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An electron energy equation is formulated for weakly ionized stagnation
boundarylayers (degree of ionization in the order of 0.1 centor less)
over highly cooled surfaces. Only the cases of moderatelynegative wall
potential with respect to the plasma, where%g ratio of the electron to
ion current densities is between about y{"o

A
equation is simplified by taking advantage of the fact that the electron

10, are considered. The

energy equation is rather insensitive to the detailed variation of the
electron concentration proefile. A solution of the simplified electron
energy equation is obtained analytically for the cases where the electron
temperatures are not in equilibrium with the neutral gas temperatures.
The effects of nonequilibrium electron temperatures on the electrical

characteristics of the boundary layer are then analyzed.

T

It was found that the equilibration process of the electron tetperatures

practically independent of the potential.
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I. INTRODUCTION

The gases surro'unding hypersonic vehicles at orbital velocities and in many
present-day high temperature experimental facilities are freqﬁently ionized
up to about 0.1 percent. An understanding of the electrical as well as ther-
mal interactions between such weakly ionized gases and a solid boundary is
important in the study of microwave-plasma interactions and in connection

with the electro-chemical diagnostics in experimental facilities.

The electrical characteristics of the aerodynamically important stagnation
region in weakly ionized gases have been previously studied by Talbot (Ref. 1)
and Chung (Ref. 2). Talbot analyzed the regime where electrical sheath
phenomena are pronounced in a range smaller than the mean free path of the
gas, whereas Chung considered the case where electrical sheath effects are
important in a range much greater than a mean free path. From both these
analyses, it is clear that the electron temperature is an important factor
influencing the electrical interaction. Although it is well-known that the elec-
tron temperature in the boundary layer may not be in equilibrium with the ion
and neutral gas temperature, no analysis of the nonequilibrium electron tem-

perature profile is available in the literature.

In the present study, the governing equation for the nonequilibrium electron
temperature profile is formulated for the stagnation boundary layer flow of a
weakly ionized gas. With some simplifying approximations this equation is
solved essentially analytically for the case where there is no gas-phase
recombination of electrons and ions, i.e., the gas phase recombination of
electrons and ions is frozen. It is shown that the gas-phase recombination is
likely to be frozen in many practical cases, and it may be seen from the
solution that a moderate rate of radiative recombination does not affect the

electron temperature profiles.
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The analysis is restricted to cases where the gas density is high enough to
permit .a boundary layer approach and the electrical sheath effects are
pronounced over a range greater than a mean free path. The method pre-
sentéd by Chun‘gv(‘Ref. 2) will therefore be used to study the electrical inter-
action between the ionized bounda.ry layer and the solid wall for the case of

nonequilibrium electron temperature profiles.
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1I. FORMULATION OF THE PROBLEM

The governing equations and boundary conditions for a highly cooled,
stagnation boundary layer flow of weakly and singly ionized gas will first be

formulated. The flow model is illustrated in Fig. 1.

A, GOVERNING EQUATIONS

SHOCK

—BOUNDARY LAYER EDGE

When the degree of ionization is much
below ~ 1 percent (in the order of

0.1 percent or less), neutral gas flow
is practically unaffected by the charged
particles present since the neutral-
charged particle collisions are rare

\SHEATH REGION

particle collisions. Thus the equa- AMBIPOLAR REGION

compared to the neutral-neutral

tions governing the electrical behavior
of the weakly ionized gases can be Figure 1. Flow Model
decoupled from those governing the

neutral gas flow. The solutions of the

latter equations are well-known for highly cooled stagnation boundary layers
and will not be repeated here. In addition, since the molecular weights of
the ions and neutral gas particles are of the same order of magnitude, the
ion temperature will be assumed to be equal to the neutral gas temperature

and, therefore, known in the present analysis.

The governing equations for the electrical characteristics for two dimensional
and axisymmetric stagnation boundary layers with frozen gas-phase electron-

ion recombination are as follows:

Conservation of Ions

8C, 3C; 4 3C;
gt o gy = (03 - e W
[ ]
-3
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Conservation of Electrons

8C, aC, 5 ( 8C,
—_— —_— = | e sk
PU 5 + pv 5y - By pDe 5y +pKeE Ce (2)
Poisson Equation
OE* _ o El_ - i (3)
ay  °P\M, "M
i e
Electron Energy
8(Cec eTe) a‘(Cec eTe)
: = - ej Ex
pu 5% + pv 5y Wel ej,
9 aTe 8Ce :
—_— + I £
¥ 9y )\e oy CpeTe(pDe oy * pKeE Ce)
(4)
where
-5k
‘pe T2 M, (5)

The first three equations were previously derived in Ref. 2. The quantities
Wel and ejeE* in the energy equation are energy source terms due to elastic
collisions between the electrons and other particles and due to the electric
field, respectively. The term CpeTe[pDe (BCe/ay) + pKeE*Ce]‘ represents
the electron energy transfer due to the drift of electrons. The term
)\e(BTelay) represents the transfer of electron energy by conduction. This

equation will be discussed in greater detail in subsequent sections.
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With the solutions of the flow and neutral gas energy equations available,

these four equations remain to determine the unknown functions Ci’ Ce’ E*,

- and Te. The equations are nonlinear and basically coupled since De and Ke

are functions of T , and A , W . and j depend on C .
e e el e e
B. BOUNDARY CONDITIONS

The plasma at y - o is assumed to be neutral and to have a given charged
particle concentration. In addition, though it is not necessary, the electron
temperature is assumed to be equal to the neutral gas temperature there.

The boundary conditions at y - o are then:

C,=C,_ : (6)
Me

Ce = M_1 Gis (7)

T, =T, (8)

Now, consider the gas-solid interface. Here the gas layer is composed of
ions, electrons, and neutral gas particles in contact with the solid surface.
On arrival at the interface from the boundary layer, the ions and electrons
recombine catalytically, with the wall itself acting as the catalyst. If the
surface is highly cooled and catalytic for electron-ion recombination, the
normalized electron and ion concentrations at the interface, C /Ces and

ew

A
C. /C. , are of the order of (\ /&) or lessl,‘ where /)t and 6 are the
iw’ Tis gw g

neutral gas mean free path and the boundary layer thickness, respectively.

For all practical purposes, therefore, the following wall boundary conditions

! This will be shown in Sec. VI.




can be used for the conservation equations when the surface is highly cooled

and catalytic:

At vy =0,
Ci
= =0 (9)
is
e _
=2=0 (10)
es

It can also be shown (Sec. VI) that for such surfaces the following boundary

condition is applicable for the electron energy equation:

At y =0,

aTe

Boundary condition (11) implies that the temperature of the electrons at the
interface will usually be different from the surface temperature. Thus, a
sort of '"electon temperature jump'' exists at the surface. A similar
phenomenon occurs in rarefied gas flow with regard to the temperature of

the gas adjacent to the surface.

The temperature jump becomes negligible when (cew/Ces;) > 10-2, approxi-
mately. Such will be the case if either the surface is a poor catalyst for the
electron-ion recombination or the surface temperature is much higher than
1000°K and has a very low work function for thermionic emission at the same

time.

Finally, Poisson's equation is first order and satisfies only one boundary
conditionri. When the surface is an electrically floating conductor or a dielec-

tric, the boundary condition (je/ji)_w = I can be applied to the system rather




than specifying E* at any point. The solution in this case wiil give E* = 0 at
the boundary layer edge and an E* corresponding to the Langmuir (floating)
potential at the surface. When a net current is flowing, one may give a value
of E* or (je,‘/‘ji)W # 1 at the surface. In this case the solution gives non-
vanishing E¥% at the boundary layer edge. In Ref. 2 it was stated that E*

vanishes at the edge of the boundary layer. This statement must be qualified

because E* vanishes identically only when EW is that value corresponding to

(je/ji)W = 1. The value of E_ and its effect on the potential drop will be

subsequently discussed.
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III. ANALYSIS OF ELECTRON ENERGY EQUATION

Before actually analyzing the electron energy equation, we should mention
that, due to the considerable uncertainties involved in evaluating the basic
physical properties of a plasma, it is not our intention to obtain detailed
numerical solutions but rather to derive an approximate but essentially
analytical solution, permitting the study of the effects of the major

parameters.

