NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.
ANTICIPATED CARRY-MAJORITY LOGIC MODE

TECHNICAL DOCUMENTARY REPORT NO. ESD-TDR-63-157

April 1963

R. A. Knoebel

Prepared for
DIRECTORATE OF SYSTEM DESIGN
ELECTRONIC SYSTEMS DIVISION
AIR FORCE SYSTEMS COMMAND
UNITED STATES AIR FORCE
L. G. Hanscom Field, Bedford, Massachusetts

Prepared by
THE MITRE CORPORATION
Bedford, Massachusetts
Contract AF33(600)-39852 Project 708
When US Government drawings, specifications, or other data are used for any purpose other than a definitely related government procurement operation, the government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise, as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

Do not return this copy. Retain or destroy.
ANTICIPATED CARRY-MAJORITY LOGIC MODE

TECHNICAL DOCUMENTARY REPORT NO. ESD-TDR-63-157

April 1963

R. A. Knoebel

Prepared for
DIRECTORATE OF SYSTEM DESIGN
ELECTRONIC SYSTEMS DIVISION
AIR FORCE SYSTEMS COMMAND
UNITED STATES AIR FORCE
L. G. Hanscom Field, Bedford, Massachusetts

Prepared by

THE MITRE CORPORATION
Bedford, Massachusetts
Contract AF33(600)-39852 Project 708
ABSTRACT

The use of the majority (2 out of 3) logic element in anticipated carries for adders, multipliers, etc., yields very fast designs with only a moderate number of gates. The general theory of such carries is presented. This is applied to the design of a 48 bit adder. 164 majority gates give carries for all 48 bits with a maximum of 6 stages of delay. The relationship between delay and quantity of gates required is plotted.
INTRODUCTION

For generality let us assume we have two registers, $A_n (n \geq 1)$ and $B_n (n \geq 1)$, of indefinite length and an initial carry C_1. Let the carry to be summed with the nth stage be designated by C_n. All logic elements considered are two-out-of-three majority gates and are denoted by $2_3^X \bar{X}_2 \bar{X}_1$, i.e., $2_3^X \bar{X}_2 \bar{X}_1 X_3 = 1$ iff at least two of the X_i are 1.

The carry for one stage can be simply given as

$$1) \quad C_{n+1} = 2_3^X A_n B_C n_n n$$

For two stages we can cascade:

$$2) \quad C_{n+2} = 2_3^X A_{n+1} B_{n+1} 2_3^X A_B_C n_n n$$

For three stages we could cascade again but it is possible to eliminate one stage of delay (at the expense of one more gate) by applying the identity:

$$3) \quad 2_3^X V W 2_3^X X Y Z = 2_3^X V W X 2_3^X V W Y Z$$

Thus we obtain:

$$4) \quad C_{n+3} = 2_3^X A_{n+2} B_{n+2} 2_3^X A_{n+1} B_{n+1} 2_3^X A_B_C n_n n$$

$$5) \quad = 2_3^X A_{n+2} B_{n+2} A_{n+1} 2_3^X A_{n+2} B_{n+2} B_{n+1} 2_3^X A_B_C n_n n$$

Notice that the last gate in 5) is simply C_{n+1} as given in 1) which, in applications, we probably would already have. Three stages of anticipation seems to be the maximum that we can obtain with only two stages of delay. For three stages of delay the maximum appears to be seven:
6) \[c_{n+7} = \frac{2}{3} A_{n+6} B_{n+6} A_{n+5} \]
\[+ \frac{2}{3} A_{n+6} B_{n+6} B_{n+5} + \frac{2}{3} A_{n+4} B_{n+4} A_{n+3} \]
\[- \frac{2}{3} A_{n+6} B_{n+6} A_{n+5} \]
\[+ \frac{2}{3} A_{n+6} B_{n+6} B_{n+5} + \frac{2}{3} A_{n+4} B_{n+4} B_{n+3} \]
\[- \frac{2}{3} A_{n+2} B_{n+2} A_{n+1} \]
\[+ \frac{2}{3} A_{n+2} B_{n+2} B_{n+1} + \frac{2}{3} A_{n} B_{n} C_{n} \]

Note again that the last line is \(c_{n+3} \) and note that two of the gates are repeated, viz: \(\frac{2}{3} A_{n+6} B_{n+6} A_{n+5} \) and \(\frac{2}{3} A_{n+6} B_{n+6} B_{n+5} \)

GENERAL THEORY

To continue further without endless notation we take recourse to definition by induction. Also this will allow us to prove rigorously that we do indeed have a formula for anticipated carry by means of majority elements.

