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AN ABSTRACT

THE IDENTIFICATION OF OVERDAMPED PROCESSES

IN THE TIME-DOMAIN

by

Jerry M. Mendel

Advisor: Dr. Ludwig Braun, Jr.

The problem of characterizing overdamped systems, from data in the time-

domain, by means of exponential functions is studied. Particular attention is given to:

(I) the choice of a suitable error criterion based upon performance measures the approxi-

mate system is to meet, (Z) the choice of weighting functions and their effect on" the

approximations, and (3) the extension of the orthonormal exponential approximations of

Kautz and Huggins to approximations of any asymptotic-order in the s-domain.

The spirit of the research carried out is in keeping with the philosophy that

the approximate system will replace the actual system in practical analyses. For ex-

ample, the actual system may be embedded in the forward path of a positional servo-

mechanism. If a stability analysis of the closed-loop system is to be performed then

it is desirable for the approxinrmate plant, which will be used in the stability analysis,

to indicate the correct stability behavior within an allowable margin of error. Since

stability is intimately connected with high-frequency behavior it appears to be desirable

to be able to match the high-frequency behavior of the actual and approximate systems.

This naturally leads to the choice of exponential approximants of asymptotic-order, in

the s-domain, greater than unity.

In each of the above areas of concentration, emphasis is placed on the effects

that the asymptotic-order will have on the utility of the approximations in further

anaylses.
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CHAPTER I. INTRODUCTION

I. I Introductory Remarks

In both analysis and synthesis, it is necessary to be able to characterize

a system by means of a mathematical model. In simple cases, this can be done by

writing the differential equations describing the system and then solving them for the

desired input-output ratio. In many cases, however, the systemn is so complex that

the only feasible methods for obtaining a model are experimental in nature. These

measurements can be made in either the frequency-domain or in the time-domain.

Many problems, such as determining what measurements to make, whether to use per-

iodic or aperiodic inputs, etc. , exist in connection with the practical aspects of making

these measurements. Assuming that the correct measurements have been made, it

shall be our purpose to concentrate on the representation of these measurements by

means of a suitable working model. This is the "identification problem"

Within the last decade a great deal of attention has been focussed upon the time-

domain characterization of processes. Obviously, one important reason for such a

characterization has to do with the economy of a single transient test as compared to

the multitude of frequency tests necessary to obtain the same amount of information.

This trend has been noticeable not only in the field of network synthesis, where it

originated, but also in the areas of adaptive control, optimal control theory, electro-

cardiography, and speech-signal representation.

Most of thepast research, in the area of identification of processes in the time-

domain, has been concerned with achieving a close fit between the model and the data,

the closeness of fit being measured by the integral-squared error criterion. The in-Kat18 1517
troduction of the orthonornmal exponentials by Kautz and Huggins 15 aided the approxi-

mators immeasurably, for their work enabled one to approximate exponential responses

by exponential signals. These approximations not only lend themselves quite nicely

to further analysis involving transform techniques, but are also in a form amenable

to network realization; hence, they are useful in both the analysis and synthesis

problems.

Unfortunately, ensuring a close fit between the approximation (model) and the

actual system does not necessarily lead to a close correspondence between the two with

respect to other properties of the system. For example, approximating the plant

f(t) in Figure I. 1. 1 may only be the first step in a detailed analysis of the closed-loop

system in which this plant is embedded.
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rM+K f (t HK r fa(t) C

(a) (b)

Figure 1. 1. 1. A typical feedback system in which the plant f(t) in (a)
is approximated by fa(t) in (b).

In particular, if one is interested in the stability of the closed-loop system,

then there should be some correspondence between A. 0. (Fa * and A. 0. (F), since the

high-frequency behavior of the plant determines whether or not the closed-loop system

becomes unstable as the loop gain increases. To illustrate the importance of this last

sentence, consider a plant f(t) whose poles and zeros all lie in the left-half of the

s-plane, and whose asymptotic-order is four. Not knowing the value of A. 0. (F) ahead

of time, assume that a model, fa(t), has been chosen to approxinlata the actual plant

where A. 0. (Fa.) = Z . It is well known that for large enough values of the loop gain

the actual closed-loop system does become unstable. The approximation, on the other

hand, which may give a very good fit to f(t), indicates that the closed-loop system

never becomes unstable (this last phrase tacitly assumes that Fa(s) has no zeros in the

right-half of the s-plane); thus, when one plans to utilize the approximation in future

analyses, there appears to be more to the identification problem, in the time-domain,

than merely achieving a close fit between the approximant and the true response. In

control systems analyses, the asymptotic order of the plant' s model is of great impor-

tance, as has been mildlydemonstrated in the preceding sentences.

Rather than belabor the point at this time, the interested reader is referred to

the introductory sections of Chapters 1-4 for more detailed introductory remarks. This

chapter is concluded with a brief discussion of the actual problem studied and some of

the assumptions made in the formulation of the problem.

* A. 0. (Fa) is read "asymptotic-order of Fa (s)" and is defined by looking at the

lim Fa.(s) = - and letting A. 0. (Fa) = n
S-00 s
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I. 2 Statement of the Problem

An identification of the system in Fig. I.Z.1 is desired. The transfer func-

tion characterizing the system is to be of the following form:

v v-I
s + av_1 s +... + aI s + a° (1.I)

T(s) =KT v-1 o(.)
N
T7

Only the poles of T (s) must lie in the left-half of the s-plane. The zeros may be

negative and real, positive and real, or complex. Since the impulse response of this

u (t) f Nt)

0 Do SYSTEM l o
T(S)

Figure I. Z.1. A description of the system which
is to be identified,

system, quite obviously, is of the form N A3 E-mkt, where the m are real,
k= 0

it shall be approximated by a similar set of functions, that is

n

f(t) f (t) = 0 k kf (t) (1.Z)

where the f (t) are linear combinations of exponential functions. This study is

limited to real exponents (overdamped processes) for two reasons. First, almost

no work has been done in the area of approximating overdamped processes of high

asymptotic-order, and secondly, the introduction of complex poles into Eq. (I. 1)

vastly increases the analytical complexity of the problem.

It was felt that a concentrated study in one aspect of the more general identi-

fication problem might lead to results that could easily be extended to the more

general case.. It is also possible that by narrowing onet s objectives he will discover

theory that is particularly amenable to the case of real exponents. This may be com-

pletely overlooked in a more general study. As it turned out theory was developed

that justified narrowing the scope of the problem. Actually, there are many systems

that occur quite frequently in practice satisfying the requirements of Figure I. 2. 1,

as stated in Eq. (I.I).
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It is assumed that the internal construction of the system in Figure I 2. 1 is

unknown and that only the external terminals are available for the application of

test signals. In order to determine whether or not the system meets the requirements

of Eq. (I. i) one must be able to correlate the form of the time response y (t) with

possible pole-zero locations in Y (s) . Table I Z. I presents a number of t-domain

- s-domain correlations which are useful in the analysis. It is based upon a set of

ingenuous theorems proven by Brule 7 in his Ph. D dissertation.

The problem before the analysist is one of choosing a proper set of f (t) in

Eq. (I. Z) and then determining the Ck based upon a minimization of some measure of

the error between f(t) and f a(t). This error, e (t), is defined in Eq. (I. 3).

e (t) = f (t) - f a Mt (1.3)

It is convenient to use the functional notation F[ý (e) , w (t)] to represent a measure

of the error that must be minimized, in order to find the Ck. The l (e) notation is

short hand for "an operator qj acting upon e (t)" , and w (t) is known as a weighting

fainction. w (t) can be choser, so as to weight the approximation heavily over certain

intervals of time and lightly over others. F[i (e) , w (t)] is more commonly known

as an error criterion. As an example, consider the I T E criterion defined in Eq.(l. 4).

ITE; = fo t eZ dt (1.4)

This equation can be put into the functional form F [€ (e), w(t)] by letting w(t) = t,
2 f N 2S(e) = e , and F = dt. Note that: the functional notation for the ITE criterion

0

is consistent with the mathematical definition of a functional, that is to say, it is a

pure number. The weighting function, in this case w(t) = t, quite obviously emphasizes

large values of t.
In the following four chapters, the choice of the approximants fa (t) [chap-

ak

ters 1, 3 and 4J1, a discussion of weighting functions [ chapters 2 and 4] and their

design [ chapters Z and 3], and the choice of error criteria leading to optimal approxi-

mations (chapter 4) are discussed in detail.

* IT E2 is read, "Integral-Time-Squared-Error" . Some authors prefer the
abbreviation ITSE instead of ITEZ . Both abbreviations, however, are merely
shorthand notations for the integral in Eq. (I. 4).
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TABLE 1.2.1 SOME s-DOMAIN--t-DOMAIN CORRELATIONS.

x (t) y (t)

x(t) T (s) y (t) COMMENTS

x~l C) : -JA y(t) 1. y (t) > FOR ALL

' • tb, >_ _"-i__..__ t 2.yI() HAS ONLY ONES-bn • >o XTREMUM

(b) o y f) I.y(t)>o FOR ALL

2 . T(s)=Zrc(s)

(c) U-w Ay11) I.y(t)=O EXACTLY ONCE
V' ti FOR SOME It~tio

"-�1/2.y(t)HAS ONE MAX.
-bn 4 AND MIN. ONLY IFao> - bI A.0. (T) >,I A.O. (T) >, 2

(d) A jw , y-'t•). y (t) HAS EXACTLY m

_ .4 N N MT -o" mm' r' t- INTERNAL ZEROS.

-bo -bI a, am ! v V ''t 2.WHEN akIV-b~lT(s)
REPRESENTS AN0k> 0  ALL-PASS CON-

A.O.(T) >ýo FIGURATION.

(e) j py(t) y(t) HAS EXACTLY 2

A- t, INTERNAL ZEROS

- b n "b, 0 > CT "

A.O.(T) > a>O

xIIt) I t f) jAL WW 1. y(t) >0FOR ALL-t >0A V2.y (tl HAS ONE EXTRE-
Sw - MUMAT t= max>O
bn b 3l> 1mo _ tmax " ax. 1= IN (c).

A .O.(T) >,I
(g) jw jyI) I. y(t)=O EXACTLY ONCE

t2 FOR SOME TIME t=f2>0
t 2.y(t) HAS ONE EXTRE-

-bn ao>0 -b a0MUM AT tzmax>O

A.O.(T) >11 3. !max = t, IN (c).

(h) jl y.(t) .y(t) HAS EXACTLY m
I-\-'-A ,_A INTERNAL ZEROS.

-bnm o"I t tm t 2.WHEN IokI=IbAITIs)ekn a1  >0 REPRESENTS ALL-

A.0. (T) >, I aPASS CONFIGURATION

M.R.I.- 19077
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CHAPTER 1. UNIFORMLY-WEIGHTED, ORTiHONORMAL,

EXPONENTIAL APPROXIMANTS

In this chapter the integral-squared-error criterion is reviewed and a proce-

dure for constructing sets of orthonormal exponential approximants is developed, in

which any desired asymptotic-order may be designed into the Laplace transform of

the approximants, ahead of time. These approximants are summarized by a recur-

sion equation in the time-domain.

1. 1 Introduction

The integral-squared-error criterion (IE Z) is perhaps the most widely known

and used measure of performance for time-domain approximations. The term

"time-domain" is used here to denote the interval of time from zero to infinity, that

is t C( 0, c0). A function f(t) is said to be approximated in an " integral-squared

sense" when it is approximated by the function fa (t) = Y Ck pk (t) in such away
k= 0

that the IE 2 is a minimum. Given the definition of the IE 2 criterion,

Z CO 2
IE = f w(t)[f(t) - fa(t)j dt (1.1)

it is well known 18, Z8 that the minimum IE2 is

mrin (IE) = f w(t) f (t) dt - n C0Z (1.Z)
o k=0

provided the elements pk (t) form an orthonormal set with respect to the weighting

function w (t) over the interval of time ( 0, co) . The condition for the orthonormality

of the 4 k (t) is stated in Eq. (1. 3).

001, i = j

wf w(t) 4i (t) Pj(t) dt = 5 = 0, i j (1.3)

[Strictly speaking one should indicate that min (IE ) is the minimum IE with respect

to the coefficients Ck in fa (t). It will be shown that, under certain conditions, the

ýk (t) can be formed from linear combinations of terms of the form E -kt , where

the exponents ak are unknown. Liu points out that the determination of the a, from

a minimization of the IEZ with respect to the ak involves lengthy and laborious com-

putations, and what' s more, the solution is not unique. It shall be assumed, through-

out this entire dissertation, tLiat the ak have been specified a priori (see Appendix A

* c is a mathematical shorthand notation for, "is an element of"
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for a discussion of a restriction pertinent to the choice of these exponents). The

notation min (IE 2) will therefore always denote a minimization of the IE2 with re-

spect to the coefficients Ck .] As a result of the minimization the coefficients Ck

are found to be

C 0 owt ~)ý~)d 14

It is quite evident from this equation and Eq. (1. 2) that the addition of an extra term

Cn + 1 ýn + I (t) to fa (t) in no way affects any of the previously calculated Ck1 s and

will tend to decrease the min (IE Z) by (Cn + Z. This represents the advantage of

choosing an orthonormal set of functions 4 k (t) as compared to a non-orthonormal

set of approximants.

Before proceeding to a discussion of how one constructs the orthonormal set

of functions 4 k (t) , it will be well to point out the importance of the infinite interval
18

(0, o0) . The following discussion is taken directly from Kautz' s original research

report. " It may be safely said that the number of practical problems in which pre-
cise transient behavior is desired over the entire interval (0, oo) is extremely small.
Furthermore, for sufficiently large t, the response must drop off to zero either
exponentially or as an exponentially damped sinusoid, so that no other type of behav-
ior at infinity can be obtained, even if it were desired. (Kautz has tacitly assumed,
in this last statement, that all recognizable components of the response being identi-
fied, such as a d-c component or a sinusoidal steady state component, have been
removed by mneans of subtraction. The approximation is then made upon the remain-
ing signal. ) "One might very well reason, then, that methods for approximating a
function should be developed oVer only a finite interval. That this conclusion is in-
correct is brought out by the following three facts:

(i) If a finite interval is employed, almost nothing can be specified about the tran-
lent outside of this interval using existing approximation methods. It may behave very
erratically, and as a rule it cannot be controlled.

(Z) The use of an infinite interval does not imply that equal emphasis is given in the
approximation to all sections of the time scale. In fact, normally very little weight
is placed on reproducing the response for large values of t .

(3) It is difficult to carry out the analytical approximations over a finite interval."

The problem now is, ," how does one construct the orthonormal set of functions

ýk (t) 
? ",

The answer to this question can be given by appealing to the Gram-Schmidt

Orthonormalization Procedure , which states that a unique set of orthonormal

functions ýk (t) can always be formed from a set of linearly-independent functions

91 (t) , in the following way:
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ot = 0 g (t)

X (t [g (t)+ Xz g (t](1.5)

(t) = Xm [go(t)+Xig 1 (t)+"" +Xjgk(t)]

The constants X are determined by substituting these equations into Eq. (1. 3),

which, depending upon the choice of the gY(t), usually represent a formidable set of

simultaneous linear equations in the X , from which these consti-its must be solved

for.

Since this discussion is being limited to the identification of the functions
N

f(t) = N A E -mkt, mk real (1.6)
k=0 k

it seems natural to choose the gI (t) as an exponential set of functions. If in particular

S(t) l f I = 0, 1 . . . . .(1.7)

Kautz18 has shown that the result of the Gram-Schmidt Procedure can be expressed

very neatly in the frequency-domain, provided a constant weighting function, w (t),

is used. This is the "uniformly-weighted" case. As a matter of fact, he has shown

that the entire orthonormalization procedure can be carried out in the s-domain by

means of Parsevall s Equation* and Cauchy' s Residue theorem, the results being

1) (s) -Zn s10o s + C°

1 (s) 2 /2 (s + O.0 )(s + 1)T (1.8)

(S - a0)... (s -
0k - )

q1< (s) ak (s + ao )(S + al) . .. (s + CL a )

for w (t) 1.

' Parseval' s Equation2 2 states that
ooc joo

f h (t) h (t) dt - 9. fc H, (s) HZ (-s)ds
0z Tri c-Doo



9

Braun4, ZZ has extended these results to an exponential weighting function,
- Zbt

E .In this case

1o (s) = Zb +- o) -a 0) 1
Z(b + a,) (s + OL- 0)

(s - Zb - o).(s - Zb - ak_l

(S + bLo )+(s + (S ct ), (s + cik)

A discussion of choosing one form for the weighting function over another

will be put off at this time until Chapter 2. In that chapter a great deal will be said

about weighting functions, in general, including the two cases of a constant and an

exponential.
n

It is obvious from Eqs. (1. 8) and (1. 9) and the fact fa(t) = k0 CGk4 (t)

that Fa(s) will always have an asymptotic-order equal. to unity, since A. 0. (F a) equals

A. 0. (0), and A. 0. (&) is equal to unity. It is also interesting to note that if

&,s) is considered to be the transfer function of a linear filter, then 4k(t), which is

the impulse response of the filter, will be oscillatory (Table I. Z. 1), and in fact will

contain exactly k internal crossings of the t-axis, provided k > I.

Practically speaking, if the function f(t), which is to be approximated by

fa(t), has a non-zero initial value (at t = 0+ ) then Kautz' s (Braun' s) results represent

the natural choice for the 4k(t). This does not mean that the one term approximation

C 0o (t), or the two term approximation Copo(t) + C1 1 (t), or even the ten term approxi-

mation Co 0 (t) + . . . + C9 49 (t), where the 4k (t) are found from Eq. (1. 8) [or Eq.

(I. 9)], will match the inhtial value of f(t) exactly. What is meant, is that in the limit,

as more and more terms are added to the approximation, the initial value of the ap-

proximation will coincide with the non-zero initial value of f (t). This is due primarily

to the facts that A. 0. (Fa) = A. 0. (F) , and that both of these are equal to unity.

On the other hand, if f(t) has a zero intial value, and ( r - 1) zero initial

derivatives at t = 0+ where r must somehow be determined from the given f (t)

data, it would make much more sense to choose a set of ýk(t) having a similar behav-

ior at t = 0+ . This means choosing a set of 'k (t) such that A. 0. ( () = r +I
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[This last result was found by applying the Initial Value theorem, from Laplace

Transform Theory, r times to a function of asymptotic-order r + I, and observing

that the initial value and exactly (r - 1) initial derivatives of that function vanish.]

This argument can be amplified by con lde:tL ing fa (t) to be the identification of a plant

f(t), such as the one shown in the forward path of the simple positional servomech-

anism, Fig. 1. 1. 1. The absolute stability of this closed-loop system [using the approxi-

mate plant fa (t)]will depend upon the asymptotic-order we have chosen for fa (t),

as we have already indicated on page 2. It is well known that if the A. 0. (F) > 3

the servomechanism will always become unstable for sufficiently large values of loop

gain. The use of an approximation having an asymptotic-order equal to unity, on the

rM+c Mt rltM + C M)
r)+K f M) K f~

(a) M

Figure i. I. I. A typical feedback system in which the plant f(t) in (a)
is approximated by fa(t) in (b).

other hand, implies that the system is absolutely stable; that is, no matter how large

one makes the loop gain, the closed-loop system is stable.

It seems very desirable, therefore, to be able to extend Kautz' s and Braun' s

results to cases where A. 0. (V) > 1. It also would be particularly advantageous to

the user to have such sets summarizable eithlr ih the s-domain, by a recursion equa-

tion similar to Eqs. (I. 8) and (1. 9), or in the time-domain, whichever may be more

appropriate. .

