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An electron energy equation is formulated for weakly ionized, stagnation

boundary layers (degree of ionization in the order of 0. 1 pe tor less)

over highly cooled surfaces. Only the cases of moderately negative wall

potential with respect to the plasma, where tje ratio of the electron to

ion current densities is between about 17o 10, are considered. The

equation is simplified by taking advantage of the fact that the electron

energy equation is rather insensitive to the detailed variation of the

electron concentration profile. A solution of the simplified electron

energy equation is obtained analytically for the cases where the electron

C temperatures are not in equilibrium' with the neutral gas temperatures.

The effects of nOnequilibrium electron temperatures on the electrical

characteristics of the boundary layer are then analyzed.

It w s found that the equilibration rocess of the electron te peratures

to the eutral as temperatu es s controlled by t ratio of the chara -

teristic ec on energy cond tion time to the araA teristic temp ra-

ture equili ation time. T cha acteristic esidence ime of el ctrons

has been onv ntionally sed inste of t conduction ti e.

The io current is ouhd to be depende ontthe electron t p rature but

practically independent of the potential.
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I. INTRODUCTION

it

The gases surrounding hypersonic vehicles at orbital velocities and in many

present-day high temperature experimental facilities are frequently ionized

up to about 0. 1 percent. An understanding of the electrical as well as ther-

mal interactions between such weakly ionized gases and a solid boundary is

important in the study of microwave-plasma interactions and in connection

with the electro-chemical diagnostics in experimental facilities.

The electrical characteristics of the aerodynamically important stagnation

region in weakly ionized gases have been previously studied by Talbot (Ref. 1)

and Chung (Ref. 2). Talbot analyzed the regime where electrical sheath

phenomena are pronounced in a range smaller than the mean free path of the

gas, whereas Chung considered the case where electrical sheath effects are

important in a range much greater than a mean free path. From both these

C analyses, it is clear that the electron temperature is an important factor

influencing the electrical interaction. Although it is well-known that the elec-

tron temperature in the boundary layer may not be in equilibrium with the ion

and neutral gas temperature, no analysis of the nonequilibrium electron tem-

perature profile is available in the literature.,

In the present study, the governing equation for the nonequilibrium electron

temperature profile is formulated for the stagnation boundary layer flow of a

weakly ionized gas. With some simplifying approximations this equation is

solved essentially analytically for the case where there is no gas-phase

recombination of electrons and ions, i. e. , the gas phase recombination of

electrons and ions is frozen. It is shown that the gas-phase recombination is

likely to be frozen in many practical cases, and it may be seen from the

solution that a moderate rate of radiative recombination does not affect the

electron temperature profiles.

C
-1-
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The analysis is restricted to cases where the gas density is high enough to

permit a boundary layer approach and the electrical sheath effects are

pronounced over a range greater than a mean free path. The method pre-

sented by Chung (Ref. 2) will therefore be used to study the electrical inter-

action between the ionized boundary layer and the solid wall for the case of
nonequilibrium electron temperature profiles.

-2-

-2-



II. FORMULATION OF THE PROBLEM

The governing equations and boundary conditions for a highly cooled,

stagnation boundary layer flow of weakly and singly ionized gas will first be

formulated. The flow model is illustrated in Fig. 1.

A. GOVERNING EQUATIONS
SHOCK

When the degree of ionization is much -BOUNDARY LAYER EDGE

below -I percent (in the order of
0~

0. 1 percent or less), neutral gas flow

is practically unaffected by the charged -

particles present since the neutral-

charged particle collisions are rare

compared to the neutral-neutral SHEATH REGION

particle collisions. Thus the equa- AMBIPOLAR REGION

( tions governing the electrical behavior

of the weakly ionized gases can be Figure 1. Flow Model

decoupled from those governing the

neutral gas flow. The solutions of the

latter equations are well-known for highly cooled stagnation boundary layers

and will not be repeated here. In addition, since the molecular weights of

the ions and neutral gas particles are of the same order of magnitude, the

ion temperature will be assumed to be equal to the neutral gas temperature

and, therefore, known in the present analysis.

The governing equations for the electrical characteristics for two dimensional

and axisymmetric stagnation boundary layers with frozen gas-phase electron-

ion recombination are as follows:

Conservation of Ions

8GC. 8a. (C. D
PU - - + Pv (yy p~i -• " K P E*C i 1

ax Ey By i 8y 1

-3.-
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Conservation of Electrons

B •--C 8C~y • C•
e ace aC e e)

+pv pDe + pKeE*Ce (2)P ý- D ay e

Poisson Equation

(_=ep (3)
a y M. ,

Electron Energy

(CeCeTe) a(Cc T)
Pu epe e e Je

ax ay - el e

+ ek + pe D TeD e + pK E*C

where

c 5 k 75
pe =Z (5)e

The first three equations were previously derived in Ref. Z. The quantities

Wel and ej eE* in the energy equation are energy source terms due to elastic

collisions between the electrons and other particles and due to the electric

field, respectively. The term c peTe[pD e (@Ce/ay) + PKe E* Ce] represents

the electron energy transfer due to the drift of electrons. The, term

ke(aTe/ay) represents the transfer of electron energy by conduction. This

equation will be discussed in greater detail in subsequent sections.
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With the solutions of the flow and neutral gas energy equations available,

these four equations remain to determine the unknown functions Ci, Ce, E*•,

and T . The equations are nonlinear and basically coupled since D and Ke e e

are functions of Te, and X e , Wel and je depend on Ce

B. BOUNDARY CONDITIONS

The plasma at y - oo is assumed to be neutral and to have a given charged

particle concentration. In addition, though it is not necessary, the electron

temperature is assumed to be equal to the neutral gas temperature there.

The boundary conditions at y - oo are then:

C. C. (6)1 iS

M
C e C. (7)

e M. is

T e T (8)e s

Now, consider the gas-solid interface. Here the gas layer is composed of

ions, electrons, and neutral gas particles in contact with the solid surface.

On arrival at the interface from the boundary layer, the ions and electrons

recombine catalytically, with the wall itself acting as the catalyst. If the

surface is highly cooled and catalytic for electron-ion recombination, the

normalized electron and ion concentrations at the interface, C ew/Ces and
A 1 A ew sCiw /C is, are of the order of (X gw/6) or less , where X g and 5 are the

neutral gas mean free path and the boundary layer thickness, respectively.

For all, practical purposes, therefore, the following wall boundary conditions

1This will be shown in Sec. VI.
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can be used for the conservation equations when the surface is highly cooled

and catalytic:

At y= 0,

C.
15IS

C
0 (10)C

es

It can also be shown (Sec. VI) that for such surfaces the following boundary

condition is applicable for the electron energy equation:

At y = O,

8T
e (110)

Boundary condition (11) implies that the temperature of the electrons at the

interface will usually be different from the surface temperature. Thus, a

sort of "electon temperature jump" exists at the surface. A similar

phenomenon occurs in rarefied gas flow with regard to the temperature of

the gas adjacent to the surface.

The temperature jump becomes negligible when (C ew/C es) > 10-2 , approxi-
mately. Such will be the case if either the surface is a poor catalyst for the

electron-ion recombination or the surface temperature is much higher than

1000 K and has a very low work function for thermionic emission at the same

time.

Finally, Poisson's equation is first order and satisfies only one boundary

conditioxi. When the surface is an electrically floating conductor or a dielec-

tric, the boundary condition (je /j)w = I can be applied to the system rather

-6-



than specifying E" at any point. The solution in this case will give ED" = 0 at

the boundary layer edge and an E" corresponding to the Langmuir (floating)

potential at the surface. When a net current is flowing, one may give a value

of E' or (j e/Ji)w 1 at the surface. In this case the solution gives non-

vanishing E"' at the boundary layer edge. In Ref. 2 it was stated that E,*

vanishes at tlhe edge of the boundary layer. This statement must be qualified

because E"- -vanishes identically only when E': is that value corresponding to
w

(je/Ji)w = 1. The value of E and its effect on the potential drop will be

subsequently discussed.

-7
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III. ANALYSIS OF ELECTRON ENERGY EQUATION

Before actually analyzing the electron energy equation, we should mention

that, due to the considerable uncertainties involved in evaluating the basic

physical properties of a plasma, it is not our intention to obtain detailed

numerical solutions but rather to derive an approximate but essentially

analytical solution, permitting the study of the effects of the major

parameters.

As explained in Sec. IIA, the governing equations [Eqs. (1) through (4)] are

basically coupled. Although it is clear from the Couette flow analysis of

Ref. 2 that the solutions of the first three equations depend critically on the

electron temperatures, the solution of the electron energy equation is rather

insensitive to the detailed variation of the electron concentration profile. The

latter fact will be substantiated in Sec. V. In order to simplify the anal'ysis,

0 therefore, the electron concentration profile is considered to be given by that

obtained from the ambipolar solution of the conservation equations [Eqs. (1)

and (2)] all the way to the wall. From the analysis in Ref. 2, it can be seen

that such an approximation is quite acceptable for the present cases where

the sheath is much thinner than the boundary layer. This approximation

decouples the electron energy equation from the conservation and Poisson

equations, and the analysis of the electron energy equation is simplified

considerably. After the electron temperature profiles are obtained, the

electrical characteristics of the boundary layer will be studied by solving the

conservation and Poisson equations using a procedure similar to that in

Ref. 2, with the electron temperature profiles found by the method

described above.

