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FOREWORD

This report has been prepared by Bolt Beranek and Newman Inc.,
and describes the work completed during the period 15 May 1962
through 15 November 1962 under Contract No. AF 33(657) -9118,
entitled, "Dynamic Response and Test Correlation of Electronic
Equipment." This work is covered under Project 1309, "Environ-
mental Simulation Investigations for Flight Vehicle Subsystems
and Support Equipment," Task 130904, "Development of Simulation
Facilities and Test Methods for Induced and Associated Environ-
ments."

This program was monitored by the Environmental Division,
Directorate of Engineering Test, Aeronautical-Systems Division,
under the direction of Mr. Robert W. Sevy, Project Engineer.

An earlier report under Contract No. AF 33(616)-7743 cover-
ing the period of July 1961 to April 1962 appeared as ASD Technical
Documentary Report ASD-TDR-62-614 entitled, 'Dynamic Response and
Test Correlation of Electronic Equipment."



ABSTRACT

The research has centered on two main categories; the
replacement of acoustic excitation by direct mechanical excita-
tion of structures and the response of substructures which are
tied to a randomly vibrating primary structure. Studies are
included on the power transferred to a plate by a shaker, the
variation in vibratory response at various positions and fre-
quency bands, and the energy sharing between randomly excited
structures which have mechanical connections. Plans for further
research are also included.

The publication of this report does not constitute approval
by the Air Force of the findings or conclusions contained herein.
It is published only for the exchange and stimulation of ideas.
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RANDCM VIBRATION STUDIES OF COUPLED STRUCTURES
IN ELECTRONIC EQUIPMDITS

A. INTRODUCTION

The advent of rocketry telemetry and control requires elec-
tronic packages and components which must withstand severe acoustic
and vibrational environments. One step in the design of these
packages is the estimation of acoustic and vibrational environments.
Another is concerned with vibration and sound reduction through the
design of vibration and noise control treatments. Finally, there
is a proof testing requirement which leads one to seek methods of
establishing the expected package or component environment in a
laboratory situation.

These requirements all dictate a need for better understanding
of the laws governing energy transfer between randomly vibrating
systems. In the following sections of this report we shall describe
our efforts to improve this understanding. In Section B, we out-
line the general problem of predicting and simulating response of
complicated structures. We then define certain subareas and tasks
which one must study as part of the more general problem. In
Section C we describe our studies and results thus far on some of
these tasks. Finally, in Section D, we indicate some of the
additional tasks to be performed during the remaining parts of
this contract.

B. DESCRIPTION OF OVERALL DIRECTIONS AND PROCEDURES

An electronic package in a random noise environment receives
its energy by two primary paths, direct acoustic excitation and
mechanical vibration through its attachment points. We will
normally assume that the power from these two sources is additive.
Correlation effects which would cause departures from additivity,
are possible since the surrounding structure generates sound
about the package. The vibrations of the base structure may
therefore be correlated with the sound field. The difference in
propagation times for sound and mechanical energy and the differ-
ences in excitation efficiencies may be expected, however, to
minimize the effect of any correlated behavior.

Manuscript released by the authors 15 14ovember 1962 for publication
as an ASD Technical Documentary Report.
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If one computed the power absorbed by the package from the
sound field and through its mounting points, then a proof test
of the design can be made by the direct application of this power.
To apply this power with a sound field however requires very expen-
sive sound sources. It has been suggested that one might be able
to substitute direct mechanical excitation instead.

The power fed into a panel-frame structure by a random noise
sound field has been studied at BBN both theoretically and experi-
mentally (Refs. 1-3). The approach is statistical in its description
of the random noise process, and it is also statistical in its
description of the structure. Rather than analyze a structure with
precise dimensions, mounting conditions, damping treatments, etc..,
one describes the structure by an average modal density, total
area and edge length of panels, loss factor, etc. This allows one
to apply the results to a wider class of structures, but one must
also be concerned with how variations in response will arise from
one structure to another due to the variations in these statistical
measures. These same considerations will arise when we discuss
how energy is transferred between structural attachments.

In this present program, we have asked the following specific
questions:

a) What are the laws of energy transfer between connected
structures? The answer to this tells us how much
energy will get to a package through its mountings and
further, the amount of energy which travels to internal
panels of the package.

b) Since our answers to (a) are essentially average values
of statistical results, what variations may we expect
as we go from one structure to another, or from one
part of the frequency spectrum to another, or from one
position on the structure to another? A knowledge of the
variations will allow us to set confidence levels on any
range of estimates we may wish to consider.

c) If we wish to supply mechanical power to the package,
not through its normal environmental condition, but by
direct application of high frequency shakers, can we
develop reliable estimates of input power? Also, can
we develop techniques for measuring the input mechanical
power directly?

d) Finally, can we use these theoretical results to actually
predict response of a simple package-sub-panel system in
a noise and vibration environment? If the answer to this
is "yes," then our confidence in the theoretical-experi-
mental procedures referred to above is augmented.
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C. DESCRIPTION OF SPECIFIC STUDIES AND RESULTS

We will now describe specific studies which we have launched
to answer the questions posed in the preceding section. These
studies are not complete, but we feel that a good beginning has
been made. The studies themselves appear as a series of Appendices
to the report. Here we shall merely review their motivation and
discuss the main results very briefly.

I. Power Flow Into Structures Excited Mechanically

A shaker may be mounted to a structure by a stud attachment.
Normally this stud is sufficiently small compared to a wavelength
of bending waves and the structural dimensions that it may be
considered a point force. The power this source feeds into the
structure, therefore, depends on the point impedance at the posi-
tion of application. This impedance is usually a highly fluctuating
function of frequency for finite structures, but if one is con-
cerned with average response over a band of frequencies, then the
infinite system input impedance may theoretically be used.

The study of a shaker driven plate in Appendix I is an attempt
to test the assumption that the average power fed into the plate
in third octave bands can be calculated on the basis of the known
force from the shaker and the input resistance of the infinite
plate. The early conclusion seems to be that this is possible if
one will accept an uncertainty of the order of 3 db.

II. Response Variations in Multimodal Structures

Most of the studies of sound to vibration and vibration to
vibration interaction generate estimates of average energy levels
or power flow in frequency bands. These estimates are more nearly
exact as one averages over more modes of response, positions of
observation and types of structures. Some concern has arisen
about the confidence one can have in these average values if one
is dealing with only a few modes, or observation points, or struc-
tures. To generate directly procedures for evaluating confidence
levels for the estimates, we have initiated a set of studies on the
variations in response for various cases.

In Appendix II these variation studies are reported. We have
studied the variations in response at one position when the struc-
ture is point excited at a second position (Sections B and C) and
the response of a simple oscillator when it is attached to rhe
plate (Section D). The first study is appropriate to expected
variations In estimating the vibration of the plate itself while
the second is concerned with variations in substructure response--
in particular in regions of low modal density.
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III. Energy Sharing Between Connected Structures

The power flow between structures and their vibration
levels are studied by considering each structure as a collection
of modes. These modes are coupled by the connection of the
structures. The evaluation of this coupling requires detailed
calculation of input impedances of various types for infinite
systems Just as the sound-structure problem requires computation
of radiation resistance for various configurations. Our work on
connected structures, therefore, has involved the computation of
these impedances for cantilevered beams attached to plates and
for plates Joined together either by continuous welds or studs.
It has also involved experiments on the evstems analyzed theoreti-
cally to establish whether in fact one can get agreement with
theoretical estimates.

