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'PREFACE

Part of the RAND research program consists of basic

support studies in mathematics, In the present

Memorandum, the authors investigate computer methods of

solving systems of differential equations through the

so-called laplace-transformation technique.

Applications of this technique are important in

connection with the use of invariant imbedding in the

study of time-dependent transport processes.
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SUMmARY

The usual analytic methods of inverting the Laplace

transformation--such as the Bromwich-Wagner integral in

the complex plane-are mostly impractical for numerical

work. This Memorandum discusses a method applicable to

the numerical analysis of the inverse Laplace transform

and includes numerical examplek illustrating this method.
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"A NUMERICAL INVERSION OF THE LAPLACE TRANSFORM

1. INTRODUCTION

When one is interested in obtaining numerical

solutions of systems of differential equations, one

often finds numerical integration techniques to be too

time-consuming, even when employing high-speed electronic

computers. It would then be desirable to be able to

use other techniques for solving such a system of

differential equations. The Laplace transformation

immediately suggests itself, and its satisfactory use in

numerical work depends on the numerical analyst's ability

to recover the function f(t), given its Laplace

transformation F(s).

The usual analytic methods of inverting the Laplace

transformation-such as the Bromwich-Wagner integral of

F(s) in the complex plane-are mostly impractical for

numerical work. This paper discusses a method applicable

to the numerical analysis of the inverse Laplace trans-

form and includes numerical examples illustrating this

method. We shall represent f(t) by a series of

orthogonal functions and then find the coefficients of

this expansion from the values of F(s) on a set of

equidistant points on the positive real line. For

examples of this technique applied to other sets of

orthogonal functions, see Papoulis's original article [i].

(Further examples can be found in '13].)



2. PRELIMINARY DISCUSSION

Throughout this paper we shall assume that f(t) is

continuous on [0,oo) and approaches a finite limit as

t co,. Letting

l F) F(s) Lap(f) f e-stf(t)dt,
0

we can make the change of variables r = e-t; then (2.1)

can be written as

(2.2) F (s)- r If(In l/r)dr.

0

The function g(r), defined by

g(r) - f(In l/r),

is continuous on [0,i], and we can expand g(r) in a

series of polynomials that are complete and orthogonal

on [o,i]. Let*

(2.3) g(r) - ckXk(r),
k-0

i'where (0k) is the set of these complete orthogonal

polynomials. If we write

n
The notation of equation (2.3) means that Z cO , g

in 2 [ 210,j; that is, k-0

urn f X olkO(r) - g(r) dr- 0.
- liOm

g;t
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n
(2.( ) a( -

rn0 Jn

and let

(2.5)- A mf [0(x)J 2 ft,
0

(of course, one could pick an orthonormal set (0 but

it is more convenient to use an unnormalized form, as we

shall see later.), then we have

(2.6) ck00kf f (r)g(r)dr
0
k IX ajk rif(in I/Or~

J=O' 0

k
Z z a y(o + 1).

Therefore, we can determine the coefficients ck---and

thus the function f(t) - g(e't)---by knowing V(s) only

at the integral points 1,2,....

In general, by making the change of variable

r -e- where a is any positive constant, we obtain

(2.7) p((ka) - rk-1 f (3/a In I/r)dr,

0

and by repeating the above procedure we can recover the

funation f(t) by knowing its, Laplace transform only at

the points a, 20..... While equations (2.6),and (2.7)

motivate the u"e of orthogonal polynomials, and demonstrate

I



that f(t) can be recovered by knowing its Laplace

transform at only a sequence of equally spaced points. on

the real line, we shall not use equation (2.6) but

instead shall meke use of a more practical technique based

on the orthogonal set (on). Equation (2.6)ý is clumsy

for numerical work since the coefficients ajk get very

large in magnitude and oscillate in sign.

3. THE ORTHOGONAL POLYNOMIALS-

The Legendre polynomials Pn (x) are complete and.

orthogonal on 1- 1, 1]; that is, they satisfy

--1

They are easily computed by the recursive relation

(3,1) (n + l)Pn+l(X) = (2n + l)XPn(X) -nnl()

where Po(X) = I Pl(x) = x. The Legendre polynomials

S~are described: and tabulated in [ig].

S~We then define the "shifted: Legendre polynomials"

*~n(X) by "

(3'.2) *n(x) - Pn(21-- 1),

so that (¢]Is a complete orthogonal set on [O,1],

and

',2o f~ ~ 4~xlCk(x)kdxdc MI6 k

TPurheyareos, we have the recursive relation

( --P - -- -



(3.J&) (n + 1)Dn~l(x) - (2n + l)(2x - 1)4n(X) - n0n1 (x),

where 0(x) I s, 01(x) 2x - 1.