An outline leading to the solution of the electron energy equation is given in

the remainder of this section. The details of the method of solution are given

in Appendix A.
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The present analysis is limited to the regime in which 10-1 < (j _/Ji)w< 10T h e

and (T /T ) < 10. The former implies stagnation surfaces whose potentiale g
with respect to the plasma i~s weakly or moderately negative. The latter

follows from the already stated condition of Tes = T . (Because T s/Tw is in

the order of 10 for the highly cooled walls, the maximum ratio of T /T wille g

also be of the order of 10. ) In this regime, the electron energy equation is

simplified substantially by observing the fact that the energy source term

ej E* and the electron energy transfer term due to the electron drift

c peTe[PDe(aGe/ay) + pK eE*C ] are negligible compared to the eleftron

energy conduction term.

The electron thermal conductivity X is obtained from Fay (Ref. 3). Thee

expression for the energy source term Wel is derived from the basic equa-

tion given by Petchek and Byron (Ref. 4) with a proper consideration of the

fact that the predominant elastic collision in the present problem is between

the electrons and the neutral particles rather than between the electrons and

the ions as is the case in Ref. 4.,

The electron energy equation, Eq. (4), is thus simplified and becomes

0" +(--e + Pr f)0' = -Pr e e(--P-)(h -) (12)
e ees

after the usual similarity transfo rmation,where ,

Pr M
Pr = 2 F (13)

I 12 /3- 'eps (M e1 (4
el 1 + 5 T ,.M g (14)

S e
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z0

and (') denotes the differentiation with respect to the similarity variable 'n.

For most gases, Pr eis of the order of 10-. The stream function f is tab-

ulated in Ref. 5. When the collision cross section between the electrons and

the air neutral particles given by Hansen (Ref. 6) is used, Eq. (14) becomes

1 10 Pse + x 1 (15)
e + .

where ps is in atmospheres, Ts is in 0 K, and P is in sec"1. Tel denotes the

ratio of the characteristic convection time (represented by l/3) to the char-

acteristic equilibration time between the electron and the neutral gas temper-

atures (represented by the remainder of the terms in this parameter). On the

other hand, the term Pr e denotes the ratio of characteristic conduction time

to characteristic convection time for the electron thermal energy. It is seen

that for given h(i 1 ) and m (ri), the solution of the electron energy equation

depends on the two parameters Pr e and r el. For a given Pr e, el - 0 implies

that the temperature equilibration process is frozen compared to the convec-

tion process, whereas rel - oo implies that the electron temperatures are in

equilibrium with the neutral gas temperatures.

To solve Eq. (12) analytically, the electron energy boundary layer is divided

into three regions as shown in Fig. 2. The h and me profiles are each

replaced by linear profiles. The quantity ps/p appearing on the right-hand

side of Eq. (12) follows me instead of h in region 2 and is pw/Ps in region 1.

The values of 1 mm and 'im that divide the three regions are given by Eq. (25).

The replacement of boundary layer profiles by linear profiles is a quite

common practice, and the m and h profiles differ very little when Sc is ofe a

the order of Pr . These approximations, therefore, should not lead to large
g

errors in the results. The solutions of Eq. (12) for the three regions

-11-



respectively are obtained analytically and satisfy the boundary conditions

0' = 0 and 0 = 1. The results are:
w 5

For region 1 (0 < Tj < il
w - mm

0(p) 1
1 +[(hi w m )(lKl)

+P (h) 0r l)l + pK - f)KdP1

\ ew

+ ) I 1 - PK1 0 +fw 1 K 0 K0 (16)

e el)( p , w 1~~)1 K

where

( )

w ' V in- /-e- + (7
W AC ew

and I and K are the modified Bessel and Hankel functions, respectively, of

h V,

order v for the variable P1 . (See Ref. 7. ) The integrals of Bessel and

Hankel functions appearing in Eq. (16) are tabulated in ref. 8.

-12-
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1.0- REGION I

0 8REGION 2 " IREGION :3 - --
0.8

EXACT h a -P PROFILES
P

0.6- FOR h,:O.I, Prg 0.72

0.4-
P

0.2 - - S

/P

•me

00

c -- 7mm= 0 . 16 9  7 "M 21.69

72 u. Ff pdy)

Figure 2. Approximate h, me and ps/p Profiles

For region Z (-lmm <T< 1I)

= + + -w - • mew +

• [h'hm
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where

/Pree /mew e

Pz 2  F~ ~lI +1(9
w ew ew + T)

and I and K are the modified Bessel and Hankel functions, respectively, of
V V

order v for the variable P2"

For region 3 ({ m < TI)

O(p 3 ) = 1 + y 4 H N f 2 dP 3  (20)
p 3  N

where

p3 = rP--re (,q - 0. 86038)

(Z1)

N = (even integer)

and H N is the Hermite polynomial given by

HN(p 3 ) = ( 2 P3)N (N) (N - 1)(2P3

+ (N)(N - 1)(N - 2)(N - 3) N-4_. (Z2)
2! - (Z3) -(

For extremely large values of N, appropriate asymptotic forms of the

Hermite polynomials can be found in Ref. (9) and (10).

n
-14-

IV



The four constants of integration, y 1 through y4, are determined: by requiring

that 0 and 0' be continuous between regions 1 and 2, and 2 and 3, respectively.

The preceding solutions were obtained for the wall boundary condition 0' = 0,
w

which leads to an electron temperature jump at the wall. As mentioned

previously, this wall boundary condition must be replaced by the "no-jump"

condition of 0 = h for the special cases of m > 10-. A solution of thew w ew

electron energy equation satisfying the boundary condition 0 = hw can be

readily obtained in the same manner as the preceding ones. in the present

study, however, we shall not analyze this special case except for r el 0.

The solution of Eq. (12) for rel - 0 and a givenew is:

For regions 1 and 2

( 1 -0) n+ m_.ew

I= ew + 0 (23)
N m' expP 3  w

ln(m + ew z e erf p 3 )
e

For region 3

0= 1 - (1 - 0w)(1 - erf p 3 ) (24)fp- e 1p - (_ 2 M)4
exp(-p~m) ln(mel) + (1 - erf

ew

The linear profiles for h and me are chosen to give correct values of h ande w

hw, and m and m 'w, respectively. The values of im and im , therefore,
w ew ew mm m

are given by

Timm = hw 1 m (25)

-15-



and

I -h
w

'1 m = h

w

when

Sc ' Pr
a g

Typical electron temperature profiles are given in Fig. 3 and will be dis-

cussed later.

1.0

0.8 72 720 Meflw :0

Q04 O • - 7,200

r.1o O D (8:h) • .. r.- ' •

0.2 I

0 1III I I

0 I 2 3 4 5 6 7 8

Figure 3. Nonequilibrium Electron
Temperature Profiles for Pr = 10-3

e
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In this section, we have analyzed the electron energy equation, Eq. (4), and

obtained the electron temperature profiles for the various cases. In the

following section, the conservation and the Poisson equations, Eqs. (1)-(3),

will be analyzed by using the electron temperature distributions that have

just been obtained.

-17-
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IV. ELECTRICAL CHARACTERISTICS OF BOUNDARY LAYER

In the present section, the conservation and the Poisson equations., Eqs. (1),

(2) and (3), will be solved. The boundary conditions to be satisfied are those

explained earlier: m(oo) = 1, m(O) = 0, and the given ( e/Ji)w. The electrical

characteristics of the boundary layer will then be studied.

The present study, like that in Ref. 2, is concerned with the regime in which

the sheath thickness is much greater than the electron-neutral particle mean

free path, but is much smaller than the thickness of the boundary layer. The

method of solution is essentially the same as that given in Ref. 2 except that

the more general cases of unequal ion and electron temperatures will be

analyzed here where only the case of equal ion and electron temperatures was

studied inRef. Z.

The boundary layer is first divided into two arbitrary regions, the sheath and

the ambipolar regions (see Fig. 1). Solutions will be obtained separately for

the two regions and will then be matched at a suitable point.

In the remainder of this section an outline of the method of solution and re-

sults are given. Details of analysis will be found in Appendix B.

Within the thin sheath region presently of interest, the convection terms of

Eqs. (1) and (2) can be neglected. Also, the temperature ratio

T./T = (T /T ) can be considered to be constant in the thin sheath without

causing any undue error. The three coupled equations, Eqs. (1) through (3),

with the above simplifications, are integrated by using a digital computer for

various combinations of controlling parameters.

The ambipolar region is defined as that region of the boundary layer where

the charge separation is negligible. Thus, in this region Poisson's

C
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0

equation is extraneous. The conservation equations (1) and (2) then give the

equation

i n' + fro' = 0 (26)

where

a iM Te

1T T Te JeeTi (

e+ +

a 1 +Te FMý, T e l ( 1 + -T O +1 e• T)we w

e 10

(27)

and the subscript 0 here represents the average value for the sheath region.

For the regime presently of interest in which the ratios T /T. and (j /Ji)w

are each no greater than 10, Eq. (27) can be simplified to

I__ 1 + e 1 (28)ScT.S
a1

For the case of equal electron and ion temperatures, the above equation gives

the following familiar definition:

SC 1 Sc. (29)
a 2 i

Consistent with the approximations that we have made so far, we consider

that Sc is constant across the ambipolar region. Such an approximation will
a

not cause any undue error in the results because the solution of a diffusion

equation such as Eq. (26) depends only weakly on the Schmidt number

-20-
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Sci/). Equation (26) then becomes the conventional boundary layer

diffusion equation and the solution can be readily obtained in terms of the

stream function f (see Ref. 11).

For the electric field intensity in terms of the m profile obtained above, the

analysis of Eqs. (1) and (2) also yields the following equation:

22
E a : s + c e 

(

where( (T[ IT)rprsn

-j--]Jm0

x ' M l •_eZ i÷ M •~(_ w (30)

m ( Ti2 MJe

where (Ti/Te)i represents the average temperature ratio for the sheath

region.