In quest of such relationships, Braun 5 considered the general set of 4k(t)

where A. 0. () = Z, and attempted to perform the orthonormalization (with respect

to a unity weighting function) in the s-domain by assuming

E

E 1 ( s + (1. 10)

(s + 0o)(S + nL)(S + TaZ

Bk (s + Pk-l

S(s) - k-l (s) (+Ek - I
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Substituting these equations into the s-domain version of Eq. (1. 3),

a- +joo

z+Lrw- f ) (s) D (-s)ds = 5ij (I. II)
(" - J 00

and applying Cauchy' s Residue Theorem, by closing the contour in either the right-

half or the left-half of the s-plane, [due to the analyticity of (Ii (s) and ýD (-s) in the

right-half and left-half of the s-plane, respectively] one is confronted with a very

formidable set of equations which m.ust be solved for the zeros P k and the constants

"Ek in terms of the poles ok . After obtaining a few of the zeros, Pk and constants

"Ek, Braun concludes that it is difficult to derive a general recursion formula for a

set of 4 k (t) in the s-domain in terms of the ak, when the A. 0. ( 2) = 2. This does

not mean that such sets are impossible to construct. On the contrary, it implies

that one should choose the ak first and then orthonormalize the elements t k (t). Natu-

rally, this means that, each time the set of ck' s is changed, the entire orthonormal-

ization procedure must be repeated. In general, these conclusions are valid and apply

to the construction of any set of ýk (t) when A. 0. (&) > I

The remaining sections of this chapter are devoted to the case of "equally-

spaced" poles, where the term "equally-spaced" implies that % - okl = constant,

in Eqs. (1. 8) and (1. 9)*.* It will be shown that, in this case, the elements '1k (t)

can be found from a very general recursion equation in the time-domain. What is

more, it will be proven that the generality of this equation enables one to use it to con-

struct sets of orthonormalized exponentials whose Laplace Transform cTk (s) can be

of any asymptotic-order, whatsoever. Rather than present the theory, theorems and

proofs in their entire generality all of the important results shall first be developed

for a set of 'k (t) orthonormalized with respect to a unity weighting function. A dis-

cussion of a weighting function which is much more general than the type Braun has

used (E - ) , but one which reduces to c -Zbt under special circumstances, is the

subject of Chapter 2. The design of this weighting function will occupy a large portion

of Chapter 2 since its design is necessary for the synthesis procedure developed in

Chapter 3 for obtaining a set of functions, 'k(t), which are orthonormal with respect

to this more general weighting function. Here, again, it will be shown that the asymp-

totic-order of the & (s) can be chosen with complete freedom.

The zeros P are the orthogonalization constants while the constants Ek ensure

the normality of the 4 k (t).

*More will be said about this type of pole spacing in Sections 1. 3 and B. 5.
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To set the stage for Section 1. 3, in which the recursion equation for the

elements pk (t) is derived, one must first discuss a set or orthonormal polynomials

known as the Jacobi Polynomials, since the recursion equation will be expressed in

terms of these polynomials.

" Actually, ArmstrongZ,3 as early as 1957 indicated a correspondence between
the orthonormal exponential set and the classical Jacobi Polynomials for very
special sets of pole locations (see Section 3. 1); however, he never considered
the more general nature of this correspondence or the possibility of extending
Kautz' s work to the case of a more general weighting function.
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1. 2 Jacobi Polynomials

The Jacobi Polynomials (a, c;x) are mn' th degree polynomials in x which
21 T

are defined by the following series:

(a, c;x) = 0 (-1) f.... . " (1.1Z)

(-C ý 0, 1, Z' .... ,m - )

They are orthonormal with respect to the weighting function x c-1 (I x)ac over the

interval (0, 1), that is

1 -1 vim (X' ) n a' X m a
x n- - (a, c ; x) dx = mmn ( 3)

0

provided that

c > 0, and a > c -1 (1.14)

Km is the orthonormality constant and is shorthand for

K m.• I[r (c)] r(m + a-c +1) (1.15)m (a +Zm Fr(a+m)p c+m)

In Table 1. 2. 1 one can see the relationship between the Jacobi Polynomials
and some of the more classical polynomials of mathematical physics. Actually, the

Legendre polynomials are merely special cases of the more general Gegenbauer

Polynomials, which are in themselves a special case of the very general Jacobi Poly-

nomials. If one considers the two constants a and c, in'M(a, c;x), as represen-.

ting two degrees of freedom, then the Gegenbaucr Polynomials are a set of polynomi

als having one degree of freedom ( v) while the Legendre and Tschebyscheff poly-

nomials have zero degrees of freedom in the sense that they are defined by assigning

numerical values to both a and c

The purpose of relating the Jacobi Polynomials to the polynomials listed

4 SzegoZ8 defines the Jacobi Polynomials orthonormal over the interval (-1,1);
however, to differ ntiate between this set and the one defined above, he uses
the symbbl P Y, P)( z). A linear transformation exists between the variables

z and x, whim enables one to use either notation. Specifically, Pm(a, c) (2x - 1)

Jm (a, c;x).
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in Table 1. Z. I will become clear in Section 1. 4, where it will he shown that many of

the familiar orthogonal polynomial approximations of a function can be rephrased in

terms of the orthonormal exponential approximation.

Table 1. Z. 1. Relation Between Jacobi Polynomials and More Familiar Polynomials

Polynomial Relationship to Jacobi Polynomials

'•* - (2 V.)m + I/Z;

Gegenbauer, CGre(x) CmV (x)= (-I)m I m (2m V+l/z;
m ~ m

Legendre, Pm (x) Pm (x) =fm (I, I; Z = Cm (x)

Tschebyecheff, Tm (x) Tm (x) =fm (0, 1/2; k-•)

Recurrence formulae, integral relationships, and other facts about Jacobi Polynomials

may be found in references 10, 21 and Z8. Page 300 of reference 9 is very useful for

the evaluation of the Gamma functions appearing in Eqs. (I. 1Z) and (1. 15). Of course,

when the argument of the Gamma function is an integer, say v, then r (v) = (v -1)' V7

One is now in a position to derive the recursion equation for the elements

ýk (t) of the set of orthonormalized exponentials in terms of the classical Jacobi

Polynomials.

*For the standard definitions of these polynomials see Magnus and Oberhettinger

** (ZV)m = Zi' (Z v+ 1) (Zv + Z) ... (ZV + m - 1); (ZV)o = I

* T (x) is a Tschebyscheff Polynomial of the first kind to be distinguished from
the Tschebyscheff Polynomials of the second kind, Um (x) (Ref. ZI, pg. 78).



I. 3 ýk(t): A Recurrence Equation in the Time-Domain

By transforming the domain of orthonormality for the Jacobi Polynomials

.'m (a, c; x) from (0, 1) in the x-domain to (0, oo) in the t-domain, letting

X = E -pt (1. 1 16)

where p is some positive constant, Eq. (1. 13) becomes

o cpt -pt a-c -Ytm(ai -pt K mn (1.
-cp (I - E (a,c; (a, c; )dt p mn

If the form of this equation is compared with the form of Eq. (1 341 with w(t) = I]

it is clear that

c a-c

k(1 t) = (-) •E (I - c -pt) (a, c; E -Pt) (1.18)

k = 0, 1, Z,

which is a recursive equation for the elements ck(t) in the time-domain.

Starting with the recursion equation relatingk + I (a, c;x),rk (a, c; x)

andk - (a, c; x) given in Section 10. 8 of Ref. (10) one is able to derive a similar

equation for the elements k +I(t)' ck (t), and 4k- I(t)

Z(k + l)(k + a + c + l)t(k + a + c)/ + I k + 1 (t) =

-(Zk + a + c + 1) [(Zk + a + c)(Zk + a + c + Z)(Z -Pt-l)+aZ +

SZ (k + a) (k + c) (Zk + a + c ý Z), ýKNk~lklt 11a

SCk (t) I k lt(118a

YChis equation might prove to be useful in a computer simulation of the set ýk (t). If,

on the other hand, the (k + l)th element ýk +1(t) is to be found via manual calculations

then it is usually easier to find it directly from Eq. (1, 18),m-crely replacing k by k + I

in that equation.

One obvious advantage of determining the elements @k (t) from Eq. (I. 18)

SStrictly speaking, when one compares Eq. (1. 13) with Eq. (1. 17) he can only

derive a proportionality relationship between the pk (t) and the terms in Eq. (1. 17).

The constant (-I)k is the proportionality factor.
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is that it has completely removed the difficulties inherent in the orthonormalization

of the 4k(t). Essentially, this was accomplished by introducing the well-defined

Jacobi Polynomials in whose definition, Eq. (I. IZ), the orthonormalization has already

been carried out. One is, therefore, able to express an unknown set of orthonormal

functions in terms of a well-known set of orthonormal functions, and, in so doing he

has eliminated a lot of the algebraic tedium that is usually a part of an orthonormali-

zation procedure.

In the following section some of the properties of the tk(t), in Eq. (1. 18),

will be studied in order to throw more light on the significance of these functions.

0i
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1.4 The Nature of the 4k(t).

This section is begun with a theorem which states the most significant

property of the functions 4k(t) '€

Theorem 1. The asymptotic-order of k(s), the Laplace Transform of Pk(t), is

aa-c +-fo**'
--- + 1 fopi all k, provided that -- is either a positive integer or zero.

Proof: k Kk

Consider [ ýk (t)]1 N = (-1) p, 4k (t) Lthe subscript N denotes a normal-

ized version of 4k(t)] as the product of two functions h(t) and g(t) where h(t) =
a-c

(1 - e-Pt) and g(t) = € - k (a, c; E -Pt)
wit resec to t,-

The 1' th derivative of [k (t)] N with respect to t,k ý() (0)]N ' can then be expressed

in terms of h (t), g (t), and their derivatives by means of the Liebnitz differentiation

formula,

(I N (t r , h (-r) (t) (1.19)

r= 0

from which one sees that

1ý kI() (t )IN h h)tg -(t) + h (t) g(1Mt

k z ( t)] N h(Z) (t) g (t) + Zh tl) (t) g(l) (t) + h (t) g(Z) (t)

I -ca-c ,~a-c

7- -1) (t = h (t) g (t)+.. +h (t)+ h-(t) (l. ZO)

[ a-c) a-c a-c
[ Z4-) (tN = h (t) g (t) + . . + h (t) g

provided that a--- is a positive integer.

* Henceforth, when the functions 4W (t) are referred to, they are taken to be

synonomous with the set defined in, Eq. (1. 18), unless otherwise stated.
a-cenueoeofaintseesn

** Choosing integer or zero values for - ensures one of a finite series in

pt for ýk (t).
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Substituting the expressions for h(t) and g(t) into these equations and setting

t = 0+ one can easily show that

[4k(1) (0+) N =0

(I. ZI)

[(a-c 1

S(-7--") (0+)] 0

[€a (0+)]'f N * 0

It is also true that [clk (0 +)]N =0 .Next,one appeals to the Initial Value Theorem
from Laplace Transform Theory which states that

[*k (0+)] lim s 0N (s)*

IN S--%ý 00 N

1) (0+)] lim s s (s) - (k+)IN
k N s [ Nk

a-c a-c

lim s s (s) -s0

D•Nk (s) is the Laplace Transform of the k' th normalized element [ ýk(t I"N
Due to the continuity of the Ikt)1N and their -c - 2 derivatives at the origin,

the 0 notation in all of the derivative transforms has been replaced by the
0+ notation.
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Substituting Eqs. (I. 21) into these equations one can show that, at most

a-c

lim s (ND (s) = 0 '(1. Z3)

which implies that the degree of the denominator of IN (s) must be exactly --- + I
k Z

larger than'the degree of its numerator. It has, therefore, been proven that, for

positive integral values of a-, A.. I 1 )= (- + I . It is quite obvious that-- z-- ( Nk T

for = a 1, 2, . , A.O.(N)= Z, 3,... 1 +. To complete the pic-

ture let a-c = 0. From the asymptotic-order equation, one sees that this is the
--2-

unity asymptotic-order case. That this is correct can easily be seen by setting

a-c
= 0 in the formula for the [4 k 't) N.

In order to obtain a simple visual interpretation of this theorem, the results

were plotted in Figure 1. 3. 1. From this figure one sees that after the asymptotic

order is specified he is still free to choose either a or c. Note also that the results

of this theorem in no way violate the earlier constraints on a and c[Eq. (1. 14)] which

are shown by dashed lines on this figure.

The true significance of our recursive equation for the ýk(t) is now clear. By

properly choosing a and c one can generate sets of orthonormal exponentials whose

Laplace Transforms are of any asymptotic-order whatsoever, without having to go

through the usual orthonormalization procedures.

Unfortunately, however, there is a severe restriction on the pole locations

of the Ok (s) - - - they can only be equally spaced. This will be proven in the follow-

ing theorem.

Theorem 2. The poles of Dk (s) are located along the negative-real axis in the s-do-

main at - (q +-C ) p, where 0 < q < A.0. (k) + k - I and is integral. These poles

are equally spaced, p units apart.

Before the proof of this theorem is presented, it will be instructive to illustrate

the application of the theorem by means of an example.
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Example
c

For A. 0. ( ) = 3 the poles of uk(s) are located at - (q + 7-)p, wherec
0 < q < k + Z; thus, the poles of o(s) are located at - p , - (I + 7)p, and

-(Z + 1-)p while the poles of @i (s) are located at - -- p, -(I + ) p,
Z 2

+Z + -)p, and- (3 + - )p.
2

Proof:

Writing Yk(t) as

t)hk ( I) M(. Z4)S•k Kk ,
k

where

a-c
hk W (I - E -Pt ,k (a, c; E pt) (. Z5)

it is quite simple to show by expanding hk(t) that it contains the terms 1, E -pt, E -Zpt

... kpt .... E-- +k)pt . This means that Hk (s) will have all of its
I~ k

poles situated along the negative-real axis (including the origin) of the s-plane at
ka-c0,-,-p kp....... (k+- p; or alternatively, one can state that

the poles of Hlk(s) are located at - (qp) where 0 < q < k + a-c and is integral.

Taking the Laplace Transform of Eq. (I. Z4), one is able to conclude, in a rather

straight forward manner, that the poles of Dk (s) are located along the negative-real

axis of the s-plane at - (q + c ) p where 0 < q < k + a- and is integral; but by
2 - -2

Theorem 1, the range of values q may take can be written as 0 < q < A. 0. (&) + k- I.

That the pole spacing is p is obvious from the location of the poles of Hk(s) which

have been enumerated in detail.

If one does not wish to use a set of evenly-spaced poles as the basis for his

approximation then, of course, the orthonormalization procedure must be carried out

anew every time a different set of poles is used. It has been shown that this becomes

more tedious to accomplish the larger A. 0. (k) becomes. The only exception to

these last statements occurs when A. 0. (&) = ", for in this case one can fall back

upon Kautz' s recursive equation, (1. 8), which is in a form that is independent of the

spacings of the ak

Generally speaking, one has a great deal of latitude in the choice of the ak
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the only restriction having to do with the completeness' of the set 4k(t). The work of
24 19 6

Reiss , Leight , and Brown seems to indicate, however, that a geometric pole

spacing may be the optimum one to choose. Unfortunately, their conclusions are based

upon the identification of such a simple plant (the impulse response of the plant is

E m ) that one questions the extension of their results to more complicated situations.

At the present time, no other literature is available on the topic of optimum pole loca-

tions (as far as the author knows) for the approximations of processes having more than

a single pole; thus, it is not possible to arrive at a final conclusion about the optimum

locations of the ak . If one should decide to choose an equally spaced set of ak as the

poles of his approximation, then, of course, the theory and methods developed in this

chapter and the following two chapters would be directly applicable. If, on the other

hand, a set of non-equally spaced ak were chosen, then, based upon the asymptotic-

order of the approximation and the location of the ak ' the approximants pk(t) could be

constructed via Eq. (1. 3). Naturally, this procedure would have to be repeated in its

entirety for every different set of ak *

Let us remark, at this point, that two ways for constructing the functions Ok(t)

whose asymptotic-order is unity and whose poles are evenly spaced have been presented

- - - Kautz' s equation in the s-domain and the recurrence equation, (1. 18), in the time-

domain. It would be reassuring for us to know that both results are equivalent.

Before stating and proving that this is so, the following notation, which will be

used in the statement and proof of the theorem below, is introduced: Ck (t) and
Kk

(t) correspond to the orthonormal exponential approximants given in Equations (1. 18)

JacobiPolynomial representation (J)1'and (1. 8) Kaut,' s representation (K) respec-

t Kvely. IDk (s) is the Laplace transform of ck (t) and K (s) is the Laplace transform

of (t)

Theorem 3. (Uniqueness Theorem)

k aa = c k k= (k+ -'-)p (1. Z6)

". See Appendix A for a discussion of "completeness" and its affects on choosing
the sets of a1k
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provided K (t) does not contain any null functions.
S= :z(k + z )p

The constraint a = C on the J(t) set is a direct consequence of TheoremI, while

constraining the poles of theCkK (s) set to be equally spaced at - (k + c )p is a direct

consequence of theorem Z.

The method used in proving the theorem is a simple one: first, it shall be shown

thatC (s)j =- ( s)' (') c(; the converse will then follow.
a =c a k = (k +-2-)p

Proof:

For a = c, Eq. (L. 18) becomes

= (-k (c, c; -Pt (1. Z7)

where, from Eqs. (I. IZ) and (1. 15)

-pt k (k (c + k + F)(c) c -ptk (C, C ; E (-I)' r(c +I ) r(c+ (l. Z8)=0

and
S= k ! r'(c)

_'K - F- c (1. 29)k r(c +k),

Substituting these last two equations into Eq. (1. 27) and taking its La.place transform

one finds that

Sk (-Ipk +t ,p-(c+Zk) r(c+k+± ) I (L. 30)

k c ' Z 1 ~ 11. (k-1)! (c +1) -- [s +(A+ - )p]a= c i 0 I)P
One must now demonstrate the equivalence of Eqs. (1. 8) and (1. 30). This will be done

by means of an inductive type argument. In particular, when k = r

K (s - no) .... (s - )rI) (1.31)
S(S + Q )(s + ai) ... (s + nr)

and

j()I rc + Ir /P.j c + Zr) r(c + r + .) 1

S•'llr+• !(r - r(c r[c+A)

(I. 32)

* A "null function" is a function whose area, in the range from 0- to 00, is zero
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Equation (1. 31) can now be developed into the partial fraction expansion

VDrK s = o + s V + + 'Vr + r (. 33)s .... s + CrL s + a _C
o -l r

This equation shall be compared with Eq. (1, 32) verifying the equality of the coefficients

'Vo' I'r-l , and -Yr and their respective counterparts in Eq. (I. 3Z) under the condition im-c •T/ I are
posed by the theorem, that ar = (r + -- )p. If this is so then the (s) 1 ra e

merely the partial fraction expansions of the 15 (S)Kr=

1. Yo" (the residue of the zeroth pole)

From Eqs. (1. 31) and (1. 33) it can be shown easily that

r (ZaO) (a° + al) ... (L°+ ar-l) (1. 34)
Or (I _ CLo)(az _ ao) ... (or - ao)

which reduces to

r+ c) ](c +r)

"o = (-)r ( r. (c) (1. 35)

c
when ar = (r . -- f )p is substituted into Eq. (1. 34).