As explained in Sec. IIA, the governing equations [Eqgs. (1) through (4)] are
basically coupled. Although it is clear from the Couette flow analysis of
Ref. 2 that the solutions of the first three equations depend critically on the
electron temperatures, the solution of the electron energy equation is rather
insensitive to the detailed variation of the electron concentration profile. The
latter fact will be substantiated in Sec. V. In order to simplify the analysis,
therefore, the electron concentration profile is considered to be given by that
obtained from the ambipolar solution of the conservation equations [Eqs. (1)
and (2)] all the way to the wall, From the analysis in Ref. 2, it can be seen
that such an approximation is quite acceptable for the present cases where
the sheath is much thinner than the boundary layer. This approximation
decouples the electron energy equation from the conservation and Poisson
equations, and the analysis of the electron energy equation is simplified
considerably. After the electron temperature profiles are obtained, the
electrical characteristics of the boundary layer will be studied by solving the
conservation and Poisson equations using a procedure similar to that in

Ref. 2, with the electron temperature profiles found by the method

described above.

An outline leading to the solution of the electron energy equation is given in
the remainder of this section. The details of the method of solution are given

in Appendix A.




The present analysis is limited to the regime in which 107! < (j‘e/"ji)W < 10
and (Te/Tg)' < 10. The former implies stagnation surfaces whose potential
with respect to the plasma is weakly or moderately negative. The latter
follows from the already stated condition of T‘es = Ts" (Because Ts‘/'TW is in
the order of 10 for the highly cooled walls, the maximum ratio of Te/Tg will
also be of the order of 10.) In this regime, the electron energy equation is
simplified substantially by observing the fact that the energy source term
ejeE* and the electron energy transfer term due to the electron drift

T [pDe(ace/ay) + pKeE*C‘e]‘ are negligible compared to the elegtron

c
pe e
energy conduction term.

The electron thermal conductivity )\e is obtained from Fay (Ref. 3). The

expression for the energy source term Wel is derived from the basic equa-

tion given by Petchek and Byron (Ref. 4) with a proper consideration of the

fact that the predominant elastic collision in the present problem is between

the electrons and the neutral particles rather than between the electrons and @

the ions as is the case in Ref. 4.

The electron energy equation, Eq. (4), is thus simplified and becomes

(m'
o" +(—S+ Pr f)e' = -Pr T (—&).(h -0) (12)
m_ e e el P/

after the usual similarity transformation,where ,

Pr Me '

1 12N3  YegPs (Me)

Iy = —
el 1 +e 5 Ts’\fl?l\-/i;

1
7 (14)
M_JP

(1}

-10-
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and (') denotes the differentiation with respect to the similarity variable n.

3

For most gases, Pre is of the order of 10°~., The stream function f is tab-

ulated in Ref. 5. When the collision cross section between the electrons and

the air neutral particles given by Hansen (Ref. 6) is used, Eq. (14) becomes

e s . o e o AV Tt 1o e e P b

~o_ 1 10 Ps
Ta~T#c2*19 ‘13 (15}

where p 1is in atmospheres, T is in °K, and B is in sec~1. T , denotes the
] s el

e 13

ratio of the characteristic convection time (represented by 1/8) to the char-
acteristic equilibration time between the electron and the neutral gas temper-
atures (represented by the remainder of the terms in this parameter). On the
other hand, the term Pre denotes the ratio of characteristic condﬁuction time
to characteristic convection time for the electron thermal energy. It is seen
that for given h(n) and me(n), the solution of the electron energy equation

depends on the two parameters Pre and rel" For a given Pre, rel - 0 implies

that the temperature equilibration process is frozen compared to the convec-

tion process, whereas I"el — o0 implies that the electron temperatures are in

equilibrium with the neutral gas temperatures.

To solve Eq. (12) analytically, the electron energy boundary layer is divided
into three regions as shown in Fig. 2. The h and m_ profiles are each
replaced by linear profiles. The quantity ps/p appearing on the right-hand
side of Eq. (12) follows m instead of h in region 2 and is pW/ps in region 1.
The values of "mm and LI that divide the three regions are given by Eq. (25).
The replacement of boundary layer profiles by linear profiles is a quite
common practice, and the m and h profiles differ very little when Sca is of
the order of Pr_. These approximations, therefore, should not lead to large

errors in the results. The solutions of Eq. (12) for the three regions

-11-




respectively are obtained analytically and satisfy the boundary conditions.

' = 0and ® = 1. The results are:
w s

For region 1 {0 <7 Snmm)

‘ "
( w ‘
(hw " m' mew)(lel)

+£' —h‘f—-'ZK+ k- 1k a0 |1
w\/Pr T 171 T P15 0%P1}{*o
e el plw

h|
W
+ (hw " m' mew) (pIIl)

hw 2 pl

N 1 A S - . . g

e\ Eer = P p110+'/ Lydey 1K (16)
e el p

Iw

where

/ rerel mew
Py :\/_H—(m' +11) (17)
w ew

and Iv and Kv are the modified Bessel and Hankel functions, respectively, of

order v for the variable Py (See Ref. 7.) The integrals of Bessel and
Hankel functions appearing in Eq. (16) are tabulated in Ref. 8.

-12-
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REGION | =
X g ,/’
Z; g
08 ‘F__ ; REGION 2 REGION 3 _“:1

EXACT h & 7} PROFILES

06}~ 4 .FOR hy = 0.1, Prg=0.72 -
h .
0.4 |
, '°s T
me, T ‘
| P
0.2} v —

Figure 2. Approximate h, m_ and ps/p Profiles

For region 2 (nmm <n< nm)

- iy |
A R A . _ W ‘ ‘ . .
O(P2) = valg + v3Kg + "z[(hw m mew)(KIIO * I'1Ko)}
[
3 ’—h" m'
A A W ew )
* (pz * 492)L4' Pr T (KyIy + 1, Kg)] (18)

=y
/

{
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where

Prerel M ew
Pp=2 T(r +ﬂ) (19)
ew ew

and IV and Kv are the modified Bessel and Hankel functions, respectively, of

order v for the variable ﬁz.

For region 3 (nm <n)

oo 2
exp(\-p_,))
9(93) =1+ Y4HN .——Ij]:_z—— dp3 (20)

P3 N

where

ps = '\/‘Pre {(n - 0.86038)

(21)
Tel
N =—§— (even integer)
and HN is the Hermite polynomial given by
_ N N-2
Hylpg) = (2p5) " - (N) (N - 1)(2p5)
NYN - I}N - 2N - 3 N-4

For extremely large values of N, appropriate asymptotic forms of the

Hermite polynomials can be found in Ref. (9) and (10).

-14-
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The four constants of integration, Yy through Y4 are determined by requiring

that 8 and 0' be continuous between regions 1 and 2, and 2 and 3, respectively.

The preceding solutions were obtained for the wall boundary condition 9:” =0,
which leads to an electron temperature jump at the wall. As mentioned

previously, this wall boundary condition must be replaced by the '"no-jump"

condition of ©_ = h_ for the special casesofm__ > 10~ A solution of the
w w ew =

electron energy equation satisfying the boundary condition ew = hw can be

In the present
- 0.

readily obtained in the same manner as the preceding ones.
study, however, we shall not analyze this special case except for I“el

The solution of Eq. (12) for r,~0 and a given 0, is:

For regions 1 and 2

(1-8) ln(l + me‘” n)

9 = 5 ew - +0 (23)
: N om! exp(p )] w
. ~1 ew 7 3m
ln(m )+ . (1 - erf Ps )
ew 2 F—Pre m
For region 3
(1 -06_)(1-erfp,)

0 =1 w 3 (24)

 2NBr. 03
T exp(-p3,) a2 L) 4+ (1 - ext o, )

N7 m! ew
ew

The linear profiles for h and m  are chosen to give correct values of hw and

t ! ” —— ‘
hw, and m and m_ respectively. The vidlues of L and My therefore,

are given by

(25)

-15-
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and
l1-h
nm = iy
w
when
Sc X Pr
a g

Typical electron temperature profiles are given in Fig. 3 and will be dis-

cussed later.

Figure 3. Nonequilibrium Electron
Temperature Profiles for Pre = 10-3
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In this section, we have analyzed the electron energy equation, Eq. (4), and
obtained the electron temperature profiles for the various cases. In the
following section, the conservation and the Poisson equations, Egs. (1)-(3),
will be analyzed by using the electron temperature distributions that have

just been obtained.

-17-
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IVv. ELECTRICAL CHARACTERISTICS OF BOUNDARY LAYER

In the present section, the conservation and the Poisson equations, Eqs. (1),
(2) and (3), will be solved. The boundary conditions to be satisfied are those
explained earlier: m{oo) = 1, m(0) = 0, and the given (je/ji)w" The electrical

characteristics of the boundary layer will then be studied.

The present study, like that in Ref. 2, is concerned with the regime in which
the sheath thickness is much greater than the electron-neutral particle mean
free path, but is much smaller than the thickness of the boundary layer. The
method of solution is essentially the same as that given in Ref. 2 except that
the more general cases of unequal ion and electron temperatures will be
analyzed here where only the case of equal ion and electron temperatures was
studied in Ref. 2.