The complete solution of the original equations, Eqs. (1) through (3), for the

boundary layer is now obtained by matching the numerical solution of the

sheath region and the closed-form solution of the ambipolar region at I10 for

min me m!, m' and E, respectively.
1 ' I e

The potential drop across the boundary layer is obtained by integrating the

electric field intensity over the physical thickness of the boundary layer.

,Figure 4 shows a typical solution of the sheath region obtained by the use of a

digital computer. Figures 5a and 5b show typical m , mi and E profiles for

the boundary layer. Figures 6 through 8 show the overall electrical charac-

teristics of stagnation. boundary layers, which will be discussed later.

-21-
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Figure 5a. Typical Electron, Ion, and Electric
Field Distribution in Boundary Layer
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Figure 5b. Typical Electron, Ion,, and Electric(2 Field Distribution in Sheath Region
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V. DISCUSSION

Figure 3 shows the electron temperature profiles for the various values of

the parameter rel where eel' defined by Eq. (14), represents the ratio of the

characteristic convection time to the characteristic temperature equilibration

time as explained previously. As rlel is increased from zero, the electron

temperatures near the wall begin to decrease toward the neutral gas tem-

peratures (Fig. 3). This initial relaxation, however, causes the electron

temperatures in the outer portion of the boundary layer to deviate from the

equilibrium temperatures (neutral gas temperatures). The reason for this

is as follows. The rate of temperature equilibration for a given small value

of lel is much greater near the wall than in the outer portion of the boundary

layer because the gas density and the differences between the electron and the

neutral gas temperatures are much greater in the fluid near the wall than

distant from it. The initial increase of r el, therefore, causes mainly tem-

perature relaxation near the wall. The decreased electron temperature near

the wall then causes the temperature of the electrons in the outer portion to

decrease by conducting the energy away from them.

This phenomenon thickens the electron thermal boundary layer substantially

(Fig. 3). The rather large thickening is due to the extremely small magni-

tude of the electron Prandtl number that propagates the electron temperature

disturbances near the wall through a considerable distance. Figure 3 shows

that the electron energy boundary layer remains much thicker than the neutral

gas thermal boundary layer until r el becomes sufficiently large so that the

temperature equilibration is nearly complete throughout the boundary layer.

The complete temperature equilibration is seen to be accomplished at the

value of rPel of - 104. According to Eq. (15), this means that for laboratory

conditions of PT of the order of 1 0 8 oK/sec (commonly encountered), the

complete temperature equilibration is not accomplished unless the stagnation

point pressure is on the order of 100 atm. These criteria for the equilibrated

-25-



electron temperatures are seen to be much more severe than those commonly

predicted previously (for instance, see Ref. 1). The reason for this is that

the conventional criteria have usually been based on the comparison between

the characteristic residence time for the electrons and the characteristic

temperature equilibration time. The characteristic residence time of elec-

trons is related to the electron current density given by the approximate

expression of Eq. (A-6). The minimum residence time occursý when (j /Ji)w

is maximum (- 10 in the present cases). Equation (A-6) shows that the

residence time presently of interest is within about one order of magnitude of

the ion diffusion time. As is mentioned following Eqs. (A-6) and (A-7), the

parameter (Pr /Sci) represents the ratio of the characteristic conductione 1

time of electron energy to the characteristic diffusion time of ions; this

parameter is of the order of 10- 3. Thus, the characteristic conduction time

for electron energy is at least 100 times shorter than the characteristic

electron residence time for the ranges of (j /ji)w considered in the present
e i

study. Therefore, it is the electron energy conduction time rather than the C
residence time that should be compared with the equilibration time in deter-

mining the nonequilibrium electron temperatures. From these arguments,

therefore, it is seen that the parameter (Pr eF el) that represents the ratio of

the characteristic conduction time to the characteristic equilibration time is

a more physically meaningful parameter for the prediction of temperature

equilibration process than r'el alone. This can be also seen from the right-

hand side of Eq. (IZ). Figure 3 shows that the temperature equilibration is

nearly complete when Prelrel is of the order of 10.

The semi-broken line in Fig. 3 shows the electron temperature for mew = 0.1,

Ow = hw, and r -• 0 obtained from Eqs. (23) and (24). As mentioned earlier,
w w el

this is a special case of either a poorly catalytic surface or a highly seeded

gas over a high temperature surface in which new is within about one order

of magnitude of n . These are highly special cases; however, the figure

shows the drastic effect the wall could have on the electron temperatures of

the boundary layer should such cases arise. Due to the extremely small
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value of the electron Prandtl number, the cooling effect of the wall will be felt

by most of the electrons in the shock layer.

It was mentioned earlier that the electron temperatures were expected to be

rather insensitive to the detailed variation of the electron concentration pro-

files. This can be substantiated from the electron energy equation, Eq. (12),

and the solutions of this equation. The electron concentration profile enters

into Eq. (12) through the terms (me /m) and (p/p). The density ratio was

made a function of m during the subsequent solution of the equation by letting
-e e

P/Ps Z me The effect of varying the electron concentration profile on the

solution of the energy equation can be studied quite: generally within the

framework of the approximations given by Eqs. (A-14) through (A-17) by

studying the effect of varying m' on the electron temperatures. First, it
ew

can be seen from Eqs. (A-14) and (A-15) that

C 1 0<<m

M. asm " -'0
e 0 fJ > ew

Thus, m' /m is essentially independent of m' when m -. 0, which is the
e e ew ew

present case. Next, the effect of varying m' on the right-hand side of
ew

Eq. (12), through its effect on p/ps, is approximately of the same order as

the effect of varying rel. It is seen from the solutions of the equation given

in Fig. 3 that a little variation of r el (such as 10 to 20 percent) affects the

electron temperatures very little. Thus, we have now shown that the electron

temperatures are rather insensitive to the detailed variation of the electron

concentration profiles. The above arguments can also be readily supported

from the analytic solutions of Eq. (12), i.e., Eqs. (16), (18), and (20), by

noting the very weak dependence of the solutions on m'ew

The preceding discussion leads to the following observation concerning the

effect of the gas -phase electron-ion recombination on the electron(C
-27-
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temperatures: According to Ref. 12, it seems that radiative two-body

recombination is the predominant gas-phase recombination process when it

occurs in gases such as argon. If this is true, then the effect of the recom-

bination on the electron temperatures appears only through its effect on the

electron concentration profile. It was shown in the preceding paragraph that

the electron temperature is rather insensitive to the variation of electron

concentration profile. Therefore, a moderate rate of radiative gas-phase

recombination of ions and electrons will not appreciably affect the electron

temperature profile. If the recombination, however, is predominantly a

three-body process in which the electrons become the third body (catalyst),

another energy source term must be added to the present electron energy

equation and, therefore, the present solution is invalid.

Before leaving Fig. 3, we should mention that the electron temperature pro-

file for the frozen limit of r = 0 is not, strictly speaking, that of 0 = 1 as

given in the figure. In the analysis, the energy source term ej eE* appearing

in the energy equation, Eq. (4), was neglected be'cause it is of much smaller

order of magnitude compared to the energy conduction term. This approxi-

mation, however, must fail in the limit of r 0 kecause in this limit the

conduction term vanishes everywhere with the electrýon temperature gradient.

The effect of the term eJ e E* is, to decrease the electron temperatures because

E* near the wall is negative, and the electron current density is toward the

wall for all the cases considered in the present analysis. Therefore, the

electron temperature profile in the limit of r el ' 0 will actually be much like

that for a small, value of Frl that gives a small but nonvanishing temperature

gradient to balance the ej E* term.
e

Figures 6, 7, and 8 show the typical variation of the potential difference and

the current densities with respect to several major parameters.

The net potential difference across the boundary layer and the current density

for the electron temperature profiles obtained in Fig. 3 and for (je /ji)w = 1

assuming NFTM = 10-2 are shown in Fig. 6. The potential difference is
e I
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seen to increase as the temperature equilibration parameter Tel is decreased.

This is to be expected, because the electron temperature-s near the wall in-

creased with decreasing rTel in Fig. 3; also, the sheath potential drop is seen

(Ref. Z and Table 1) to increase with the electron temperature. It is also

seen in Fig. 6 that the ion current density increases in a manner similar to

the potential difference as the electron temperature increases. It is inter-

esting to note that a dependence of the ion current density on the electron

temperature was also suggested for the free-fall sheath of a static plasma in

the analysis of Ref. 13. Figure 6 shows that, for pw/ps between 10 and Z0,

the floating potential of the wall with respect to the plasma is increased by

about 4 to 5 fold as tel is varied from cn to zero. The ion and electron cur-

rent densities at the sanme tinme are seen tp have increased bDy about four fold.

Figure 7 shows the variations of the floating potential and the ion current
density with respect to the plasma flow parameter a(vs/P1 2 )=, I 1vs/pAs1fo
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Fe = 720 and = co, respectively. It is seen that the potential and the

nondimensional ion current, as a whole, are rather insensitive to the varia-

tion of the flow parameter when the wall is highly cooled. These quantities,

however, are seen to vary considerably more with the flow parameter for

Fel = 720. The reason for this is that the sheath thickness varies with the

flow parameter and thus the average temperature ratio Ti/T for the sheath1e

is a function of the flow parameter. This dependence of the average temper-

ature ratio on the sheath thickness, when the temperature equilibration is not

complete, causes the potential difference and the nondimensional ion current

density to be influenced to a greater extent by the parameter a.(V /p1 2 ) than

when T./T = 1. As is seen in Fig. 7 and Ref. Z, however,, the potential1 e

difference varies with the density ratio pw/ps much more than with the flow
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parameter. The nondimensional ion current density J 3 [Vs/(PlZ),I/Z is

independent of the density ratio p W/ps. The ion current density will be

discussed subsequently in detail.