To find the corresponding value of -yo from Eq. (I. 32) r is set equal to zero.I
Doing this and comparing the coefficient of the I term to Eq. (1. 35) one con-

cludes that they are the same.

2. VrI .the residue of the (r - I)th term]

Proceeding in exactly the same fashion as in the preceding case, it is noted

that the residue y r-1 in Eq. (L. 33) is

(Or - + Cr l- (al 0 4 Cr-_i) ... (Z r_) (L. 36)
Vr-l (-1)r 2 -r Ta0  - ar-1)(al" ar-1) ... (ar-Z - ar-l)(or - (r.36

which reduces to

_c r(c + Zr-I) (I. 3 7 )A

'r-l = - Zp(r+-) - r(c + r-l)

* Great care must be taken when factoring (-I) out of the terms in the denominator
of Eq. (I. 36)after a has been replaced by (r + E )p. In this case (-I)r-I was
factored out. r 2



25

This co, ioesponds exactly with the residue of the pole at

-= -(I -( r - I + C )p in Eq. (1. 32), which can be found merely by substituting

k = r -I into that equatio-,

3. Yr. (the residue of the rth term).

Finally, it can be shown that the residue -yr in Eq. (1. 33) becomes, afterc
replacing a r by (r + )p,

2 c +( c + Zr) (1. 38)
Yr = P (1 + f ) r' r(c+r)

which, once again, can be shown to correspond exactly with the residue of the pole at

s= - L (r + c )p in Eq. (1. 3Z)

The first part of the theorem has now been proven, that is, it has been demon-

strated that

a= c k Ck = (k+ c p (1.39)

since it has just been sh,)wn that

J K (s) (1.40)

Ck (s) a = c k (c = (k+ (1 4a= cI ak = 1+z)

That

K J

Ik (s) c (t) (1. 41)ak= (k+ -)p a= c

follows at once from Eq. (1. 40) and the uniqueness theorem from Laplace Transform

TheoryZ? which states: "Two functions of time having the same Laplace Transform are

equal almost everywhere in the range from t = 0 to t = oo differing at most by a

null function" . Since null functions have been excluded from Ok K (t)I;ak = (k + _c )p

one can be assured that Eq. (1. 41) is true. This completes the proo±.

The significance of this theorem should not be underestimated. If, for example,

the inverse were true then the statements made on page 8 (in connection with the Gram-

Schmidt Procedure), regarding the uniqueness of an orthonormal set would be violated.
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There, it was pointed out that the uniqueness of an orthonormal set ck (t), formed

from a collection of functions g, (t) depends solely upon the linear independence of

the elements gI (t). Since the set of elements in both the Kautz expression, Eq. (1. 8),

and Eq. (1. 18) are identically the same (under the conditions of this theorem), that is,

g1 (t) Ef " (I ) pt , the sets must be identical. It has just been proven that

they are indeed equal.

This section is concluded with an example illustrating the results of Theorems

I and 2.

Example: Special Sets of Functions + k (t).

It has beer shown in Section 1. Z that the Gegenbauer and Legendre polynomials

are special cases of the more general Jacobi Polynomials (Table 1. 2. 1). In this exam-

ple the relationships existing between the orthonormal exponential approximants Ok~t)

and the Gegenbauer and Legendre Polynomials are summarized. This summary serves

to relate the Gegenbauer and Legendre Polynomial approximations of a function, f (t),

to the exponential approximations of f (t). Table 1. 4. 1 presents the results and is

self-explanatory. Figure 1. 4. 1 compares the asymptotic-order behavior of the Gegen-

bauer and Legendre sets with the asymptotic-order behavior of the Jacobi set. Essen-

tially, it is a reproduction of Fig. 1. 3. 1 upon which the asymptotic-order relationships

for the Gegenbauer and Legendre sets have been superimposed. Note that the asymp-

totic order of the Legendre set is fixed at unity, while for the Gegenbauer set it may

assume any integral value; however, once the asymptotic order of the Gegenbauer set

is specified, a and c are both fixed. This is in contrast to the Jacobi set where one

is still free to choose either a or c.

It would be desirable now to extend all of the results presented in this chapter

to the case of a weighting function which is much more general than tie uniform weight-

ing function used in this chapter. The next chapter discusses just sitch a weighting

function. In chapter 3 the results of this chapter are extended with the aid of the results

lr esented in chapter 2.
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CHAPTER 2. GENERALIZED WEIGHTING FUNCTIONS AND THEIR DESIGN

2. 1 Why a Weighting Function?

The unweighted * integral-squared error criterion emphasizes large errors

heavily and de-emphasizes small errors, for all time greater than zero. This is due

to the squaring operation. If one assumes for the moment that w(t) in Eq. (1. 1) (re-

peated below) is unity, as was done throughout Chapter 1,

Z 00 2
IE f J w(t) f(t) - fa (t)I dt (1.U1.

0

he is in effect stating that f a(t) is to approximate f(t) closely over the entire range of

time (0, oo). To require this may, in many cases be unnecessary, impractical, and

even undesirable. For example, suppose one needs only to obtain a close fit over a

finite range of time. Two cases of this are shown in Fig. 2. 1. 1. The impulse response

in Fig. 2. 1. ia is typical of systems having a very high asymptotic-order. Since much

of the important information is' concentrated in the interval (t, , t2 ) it seems wise to

emphasize this region in the IEZ criterion. The only way one can introduce a time de-

pendence effect into the IE2 criterion is to choose a weighting function dependent upon

time. Choosing the weighting function shown in Fig. 2. 1. 1c gives the desired effect;

for, the product of this weighting function and the error function f (t) - f (t)a [in Eq.

(1. 1)] tends to emphasize the error in the interval (tI , tZ ) and to de-emphasize it out-

side of the interval.

The system characterized by the impulse response in Fig. 2. 1. lb contains a

delay; that is, for an input applied at t = 0 there is no output until time T. To empha=

size the fact that the response is actually zero in the time interval (0, T) one might

choose a weighting function of the form shown in (d) of Fig. 2. 1. 1. Once again, it is to

be noted that in both (a) and (b) of Fig. 2. 1. 1 the emphasis and de-emphasis of the

error function has been accomplished by means of a time-dependent weighting function,

and not by changing the limits of integration in Eq. (1. 1).

* By convention, the term IunweightedP refers to the case where w(t) is independent
of time. It is a bit misleading, however, since the prefix un - would seem to imply
zero weighting. Perhaps "uniformly - weighted"would be a more appropriate choice
of terminology.

** The emphasis of the time interval (t1 , t 2 ) in Fig. Z.1. 1(a) and the de-emphasis of
the interval (0, T) in Fig. Z. 1. 1(b) could also have been achieved using rectangular-
pulse weighting functions. A rectangular weighting function, unfortunately, introduces
considerable analytical difficulty. This is further discussed in Section Z. 4.
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So far, it has been indicated how one might choose a weighting function from

the viewpoint of obtaining a close fit between fa (t) and f(t) . In many cases, one is

also interested in using the identification, fa (t), in afrequency-domain analysis. If,

in particular, high-frequency effects are important, then one must weight the error

function quite heavily for small values of t . This can be dedeuced from the Initial-

Value Theorem:

fa (0+) =slim s Fa (B) (2.1)

On the other hand, if it is the low-frequency effects which are of primary con-

cern, then, from the Final-Value Theorem

f (co) = n1 s F (s) (Z.Z)a S 0 a

one concludes that a weighting function emphasizing large values of t should be chosen.

Heavy weighting of small values of time is also very important in the identifi-

cation u~ed in adaptive control systems4,22, 32 where one is primarily concerned with

characterizing a plant as quickly as possible and over a short interval of time (0, T).

This has been done in the past by choosing an exponential weighting function. Increas-

ing the amplitude and decreasing the time constant of the exponential function provides

the desired emphasis in the interval (0, T)

Weighting functions emphasizing large values or small values of t will be dis-

cussed at greater length in Chapter 4. In the remaining sections of this chapter weight-

ing functions of the form shown in Fig. Z. 0. 1 c and d shall be studied in greater

detail.

' For a discussion of other weighting functions that might prove to yield far superior
results in the Adaptive Identification problem see Chapter 5.
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2. Z w(t) and its Properties

In this section some properties of the weighting function in Eq. (Z. 3) shall be

inve stigated.

w(t) = E-k° kl t (l - eklt) (2. 3)

ko, ki, kZ 0

Typical portraits of w(t) appear in Fig. 2. 2. 1, from which it is evident that, when

kZ is zero, w(t) reduces to an exponential weight function, while, when both kZ and kO
are zero, w(t) is constant. The general form of w(t) appears in (d) of Fig. Z. Z. 1.

It has a single maximum at time t max., where

t I Inn + (2.4)m m ax. = 77-

Depending upon the choice of values for ko, kI, and kZ, w(t) may be made very

narrow or very wide. A measure of the width of w(t) may be formulated in terms of

the distance between the two inflection points of w(t). If tI and tZ are the times of the

first and second inflection points respectively, (see Fig. Z. Z. Z) then AT, the distance

between these inflection points is

AT = t 2 - t1  (2.5)

tI and tZ are found to be the two solutions of the equation

dZ w(t)
- 0 (Z. 6)dtz

and are

t1, 2 I -Z I k 0k2 +Zk 0 ko2 +k 2 + Z i(2 4k o (k 0 +4ko k 2 + (2. 7)**

TII 2 ( k + k 2 )

* It is tacitly assumed throughout the remainder of the dissertation that w(t) is ampli-

tude normalized, that is, its amplitude is multiplied by unity. Multiplying w(t) by

a constant does not change any of the results presented in this chapter.

** To calculate tI (t 2 ) use the positive (negative) square root in the numerator of

this equation.
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w(t) w (t)

't t

(a) kP=O (b) ko=0

w(t) w(t)

t tmax, t

(c) k? =ko=O (d) ko,k 2 A0

Figure Z. Z. I Some typical portraits of w(t).

w(t)

w 0t2 ) 0o

AT1 '1
i t2 t

Figure 2. Z. 2. Relationship of AT to w(t).

MR.I. -19081



34

whereupon AT becomes

2 z +Zk k +k' +k ( 4 k. +4k k +kzAT --. 8)In *

Zk02 + Zko kz +kZ -/kZ (4ko2 + 4ko kZ + kz)

k2 7 / 0

This equation and Eq. (Z. 4), for t max.' will be very useful in the design procedure

developed in the following section for selecting the constants k, 1k1, and k .

* When k = 0, AT has no meaning since w(t) E - 0o k I t has n-) inflection points.
Under this condition AT = 0 in Eq. (Z. 8) which is meaningless.
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Z. 3 The Design of w(t)

In this section, a method for determining the constants ko, kl and k in

Eq. (2. 3), from a given set of specifications on w(t), will be discussed. It is by no

means the only method which may be devised, but, rather, is one which sheds a great

deal of light onto the effects which these constants have on the shape of w(t). An alter-

nate procedure which is more germane to the theory presented in Chapter 3 will be

discussed in that chapter; however, most of the results of this section will be directly

applicable to that method also.

Three constants are to be determined; therefore, three independent specifi-

cations on w(t) must be given. The three conditions listed below are only one set out of

many possible sets; however, they are a particularly advantageous set in that they en-

able one to readily control the shape of w(t).

i. The initiat behavior of w(t) may be accounted for by pre-specifying kZ;

since, quite obviously, from the form of w(t), the number of derivatives of w(t) which

are zero at t = 0 depends solely upon its value. kZ also controls the width, AT, of

w(t) as shall be shown. The pre-specified value of k shall be designated as kZ

where in general kZ > 0 . s
s

2. After a region of maximum emphasis of f(t) has been decided upon, t m ax.

is chosen so as to coincide with the center of this region. By locating tmax. in this

manner, it is possible to design w(t) in such a manner that it emphasizes the desired

region of maximum emphasis of f(t). The pre-specified time t shall be desig-max.

nated t s

3. It shall be desirable to have the amplitude of w(t) become approximately

zero within some pre-specified time interval, say 4 Tcs . Naturally, 4 T must be

chosen such that 4 
T s > ts . This condition prevents one from attempting to design a

weighting function where, for example, r second and tmax, = I second.

These 3 conditions-can be expressed in terms of ko, kl and k2 as follows:

* The subscript s stands for "specified a priori" .

** Choosing integer values for k2 usually results in numerical simplifications and

also enables one to correlate the i5itial behavior of w(t) in the time-domain to the
asymptotic-order of W(s) in the s-domain.
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1. k 2 k2 (2. 9)
2

2. t =s = I - n + 4 (2.10)
I0

3. T = 1(. 11)

Procedure for Designing w(t).

1. Values for t max' k2 and r are chosen based upon the specifications for

w(t).

2. By trial and error, kI is found from the equation

kI ts
I - (2.12)

kI =

k2 r ss

3. Finally, k is determined from the result of step 2 and Eq. (Z. 11), that

is

k (2.13)

That the actual process of determining kI from Eq. (2.12), by trial and error,

is a rapidly converging one can best be illustrated by means of an example.

Example I.

The impulse response of the overdamped process shown in Fig. Z. 3.1 is to be

f f)

t (sec.)
0.25 .75

Figure 2. 3. 1. Impulse response of an overdamped
process.
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approximated in an integral-squared sense, such that the approximation is particularly

accurate for 0. 25 < t < 0. 75 sec. As the first step in the approximation procedure

(to be outlined in Chapter 3) a weighting function must be designed.

1. The center of the region of maximum emphasis of f(t) occurs at t = 0. 50
sec; thus, based upon the discussion on page 35 ts is chosen to be 1/2 sec. At the

moment, there is no basis for the choice of one value of over another, however, such

a basis will be established shortly. Here k 2 is arbitrarily chosen to be two, i. e.,

kZ = 2. In order to make sure that w(t) emphasizes the entire region 0.25 < t < 0. 75
S

heavily, as desired, -s is chosen to be 0. 3 second.

I kI

2. k -E (2. 12a)

Table 2. 3. 1. Calculation of kI

I kl

Assumed Value E - I

of kI 0.6

1. 0 1. 085

0.9 0.950

0. 8 0. 816

0.7 0. 700

3. Withk = 0.7 andrs = 0.3, ko, in q. (Z. 13), is found to be 4. 76.

Summarizing, one can easily verify that the weighting function w(t) is

w(t) M 33tI - E (2.14)

* These numbers correspond to the numerical designations assigned to the steps in
the design procedure on page, 36.
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One now may pose the following question: "Having designed a weighting function

via the trial and error procedure outlined above, is there any shortcut available for

designing other weighting functions based upon the information available from the

design of the first one?" . The following theorem presents just such a shortcut.

Before stating and proving the theorem some new nomenclature will be intro-

duced. Associated with a weighting function w (t), where the unity superscript indi-

cates that this function was actually designed by means of the trial and error proce-
I I I -dure, are the following constants: the pre-specified k , t andT5  and the calcu-

14ted and k Similarily, associated with the j' th weighting function wJ(t) are
th 0 . Siiaiy

the constants k) , tJ T ' kJ and kJZ max. o t

Theorem 4. Given k, t- t= and k It then
2' s s 1 1t

s

o • kz-• • o(2. 15)

and
k s 1

kj 2 s

2Wi 
kU)

ts

Figure 2. i. . Illustration of Theorem 4.

* This theorem can also be used out of the context of the design procedure presented
in this section. Such an application is discussed in Chapter 3, Section 3. 2.
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A graphical interpretation of this theorem is given in Fig. 2. 3. 2. One sees,

from this figure, that the theorem enables him to construct a family of weighting

functions, each having its maximum at the same value of time, and, each having a

different value of k~s . It was pointed out, in Example I of this section, that, while

there exists a practical basis for the pre-specification of trax, , there does not yet

exist a practical basis for the way in which to pre-specify k2 . In Example 1 a weight-

ing function was designed for a specific value of tmax. and an arbitrarily chosen value

of k Theorem 4 now enables one to rapidly determine the effect of an increase or

decrease in k2 on the shape of w(t), for a specific value of tmax..

The seemingly stringent requirement that all of the kj s be identical for all of

the wJ(t)' s actually is a direct consequence of the general theory presented in Chapter

3. There it will be shown that this constant equals the pole spacing of the elements

Ik(s) and that this spacing is usually fixed a priori; hence, for a given pole spacing, a

family of weighting functions may be constructed, but they must all have the property
I -ki = k' *

The proof of theorem 4 follows.

Proof:

From Eq. (2. 10) and the given information one finds

k0 = s (2. 17)
k s

and

kj
kj = s (2.18)

0o I tI1kl t
1

After kj is divided by kI one is able to conclude that
0 0

o s (2. 19)
k[ k

0 k2 s

which proves the first part of the theorem. If one proceeds to substitute

T = 1 (2. Z0

T k1 k3

1 0
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and

= 1 o (2. 21)

k1 o

into Eq. (2. 19) one obtains the expression

T = -,---- T 
(2. 22)

S)

which verifies the second part of the theorem.

Before illustrating the use of this theorem by means of an example, it will be

useful to try and gain a bit more physical insight into how the choice of the constants

kJ affects wJ (t). It has already been pointed out (page 35 ) that k controls the in-

itial and final behaviors of the weighting function w(t). It shall presently be shown that,

under the conditions of theorem 4, k2 also controls the width of w(t), as measured by

AT in Eq. (2. 8).

Corollary I. Under the conditions of Theorem 4 and by the definition of AT in Eq. (2. 8)

Iim nT 3 = 0 (2. 23)

2
s

where ATj is the width of the j' th weighting function.

Proof:

The proof follows directly from Eq. (2. 8) and the statement of Theorem 4.

Utilizing this information one can show that

2 C kj 4 +1+ /4/C' k 3j +1I
Tj s Vs (2.24)

=T -T-- In
k1 C' k2 +I- C' ki +I

where

IT (k k'
C 0 0 +(Z. 25)

kZ 
k

2 2
s
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Dividing numerator and denominator of the logarithmic argument in Eq. (2. 24) by

kJ and letting kj become very large it is easy to show, by means of limit arguments,

that

lim ATj = 0

kj (2. 26)
2

s

In a similar fashion one may also show that ATj is a monotonically decreasing

function of that is to say, increasing ks always narrows w3 (t) while decreasing

it widens wJ(t). This is borne out in the following example.

Example 2.

In this example the design of weighting functions based upon the specifications

given in Example I is continued. Here, as in Example I, weighting functions are de-

signed such that t max.= 0.50 second. The effect of choosing values for k other than

two, in the design of these weighting functions viaTheorem 4, is studied in detail.

Table Z. 3. 2 summarizes three designs and their properties. w (t) is the weight-

ing function designed in Example i. w Z(t) and w 3(t), on the other hand, were obtained

directly from the entries in the first row of Table 2. 3. 2 and Eqs. (2. 15) and (2. 16) of

Theorem 4. The properties of w Z(t) and w 3(t) are listed in the second and third rows

of Table 2. 3. 2 respectively. Figure 2. 3. 3 presents a graphical summary of the re-

sults. For clarity, w (t), w (t), and w 3(t) have been scaled up by factors of 100, 20,

and 2000 respectively. Note that w (t) is the widest function and that this corresponds

to the unity kJ case; thus, the example substantiates the theory. If the width of the
s

weighting function is used as a measure of the time of maximum emphasis of wi(t), then,

based upon the specification stated in Example 1, that f(t) is to be approximated most

accurately for 0. Z5 < t < 0. 75 sec. (see Fig. Z. 3. 1), and the widths of the three
3

weighting functions listed in Table 2. 3. Z, one concludes that w (t) is the most satis-

factory design, of the three weighting functions listed.
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I~ ( t

5

100 w, (f)

4 O 20 w2 t)

C 2000 A3 t)

3

2

A

0 0.25 0.5 0.75 10 1.25 1.5 1.75 2.0 2.25 2.5 275 3.0 t
ts

Figure Z. 3. 3 A comparison of the three weighting
functions listed in Table Z. 3. 2.