The boundary layer is first divided into two arbitrary regions, the sheath and
the ambipolar regions (see Fig. 1). Solutions will be obtained separately for

the two regions and will then be matched at a suitable point.

In the remainder of this section an outline of the method of solution and re-

sults are given. Details of analysis will be found in Appendix B.

Within the thin sheath region presently of interest, the convection terms of
Eqgs. (1) and (2) can be neglected. Also, the temperature ratio

T‘i/’Ife = (Tg/T‘e) can be considered to be constant in the thin sheath without
causing any undue error. The three coupled equations, Eqs. (1) through (3),
with the above simplifications, are integrated by using a digital computer for

various combinations of controlling parameters.

The ambipolar region is defined as that region of the boundary layer where

the charge separation is negligible. = Thus, in this region Poisson's

-19-
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equation is extraneous. The conservation equations (1) and (2) then give the

equation
1
(__s}: m') +fm' =0 (26)
a

where

(o) ) o) G2

1+ =)\ \s— 1+ =—1} | -{+—
1 _ 1 TV M T L+ Tilo| Vily
Sca Scl M1 Te i (Te)( Te)[ e(Ti) (je) ]

1 +4 [r e — =1+ =] 1 +1 /= l=—} | =
Me Ti Me Ti T1 Mi Te oVi/w

(27)

and the subscript 0 here represents the average value for the sheath region.
For the regime presently of interest in which the ratios Te/Ti and (je»/j‘i)w

are each no greater than ~ 10, Eq. (27) can be simplified to

1 } Te 1
Sc. ™ (1 ¥ Tf) Sc. (28)

a i i

For the case of equal electron and ion temperatures, the above equation gives

the following familiar definition:

~ 1
Sca ~ 5 Sci (29)
Consistent with the approximations that we have made so far, we consider

that Sca is constant across the ambipolar region. Such an approximation will

not cause any undue error in the results because the solution of a diffusion

equation such as Eq. (26) depends only weakly on the Schmidt number

-20-
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(% Sc;/3). Equation (26) then becomes the conventional boundary layer
diffusion equation and the solution can be readily obtained in terms of the

stream function f (see Ref. 11).

For the electric field intensity in terms of the m profile obtained above, the

analysis of Eqs. (1) and (2) also yields the following equation:

P \/M_(T )2
1 -4 /=218
E . Vs 2/l +e Me

i

a =
Vee? 2 (T,
M, T'l'

—
+
B

L . [1 (;—Z)J {1 '(j;f‘>w}m'o
i e e () ).

where (Ti/Te)O‘ represents the average temperature ratio for the sheath

X (30)

region.

The complete solution of the original equations, Egs. (1) through (3), for the
boundary layer is now obtained by matching the numerical solution of the
sheath region and the closed-form solution of the ambipolar region at ah for

m,, m_, rn'i, m'e and E, respectively.

The potential drop across the boundary layer is obtained by integrating the

electric field intensity over the physical thickness of the boundary layer.

Figure 4 shows a typical solution of the sheath region obtained by the use of a

digital computer. Figures 5a and 5b show typical m_, m, and E profiles for
the boundary layer. Figures 6 through 8 show the overall electrical charac-

teristics of stagnation boundary layers, which will be discussed later.

-21-
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Typical Electron, Ion, and Electric

Figure 5a.
Field Distribution in Boundary Layer
or ‘ | T 1 T T T T
‘ T, = 720
 [Me /e
- 0.2 —(—) 1072
‘ M\ Ty
4
E a
o
100+ z
£
r Ou
200l | ——— NUMERICAL SOLUTION | |
3 —--— AMBIPOLAR SOLUTION
: MATCHING POINT (n,)
ol o g . : LN
0 0.l 0.2 0.3 | 0.4
o 7 0.3818
Figure 5b. Typical Electron, Ion, and Electric

Field Distribution in Sheath Region
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V. DISCUSSION

Figure 3 shows the electron temperature profiles for the various values of
the parameter rel where rel’ defined by Eq. (14), represents the ratio of the
characteristic convection time to the characteristic temperature equilibration
time as explained previously. As T is increased from zero, the electron
temperatures near the wall begin to decrease toward the neutral gas tem-
peratures (Fig. 3). This initial relaxation, however, causes the electron
temperaturées in the outer portion of the boundary layer to deviate from the
equilibrium temperatures (neutral gas temperatures). The reason for this

is: as follows. The rate of temperature equilibration for a given small value
of rel is much greater near the wall than in the outer portion of the boundary
layer because the gas density and the differences between the electron and the
neutral gas temperatures are much greater in the fluid near the wall than
distant from it. The initial increase of rel’ therefore, causes mainly tem-
perature relaxation near the wall. The decreased electron temperature near
the wall then causes the temperature of the electrons in the outer portion to

decrease by conducting the energy away from them.

This phenomenonthickens the electron thermal boundary layer substantially
(Fig. 3). The rather large thickening is due to the extremely small magni-
tude of the electron Prandtl number that propagates the electron temperature
disturbances near the wall through a considerable distance. Figure 3 shows
that the electron energy boundary layer remains much thicker than the neutral
gas thermal boundary layer until rel becomes sufficiently large so that the
temperature equilibration is nearly complete throughout the boundary layer.
The complete temperature equilibration is seen to be accomplished at the
value of I‘el of ~ 104. According to 8Eq. (15), this means that for laboratory

conditions of [3Ts of the order of 10 c)K/sec (commonly encountered), the

complete temperature equilibration is not accomplished unless the stagnation

point pressure is on the order of 100 atm. These criteria for the equilibrated
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electron temperatures are seen to be much more severe than those commonly
predicted previously (for instance, see Ref. 1). The reason for this is that
the conventional criteria have usually been based on the comparison between
the characteristic residence time for the electrons and the characteristic
temperature equilibration time. The characteristic residence time of elec-
trons is related to the electron current density given by the approximate
expression of Eq. {(A-6). The minimum residence time occurs when (je/ji)w
is maximum (~ 10 in the present cases). Equation (A-6) shows that the
residence time presently of interest is within about one order of magnitude of
the ion diffusion time. As is mentioned following Eqs. (A-6) and {(A-7), the
parameter (Pre/Sci)‘ represents the ratio of the characteristic conduction
time of electron energy to the characteristic diffusion time of ions; this
parameter is of the order of 10-3. Thus, the characteristic conduction time
for electron energy is at least 100 times shorter than the characteristic
electron residence time for the ranges of (je/j‘i)W considered in the present
study. Therefore, it is the electron energy conduction time rather than the
residence time that should be compared with the equilibration time in deter-
mining the nonequilibrium electron temperatures. From these arguments,
therefore, it is seen that the parameter (PreI‘el) thatl represents the ratio of
the characteristic conduction time to the characteristic equilibration time is
a more physically meaningful parameter for the prediction of temperature
equilibration process than T alone. This can be also seen from the right-
hand side of Eq. (12). Figure 3 shows that the temperature equilibration is

nearly complete when Prel"el is of the order of 10.

The semi-broken line in Fig. 3 shows the electron temperature for m = 0.1,
ew = hw, and I‘el - 0 obtained from Eqs. (23) and (24). As mentioned earlier,
this is a special case of either a poorly catalytic surface or a highly seeded
gas over a high temperature surface in which n_. is within about one order

of magnitude of n_. These are highly special cases; however, the figure
shows the drastic effect the wall could have on the electron temperatures of

the boundary layer should such cases arise. Due to the extremely small
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value of the electron Prandtl number, the cooling effect of the wall will be felt

by most of the electromns in the shock layer.

It was mentioned earlier that the electron temperatures were expected to be
rather insensitive to the detailed variation of the electron concentration pro-
files. This can be substantiated from the electron energy equation, Eq. (12),
and the solutions of this equation. The electron concentration profile enters
into Eq. (12) through the terms (m;/me) and (‘p/ps‘). The density ratio was
made a function of m during the subsequent solution of the equation by letting
p/p‘s ~ m(;l. The effect of varying the electron concentration profile on the
solution of the energy equation can be studied quite generally within the
framework of the approximations given by Eqs. (A-14) through (A-17) by
studying the effect of varying m;W on the electron temperatures. First, it

can be seen from Eqgs. (A-14) and (A-15) that

8

Thus, m'e/‘me is essentially independent of m'eW whén m 0, which is the
present case. Next, the effect of varying m'ew on the right-hand side of

Eq. (12), through its effect on p/ps‘, is approximately of the same order as
the effect of varying I"el. It is seen from the solutions of the equation given
in Fig. 3 that a little variation of Ty (such as 10 to 20 percent) affects the
electron temperatures very little. Thus, we have now shown that the electron
tempecratures are rather insensitive to the detailed variation of the electron
concentration profiles. The above arguments can also be readily supported
from the analytic solutions of Eq. (12), i.e., Eqs. (16), (18), and (20), by

noting the very weak dependence of the solutions on m;w.

