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' PREFACE

Part of the RAND research program conslsts of basic

. support studlies in mathematics. In the present

Memorandum, the authors investigate computer methods of
solving systems of differentlal equations through the
so—~called lLaplace—~transformation technique.

: Applications of this technique are important in

| :connection‘with the use of invariant imbedding in the
study of time-dependent transport processes.
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SUMMARY

The usual analytic methods of lnverting the Laplace
transformation—such as the Bromwlch—-Wagner integral in
the complex plane—are mostly impractical for numerical
work. This Memorandum discusses a method applicable to

the numerlcal analysls of the inverse Laplace transform

and includes numerical example:. illustrating this method.
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A NUMERICAL INVERSION OF THE LAPLACE TRANSFORM

1. INTRODUCTION

When one is interested in obtalining numerical
solutions of systems of differential equations, one
often finds numerical integration technigues to be too
time—consuming, even when employing high--speed electronic
computers. It would then be desirable to be able to
use other technlques for solving such a syétem of
differential equations. The Laplace transformation
Immediately suggests ltself, and 1ts satlsfactory use in
numerical work depends on the numerical analyst's ability
to recover the function f{(t), glven its Laplace
transformation F(s).

The usual analytic methods of inverting the Laplace
transformation—such as the Bromwich—Wagner integral of
F(s) 1in the complex plane—are mostly impractical for
numerical work. Thils paper dlscusses a method appllcable
to the numerlcal analyslis of the inverse lLaplace trans—
form and includes numerical examples illustrating this
method. We shall represent f(t) by a series of
orthogonal functions and then find the coefflcients of
this expansion from the values of F(s) on a set of
equldistant points on the positive real line. For
examples of this technique applied to other sets of
orthogonal functions, see Papoulis's original article [1].
(Further examples can be found in [3}.)
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2. PRELIMINARY DISCUSSION

Throughout this paper we shall assume that £(t) is

continuous on [0,00) and approaches a finite limit as

t » 0. Letting
0

e~8Yr(t)at,

we can make the change of variables r = e-'-t; then (2.1)
can be wrltten as

. Y o
(2.2) F(s) uf 7 f(fn 1/r)dr.

0

The function g(r), defined by
g(r) = £(4n 1/r),

is continuous on (0,1}, and we can expand g(r) 4in a
series of polynomials that are complete and orthogonal

on [0,1]. ret™
(2:3) &)~ T o8,

where [@k} is the set of these complete orthogonal
polynomlals. If we write

n
The notation of equation (2.3) means that 2 P
k=0 ™

in ﬁal 0,1]; that 1s, |

1[n | 2
m [ | T e (r) —g(r)] dr=o0.
no Yy k=0 * 5 1

b 4 e i gt e W
.
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' and by repeating the above procedure we can recover the

@y o x) ==
and let

rl
(2.5 A= Lo ()%,

(of course, one could pick an orthonormal set (¢,}, but
it is more convenient to use an unnormalized form, as we
shall see later.), then we have

) 1

(2.6) QkAk,'\/\ ¢k(r)g(r)dr

0

k

1
J=0 0

k
- 3 (3 + 1).
Zo 2, R(3 + 1)

Therefore, we can determine the coefficlents ckrnand
thus the function fr(t) = g(e"t)-by‘knowing P(s) only
at the integra; points 1,2,....

In general, by making the change of variable

r -\efot, where o 1is any positive constant, we obtain .

(2.1) ko) = L[ * * e/ in 1/r)dr,
0

funetien f£(t) by knowlng its Laplace transform only at
the points o, 2¢,.... While equations (2.6) and (2.7)
motivate the use of orthogonal polynomials and demonstrate

kY L e A s it L s g SRS AR i s s =
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~ that f£(t) can be recovered by knowlng its Laplace

‘transformvat only a sequence of equally spaced points on

the real line, we shall not use equation (2.6) but

instead shall meke use of a more practical technique based

on the orthogonal set L@n]. Equation (2.6) is clumsy
for numerical work since the coefficients adk: get very

large in magnitude and oscillate in sign.

3. THE ORTHOGONAL POLYNOMIALS-

The Legendre polyncmials Pn(x) are complete and
orthogonal on [~ 1, 1]; that is, they satisfy

b
f PJ(X)PK(X)GX - e rEh g bqjk‘.
-1,
They are easily computed by the recursive relation

(3.1) (n +1)p 5 (x) = (2n + 1)xP,(x) ~ nP_,(x),
where Po(x) = 1, Pl(x) = x. The Legendre polynomials
are described and tabulated 1nA[4].