We now derive a useful property of the shifted

Legendre polynomials, one Define

(3.5) Gn(a*s) -f 0n(e"at)-Sdt Lapl[n(ef-t)],

0

for a > 0 and n - 0,1,2,... To derive an expression

for Gn in closed form, we proceed as follows. From

(2.4),, we see that

n
(3.6) n(eat) Z Ma t

n m-0

and hence

no

" s~s~o) ' .(s+nlo)'

where is a polynomial of degree < n.

Consider the case n > I. (For n - 0 we calculate

immediately 0(cas) - Lap(l) =../s.) By 0*1e change of

variables x -et, we get

(3.8) 0n(Gko) - f 1 n(x) d•
0

SFor 1 N I < n, xk-1 is a linear combination of

_j; further, because of the orthogonality. of r n] on

,On



sI•

S0,i], the integral in (3.8)vanishes. Thus we obtain

Gn~ok) 0for I•lk np

and has zeros at s - a,2c,.., ,nc. Hence, we have

SBn(a - a)(s - 2a)...(S- n-),

where Bn is some constant, and
Bn

I (3.9) Gnc7,s) .A • •'I

From (3.9), it follows that

lim Son(os) - (-1)"YB

and fro (3.7) we have

sO n( )ia m (0).lim s •~,s) -aon - (.).

The recursive formula (3.4) implies that On(O) -

and therefore Bn.- 1, and we, have our desired result:

(3.10) Gn(a~ s) - for n,-l,2,...,
rn-i

G0(aos) -

4. NUMERCAL INVERION PFORMULA

If

(4.,1):) f oI( .),

n-0n
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then by letting' r = in (4.1) and taking the Laplace

transformation of the result, we would expect that

k-I
(4,,2) F(ko) X z cnGn(ka),

since G.n(c,ka) ivanishes for k K n. A rigorous Justl--

fication of equation (4.2) is given in Sec. 7 of this

'Memorandum. From (3.10) we have

I k-i k-2 ,k-nS(Jf.3) Cn(a,kc) " . ... aor n

GO0 (cT,ka) 1

Therefore, from (4f.2), we obtain

.-(ka) " + Z Rr for k = 2,3,....
inl

Equation (f.4) gives us the following formula for

sequentially finding the coefficients C

(4.5) cO -P(a),

an naF(na) n+l n+2. 2n-I
S--iC 2 n-nl+li)+ ....

nOF(na) - -n2-1)ci

Therefore, to determine the first n coefficients-

r•. lit is, necessary to know the values of

- - - -- - - - - - - - - - - - - - - - - -, -

i,4
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the Laplace transform only at the points

5. METHOD OF NUMERICAL INVERSION

When inverting the Laplace transform numerically, we

wish to represent f(t) by the sum Z c 0 (e7t), andn n
then determine the coefficients ca using formula (4.5).

One should first determine the optimum a to use.

Although in some practical problems it is often conven-

lent to select a before computing the Laplace transform

at a,2ao,..., we shall assume that the Laplace transform

we are using is easy to calculate at all points on the

positive real line and that we have complete freedom in

selecting a. We shall consider the case in which we

know that f(t), in additionr to being continuous and,

finite on [ O,cD ], has the following properties:

f(O) 0,0

f(t) its monotonic on the positive real line.

In other words, f(t) behaves very much like

c- at),

where a and a are constants, a > 0.

Since we wish to approximate f(t) with as few

teom as possible in the 0n(e-t) series, f(t,

should be well represented as a linear combination of a
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few terms of the form e Let us then write

(5.1): f(t) * (1 -eL t + h(t),

"%.here h(t) v 'Q2e-Ot + a3e'3lt +

We therefore wish to minimize the contribution of

h(t) Writing

(5.2) F(s) c' - + H(s),

we shall minimize H(s) for positive s. We therefore

desire that

.!0.

or

(5.3) sF(s) (s+8) ~

Picking a (and a) such that (5.3) is a best least-

squares approximation for some set sl.s2,.'**,sN of

positive real points, we obtain

(5.4) AB- NDNO -AF

where

N N
A 1 Z s(si), B- X s 2 F(si)

i-I i-i

IN 212N 3
SC. £ F(st), D - (si)

ialil
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(If we did not have the condition f(O) - 0, we would

instead determine a, a, a' such that

F(s) a• + - )

After using (5.4) to obtain a, we then can use (4.5)

to determine the coefficients cn in the representation

f(t) cn(r), Where t I- n r.

We use the recursive relation (3.4) to evaluate the On

numerically.