The preceding discussion leads to the following observation concerning the

effect of the gas-phase electron-ion recombination on the electron
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temperatures: According to Ref. 12, it seems that radiative two-body
recombination is the predominant gas-phase recombination process when it
occurs in gases such as argon. If this is true, then the effect of the recom-
bination on the electron temperatures appears only through its effect on the
electron concentration profile. It was shown in the preceding paragraph that
the electron temperature is rather insensitive to the variation of electron
concentration profile. Therefore, a moderate rate of radiative gas-phase
recombination of ions and electrons will not appreciably affect the electron
temperature profile. If the recombination, however, is predominantly a
three-body process in which the electrons become the third body (catalyst),
another energy source term must be added to the present electron energy

equation and, therefore, the present solution is invalid.

Before leaving Fig. 3, we should mention that the electron temperature pro-
file for the frozen limit of rel = 0 is not, strictly speaking, thatof 6 =1 as
given in the figure. In the analysis, the energy source term ej‘eE* appearing
in the energy equation, Eq. (4), was neglected be‘vgause it.is of much smaller
order of magnitude compared to the energy condué‘tion term. This approxi-
mation, however, must fail in the limit of rel =0 | eica'use in this limit the
conduction term vanishes everywhere with the electron temperature gradient.
The effect of the term e:j;eE* is to decrease the electron temperatures because
E* near the wall is negative, and the electron current density is toward the
wall for all the cases considered in the present analysis. Therefore, the
electron temperature profile in the limit of rel - 0 will actually be much like
that for a small value of rel that gives a small but nonvanishing temperature

gradient to balance the ejeE* term.

Figures 6, 7, and 8 show the typical variation of the potential difference and

the current densities with respect to several major parameters.

The net potential difference across the boundary layer and the current density
for the electron temperature profiles obtained in Fig. 3 and for (j‘e/ji)w =1

assuming N]M‘e7Mi = 10_2 are shown in Fig. 6. The potential difference is
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Figure 6. Floating Potential and Ion
Current versus Equilibration Parameter

seen to increase as the temperature equilibration parameter rel is decreased.
This is to be expected, because the electron temperatures near the wall in-
creased with decreasing rel in Fig. 3; also, the sheath potential drop is seen
(Ref. 2 and Table 1) to increase with the electron temperature. It is also
seen in Fig. 6 that the ion current density increases in a manner similar to
the potential difference as the electron temperature increases. It is inter-
esting to note that a dependence of the ion current density on the electron
temperature was also suggested for the free-fall sheath of a static plasma in
the analysis of Ref. 13. Figure 6 shows that, for pw/ps between 10 and 20,
the floating potential of the wall with respect to the plasma is increased by

about 4 to 5 fold as 1"el is varied from oo to zero. The ion and electron cur-

- rent densities at the same time are seen to have increased by about four fold.

Figure 7 shows the variations of the floating potential and the ion current

density with respect to the plasma flow parameter a(vs/ﬁlz) = [vs/ﬁAz] for
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T
el
nondimensional ion current, as a whole, are rather insensitive to the varia-

= 720 and rel = oo, respectively. It is seen that the potential and the

tion of the flow parameter when the wall is highly cooled. These quantities,
however, are seen to vary considerably more with the flow parameter for

I‘el = 720. The reason for this is that the sheath thickness varies with the
flow parameter and thus the average temperature ratio Ti/Te for the sheath
is a function of the flow parameter. This dependence of the average temper-
ature ratio on the sheath thickness, when the temperature equilibration is not
complete, causes the potential difference and the nondimensional ion current
density to be influenced to a greater extent by the parameter a'(vs/ﬁlz)» than
when Ti/Te = 1. As is seenin Fig. 7 and Ref. 2, however, the potential

difference varies with the density ratio pw/‘ps much more than with the flow

-30-




4 s B,

7 T T T 1 T S N

Segsdsl

s 2k Tot =720 Jg /—TL , (FOR ALL —p'i) .
- m ‘ Bt
[ «/.'.‘.’- =1072
3 1 i ai s
4 B e 7
7 (BL2)/ vy
>
e L { [ ! | [
10! ' 10
(jo/jl )VI
Figure 8. Potential Across Boundary Layer
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parameter. The nondimensional ion current density .]"3[“\1‘5‘/({312)]'1/2 is
independent of the density ratio pw/ps. The ion current density will be

discussed subsequently in detail.

Figure 8 shows the typical variation of the potential difference across the
boundary layer and the current density with respect to the ratio (je/ji)w' The
figure, however, may be more conveniently interpreted as showing the effect
on the ion and electron current densities of varying the potential difference.
It is seen that as the potential diffe‘rence2 is increased from about 3.8 to 6.2
(for instance, at pw/ps = 10) the nondimensional ion current density is in-

creased only by about 10 percent. The electron current density, on the other

2Note that the wall potential is negative with respect to the plasma.
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hand, is seen to have decreased by about two orders of magnitude, since j‘iw

remained essentially constant.

The following observations on the current densities can be madé from Fig. 6,
7, and 8. The nondimensional ion current density J3 [vs/(pI‘I/Z;J is a function
of only the electron to ion temperature ratio and, thus, of the parameter r’el'
The actual ion current density for a given electron temperature, therefore, -

is:

C.
. is
Jiw v Vﬁ(ps‘ps) MiSci

The parameter [ﬁ(psps)]l/2 is the parameter appearing in the usual boundary °
layer solutions for determining heat or mass transfer rate (see Refs. 14 and
15). Cis is the same as the degree of ionization in the plasma. For a given
]1/2 [Cis‘/(MiSci)]‘, the variation of

the potential drop does not vary the ion current appreciably within the present

o

value of electron temperature and [B(psps)‘

orders of magnitude. The electron current, however, is quite drastically

affected by the potential drop.

Equation {30) shows that the electric field intensity vanishes identically at the
edge of the diffusion boundary layer (where m' = 0) only if (je/j‘i)w = 1. For
all other cases, it shows that a nonvanishing field intensity exists -at the
boundary layer edge. This is consistent with the boundary layer character-
istics and also with the physical problem itself. The supply of the charged
particles to the boundary layer edge from the inviscid region is by convection
and the drift due to the electric field. The convection supplies both the ions
and the electrons at the same rate. Thus, an electric field is needed at the
boundary layer edge to satisfy the condition of the unequal current densities
when (j‘e/ji)w # 1. Equation (30) shows that E_ is positive when (je/j‘i‘)w > 1,

whereas it is negative when (je/ji)w < 1.
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Strictly speaking, one can considér in a physical problem a solid surface in
contact with a semi-infinite plasma only if the surface is electrically floating
and, therefore, (je/j‘i)w = 1. The electric field intensity then must exactly
disappear at infinity. The steady-state condition of (je/ji)w # 1, on the other
hand, can be obtained only with the help of an external circuit. This means
that there must be another electrode in contact with the plasma at a finite
distance from the present surface. Therefore, the plasma is not, strictly
speaking, semi-infinite and the electric field intensity beyond the boundary
layer edge is not exactly zero, although it may be of much smaller order of
magnitude than that within the boundary layer. Of course, there will be
another boundary layer at the other electrode surface and an appropriate

potential difference across it.

Let us consider the order of magnitude of the residual electric field intensity
and its effect on the actual potential difference between the wall and the
plasma. The magnitude of the electric field intensity at the boundary layer
edge relative to that at the sheath edge can be readily obtained from Eq. (30).
A simple estimate from Eq. (30) shows that the electric field intensity at the
boundary layer edge is less than one percent of that at the sheath edge for
(je/ji)w < 10 and for the temperature ratios given in Fig. 3. For small
probes located at a stagnation point, the three dimensional effect will quickly
reduce such small electric field intensity to zero beyond the boundary layer
edge; the potential drop beyond the boundary layer edge, compared to

that across the boundary layer, may be neglected. The potential difference
obtained for the boundary layer, therefore, is the potential difference between
the wall and the plasma, for all practical purposes, when (je/j]i)W < 10. When
(je/j‘i)w >>10, however, Eq. (30) shows that the residual electric field
intensity at the boundary layer edge can become the same order of magnitude
as that at the sheath edge. For these cases, the electric field intensities

that penetrate into the plasma in the inviscid region cannot be neglected and,
therefore, the boundary layer treatment alone cannot describe the plasma- ‘

solid interaction satisfactorily.
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VI. RANGE IN WHICH THE THEORY IS VALID

In the present section, the regime of validity of the analysis based on the

governing equations, Egs. (1) through (4),will be examined.
A, CONSERVATION AND POISSON EQUATIONS

There are three criteria that must be satisfied in order that the present
solution of Eqs. (1) through (3) be valid:

1. Sheath thickness must be much greater than the mean free

path. .
2. The sheath must be sufficiently thin compared to the

boundary layer so that the convection effect can be
neglected within the sheath.