We then define the "shifted Legendre polynomials"
¢ (x) by - :
(3.2)  @,(x) = P (2x ~ 1),

so that (¢} '1s a complete orthogonal set on {o0,1],

and

v X
(3.3) A = f 0, (x)0, (x)ax = my -
o

Purthermore, we have the recursive relation
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(3.4) (n+21)e

5=

n+l
where dbo(x) = 1, @1(::) - 2% ~— 1.

We now derive a useful property of the shifted
Legendre polynomials, °n‘ Define

(3.5) G'n(oss) '{m °n(°—at)e"—stdt = Lap[¢n(e-at)], )

| for ¢ >0 and n = 0,1,2,.... To derive an expression

Lfor G, in closed form, we proceed as follows. From

(2."‘). wWe see that

n
(3.6) ® Cﬂat’ = 3 g :e-!‘lm)'t
(3.6) nl ) meo W0 ’
and hence
(307) Gn(a,s) - nso 8]’nn L&p(e ) - nfo .

® B(8+0) e+ (B0}’

where Qn is a polynomial of degree < n.
Consider the case n > 1. (For n = 0. we calculate
immediately G,(o,s) = Lap(l) =.1/s.) By “.e change of

variables x = ‘—-ut" we get

(3.8)  ay(ok0) =2 [ * 2l (x)ax.
0

Por 1< k< n, x¢1 1s a 1linear combination of

Poreees®y i 'further, because of the orthogonality. of [Qn.)?

(x) = (2n + 1)(2x = 1)0_(x) = n0_1(x),

on
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fo,1]1, the integral in (3.8) vanishes. Thus we obtain

Gn(c,,ke) =0 for 1< k<n,
and Q, has zeros at s = 0,20,...,n0. Hence, we have
Q, = B,(8 — 0)(8 = 20)++¢(8 ~ no),

where iBn is some constant, and

B.n
q = : 1 S~-c
(3.9)  aylo,8) = 5* T g -

From (3.9), it follows that
.':_1'!3 86, (0,8) = Pﬁ%n"
and from (3.7) we have
::_1,13 s(}n(a‘,s‘)‘ =8, = d>n(‘0_). |

The recursive formula (3.4) implies that @ (0) = (-1)%,

and therefore Bn = 1, and we have our desired result:

, D
(3.10) @ (9,8) =% 1 S for n=1,2,...,
=

Go(“:’)‘ - %‘

4, NUMERICAL INVERSION FORMULA

Ir

S 1 -
(#:1)  fl=Fiax)~ B o,(r),

© e
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' sequentiall& finding the coefficients c¢_:

Therefore, to determine the first n coefficlentg—
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then by letting r = et 4n (#.1) and taking the Laplace
transformation of the result, we would expec¢t that
, k-1
(4.2) F(ko) = = ,e‘n,Gn(o,koz)z,
n=0 |
since ~Gn(,o,kd)v vanishes for Xk < n. A rigorous justi~

fication of equation (4.2) is given in Se¢. 7 of this

Memorandum. From (3.10) we have

(4.3)‘ ‘ Gn(u)ko) = E:!h" Ilg::%' %‘ see r for n = 1'0. o,k"l,
Go(o,ka) = ‘Ec‘o !

Therefore, from (4.2), we obtain

) c‘o |

(4%)  F(o) = 2,

: o k-1 ¢ :
F(kd)‘ R" + 21 E'j; lﬁ"‘%‘ %_—i' for k = 2,3, ‘“”,

Equation (4.%4) gives us the foll‘owing formula for

n
(%.5) ¢y = oF(0), | w,

c 1 - nUF(nO) &."—‘%. . ..ng.*g. .o n 2_11"‘1

N~
n+{1+1; n+§1+2;
1”0 Cy n~{ 1+

‘ n—2
= noF(no)(*™1) _ 'z (2 )ci.
‘ 2

c"o,cl,'.‘. ‘”’°n—1 1t is neoeseary to6 know the values of
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- the Laplace transform only at the points