The details of the work in this area are reported in
Appendix III. In general, our results for vibration levels in
the cantilevered beam and the welded plate are quite encouraging.

D. CONCLUSIONS

Power flow into structures excited mechanically. In this
area we are developing techniques for measuring the force velocity
product so that input power may be measured directly for pure
tones or bands of noise. This means that experimentally we do
not have to rely on computation of input impedances or structures
with the attendant uncertainty in parameter values.

Variance analysis of multimodal structures. We now feel
that variance and confidence analysis has been sufficiently well
established as a theoretical tool. We do not, therefore, plan
further theoretical studies in developing the method. It will
instead become a part of the power flow and energy sharing studies
and be used and tested in the experimental aspects of that work.

Energy sharing between connected structures. We should like
to consider at least two systems which have not been studied
experimentally at this time. One is a study of plates connected
by stud mountings, a type of connection which is very common in
real packages. The second is the response of a single oscillator
attached to a plate. This is essentially a test of some of the
variance studies reported in Appendix II. In addition to these,
some additional theoretical studies of plate-beam decoupling by
notching of the beam would be in order.



Environmental estimates and simulation for package-panel
structure. We plan to take a box with an internal panel and place
it in a sound field, measuring the resulting vibrational levels.
With a knowledge of the damping, we expect to correlate these
levels with the radiation resistance of the structure. This part
of the experiment is essentially a repeat of an earlier study
(Ref. 3). Then we will apply some input power with a shaker and
again measure vibration levels, with special attention to seeing
whether the acoustic response can be simulated in this way.
Comparisons of internal panel response with package wall response
should afford a reasonable test of our energy sharing calculations.
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APPENDIX I

POWER FLOW INTO STRUCTURES EXCITED MECHANICALLY

A. INTRODUCTION

In this appendix we consider the injection of mechanical
power into a structure by an electromechanical shaker. The first
step is the determination of the coupling between the mechanical
shaker (or a system of shakers) and the structure we wish to test.
We propose to substitute this mechanical excitation for the
acoustic power supplied to the structure by a sound field.

The power absorbed from a reverberant sound field of mean
square pressure p7 is given by (Ref. 1)

27r2n (0) c2 A(
Pin2 Grad p

where

Ms is the masb of the structure,

W is the center (radian) frequency of excitation,

c is the speed of sound in air,

A is the irradiated area of the structure,

ns (w) is the average modal density of the structure,

Grad is the radiation efficiency of the structure
averaged over Ap and the frequency band of
the excitation.

It is this power that we want to supply by the shaker system.
The power which a shaker can feed to the structure will depend on
the real part of the mechanical impedance presented to it. We may
define the mechanical impedance

Zin = Rin - i Xin (1.2)

The power input in terms of the mean square acceleration at
the shaker aq (in the absence of reverberation) is

7



-7
Pin = ad Ri (1.3)

where we have assumed that R n is a fairly smooth function of
frequency. In the initial stages of the computations we shall
use an impedance which is averaged over several modes of vibra-
tion. If we equate Equation (1.1) with Equation (1.3) we obtain
for the mean square pressure

R~* M5p2= a2 n s (1.4)o
p ad 2T2nsw~c2A p rad

We shall be studying the mechanical-acoustical equivalence in the
case of panels. For a panel of thickness, h, material density,
p , and longitudinal velocity,c, the modal density is given by
(Ref. 1)

n -4-3 IAs (1.5)ns(G') = 2rh,-.S)
A,

where A. is the panel surface area (one side).

The expression for the impedance for an infinite panel is

Rin = Zi . 4ppcjh2 (1.6)

For a finite panel the same equation is obtained when the input
impedance is averaged over several modes. Our assumption is that
in a narrow frequency band (e.g., third octave) several modes
of the panel will be excited.

8



The radiation efficiency for a baffled* panel is (Ref. 2)

T P h c.-a Pr Ac (fi .p)1/2, f < 1 fp (1.7)

rad -\r3 Ap c

where Pr is the perimeter of the panel and f p is the acoustic
coincidence frequency. The expression for ara is valid if the
sound field and the vibrational field of the structure are
reverberant and the dimensions of the panel are greater than one-
third of an acoustic wavelength. For other frequency conditions,
the expreasion is somewhat more complicated, (Ref. 2). Substitu-
ting Equations (1.5), (1.6), and (1.7) in Equation (1.4), we
obtain

2 2 1/2

p = a d - (1.8)

For a Goodmans shaker (Goodmans Industries, Ltd., Model 390A)
the limiting rms acceleration when unloaded is about 100 g's. If
the shaker is attached to a point of a panel whose point impedance
is Rin the mean square acceleration at the point is

ad( )2 + R-an (l.9)
+ Rin

where Cnc is the mass reactance of the moving coil assembly. This
is the mean square acceleration which we use in defining Pin in
Equation (1 3). For a panel with h = 3.16 x 10-1 cm, Pp = 2.7 gm/cm3

ci = 5 x 105 cm/sec, and Pr = 610 cm, the maximum available equiva-
1nt sound pressure level in db is about

In this section we are interested in determining the power
fed into a structure by mechanical excitation. For the
specific case or a panel excited by mechanical means, whether
the panel is baffled or not is not important, as long as the
radiation damping is smaller than the mechanical damping.
However when one wants to study experimentally the equivalence
between the acoustical and mechanical power supplied to the
structure, whether the panel is baffled or unbaffled becomes
essential. For an unbaffled panel the radiation efficiency
arad is much lower than the one given in Eq. (1.7).

9



142 + 5 log1 o (Co) + 10 1 I22} (1.10)

For the panel under consideration C -: 4 ke (aluminum panel)p

and Rin - 3.12 x 105 gm/sec. The mass of the moving coil assembly
of the Goodmans shaker (Model 390A) is about 72 gin. Thus, the maxi-
mum equivalent sound pressure capability of this Goodmans shaker
with respect to the given panel is at 100 cps about 138 db and
at 1 kc about 148 db.

When an accelerometer is placed at the point to which the
shaker is connected the acceleration measured at this point may
be influenced by the reverberant field of the panel. The exact
expression is

in=a d R (1.11)
Rin +amc

where a isthe mean square acceleration indicated by the acceler-
ometer _nd a r is the mean square acceleration of the reverberant
vibrational field.

The power supplied by the shaker must be equal to the power
dissipated in the system. This equality enables us to test our
formalism experimentally. The damping in the panel-shaker system
may be expressed in terms of a loss factor

Tj =13.8(1.12)
OR-p

The dissipated power is

Pdiss ' ar (K5 V/) (1.13)

where Tp is the reverberation time of the system. Equating
Equation (1.3) to Equation (1.13), and making use cf Equation
(1.11), so that the mean square accelerations involved are
measurable quantities, we obtain

10



+ 2 1a5  ar *-r- in
r Rin R in + (02mc

Thus, measurements of a/ar will give us the experimental value

of the bracketed quantity in Equation (1.14). On the other hand,
measurements of T1 (by reverberation time measurements and the use
of Equation (1.12)1, the use of the given value of me - 72 pi in
our case) and the theoretical value of Rin as given by Equation
1.6) w11l enable us to calculate the bracketed factor in Equation1.61) by an independent method. Comparison between these two

determinations should give us a cross check for our theory. It
may be in order to summarize at this point the fundamental assump-
tions that we made and that therefore must be satisfied for fair
comparison to be possible.

a) The vibrational field of the panel is reverberant
in the sense that all or most of the modes in a
given frequency band (e.g., third octave) are parti-
cipating in the vibration and that the vibrational
field is diffuse. An experimental test for the
reverberant field is that the vibrational level of
the panel when excited by noise filtered through a
given frequency band will be essentially independent
of position.

b) The point impedance of the panel approximates that
of the point impedance of an infinite panel. Theoreti-
cally, if (a) is satisfied, so is (b).