Definition:

7a) \[c(1, 1, n+1) = A_n \quad (n \geq 1) \]
\[c(2, 1, n+1) = B_n \quad (n \geq 1) \]
\[c(3, 1, n) = C_n \quad (n \geq 1) \]

7b) \[c(i, j+1, n+j+1) = \frac{2}{3} A_{n+j} B_{n+j} c(i, j, n+j) \]

\[(i = 1, 2, \ldots; j \geq 1; n \geq 1 \text{ or } i = 3; j \geq 1; n \geq 0) \]

Note that in 7b) with \(i = 3 \) we obtain the cascaded carry for \(j+1 \) stages.

Proposition \[c(i, j+k, n+j+k) = \frac{2}{3} c(1, k, n+j+k) \cdot c(2, k, n+j+k) \cdot c(i, j, n+j) \]
8) \((i = 1, 2; j \geq 1; k \geq 1; n \geq 1 \text{ or } i = 3; j \geq 1; k \geq 1; n \geq 0) \)

Proof (by induction on \(k \)). For \(k = 1, 8 \) is 7b) with substitution given by 7a). Assume the proposition is true for \(k \). We shall prove it true for \(k+1 \).

\[
c(i, j+k+1, n+j+k+1) = 2 \frac{2}{3} A_{n+j+k} B_{n+j+k} c(i, j+k, n+j+k) \quad \text{(by 7b)}
\]

\[
= 2 \frac{2}{3} A_{n+j+k} B_{n+j+k} c(1, k, n+j+k) c(2, k, n+j+k) c(i, j, n+j) \quad \text{(by ind. hyp.)}
\]

\[
= 2 \frac{2}{3} A_{n+j+k} B_{n+j+k} c(1, k, n+j+k) c(2, k, n+j+k) c(1, j, n+j) \quad \text{(by 3)}
\]

\[
= 2 \frac{2}{3} c(1, k+1, n+j+k+1) c(2, k+1, n+j+k+1) c(i, j, n+j) \quad \text{(by 7b)}
\]

q.e.d.

The following corollary demonstrates the relationship between this proposition and anticipated carry.

Corollary \(c(i, 2^{m+1}, n+2^{m+1}) \)

\[
= 2 \frac{3}{3} c(1, 2^{m}, n+2^{m+1}) c(2, 2^{m}, n+2^{m+1}) c(i, 2^{m}, n+2^{m})
\]

Proof In 8) let \(j=k=2^m \). \((i=1, 2; m \geq 0; n \geq 1 \text{ or } i=3; m \geq 0; n \geq 0) \)
We can form \(c(i,2,n+2) \) from \(A_{n+1}, B_{n+1}, C_{n+1}, A_n, B_n \).

In turn we can obtain \(c(i,2^2, n+2) \) from \(c(i,2,n+k) \) with \(k=2,4 \) and

\(A_{n+1}, B_{n+1} \). Continuing in this manner it is possible to build up a

\(2^m - 1 \) stage anticipated carry with only \(m \) stages of delays. By a more sophisticated use of the proposition we can obtain all carries with little delay. In fact a \(k \) stage anticipated carry can always be designed with no more than\(\log_2(k+1) \) stages of delay. This will all become clearer when we turn to a specific example.

By definition \(c(3,j,n+j) \) is the carry to the \(j \)th stage calculated from the \(n \)th. Is there also a simple interpretation of

\(c(1,j,n+j) \) and \(c(2,j,n+j) \)? To answer this question consider what we mean by \(c(3,j,n+j) \). We understand that \(c(3,j,n+j) = 1 \) if the sum of

\[A_{n+j-1} A_{n+j-2}... A_n \neq B_{n+j-1} B_{n+j-2}... B_n \] and \(C_n \) is greater than or equal to \(2^j \). Equally simple is the interpretation of \(c(1,j,n+j) \) and \(c(2,j,n+j) \). \(c(1,j,n+j) = 1 \) iff the sum of \(A_{n+j+1} A_{n+j-2}... A_n \) and

\[B_{n+j-1} B_{n+j-2}... B_n \] is greater than or equal to \(2^j-1 \) and \(c(2,j,n+j) = 1 \) iff the sum of \(A_{n+j-1} A_{n+j-2}... A_{n+1} \) and \(B_{n+j-1} B_{n+j-2}... B_n \) is greater than or equal to \(2^j-1 \) (the proof of these facts is tedious and is omitted).

H. Enderton has pointed out that addition with the majority element and its complement \(\frac{2}{3} \) fits very well with the carry.