M.R.- 19082
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2. 4 Why the Weighting F.Unction w(t) = E ko I t(l- ki t)

Thus far, no mention has been made of the reasons for choosing the particular

weighting function

-t k o k I t (I -klIt ) kz2(.3

or for spending so much time discussing its properties, and a procedure for design-

ing it based upon these properties. What makes this weighting function so useful?

It has already been indicated, in Section Z. 1, that, many times one is merely

concerned with the problem of fitting or approximating a function closely over a closed

time interval, (tI , tz). If this be the case, then the most desirable form to choose

for w(t) is the rectangular gating function in Figure 2. 4. Ia . This is equivalent to

changing the domain of integration in Eqs. (h .), (1. 3) and (1. 4), from the interval

(0 , oo) to the interval (t 1' tZ) . Chapi'ng these limits results in very tedious compu-

tations. It is also interesting to rote that Kautz' s results and all of the results pre-

sented in Chapter 1 are useles,, in this case.

w(t) w(t)

Wt) E -kokit (I-E-kI t)k 2

t2  t tI t2 t

(a) (b)

Figure 2. 4. 1. Weighting functions emphasizing cne interval of k ktZ

time (tl, tY). (a) Gating function, (b) w(t) = E-k kl t I - t
approximating the gating function.

One must therefore conclude that the analytical difficulties encountered when

gating-type weighting functions are used precludes their usefulness. This does not

mean that the idea of a gating function is incorrect; it suggests, rather, that one

might choose a weighting function approximating the gating function in shape - - -

one which is more manageable in the Eqs. (1. 1), (1. 3), and (1. 4) than the gating function

is. The weighting function in Eq. (2. 3) is just such a function. That this is so is
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amplified in Fig. 2. 4. lb where the gating function [u 1 (t - t u- u 1 - tz)] is

- k O kit ( kl

approximated by w(t) = - t -I t L

A second reason for choosing w(t) in Eq. (2. 3) is that this is the natural choice

to make if the results of Chapter I [where w(t) was unityI are to be extended to a

more general weighting function. This is perhaps the more important of the two

reasons as will be seen in the next chapter.



46

CHAPTER 3. THE ORTHONORMAL EXPONENTIAL SET FOR

EXPONENTIAL WEIGHTING FUNCTIONS

3. 1 Introduction

The purpose of this Chapter is to extend the results of Chapter 1 to the cases

of exponential weighting functions. This is accomplished with the aid of the theory

presented in Chapter 2.

Recall that the elements, pk(t), of an orthonormal set satisfy the relationship

00

f w(t) pi(t) ýj(t) dt = .ij (3.1)
0

and, in particular, recall that if the 1)k(t) are chosen from a set of exponential functions,

wherein the poles of the T[ k(s) are evenly spaced along the negative - real axis of the

s-plane, Eq. (3. 1) can be written in terms of the classical Jacobi Polynomials,

Sm (a, c ; x), given by

00 cp -p a-c -t (a ptK.
f (I -E )-pt, (a, c; E C tE dt -L..

0 cet. p ij (3. Z)

When w(t) I in Eq. (3. 1) it is shown in Chapter 1, that

cp ta-c

'ýk k d= (E)k7 (1 - E - pk (a, C; E -pt) (3. 3)

This was obtained by comparing Eqs. (3. 1) and (3. 2) after the weighting function
- cpt -pt a-c)

S-cpt (I - E -pt) , in Eq. (3. Z), had been split into two equal portions

cpt Pt -- c-

E - (I - E ) ; the two equal portions of the weighting function

E cpt (I - E -Pt (a-c) were first associated with the factors (a, c; E t ) and

. (a, c; E -Pt) in Eq. (3. Z), before the comparison of Eqs. (3. .) and (3. Z) was made.

If, instead of splitting the entire weighting function in Eq. (3. Z) into two equal
_p~ Z (a-c)

parts, a portion of the weighting function, say E -k, cpt (I - C - ) , is first

removed then, upon comparison of Eqs. (3. 1) and (3. Z), it is possible to conclude that

a-e

ýk Mt = (-I) k l : E E ip (a, c;, c-Pt) (3.4)

k = 0, 1, Z'. .
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where 0•< X1 1Z < 1 (3.5)

and
- kI cpt -P z (a-c)

w(t) = X (i- - ) (3. 6)

Equation (3. 4) is an equation for the elements 4k(t) of an exponential set which are

orthonormal with respect to the weighting function in Eq. (3. 6). When both XI and X

are equal to zero, Eq. (3.4) reduces to Eq. (3. 3). For all values of XI and X., as

defined in Eq. (3. 5), w(t), in Eq. (3. 6), corresponds exactly to the weighting function

-k k 1 t -k lt)kZ
o I

discussed in the previous chapter, provided

k° 1 Xlc 1
k = p (3. 7)

k X = X (a-c) 0

-k k t
Thus, all of the results pertaining to the properties, and to the design of E x

(I - E Ikz , apply directly to w(t) in Eq. (3. 6) provided the transformations in

Eq. (3. 7) are employed.

Equations (3. 4) and (3. 6) form the basis for the remaining sections of this chapter.

First the properties of the 4 k (t) shall be reviewed in the light of the more general

weighting fundtion, Eq. (3. 6). Then a design procedure for uniquely determining the

constants X V X Z, c, a, and p in Eqs. (3. 4) and (3. 6) shall be developed. Following

the steps of this procedure it will be straight forward to construct the set of exponen-

tials, in Eq. (3. 4), orthonormal with respect to the weighting function in Eq. (3. 6).
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3. Z The Nature of the tk (t)

The format of this section is similar to that of Section 1. 3, wherein the asymptotic-

order of the [k(S), the pole spacing of the 5k(s), and the conditions under which Eq. (i118)

reduced to Kautz' s results, Eq. (1. 8), were investigated. There the results were

stated and proved in the form of three theorems. Here the corresponding results for

the more general set of elements in Eq. (3. 4) shall merely be stated. The proofs of

these statements are identical to those of their special counterparts in Section 1. 3,

except for some symbolic changes due to the inclusion of the more general weighting

function, Eq. (3. 6).

Theorem 1G. The asymptotic-order of &(s), the Laplace Transform of Pk(t), isa-c a-c

(I - X2)( --Z-) + I for all k, provided that (I - 7) ( ) is a positive integer or zero.

Theorem ZG. The poles of the Dk(s) are located along the negative-real axis in the
s-domain at -[q +• (1 - X1)]p where 0 < q < A. 0. (•k) +k - 1, and is integral.

These poles are spaced p units apart.

Table 3. 2.1 summarizes the results of these theorems. The weighting functions

listed in the first column correspond to the four functions sketched in Fig. Z. Z. 1.

The results of Theorem IG can also be summarized as in Fig. 1. 4.1 if a and c

are replaced by a = a (I - XZ) and c = c (I - XZ) respectively in that figure.

Theorem 3G. (Uniqueness Theorem)

k M a = c k %(s) ak = ( + j
-t I c P -I I c p t -;:,t 

8

'(= jwt) = -Xcpt j-(3.8)
to within a set of null functions.

* The "1 G" notation indicates that this is the general form of the corresponding theorem

presented in Section 1. 3.

* See Appendix B for a more extensive discussion of the pole spacing question.

**"• The inequality a > c - I becomes a' > c - (I - X Z) which actually is a
family of constraints dependent upon X k When X = 0, at > c' - I and for all

0 <X <1 this line moves to the left approaching &he line a = c as Zapproaches unity.

"**. The J superscript in 4 k (t) refers to the Jacobi Polynomial equation fork B
Eq. (3. 4). The B superscript in 1 (s), on the other hand, refers to the 'set of ik (s)

in Eq. (1. 9) developed by Braun 4,
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Table 3. 2. 1. Summary of Theorems IG and 2G.

M (t) A. 0. (Tk) Pole Locations
I2 of ýDk(s

a-c +1 - (q+ + )p
2 2

-X1 cpt a-c +
Xl, 0  0  

E + (1- a

o02 0 I\ - € -c ( l- x () -] 
x 

+ 
c

0 x 0 6 -xicpt (I _ pt'X Z(a-c) ( _c) lq c

In effect, this theorem states that Eq. (1. 9), obtained by Braun for the weight-

ing function E -2bt, is identical to the results given by Eq. (3. 4), provided, of course,

it is understood that this is only true for the set with unity asymptotic-order and evenly-

spaced poles - - where b = xicp

2

* 0 < q < A.0. (Dk) + k - I, and is integral
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Armstrong' s Example.

In a Letter to the Editor appearing in the I. R. E. Transactions on Circuit Theory,

Armstrong compares the integrals

S-t - t)-)n2[F 3] (3. 9)
o -3t (1- C -) (4, 3; E - n (4,3; E -t dt n r(3)] r(n+2) 5

( Z (Z +n) r(n+4) r(n+3) mn

and

E t E -t) n(t) M m(t) dt = 5 rmn (3.10)

from which he concludes that a suitable representation for the elements 4 k (t) is

ýk Mt) = (-1 )k (k + 1) (k + 2 E -)t )k ,3; E - (3.11)

It is easy to show from Eqs. (3.1), (3. 4), (3. 6), (3. 10), and (3. 11) that this

example is the special case

a = 4, c = 3, p = 1, 1= , and X (3.1 2)

It is interesting to note that by choosing XZ = I Armstrong has constructed a

set of orthonormalized exponentials where A. 0. (1k) = I. This set, however, is

orthonormal with respect to the weighting function c t ( 1 - E t) which is a more

complicated weighting function than the exponential weight Braun 4 ' ZZ used. Armstrong s

weighting function emphasizes a region of time in the vicinity of its maximum, which

occurs at t = 0. 693 second.
max.

From Table 3. Z. I it is seen that the poles of Armstrong' s set occur at - (q + 1),

0 < q < k , the first pole, at , being at - 1.
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3. 3. A Design Procedure for Constructing the ýk(t)

For convenience, Eq. (3. 4), for the elements 4 k (t)' is repeated below.

k -(l-) CT t (1-Xz)( --Z-- (3.
k(t) = (-I) k E . (I - Pt) (ac c- P) .4)

p

In order to carry out the numerical computations indicated in Eq. (3. 4) one must some-

how choose values for the constants a, c, p, XI and X ". In this section, one procedure

for determining these constants, from a set of specifications on both w(t), in Eq. (3. 6),

and kk(t), in Eq. (3. 4), is developed.

(a) First-pole location.

From the pole-location theorem, Theorem ZG, it can be shown that the first

pole, Lo, of cT (s) will lie along the negative-real axis of the s-plane at

S 2- (l-X 1 )p (3.13)

It should be possible to roughly locate this pole from an inspection of the portrait of

f (t). As an example, suppose that f (t) approaches zero amplitude in about 8 seconds.

It is safe to assume, then, that if a single term in f (t) contributed the 8 second response

it would be of the form . -E /zt Based upon this assumption one might choose

Ia - -_
0 2

(b) Specification of p.

It has been shown in the pole-location theorem, Theorem ZG, that the pole-

spacing of the poles of l, (s) exactly equals p. p must be chosen a priori based upon

a consideration of the accuracy required of the approximation fa (t). It can be shown

that choosing one value of p over another affects the rate of convergence of fa(t) as

measured by the IEF numeric. For example, it may take 3 terms in f a(t)

[fa(t) = C 0 (t) + C1 4) (t) + C2 z (t)I with p = pl, before the integral-squared error

numeric is less than or equal to some pre-accepted accuracy level, while it may only

require Z terms in f (t) with p = p2 , before the integral-squared error numeric is
a

less than or equal to the same pre-accepted accuracy level. It has been found that

choosing the value of p such that the poles of 4k (s), and consequently the poles of

F a (s), lie in the vicinity of the Files of F(s) and surround the poles of F(s) leads to

approximations that converge very rapidly. Naturally, this choice of p depends upon

the analysts understanding of the dynamics of the system being studied.
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(c) Specification of A. 0. (F a)

It has been shown that specifying A. 0. (Fa) is equivalent to specifying

A.O. (0k), and that

A. 0. -- (1-XZ) ( .•j) +1 (3.14)

In general, A. 0. (Fa) must be stated a priori. For systems of low asymptotic-

order this is not too difficult to do. One need only look at the portrait of f(t) in order

to determine whether or not f(o) and/or f(1) (o) are zero. On the other hand, it is

usually impossible to determine directly from f(t) the asymptotic-order of systems of

high asymptotic-order. In these cases, one may have to resort to a rather detailed

preliminary analysis of the system involving, perhaps, high-frequency testing, since

the asymptotic-order is related to the high-frequency behavior of a system.

The determination of the asymptotic-order is probably the most difficult problem

that the analyst faces. Much more work needs to be done in the areas of experimental

and analytical methods useful in the practical determination of the asymptotic-order

of a system.

(d) Design of the weighting function.

The constants XIc and X 2 (a-c) in Eq. (3. 6), which is repeated below for con-

venience, must be determined.

-K1 cptt (a-c

w(t) = I p -t P ) (3.6)

It has already been pointed out that for

X 1 c = k 1
p = k 1  (3. 7)

and XZ (a-c) = k2

the design of Eq. (3. 6) is identical to the design of
-k° k1I t (I1 - k, t~kz

W (t) = E - (3.15)

which was studied in Chapter 2. The design procedure developed in that chapter must

be modified in this case to accommodate the requirement that p be specified a priori
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[step (b) on Page 51]. The procedure is outlined below. First the specifications

on w(t) are stated:

1. kI is specified at the outset as the spacing of the poles of & (s).

Z. tmax. , in Eq. (2. 4), is chosen so that w(t) emphasizes a region of time

necessary to effect the maximum emphasis of f(t), over that same region of time.
It is designated t

s

3. w(t) must approach zero in 4 T s seconds (see page 35) for a more com-

plete discussion o) the choice of Ts.

Procedure for designing w(t).

Based upon the above specifications on w(t), calculate

I. kI =p (3.17)

2. k (3.18)

pts3. k- E -1i (3. 19)
PTs

4. Evaluate AT from Eq. (2. 8) in order to determine w(t)' s width. If,

for example, AT which is repeated beiow for colnvenience,

Z ok + 2 kk 2 +k 2 + k 2 (4 k 2 +4k k + kz)AT =._I1n. 2 k
k, , (4k

+2k k 2 kko + 4 ko k2,+ k2 )

iJstoo small, decrease k 2 , and, with kI and tmax. fixed, re-evaluate k and r using

Theorem 4.

Designing w(t) by this method one determines the constants k and k., as

desired. Substituting the results of steps (a) through (d) into Eqs. (3. 7), (3. 13), and

(3.14) one is able to determine the four constants c, Xl, a, and X2 uniquely.

Za
c= k + 0 (3. 20)

1 
(3. 21)

1+ oPk



54

a k +k + + 2 [ A. 0. (k) (3. Z2)

x 2 1 (3.23)
+ A. 0.
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3.4 Summary.

It has been the purpose of this chapter to present a general method fo- con-

structing sets of orthonormalized exponentials so that these sets may then be used

as the approximants in the identification problem. By introducing the classical

Jacobi Polynomials one has been led to a recursion equation in the time-domain for

determining the elements of the exponential set. In particular, these elements have

the properties that,
-k kI t

I. they are orthonormal with respect to the weighting function E x
kI kt)k kz II

Z. their Laplace Transfornh)s may be of any desired asymptotic-order, and

3. their poles lie along the negative-real axis of the s-plane and are equally

spaced.
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CHAPTER 4. THE CHOICE OF A SUITABLE ERROR CRITERION

4. 1 Introduction

Thus far, the discussions in Chapters I and 3 have considered the approxi-

mation of a function, f(t), in an integral-squared sense. It was pointed out in those

chapters that the addition of more and more terms to the approximation f (t)a
m

Z Ck ýk (t) resulted in an approximation that fitted f (t) closer and closer.

It has been mentioned that, in many circumstances, a close fit between fa(t)

and f(t) is not the only measure of performance that must be satisfied by the approxi-

mation. In Fig. 4.1. 1 fa (t) represents the identification of a plant, f(t), located in

the forward path of a positional servomechanism. The characterization of the plant

by fa(t) is merely the first step in a study of the closed-loop system. Ideally, it would

be desirable for the results of such a study to agree in some way with the actual results

r(t) + c (t)ct r (t) F4 c tM

(a) (b)

Figure 4. 1.1. A single-loop feedback system in which f(t), in (a),
represents the plants actual characteristics while fa (t), in (b),
approximates these characteristics.

that would have been obtained had f(t) been known and used in the analyses.

One may, for example, be interested in performing a stability analysis on the

closed-loop system. Two types of problems occur in this case. The first can be called

the absolute-stability problem and has to do with whether or not the system ever

becomes unstable and for what values of gain, K, it does so. Here it must be assumed

thatK takes on all values. Practically speaking, if the actual plant, f(t), causes the

closed-loop system to become unstable for gain K it would seem desirable to have the

approximate plant indicate a similar behavior, within a certain allowable margin of

error.

The second type of problem can be called the relative-stability problem. Here

one is interested in the behavior of the closed-loop response as K varies over some
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known finite range of values. Is c(t) always overdamped or underdamped for the

range of K of interest, or is it overdamped for some values of K and underdamped for

others? These are some of the questions that a relative-stability analysis answers.

If, for example, the dynamics of the actual plant cause c(t) to be underdarnped for

KI < K < K 2 then it would be desirable to have the approximate plant indicate a

similar behavior over this range of K, again within an allowable margin of error.

Some of the techniques applicable to both types of stability analysis utilize

the frequency response of the plant (Nyquist-polar and Bode-logarithmic plots, for

example). F(j0w) can be found analytically if f(t) is known (which, of course, is not

the case here, since f (t) is being approximated), or experimentally, if the plant is

available for frequency-response measurements. In any event, it also appears neces-

sary to have some correspondence between both the magnitude and the phase of

F (iaw) and of F (jw) over some range of w if Fa (jw) is to predict the stability of the

closed-loop system correctly.

Figure 4. 1. Z summarizes some of the performance criteria used by the author

for choosing the functions that best approximate the plant f(t). These are by no means

the only measures of performance that can be chosen and, in some circumstances,

they may not be appropo at all. Wescott31 summarizes the difficulties of choosing a

performance measure when he states: "The ultimate decision of what constitutds good

performance is based upon human judgement or even personal opinion . . . . the end

result is in the nature of a hit or a miss . . . It is not possible in a general way to

legislate for all cases, and the field must be narrowed. "

There is no reason to assume that the IEZ criterion should lead to approxi-

mations which simultaneously minimize the IEZ and the performance criteria of

Fig. 4. 1. 2.

The purpose of this chapter is to present the details and the results of a study

carried out to determine which error criteria (many of which are well established in

the field of Automatic Control) out of a selected group of eleven lead to approximations

which best approximate f(t) - - best in the sense that these approximations satisfy one

or more of the performance measures listed in Fig. 4. 1. 2. Also of concern will be

the effects on the performance of the f a(t), as measured by these same performance

criteria, of choosing approximations of incorrect asymptotic-order, as compared to

approximations having the correct asymptotic -order.