B. EXPERIMENTAL TEST OF EQUATION (1.14)

An experimental arrangement has been designed and constructed
to test Equation (1.14) which is derived in Section A. The differ-
ence in acceleration levels at the driving point and a selected
number of points on the panel were measured. The reverberation
time of the panel-shaker system was also determined experimentally
and the bracketed expression in Equation (1.14) was calculated in
accordance with the procedure indicated at the end of Section A.
The latter calculations were then compared with the measured

values of the ratio as/ar. The results for three different cases,
undamped, lightly damped and heavily damped panels, are given in
graphical form in Figures 1.1, 1.2, and 1.3.
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1. Experimental ApDaratus

An aluminum panel 3' x 4' x 0.129" was suspended from the
ceiling on nylon cords from two corners. Otherwise it was
unrestrained. A vibration shaker was arranged to excite the
panel at a point. The location of the driving point was chosen
away from the edge of the panel. The attaching hardware was
devised to provide only transverse motion and minimize applied
torque and damping at the driving point.

The excitation was In third octave bands of random noise.
The output of the accelerometer attached at the driving point
was compared successively with the output of the accelerometer
attached at several points on the panel surface (see Figures 1.1,
1.2, and 1.3 for the exact locations which are Indicated by
circled numbers). The output of the accelerometers was recorded
on a graphic level recorder. The flow diagram of the experimental
arrangement is shown in Figure 1.4.

The reverberation time was determined using a graphic level
recorder and the reverberation-time apparatus described in
reference 4 of Appendix III. A pulse technique was used for the
reverberation time measurements; the panel was tapped with a
metallic hammer at various positions on the panel and its decay
was measured by measuring the filtered (third octave band) output
of an accelerometer. The flow diagram for the experimental
arrangeamet is shown in Figure 1.5.

2. Discussion

Although there is a general correlation between the results
of the two methods of determining the factor of proportionality

relating a. to ar, in detail the agreement is not completely
satisfactory. Further improvement In the theoretical approach
may therefore be necessary. It should be pointed out that for
the undamped and lightly damped case the vibrational field could
be assumed reverberant. The measurements taken at the three
positions on the panel did not vary by more than 2 db. In the
case of the heavily damped panel the variation in level between
the four positions, where measurements were taken, in several
instances exceeded 6 db. These large differences in level were
not confined to any particular frequency range. Moreover, the
measurements of reverberation time for the heavily damped panel
at frequencies above 3 kc are not very reliable; they were taken
at the limit of the range of the instrument used. The reverbera-
tion times above 3 kc were of the order of 10-2 sec. in this
case. de note here that some of the theoretical results from
Section B in Appendix II anticipate the higher fluctuations in
response for the very heavily damped panel.
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APPENDIX II

RESPONSE VARIATIONS IN MULTIKODAL STRUCTURES

A. INTRODUCTION

In the past few years, the response of complex structures
made up of panels, supporting members, struts, etc., to random
noise fields has received a good deal of attention at Bolt
Beranek and Newman Inc., and other research centers. At BBN we
have described not only the temporal response in a statistical
way, but the structure itself as well (Ref. 1). Thus, a struc-
ture is defined by its distribution of modal resonances in frequency,
average lengths of beams, areas of panels, etq. The results of
this procedure have been encouraging in their ability to predict
certain average characteristics of response when many modes of
vibration are involved.

For small structures in the lower frequency ranges, one may
not always have a very large number of modes contributing to the
response. One effect of this will be to cause fluctuations about
the average value in the observed response from one frequency
band to the next (Ref. 2), which we shall refer to as frequency
variation. Also, there will be variation in response as one
moves from one measuring point to another on the structure. This
spatial variation will be important as an additional source of
variation in the comparison of theoretically computed average
values and experimentally measured values. Also, one should note
that we are not concerned here with the temporal fluctuations of
the signal as a random process in time. We assume that sufficient
averaging time is used for the measurement so that variations due
to this effect are negligible.

It is ambiguous to speak merely of "the variation" since the
response variable we have in mind has not been specified. Analyt-
ically, the variation in (time) average response (velocity,
acceleration, strain, etc.) is convenient to deal with. Experi-
mentally, response is read out and plotted in logarithmic units,
and the variation visible on the experimental plot is in decibels,
not so many g's (for example). Unfortunately, a great deal must
be known about the response in order to get its logarithmic variation.
If, for example, we know the standard deviation of the acceleration,
we cannot go from this value to a standard deviation for the
response in decibels. Indeed, the entire probability density for
the response would be required to evaluate the logarithmic variation.
In some cases we shall find it possible to make this computation,
in others we will have to be satisfied with the variation in the
dynamical variable itself.
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B. THE VARIATION OF RMS RESPONSE IN BANDS OF NOISE
FOR MULTIMODAL SYSTEMS

We wish to find the variation in mean square response (veloc-
ity, say) for a structure, which has a pure tone mean square
response* given by W(w), when that structure is excited by a band
or noise of width A centered about the frequency a. The response
for band excitation or bandwidth A and spectral density 1 is

V( 0 ) , f�� 4•/ 2 W(w)dw. 
(2.1)

Let the average response 7(wo), be the response W(w) averaged
over similar structures or over difrerent positions on the same
structure. The bqnd response, to excitation of bandwidth A and
spectral density 4, or the average response 7(4)) is

1 .1+4/2 7m a wco

mv(0o) ,. '(wo) '(w)dw . mr(,o) (2.2)

Jo'_4/2

provided 7(w) varies only slightly over the bandwidth of excitation
due to changes in modal density or damping.

One measure of the variation in response ror band excitation
is the standard deviation ov of V which is found from the variance

ov 2 (2.3)
= yw & ýJ d w d , 2 O ( u )1 _ 0 2

"response" in this section means "mean square response
in time" In all cases.
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where

a2 2
w M

is the variance of the sinusoidal response,

and

~ 1 Ww2) 2
Ow( 1W2) = 2 . (2.4)

ow

In the case of multimodal systems with a high degree of modal
overlap (a situation appropriate to rooms but not as common in
complex structures) Schroeder has shown that the correlation
function for pure tone response (Ref. 3) is of the form

4u2
Ow(e)= - 2 +4a2 (2.5)

where a is the modal decay constant, related to the structural

loss factor n by

j = 2a/m .(2.6)

Also, Schroeder has shown (Ref. 4) that the distribution of
W is given by the exponential density

4'(W) = 1 e (W > o) (2.7)

which has a variance

a2 2 (2.8)w 2w

If we place Equation (2.5) in Equation (2.3) and transform
to variables
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Ml -l 02

-" l + C02  
(2.9)

dt dli - 2 dm w

then the integration becomes

2 2a

v fo f,
a

= 4 2 d j tan- 1 • (2.10)

1 2 [27 t. - r 1 'n .2N)2
Ow in (1 + T22)

• Y2 f(N)

where N - 6/2ar is the ratio of excitation bandwidth to the effec-
tive bandwidth or the resonant modes. As N-----)w, the term in the
brackets which is plotted in Figure 2.1 goes to unity and one has
a result reminiscent of a central limit type of convergence of V
on its mean value.