Since f(--. In r) is continuous on the closed

set [0,i], it is known (see [5]) that, although

XZ Cnn(r) may not converge for all r, the second mean

of the partial sums of the series will always converge

pointwise to the function; that is, letting
n

(5.5) sn(t) - z 1,,.ckok(e'6a),

nn(an5(6) (t) - 141 r n(tt )
nc-O

•(2) (t)-- . I n )(t)

we have

(5.6)ý li= an(2)(t) -f(t)

for all t.
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For numerical work, n(2) converges too, slowly

for accurate determination of f. Rapid convergence is

necessary, since it is difficult to determine the a,

accurately for large n. A good procedure is to

consider the weighted mean,

S~n
A £ ks k(t)

(5.7) "k- 2 £ksk(t),
.n n n(n+l)

XZ:k
k-l

which will converge reasonably rapidly for most practical

problems in which f(t) is well behaved. The next

section of this Memorandum includes examples of numerical

computations of the inverse of the Laplace transforma-

tion using the method described here.

6. NUMERICAL EXAMPLES

In practical applications, the accuracy of the

numerically obtained inverse of F(s) is limited by

the accuracy with which F(s) is known. As can be soen

from equation (4.5), the number of coefficients an

that can be determined with reasonable accuracy depends

on the accuracy with which the quantities F(na) are

known. 7he accuracy of the numerically obtained value

of f(t) will then depend on the rapidity of convergence

of the sequence (t).n

Our numerical examples w-11 then be taken from

results obtained fr O coputation of the Inverse of the
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Laplace transform of known functions using the IBM-7090

computer. We consider the following functions to

illustrate the results of our method:

(1 Fs),+ 7.r/2 s -sin t, for t er/
:,i ~ ~(6.1) F(s)- s _ e-•2s for which, f (t) m sntfo <•2

s(So. + L for, t > T/2;ý

(6.2) F(s) e- for which t M 1,
Ss '9-for t > 1.

We use the least-squares formula (5.4) at five points-

si = i, i - l,...,5-to determine the a used in

equations (4.5). The F(s) we used were computed on

the IB?4-7090 in two ways: (a) F(s) was calculated in
"single precision" arithmetic, which allows eight

significant decimal digits accuracy; (b) F(s) was

calculated as above, and a random fractional error in the

interval [--10-, +10-5] was introduced into the result to

provide a final F(s) accurate to only five significant

decimal digits. In both of these cases, we then

computed the sequence ýn(t) using the full "single-

precision" accuracy of the IB1-7090. By computing the

inverses of several Laplace transforms, we empirically

discovered that a8  usually gives the best results when

F(s) is known to within eight significant decimal

digits, and 5 usually gives the best results for
5

F(s) 3)Lnmown to five signifioant digits.

_.. . . . .. .i
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The functions (6.1) and (6.2) above test our inversion

method when f(t) has the desired properties of monotonicity

and boundedness but does not resemble an exponential.

Function (6.2) has the added difficulty of having a

"sharp corner." For function (6.1) we numerically

obtain a = 0.87826, and for function (6.2) we get

a = 0.84565. Results of our numerical inversion of

these functions are shown in Tables I and 2, and the

second is exhibited graphically in Fig. 1.

7. A MATHEMATICAL DISCUSSION

The purpose of this section is to Justify equation

(4.2) on a rigorous basis, Again making the change of

Svariables r - e- O, let

g(r) - f( An.Li r).,

so that (4.1) becomes

CDg(r) 17. an~n(r).
n-0O..

Let < , > be the standard inner product in '72[ O,1];

that is,

(7.1) <ft1 f 2 > mfi f,(x)f2(x)dx.
0

Hence, from the orthogonality of (in.), we got

(7.2.) enAn ->,P

S .... . . ..... .. . .
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Table I

INVERSION OF THE FUNCTION (6.1)

"t f(t) ,(a) [ a) a

o.1 0.09983 O.10018 0.09950 O.09982
0.2 o.19867 0.20070 0.20007 0.20044
0.3 0.29552 0.29985 0.29787 0.29995
o.4 0.38942 0.39668 0.39198 0.39701
0.5 0.47943 o.48887 o.48219 o.48925
0.6 0.56464 0.57423 0.56779 0.57449

0.7 o.64422 0.65122 0.64746 0.65129

0.8 0.71736 0.71908 0.71966 0.71896
0.9 0.78333 0.77769 0.78318 O.77740
i.0 0.84147 0.82743 0.83736 0.82703
1.1 0.89121 0.86896 0.88218 0.86853
1.2 0.93204 0.90316 0o.91815 0.90274

1.3 0.96356 0.93093 0.94616 0.93057
1.4 0.98545 0.95319 0.96732 0.95293
1.5 0.99749 0.97081 0.98277 0.97067
1..6 1.00000 o.98456 0.99364 0.98455
1.7 1.00000 0.99514 i.0o01 0.99526
1.8 1.00000 1.0031 1.0056 1.0034
1.9 1.00000 1.0091 1.0082 1. 0094