The eleven error criteria employed in this study were subdivided into three

families of error criteria: the IT nE, ITn E and AE - IT nAE families, where
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The best f a(t) chosen on the basis of a comparison of the closeness of

fit between the approximations and f(t),

{ The best f a(t) chosen on the basis of a comparison of the closeness of

fit between the IFa(J w)I and the IF(j .)1,.

The best fa(t) chosen on the basis of a comparison of the closeness of

fit between the /Fa (jw ) and the /F(jw)

The best f a(t) chosen on the basis of a comparison of the similarity

between the relative-stability of the closed-loop systems in Fig. 4.1. 1 a

and b, for a range of loop gain, K, greater than zero.

The best f a(t) chosen on the basis of a comparison of the similarity

between the absolute-stability of the closed-loop systems in Fig.

4. 1. 1 a and b, for a range of loop gain, K, greater than zero .

The best fa(t) chosen on the basis of a comparison of the similarity

between the absolute-stability of the closed-loop systems in Fig.

4.1.1 a and b, for a range of loop gain, K, less than zero.

Figure 4. 1. Z. Performance measures used in determining
optimum approximations.

00

ITnE f f (f f a) dt (4.1)

0

S otn If - JaZd 42

ITn 2  
0

td

00

and

ITn AE= f tn If - fa Idt (4.4)
0

* The maximum is taken with respect to time as indicated by the t under max.
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Of particular interest to this study were the IE, ITE, ITZE, IT-1/ E, IEZ, ITEZ,

IT-/' EZ, AE, IAE, ITAE, and IT-'/ AE criteria. This choice of error criteria was
1? 31 14

motivated in part by the works of Graham and Lathrop ', Wescott , Handa , Newton

et alZ3, and Walkovitch et al30 who investigated various means for designing the systenm

in Fig. 4. 1.1 a. Their designs were based upon minimizing such measures of the
2 2 2

error e(t) = r(t) - c(t) as the IE, ITE, IT E, IE , ITE , AE, IAF, and ITAE criteriai.

It is interesting to note their common results in the light of what has been said on

page 57 about the TE Z criterion and the choice of the best fa(t). These results are

stated below.

(I) While the IE criterion is analytically easier to handle it does not
lead to the most selective design* or to the synthesis of a system having the best
closed-loop performance (in terms of rise-time, bandwidth, etc. ), and

(Z) The optimal designs occur when the measure of e(t) is heavily weighted
for large time thus placing emphasis on "late" errors.

It is hoped that our study will lead to a similar set of conclusions. In particu-

lar, answers will be sought for the following 14 questions.

1. In each family of error criteria, which error criterion leads to approximations
of best fit between fa(t) and f(t)?

2. In each family of error criteria, which error criterion leads to approximations
of best fit between I Fa (jw-Fl and I F(jw )I ?

3. In each family of error criteria, which error criterion leads to approximations
of best fit between/FaPjo) and /F(w W) ?

4. In each family of error criteria, which error criterion leads to approximations
having the closest relative-stability (K > 0) correspondence between Fa (s) and F (s) ?

5. In each family of error criteria, which error criterion leads to approximations
having the closest absolute - stability (K a 0) correspondence between F (s) and
F (s) ?

6. In each family of error criteria, which error criterion leads to optimum
approximations - - optianum in the sense of one or more of the performance
measures listed in Fig. 4.1.Z. ?

7. From the eleven error criteria, which error criterion leads to approximations
of best fit between f (t) and f(t) ?a

8. From the eleven error criteria, which error criterion leads to approximations

of best fit between IFa(jw )I and IF(jw)I ?

* By "selective" is meant that a minimum value of the measure of e (t) is sharp
as system parameters are varied.
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9. From the eleven error criteria, which error criterion leads to approximations
of best fit between /Fa (jw) and'/F(j W) ?

10. From the eleven error criteria, which error criterion leads to approximations
having the closest relative - stability (K > 0) correspondence between Fa (s) and F(s) ?

11. From the eleven error criteria, which error criterion leads to approximations
having the closest absolute - stability (K > 0) correspondenCe between Fa(s) and F(s) ?

12. From the eleven error criteria, which error criterion leads to optimum approxi-
mations - - optimum in the sense o---one or more of the performance measures listed
in Fig. 4. 1. Z. ?

13. Do the error criteria in the answers to the twelve preceding questions have any-
thing in common, such as the same weighting function?

14. Does choosing an approximation of incorrect asymptotic-order have a noticeable
affect on the relative - and absolute - stability of the closed-loop system?

The answers to these 14 questions will be considered in Section 4. 4 and will be

based upon the analyses discussed in Section 4. 3.

Before the eleven error criteria are discussed in greater detail let us reemphasize

the type of functions under study. Here, as in the preceding chapters, all conclusions

will be based upon approximations of the function

fk(t) = N A , mk real (4.5)
k= 0

by

m
fa(t) Z 0 Ck ýk (t) (4.6)

k= 0

where the @k (t) are linear combinations of exponential functions. In order to utilize

the theory developed in the preceding chapters, for the IEZ criterion, the poles of the

0k (s) are chosen from an equally-spaced set. In this case, the 4k (t) become

k(t) = B t (-1)• ( e -( + E)pt (4.7)

where C -Pt is a factor of 4 k (t), - P being the first pole of 1k (s),

p is the pole-spacing of the Tk (s) and subsequently it is also the
pole-spacing of Fa(s), and

a is A. 0. (qTk) which is the same as A. 0. (Fa).
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If the 'k (t) are orthonormalized, as must be the case in the ITn E family, the con-

stants B V will be found using the orthonormalization procedure. If, on the other hand,

no such orthonormalization is utilized, as in the approximations involving the ITnE

and AE - ITnAE families, the B will eventually be absorbed into the coefficients,

Ck' of Eq. (4. 6); hence, in these cases, all of the By, in Eq. (4.7) will be set equal

to unity, in order to simplify the algebra in the calculation of the Ck.

In any event, the coefficients Ck in Eq. (4.6) are found by minimizing one of the

error criteria in Eqs. (4.1), (4. Z), (4. 3), or (4. 4). These error criteria and the

calculation of the Ck are discussed in greater detail in the following section.
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4. Z The Error Criteria

In this section the eleven error criteria are phrased in terms of the functional

notation used in Chapter I in order to obtain a graphical account of the effects the

various weighting functions have on these criteria.

(a) ITnE 2 Family

Equation (4.2) can be expressed in functional notation by letting tn (f - fa)2
2a

(e), tn , where e = f - fa and qi(e) = e

ITnE2- f q (e), tn] dt = F , L (4.8)

cc•

Here F f dt°
0

The second column of Fig. 4. Z. I summarizes the effects of the three weighting

functions 1, t, and t - 1/2 on e (t) while the last column illustrates exactly what is
2 Z - I/Z Zmeant by the IE , ITE , and IT E measures. Figure 4. Z. Z details the pro-

jective geometric techniques used for obtaining the entries in Fig. 4. 2. 1.

One of the major problems facing the analyst when using the ITnEZ criteria

in signal analysis is the determination of the constants B in Eq. (4. 7) via an ortho-
V 2

normalization procedure. This problem has already been resolved for n = 0 (IE ) in

the first three chapters of the dissertation. Unfortunately, there is no simple way of

extending these results to other values of n. For values of n not equal to zero one can

always fall back upon Eq. (1. 3), which is repeated below as Eq. (4. 9),

00
or tnt. (t) p.(t) dt = i (4. 9)

and carry out the orthonormalization of the 4k(t) in Eq. (4. 7) by first specifying P and

the pole spacing p. This procedure must be carried out anew every time one chooses

to use a different set of poles in (k (s), for doing this,,naturally,implies a change in

and/or p in Eq. (4. 7).

(b) ITn E Family

Equation (4. 1) can be rewritten in terms of functional notation as

ITn E = f' [j(e), tn] dt = F[e, tn] (4.10)
0
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o0

where e = f- fa , t(e) = e, and F f dt. Figure 4. Z. 3 summarizes the ITnE

family for n 0 1, Z, and - 1/2 0

Substituting Eqs. (4. 6) and (4. 7) into Eq. (4. 10), it is straightforward to show

that the minimization of Eq. (4. 10) results in a single equation in fhe (m + I) unknowns,

Co, C, .. . . ., Cm . This condition occurs because the minimum value of Eq. (4.10)

can actually be chosen to be zero; hence, one needs m additional equations if one is to

obtain a unique solution for the (m + I) Ck. These might be given in the form of con-

straints between fa(t) and f(t), and the derivatives of fa(t) and f(t), at various values

of time.

It is important to remember that the minimization of an IT E criterion is not
m

sufficient for determining the constants in the approximation fa(t) = • Ck 4 k (t) of f(t).
k= 0

(c) AE - ITnAE Family

With[in(e), tn] tn If - fal' e = f - fa' and 4 (e) = let Eqs. (4.3) and (4.4)

can be written as

AE= =rax [q(e)j (4.11)

Y'T0 AE f [4(e), tnj dt = Fflel, n (4. I2)

The dependence of these criteria on Ie and tn is illustrated in Figure 4. Z.4 for

n = 0, 1, and - 1/2.

The minimization of Eqs. (4. II) and (4. 12) to find the (m + 1) constants

Co, CI ..... Cm in the approximation Eq. (4. 6) can not be done analytically. This is

due to the fact that one has chosen to work with a function of the absolute value of the

error e(t) which is non-analytic. To be able to carry out the integration in Eq. (4. 12)

by hand, one would have to know the internal zero crossings of e(t) albng the t-axis.

Solving for these zeros is usually an extremely difficult task. The determination of the

(m + 1) coefficients from the minimization of Eq. (4. 11) is an even more difficult task

than the determination of the (m + I) constants in Eq. (4. IZ) . This is due to the ad -

ditional maximization of leI with respect to t, in Eq. (4.11). A trial and error (scanning)

procedure for the minimization of the AE and IT nAE criteria on a digital computer is

discussed in Appendix C. There, the problems of finding the coefficients in Eqs. (4. 11)

and (4. 12) reduce to the development of optimal computer programs and scanning

technique s.
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Based upon the discussions in this section and in Section 4. 1, one is now in

a position to set up a problem which, hopefully, will provide the answers to the ques-

tions posed at the end of Section 4. 1. This is done in the next section.
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4. 3. The Error Problem

In order to answer the questions posed at the end of Section 4. 1, the functions
f(t) listed in the first column of Table 4. 3.1 are approximated by the functions in the

last column of that table. Figure 4. 3.1 summarizes the three major steps taken in

the analysis. These steps are:

Determina- I

tion oft eData Data
coeffiiethes processing evaluation

Ck 1-

Figure 4. 3. 1. Summary of the three major steps taken in the
error problem analysis.

(a) Determination of the coefficients Ck.

Corresponding to each entry in Table 4. 3. 1 eleven approximations were deter-

mined, one for each of the eleven error criteria. The calculatidn of the Ck, which

has already been discussed in some detail in Section 4. Z is summarized in the flow

chart of Figure 4. 3. Z. A summary of the numerical values for the Ck, calculated as

indicated on Fig. 4. 3. 2, corresponding to the approximations listed in Table 4. 3. i, is

presented in Appendix D. Two problems worthy of further discussion arose during

the calculation of the Gk "

The first of these has to do with the problem of roundoff effects due to keeping

only a finite number of decimal places in a computation. It was found that these effects

are particularly severe for the calculations of the Ck within the ITn E family. A desk

calculator was used to evaluate these constants and the results were rounded off to

four places during the calculations, which was well above the accuracy requirements

of other parts of the problem. Four places, although quite sufficient for the Ck, is

not nearly good enough for the calculations of the IT nEZ numeric in the three-term

approximations. In many cases negative values are obtained for these errors! The

inadmissability of such results is obvious from the definition of the ITnEZ criteria in

Eq. (4.2).

Hamming13 discusses a number of theories that have been developed by numeri-

cal analysts dealing with estimates of computational accuracies before a computation

is begun. The reader will find maay enlightening discussions of (to quote Hamming13

"the round-off noise problem" in the textbook written by Hamming.
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The second problem has to do with the limitations of the IBM 650 computer

which was the digital computer used to evaluate the constants, C within the AE-

ITn AE family of error criteria. It is not feasible to perform a three-dimensional scan

on the 650 due to the prohibitive length of time such a scan requires. The machine is

not fast enough for such a program; thus, most of the conclusions in this chapter are

based upon the one and the two term approximations.

(b) Data Processing

In order to determine which error criteria led to the best approximations as

discussed in Section 4.1, the eleven approximations corresponding to each entry in

Table 4. 3. 1 were processed in the manner indicated on the flow chart in Figure 4. 3. 3.

A brief explanation of the calculations listed on Fig. 4. 3. 3. that are not self-explanator.y

follows.

i) Magnitude-and Phase-Error Calculations:

The magnitude and phase angle of F(jw) and Fa (jw) were compared at

seven discrete values of w (w = 0, 1, 2, 3, 4, 5, and 10 rad. / sec. ) by forming the magni-

tude and phase error functions, EM (w) and E (w) respectively. These calculations

were carried out on the IBM 650 computer. The seven values of w ( w = 0, 1, Z, 3, 4,

5, and 10 rad. / sec.) were chosen so that a comparison of the low-midband -, and high-

frequency [Ihigh" in relation to the location of the two poles of'd {f(t) = E -2t E 4t

at s = -Z and s = -4, and to the location of the two poles and single zero of

Z[f(t) = E -Zt + E J , at s = -2, -4 and s = -3 respectivel behavior of the magnitude

and phase angle of F(jw) and Fa (jw) could be made.

ii) Absolute-Stability Analysis:

Root-locus techniques were used to determine whether or not the system

in Fig. 4. 1. 1, which is repeated below as Fig. 4. 3. 4, became unstable when the actual

r(t) + (t) r(t) +

(a) (b)

Figure 4. 3.4. A single-loop feedback system in which f(t), in (a),
represents the plants actual characteristics while f (t), in (b),
approximates these characteristics.
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Digital Conrnuter

Evaluatiol Magnitude-Error Calculation
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• k•=OCk M - k tj • Absolute-Stability Analysis

IF(s Negative Feedback
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Digital Computer

Figure 4. 3. 3. Flow chart indicating the: processing of the approximations
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fa(t) z k k
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plant was replaced by earth one of the eleven approximations to the plant. If the system

became unstable the gain at which instability occurred was also recorded. This was

done for both positive and negative values of gain K. Figure 4. 3. 5 summarizes the

stability behavior of the system containing the actual plants under study; that is, for
-Zt -4t -zt -4t

f(t) = E .e , and for f(t) = c + C

iii) Relative -Stability Analysis:

By using root-locus techniques it was possible to determine the loop-gain K

required for the closed-loop response, c(t) Isee Fig. 4.3.4 ,] to behave in some pre-

scribed manner, e. g. ý = 0. 707. This was done for each one of the eleven one -,

two -, and three - term approximations listed in Appendix D, and was also done for

the actual plant, f(t), in order that the loop gain necessary for the actual system to

achieve a prescribed value of damping (t) could be compared to the loop gain necessary

for the approximate system to achieve the same value of ý. The purpose of such

analyses was to determine which error criteria led to approximations whose root loci

correspond closely to the loci of the actual plant over a reasonable range of gain K.

Stated another way, the purpose of the analyses was to determine which error criteria

led to approximations whose closed-loop response corresponded closely to tha closed-

loop response of the actual plant over a reasonable range of K.

(c) Data Evaluation

The processed approximations were evaluated as indicated in Fig. 4. 3. 6 in

order to determine which error criterion or which groups of criteria, yield approxi-

mations satisfying the performance measures listed therein. This was done in two

ways.

First, the eleven approximations were split up into three families correspond-

ing to the three families of error criteria from which they had been derived. The data

was then evaluated by comparing only the approximations from within a family of error

criteria. This was done in order to determine which error criterion (or criteria),

from within a family of error criteria, leads (lead) to optimum approximations - -

optimum in the sense that the fa (t) satisfy any one or more of the performance

measures listed in Fig. 4. 3. 6.

As an example, consider the determination of the error criterion (or criteria)

in the ITnE family which leads (lead) to approximations having the "best fit between

f (t) and f(t) . For each of the one-and two-term approximations listed in Table

4. 3. 1 four approximations were calculated, one corresponding to each of the four error

criteria in the IT nE family. These approximations are summarized in Appendix D.
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r M) + C(t)
- K f M)

(a)

f(t)-E-2t--E-4t jw

K 4

4 ~X
-4 -2 -4 -2

(b) K >, (c) K< 0

jw f M()=E -t+E_4t jw

K=-2

>AP / = --
-4 -3 -2 -4 -3 -2

(d)K >O (e) K40

Figure 4.3".5. Stability analysis of the closed-loop system in
-Zt - 4t(a) for Q(t) = c -c , (b) K > 0 and (c) K < 0 and for

-Zt -4tS(t) = I , (d) K > 0 and (e) K < 0.

M.R.I.-19134
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Each set of four approximations was. then compared to f(t) at the 19 values of t at

which these functions had been evaluated. Based upon this comparison the function

(or functions) that best approximated f(t), in the sense of the best (it between fa(t) and

f(t), was (were) found. Corresponding to this function (or these functions) was one of

the four error criteria (or more than one) within the IT nE family. The result of in-

terest is the frequency (number of times) with which an error criterion within the

IT nE family leads to an optimum fa (t) - - optimum in the sense of the closest fit be-

tween £a(t) and f(t)

The frequency with which an error criterion leads to optimum approximations --

optimum in the sense of any one or more of the performance measures listed in Fig.

4. 3. 6, versus error criteria, is tabulated in Appendix E. Tables E. I, E. Z, E. 3, and

E. 4 summarize the frequency with which an error criterion leads to optimum approxi-

mations when the sample-space is restricted to the error criteria from within a family

of error criteria. The frequency, that a particular error criterion produces the closest

fit between f (t) and f(t), that a particular error criterion produces the closest fit
a

between I Fa (i ') and F (ju) , that a particular error criterion produces the closest

fit between F (jw) and that a particular error criterion produces the

closest relative-stability correspondence between Fa(s) and F (s), and, that a particular

error criterion produces the closest absolute-stability correspondence between F a(s)

and F (s), is plotted versus error criteria in Figures 4. 3. 7a, 4. 3. 8a, 4. 3. 9a, 4. 3. 10a,

and 4. 3. Ia respectively. These plots were obtained by adding the tabulated data in

Tables E. I, E. 2, E. 3, and E. 4 fai each one of the above performance measures and

for each error criterion; these sums were then plotted versus their respective error

criterion (for a particular performance measure).

Returning to the example of the determination of the error criterion (or criteria)

in the IT nE family which leads (lead) to approximations having the "best fit between

fa(t) and f(t)" , one is able to conclude, upon inspection of Fig. 4. 3. 7a, that the IT-l/ZE

criterion leads to more approximations having the closest fit between f a(t) and f(t) than

do the IE, ITE, and ITzE criteria.

A summary of the conclusions which one is able to draw from Figures 4. 3. 7a,

4. 3, 8a, 4. 3. 9a, 4. 3. 10a, and 4. 3. Ila is presented in the next section, Section 4. 4.