Figure 8 shows the typical variation of the potential difference across the

boundary layer and the current density with respect to the ratio (je /ji) The

figure, however, may be more conveniently interpreted as showing the effect

on the ion and electron current densities of varying the potential difference.

It is seen that as the potential difference 2 is increased from about 3. 8 to 6. 2

(for instance, at p w/Ps = 10) the nondimensional ion current density is in-

creased only by about 10 percent. The electron curr'ent density, on the other

2 Note that the wall potential is negative with respect to the plasma.

C
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0
hand, is seen to have decreased by about two orders of magnitude, since jiw

remained essentially constant.

The following observations on the current densities can be made from Fig. 6,

7, and 8. The nondimensional ion current density J 3 [vS/(Pt /rZ)] is a function

of only the electron to ion temperature ratio and, thus, of the parameter re.

The actual ion current density for a given electron temperature, therefore,

is:

C.

3i w V /P- P ss) M.Sc.

The parameter [P(Psýs)]I/Z is the parameter appearing in the usual boundary

layer solutions for determining heat or mass transfer rate (see Refs. 14 and

15). Cis is the same as the degree of ionization in the plasma. For a given

value of electron temperature and [(pss)]1/2 [Cs/(MiSci)], the variation of

the potential drop does not vary the ion current appreciably within the present

orders of magnitude. The electron current, however, is quite drastically

affected by the potential drop.

Equation (30) shows that the electric field intensity vanishes identically at the

edge of the diffusion boundary layer (where m' = 0) only if (j /Ji)w = 1. For
e 1

all other cases, it shows that a nonvanishing field intensity exists "at the

boundary layer edge. This is consistent with the boundary layer character-

istics and also with the physical problem itself. The supply of the charged

particles to the boundary layer edge from the inviscid region is by convection

and the drift due to the electric field. The convection supplies both the ions

and the electrons at the same rate. Thus, an electric field is needed at the

boundary layer edge to satisfy the condition of the unequal current densities

when (j /j.)w # 1. Equation (30) shows that Es is: positive when (je/J.) > 1,
e 1w 5e/j >w

whereas it is negative when (je /ji)w < 1.
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Strictly speaking, one can consider in a physical problem a solid surface in

contact with a semi-infinite plasma only if the surface is electrically floating

and, therefore, (je /ji)w = 1. The electric field intensity then must exactly

disappear at infinity. The steady-state condition of (je /ji)w 1, on the other

hand, can be obtained only with the help of an external circuit. This means

that there must be another electrode in contact with the plasma at a finite

distance from the present surface. Therefore, the plasma is not, strictly

speaking, semi-infinite and the electric field intensity beyond the boundary

layer edge is not exactly zero, although it may be of much smaller order of

magnitude than that within the boundary layer. Of course, there will be

another boundary layer at the other electrode surface and an appropriate

potential difference across it.

Let us consider the order of magnitude of the residual electric field intensity

and its effect on the actual potential difference between the wall and the

plasma. The magnitude of the electric field intensity at the boundary layer

edge relative to that at the sheath edge can be readily obtained from Eq. (30).

A simple estimate from Eq. (30) shows that the electric field intensity at the

boundary layer edge is less than one percent of that at the sheath edge for

(je /ji)w < 10 and for the temperature ratios given in Fig. 3. For small

probes located at a stagnation point, the three dimensional effect will quickly

reduce such small electric field intensity to zero beyond the boundary layer

edge; the potential drop beyond the boundary layer edge, compared to

that across the boundary layer, may be neglected. The potential difference

obtained for the boundary layer, therefore, is the potential difference between

the wall and the plasma, for all practical purposes, when (je /ji)w < 10. When

(je /ji)w >> 10, however, Eq. (30) shows that the residual electric field
intensity at the boundary layer edge can become the same. order of magnitude

as that at the sheath edge. For these cases, the electric field intensities

that penetrate into the plasma in the inviscid region cannot be neglected and,

therefore, the boundary layer treatment alone cannot describe the plasma-

solid interaction satisfactorily.
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VI. RANGE IN WHICH THE THEORY IS VALID

In the present section., the regime of validity of the analysis based on the

governing equations, Eqs. (1) through (4),will be examined.

A. CONSERVATION AND POISSON EQUATIONS

There are three criteria that must be satisfied in order that the present

solution of Eqs. (1) through (3) be valid:

1. Sheath thickness must be much greater than the mean free
path.

Z. The sheath must be sufficiently thin compared to the
boundary layer so that the convection effect can be
neglected within the sheath.

3. Gas-phase ion-electron recombination must be frozen.

The above criteria are the same as the first three criteria given in Ref. Z.

The fourth criterion in Ref. 2 was T = but the present analysis removesethis restriction. The first two criteria are rather straight-forward; the

following expression derived in Ref. 2 for argon, for instance, specifies the

criteria:

Z x 0 6(T R)< ns <<7xl10 2 (31)

where

u l
Re = ooV

s

and T is in OK, I is in cm, n is in particle s/ cm3, and p is in atmospheres.

Nothing can be said with any certainty concerning criterion 3 because the gas-

phase recombination process is not too well understood for the gases in the
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present flow regimes. Assuming that the radiative gas-phase recombination

sets in before the three body processes, the frozen recombination ýcriterion

may be expressed as

7rdillf 56n s
df<< f(32)

"rchem Jiw

113

where the recombination coefficient y for argon is about 10 to

10"10 cm 3 /sec (see Refs. 2 and 12), and 6 is the m-boundary layer thickness.

It is seen from the expressions (31) and (32) that a rather large regime of

flow conditions can be analyzed by the present theory. It is shown in Ref. 2,

for instance, that the three criteria are satisfied for the following typical

conditions obtainable in an argon arc tunnel facility:

p 0. 1 atm C

=1 cm

Re = 100

T - 7000°Ks

T = 500 K
0

1.4 x 012 < n << 1.4 x 1015-- es

It is also estimated in Ref. 2 (with some misgivings) that the above plasma

condition may give equilibrated electron and neutral gas temperatures in the

boundary layer. The estimate was based on the conventional comparison of
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the temperature equilibration time with the characteristic electron residence

time. According to the present analysis, however, the electron temperature

will be far from being in equilibrium with the neutral gas temperature for

the above flow conditions.

B. ELECTRON ENERGY EQUATION

There are two criteria which must be satisfied in order that the continuum

electron energy equation, Eq. (4), be applicable for the weakly ionized' gases

presently of interest. The first is that the mean free path for the electrons

between the electrons and the neutral gas particles be much smaller than the

characteristic length of the flow. The mean free path between the electrons

and the neutral gas particles is of the same order of magnitude as that

between the neutral gas particles. This criterion is, therefore, essentially

the basic one for the boundary layer flow itself; the conditions for the appli-

cability of boundary layer theory have been well established elsewhere (for

instance, see Ref. 16).

In addition to the above criterion for the basic boundary layer flow, the

electrons must have a Maxwellian distribution such that the electron tem-

peratures can be defined across the boundary layer in a continuous manner.

Although the electron-neutral particle collisions aid the attainment of a
3Maxwellian distribution , a conservative criterion for the distribution is

based on the requirement that there be a sufficient number of electron-

electron collisions during a suitable characteristic time for the electrons in

the boundary layer. In order to verify the Maxwellian distributions of elec-

trons between two electrodes, Kerrebrock compared (Ref. 18) the electron-

electron collision time with the electron residence time. As was shown in

the preceding section, however, the characteristic conduction time of

electron thermal 'energy is much shorter than the characteristic electron

31t is shown in Ref. 17 that electron-neutral particle collisions, alone in
an electric field lead to, an electron distribution which is usually between
Maxwellian and Druynesteyn distributions.

J(
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residence time when (j, /ji)w < 10. The second criterion for the present

problem is therefore satisfied when the electron-electron collision time is.

much shorter than the characteristic electron energy conduction time across

the boundary layer. The characteristic electron-electron collision time T ee

is obtained from Spitzer (Ref. 19) as

0. 267 T3/2e
T 3ne 3T /Z (.33)

ee

o 3n

where Tree is in sec, T eis in 0K, and n eis in particles/cm 3. The logarith-
mic term of Eq. (33) is calculated and tabulated in Ref. 19. The conduction

time of electron thermal energy Tc is given by

T , (Pe T pePr TA-- 1 (s 1 (34)

c X e ', (8eT) eý 1 lvs V. +V

Here 6 is the thickness of the electron thermal boundary layer. 0' and V are

some suitable average values for the boundary layer. The criterion is then

satisfied when

ee << 1 (35)
c

Although the normalizezd electron mass fraction me decreases monatomically

from the boundary layer edge to the wall (Fig. 5), the number density ne

remains essentially constant almost all the way up to the wall because

m e- Ps/p. This has been noted in Ref. 20. Using nesnes in Eq. (33),

we can show that criterion (35) is satisfied for most of the flow conditions of

interest to us, such as the example given in Sec. VI.A.
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residence time when (j /ji)w < 10. The second criterion for the present

problem is therefore satisfied when the electron-electron collision time is

much shorter than the characteristic electron energy conduction time across

the boundary layer. The characteristic electron-electron collision time Tee

is obtained from Spitzer (Ref. 19) as

0. 267 T3/Z
e

Tee ner-A3(kaT3 1/3 (33)

3 r e) 3LZ e \ r e

0 3where Tee is in sec, T is in K, and n is in particles/cm3. The logarith-ee

mic term of Eq. (33) is calculated and tabulated in Ref. 19. The conduction

time of electron thermal energy Tc is given by

(p . ( )s 6Pr 2 (34)T c re0

Here 6 is the thickness of the electron thermal boundary ayer. 8' and 1± are

some suitable average values for the boundary layer. The criterion is then

satisfied when

T ee
- << (35)-

T
c

Although the normalized electron mass fraction me decreases monatomically

from the boundary layer edge to the wall (Fig. 5), the number density ne

remains essentially constant almost all the way up to the wall because

me - pS/p. This has been noted in Ref. 20. Using ne n esin Eq. 033),

we can show that criterion (35) is satisfied for most of the, flow conditions of

interest, to us, such as the example given in Sec. VI.A.
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C. WALL BOUNDARY CONDITIONS

Boundary conditions (9), (10) and (11) will now be derived..