3. Gas-phase ion-electron recombination must be frozen.

The above criteria are the same as the first three criteria given in Ref. 2.
The fourth criterion in Ref. 2 was Te = T‘i, but the present analysis removes
this restriction. The first two criteria are rather straight-forward; the

following expression derived in Ref. 2 for argon, for instance, specifies the

criteria:
2
T Re
~6f s v 10198
2x10 (?—)Sns<<7x10 G‘—O') (31)
where
uool
Re =
v
s

and T is in °K, L is in cm, n is in particles/‘cm3, and p is in atmospheres,

Nothing can be said with any certainty concerning criterion 3 because the gas-

phase recombination process is not too well understood for the gases in the
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present flow regimes. Assuming that the radiative gas-phase recombination
sets in before the three body processes, the frozen recombination criterion

may be expressed as

TAiff 6yn2 4
v —2 << (32)
Tchem  Jiw

where the recombination coefficient y for argon is about 10-13 to

10_"10 cm3/s‘ec (see Refs. 2 and 12), and & is the m-boundary layer thickness.
It is seen from the expressions (31) and (32) that a rather large regime of
flow conditions can be analyzed by the present theory. It is shown in Ref. 2,
for instance, that the three criteria are satisfied for the following typical

conditions obtainable in an argon arc tunnel facility:

Py = 0.1 atm
£ =1cm
Re =100
T = 7000°K
_ (o)
TO = 500K

1.4 x 1012 S—nes << 1.4 x 1015

It is also estimated in Ref. 2 (with some misgivings) that the above plasma
condition may give equilibrated electron and neutral gas temperatures in the

boundary layer. The estimate was based on the conventional comparison of
-36-
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the temperature equilibration time with the characteristic electron residence
time. According to the present analysis, however, the electron temperature
will be far from being in equilibrium with the neutral gas temperature for

the above flow conditions.
B. ELECTRON ENERGY EQUATION

There are two criteria which must be satisfied in order that the continuum
electron energy equation, Eq. (4), be applicable for the weakly ionized gases
presently of interest. The first is that the mean free path for the electrons
between the electrons and the neutral gas particles be much smaller than the
characteristic length of the flow. The mean free path between the electrons
and the neutral gas particles is of the same order of magnitude as that ‘
between the neutral gas particles. This criterion is, therefore:, e.ssentia.lly )
the basic one for the boundary layer flow itself; the conditions for the appli-
cability of boundary layer théory have been well established elsewhere (for

instance, see Ref. 16).

In addition to the above criterion for the basic boundary layer flow, the
electrons must have a Maxwellian distribution such that the electron tem-
peratures can be defined across the boundary layer in a continuous manner.
Although the electron-neutral particle collisions aid the attainment of a
Maxwellian distribution3, a conservative criterion for the distribution is
based on the requirement that there be a sufficient number of electron-
electron collisions during a suitable characteristic time for the electrons in
the boundary layer. In order to verify the Maxwellian distributions of elec-
trons between two electrodes, Kerrebrock compared (Ref, 18) the electron-
electron collision time with the electron residence time. As was shown in
the preceding section, however, the characteristic conduction time of

electron thermal energy is much shorter than the characteristic electron

3It is shown in Ref. 17 that electron-neutral particle collisions alone in
an electric field lead to an electron distribution which is usually between
Maxwellian and Druynesteyn distributions.
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residence time when ‘(j,e_/‘ji)W < 10. The second criterion for the present
problem is therefore satisfied when the electron-electron collision time is
much shorter than the characteristic electron energy conduction time across
the boundary layer., The characteﬁstic electron-electron collision time Tee

is obtained from Spitzer (Ref. 19) as

0.267 T3/2
= £ (33)

T
ee 3.3 2
KT 172
-3 e
n hL——f
e 3\ m™m
2e e

where Tee is in sec, Te is in °K, and n, is in particles/cm3. The logarith-

mic term of Eq. (33) is calculated and tabulated in Ref. 19. The conduction

time of electron thermal energy T, is given by

p.c T & v
~{_epey_s (2 1 s 1 34
Te ( N ) 8T) 6Pre T+e¢ Ppv. p OF (34)
e e . s
(ay

Here 6 is the thickness of the electron thermal boundary layer. ©6' and u are
some suitable average values for the boundary layer. The criterion is then

satisfied when

Tee )
— << 1 (35)
(o4

Although the normaliz=zd electron mass fraction m decreases monatomically
from the boundary layer edg‘e.to the wall (Fig. 5), the number dgnsity n_
remains essentially constant almost all the way up to the wall because

m ~ ps/p. This has been ncted in Ref. 20. Using n omn, .in Eq. (33),

we can show that criterion (35) is satisfied for most of the flow conditions of

interest to us, such as the example given in Sec. VI.A.
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mic term of Eq. (33) is calculated and tabulated in Ref. 19. The conduction

time of electron thermal energy Te is given by

PeC ) Tgo z_ 1 Ms 1
e e S S
T ——— ~ 8Pr 4 = (34)
c ( )\e (aTe> e\/l +e¢ ﬁvs TN)
ay

Here & is the thickness of the electron thermal boundary .ayer. 6' and p are
some suitable average values for the boundary layer. The criterion is then

satisfied when

ee ‘ ’
=% << (35)

Although the normalized electron mass fraction m decreases monatomically
from the boundary layer edge to the wall (Fig. 5), the number dgnsity n,
remains essentially constant almost all the way up to the wall because

m ~ ps/p. This has been noted in Ref. 20. Using n mn, in Eq. (33),

we can show that criterion (35) is satisfied for most of the flow conditions of

interest to us, such as the example given in Sec. VI.A.
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c. WALL BOUNDARY CONDITIONS

Boundary conditions (9), (10) and (11) will now be derived.

Consider the interaction between the electrons at the interface w and the

solid surface ww. The electron mass balance can be written as

aC
%Me [(nO)ew - (ne)eww]f(pDea_’ye * pKeE*Ce)w (36)

When the surface is highly cooled and catalytic, the electron emission from
the solid is negligible and, in addition, practically no electrons return to the
interface after colliding with the surface. Therefore, n $ -0 and

eww eww
Eq. (36), with the aid of Eq. (A-6), gives

T Me 1 —je Q W ame
v s\ W\ T N\5T) 7
efw g~ aVijw % 0

A
where )\g and 6 are the neutral gas mean free path and the boundary layer

thickness, respectively. Equation (37) shows that

NAWAS |
m ~10"°%L}|-E¥ (38)
ew J): 6
iJw
A similar analysis shows that

A
N
W
m, ~_55_ (39)

It is seen from Eqs. (38)and (39) that boundary conditions (9) and (10) are
justified for all practical purposes when the surface is highly cooled and
catalytic.
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An electron energy balance can be written between the interface and the

surface as

1 A A | aTe BC
zMeCpe (an)ew - (nVT)eww = )\eW + CpeT PDe—W + PK E C w

With the aidto Eqs. (36) and (A-3), the above equation becomes

1 A Fow [Te ‘(I/ZH-G 8Te
M, (nv)eww(Tew " Teww “Br\T_) CesMew\ oy / (40)
e\ g/w w

The above equation shows that (BTe/By)‘w — 0 for highly cooled and catalytic

surfaces since n___ Q —+ 0. The boundary condition (11) is thus verified.
eww eww

Equation (40) shows that the electron temperature jump is maximum at the

wall when the surface is highly cooled and catalytic, and thus no electrons

reach the interface from the wall,

Let us now consider the other extreme, where no electron temperature jump
exists at the wall. As mentioned previously, a no-jump condition exists, for
instance, when either the surface is a poor catalyst, the surface temperature
is much higher than about 1000°K and at the same time the surface has a very
low work function, or when the gas adjacent to the high temperature surface
is highly seeded. For such cases, the rate of electron transfer from the
interface to the surface and that from the surface to the interface are of the
same order of magnitude, n 4 ~n_ 9 . The effect of the wall
eww eww ew ew 5

boundary condition on the electron temperature profile is maximum™ when
T , = 0. Thus, after substituting n 9 for n 0 and obtaining

el ew ew eww eww
(a're/ 8y)w from the frozen solution (23), Eq. (40) can be readily solved for

the order of magnitude of n that would make (T -T } - 0. Such
ew ew eww

The electron temperature profile is almost independent of the wall boundary
condition when I‘ > 700.
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analysis shows that, for many of the present flow regimes, m_ must
become the order of 10-2 or so in order that the electron temperature jump
can be neglected. This means that in order to neglect the temperature jump,

n_. must become approximately within one order of magnitude of n.e
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VII. CONCLUDING REMARKS

An electron energy equation was formulated for wéakly ionized stagnation
boundary layers over highly cooled and catalytic surfaces. A solution was
obtained analytically for electron temperature profiles that are not in equi-
librium with the neutral gas temperatures. The effect of the nonequilibrium
electron temperatures on the electrical characteristics of the boundary layer
was then analyzed by solving the conservation equations of the charged par- -

ticles and the Poisson equation.