2.0 1.00000 1.0133 1.0095 1.0138
3,,'0 1.00000 1.0175 1.0041 1.0178
4.0 1.00000 1.0102 1.0037 1.0097
5.0 1.00ooo i.0063 1.0052 1.0053
6.0 1.00000 1.0045 i.0062 1.0033
7.0 1.00000 1.0038 1.0067 1.0025
8.0 1.00000 1.0035 1. 0069 1.0021
9.0 1.00000 1.0034 1.0070 1.0020

10.0 1.00000 1.0034 1.0070 i0oo19
oo 11.00000 1.0033 1.0070 1.0019

(a) Results obtained with F(s) given
to 8 significant digits.

(b) Results obtained with F(s) given
,to ony 5 significant digits.
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Table 2

INVERSION OF THE FUNCTION F(s) I 2e-

0.1 0.1 0.09503 0.09971 0.09527
0.2 0.2 0.19919 0,20221 0.19932
0.3 0.3 0.31035 0.30070 0o. 31023
0.4 o.4 0.42236 o.40346 o.42210
0.5 0.5 o.52943 0.51122 0.52918
o.6 0.6 0.62734 o.61827 0.62720
0.7 0.7 0.71354 0.71736 0.71357
0.8 0.8 0.78702 o.80294 0.78721
0.9 0.9 0.84784 0.87224 o.84815
1.0 1.0 0.89681 0.92498 0.89722
1.1 1.0 0.93526 o.96268 0.93565
1.2 1.0 o.96456 0.98779 O.96492
1.3 1.0 0.98624 1.0031 0.98652
1.4 I.0 1.0017 1.0112 1.o0019
1.5 1.0 1. 0122 1.0144 1.0123
1.6 1.0 1.0189 1.0146 1.0188
1.7 1.0o 1.0227 1.0130 1.0224

1.8 1.0 1.0243 1.0107 1.0240
1.9 1. 0 1.0244 1.0082 1.0240
2.0 1.0 1.0236 1.0060 I. 0231
3.0 1.0 1.0074 1. 004. 10070
4.o 1.0 1.0058 . 0060 1.0062
5.0 1.0 1.0087 1.0034 1.0098
6.o 1.0 1.0109 1.0009 1.0123
7.0 1.0 1.0120 0.99959 1.0136
8.0 .1.0 1. 0126 0.99895 1. 014l
9. 1.0 1.0128 0.99866 1.0144

10.0 1.0 1.0129 0.99854 4.0145
00 1.0 1.0130 0.99844 l. o146

TT ' Resul" S obtained i hF(si env8 significant digits.

(b) Results obtained with F(s) given to,
only 5 significant digits.
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1.0

0.9/
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------ Analytic solution

A
0.3 - - = I I isvn

0.2

0.8

0. S~0.6

S0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 :16

; t

( [g. -Inve)rsion of the functionI F(s) I :-

/
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: recalling from equation (3.3) that

An <"n'n 2n> +

Equation (3.8) takes the algebraic form

(7-3) aGn(a,ka) = <xk-'Y.n>1

and (2.7) takes the form

(7.4~) caF(kay) - (xkl ,g>.

Since (Onn is complete and orthogonal in f2[ 0

and since

Gn(a,kca) =O 0 for n > k,

equation (7.3) implies that

(7.5) -k~l. k-l .4Gn( !0k()
n=I O An " i n(X)

for k = 1,2,...

Therefore, we have

k-l aG (a.,ka)
F(k') W I <0 n SS..... A7 0 ,g>

k-i n(ako") k-l
=< * @ng> - Cn(O#n (o, on-0 Ann -0O

which is our desired result.

Equations (7.3) and (7.5) yield an interesting
result. We lot



Gn (k) =n n(,.,k). - aan(ack),

and (7.5) becomes:

Ix k Gr(k + 1)
n0o An n(x)"

[U

We therefore have obtained the formula for the expansion

of xk in terms of the shifted Legendre polynomials:

(7.6) xk-I - I %(x) + k k- Ik + . (x)

k + I k 2 (x) +

+ 2n + I k- 1 k- 2 k- n (x)

'2k - 1 k - 1 k - 2

The functions Gn are related in the following way to

the coefficients anm introduced in (2.4). Letting

G (m + 1)

so that the quantities brm are the coefficients in

(7.6), we have the following two equations of the

"basis change" between (xn) and (0?n:
n

m m
(7.7) X b= 0n, 0 Z x mx.

n-0 n-O

We therefore can use the functions Gn(m)i to determine

the coefficients am, and conversely.
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