Consider the interaction between the electrons at the interface w and the

solid surface ww. The electron mass balance can be written as

M n V)ew-Dn.e + C(36)e v)ewwI pD e +7 e e3

When the siurface is highly cooled and catalytic, the electron emission from

the solid is negligible and,, in addition, practically no electrons return to the

interface after colliding with the surface. Therefoxie, newwV0eww -A 0 and

Eq. (36), with the aid of Eq. (A-6), gives

(5Tr )w!e 1 1ie\ e~\
Mg ai ý)(

where \g and 6 are the neutral gas mean free path and the boundary layer

thickness, respectively. Equation (37) shows that

- ewe 10 i(38)

fww

A similar analysis shows that

m . - (39)

It is seen from Eqs. (38) and (39) that boundary conditions (9) and (10) are

justified for all practical purposes when the surface is highly cooled and

catalytic.
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An electron energy balance can be written between the interface and the

surface as

F 1 [8T I C•Mecpe nvAT)ew-(nvAT = e + ce Te tpD e- + plCKeE e w
e e ( e )ww= e ay pe e ( e y eE Cemi

With the aidto Eqs. (36) and (A-3), the above equation becomes

Tw T (112)+ CaTe
•Me (nAv)eww(Tew eww Pre Tg/w es.ew a--w (40)

The above equation shows that ( 8 TefOy)w -ý 0 for highly cooled and catalytic
IA

surfaces since ne V 0. The boundary condition (11), is thus verified.suracs ine eww eww

Equation (40) shows that the electron temperature jump is maximum at the

wall when the surface is highly cooled and catalytic, and thus no electrons

reach the interface from the wall.

Let us now consider the other extreme, where no electron temperature jump

exists at the wall. As mentioned previously, a no-jump condition exists, for

instance, when either the surface is a poor catalyst, the surface temperature

is much higher than about 1000 K and at the same time the surface has a very

low work function, or when the gas adjacent to the high temperature surface

is highly seeded. For such cases, the rate of electron transfer from the

interface to the surface and that from the surface to the interface are of the
A A

same order of magnitude, n v n ewvew . The effect of the wall

boundary condition on the electron temperature profile is maximum when
A Ar - 0. Thus, after substituting newv ew for nwewwvew and obtaining

(aT e/ay w from the frozen solution (23), Eq. (40) can be readily solved for

the order of magnitude of new that would make (Tew - T eww) • . Such

The electron temperature profile is almost independent of the wall boundary
condition when r > 700.

-40-
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analysis shows that, for many of the present flow- regimes, m must2 ew

become the order of 10" or so in order that the electron temperature jump

can be neglected. This means that in order to neglect the temperature jump,

new must become approximately within one order of magnitude of nes
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VII. CONCLUDING REMARKS

An electron energy equation was formulated for weakly ionized stagnation

boundary layers over highly cooled and catalytic surfaces. A solution was

obtained analytically for electron temperature profiles that are not in equi-

librium with the neutral gas temperatures. The effect of the nonequilibrium

electron temperatures on the electrical characteris'tics of the boundary layer

was then analyzed by solving the conservation equations of the charged par-

ticle.s and, the Poisson equation.

It is found that, when the electron temperature is in equilibrium with the

neutral gas temperature in 'he inviscid region, the potential difference across

the boundary layer and the current densities increase about four to five times

as the electron temperatures in the boundary layer vary from the completely

equilibrium state to completely frozen state with respect to the neutral gas

temperatures.

Though the variation of the electron temperatures affected the ion current and

the potential difference alike, a variation of the potential difference alone for

a given electron temperature was found to have a negligible effect on the ion

current. On the other hand, the electron current was found to be drastically

affected by the variation of the potential difference.

The state of the electron temperatures with respect to the neutral gas tem-

peratures in the boundary layer was found to be controlled by the parameter

(Pr eel) which represents the ratio of the characteristic electron energy

conduction time to the characteristic temperature equilibration time. This

parameter in the regime presently of interest, 110-1 < (j e/Ji)_ < lol, was

found to be about two to three orders of magnitude smaller than the ratio of

the characteristic electron residence time to the temperature equilibration

time. The latter ratio has been conventionally used to determine the state of

the electron temperatures. The present analysis shows, therefore, that the
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electron-neutral gas temperature equilibration is accomplished at much

higher pressures, for instance, than those previously expected.

The special cases of poorly catalytic surfaces and the highly seeded gas

adjacent to high temperature surfaces were considered. It was shown that

the cooling effect of the wall can have a drastic effect on the electron tem-

peratures of the boundary layer should these conditions cause the electron

concentration at the wall to become within one order of magnitude of that at

the inviscid region.

-
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NOMENCLATURE

A parameter defined by Eq. (B-4)

a parameter defined by Eq. (B-9)

b constant defined by Eq. (A-10)

C mass fraction

c specific heat of electrons per unit mass of electronsp~e

D binary diffusion coefficient

E nondimensional electric field intensity defined by Eq. (B-9)

E* electric field intensity

e absolute charge of an electron

f Blasius stream function

G1,G2,G3 parameter defined by Eq. (B-20)

H nondimensional electric field intensity defined by Eq. (B-4)

HN Hermite polynomial of order N

h T /T
g s

modified Bessel function of order v

Jl nondimensional ion current density defined by Eq. (B-4)

1 3 nondimensional ion current density defined by Eq. (B-12)

j particle current density

K mobility

K modified Hankel function of order vv

k Boltzmann constant

L physical thickness: ,of sheath region
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I nose radius

M particle mass

m C/C S

N even integer defined by Eq. (21)

n charged particle number density

p pressure

Pr electron Prandtl number defined'by Eq. (13)e

Pr Prandtl number of neutral gasg

Q Coulomb collision cross section
c

Q collision cross section between electrons and neutral
eg particles

Re Reynold's number

r distance shown in Fig. 1

s variable defined by Eq. (A-9)

Sc ambipolar Schmidt number defined by Eq. (27)a

Sc electron Schmidt number
e

Sc. ion Schmidt number1

T temperature

u x-component of velocity

V potential

v y-component of velocity

A
electron mean thermal speed

W el energy transfer to electrons, per unit time.per unit volume
due to elastic collision

x streamwise distance

0
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y distance normal to surface

z variable defined by Eq. (B-4)

a C/C
0

du /dxS

Tel temperature equilibration parameter defined by Eq. (14)

I'Y1 Y2 .. constants of integration

'Yeg constant portion of Qeg defined by Eq. (A-5)

modified thickness of sheath region defined by Eq. (B-4)

E J0 for two dimensional body
1ifor axisymmetric body

11 variable defined by Eq. (A-10)

0 T /T
e s

' A T)ebye shielding length, V(kT )/(ene n

x thermal conductivity of electronse

1±, v viscosity and kinematic viscosity, respectively.

p density

pl'p 2 'pZ'p 3  variables defined by Eqs. (17), (A-23), (19) and (21),
respectively

T characteristic time

SUBSCRIPTS

e electrons

g neutral gas

i ions

m matching point between regions 2 and 3

mm matching point between regions 1 and 2

C
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s edge of boundary layer

w wall

ww so-lid surface

v integer

0 matching point between sheath and ambipolar regions
unless specified otherwise

NOTE: Symbols without the subscript "e" or "i" refer to neutral gas.

0
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APPENDIX A

Supplement to Analysis of Electron Energy Equation

The details leading to the solution of the electron energy equation are given in

the following paragraphs.

L Fundamental Property Values for the Electron Energy
Equation

The electron thermal conductivity X e and the energy source terms Wel and

ej e E* will be studied in this section.

Consider first the electron thermal conductivity X e" Fay (Ref. 3)i gives

C A
kn v

_75-- e e (A-1)
e 128 (ngQeg + 7'.neQc)

The Coulomb cross section 0 c is about two orders of magnitude greater than

the electron-neutral cross section Qeg so that the second term in the
denominator dominates for highly ionized plasma (ne/ng >> 10 -2) and Xe is

independent of ne. In the weakly ionized plasmas (ne/ng << 10 2) of current

interest, the first term predominates and X is practically a linear function ofe

ne. It can be seen from data in Ref. 6 and other available data that
e

1 T (A-2)
Ogg
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where -1/2 < a- T. 1/2, depending on the gas and temperature range. Equation

(A-1) can be written as

4 eL-C )1 (e +° C e (-3)

eP e

where

Pr M 1/2

Pr e (13)
e 23/2 \g

We shall call Pr , defined by Eq. (13), the electron Prandtl number. As wille

be seen subsequently, Pr influences the behavior of the electron thermal
e

boundary-layer in a manner similar to the usual influence of the Prandtl

number on the conventional thermal boundary layer. The electron Prandtl qL

number is of the order of 10-3 for most gases.

As in Ref. 2, the present study is limited to the regime 10 1 ;( 0e/Ji)w:! 10.