We note that the ratio between band variance a and pure tone
variance ow depends only on the ratio or exciting bUndwidth to
modal bandwidth only; there is no dependence on modal spacing
because or the model used. This may be because we have assumed a
high degree of modal overlap in using Schroeder's formulas, which
means that the modal bandwidth 2ra is large compared to the average
spacing between modes. In Section C of this Appendix, we extend
these results to the region of low modal density which is a more
appropriate regime for structures.
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We note from the result Equation (2.10) that the fluctuation
increases as the damping a increases. Our intuitive feeling, how-
ever, is that the response should "smooth out" as damping is added.
This is true in the low mode overlap region to be studied. For
high modal overlap however, the rapidity of fluctuation in the
pure tone response decreases with increased damping, while the
variation in response remains more or less constant. Thus if we
average this response over a fixed band of frequencies, we average
over fewer variations when the damping is higher, and we may expect
to see greater variation in the average.

The variance of band response can be expressed in terms of its
mean

2 1 2a m2

v f(Nw N mw()

2 f(N) m2

or,

where we have used Equation (2.2).

Thus, for the average v of a set of measured responses,
p

2 2 (2.11)v 2 f (CN) vp

1. Example

A large panel has a loss factor 1 = 10- 2 and an average modal
separation of 4 cps. A resonant filter is equivalent to a
rectangular filter of bandwidth wT1f. At 1 kc, this effective
modal bandwidth is 31.4 cps. Thus, on the average there is an
overlap of 7 or 8 modes which is probably sufficient to meet
Schroeder's criterion. We can ask what the standard deviation
would be in the third octave band centered on 1 kc. In this
case, the bandwidth of excitation is 260 cps and

Ar
= - 8.28 .
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From Figure 2.1, f(8.281 - 0.9 and

Thus, the standard deviation in response will be about 3 db
from the average. By repeating the measurement at several points
on the structure, this uncertainty may of course be reduced. If
we take i = 2 x l0- 3 , then rij - 6.3 cps, and N - 41.4. Thus

v 2 - v 0.224 Vp

which is only about 1 db variation about the mean. Of course, we
are now probably violating the condition of strong modal overlap,
but the point can be made that damping increases the fluctuation
in this region. This observation appears to be supported by some
of our preliminary experiments (see Appendix I).

C. THE VARIATION OF RMS RESPONSE IN MULTIMODAL STRUCTURES
WHE MODAL OVERLAP IS SMALL

In Section B we showed that the band response of the structure
was related to the pure tone response in a very simple manner. In
particular, the variance of band and pure tone response were
related as indicated in Equation (2.3). This relation is unaffected
by any assumptions of modal density, damping, etc. We may therefore
use it as a starting point in our present analysis.

Again calling W(w) the mean square pure tone response we
require its autocorrelation function Ow(t). This is found by
first considering the response amplitude

y(D) - bm gý(U)) (3.1)

where bm is an excitation coefficient and gm(w) is a harmonic
oscillator (modal) response function,
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1- .(3.2)

mm

Here, a.m is the modal resonance frequency and %m is related

to the modal loss factor by /m - %.

If W is the mean square pure tone response, then

2
w(w) ly(w)) 1 (3.3)

4e shall assume that all modes are fairly lightly damped
so that strong resonances occur at a - o%. The expression for
W may be written

W - 2 bmbn 9

m,n

(3.4)

= 1 b2 1.2
m

m

where we have assumed that gmgn*-O, when am • for any a).
This is essentially the assumption of very small moalverlap.
The expression for W is a superposition of "events" gnI of
magnitude 1 b2 spaced along the frequency axis. For a fla panel,2 m
the average modal density is constant (Ref. 5), and if we assume
a Poisson placement of modes along the axis, we can directly
compute some needed statistical properties of W. We shall also
assume that the damping is the same for all modes, am -=a - const.

Rice has shown that the correlation function of a process
like W has a correlation function given by (Ref. 6)

-Wbns(CO) g 2 *g 2  (3.5)
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where #1 is the symbol for the convolution operation defined
by

g2 - g2 LJ dw I g()121g(O )12 (3.6)

Since Igl2 has a spectrum given by,

S-(T) - r I

the spectrum of the convolution of 1gI2 is (Ref. 7)

G(Q) - e'ITI . e-"ITI - e"cITI

The inverse of this spectrum Is the convolution,

jgj12* ig2 z
ei +4a

Placing this in Equation (3.5) and requiring that O----il
as -- *0 gives

O(M) - 4 (3.7)

The result Equation (3.7) is the same as that which Schroeder
obtained for the case of high mode density given in Equation (2.5).
This strongly suggests that the correlation function for 4 is not
dependent on modal spacing. Since the correlation function is
given by Equation (3.7), the result of Equation (2.10) for the
variance of band response is unchanged. The expression for rN and
Ow will be altered however.
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The mean value of W is (Ref. 8)

(3.8)

- • ns (a) b

The variance of W is given by (Ref. 9)

a2 i n (a))b' d)Iga 1
2= -3-n5(w) b ••Ig=aw

. • (3.9)
n,-- a)) b

The excitation coefficients b depend on the type of source
used to drive the structure. If we use a shaker attached at a
point xo they are of the form

b -•B sin mlirx1/11 sin m2 TxW 2 sin m1wxj/11 sin m2 0x/ 2 (3.10)

We may form the moments of b by averaging over x, x°

Thus,
THUS,

m =mV " n. b

2 4 2 (3.11)
Cr = I ~If INI
w 2i Zra

Using Equation (3.11) in Equation (2.10), we have finally,
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We note from Equation (3.12) that as the number of modes ngA
embraced by the exciting bandwidth is increased, the variation
in response is diminished. This agrees with our intuition. Also,
as the damping is diminished, N increases and f(N) increases,
rapidly for small N and more slowly as N rises above uniV (see
Figure 2.1). Thus, the variation in response increases as damping
is reduced, again in agreement with our intuitive notions. The
behavior in the low modal density region is therefore in sharp
contrast with the behavior at high modal density as discussed in
Section B.

The low density relative variation will equal the high density
variation when

-2

or, 2ian, = 81/32 - 2.5 • (3.13)

Since 2wra is the effective bandwidth of a mode, this repre-
sents an overlapping of 2 to 3 modes, which is consistent with
Schroeder's criterion for the passage from non-overlapping to
overlapping behavior, (Ref. 3). Of course, the non-overlap
assumptions which have been made really preclude our full
acceptance of any conclusions which apply the work of this
section to a region of overlap above n. . 2ra - 1.