Figures 4. 3. 12a, 4. 3. 13a, 4. 3. 14a, and 4. 3. 15a present an alternate display

of the results tabulated in Tables E. I, E. 2, E. 3, and E. 4 respectively. These figures

were obtained by first summing the numbers in each error criterion column, in each

one of the tables, E. I, E. Z, E. 3, and E. 4 respectively, and by then plotting each one

of these sums versus its respective error criterion. The sum of these numbers



78

corresponds to the frequency with which an error criterion leads to an optimum f(t) -a-

optimum in the sense of any one or more of the performance measures listed in Fig.

4. 3. 6. Figure 4. 3.16 is an additive summary of Figs. 4. 3. ]Za, 4. 3.13a, 4. 3.14a,

and 4. 3.15a. The important conclusions drawn from all of these figures are discussed

in the next section.

In the second method of data evaluation, the data was evaluated by comparing

the approximations from all of the error criteria. This was done in order to determine

which error criterion (or criteria) leads (lead) to optimum approximations - - optimum

in the sense that the fa (t) satisfy any one or more of the performance measures listed

in Fig. 4. 3. 6.

As an example, consider the determination of the error criterion (criteria)

which leads (lead) to approximations having the "best fit between f a(t) and f(t)" . For

each of the one - and two-term approximations listed in Table 4. 3. 1 eleven approxima-

tions were calculated, one corresponding to each of the el~ven selected error criteria

(IE, ITE, ITZE, IT-VZE, IEJ, ITEZ, IT-I/ZEZ, AE, IAE, ITAE, IT-l/ZAE). These

approximations are summarized in Appendix D. Each set of eleven approximations was

then compared to f(t) at the 19 values of t at which these functions had been evaluated.

Based upon this comparison the function (or functions) that best approximated f(t), in

the sense of the best fit between fa(t) and f(t), was (were) found. Corresponding to this

function (or these functions) was one of the eleven error criteria (or more than one).

The result of interest is the frequency (number of times) with which an error criterion

leads to an optimum f a(t) - - optimum in the sense of the closest fit between f a(t) and

f (t).

Tables E. 5, E. 6, E. 7, and E. 8 summarize the frequency with which an error

criterion leads to optimum approximations when the sample-space includes all eleven

error criteria. The frequency, that a particular error criterion produces the closest

fit between fa(t) and f(t), that a particular error criterion produces the closest fit be-

tween I Fa (jw) I and IF (jo) ,• that a particular error criterion produces the closest

fit between/Fa. (j) and/F ( , that a particular error criterion produces the closest

relative - stability correspondence between Fa(s) and F(s), and, that a particular error

criterion produces the closest absolute - stability correspondence between Fa (s) and

F(s), is plotted versus error criteria in Figures 4. 3. 7b, 4. 3. 8b, 4. 3. 9b, 4. 3. 10b, and

4. 3. llb respectively. These plots were obtained by adding the tabulated data in Tables

E. 5, E. 6, E. 7, and E. 8 for each one of the above performance measures and for each

error criterion; these sums -were then plotted versus their respective error criterion

(for a particular performance measure).
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Returning to the example of the determination of the error criterion (or criteria)

which leads (lead) to approximations having the "best fit between fa(t) and f(t)" , one

is able to conclude, upon inspection of Fig. 4. 3. 7b, that the IT- /Z AE and IT-.1/ZE

criteria lead to more approximations having the closest fit between fa(t) and f(t) than

do the other nine error criteria.

A summary of the conclusions which one is able to draw from Figures 4. 3. 7b,

4. 3. 8b, 4. 3. 9b, 4. 3. 10b, and 4. 3. 1lb is presented in the next section, Section 4.4.

Figures 4. 3.1Zb, 4. 3.13b, 4. 3. 14b, and 4. 3. 15b present an alternate display

of the results tabulated in Tables E. 5, E. 6, E. 7, and E. 8 respectively. These figures

were obtained by first summing the numbers in each error criterion column, in each

one of the tables, E. 5, E. 6, E. 7, and E. 8 respectively, and by then plotting each one

of these sums versus its respective error criterion. The sum of these numbers corre-

sponds to the frequency with which an error criterion leads to an optimum fa(t) - -

optimum in the sense of any one or more of the performance measures listed in Fig.

4. 3.6. Fig. 4. 3. 17 is an additive summary of Figs. 4.3. lZb, 4. 3.13b, 4. 3.14b, and

4. 3.15b. The important conclusions drawn from all of these figures are discussed in

the next section.

While it was not possible to calculate the three-term approximations for the

AE, IAE, ITAE, and IT- /Z AE criteria, due to the limitations of the IBM 650 comupter,

it was possible to calculate the three-term approximations, listed in Table 4. 3. 1, for

the other seven error criteria. The results of these calculations can be found in

Appendix D. These approximations were processed (see Fig. 4. 3. 3) and the resulting

data was then evaluated by using the second method for data evaluation, described on

page 78. Naturally, the sample - space, in this case, consists only of seven

error criteria: IE, ITE, IT E, ITl/ E, IE , ITE , and IT /ZEZ criteria. Table

E. 9 summarizes the frequency with which an error criterion leads to optimunm three-

term approximations when the sample-space includes these seven error criteria.

Figure 4. 3.18 presents a graphical summary of Table E. 9. It was obtained by first

summing the numbers in each error criterion column in Table E. 9, and by then plotting

each one of these sums versus its respective error criterion. This sum corresponds

to the frequency with which an error criterion leads to optimum three-term fa(t) - -

optimum in the sense of any one or more of the performance measures listed in

Fig. 4. 3. 6.



HI)

ERROR CRITERIA

IT'/2AE

ITAE I AE-IT nAE
IAE FAMILY

__AEJ

ITY2E2
ITE2 ' U - ITnE2 FAMILYT 2"

_IE2

I fY2i--- m

ITE- -- - --} IT E FAMILY

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 f
(a)

ERROR CRITERIA

IT A E ,

ITAE

AE102E 2LfkE2  1

ITE
2 -

IE
2

IT"2 E -

ITE

IE

0 I 2 3 4 5 6 f

(b)

Figure 4. 3. 7. Frequency (number of times), that a particular
6rror criterion produced the closest fit between f (t) and f(t),
versus error criteria. (a) Sample-space restricted to a
family of error criteria (indicated by dashed lines); (b) sample-
space included all eleven error criteria.

M.RI.-I9136



81

ERROR CRITERIA

Tf"2AE

ITAE AE-ITnAE

IAE 

FAMILY

ITE 2 m m ITnE2 FAMILY

I1E2

2I
IT E lITnE FAMILY

ITE

ITE

0 I 2 3 4 5 6 7 8 9 10 II 12 13 14 f
(a)

ERROR CRITERIA

ITf2A E

ITAE

IAE

AE-
IT E

ITE
2

1E

IT '/2E E

IT2 E

ITE

IE

0 I 2 3 4 5 6
I(b)

Figure 4. 3. 8. Frequency (number of times), that a particular
error criterion produced the closest fit between IF (j. )I
and IF (jw ) , versus error criteria. (a) Sample-5 space
restricted to a family of error criteria (indicated by dashed
lines); (b) sample-space included all eleven error criteria.

M.R.I.-19137



ERROR CRITERIA

If 2AE

ITAE L AE-ITnAE

]AE [IFAMILY
AE - J

-TE2 ITnE2 FAM

IfV2E 1
IT 2 

E I
IT nE FAMILY

ITE
1E I

O 1 2 3 4 5 6 7 8 9 10 f
(a)

ERROR CRITERIA

- /2

IT AE

ITAE -

I1 A E-

A E-

IT/21E2 -IT
2IT E --

12

I-fl2E - /

IT2 E

ITE

IE I

0 I 2 3 4 5 f
(b)

Figure 4. 3. 9. Frequency (number of times), that a particular
error criterion produced the closest fit between /F. (0)

and /F ((w) , versus error criteria. (a) Sample-space
restricted to a family of error criteria, (indicated by dashed
lines); (b) sample-space included all eleven error criteria.

M.R.I.-19138



ERROR CRITERIA

If'T' AE 1
ITAE AE-ITn AE

IAE FAMILY

A EJ
IT /2E 2  1Tn E

2

IT2  ITTE 2  
FAMILY

IT/2E -
IT2E T nIE

IIE FAMILY

0 I 2 3 5 6 7 809 I0 12 f
(a)

I ERROR CRITERIA

ITfy2A E

ITAE

IAE

AE E

ITE -
ITE 2

ITTE -•

ITE

0 2 3( 4 5 6 f
(b)

Figure 4. 3. 10. Frequency (number of times), that a particular
error crif,.rjon produced the closest relative-stability corres-
pondence between Fa (s) and F(s), versus error criteria.

(a) Sample-space restricted to a family of error criteria
(indicated by dashed lines); (b) sample-space included all
eleven error criteria.

M.R.I.-19139



ERROR CRITERIA

if/2 A E AE

ITAE FAMILY

'TAE E--TA
AE - m

T1l/2 E2 - -. .. . ......- • -- - J nEA1 E
I T2 E2 • ITn E
IT E 2 FAMILY

IE -

4]l2 AE --

IT E -

i fl/12 Ee

IT 2 E LT E

ITE FAMILY

-TE

0 1 2 44 6 7 8 9 12
(a)

ERROR CRITERIA

If 1/2 A

ITA E-

ITAE

A E-

_2
IT E

IfTE 2

IE2

IT E-

LTE-

IE

0 1 2 3 4 5 6 7 8 9 f

Figure 4. 3. 11. Frequency (number of times), that a particular
error criterion produced the closest absolute-stability corres-

pondence (K > 0) between Fa(s) and F (s), versus error criteria.

(a) Sample-space restricted to a family of error criteria
(indicated by dashed lines); (b) sample-space included all eleven

error criteria.

M.R1I.-19141



IAI 
FARlA

TI At

lAT

^•i um' I

IT

IT I 
I•TnE

2  
FAMILY

I r"V2 E

11-t

WITE FAMILY

ITE

IF

0 1 6 12 1 20B24 28 32 362

(0)

ERROR CRITERIA

IT-Vz AE

ITAE

'AE

ITO
2

I E 2 

I

I T
2
E

ITE

1E

0 4 8 12 16 20 24

b)

Figure 4. 3.1Z. Frequency (number of times), that a particular error
criterion led to an optimum f (t) [A. 0. (Fa) = I] - - optimum

in the sense that the fa (t) satisfied any one or more of the perform-
ance criteria listed on Fig. 4. 3. 6, versus error criteria. Here

f (t) = E -2t _ E -4t• (a) Sample-space restricted to a family of

error criteria (indicated by dashed lines); (b) sample-space in-
cluded all eleven error criteria.

M.R.L.-19143



86

2 ROR (RITFrlIA

I r AF-IT n AE
FAMILY

IE

ITE ITI nE? FAMILY

IE

o 4 8 12 6 2 287 3
(o)

ERROR CRITERIA

I rI 2AE -

I TAE

IAE

AE

ITE
2

FT'!/2 E

IT1E

ITE

lIE m*
II

O 0 4 6 8 10 12

I b)

Figure 4. 3. 13. Frequency (number of times), that a particular error
criterion led to an optimum f at) A 0. (F) = 2 - - optimum ina (t [A (.F) 21
the sense that the f (t) satisfied any one or more of the performance
criteria listed on EAg. 4.3. 6, versus error criteria. Here f(t) =

-2t -4t
C - - . (a) Sample-space restricted to a family of error
criteria (indicated by dashed lines); (b) sample-space included all
eleven error criteria.
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sense that the f (t) satisfied any oneor more of tle performance
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S-2t - [A. o. (Fa) = l, z, and 3] and f(t) = E +E
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.4.4 Results

The results of this study are presented below as answers to the fourteen ques-

tions posed at the end of Section 4. 1. They were obtained from the evaluated data,

most of which is presented in tabular form ill Appendix E and in graphical form in

Figs. 4. 3. 7 - 4. 3.1.8.

A. Approximations of best fit between f a(t) and f(t): Within each family of error

criteria, weighting small-time heavily leads to approximations of best fit to f(t)

[Fig. 4. 3. 7a]. More specifically, within the ITnE family of error criteria, the IT I,

criterion leads to approximations of best fit to f(t); within the ITnEZ family of error

criteria, the IT-1/ZEZ criterion leads to approximations of best fit to f(t), and; within

the AE - ITn AE family of error criteria, the IT-1/ZAE criterion leads to approximations

of best fit to f(t).

From the eleven selected error criteria, the IT-1/ZAE and the IT- /ZE criteria

lead to approximations of best fit to f(t) [Fig. 4.3.7

B. Approximations of best fit between IFa (j)l-and IF (jc.)I: Within each family

of error criteria, weighting small-time heavily leads to approximations having the

best fit between IFa (Ji)I and IF (jw )I (Fig. 4.3,8a). More specifically, within the

ITnE family of error criteria, the IT- I/ZE criterion leads to approximations of best

fit between I Fa (jOw)I and IF (Ow)l ; within the IT En family of error criteria, the

IT-/ZEZ criterion leads to approximations of best fit between I Fa (jw)I and IF (ji)1,

and; within the AE-ITnAE family of error criteria, the IT 1/ZAE criterion leads to

approximations of best fit between I Fa (jwi)I and IF (juo)

From the eleven selected error criteria, the IT-l/ZE criterion leads to approxi-

mations of best fit betweeni IFa (jw)1 and IF (jw) I (Fig . 4. 3 8 b)

C. Approximations of best fit between Fa (•w) and /F (jO): Within the ITnE,

ITnEZ, and AE - ITnAE families of error criteria, the IE and IT-/ZE, IT-I/EZ, and

AE criteria, respectively, lead to approximations of best fit between /F (jow) and

IF (jw) [Fig. 4.3.9a].

From the eleven selected error criteria, the AE and the IT-I/ZE2 criteria lead

to approximations of best fit between /Fa (ju) and F(j.) [Fig. 4. 3. 9b]
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D. Approximations having the closest relative- stability correspondence between

Fa (s) and F(s): Within the ITn1 E and ITnEZ families of error criteria, weight-

ing small-time heavily leads to approximations having the closest relative-stability

correspondence between Fa(s) and F(s). More specifically, within the ITn1E and
IT nE z families of error criteria, the IT-l/ZE and IT-'I/ZEz criterion, respectively,

lead to approximations having the closest relative-stability correspondence between

Fa(s) and F(s). Within the AE-ITnAE family of error criteria, the AE criterion leads

to optimum approximations - - optimum in the sense of the closest relative-stability

correspondence between Fa(s) and F(s) [Fig. 4. 3.10al.

From the eleven selected error criteria, the AE and IT- 1/ZE criteria lead to

approximations having the closest relative-stability correspondence between Fa(s) and

F(s) [Fig. 4. 3.l0b].

E. Approximations having the closest absolute-stability (K > 0) correspondence

between Fa(s) and F(s): Within the ITnE and IT E families of error criteria,

weighting small-time heavily leads to approximations having the closest absolute-
n

stability correspondence between F (s) and F(s). More specifically, within the IT Eand ITnEZ families of error crtra, lh I I -1/22Z

E criteria, the IT-E and IT E criterion, respectively,

lead to approximations having the closest absolute-stability correspondence between

Fa(s) and F(s). Within the AE - ITnAE family of error criteria, the AE criterion leads

to optimum approximations - - optimum in the sense of the closest absolute-stability

correspondence between Fa(s) and F(s) [Fig. 4. 3. 11a]

From the eleven selected error criteria, the AE and IT-1/ZEZ criteria lead to

approximations having the closest absolute stability correspondence between Fa(s) and

F(s)[LFig. 4. 3. IlbI.

F. Approximations which are optimum in the sense of one or more of the performance

measures listed in Fig. 4.1. 2: Within the ITn E and ITnEZ families of error

criteria, the IT-/Z E and IT- 1 /Z Ez criterion, respectively, lead to approximations

which are optimum in the sense of one or more of the performance measures listed in

Fig. 4. 1. Z (Fig. 4. 3. 16). It would not be fair to make a similar statement for the

IT-I/AE criterion without first explaining the extraordinarily strong showing made by

the AE criterion,

The reason, for the very strong showing made by the AE criterion, is evident

as a comparison of Eqs. (4. 10) and (4. 11) reveals. Consider, for the moment, a two-

term approximation in which the coefficients CO and C1 have been found by a minimization

of either the AE in Eq. (4. 10) or one of the criteria in the ITn AE family in Eq. (4. 11).
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The minimization of the AE actually involves a three-dimensional computer scan of

the Co -CI - t space while the minimization of the IT 1/ 2 AE, for example, merely

involves a two-dimensional scan of the Co - CI space . It would appear from this

and the results of Fig. 4. 3.1 6 a that the extra dimension involved in the minimization

of the AE criterion is sufficient to enhance the selectivity of this criterion; however,

the IT-I/ZAE criterion still leads to 15% more of the " optimum approximations" , on

the average, then the AE criterion does, as is borne out on (a) of Fig, 4. 3. 16.

From the eleven selected error criteria the IT-I/ZE, IT-I/Z EZ, AE, and

IT-/ZAE criteria lead to approximations which are optimum in the sonse of one or

more of the performance measures listed in Fig. 4. 3. 6. Wb4ile a selectivity of error

criteria exists on the "family of error criteria" level, this selectivity no longer seems

to exist when the sample-space is extended to all eleven error criteria. Based upon the

summary in Fig. 4. 3.18, for the three term approximations, and the results presented

in A through E, on the preceding pages, one is led to the conclusion that the IT-I/ZE

and the A.E criterion seem to be the most selective error criteria; they lead to approxi-

mations that are optimum with respect to more of the performance measures listed in

Fig. 4. 3. 6 then do the other nine error criteria.

G. Common properties of the error criteria in A - F, on the preceding pages:

The results in A-F, on the preceding Z pages -clearly indicate that it is, in most

cases, the same weighting function that these error criteria have in common. The im-

portant fact, however, is not that the common weight is but rather that empha-

sizing small-time heavily leads to optimal approximations. This seems plausible,

since many of the performance measures in Fig. 4. 3. 6 involve the concept of stability

which, as has been pointed out in Section Z. 1, is intimately connected with high-frequency

behavior or, by the Initial Value Theorem, with small-time behavior.

H. Approximations of incorrect asymptotic-order: From the large amount of pro-

cessed and evaluated data involved in this study it was possible to conclude that, on the

average, the numerical values of the error between the actual loop gain necessary to

achieve a specified c(t) and the loop gain required by the approximate plant to achieve

the same closed-loop response were smaller for the approximations of correct

asymptotic-order than they were for those of incorrect asymptotic-order.

As an example, consider the plant f(t) = E -Zt e E -4t and the loop gain required

to cause the closed-loop response c(t), in Fig. 4. 3. 4, to oscillate with a damping

* For an extensive discussion of multi-dimensional computer scanning, see

Appendix C.
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ratio a 0. 707. The loop gain required of the outpui: of the system for it to oscillate

with .= 707, when the actual- plant is embedded in the forward path in Fig. 4. 3. 4a,

is K 5. The loop gain closest to the actual gain of K = 5, when A. 0. (F a) = Z in

the system of Fig. 4. 3. 4b, is produced by the ITE approximation listed in Table D. 11,

and is K = 4. 63. The loop gains closest to the actual gain, when A. 0. (Fa) = I and 3,

on the other hand, are produced by the IT- 1/ZE and IT- l/ZEz approximations listed in

Tables D. 4 and D. 14 respectively and are K = Z. 6 and K = 2. 88. In this case the

superiority of the approximation of correct asymptotic-order as compared to those of

incorrect asymptotic-order is quite obvious.
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CHAPTER 5. CONCLUDING THOUGHTS AND RECOMMENDATIONS

The primary purpose of the research described in the preceding chapters was

to investigate some of the considerations which influence the choice of method for the

identification of signals in the time-domain. Particular attention has been given to

the asymptotic-order of the approximation, weighting functions, and the choice of a

suitable error criterion.