0",20" eoe gnd'or

5. _METHOD OF NUMERICAL INVERSION
When Inverting the Laplace transform numerically, we

wish to represent f(t) by the sum 2 cn¢n(ev—at)‘, and
then determine the coefficlents L usiﬁg formula (4.5).
One shog.‘l-d‘ first determine the optimum o to use.
Although in some practical problems 1t 1s often conven—
lent to select o before compubing the Laplace transform
at o¢,20,..., we shall assume that the Laplace transfom
we are using is easy to calculate at all points on the
positive real line and that we have complete freedom in

' selecting 0. We shall consider the case in which we

know that f£(t), in addition to being continuous and
finite on [0,m], has the following properties:

£(0) =~ 0,

£(t) 1s monotonic on the positive real line.
In other words, f(t) behaves very much like

a(1 - %),

where a and o are constants, o > O.

Since we wish to approximate f£(t) with as few
‘terms as possible in the én(o"'“t)‘ series, (i,
should be well represented as a linear comibination of a
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few terms of the form e—nct‘ Let us then write

(5.1) £(t) = a(l — €°%) 4 n(t),

'uhere h(t) ~‘a26_2°t + a36*3°t $ oewe,

We therefore wish to minimize the contribution.of

~h(t). Writing

(5.2)  F(s) = 3 — g5 + H(s),

we shall minimize H(s) for positive s. We therefore
desire that

or
(5.3) sF(8)(8+0) ~ ao.

Picking o (and a) such that (5.3) is a best least—
squares approximation for some set B1sBosecesBy of

positive real points, we obtain

(5.4) ¢ u AB = ND
( NC — A=’
where

A= 38,%(s), B= % 828s,)
= 2 8 a8 - 8, "Fi(s,),
1y 10177 1y + 0L

C= 13131232(31), Dm 12 313F2(31)

-
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(If we did not have the condition f£(0) = 0, we would

instead determine ¢, d, a' such that

; t

After using (5.%) to obtain o, we then can use (4.5)

to determine the coefficients ¢, 1in the representation

| ‘ ] 1
£(t) ~ 2 cn¢>n.(r), where t = — 2 /In r.

We use the recursive relation (3.4) to evaluate the o,
numerically.

Since f(—-% In r) 4is continuous on the closed
set [0,1], 1t is kmown (see [5]) that, although
p °n°n(r) may not converge for all r, the second mean
of the partial sums of the series will always converge
pointwise to the function; that 1s, letting

n .
(5:5)  my(t) = I o8 (60),
M) =gl 2 a0),
ALOEF SR OF

we have

o (@) () = 2£(t)

(5.6) n

1im
n-~co

for all t.

et e e, o e B el R
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For numerical work, Cn(z) converges too slowly

for accurate determination of f. Rapid convergence 1is
necessary, since it is difficult to determine the ch
accurately for large n. A good procedure is to

congslder the welghted mean,

> ks (t) a
(5:1) 861 = M = gy B k(0.
o1

which will converge reasonably rapidly for most practical
_ problems in which f£(t) 1s well behaved. The next
sectlon of this Memorandum includes examples of numerical
computations of the inverse of the Laplace transforma—
tion using the method described here.

6. NUMERICAL EXAMPLES

In practical applications, the accuracy of the
numerically obtained inverse of F(s) 1s limited by
the accuracy with which F(s8) 1s known. As can be saen
from equation (4.5), the number of coefficlents ey
that can be determined with reasonsble accuracy depends
on the accuracy with which the quantities F(no) are
known. The accuracy of the numerically obtained value
of f£(t) will then depend on the rapidity of convergence .
of the sequence Gn(t).

Our numerical examples will then be taken from | i;
results obtained from computation of the inverse of the }

b i A T 5 BN (B R S W 0 5 e 5 SRS e YR R - [
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Laplace transform of known functions using the IBM-7090
computer. We consider the following functions to

1llustrate the results of our method:

/2 . sin t for t
(6.1) Bs) = EEE 2, tor wnton £(s) = { 2 6 for t g
(s + 1)

(6.2) F(s) = l:-g-"-‘i, for which £(t) = {t fort <1

‘ 8 1l for t > 1.
We use the least—squares formula (5.4) at five points—
8y = i1, 1= 1,...,5~t0 determine the ¢ used in
equations (4.5). The F(s) we used were computed on
the IBM~T7090 in two ways: (a) F(s) was calculated in
"single precision" arithmetic, which allows eight
significant decimal digits accuracy; (b) F(s) was
calculated as above, and a random fractlonal error in the
interval [-102, +10~°] was introduced into the result to
provide a final F(s) accurate to only five significant
decimal digits. In both of these cases, we then
computed the sequence Gn(t) using the full "single—
precision" accuracy of the IBM-7090. By.computing the
inverses of several Laplace transforms, we empirically

discoverad that 88 usually gives the best results when

F(8) 41s known to within eight significant decimal

digits, and 35 usually gives the best results for
F(s) lmown to five significant aigits.