D. STATISTICAL ESTIMATION OF THE RESPONSE OF A HARMONIC
OSCILLATOR ATTACHED TO A FLAT PLATE

The response of a simple oscillator attached to a structure
of many degrees of freedom will be approached from the energy-
statistical method developed by Lyon and Maidanik (Ref. 10). In
subsection 1, we develop expressions for the power transfer
between the oscillator and the structure. From these we compute
the mean and the variance of the power flow, since as we indicate
in subsection 2, this power flow governs the energy level of the
oscillator when it is attached to the structure. Using the known
mean and variance of the power flow in subsection 3, we assume
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an appropriate distribution and compute confidence 11ls for the
vibration levels. It is this last step which gives engineering
value to the estimates since it defines a "safety factor" in terms
of so many db which must be added to the mean value estimates in
order to insure that the measured levels will fall below the
estimate a certain fraction, say 95%, of the time.

1. Power flow between an oscillator and a flat plate

We assume that the single substructure mode - many struc-
tural mode interaction problem may be modelled by the simple
system shown in Fig. 2.2. The transverse velocity u of the flat
plate is governed by the equation

2u 6 Io

where x is the radius of gyration of the cross section, cl is the
longitudinal plate velocity, fp is related to the loss factor
Tp for the plate by Op = qpID, ps is the surface density of the panel,
and p is the force per unit area on the plate taken positiy in
the u direction. A homogeneous plate of thickness h = 2 3 z
and area Ap has a modal density (in radian frequency space)

n = 13 A1/2rc h .(4.2)

The pressure p will be divided into the random noise sources
r which sustain the vibrations and the reaction force from the
oscillator at the attachment point x. Thus,

N_ a r df (,3

The eigenfunctions of the plate satisfy the following
relations,

14 14V *

*~*y~ ~- 8m~('4.14)
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If we expand u, r and 5(.& -. j0) in these functions,

um- j U.(t) *.(X_)

m

0(_ •) •,*.(X) *.(X- (4.5)

Br " S i( t) V.( X-)
m

then Equation (L4.1) becomes
d 2 m dUm Mm~ + ~ w2 -1

S+ 3 - __U + P o a Sm(t) (41 .6)

where, - xc nd # *In(X,)

The oscillator is shown in Figure 2.2 along with its
mechaniual diagram and mobility analog. If we consider the force
on the mass to be the dependent variable, then its equation of
motion is

df df 2 2 dUo . f (t) • (4.T)
dt7 f Of-'6

m

Here, no - PJw is the loss factor for the oscillator, and

O " (K/14)/2 is the resonance frequency.
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The symmetry between Equations (4.6) and (4.7) is improved
by the following change in variables:

0 -(K/ps) 14

ý'm = Umn( ps/K) 1/4 (4.8)

jm = *m(PsK) -1/2

Using the new variables, the equations become

d2ý m + ' djjm +o 0) 2t) (4.7a)

d2 7' +o L +wof m 2 (.a-7 odt o m -+ =_E 0=os(t)

m

Let us assume that the oscillator is excited by wideband
noise, but the plate has no excitation other than by its attach-
ment to the oscillator. The power received by the plate is:

P = rU =I 0I rU = (PK)I/2 \ ° . (4.9)

m m

The cross moments 1 have been computed for the pair of
Equations (4,7a) and (4.8a) in Reference 10. Their values are
(Ref. 11)

( P Q+ •P P) f ( d O/ d t )(S= (0•"• 02) m ,, 2(•lO

m W ,2 + (2o+2 ). (--.1o0)0 )
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The summation (4.9) is subject t2 some uncertainties since
one would not care to specify #.0 or a, precisely for all possible
experimental configurations. if ther fore describe them statieti-
cally. The transferred power is

P f(s 0" -77 _m*÷)2 + '+ppy* (4.1)

m

We assume that the frequencies om are distributed along the
frequency axis as a Poisson process with a mean value given by
Equation (4.2). The mean value of P is (Ref. 8)

; - (10+0p)j %(+p

(4.12)

where
- /

is the (real) input impedance of an infinite plate, (Ref. 12).
Eauation (4.12) may be considered the basis for mean value estimates
of power flow frc a a shaker into a structure and the vibration of
connected structures (Appendix III, Equation (2.3)).

In order to find the variation in estimated response, we will
need the variance of P. It is (Ref. 9)
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2 2 ( + )2 7rn 0 dw [ jjW -(hU )2 +(0o+ %~)ý41J 2

16p ?

(4.13)

The form of Equation (4.13) indicates fairly clearly the
sources of variation and their effects. The first term is the
effect of spatial variation; for two dimensional sinusoidal
modes its value is 9/4. The second factor is that of irregularity
in the number of modes which the oscillator is likely to encounter.
The result is in the form of a central limit theoremwhich states
that the standard deviation a will diminish relative to the
mean as the number of interacting modes

N = rn(PO+P ) (4.14)

is increased.

2. Relation between power transfer and equilibrium
vibration levels

To get the power balance equations for the system, one
multiplies Equation (4.7a) by -J.Amdt and Equation (4.8a) by
-fJdt and averages. The result is

+ Im = m•p M- m + mo

(4.15)
Po _ . 2o 0s O dt

m
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In Jference 10, it was shown that if Os m 0 and 5m is a set
of wide band random noise sources, then the power flow Into the
oscillator is

P 4 ° To COUP
M mm 0

m m

where Gm - 1and e . If we can assume that the sources sm
will keep all the structure modes at the same energy level
Om = Op = const, then

00 = (9p Oo)0coup

where

9coup " m
m

or

0 0 (4.16)
Slcoup+-o

where coup, is essentially the sum which was evaluated as P in
subsection 1. We note that if Acoup << 00, the statistics of
Pcoup are those of 00. In the event that Pcoup >> PO, one would
have G P e and no variation would exist.0 p

Our estimates of variance and mean values in the previous
subsection therefore require equal energy in the plate modes if we
expect then to predict the substructure (oscillator) response. If
the si's are caused by a point source at position x. then the
variance i response will contain an additional factor of varia-
tionVe-



3. Confidence levels for estimates of random response

We have developed expressions for the mean and variance of
power flow or response when an oscillator is attached to a flat
plate. We should now like to use these in such a way that con-
fidence levels for the estimated response may be computed. In
particular, if we calculate an average response, then we might
ask, "by how many db should one increase this estimate so that
the estimate is not exceeded in, say, 95% of the cases?" Our
purpose in this subsection is to answer this question.

We do not know the probability density O(P), but if we did,
the above requirement would be met by setting our estimate at A,
such that

J O(P) dP - 0.95 a CL (4-17)

*We shall get around our ignorance of 0 by assuming a form
for it. We require a density function which is defined for posi-
tive arguments only, and has parameters easily related to the mean
and variance. These requirements are met by the gamma distribution,

O() .( (14.18)

where (Ref. 13)

2 = 2a
m=)Au, a =a

One has then
S- m , - (1.19)

Changing variables to y = x/A, the condition Equation (4.17)
becomes
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r (a) j -B ya -1 e-Y.- CL (4,.20)

where y(a, B) is the incomplete gma function, (Ref. 14).

The function Equation (4.20) is plotted by Jahnke and hmde
(Ref. 15) for various values of CL. Using their values, we have
plotted curves of constant CL in Figure 2.4, with the ratio of
squared mean to variance as the abscissa, and 10 log A/m as the
ordinate, where

A/rn - B/a . (4.21)

The curves in Figure 2.4 essentially tell us how many db to
add to the mean value estimate in order to ensure that a fraction
CL of the measured values of response will fall below the estimate.
Thus for example, if

N - in (0+p) - 10

then a - 4.44 and one would have to add 2.8 db for a confidence
level of 95% or 3.8 db for a confidence level of 99%. If the
plate in driven by a point source shaker so that an additional
variance factor arises from the modal energy uncertainty, then
the relevant value of a is

9_- N - 1 .96 .

