, K < 0 (4) 1 0 2 1 1 1 2
Best relative-stability
behavior, K » 0 (%) 1 0 0 1 0 1 1
Best fit between fa(!) and £{t)
(6) 1 0 0 3 1 0 0
Best combination of {1} and (2)
1 0 0 3 1 0 0
Best combination of {3) and (4)
1 0 0 2 0 1 1
Best combination of {6} and {l) 0 0 0 3 0 0 0
Best binati {{6) d (2)
est combination of {(6) and ( 1 0 0 2 1 0 0
Best combination of (6) and {5)
0 0 0 1 0 0 0
Best binati £{6}, (1)
wmaz 1 0 0 3 1 0 o |
Best combination of (6), (5),
(1), and (2) 0 0 0 1 0 0 0

% FEach one of the numbers listed in this table is a number "out of the

maximum total of four".
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