Certain simplifications of the electron energy equation are possible in this

regime. The electron energy source term ej eE*,represents the rate at which

electrons gain and lose energy due to their motion in the electric field. Using

values of j e and E* obtained from Eq. (4) and Ref. 2, it can be shown that

this term is negligible compared to the conduction terms in the ambipolar

region. The electron temperatures, therefore, are practically unaffected by

the electric field. in most of the boundary layer. In the sheath, however, this

term can become of the order of, or even greater than, the conduction term,

depending on the magnitude of E*. However, for 10- _< (je /Ji)w 10, it can

be seen from Ref. 2 that E* will be small enough so that this term, when

compared to the conduction term, can be neglected even in the sheath. The

main reason for this is that the conduction of energy takes place very

efficiently because of the high mobility of the electrons. This fact can also
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be seen from the extremely small value of Pr as given by Eq. (13). In this
e

analysis, therefore, the term eje E* is neglected.

Finally, the energy source term Wel is considered. This term represents

the rate of energy exchange between electrons and the rest of the gas due to

elastic collisions. Petchek and Byron have given (Ref. 4) a basic expression

for Wel although the final expression they derived is not applicable to the

present problem because they were interested in plasmas in which the

Coulomb interaction predominates, i. e. , in which most of the, energy

exchange is between electrons and ions. For the weakly ionized gases of

current interest, most of the energy exchange is between electrons and

neutrals. The basic .equation in Ref. 4, however, may be used to derive the

following equation, which is valid for weakly ionized plasmas (much less than

one percent):

k 3 /M\
=3T3~ (Me n n (T - T ) (A-4)

el eg M e \Mg/ eg e

He e it has been considered that the collision cross section between electrons

and neutrals has the form:

'Ye
Q = -f (A-5)

eg

The above expression can be derived from information in Ref. 6 for high

temperature air.
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II. Simplification and Transformation of the Electron
Energy Equation

The equation has already been simplified by decoupling it from the conserva-

tion and Poisson equations (see text) and by neglecting the term ej E*. One

additional basic simplification will be made before attempting the solution.

It can be readily shown from Eqs. (1) and (2) that for the predominantly

ambipolar boundary layer considered here-:

pDe e- + pK(eE*C)e( 1-. T pD i e (A-6)
e8y QKeE8C

This approximate equality is sufficient for the immediate purpose of showing

that the term [pDe(BCe/By) + PKeE*Ce] can be neglected in the electron

energy equation. With the aid of Eqs. (5), (A-3), (13) and (A-6) the energy k

equation may be written:

Pu8T e + 8 [IT eOT e ]+

e e 1 B

e y

(T (1/2)+0_IT 8I+B1 Pr
+ek~r\g C 4 .2 1r T (A-7)

The present analysis is concerned with cases in which Te and Ti, andje and

ji, differ by no more than an order of magnitude or so (see text). For these

cases the term [(.e/ji)w(l + Te/Ti)(Pre)/(Te/Tg)(l/2)+O'(Sci)] << 1 and may

be neglected. This is because the ratio Pr e/Sci, which may be interpreted

as an electron Lewis number, is much smaller than unity and, therefore, the
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electron energy transfer (of the energy c pe Te only) due to concentration

gradient and electric field motivated diffusion is negligible compared to the

energy transfer due to thermal conduction. Such is not the case, for

instance, if the wall is strongly and positively biased with respect to the

plasma; then, (j e/ji)W >> 10. The electron energy equation, Eq. (4),now

takes the form:

D8Te e 1 T e Wel
aux a y PreCe a T e a. Cecpe

To solve the above equation, we will first transform the equation to a

similarity form at the stagnation region. Let

- 0 PsI~s Z(!+E)

X fx u c dx = xZ (A-9.)C Ps s sr 2(1 + C)

and

E

s s p dy (A-L0)

where:

b = • = constant
Ps1,s

Also, we define the following nondimensional quantities:

0 = Te/T , h = Tg/T , m = Ce/CI (A-11)
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With the aid of Eq. (A-4) and Eqs. (A-9) through (A-11), Eq. (A-8) then

becomes

1re di7 T l+- d 1 h. e •L--• -h -e (A-12)

where rel is given by Eq. (14). The stream function f, appearing in

Eq. (A-12), is the solution of the Blasius momentum equation:

fill +if" = 0 (A-13)

having the boundary conditions f(0) = f'(0),= 0 and f'(oo) = 2. The solution

of Eq. (A-13) is found in Ref. 5.

III. 'Solution of Electron Energy Equation

To solve the equation analytically, we make the following simplifications.
First, the quantity me (/h)l/2+(" represents essentially the variation of Xe.

e 1/2+,
For the values of -I/2• a-_< 1/2, (g/h)I/ varies very slowly compared

to m, which varies from zero to 1 across the boundary layer. It is assumed,

therefore, that (9/h) 1/2+0- = 1 when compared to the variation of m . With

this assumption, Eq. (A-12) is linearized as

Next, consider the parenthesized quantity in the second term of Eq. (12). It

is seen that Pr f << me /m for most portions of the boundary layer. Onlye e e
in the. outer portion of the boundary layer does Pr e f become of the same

order as m /me, and, in the limit of y -co, Pr f becomes greater thane e' e
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me /m as m' 0- 0. Also, it was stated earlier that the electron temperature
e e eprofile will be rather insensitive to the details of variation of m profile.

e
With the above facts in mind, we subdivide the electron thermal boundary

layer into three regions (Fig. 2) and the following simplifying approximations

are made for the respective regions:

For regions I and 2 (0• :__M)

Pr f = 0e

h = h. + h' (A-14)w

in = m +m M Ie ew ew

For region 3 (i-i Ž__ ')

f = 2(I - 0. 86038)
(A-15)

h =m =1
e

For region 1 (0•< ___ )mm)

P= Pw (A-16)

For region 2 (nlmm < 1 :5mT)

Ps/P = me (A-17)

is and 1imm are given by Eq. (25). The above approximations are

comprised of replacing the h and me profiles by a pair of linear profiles

and of letting ps/p essentially follow me instead of h. A replacement of

C
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boundary layer profiles by linear profiles is quite conventional practilce, and
the m and h profiles differ very little. The approximations, therefore,

e

given by Eqs. (A-14) through (A-17) should create no great error in the

results. The quantities h' and m' will be obtained from the exact solutionw ew
of the neutral gas energy equation and the exact ambipolar solution of the

conservation equations, respectively. The expression for the stream

function f given in Eq. (A-15) is obtained from Ref. 11 for the outer region

of the boundary layer. As. was explained earlier, mew = 0 for all practical

purposes when the surface is highly cooled and catalytic. However, m
ew

will be retained in the analysis for the purpose of generality.

It is readily seen from Eq. (12): that in the outer portion of the boundary

layer, where m /m << Pr f, Eq. (12) becomes identical in form to thee e e
conventional thermal boundary layer equations with a Prandtl number equal

to Pr . Thus, Pr influences the electron energy boundary layer in a manner
e e

similar to the influence of the regular Prandtl number on the conventional

thermal boundary layer.

In the following, the electron energy equation, Eq. (12), will be solved

subject to the simplifications mentioned above for each region; the solutions

will then be matched at rimm and m for 0 and 0', respectively. The

boundary conditions for Eq. (12) are

0'(0) = 0 (A- 18)

0(wO) = I (A- 19)

For region I, Eq. (12) becomes:

1Pr Pr -
1go+ eel 0- el(h + h'l) (A-20)mew +T- h) hw w w

I • ew

I-58
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Let

rew (m ew + 17

Equation (A-20) is then transformed to the following inhomogeneous modified

Bessel equation of zeroth order:

d2 0 +_I [ h' ew dh' 0-MPh (A-21)

dpl PI~ W Wew/ r e el

The solution of the above equation that satisfies the boundary condition

(A-18) is obtained as Eq. (16).,

IFor region 2, Eq. (IZ) becomes:

0 " + ' P r r E r-__ _ _ 0+P e l h

e el1'

G" + e:-P (A-22)m (m- TI) ee-T
,"+mw ) wm-r-+m--ew ew w( i•mew )=-Pe ew).r_ . Im---•ew +-(-2

w 2ew
Let

Prerelm ew + ) (A-23)
P2 = m-' -Mr--

ew ( ew

Equation (A-23) is then transformed into

+10 hmew 1 h'm

dp2- P 2 d'P2  T2 W ew/P2 e el
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The above is another modified form of an Inhomogeneous Bessel equation

and the solution is given by Eq. (18).

For region 3, Eq. (12), becomes the following homogeneous Herrnite

equation:

d2A A A-(-5 S+ P -rel (A - )

where

Sp3 = Pr (Tj - 0.86038) (21)P 3 e

A0= 1 - 0 (A-26)

If we let I

Fel =2N

where N is an even integer, a particular solution of Eq. (A-25) is the

Hermite polynomial given by Eq. (22). The general solution of Eq. (A-25)

that satisfies boundary condition (A-19) is obtained as Eq. (2,0).

The constants of integratio-n y1 through Y4 are determined by requiring

that 0 and 0' be continuous between regions 1 and 2, and 2 and 3,

respectively.
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APPENDIX B I
Supplement to Electrical Characteristics of Boundary Layer

I
Details of the solutions of Eqs. (1), (2), and (3) will be given in the following

paragraphs. As explained in the text, the solutions will be obtained for the

sheath and the ambipolar regions (Fig. 1), and the two solutions will be
matched at a suitable point. The electron temperature distribution is

assumed to be known (Appendix A).