Referring to Figure 2.4, a confidence level of 950 would
require that we add 3.9 db to the mean value estimate. For 99%
confidence, we would have to add 5.2 db.
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APPENDIX III

ENERGY SHARING BETWEEN CONNECTED STRUCTURES

A. INTRODUCTION

When large, complex structures are designed to operate in
environments that may cause them to vibrate (e.g., intense sound
fields, boundary layer turbulence, etc.), the design engineer
is usually concerned with the response of a particular substruc-
ture that may be susceptible to malfunction (e.g., components of
the structures that carry electronic equipment). We wish to
develop methods for estimating the vibration of substructures
attached to large complex structures. We define a large complex
structure such that it has high modal density. and its modes are
fairly uniformly distributed in frequency space. We assume that
the substructure has its own modal density and that the method of
attachment of the substructure to the large structure is known.
We further assume that the vibration of the structure is pre-
dominantly resonant, i.e., the modes of vibration of both the
structure and substructure are not critically damped. Under this
assumption one may treat the interaction between the structures
by considering the interaction of one set of oscillators (modes)
that is coupled in a known manner to another set.

The power flow between two linearly coupled oscillators has
been studied by Lyon and Maidanik (Ref. 1). The formalism has
been extended to cover the case of the power flow between two sets
of coupled oscillators. The theory has also been applied specifi-
cally to the interaction between a reverberant acoustical field
(considered to have a very high modal density), and a structure,
e.g., a beam, a panel or a combination of both, (Ref. 2). It is
possible to treat the connected structu'e problem by the same
methods, as we shall show.

The coupling is strongest between modes of the structure (high
modal density assumed) and a mode of the substructure when they lie
close in frequency space. Modes which lie outside each others pass-
bands are usually weakly coupled. In a given frequency band
centered about a given c (w = angular frequency), if Oss is the
modal energy of the substructure and e. is the modal energy of the
structure, then if the structure is excited by external source
fields, the relation between e., and es can be shown to be (Ref. 1)

ssess = (1.1)

where
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5 5 ______(1.2)

The ratio (1.2) is called the coupling factor for the sub-
structure; %c and rs, are the loss factors associated with the
coupling and the subFstructure damping respectively. While ijsg
is related to the power dissipated internally, fc is related to
the power lost (or gained) by the substructure to (or from) the
structure via the coupling (c.f., Ra = aMp T'--d for the
acoustic case (Ref. 1)). ra - p f

Equation (1.1) states that in the steady state condition the
modes of the substructure attain modal energies that are a fraction
p of the modal energy of the structure. For se> a 5 ,
and for nc<<n,., ess<< ( . 5-

Equation (1.1) is an approximate statistical formula, (Ref. 1).
The approximation is better as the number of interacting modes in
a given frequency band increases. This is so because the formula
is derived by averaging a summation over modes that lie in the
frequency band (e.g., octave or third-octave). Thus one would
expect the approximation to be better the higher the modal density
of the structures and the wider the frequency band chosen. One
could get an idea of the errors involved in the smoothing pro-
cedures by computing the variances of the fluctuations in the
responses of the structure and substructures; this is being
reported in Appendix II. In this Appendix for the present we
concentrate on examining whether the general assumptions and ideas
expressed with respect to Equation (1.1) are in keeping with exper-
imental data.

B. BEAM CANTILEVERED TO FLAT PLATE

To test Equation (1.1), we choose to examine a beam canti-
levered to a flat plate. The beam and the plate are so chosen
that the coupling loss factor %c may be conveniently estimated.
Moreover, the dimensions of the beam and the plate are such that
the conditions for the validity of Equation (1.1) are approxi-
mately satisfied. Below we discuss briefly the theoretical and
experimental results involved in the test.

1. Theoretical Considerations

To determine %Ic, we assume that the beam is excited by an
external source, and we calculate the power loss to the plate
via the coupling. The power flow into the plate from the beam
is given by
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Pbp " Re ) (2.1)

where ZM is the moment impedance of the plate as seen by the

beam at the Junction and M4 is the mean square moment generated
at the Junction by the vibration of the beam.

In terms of Ic the power that the beam loses to the plate

through the coupling is given by

Pbp=%w dbvb ' (2.2)

where vb is the mean square velocity of the beam averaged in time

and space and Mb is the total mass of the beam.

Equating Equations (2.1) and (2.2) we have

c b-a- Rejpj. (2.3)

If a typical dimension of the Junction is small compared to
a wavelength in thc beam and plate, then (Ref. 2)

Re M(2.4J)

where Pp is the density, h is the thickness, and cp is the
longituainal velocity of &he plate.

We have now to determine M . Consider the analog circuit
of Figure 3.1 depicting the coupling between the plate and beam.
The flow quantity is the angular velocity and the potential drop
is the moment M..zM and Z' are the moment mpedances of the
plate and the beam as seen by the beam and plate respectively.
We note from Figure 3.1 that the mean square moment is given by
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M . M~ z M+IM (2.5)
b Zp

where 14 is the mean square moment or the beam, M is related

to the mean square velocity on the beam, vb by the equation

b 2 2 2 2-2 -2
M 4PbcblSbVb to (2.6)

where Ph is the density, cb the longitudinal velocity, Kb the

radius 6f gyration and Sb the cross-sectional area or the beam.

Combining Equations (2.3), (2.4), (2.5), and (2.6) we obtain

Tic = h, (2.7)

where hb is the thickness, w the width, 2 the length or the beam,
and

zM 
2

The expression for i may be written in the form (Ref. 2)

where

ph3c2(wb)

32p hc p a
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kb being the wavenumber for the beam. For a circular beam of

radius r, r loge (kpr)k r<<l],(Ref. 2). For a rectangular

beam the expression for r is lacking. We assume that for our
arrangement (see Figure 3.2) the absolute value of r is the order
of unity. Thus, for the case under consideration here (pp-Pb,

hphb, Cp-cb, w - 4 cm and %mO.7 cn- 1 at 4 kc), we may snt t-I

in the frequency range from 50 cps to 12 kc. One should note that
a better approximation may lead to somewhat lower values of t and
hence smaller %.

2. Experimental Considerations and Results

Equation (1.1) as it is given is not convenient for practical
purposes since one cannot measure ess and 6s directly. We have to
express the moda. energies in terms of measurable quantities. The
energ of a structure (a beam or a plate) in a given frequency
bandr(e.g., third-octave or octave) is given by

Ms~

E s = -- -- (2.8)

where Sais the acceleration spectral uensity of the structure
in the frequency band h, w is the center frequency of the band
and Ms is the total mass of the structure. The modal energy of
the vibration of the structure is given by

9 Es MSaes = w)• = - (2.9)
w n(u))

where n(CD) is the average modal density in the band &u.

Substituting Equation (2.9) in Equation (1.1) and making
the appropriate identification of the quantities, we obtain

Sa n (w)M_
Sb _b _ %c (2.10)
Sa np(DK Tic + %Sp

where subscripts p and b refer to quantities related to the
plate and the beam respectively.