It is found that,when the electron temperature is in equilibrium with the
neutral gas temperature in the inviscid region, the potential difference across
the boundary layer and the current densities increase about four to five times
as the electron temperatures in the boundary layer vary from the completely
equilibrium state to completely frozen state with respect to the neutral gas

temperatures.

Though the variation of the electron temperatures affected the ion current and
the potential difference alike, a variation of the potential difference alone for
a given electron temperature was found to have a negligible effect on the ion
current. On the other hand, the electron current was found to be drastically

affected by the variation of the potential difference.

The state of the electron temperatures with respect to the neutral gas tem-
peratures in the boundary layer was found to be controlled by the parameter
(Prel"el) which represents the ratio of the characteristic electron energy
conduction time to the characteristic temperature equilibration time. This
parameter in the regime presently of interest, [10-1 S-(’je/ji)‘wi 10], was
found to be about two to three orders of magnitude smaller than the ratio of
the characteristic electron residence time to the temperature equilibration
time. The latter ratio has been conventionally used to determine the state of

the electron temperatures. The present analysis shows, therefore, that the

)
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electron-neutral gas temperature equilibration is accomplished at much

higher pressures, for instance, than those previously expected.

The special cases of poorly catalytic surfaces and the highly seeded gas
adjacent to high temperature surfaces were considered. It was shown that
the cooling effect of the wall can have a drastic effect on the electron tem-
peratures of the bounda‘ry'r layer should these conditions cause the electron
concentration at the wall to become within one order of magnitude of that at

the inviscid region.
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NOMENCLATURE

parameter defined by Eq. (B-4)

parameter defined by Eq. (B-9)

constant defined by Eq. (A-.IO)

mass fraction

specific heat of electrons per unit mass of electrons
binary diffusion coefficient

nondimensional electric field intensity defined by Eq. (B-9)
electric field intensity

absolute charge of an electron

Blasius stream function

parameter defined by Eq. (B-20)

nondimensional electric field intensi‘t)ﬁ‘( defined by Eq. (B-4)
Hermite polynomial of order N

Tg,/ T

modified Bessel function of order v

nondimensional ion current density defined by Eq. (B-4)
nondimensional ion current density defined by Eq. (B-12)
particle current density

mobility

modified Hankel function of order v

Boltzmann constant

physical thickness of sheath region
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Sc
a
Sc

Sc,
i

nose radius

particle mass

C‘/C’s‘

even integer defined by Eq. (21)

charged particle number density

pressure

electron Prandtl number defined by Eq. (13)
Prandtl number of neutral gas

Coulomb collision cross section’

collision cross section between electrons and neutral
particles

Reynold's number

distance shown in Fig. 1

variable defined by Eq. (A-9)

ambipolar Schmidt number defined by Eq. (27)
electron Schmidt number

ion Schmidt number

temperature

x-component of velocity

potential

y-component of velocity

electron mean thermal speed S

energy transfer to electrons per unit time per unit volume
due to elastic collision

streamwise distance
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I‘el
Yy' Yo oo

<

eg

TR

P1: P2 P P3

T
SUBSCRIPTS

e

g

b e i S S % o e 1 T

distance normal to surface
variable defined by Eq. (B-4)
C/Co
du /dx
s
temperature equilibration parameter defined by Eq. (14)
constants of integration
constant portion of Qeg defined by Eq. {A-5)
modified thickness of sheath region defined by Eq. (B-4)

0 for two dimensional body
1 for axisymmetric body

variable defined by Eq. (A-10)
T /T

e s
Nebye shielding length, V (kT )/(eZn‘ )

g e

thermal conductivity of electrons
viscosity and kinematic viscosity, respectively.
density

variables defined by Eqs. (17), (A-23), {19) and (21},
respectively

characteristic time

electrons

neutral gas

ions

matching point between regions 2 and 3

matching point between regions 1 and 2
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s edge of boundary layer

w wall

WW solid surface

v integer

0 matching point between sheath and ambipolar regions

unless specified otherwise

NOTE: Symbols without the subscript ""e" or '"i'' refer to neutral gas.
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APPENDIX A

Supplement to Analysis of Electron Energy Equation

The details leading to the solution of the electron energy equation are given in

the following paragraphs.

I. Fundamental Properiy Values for the Electron Energy
Equation :

The electron thermal conductivity )‘e‘ and the energy source terms. Wel and

ej‘eE* will be studied in this section.
Consider first the electron thermal conductivity )\e. Fay (Ref. 3) gives

kn 0
- T5n e e . (A-1)
e 128 (ngQeq +‘\/§_neQ‘c)

The Coulomb cross section Qc is about two orders of magnitude greater than .
the electron-neutral cross section Q. 80 that the second term in the
denominator dominates for highly ionized plasma (‘ne/ng >> 170-22) ;nd )‘e‘ is
independent of n,. In the weakly ionized plasmas (ne/ng << 1077) of current
interest, the first term predominates and )‘e‘ is practically a linear function of

n,. It can be seen from data in Ref. 6 and other available data that

N =

% 1%
Qggz (TE) (A-2)

e
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where -1/2 < ¢ $1/2, depending on thée gas and temperature range. Equation

(A-¥) can be written as

T 1/2)+o C
he = (“Cpe)(T_e Pre_ (A-3)
g € :
where
pr fm \M/2 |
- ‘ € ) .
e, - bl Y

We shall call Pre, defined by Eq. (13)A, the electron Prandtl Aumber. As will
be seen subsequently, Pre influences the behavior of the electron thermal
boundary.layer in a manner similar to the usual influence of the Prandtl
number on the conventional thermal boundary layer. The electron Prandtl

number is of the order of 10-3 for most gases.

As in Ref. 2, the present study‘ is limited to the regime 1()-I < (je/ji)w < 10.
Certain simplifications of the electron energy equation are possible in this
reéi}ne. The electron energy source term e‘j‘eE’?< represents the rate at which
electrons gain and lose energy due to their motion in the electric field. Using
values of je and E* obtained from Eq. (4) and Ref. 2, it can be shown that
this term is negligible compared to the conduction terms in the ambipolar
region. The electron temperatures, therefore, are practically unaffected by
the electric field in most of the boundary layer. In the sheath, however, this
term can become of the order of, or even greater than, the conduction term,
depending on the magnitude of E*. However, for 10—1 < (je/ji)W <10, it can
be seen from Ref. 2 that E* will be small enough so that this term, when
compared to the conduction term, can be neglected even in the gheath. The
main reason for this is that the conduction of energy takes place very

efficiently because of the high mobility of the electrons. This fact can also
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be seen from the extremely small value of Pr_ as given by Eq. (13). In this

analysis, therefore, the term ej:eE* is neglected.

Finally, the energy source term: wel is considered. This term represents
the rate of energy exchange between electrons and the rest of the gas due to
elastic collisions. Petchek and Byron have given (Ref. 4) a baéic expression
for wel aithough the final expression they derived is not applicable to the
present problem because they were interested in plasmas in which the
Coulomb interaction predominates, i.e., in which most of the energy
exchange is between electrons and ions. For the weakly ionized gases of
current interest, most of the energy exchange is between electrons and
neutrals. The basic equation in Ref. 4, however, may be used to derive the
following equation, which is valid for weakly ionized plasmas (much less than

one percent):

75 k3 Me _ _ ]
Wel = 3N3 Yeg T/I: T/I; neng(Tg - Te)‘ ’ (A-4)

He e it has been considered that the collision cross section between electrons

and neutrals has the form:

Ve

Reg " It

(A-5)

The above expression can be derived from information in Ref. 6 for high

temperature air.
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II. Simplification and Transformation of the Electron
Energy Equation

The equation has already been simplified by decoupling it from the conserva-
tion and Poisson equations (see text) and by neglecting the term ejeE*. One

additional basic simplification will be made before attempting the solution.