I. Sheath Region

The convection terms of Eqs. (1) and (2) can be neglected in the thin sheaths

C presently of interest. Equations (1) through (3) then become the equations

as derived in Ref. 2.

daidai -A H a i (B-l1)

dz

dci T. ISc je Mw jT 2e
+ AH J (Be 2i)

dz Te e 1 1

dH
- = o.. - a (B-3)

dz 1 e
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where

a = C/C0  (B-4)

=jiwMiSciA

A TA2 (A/ )

-(k' 0 /en20n A 0

fYp/pO dy

0

A =o p/po dy

H -E*
en 06

The boundary conditions are as follows

At z =0

a. =a
I e

Atz= 1

a. ' a : 1 (B-5)

1 e
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In the derivation of Eqs. (B-1), (B-2) and (B-3), it is assumed that

-P- Ts - b = I (B-6)Y Lss T ýLs

e i e=

and

K e
D kT

Solutions of the above boundary value problem were obtained numerically

mainly for (Ti/T) = 1 by Chung (Ref. 2). To avoid excessive niumerical

CI complications and to utilize the basic digital computer program used by

Chung,we assume that the temperature ratio Ti/Te is constant and is equal
to the average value within the sheath. Such an approximation s1hould be

acceptable for the thin sheaths presently of interest. Solutions of Eqs. (B.i;)

through (B-3) are obtained for A = 3000 and Ti/Te equal to 1, 1/2, 1/3, 1/4,

and 1/6, by using a digital computer. Major results are given in Table 1.

The reason for choosing this particular value of A, will be explained

subsequently.

Although considerable analyses have been made of the high pressure sheaths

since the time of Langmuir, most of them lack generality and some of them

lack even theoretical soundness. A more detailed evaluation of some of

them is given by Su and Lam (Ref. 21). To study the electrical interaction

between the plasma considered here and a solid, we must analyze equations

of the type given here (Eqs. (1) through (3)) with the proper two-point

boundary conditions. The equations are reduced to the type given by Eqs.

(B-1) through (B-3) for static plasmas. Only a few of the existing analyses

C
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consider the general solution of these equations for their respective

problems. They are: the static electric discharge problem (Allis and Rose,

Ref. 22), the plasma-solid interaction at the shock tube end-wall (Sturtevant,

Ref. 23), the interaction between a static plasma and a spherical probe

(Su and Lam, Ref. 21, and Cohen, Ref. 24), and the Couette and stagnation

boundary layer problems (Chung Refs. 2 and 25). Turcotte (Ref. 26) also

obtained a solution of the equations similar to Eqs. (B-I) through (B-3) in

connection with a shock tube experiment. It is also pointed out here that all

these referenced analyses used the same wall boundary conditions as (B-5).

II. Ambipolar Region

The ambipoilar region is defined as that region of the boundary layer where

the charge separation is negligible. In this region, therefore, m. = m = m.

The Poisson equation is then extraneous and the two conservation equations

describe the region in the manner described below.

Subtracting Eq. (2) from Eq. (1) and integrating once, we obtain at the

stagnation region:

pD -m - pK Em = pD am + pK E*m + y.5 (B-7)
i ay i e ay e

where -5 is the constant of integration. By using equations (A-10) and

(B-6), Eq. (B-7) can be written in the following form for E:

i !M. (T 2 Se.• I

amE ' Q ) .5i 1 - t(;. 2 m (B-8)1am (+ FýM T e v e IS]

e4
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where

es (B-9)

kT e/n

E- n ef
es

Here, the integration constant Y5 is important because it determines, for

instance, the residual electric field intensity at the boundary layer edge

where m' = 0. As mentioned earlier, the one boundary condition due to the

Poisson equation is specified when the current density ratio (j e/Ji)w is

specified. We shall, therefore, determine the integration constant y5 in

terms of (je /ji)w. Consistent with the preceding assumption of the negligible

convection effect in the sheath region, Eqs. (1) and (Z) as they approach the

C. sheath edge from the ambipolar region become:

+ -I 2 m' - aEm =J (B-IO)
2 3

m+ Ta.LmJ (B-li

2- 2m j. Me(i('e 11
s e e ei w

where

J.wM.Sc~i

S iw 1 (B- 12.)
3 C is ýLs

C-
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With a little manipulation of the above equations, we have at the sheath edge:

P2 Ms•-Vu • oiw

aE m -___(B-___13)__0 (, R)0[1 + 0(B.3

After some manipulation, Eqs. (B-8) and (B-13) give:

Upon eliminating 5 from Eqs. (B-8) and (B-14), the quantity (Ema) is

obtained from equation (B-8) and is substituted into Eq. (1). After the

similarity transformation from (x, y) to il, this equation becomes Eq. (26).

The solution of Eq. (26) that satisfies the boundary conditions m(q0 ) = m0

and m(oo) = 1 is shown in Ref. 2 as

S Sa

m=(l-m 0 ) [4(0. 332)] SCa0 [
S332)Sca 3 

- 0

The slight difference in constants between equation (B-15) and its correspond-

ing equation in Ref. 2 is due to the difference in the definition of f and '" of

the two analyses. The quantities m 0 and Y0 are unknowns and will be,

determined through the subsequent matching process.
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Once the m-profile is obtained, the electric field intensities in the ambipolar

region are obtained form Eq. (30), which is derived by combining Eqs. (B-8)
and (B- 14).

III. Matching of the Two Regions

The detailed matching procedure is given in Ref. 2. Here we will only

briefly explain the basis upon which the matching is accomplished. In the

numerical solution of Eqs. (B-l) through (B-3) it was seen that the region

in which the charge separation and the electrical field intensity are

pronounced becomes confined to that portion of the sheath region adjacent

to the wall as A is increased (Fig. 4 and also Ref. 2). The charge

separation and the electric field intensity become very smal, in the rest

of the region. The solutions for large A thus produce a sort of ambipolar

* tail (Fig. 4). The following equations can be derived from Eqs. (B-I)

and (B-2) for the ambipolar tail:

Me (Ti +je (T.)V t. T.wi T
a = ai = % =1 -lT. (l - z) (B-16)

+1 + --I

e

and

HT T.4 ( )J

(B-17)
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0

The first step in matching the two regions is to obtafn a solution of Eqs. (B-i)

through (B-3) that has a sufficiently long ambipolar tail for which the ambi-

polar solutions, Eqs. (B-16) and (B-17), are applicable. It was found that

the solutions for A = 3000 produced sufficiently long ambipolar tails for all

the cases considered in the present study as shown in Fig. 4. In this tail

region, where the solutions of the two gegions overlap, the matching is

accomplished by requiring that the concentrations and the current densities

of the electrons and of the ions, and the electric field intensity be con-

tinuous. Such requirements produce the following algebraic equations with

the aid of the numerical solutions of Table 1 and Eqs. (B-15) and (30):

3 G1 G2 G3 ~=0(-8
-0 + GZ(JIG3 On l0 - 31 =0 (B-1•8)

0 3 1

1 (B-19)
m 0, = G G, - 'Z '1

J1 G3 ( l-r) + 1

where

1G1
1 0.33 2 4T2_-Sca/ 3

a

I2' 2

2 I vaI 7  V5•s

T.T1+ T

e
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The temperature ratios Ti/Te appearing in Eqs. (B-16) through (B-20),

and in Table 1 are the average temperature ratios for the sheath. The

solution of Eqs. (B-18) and (B-19) gives 710 and m 0 with which mi, me and

E profiles can be obtained from Eqs. (B-15) and (30) for the ambipolar

region. The numerical results for ai, a ,and H obtained for the sheath

region can be transformed to mi., me and E by the use of io and m 0 , and the

relationships between a and mand H and E, respectively. Typical electron

and ion concentrations and electric field intensity profiles are shown in

Fig. 5. The profiles shown in the figures are those corresponding to the

electron temperatures for Tel = 720 (Fig. 3).

The potential drop across the boundary layer is obtained by integrating the

electric field intensity over the physical thickness of the boundary layer.

Thus

e(V - V) e(V 0 -V e(Vs V 0 )
T k T + T

1AJ 9Hd 2 vs

= -A /p)H dz - a I J (ps/p)E dii (B-21)

Since E is given in closed form and ps/p can be: obtained from Ref. 5, the

second of these integrals may be readily evaluated. However, H is known

only numerically so that the first integral is more difficult. However,

Chung has shown (Ref. 2) that

(Ps/P)Hdz-f Hdz +0.59 1 T W"T0 zHdz (B-22)

-69-



where the two integrals on the right-hand side have been computed for sheath

temperature ratios in the span of interest (Table 1).

70

-70-



tt
REFERENCES

1 L. Talbot, "Theory of Stagnation-Point Langmuir Probe,"
Phys. Fluids 3, 289 (1960).

P.M. Chung, "Electrical Characteristics of Couette and Stagnation
Boundary Layer Flows of Weakly Ionized Gases,,"
TDR-169(3230-12)TN-2, Aerospace Corporation, El Segundo, Calif.,

(1 October 1962).

3 J. A. Fay, "Plasma Boundary Layers," Rept. No. 61-8, Massachusetts
Inst. of Tech., Magnetogasdynamics Lab., Cambridge (June 1961); see
also ARS Preprint No. 2010-61, American Rocket Society, New York
(August 1961).

4 H. Petschek and S. Byron, "Approach to Equilibrium Ionization Behind
Strong Shock Waves in Argon," Ann. Phys. 1, 270 (1957).

5 G. M. Low, "The Compressible Laminar Boundary Layer with Fluid
Injection," NACA TN 3404 (1955).

6 C. F. Hansen, "Approximations for the Thermodynamic and Transport
Properties of High Temperature Air," NASA TR R-50 (1959).