Equation (2.10) is now in a form where the parameters involved
are measurable.
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The beam-plate system is shown in schematic form in Figure
3.2. The dimensions of the aluminum beam are 95" x 1.5" x 1/8"
and those of the plate 72" x 48" x 1/8". The choice of a rather
thick beam and plate is made to avoid excessive loading of the
structures by the accelerometers at high frequencies. The beam
is attached perpendicularly to the plate by epoxy. The positions
on the plate and beam where measurements were taken is indicated
in Figure 3.2 by the circled numbers.

The modal density of the plate, n , is measured by exciting
the plate with a shaker and counting p&re tone resonances. It
is found that the modal density of the plate conforms closely to
its asymptotic theoretical value, which is given by (Ref. 3)

n p(W) - (2.11)

where A is the area of the plate.

For our plate np(04-3. 8 x 10-2 modes/radian per second.
Deviation from the value-of n (w) as given by Equation (2.11)
occurs only below about 50 cp9. We shall not be concerned with
frequencies below 50 cps.

The modal density of the beam is measured in the same way.
It is found that the measured modal density of the beam agrees
fairly well with the asymptotic theoretical value given by the
formula (Ref. 3)

nb(mO) Ti ý. `!";

It is of interest to note that above 6 kc the modal density
of the beam exceeds the value which is given by Equation (2.12)
and slowly approaches the modal density of a plate as the frequency
is increased. From these measurements the quantity

10 log10 nb(a))MD (2.13)i0 Po1 p( )Mb

is determined. This quantity is given in graphical form in Figure
3.4. The factor given by Equation (2.13) represents the ratio
between the acceleration spectral densities of the plate and the
beam (in db) for the case of "thermal equilibrium" i.e., equi-
partition of modal energy (8es - es).
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The quantity Tib is determined by measuring the reverberation
time of the beam (unattached)(Ref. 4). It is related to the
reverberation time Tb by the equation

% - 1 . (2.14)
'Db

The loss factor Tb is determined for two cases, an undamped
beam and a damped beam. The damping was achieved by attaching
damping tape to the beam. Using the theoretical values of Tic
[Equation (2.7) with ý = 1] ana the experimental values of
Equations (2.13) and (2.14), Sb/Sa is determined from Equation
(2.10). The results are given in graphical form in Figures 3.3
and 3.4.

We then proceed to measure the quantity St/Sap directly in
order to compare it with the values obtained above. This con-
stitutes a test of the validity of Equation (2.10).

A block diagram of the system for measuring St/Sa is shown
in Figure 3.5. The acceleration is measured (in thira-octave and
octave bands) successively at selected points on the plate and
beam (see Figure 3.2) and simultaneously at point P on the plate.
The difference (in db) between the acceleration at a given point
and at point P is thus obtained. In a given frequency band these
differences are averaged over all the selected points of the beam
and, separately, over all the selected points on the plate. The
difference between these averages gives the value of Sft/Sa in the
frequency band. The values or S&/Sa so obtained are giveR in
graphical form in Figures 3.3 and 3.4 for two cases of damping;
the two cases are the same as those for which reverberation time
measurements were made.

It should be pointed out that the beam and the plate are
found to be fairly reverberant in the sense that the accelerations
(normalized by the acceleration at point P) taken at the selected
points on the plate and the beam are found to be within 1 or 2 db
of their averaged values. Note that this indicates that the vibra-
tion of the structures is predominantly resonant, a necessary
condition for the validity of Equation (2.10).

The ci~nparison between the direct measurement of a and
the indirect measurement (where the right-hand side of Equation
(2.10) is computed) is shown graphically in Figures 3.3. and 3.4.
We feel the agreement between the values would be satisfactory
as an engineering estimate. The point-to-point variations are
in some cases, however, quite large. It was pointed out earlier
that when the number of modes either in the plate and/or the beam
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that participate in the coupling in any given frequency band is
not large, fluctuations from the ideal case, which Equation (2.10)
represents, are to be expected. Although the number of modes in
the plate in any given third-octave band is fairly large, the
number of beam modes is rather small. It is interesting to note
that the fluctuations are greatly suppressed when measurements
are conducted in octave instead of third-octave bands.

The results obtained indicate that the method developed above
for estimating the vibrations of substructures may prove fruitful.
Some refinements, especially with respect to estimating variances
from the average values, would prove useful.

C. THE VIBRATION OF CONNECTED PANELS

1. Introduction

We shall now consiaer a connected structure which is a
typical part of electronic packages. The racks, housings, and
chassis of electronics systems, for example, are made up of
plates or panels. We ask how much a subpanel will vibrate when
its mounting rack is randomly excited. In order to answer this
question eventually, we investigate here the flow of vibrational
power between plates which are attached to each other by welded
seams. We do not intend to e4lore each of the great number of
Joints between plates which are in use but rather to apply the
general methods which have been previously outlined to a few
types of connection.

Our fundamental formula is the energy ratio of two coupled
modes, given in Equation (1.1). If the structures are reverberant,
as we shall assume, we can eliminate the modal energies in favor
of the "energy velocity" spectral densities and obtain

sv nRs s5  8 (3.1)

where n is the modal density and M the mass of the respective
structure.

For a flat plate, the modal density is

aAn C. (3.2)
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where A is the (one-side) surface area, h the thickness of the
plate, and c, is the plate longitudinal wave velocity. The mass
of the plate is M = pAh, where p is the mass density. Hence,
one obtains for connected plates

Sv Iph 2 c )

=s = I Cýs as (3.3)
(vph 2Ci) s

For plates of the same material we have simply

Sv I hs
Sv F = h 0 s (3.4)

This formula allows us to calculate the vibration level of
the substructure if we know the thickness ratio and the coefficient
85

The determination of ss will occupy us in tbC next two
sections. If the substructare is excited, then Lsamay be defined
in terms of the power it loses by transmission and dissipation in
the following manner

ss Power transferred to structure
P1 = Total power lost (3.5)

If these quantities are interpreted in terms of loss factors,
Equation (1.1) results. Besides other results, we will present in
subsection 2. theoretical expressions for the coupling loss factor
of a plate which is clamped to a second plate. In subsection 3.
we will report related measurements. The technique used in sub-
section 2.iswave theory. The plates are taken as infinitely large
and a reverberant field is simulated by averaging over all direc-
tions. The boundary absorption equations used in subsection 3.
are derived from a plate analogy to room acoustics. The absorption
is obtained by measuring the reverberation time.
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2. Flexural Wave Transmission between Clamped Panels

We consider a thin infinite half-plate 1 Joined under a
right angle to a thin infinite plate 2 (Figure 3.6). We assume
that the plates are Joined as if they were made from one piece.
The Joint may be approximated by a continuous welded or soldered
seam.

Let u, v, w, be the displacements in the directions x, y, z.
For small displacements v a 0. At the Joint x = 0, z = 0, the
transverse displacements of both plates must vanish, u - 0,
w M 0, (u refers to plate 2 and w to plate 1, but it is not
necessary to use indices). The conservation of the rdght angle
demands that 6w/•x - -- uz. Let 0 be the moment (per unit
length) acting on plate 1 at the Joint (Figure 3.7).

From Love (Ref. 5) the bending moment along the straight
edge of a plate is

G = -D[ 2w/6n 2+o2 w/As2 (3.6)

where n is the coordinate out of the edge (a x) and s the
coordinate along the edge(_ y), and

D = pc h 3/12 (3.7)

is the flexural stiffness of the plate. Applying this to each
of the three half plates we obtain

Di 2w/22 - D2 ( 2 u/uAz 2 )-o - D2 ( 2u/ A 2)+o (3.8)

Our set of boundary conditions is now complete.