It can be readily shown from Eqs. (1) and (2) that for the predominantly

ambipolar boundary layer consgidered here:

ac, i T, ac,
pD — + pK E¥*C = | — 1+ )pD (A-6)
e 3y e e i w Ti ay

This approximate equality is sufficient for the immediate purpose of showing
that the term [pDe:(a Celay) + pKeE*Ce] can be neglected in the electron
energy equation. With the aid of Eqgs. (5), (A-3), (13) and (A-6) the energy

equation may be written:

aT dT - { T )1/2)“’ aT ] w
e e 9t el el

. (A-T)

T
L2)te a1 \fpC j (‘ *T‘e‘) Pr
‘ e e 1+ e) i el
( ) ( w (1/2)+¢ Sci

()

The present analysis is concerned with cases in which ’I‘ “and T , and j‘e‘ and
_] , differ by no more than an order of magnitude or so (see text) For these
cases the term [(J /J ) (1 + T, /T, )(Pr )/(T /T )(1/2)+°'(Sc )] << 1 and may
be neglected. Thls is because the ratio Pre/Scl‘, which may be interpreted

as an electron Lewis number, is much smaller than unity and, therefore, the
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electron energy transfer (of the energy cpe Te only) due to concentration
gradient and electric field motivated diffusion is negligible compared to the
energy transfer due to thermal conduction. Such is not the case, for
instance, if the wall is strongly and positively biased with respect to the
plasma; then, (‘j‘e/j‘i)w >> 10. The electron energy equation, Eq. (4), now
takes the form:

aTe aTe‘ 1 o | (Te /e aTe] Wel
pu + pv = = — [ul— cC,— |+ (A-8)
% dy PreCe oy | Tg e oy Cecpe
To solve the above equation, we will first transform the equation to a
similarity form at the stagnation region. Let
X
2¢ Pty 2(1+¢) :
s=/ ppur dx=———pBx’ (A-9)
s :
0 s 8 2() + ¢€)
and
usr€ Yy , '
2Nsb j; _
where
b = —LE_ = constant
Pgtg
Also, we define the following nondimensional quantities:
6 = Te/Ts , h = Tg/T‘s ) m = Celcé (A-11)
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With the aid of Eq. (A-4) and Eqs. (A-9) through (A-11), Eq. (A-8) then

becomes

1

e

r_nl_a‘%.[(%) mea]ua:-rd(sﬁ)(h - 0) (A-12)

where 1"el is given by Eq. (14). The stream function f, appearing in

Eq. (A-12), is the solution of the Blasius momentum equation:
f™m 4 ff" =0 (A-13)

having the boundary conditions £(0) = £'(0) = 0 and f'(®) = 2. The solution
of Eq. (A-13) is found in Ref. 5.

III. Solution of Electron Energy Equation

To solve the equation analytically, we make the following simplifications.
First, the quantity me(‘O/h)I/Zhr
For the values of -1/2 £ ¢ <1/2, (0/h)
to m_, which varies from zero to 1 across the boundary layer. It is assumed,
therefore, that ((')/h)l/zﬂr

represents essentially the variation of )\ .

1/2+q varies very slowly compared

= 1 when compared to the variation of m_. With

this assumption, Eq. (A-12} is linearized as

ml
o" + (;—+ Pr f)o‘ = -Pr rel( )(h -9) (12)

e

Next, consider the parenthesized quantity in the second term of Eq. (12). It
is seen that Pref << m'e/me for most portions of the boundary layer. Only
in the outer portion of the boundary layer does Pref become of the same

order as m,;/me, and, in the limit of y -+ oo, Pref becomes greater than
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m' /me as m; - 0. Also, it was stated earlierAthat the electrori temperature
profile will be rather insensitive to the details of variation of m, profile.
With the above facts in mind, we subdivide the electron thermal boundary
layer into three regions (Fig. 2) and the following s1mphfy1ng approx1ma.t1ons

are made for the respectwe regmns

For regions 1 and 2 (0 £ < nm)‘

Pr £f=0
e
- 1] ! \ -
h = h.W + hwn, ' (A-14)
m =m +m' mn
e ew ew

For region 3 (n Zln‘m)'

= 2(n - 0.86038)

: (A-15)
h=m =1
e
For region1 (0 < 'r| < M)
P =P (A-16)
For region 2 ('qrmm‘gl M Snm)
ps/P =m, (A-17)

" and Tmm 27e given by Eq. (25). The above approximations are
comprised of replacing the h and m, profiles by a pair of linear profiles

and of letting ps/p essentially follow m,_ instead of h. A replacement of
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boundary layer profiles by linear profiles is quite conventional practice, and
the m, and h profiles differ very little. The approximations, therefore,
given by Egs. (A-14) through (A-17) should create no great error in the
results. The quantities hi” and m'ew wﬂl be obtained from the exact solution
of the neutral gas energy equation and the exact ambipolar solution of the
conservation equations, respectively. The expression for the stream
function f given in Eq. (A-15) is obtained from Ref. 11 for the outer region
of the boundary layer. As was explained earlier, m, 0 for all practical
purposes when the surface is highly cooled and catalytic. However, m_

~

will be retained in the analysis for the purpose of generality.

It is readily seen from Eq. (12) that in the outer portion of the boundary
layer, where mg/me << Pref:f, Eq. (12) becomes identical in form to the
conventional thermal boundary layer equations with a Prandtl number equal

to Pre. Thus, Pre influencés the elec.tron energy boundary layer in a manner
similar to the influence of the regular Prandtl number on the conventional

thermal boundary layer.

In the following, the electron energy equation, Eq. (12), will be solved
subject to the simplifications mentioned above for each region; the solutions
will then be matched at Nmm and Tm for @ and @', respectively. The

boundary conditions for Eq. (12) are

0'(0) =0 (A-18)
(o) = 1 (A-19)
For region 1, Eq. (12) becomes:
1 Pr'er\el Prer\el
o" + o' - 0= - (h, +h" n) (A-20)
/m h hw w w
ew W
(;;;'— ¥ “)
ew ‘
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M eswa

Let

Prél"el Mew ‘ ‘
P1*V™h mr—tn (17)
w ew

Equation (A-20) is then transformed to the following inhomogeneous modified

Bessel equation of zeroth order:

a0 .1 a0 o (n w Pew),n 1/ w  (a-21)
;—2- P, dpy TV T Em )T W VBT P
pl 1 1 ew e el

The solution of the above equation that satisfies the boundary condition
(A-18) is obtained as Eq. (16).

1For region 2, Eq. (12) becomes:

hw .
1 Pr.la ] by B, "
L} LI = - ' A-
" 4+ ] = Prel‘el(mf ) — (A-22)
ew ew ew ew ew
(;n"—“‘) (r*“) mr ot
ew ew ew
Let
1Drer.el ew :
P2 \mr 1" (A-23)
ew
Equation (A-23) is then transformed into
2 m 1] [] -
d e 1 de 1 ew) 1 W oew
& +—-—a-—-—0=-[(h e _,_) p——J (A-24)
dp, PPz P2 W WMewlP Telel
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The above is another modified form of an inhomogeneous Bessel equation

and the solution is given by Eq. (18).

For region 3, Eq. (12) becomes the following homogeneous Hermite

equation:
2A A
d“9 do N S .
__z_dp3 +2p,4 39_3 -r,9=0 . (A-25)
wherg
Py = 'JPre (n - 0.86038) (21)
B=1-0 S (A-26)
If we let
Ty = 2N

where N is an even integer, a particular solution of Eq. (A-25) is the
Hermite polynomial given by Eq. (22). The general solution of Eq. (A-25)
that satisfies boundary condition (A-19) is obtained as Eq. (20).

The constants of integration Yy through Y4 2re determined by requiring
that @ and @' be continuous between regions 1 and 2, and 2 and 3,

respectively.
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APPENDIX B

Supplement to Electrical Characteristics of Boundary Layer

Details of the solutions of .Eq‘s. (1), (2), and (3) \V‘ill be given in the following
paragraphs. As explained in the text, the solutions will be obtained for the
sheath and the ambipolar regions (Fig. 1), and the two solutions will be
matched at a suitable point. The electron temperature distribution is

assumed to be known (Appendix A).
I. Sheath Region

The convection terms of Eqs. (1) and (2) can be neglected in the thin sheaths
(x presently of interest. Equations (1) through (3) then become the equations

as derived in Ref. 2.

da,i
— i AHq, =7 (B-1)
dz 1 1
da, i Se Je M, (T4 2"]e
= +_AHae:Jl(S_c—)(j_.) =V \T ) \T (B=2)
e ilw i e ilw
dH _ ]
e a - a, (B-3)
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where

The boundary conditions are

Atz =0

Atz =1

i
Q]
Q

E%
enoA‘

as follows
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In the derivation of Eqs. (B-1), (B-2) and (B-3), it is assumed that

1]
o
i

—

(B-6)

and

L
kT

o=

Solutions of the above boundary value problem were obtained numerically
mainly for (Ti/Te) = 1 by Chung (Ref. 2). To avoid excessive numerical
complications and to utilize the basic digital computer program tsed by
Chung,we assume that the temperature ratio T‘i/T‘e‘ is constant and is equal
to the average value within the sheath. Such an approximation should be
acceptable for the thin sheaths presently of interest. Solutions of E’q.‘s. {B=1)
through (B-3) are obtained for A = 3000 and T‘i/Te equal to 1, 1/2, 1/3, 1/4,
and 1/6, by using a digital computer. Major results are given in Table 1.
The reaso= for choosing this particular value of A will be explained

subsequently.