7 G. N. Watson, Theory of Bessel Functions, The Macmillan Co.,
New York (1948).

8 Y. L. Luke, Integrals of Bessel Function's, McGraw-Hill Book Co.,
Inc., New York (!96Z).

9 N. Schwid, "The Asymptotic Forms of the Hermite and Weber
Functions," Trans. Amer. Math. Soc. 37, 339 (1935).

10 A. Erdelyi, et al., Higher Transcendental Functions, Vol. 2 of
The Bateman Manuscript Project, McGraw-Hill Book Co., Inc.,
New York (1954).

11 H. Schlichting, Boundary Layer Theory, McGraw-Hill Book Co.,
New York (1955).

12 L. B. Leob, Basic Processes of Gaseous Electronics, University of
California Press, Berkeley (1960).

13 D. Bohm, E. H. S. Burhop, and H. S. W. Massey, The Characteristics
of Electrical Discharges in Magnetic Fields, McGraw-Hill Book Co.,
Inc., New York (1955).

"-71-



14 J. A. Fay and F. R. Riddell, "Theory of Stagnation Point Heat
Transfer in Dissociated Air," J. Aeronaut. Sci. Z5, 73 (1958).

15 P. M. Chung and A. D. Anderson, "Heat Transfer Around Blunt
Bodies Nonequilibrium Boundary Layers, " Proceedings, of the 1960
Heat Transfer and Fluid Mechanics Institute, Stanford Univ. Press,
Stanford, Calif. (1960), p. 150.

16 W. D. Hayes and R. F. Probstein, Hypersonic Flow Theory,
Academic Press, Inc., New York (1959).

17 S. Chapman and T. G. Cowling, The Mathematical Theory of Non-
Uniform Gases, Cambridge University Press, London (1960).

18 J. L. Kerrebrock, "Non-Equilibrium Effects on Conductivity and
Electrode Heat Transfer in Ionized Gases," CIT TN No. 4,
California Inst. of Tech., Pasadena (November 1960).

19 L. Spitzer, Jr. , 'Physics of Fully Ionized Gases, Interscience
Publishers, Inc., New York (1936).

20 L. Talbot, "Note on the Stagnation-Point Langmuir Probe,"
Phys. Fluids 5, 629 (1962).

21 C. H. Su and S. H. Lam, "The Continuum Theory of Spherical
Electrostatic Probes," Rep. 605, Princeton Univ., New Jersey
(April 1962).

22 W. Allis and D. Rose, "The Transition from Free to Ambipolar
Diffusion," Phys. Rev. 93, 84 (1954).

23 B. Sturtevant, "Diffusion in a Slightly Ionized Gas with Application
to Effusion from a Shock Tube," Phys. Fluids 4, 1064 (1961).

24 I. M. Cohen, "'Asymptotic Theory of Spherical Electrostatic Probes
in a Slightly Ionized, Collision-Dominated Gas," MATT-153,
Princeton Univ., Princeton, New Jersey (November 1962).

25 P. M. Chung, "Langmuir Potential Associated with Couette Flow of
Viscous Plasma," Phys. Fluids 5, 1015 (1962).

26 D. L. Turcotte and J. Gillespie, "Boundary Layer Resistance and
Sheath Potential in a Shock Tube," ARS Preprint No. 2634-62,
American Rocket Society, New York (November 1962).

-72-_



oN C Z 2 a. - .0. Nd rk N 2o~
0~ u~f 2 ) pwo 0 O1o -:ý"'I

Uo
0

, 'C 'C
0  

0C> MOU 0  c
v wV

0 
44~~ zk 0, ,

C<HS.-o 10, u. O ~ C 0S-. 'H 'd- .4 'u '

I) - [: I ,A0

A~~ QQ,-0 M Cu , ,
CH 4, r 0 p .,& -4 ) O P,4  4)bbWon -- % . 4MOO t¾ ,OZ

COCCN.4 d : ýs0 EI, aoCSN .4 4'o ýo m ...
'0-0u~ o.A z w I I -' V o-~

0~~~~~~ -C -I V~C 04 ~C0 ~ C' M4M:M

CCo or- NO w ý .: - '¾.-oý'Z
-r C - CN 0 [W, O"< o

m
: ug U 0 - % "'

In.<C H NO-V C NO 4

oz.: k0. 0& . ozH41 0
0 ý, v > ,0 00tt,

P4 i% N 9:

00 0.- 0 tt .

A ~ 4-4 0 vI1 4

z z)

::) '.4 z

NNw OV "'C Nm N) MO k 0 W 0 00 C .. N O ý

4N ww wC

0o 'C o CN- '

;Z 4 :m _~~~0 cg. q . C C4 C' .

(0 bbt *' U 0,"C0 08,'o -n- .. 2C -f
I 4). 044)C

0 , C 'C F00 -C O k

0 u0 Na'0 0 co CC4) 'U CO N 4) C 0 0>' C) CO

Od NZC r:ui CoO C. 0 :- , ' 0MC.0 M 0t.

bO .00 W ~ ~ f~ 07 0'0 'ZE 5" 0 3 Q0Wý . n

-0 . r. N MC.-00C
4  

N 
0

NM C
w NNC NNC.d ýQ 8~ U N MCCNC Z4t C 0 .N0 M C..,A..N.0. 0-o- Co -.

C'! C.. 0. C 04- C O

OHO UC r kCXC NO> 04 '5ý'C C., CUOCNo>MO. ,
Z~m (d~ 0tE' OUCd w~~E2 IkdE.o

"d4 w Z 1



zS r

.0 0 ~'4
0 0 'd C.

A t N± 'd ro 0' 4) 00-4 11 O
00 4 , .N-5 CCC" Ue E .

- ) g 0 4 0 4, 0 o- 4,d -!

CU. 00 -J 2 . U 0 E, .h.~0 0 J

0'.0

OW 0  4 , 5j.. 0 N

k. 0 v '~z ~ 4CoU 44, 4,1 >.N 1.4,
'04, U

4  
0 41 U

*Z0 o. "o .0 5~'-wn 
,

4~ ZN dto 0414. 'd,0 0O Z~~4 ~ CC'

0 v 0 U

0 UHt k 0

U .4 U 0,1

rX..

0 o r
Id 0 V

41 0 44 .oCC o5 0 ,'4 . 000

- 'ýS 0 -O 4) 0 k'ý 4 (

U 0'."0 ~ . -,.0

T4 4)5 4,' d 0 ow 0U -.t~ 0 ' d -4,'d o0 _H. ,4'
C' ~ u~o ~'0 *2r. o U C4... 00 (

to~~~. U k',4-0" 4,) UdZ sbg 0 V00~~~~ p,0 :C5 4~ N o
C0 0U4 +4IC 4

,

C W~ C kc r -00L 4 , U ,C 4 , 444,)
4) , 0 U :3 14 4 U) M

0
C

VCcC -C.4.>O .. :'14 0. 4.4(- 4 - C

0 ~ 1 NOW ~ > 4 0 ,,O N~, .N

4" w"kv' U Of 00 -0 0.

41N c~ 0 0 :1U4,, 00.1

WMI U1 4,, 0 ,



o 
5R

z z z

a4 W 20 ¼o .0 b. co 0
o. - "0 ý . . ,-

'.4 . M '4 0 -

t:) 04' 0 00A 6 0
044.4 .44 CL<

u 10 or"
4 

4  
H0 1)~ -

'd 4 ) )0 oz

W~ f) W) t-

'a ", x.
0 

o 4 *o, 4 ) 4 '-r

"4) Lo 1 )' .4 a4 Nto
o- dI,-o 0 j) ' (d .. 04)* 0

r) t.z 0 : " ý

El. (:4t .0to.
to to to .

Q' 140
o 0 W

"-o '44) 00 v) -04) 
0

S q) 0

~~~ t., w .. o )r04 _' _)

u N~ 
0  

$4 0 ''0 4

H 400 g: 0 ~0 -ýo

ý0. 4)4)0,00o 0 Z4).0I4*k ro z- o 4)0
u ~ 0 m~0 4)

00,-)I 0k404)t )
z ~ -o )4)) gook W - to 14 11 k

o 1 >0 : o 4)0, w u 0 
0

w0.4.c tj o>

U)U

w 0 
4 0

. r -~ 0 or< - o 0- g~.a~,o . 0W

k, k g~ 0 4 ,-
<Z(:o u~ o 0, 0s 'd,'t~04 ) P0)40> zrm-~ <>E-%$

'd ~ ~ ~ ~ ) 0n0oeE 44-

10 0 0



in U C.

z z

0~ 
0 _k' C:~~

- u 0 ' 'Du ) , o 'd 'd 4)

0u u w d 4) 0 4) -

,0 k)

,a 0, .0 W .: 
1.

'u~~~ ~ ~ 'k ) u

-0 'd0 '' 4' 'd 0 4) 0 'Z .0 4) 4) o

4). lp"4 0

10, ,

0

k4)) 0 01 0 .4) k0

o5 '54 :1 - o E ý , 0
0 0.)4 0 4. 00 4*0 ) N 1, 1. - 40

V04 E-.) ' 0 4)M m

IdN 0V 0 4) P4)0E 0

V ~ 0 0 c:~4 4 0 ) 0

~~~ k. ;3~. 0, ) u 0 4 )

u ) 10 u 0 
E 0 ) 4) 

0 0 P y I

4) 0a4 01). v4 4) 0

0...d u. 4) 0~u)f 'd u u ) P 414) 0

A)44 ~~ 4) N~ k 4)44d4N )4k1

.0 bO u) 4 41 IdQ0 u - .0 ." ).

44 0.04 -