The differential quation fo small transverse vibrations
of a thin plate is [DVR + ph/t2 ] w - 0. For harmonic time
dependence exp iwt and exp(-ikysina) on y we get the solutions

exp(+ikxcoscx) and exp(+kx'Vl+sin a) in x. We calculate the
transnission of a single wave

w - exp(imt - ik 1ysina - iklxcosa) , (3.9)
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incident in plate 1 at an angle of incidence a (Fiiure 3.6).
Satisfying the boundary conditions we find for the wave trans-
mitted into plate 2,

u = C exp(iwt - ik 2 ysinO - lk 2 zcosf) (3.10)

where

C = -(l+A) klr/k2  (3.11)

= -21(klr/k 2 )cosa[icosa - -Ilsi-' + r(icos5 -1+sin 0-) ]-1

r = Dlk 1/2D 2 k2  , (3.12)

and A is the amplitude of the reflected wave. To preserve the
dependence on y the angles a and P are related by

klsina = k2 sino (3.13)

The mean square velocity on plate 2 is

v2 1 .2 Cv2= ,.

2~ 2

(wklr/k 2 ) 2 co2 a

2 22
1+ l-"'a1(k/ 2Q 2

(3.14)

If the transmission from plate 1 into plate 2 is small, we
can take the amplitude of the reflected wave as A = -1, so that
the squared velocity, averaged over plate l, is

v2 = W2 (3.15)

which is independent of a.
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In a reverberant and diffuse field waves come from all
directions with equal probability. The angular average of
Equation (3.14) can be readily found in two special cases. For
equal plates

<v2> I2a 1 (3.16)

and for plate 1 much thinner than plate 2 (kl1>>k 2 , DI<<D2 , r<<l).

2Q.2 1 ýf~l2 k k 2  k3 D2
a "2arcsin 2 + sin2arcs2n 2 1 12 (3217)

The average power per unit boundary length carried by a wave
incident at the angle a (with amplitude 1) equals the average
energy density

E , 2p h 2  (3.18)

times the group velocity

oS M [k/-6mw] 1 - 2w/k (3.19)

times cosa . The corresponding power transmitted to plate 2
(and hence lost to plate 1) is

Plost "C 12 p h2 w3 k 2 lcosp (3.20)

The ratio of the angular averages is the absorption coefficient
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r•/2Cos= a l-(k,/ký2)sl• da

S-v/2 l1,qT-ain2.&,,-(kl/k 2)2 sin r ,• i3.n VlkA/)2) sin a,•r

(3.21)

which can be calculated readily in two special cases. (The
integrand is to be taken as zero where it is complex.) For
equal plates we find

.y= 4/27 , (3.22)

and for plate 1 much weaker than plate 2

r k2  k 2] D1L 1& 2 arcsin + sin2arcsin (3.23)

(dIe are looking at plate 2 as a boundary absorber attached
to plate 1. NLte that this step is an intermediate step in the
calculation of ss which in turn is needed to calculate the excita-
tion of plate 1 when plate 2 is drivený

It remains to relate y to •c. This is easily done using the
formula, (Ref. 6) for the reverberation time T

2.2 . yc L
--- + '* ,(3.24)

where L is the length of the absorbing boundary. We may inter-
pret the transmission as a coupling loss factor

Yc 12L

which, together with the internal loss factor qi allows us to
compute the coupling factor
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11ci (3.26)

with plate 1 assuming the role of the substructure and plate 2
the role of the structure.

3. Experimental Study

Measurements were made on one aluminum plate and on two
steel plates ("half plates") joined to heavier plates of similar
material. The light plates were cut irregularly to promote
diffuse conditions. The heavier plates were damped to tipproxi-
mate infinite plates when seen from the attached light plate.

The light plate was struck and the resulting vibration was
sensed with an accelerometer (Olennite 314). After filtering
through a third-octave band filter set (B+K 1609) the decay time
was measured (Ref. 4) (BBN Reverberation Time Meter). The
recorded times were converted into loss factors and absorption
coefficients according to Equations (3.25) and (3.26). The results
are plotted in Figures 3.8-10 together with theoretical values of
y from Equation (3.26).

We started with a thin aluminum plate which we glued to a heavy
one by means of an artificial resin (Fig. 3.8). The measured
values of the absorption coefficient turned out to be large in com-
parison with theory. We suspected that some imperfections in the
joint or the glue itself was causing the excess absorption. This
suspicion was confirmed when we measured the total loss factor i'
of the same plate glued to a heavy steel bar. The difference
between I' and the free plate loss factor i represents the losses
of the joint and is considerable.

We consequently went from the glued joint to an all-metal
joint. Because of the large size of the plates we had difficulties
in the production of the test object. The next plate we tested
was a thin steel plate welded to a heavy one (Figure 3.9).

The welded joint was not uniform and we found again absorption
values which were higher than the predicted ones. We finally
obtained a very good weld on a steel plate joined to another one
about three times as thick. In this case the agreement between
experiment and theory was excellent. It seems that the slightly
increased torsional stiffness of the joint (due to the welded
depositions) did not make the theory unapplicable.
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Good agreement between the presented theory and experiments
cannot be expected at low frequencies where the Joint is only a
few flexural wavelengths long and also at high frequencies (above
coincidence) where radiation dominates the internal loss factor.

4. Vibratory Response of Cantilevered Panel

In subsection 1, we derived an expression shown in Equation
(3.4), for the vibratory response of a panel substructure attached
to another randomly excited panel structure. We should like to
apply this formula to the welded plate configuration shown in
Figure 3.10. ln terms of the thicknesscs hl and h2 of plates 1
and 2 respectively and the coupling and loss factors, the acceler-
tion spectrum ratio is

S 8I h2 \

4 Fi7 r~~ (3.27)

For the plates studied, hl = .057" and h 2 - .118". The
coupling Yic is determined from the measured value of y given in
Figure 3.10 by using Equation (3.26). The substructure damping
ol was measured with and aithout applied damping. A comparison
of the measured response ratio with the computed values without
applied damping on plate 1 is shown in Figure 3.13. A similar
comparison is shown with plate 1 (substructure panel) more heavily
damped.

Although the agreement achieved is not precise, the values
tend to lie within a 3 db range of each other and we would probably
regard the calculations as a reasonable engineering estimate of
the observed response.

D. REDUCTION OF BEAM-PLATE COUPLING BY NOTCHING BEAM

The beam which was described in Figure 3.2 was notched for
the purpose of reducing the plate-beam coupling. The location of
the notch and definitions of dimensions are shown in Figure 3.11.
Since the reduction of coupling is only effective in reducing the
vibration when %c < %, the experiments were run with applied
damping on the beam. The octave band results with no notch were
shown in Figure ?.4 and are reproduced in Figure 3.12 under the
caption w. - 1.5', Is = 0.
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The width of the Joining stud is w. and its length is is.
The ratio of beam to plate vibration is shown for various values
of these dimensions in Figure 3.12. Qualitatively the longer and
thinner the stud, the greater is the reduction in vibration. We
do notice a resonance effect for the stud is = 0.8", w. = 0.1"
at about 6 kc. This corresponds to ks -1 where k is the wavenumber
for flexural waves.
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