It has been shown. in Chapters 1-3, that the sets of orthonormalized exponential

approximants developed by Huggins , Kautz , and Braun , whose asymptotic-order,

in the s-domain, is unity, are not always applicable to the "identification" of a process

which is embedded in the forward path of a positional servomechanism. Stability con-

siderations, in many instances, necessitate the use of approximants of asymptotic-

order greater than unity; such approximants are developed in the first three chapters.

It has also been shown that weighting small-time heavily leads to approximations

(of a process) which satisfy many of the performance criteria necessary for not only a

close correlation between the approximations and the process in the time-domain but

also for a close correlation between the approximations and the process in the s-domain,

the latter correlation being very important when the identification of the process is

merely the first step in an analysis of a closed-loop servo in which the process is

embedded.

Rather than formally summarize all of the results of the preceding four chapters,
some of the problems which remain to be investigated, many of which are natural ex-

tensions of these results, shall briefly be indicated.

I. The importance of matching the asymptotic-order of the process being

identified has been demonstrated throughout Chapters 1-4. The determination of the

asymptotic-order of a process from practical, experimental, time-domain measure-

ments made upon the process, under the assumption that the process may be repre -

sented by a lumped-parameter model, remains one of the most challenging problems

facing the analyst.

2. The approximants developed in Chapters 1 and 3 are useful in the identifi-

cation of overdamped processes. The extension of these results to the underdamped,

or complex-pole case, if at all possible, would be of interest, since many systems are

indeed characterized by underdamped impulse responses. At the same time, the

feasibility of using complex-pole approximants should be investigated; they generally

lead to much greater computational difficulties, as compared to the real-pole approxi-

mations.
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3. The matrix weighting function developed in Appendix B, in connection

with the pole-spacing question, while attractive on the one hand, in that it enables

one to obtain unevenly-spaced poles in F (s), involves an excessive amount of compu -a
tational effort, on the other hand. Might this difficulty be overcome by adapting the

matrix weighting function to a computer solution of the problem?

4. Weighting small-time heavily is important in the solution of the identifi-

cation problem in adaptive systems. The possibility of extending the discussion of the

-k° kI t ( -l t k
weighting function E o -Kc 1 to negative values of kz would provide one

with a basis for extending the results of Chapters I and 3 ta,,orthonormal exponential

approximants - - approximants which are weighted most heavily for very small time --

of any asymptotic-order. These approximations would then be consistent with the

requirements demanded in the solution of the identification problem in adaptive control

systems.

5. Based upon the "small-time" weighting results of Chapter 4, one must

ask whether or not it is possible to develop analytical solutions of the identification

problem which are based upon error criteria incorporating weights of the form
I

t -I , n = Z, 3, 4, ..... If this could be done then it might be possible to substanti-

ate (or disprove) theoretically the results of that chapter.

6. The results of Chapter 4 were based upon a set of performance measures

suited to single-loop feedback control systems. Given a particular application (network

synthesis, stability analysis, adaptive control, etc.), the determination of what consti-

tutes an optimum set of performance measures which the approximation must satisfy

in order for it to "best" represent the time signal remains to be answered. These

sets of performance measures will most likely be different for each application.

7. Based upon the results of item 6 above, one could ask what the optimum

weighting function to be used in each application should be.

8. The determination of the coefficients Ck in the approximation f (t) =mka

Z0 Ck •k (t), using an error criterion from within the AE - ITnAE family of

error criteria, involves multi-dimensional computer scanning techniques, as discussed

in Appendix C. Bellman' s Dynamic Programming34 might provide a useful alternate

approach to the problem of the determination of the Ck, in contrast to the more direct

approach described in Appendix C. The dynanmic programming approach would lead

to a complete set of one, two, and three te.rm approximations naturally, due to the

very nature of the dynamic programming approach.
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9. ReissZ4 and Leight19 have investigated the optimum pole locations for

the poles of Fa(s) when f(t) = E -mt. The choice of these optimally located poles

depends upon a priori knowledge of a range over which the pole of F(s) is known to

vary, and upon a minimization of min (IE Z) with respect to the poles a 0a'

of Fa(s) . An extension of their results to more complicated processes would be in-

valuable. Since it has been shown that weighting srnall-time heavily leads to approxi-

mations which "best" represent the actual process, for the positional servomechanism

application, it would be very valuable, to the control analyst, to know the optimal

pole locations of the poles of F (s), where, in this case, these locations would be
a

determined in part by minimizing an error criterion, weighted heavily for small time,

with respect to the poles of F a(s).

The solutions to these problems should throw considerably more light upon the

overall identification problem.

It is hoped that if anything at all has been achieved in this dissertation, it has

been to make the reader aware of the distinction that exists between the "approximation

in the time-domain" problem and the "identification in the time-domain" problem.

In an area such as Numerical Analysis the analyst is often interested in "approxi-

mating" a signal. He does this by choosing an approximation, fa(t), such that the fit

between fa(t) and f(t) in the time-domain is close. The systems engineer, on the other

hand, "identifies" a process. He does this by choosing an approximation, fa(t), such
that there not only is a close correspondence between f a(t) and f(t) in the time-domain,

but such that there is also a correspondence between fa(t) and f(t) in the s-domain.
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APPENDIX A. COMPLETENESS AND THE CHOICE OF THE ak

Definition. When lirn (min IE) = 0 for any square integrable ý (t), one says that

the set 4) (t)0 0 is closed in the space of all square integrable functions over the

interval t E (0, oo). The notation L 2 (0,oo) is shorthand for, "the space of all square

integrable functions over the interval t r (0,oo)" .
Definition. A set { (t)} •= 0 is complete in L 2 (0, oo) if no non-zero element

exists which is orthogonal to every other element of that set.

Theorem A. I Any arbitrary orthogonal system 4)9 (t) in L (0, o9) is capable of
being completed to an orthogonal system, which is compl•ffe 0 in J 2  '0o)l.

Theorem A. 2 A system of functions of L 2 (0, oo) is closed if and only if it is complete

AlexitsI summarizes these concepts in two profound sentences.

The completeness of an orthonormal system is of great consequence for the
theory of convergence of orthonorrnal expansions. For instance, assuming the
expansion of a given LZ (0, 0o) - integrable function f(t) in the functions of an
appropriate orthonormal system '(t 00 to be convergent, it is ensured only by

appopratnorho• =m(t)shou 0 n
the completeness of this system that the sum of the expansion Z C (t) should
represent f(t) almost everywhere. I

If the 4), (t) are formed from an exponential set of functions then alternate

statements comparable to the two definitions and two theorems above can be made.

Szaz's Theorem summarizes these statements.

Z0
Theorem A. 3 (Szaz' s Theoremn ) If CI (t) is a linear combination of the elements

from a set of exponential functions I k -0 ' Re CL > 0,*.. such thot A.O. (0. =i,

then the set J 4• (t)}= 0 is closed in L 2 (0, oo) if and only if the series R O: 2

diverges. m=0 l+inml

m rin lE
2  w(t) fZ(t) dt -

o k= 0

-, The theorems in this section will be stated without proofs. Their proofs can be
found in the references.

*** Generally speaking, the notation o0 implies that a is a function of k. As an ex-
ample ak could be chosen to be k + 2. In this case a° = Z, a1 = 3 .......
ca = .+ 2.
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Thus one sees that he is not completely at liberty in choosing the sets of al"

The. set must satisfy the above theorem. Liu20 has extended this result to the case

where A. 0. (?D_ Z.

Theorem A. 4 (Generalized Szaz Theorem) If 4j(t) is a linear combination of the

elements from a set of exponential functions {E okkO I eak , such that A. 0. (o

Z, then the set{4. (t)1
00  is closed in LZ (0, oo) if and only if the set { (tCI= 0

formed from the same exponential set,{E I}k= 0 ' such that A. 0. (1) = 1, is closed
in L2  (0, c).

This means that the same sets of ak can be used to generate the orthonormal

approximants 0 (s) of any asymptotic-order.

By applying the integral test to the infinite series in Szaz' s Theorem one

arrives at a more manageable test for determining whether or not the series in Theorem

A . 3 diverges. ' Z + I / 0

Corollary A. I If lir In am +1 C (am real and positive)then m
z+1 Im=O I+Ga

o+0 m

diverges, and the set p• (t)j= is complete

Some complete and non-complete sets are listed below. In each case the

validity of these results can be checked by applying Corollary A. I to the set of ak.

a. Complete sets

1. ak oa ( 1 + bk) , v 1, 2, 3, ... k = 0, 1, Z, ... , andk b is an arbitrary positive

Z. ak = o constant.

3. ak = °0 ( I + bk)k

4. a k = a (l +bk)k

5. ak = In (E o + bk)

b. Non-complete sets

I. ak 0 a(I + bk)V, v = 1, 2, 3, ... k = 0, 1, Z, and b
is an arbitrary positive

Z. b = k constant.
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APPENDIX B. MATRIX WEIGHTING FUNCTIONS AND SPACINGS OF POLES OF F a(s)

In this appendix the IE criterion is generalized to a matrix criterion by weight-

ing each element, pk(t), differently in Eq. (1. 3). The individual weighting of the 4k(t)

'is achieved by introducing the concept of a matrix weighting function. The approximation

- Ck ýk (t) is then reinterpreted in the light of the matrix IE criterion and the matrixk=ý; 0
weighting function. The theory is then applied to the exponential approximnation where,

in particular, the spacing of the poles of Fa (s) is investigated. It is shown that the

introduction of a matrix weighting function allows one to achieve pole-spacings in Fa(s)

other than the equally-spaced type of pole-spacing which the approximations discussed

in Chapters I and 3 are restricted to have.

B. I The Matrix Weighting Function Defined.

W(t) *is defined as an (n + I) x (n + I) symmetrical matrix weighting function

W 00 w 0 1 . . • w . . wOn

wlO W "w1 1  " " j w . . wln

W (t) = (Bo )

w w . . . w.. . . . W.
wi0 Wii i in

WnO Wnl Wnj " nn

w.. = w.. (B. 2)

whereupon Eq. (1. 3) can be written as

f0 Wi 4,. dt = (B. 3)

"* The overbar indicates a matrix while no overbar indicates an element of a matrix.

-* In general, w.. is a function of i, j, and t. The t dependence is omitted in order to
simplify the notation.

5 .. is the (n+l) x (n+l) identidy matrix.
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Here 4) and 4) are (n + 1) x (n + I) diagonal matrices.

410

• 4k (B. 4)

Q 4,4)

0 *

For clarity Eq. (B. 3) is written in expanded form, using Eqs. (B. 1) and (B. 4), in

Eq. (B. 3a)below.

z 
4)40 O 40 0 4j woj 0 n -on

f 4i ýO wi0 " i ,j wij " 
4

i 
4

n Win dt = .ij (B. 3a)"

00

4n 40 WnO" 
4 n 

4 j Wnj " 4W

In addition, if W is decomposed into the product of an (n + 1) x I column matrix, WC

and aix (n +1) row matrix, WR, in that order, where

w0

w.W c : an d W R [w o , w •, . w j . . . n ] (B .5 )

L K
J dt implies that every element in the matrix is integrated between the limits

from 0 to U0.
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so that

W= WC WR (B. 6)

then Eq. (B. 3) can be written as

00

f (4i wi) ( j wj) dt = 6ij (B. 7)

By introducing the matrix weighting function it has been possible to rewrite

Eq. (1. 3) in a form where each element 4ýk (t) is weighted by a different weighting

function, wk (t). The parentheses in Eq. (B. 7) imply that wk(t) is to be associated
wh k(t) and vice-versa. The significance of the matrix weighting function on the IE2

criterion is discussed in the following section.
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B. 2 The IE Redefined as a Matrix Error Criterion

In the light of the matrix weighting function Eq. (B. 1) it can be shown that the

integral- squared error criterion Eq. (1. 1)] becomes a matrix criterion. All of the

results obtained by minimizing Eq. (1.1) hold in this case also provided one replaces

f (t) by (fai;- and Gk by (Ck)i in Eqs. (1. 1), (1. Z) and (1. 4). fa and C are both

(n + 1) x (n + 1) matrices since W is (n +i) x (n + 1).

By postulating

(IE )ij 7 [f- (fa)ij Jwij dt (B. 9)

where

n **

(fa)ij E (Ck)ij Pk (B. 10)
k=0

Eqs. (1. 2) and (1. 4) become

(min lE) f2 w.. dt - _ (C i (B. II)

(mi CkE).. f 1 ' ki
00

(Ck)ij= f f w ij . k dt (B. 1Z)

An example will clarify the meaning of the subscripts in these equations.

Example.

Consider a two-term approximation - - n = 1.

f a C k +1 = CO o + ± l c l (B. 13)

W, in this case, is a Z x 2 matrix

F1
SWo0  Wo1  wK w0 w0 wl
I J = I(B. 14)

WL 1 0  w 1 w1 w0 w 1 wI

' To simplify the notation the t dependence is not indicated but is to be understood.

*, The meaning of a matrix approximation will be clarified in the next section.
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whereupon E0 and CEl in Eq. (B. IZ), are found to be

00 00

f f w0 0 0o & f w0 1 40 dt
0 0

Co f f W 4) d t =(B. 15)
0

CO 00

co 0o

f f w,0 ý0 dl f f wl, +0 at
0 0

f f woo 4), dt f f w 01 ¢I at

0 0
00Cl I f f W ' dt (B. 16)

f f Wlo +1 dt f, fW wII +Idt'

0 0

and Ta' in Eq. (B. 13), is found to be
ao

0000 00 00

+0 f f (owoo cit + +1 f .f +1 woo cit (+0 f I 4 wo, ct + +1 f 1 4) w01 cit

00 0 0 I(.7fa = o (B. 17)

a 000 00 00+0 f 10 wlo dt + 1f I f1wlO dt, +0 Y f1o 0 wl 1 dt+ 1 pff+,wlldt
000 0

In order to find (min IE) in Eq. (B. 11) the products G0 C0 and C C must first calcu-

lated. Their sum will be an (n + 1) x (n + 1) matrix "cwhere

1 -z -- - 0 0  c 0 1Z (Ck = C0 C0 + C10 = c (B18)

0- K10  ci1]

From Eqs. (B. 18) and (B. Ii)

002 002
ff w 0 0 dt - c0 0  ffw 0 1 ct -01

0 0

(min IE ) (B. 19)

002 20I f W1 0 dt - c10 W1 1 dt - c
0 0
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The addition of a third term to, the approximation fa not only adds a third term

to Eq. (B. 13), but, what is more important, also increases the dimensionality of all

of the matrices in Eqs. (B. 14) (B. 15), (B. 16), (B. 17), (B. 18) and (B. 19) from two to

three. This obviously occurs because each one of these is an (n + 1) x (n + 1) rnatrix,

(n + 1) being the number of terms in the approximation Eq. (B. 10).
- - 2

Th at f a , C k and (min IE ) are symmetrical matrices is obvious from their

dependency upon W which is symmetrical Eq. (B. Z
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B. 3 The Meaning of a Matrix Approximation

It has developed that, by weighting each one of the approximants ýk (t) differ-

ently, fa(t) has become a matrix approximation function, fa(t). Basically, however, one

seeks an approximation to f(t) which is not a matrix and, therefore, one must reinterpret

f a(t) in the light of this requirement. To do this, refer to the two-term approximation

worked out in detail in the preceding section. Eqs. (B. 17)and (B. 19) are the important

results.

Quite obviously, associated with each element in f is a corresponding element

in (min IE z), and vice-versa.

( a) ij (min IE )ij (B. 20)

Due to the individuality of the weighting functions w.. (t), f in Eq. (B. 17) will contain 3
ij a

completely different approximations, (f a), , (f) Iz , and (f a) . Naturally there will

be a different min IE associated with each one of these approximations. If one agrees

that the smallest numerical min IE2 gives the best approximation, in the sense of a close

fit between f a(t) and f(t), one must choose the one approximation whose min IE is

numerically smaller than all others from the elements of f a This means that one

seeks the absolute minimum integral-squared error from a matrix of relative minimum

integral- squared errors, that is,

f a (t) Pý f (t) -E : min (rain IFZ )ij (B. 21)

Example w.. = w (t)

By choosing all of the elements wij to be the same function the matrix approxi-

mation should degenerate to the non-matrix version discussed in the body of the disserta-

tion. That this is indeed the case follows directly from a substitution of w.. = w(t) intoii

Eqs. (B. IZ), (B. 10), and (B. 11).

00

(C j = fof f 'k w dt (B. Z)

n n

(fa)ij =Z 0Ck) k - 0 CGk k (B. 23)aj k=-0 (Ckij k= 0

and

(mnl ~* CO n 2(.4
2 f2f w dt- ; 2B.Z4(roin IE)ij z 0

0o wd k= 0 I B 4
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From Eqs. (B. Z3) and (B. ?-4) it is obvious that all of the elements in fa are identical

and all of the elements in (moin IE ) are identical. One then argues that it doesn' t

matter which approximnation, (f a is chosen to represent f(t) since they are all the

snn1e. 'hus 01W sees that the matrix approximation reduces to the non-matrix approxi-

mation when Eqs. (B. 12), (B. 10) and (]3. 11) can be written as

Gk = Ik U (B. 25)

a a (B. 26)

and

(min IE (2in IE U (B. 27)

where U is the unit matrix.
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B. 4 Pk (t): The Exponential Set.

Comparing Eqs. (3. Z) and (B. 7) one obtains the following recursive equation

for the k (t) in terms of the Jacobi Polynomials and a weighting function that is not only

a function of time but is also a function of k:
cp~ ta-c

qk(t) = (-)a CC- (I - C -P (a, c; -pt) (B. Z8)
-k Wk(t)

The properties of ýk(t) when wk(t) = I and w k(t) = C - C are

discussed in chapters 1 and 3 respectively of this dissertation. To indicate what

happens to the spacing of the poles of Fa (s) when a weighting function is chosen that is

a function of k, consider

wk (t) E - w(k)pt (B. 29)

From Eqs. (B. 29) and (B. Z8)
a-c

k%• c w(k) pt -P 7 pt
k)(t) = (-) - w ) P - E k (a, c; E -Pt) (B. 30)

This weighting function does not affect the results of Theorem I for A.O. (0k.
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B. 5 The Spacing of the Poles of ck(s) and Fa (s).

Theorem Z(B) The poles of the Tk (s) are located along the negative - real axis

in the s-domain at -[q + - w (k) p where 0 - q < A.0. + k - 1 and is integral..

These poles are spaced p units apart.

One sees that white the location of the poles of )1lJ(s) is now dependent upon k

their spacing still is constant. The spacing of all the poles of Fa (s), however, is not

necessarily uniform. As a matter of fact Fa(s), which is simply

n
Fa(s) = 0 C 1 k(s) (B. 31)

k= 0

will contain (n + 1) unevenly-spaced clusters of equally-spaced poles. Fig. (B. 5. 1)

illustrates this behavior for a three term al, groximation where A. 0. 2(k) =, p = 1,
2c = 2 and w(k) = - (k + I) . The negative sign in w(k) is necessaryif all the poles of

F a(s) are to be in the left-half of the s-plane.