Although considerable analyses have been made of the high pressure sheaths
since the time of Langmuir, most of them lack generality and some of them
lack even theoretical soundness. A more detailed evaluation of some of
them is given by Su and Lam (Ref. 21). To study the electrical interaction
between the plasma considered here and a solid, we must analyze equations
of the type given here (Eqs. (1) through (3)) with the proper two-point
boundary conditions. The equations are reduced to the type given by Egs.

(B-1) through (B-3) for static plasmas. Only a few of the existing analyses
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consider the general solution of these equations for their respective
problems. They are: the static electric discharge problem (Allis and Rose,
Ref. 22), the plasma-solid interaction at the shock tube end-wall (Sturtevant,
Ref. 23), the interaction between a static plasma and a spherical probe

(Su and Lam, Ref. 21,and Cohen, Ref. 24), and the Couette and stagnation
boundary layer problems (Chung Refs. 2 and 25). Turcotte (Ref. 26) also
obtained a solution of the equations similar to Eqs. (B-1) through (B-3) in
connection with a shock tube experiment. It is also pointed out here that all

these referenced analyses used the same wall boundary conditions as (B-5).

"II. Ambipolar Region

The ambipolar region is defined as that region of the boundary layer where
the charge separation is negligible. In this region, therefore, m, =m_=m.
The Poissorn equation is then extraneous and the twc conservation equat:ions‘

describe the region in the manner described below.

Subtracting Eq. (2) from Eq. (1) and intégrating once, we obtain at the

stagnation region:

9m b3 = 9m . sk i .
pDi —8? - pKiE *m = pDe —a~y— + pKe‘E “m + s {B-7)

where Yg is the constant of integration. By using equations (A-10) and

{B-6), Eq. (B-7) can be written in the following form for E:

: 2 M, (T Sc.f
_ 1 v/ 1 + € gl - il e v oL i _a
E-= M: T [ 2 v [l M (T. ) ]m o 's - (B-8)
am(l + ) : ‘
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where

R L \2
a_ =—_.____—2.‘ — =, (-A—) . (B-9)
kT /n e 8
s'es
_ E:}:
E-= n__el
es

Here, the integration constant Yg is important because it determines, for
instance, the residual electric field intensity at the boundary layer edge
where m' = 0. As mentioned earlier, the one boundary condition due to the
Poisson equation is specified when the current density ratio (je/'ii)w is
specified. We shall, therefore, determine 1;he integration constant Yg in
terms of (je/j‘i)w' Consistent with the preceding assumption of the negligible
convection effect in the sheath region, Eqs. (1) and (2) as they approach the

sheath edge from the ambipolar region become:

2
~‘l+€‘&m'-aEm=J

=5 3 (B-10)

v 2 .
2 T, M /T, J
1+ epy . i _ _e|_1 e \ ‘ ‘
> _v‘,m +a,-T—Em-J3\/——M. (T )(J—-) (B-11)
s e i e i/w

where

Jy= - (B-12)
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With a little manipulation of the above equations, we have at the sheath edge:

L]
G ERGEL

After some manipulation, Eqs. (B-8) and (B-13) give:

S .y (R

Upon eliminating Yg from Eqs. (B-8) and (B-14), the quantity (Em) is

(B-13)

obtained from equation (B-8) and is substituted into Eq. (1). After the
similarity transformation from (x, y) ton, this equation becomes Eq. (26).
The solution of Eq. (26) that satisfies the boundary conditions m('no) =m,

and m(oo) =1 is shown in Ref. 2 as

n Sca
bl d
T‘0( ) n

m=(l-m +m (B-15)

)
0 Sc 0
[4(0.332)] 2 ! -
2(0.332)scl/3 "o

The slight difference in constants between equation (B-15) and its correspond-
ing equation in Ref. 2 is due to the difference in the definition of f and n’ of
the two analyses. The quantities m, and ng are uriknowns and will be

determined through the subsequent matching process.
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Once the m-profile is obtained, the electric field intensities in the ambipolar
region are obtained form Eq. (30), which is derived by combining Eqs. {B-8)
and (B-14).

III. Matching of the Two Regions

The detailed matching procedure is given in Ref. 2. Here we will only
briefly explain the basis upon which the matching is accomplished. In the
numerical solution of Eqs. (B-1) through (B-3) it was séen that the region
in which the charge separation and the electrical field intensity are
pronounced becomes confined to that portion of the sheath region adjacent
to the wall as A is increased (Fig. 4 and also Ref. 2). The charge

¢ separation and the electric field intensgity become very smail in the rest

! of the region. The solutions for large A thus produce a sort of ambipolar
7 4 - tail (Fig. 4). The following equations can be derived from Eqs. (B-1)

and (B-2) for the ambipolar tail:

M (T. 2\j T
el ) (2] + (=2
TH T % T 1 T, -z ke
1+
T
and
M /T ZJ T.
=] + = 2
I M. \T ) 3_,) T ; M /T, j
H = 2 1 € 1 /'w e - 1+ e: _1_ _‘_e_
aA(l-Ei) Ly ob MAT G A
Te e
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The first step in matching the two regions is to obtain a solution of Eqs. (B-1)
through (B-3) that has a sufficiently long ambipolar tail for which the ambi-
polar solutions, Egs. (B-16) and (B-17), are applicable. It was found that
the solutions for A = 3000 produced sufficiently long ambipolar tails for all
the cases considered in the present study as shown in Fig. 4. In this tail
region, where the solutions of the two gegions overlap, the matching is
accomplished by requiring that the concentrations and the current densities
of the electrons and of the ions, and ‘the electric field intensity be con-
tinuous. Such requirements produce the following algebraic equaﬁons with

the aid of the numerical solutions of Table 1 and Eqs. (B-15) and (30):

G.G,G
1235 -0 (B-18)

3 .
‘Mot G0y Gy - Ung - — ==y

1
m, = — (B-19)
0 G -'\/—2‘11
N e Sl - 2004+
N2 n
0
where
Gy = 1 173
0.332W2 sc’/
2
2 B(A.) :
_ 1 +e 34 _1 +e s
Gp=—=2— A(Vs—a) T A (B-20)
T M [T, \°(
1 + € 1 e
T M \T, J\TT
G3 - e 1 e 17w
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The temperature ratios T‘i/Te appearing in Eq’us. (B-16) through (B- 2@'),
and in Table 1 are the average temperature ratios for the sheath. The
solution of Eqs. (B-18) and (B-19) gives Mo and mg with which m,, m_ and
E profiles can be obtained from Eqs. (B-15) and (30) for the ambipolar
region. The numerical results for aj ae,and H obtained for the sheath
region can be transformed to m,, m_ and E by the use of Mo and m, and the
relationships between q and m,and H and E, respectively. Typical electron
and ion concentrations and electric field intensity profiles are shown in

Fig. 5. The profiles shown in the figures are those corresponding to the

electron temperatures for Te1 = 720 (Fig. 3).

The potential drop across the boundary layer is obtained by integrating the

electric field intensity over the physical thickness of the boundary layer.

Thus
e(Vs B Vw)‘ n e(VO - Vw) + e(Vs - VQ)‘
KT B kT kT
s s s
1 2 vs *®
= -Af (p /p)H dz - a1 /mﬁ?f (P /p)E dn  (B-21)
0

M

Since E is given in closed form and ps/p can be obtained from Ref. 5, the
second of these integrals may be readily evaluated. However, H is known
only numerically so that the first integral is more difficult. However,
Chung has shown (Ref. 2) that

1 Tw
f (pg/p)H dz zT—f
0 s Y

1

)

T 1 .
Hdz + 0.59(1 - T\ﬁ)"o/ zH dz (B-22)
0
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where the two integrals on the right-hand side have been computed for sheath
temperature ratios in the span of interest (Table 1).
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