That is, \(S_n = A_n \oplus B_n \oplus C_n \)

\[= \begin{array}{c} A' \ \land \ B \ \land \ C \\
A \ \land \ B' \ \land \ C' \\
A' \ \land \ B' \ \land \ C \\
A \ \land \ B \ \land \ C'
\end{array} \]

\[= \begin{array}{c} A' \ \land \ C \ \land \ B \\
A \ \land \ B' \ \land \ C \\
A' \ \land \ C \ \land \ B \\
A \ \land \ B \ \land \ C'
\end{array} \]

*By this is meant the binary number formed by replacing the \(A_j \) by their values, \(2^{i-1} \)

i.e., \(A_{n+j} 2^j \).
and \[S_n = a_n \cdot C_n + 2 a_n \cdot B_n \cdot C_n \]

Thus for each stage of addition three gates are required.

APPLICATION

We now turn to the design of the carry system for a 48 bit adder. Since \(c(3,n,n) \) is the carry to the \(n \)th stage calculated from the first stage we set \(C_n = c(3,n,n) \). We form the carries \(C_2, C_4, C_8, C_{16}, C_{32} \) as suggested by the corollary. To form the other carries \(C_n \) we look at the binary expansion of \(n \) and note the position \(k \) of the least significant one. Then \(C_n = 3 c(1,2^{k-1},n) c(2,2^{k-1},n) C_{n-2^{k-1}} \). For example, if \(n = 21_{10} = 10101_2 \) then \(C_{21} \) propagates from \(C_{20} \), which in turn propagates from \(C_{16} \), which in turn propagates from \(C_8 \), etc. This procedure appears to yield an efficient design. Figure 1 illustrates this method.

For most \(n \leq 32 \), \(C_n \) will have a delay no greater than six stages. For the other \(n \leq 32 \) a simple modification of the gates reduces the delay to the maximum allowable. For \(n > 32 \) the problem is to build up the \(c(1,j,k) \) and \(c(2,j,k) \) efficiently in five stages of delay so that when gated with \(C_{32} \) the \(C_n \) will be formed. The method of obtaining a reasonably minimal solution is complicated and the reader is simply referred to Figure 2.

COMPARISON OF VARIOUS DESIGNS

Since 48 outputs are required for a complete carry system and since by a simple cascading we obtain all carries with 48 gates we have a minimal design. The delay is 48 stages. In the preceding section we
achieved a carry system with six stages of delay and 164 gates. What happens in between these two extremes? Table 1 is a tabulation of delay vs. number of gates required. Figure 3 is a plot of this information. It is emphasized that in general it is not known if these designs are minimal.
FIG. 1
DERIVATION OF CARRIES—EACH CARRY PROPAGATES INTO THOSE CARRIES WHICH SPROUT FROM IT.
TABLE I
FIG. 3
COST vs. DELAY
FOR SELECTED DELAYS THE NUMBER OF GATES REQUIRED IN REASONABLY MINIMAL DESIGNS ARE TABULATED (PLOTTED)
Hq. ESD, L.G. Hanscom Field, Bedford, Mass.

The use of the majority (2 out of 3) logic element in anticipated carries for adders, multipliers, etc., yields very fast designs with only a moderate number of gates. The general

1. Digital computers
2. Mathematical computer data
3. Mathematical logic
I. Project number 708
II. AF33(600)-39852
theory of such carries is presented. This is applied to the design of a 48
bit adder. 164 majority gates give
carries for all 48 bits with a maxi-
mum of 6 stages of delay. The re-
relationship between delay and quantity
of gates required is plotted.

Unclassified Abstract

III. The MITRE
Corporation
Bedford, Mass.
IV. Knoebel, R.A.
V. TM-3370
VI. In ASTIA
collection

theory of such carries is presented. This is applied to the design of a 48
bit adder. 164 majority gates give
carries for all 48 bits with a maxi-
mum of 6 stages of delay. The re-
relationship between delay and quantity
of gates required is plotted.

Unclassified Abstract

III. The MITRE
Corporation
Bedford, Mass.
IV. Knoebel, R.A.
V. TM-3370
VI. In ASTIA
collection

theory of such carries is presented. This is applied to the design of a 48
bit adder. 164 majority gates give
carries for all 48 bits with a maxi-
mum of 6 stages of delay. The re-
relationship between delay and quantity
of gates required is plotted.

Unclassified Abstract

III. The MITRE
Corporation
Bedford, Mass.
IV. Knoebel, R.A.
V. TM-3370
VI. In ASTIA
collection

theory of such carries is presented. This is applied to the design of a 48
bit adder. 164 majority gates give
carries for all 48 bits with a maxi-
mum of 6 stages of delay. The re-
relationship between delay and quantity
of gates required is plotted.

Unclassified Abstract

III. The MITRE
Corporation
Bedford, Mass.
IV. Knoebel, R.A.
V. TM-3370
VI. In ASTIA
collection