Properly choosing w(k) allows one to achieve a variety of spacings for the pole

clusters which appear in Fa (s). One measure of this spacing is the distance from the

center of one cluster to the center of an adjacent cluster. In this case, it can be shown

that w(k) must satisfy the finite difference equation.

w(k + 1) - w(k) C (B. 32 )

where AC is the centroidal-spacing of adjacent clusters. Table B. 5. 1 presents a number

of w (k) which were obtained as the solutions of Eq. (B. 3Z) for the AC listed in the first

column of that table. With this type of spacing it is possible to lose the identity of the

clusters since overlapping of the poles in adjacent clusters may occur; thus, the poles

of Fa (s) will appear to be unevenly-spaced.

On the other hand, if it is desirable to maintain the identidy of each one of the

clusters then the results summarized in Table B. 5.2 should be used for w(k) in the

equation for the approximants ýk (t), Eq. (B. 30). Here w (k) is determined from the

condition that the distance between the pole furthest to the left for one cluster and the

pole furthest to the right for a second cluster, adjacent to the first on the left, be spe-

cified as LD. This condition can be expressed mathematically [from the results of

Theorem Z (B)] as

p k + I A.O. €•k (B. 33)
Pk
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1w

-3 -2

(b) c(D (S)

)w

-- 6 -5

(b) (D (S)

-
~~jw1I Q

-13 -12 -11-10

(c) C2 (s)

-13 -10 -7 -5 -3 -2

(d) Fa(s)

Figure B. 5. 1. Pole locations for a three term

Expansion; (a), (h), and (c) •k (s), (d), Fa(s).

M.R.I.-19140
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The type of pole-spacing obtained through the use of the w (k) from Eq. (B. 33)

is useful if one has a vague idea of the pole locations of F(s). By spacing the pole

clusters of F (s) at these locations it may be possible to improve the overall identifi-
a

cation of f(t), as measured by the performance criteria listed on Fig. 4. 3. 6.

It is important to remember that the results of this section are based upon the

choice of the weighting function -w (k) pt in the preceding section, and that they can

be rederived for other weighting functions as well. It is also important to remember

that the two types of pole cluster-spacings discussed in this section - - the centroidal

spacing and the non-overlapping spacing - - are not the only types of pole cluster-

spacings that one might consider. Once a criterion for the pole cluster-spacing has

been decided upon by the analyst, a finite difference equation, similar to Eqs. (B. 32)

and (B. 33) will result, from which he can solve for w (k). In short then, the results

of this section and the last, Section B. 4, have merely indicated the significance of a

matrix weighting function on the pole-spacing of the poles of Fa(s), for a very special

weighting function and for special prechosen spacings of the pole clusters of F a(s).

These results can be extended in many directions, as indicated at the beginning of this

paragraph.

Table B. 5. 1 Summary of Results for the Pole Cluster-Centroidal -

Spacing Design.

AC w(k) - w(o) [w o) <

-kp k (•-K)

kk
-kKp k(I+K) - - K

Kkppk"2 z

-(k + P3)z Kp k -K (P~Z - P3 + _ )] - kZ K (P3 - I-- k 3K

- k Kp k - K E _ k I

w (o) < c ensures one that all of the poles of F a(s) are in the left-half of the

s-plane, for allk.



1.1Z

Table B. 5. Z. Summary of Results for the Pole Cluster -

Non-Overlapping Design.

AD ww(k) - w(o) 0(o) < -

L3

- __ k K- - A.O, (ik) -+ k

- p-k [r •. .Ck - - ] - 1 2K+ 1k
-k+Kp k -A. 0. (ý) 3- K1 I+ (K -1) k

6 z 3

- clIkKp k - A.O. (1k)1 L _ k
2 

- K (

' w(o) < 5 ensures one that all of the poles of Fa (s) are in the left-half of the

s-plane, for all k.
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APPENDIX C. THE TWO-DIMENSIONAL APPROXIMATION PROBLEM AND

THE ASSOCIATED TWO-DIMENSIONAL SCANNING ON A DIGITAL COMPUTER

C. I In troduction
N -mkt

In this appendix two-term approximations of the signals A A k

k= 0
(mnk real), determined from a minimization of any one of the error criteria in

the AE - ITn AE criteria family, are investigated; the approximations, fa (t), are of

the form

-o t -aItfa(t) = Be€ + Ce€ (C. I)

For convenience Eqs. (4. 3) and (4. 4), which define the AE and the IT nAE criteria

respectively, are r'epeated below.

AE = max f - fa (4.3)
t

ITa AE f tn f- fadt (4.4)

0 1 al

From Eqs. (C. 1), (4. 3), and (4. 4) one sees that the AE criterion is a function

of three variables B, C, and t, while the IT nAE criteria are functions of only B and C.

To distinguish between the two cases, the following notation is introduced:

AE = max E(B, C, t) = EKB, C, t BC (C. Z)

and

n
IT AE = E (B, C) (C. 3)

where tM is the time at which the absolute maximum of the AE occurs. The
B, C

subscript, 'B, C indicates that this time is also a function of the values B and C assume.

Figure C. 1.1. illustrates the relationship of t C to the AE for the arbitrarily chosen

values of B = B1 and C = CI.

Since an extra dimension is involved in the AE criterion we shall first concentrate

on its minimization. The reduction of the AE minimization techniques to techniques
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useful in the minimization of a criterion from the ITn AE criteria will then follow

directly.

E (B1,I Cl I t)

t_- M k 0 t

tB, C /

1oM for B=B andC=C
Figure C. 1.i1. Relationship of the AE to tB fo C n



115

C. Z Mathematical Formulation of the AE Minimization

Values of t, B, and C are sought such that max E (B, C, t) is a minimum witht
*respect to B and C, that is, it is desired to find

min[ max E(B,C,t)j = min E(BctM (C. 4)B, C t I B, C B, (C 4

The numerical value of Eq. (C. 4) will be designated as min AE.
B, C

Maximizing E (B, C, t) with respect to t is accomplished by differentiating it

partially with respect to t, setting the result equal to zero, and solving the resulting

equation for the time at which the absolute maximum of E (B, C, t) occurs. If this time

is denoted t M then, it is quite obvious that, it will be a function of both B and C,
B,C

that is,

tMBC = f (B,C) (C. 5)

whereupon Eq. (C. 2) becomes

AE = E[B, C, f (B,C)] (C. 6)

To minimize Eq. (C. 6) with respect to B and C one may pursue the following course.

By differentiating this equation partially with respect to B and setting the result equal

to zero one should be able to solve for B in terms of C,

8 E[B,C,f (B,C)]

= 0 --- B = g (C) (C. 7)

From Eqs. (C. 7) and (C. 6) one concludes that

mmn AE =E g (C), C, f [g (C), C]l (C. 8)
B

Finally, gni, AE is found by differentiating Eq. (C. 8), setting the result equal to zero,

and solving for C. Suppose C = r. In this case

min AE = Eg (r)), T7, f[g (rn), r)] (C. 9)
B,C

B = g (n) C. 10)
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and

t M fg (ri), C. I[gtB, C

To perform the operations indicated in Eqs. (C. 5)-(C. II) analytically is usually

impossible in even the simplest of cases. This is due primarily to the facts that these

equations are transcendental and E(B, C, t) is the absolute value of the error f(t) - faa(t)

To solve this system of equations, we turn to a computer simulation of Eq. (C. 4).
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C. 3 Computer Formulation of the AE Minimization

The digital computer solution of Eq. (C. 4) for B, C and t B is a discrete

solution in contrast to the continuous type of solution outlined in the preceding section.

Before outlining the major computer operations needed in the solution, one must re-

define the continuous variables B, C, and t as discrete variables. In the discussions

that follow B, C, and t represent discrete sets of real numbers,

B={b1 } , A 01, 2. . . . (C. 1Z)

C - {c} , r - 0, 1, Z. . . . (C. 13)C*

t -- {t } , q 0, 1,Z . . . (C. 14)

where, in general, the elements b aInd c r may be positive, negative, or zero while the

tq must be positive or zero. Quite obviously the accuracy of the computer solutions

will depend primarily upon the increments chosen for the bA, Cr, and tq. For practical

purposes the increments Ab and Ac are chosen the same, hence

Ab = b - b .l = 6 (C. 15)

A = c = 6 (C. 16)

at = tq -l = T (C. 17)

The major computer operations, in terms of this notation, are summarized

below.

(1) The computer stores {bf}, {c}, d tq.

(Z) For an element of {b,} , say b 0 , and an element of {cr} , say c 4 , the

computer evaluates E [b 0 , c 4 , {tqc} ] for all q~where At = T as inEq. (C. 17), and

it stores these values.

(3) Tihe data from step (Z) is scanned by the computer in order to find

E (b0 , c, t M) which corresponds to max E b0 , c4 { t } ]. Since t Mwill be a

function of the b and c it shall be designated as t t must be an element

* The use of the superscript notation will become- lear in the development of
this section.
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(4) The computer repeats steps (2) and (3) for all combinations of b and cr.

Naturally, the computational time in this step will be directly proportional to the incre-

ment 5 chosen for the variables b and c r in Eqs. (C. 15) and (C. 16).

(5) The computer scans the complete set of stored numbers corresponding

t for I, cbftq}]and chooses one of these numbers as them(tq}

occurs for = and r = r , for example, f a(t) will have been found to be

fa(t) = by, 0 + c r t t (C.18)

completing the problem.

In practice, one would like the computer to complete these five steps in a

minimum amount of time. For a particular computer, this will depend upon the ranges

chosen for B, G, and t, the increments in the b, c r, and tq, and the development of

a judicious implementation of step (4). In regards to this last phrase,)one must admit

that it may not be necessary to repeat steps (2) and (3) for all combinations of b and

c . The problem is, given a range for B and C how does one choose a minimum number
r

of combinations of the b and cr such that the computer carries through the minimization

procedure in a minimum amount of time? The following discussion presents one such

method for accomplishing this.
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C. 4 A Practical Computer Implementation

By reducing the three-dimensional scanning procedure outlined in the last

section to a manifold of two-dimensional scans, this scanning procedure can be system-

atized in such a manner that the computational time will be minimized. This can be

accomplished by fixing either one of the constants b or cr at the beginning of a run.

By varying the other constant over its range in step (4) of the scanning procedure, one

will be led to a family of numbers from which the computer will pick the absolute

minimum (the smallest number). As an example, suppose b2 = b 4 has been chosen

ahead of time; it would then represent a portion of the solution of the following two-

dimensional discrete version of Eq. (C. 4):

min Fmax E (b4 ' cr, {tq) (C. 19)

Associated with Eq. (C. 19) is a value of c r which, for example, might be c 7 . This

procedure is repeated for the elements of {b2 1 until the number in Eq. (C. 19) is a

minimum; thus, the numbers in Eq. (C. 19) represent the locus of the relative minima

of xnac E[b,' ct] b, fixed and cr variable. Figure C. 4. 1 presents a typical

locus, which, for clarity, is shown as a continuous curve. Actually, the locus of

relative minima, plotted on the bI - c r plane, is a set of discrete points whose bt

coordinates are spaced uniformily - - 5 units apart. Associated with each point on the

locus is a number from Eq. (C. 19). The point (cZO, b9 ) is assumed to represent the

b b! I
b9

7c0 c r

Figure C. 4. 1 A typical locus of the relative minima of
max E Lb, Cr tq] , b fixed and c variable.
It} 2 r
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solution of the three-dimensional discrete version of Eq. (C. 4),

min mn ma E ý,, c(C. 20)
bminfmin [tqaj r'b

Of particular interest is the shape these loci may assume; for, if one can

correctly predict the shape of a locus of relative minima, then the number of two-

dimensional scans can be greatly reduced. The locus in Fig. C. 4. 2 is certainly one

possible candidate for a locus of relative minima in the bf - cr plane. For bI equal to

b!

C,4 Cl10 c 17 c r

Figure C. 4. Z A possible candidate for the locus of relative
minima of max Ebf, Cr,{tq}], b, fixed and cr variable.

b7 there are three values of c each leading to exactly the same numerical relative
7 r

minimum of the discrete version of Eq. (C. 4), with bI = b 7 . One sees, from Eq. (C. 19),

that this means that

E =(b t M E (C. ZI)
E 7' c 4 ' t 7 , 4) (b7' °c1 0 ' t7,10) E(b7' c 1 7 , t7"1 7 )(

which is illustrated in Fig. C. 4. 3.

It seems highly improbable that this locus could be representative of physical

reality, for the condition,,Eq. (C. Zl),is so stringent that one must seriously question

its plausibility. A similar argument can be given for a parabolic locus. In this case

Eq. (C. Z2) reduces to an equality between two values of the error. Based upon these

arguments we shall hypothesize the following: the locus of relative minima of Eq. C. 4)rT

is either monotonically increasing or decreasing. While this has not been proven

rigorously, it is interesting to note that in every case (32 in all) the computer results

agreed with the hypothesis.



E (b 7, c 4'tq}

h

t

(a)

E (b 7 , c 1 0 , {}
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Figure C. 4.3. Sketches illustrating Eq. (C. 21).
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By knowing the shape of the locus one is able to extrapolate it in either direction.

Thus, computational time may be minimized if the procedure outlined below is used

as the basis of the computer program.

(1) Obtain a rough idea of where the absolute minimum of Eq. (C. 4) is by

following the procedure outlined in Section C. 2 for fairly large increments Ab and Ac.

In this case, step (4) must be modified so that the computer will repeat steps (1) and (Z)

for a fixed value of bI (c r) while scanning the cr (b ) space. The result in step (5) will

then correspond to a single point on the locus of relative minimia of Eq. (C. 4). This

entire procedure must then be repeated for a number of the fixed b . By properly

spacing the bI it should be possible, after five or six runs, to get a rough idea of the

shape of the lncus. Associated with every point on this locus will be a numerical value

for the error. By means of extrapolation this step can be repeated until the error

gives the appearance of having passed through an absolute minimum.

(2) Fixing our attention on a region in the vicinity of the point of the apparant

absolute minimum we can interpolate the results and then reprogram the computer so

that it repeats the entire procedure outlined in (I) above for smaller increments in the

b and c r. This procedure may have to be repeated several times, where in each case

the Ab and Ac are made smaller. Of course, the number of times this is done is really

dependent upon the desired accuracy.

A word of caution is necessary here to dispel any thoughts of skipping this step.

It is possible that one may miss a very sharp absolute minimum by using the coarse

scan in step (1) and that one would probably also miss it in this step if Ab and Ac were

not chosen small enough. Examples as drastic as this are unlikely* ; however, it is

important to realize they can occur. In general, if one is not certain about the location

of the absolute minimum, he should scan again.

Bellman34 points out that the problem of distinguishing an absolute minimum

from relative minima is one that plagues the optimization field. Computer results

indicate that this problem usually arises in step (I) of the above procedure. If this does

occur, step (2) must be repe.ated in the vicinity of each one of the relative minima.

While this sounds like a great deal of work it certainly is far less than would be required

had one scanned the entire two-dimensional bI - cr domain in a haphazard way.

These results may be carried over en mass to the IT nAE criteria; however, due

to the fact that the IT nAE criteria are only functions of Band C some of the computer

operations in Section C. 2 must be modified accordingly.

* See ref. 34 for a complete discussion,
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APPENDIX E. DATA EVALUATION RESULTS

The results tabulated in this appendix supplement the discussion cf "data evalu-

ation" presented in Section 4. 3. Tables E. I-E. 9 are the basis for the summary figures,

Figures4. 3. 7 - 4. 3. 18, from which the results in Section 4. 4 are obtained.

Tables E. I - E. 8 are based upon only the one-and two-term approximations

tabulated in Appendix D, while Table E. 9 is based upon the three-term approximations

listed in Appendix D which were calculated for only seven of the eleven error criteria.

More specifically, Tables E. 1 and E. 5 are based upon the six one-and two-term approxi-

rnations listed in Tables D. I - D. 6; Tables E. Z and E. 6 are based upon the four one-and

two-term approximations listed in Tables D. 8 - D. 11; Tables E. 3 and E. 7 are based

upon the two one-and two-term approximations listed in Tables D. 13 and D. 14; Tables

E. 4 and E. 8 are based upon the six one-and two-term approximations listed in Tables

D. 16 - D. ZI, and; Table E. 9 is based upon the three-term approximations listed in

Tables D. 7, D. 12, D. 15, and D. 2Z.

Strictly speaking, the sum of the numbers, for each family of error criteria,

in each row of Tables E. 1, E. Z, E. 3, and E. 4 should be 6, 4, 2, and 6 respectively;

the sum of the numbers in each row of Tables E. 5, E. 6, E. 7, and E. 8 should be 6, 4,

Z, and 6 respectively, and; the sum of the numbers in each row of Table E. 9 should be

4. These numbers correspond to the number of approximations used in the formation

of Tables E. I - E. 9, as discussed in the preceding paragraph. There are many places

in these tables, however, where the row sums either exceed or are less than the ex-

pected total (which is listed in a footnote at the bottom of each table). The excess

occurred when more than one error criterion led to an optimum approximation, in the

judgement of the author. In these cases, the error criterion corresponding to each one

of the optimum approximations each received a full point; thus, it was possible, in this

way, for the actual row sums to exceed the expected total. The defecit occurred when,

in the opinion of the author, no error criterion led to an optimum approximation useful

from an engineering point of view. This does not mean that an optimum approximation5

based upon a comparison of a number of approximations with the actual function~did not

exist. It means that, in the opinion of the author, the optimum approximation was too

poor to be considered "optimum" from an engineering point of view. Thus, it was

possible, in this way, for the actual row sums to be less than the expected total.

As can be seen from the preceding discussion, many human factors such as

judgement, opinion, and even bias and prejudice enter into the evaluation of data where

"optimum" results are sought. The results presented in Section 4. 4 naturally include
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the various human factors that entered into the author' s evaluation of the data. These

results should be accepted bearing the preceding discussion in mind. To be more con-

clusive, this entire problem should be repeated by a group of randomly chosen investi-

gators, in order to average out the effects of judgement, opinion, bias, and prejudice.
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Table E. 9 Frequency with which an error criterion leads to three-term
approximations of best performance between f (t) and f(t). Sample-

-•2t -4t
space includes seven error criteria. f(t) = e - E , A. 0. (Fa) =

-zt -4t
1, Z, and 3 (Tables D. 7, D. 12, and D. 15); f(t) = E + E , A. 0. (Fa)=I
(Table D. ZZ).

F-requeny w-th which an error

criterion ltadq to approximations IE ITE rzE IT'I/E IE z ITEC rr-/z

of:

Minimum EM (j0) 00

Minimum E • (j,,) (3) 1 0 0 1 2 0 0

Best absolute-stability
behavior, K > 0 (3) 1 0 0 2 0 2 1

Best absolute- stabiltty

behavior, K - 0 (4) 1 0 Z 1 1 I

Best relative -stability
behavior, K , 0 (5) 1 0 0 1 0 1 1

Best fit between fa(t) and f(t)

(6) 1 0 0 3 1 0 0

Best combination of (1) and (Z)
I 0 0 3 1 0 0

Best combination of (3) and (4)

B 0 0 2 0 0 0
Best combination of (6) and (i) 1 0 0 3 0 0 0

Best combination of (6) and (5) 0 0 0 1 0 0 0

Best combination of (6) and (1) 0 0 0 1 0 0 0

Bent combination of (6). (1) 0 3 I____

and (Z) 1 0 0 3 1 0 0

Best combination of (6), (5),(t), and' (2) 0 0 0 1 0 0 0

't Each one of the numbers listed in this table is a number "out of the

maximum total of four"
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