K

11 for t >

Mt ae e e & Ao b opyre

/2,

T/2;

T et et R W Wk 3 < F g AL e o i iy i - - j
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The fuﬁotions (6.1) and (6.2) above test our inversion
method when f(t) has the deslred properties of monotonicity
and boundedness but does not resemble an exponéntial.
Function (6.2) has the added difficulty of having a
"sharp corner." For function (6.1) we numerically
‘obtainu o = 0.87826, and for function (6.2) we get
& = 0.84565. Results of our numerical inversion of
these functions are shown in Tables 1 and 2, and the

second is exhibited graphically in Fig. 1.

T. A MATHEMATICAL DISCUSSION

The purpose of thls section 1s to justify equation

(4.2) on a rigorous basis. Again making the change of

'vgriables T = é"ct, let

g(r) = £(~ % fn 1),
so that (4.1) becomes

e 2]
g(r) ~ nfocnon(r) .

Let < , >bé the standard inner product in X-10,1];
that 1is,

1
(1.1) <t = [ £y (0)gy(x)ax.
0

Hence, from the orthogonality of (On}, we get

( T % ) °,nAn, - <°h_: 2>,

PR S S e e e £ A o AV i S s s - 1
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Table 1
INVERSION OF THE FUNCTION (6.1)

| ‘b f(t)“ 6,5(3) 68(3) 35(1))
0.1 | 0.09983 | 0.10018 { 0.09950 | 0.09982
0.2 | 0.19867 © 0.20070 | 0.20007 ~ 0.20044
0.3 | 0.29552 | 0.29985 | 0.29787 | 0.29995
0.4 | 0.389%2 | 0.39668 | 0.39198 | 0.39701
0.5 | 0.47943 | 0.48887 | 0.48219 | 0.48925
0.6 | 0.56464 | 0.57423 | 0.56779 | 0.5T7449
0.7 | 0.64422 | 0.65122 | 0.64746 | 0.65129
0.8 | 0.71736 | 0.71908 | 0.71966 | 0.71896
0.9 | 0.78333 | 0.77769 | 0.78318 | O.TTT40
1.0 | 0.84%147 | 0.82743 | 0.83736 | 0.82703
1.1 | 0.89121 | 0.86896 | 0.88218 | 0.86853
1.2 | 0.93204 | 0.90316 | 0.91815 | 0.9027%
1.3 | 0.96356 | 0.93093 | 0.9%616 | 0.93057
1.4 | 0.98545 | 0.95319 | 0.96732 | 0.95293
1.5 | 0.99749 | 0.97081 | 0.98277 | 0.97067
1.6 | 1.00000 | 0.98456 | 0.9936% | 0.98455
1.7 | 1.00000 | 0.9951% { 1.0010 | 0.99526
1.8 | 1.00000 | 1.0031 | 1.0056 1.003%
1.9 | 2.00000 | 1.0091 1.0082 | 1.0094
2.0 | 1.00000 | 1.0133 | 1.0095 | 1.0138
3.0 | 1.00000 | 1.0175 | 1.0041 | 1.0178
4.0 | 1.00000 | 1.0102 | 1.0037 | 1.0097

5.0 | 1.00000 | 1.0063 1.0052 1.0053
6.0 | 1.00000 | 1.0045 1.0062 | 1.0033
7.0 | 1.00000 | 1.0038 | 1.0067 | 1.0025
8.0 | 1.00000 | 1.0035 1.0069 1.0021
9.0 | 1.00000 | 1.003% 1.0070 1.0020
10.0 | 1.00000 | 1.0034% | 1.0070 | 1.0019
0o | 1.00000 | 1.0033 | 1.0070 | 1.0019

ke il s e bkt o

(a) Results obtained with F(s) given
to 8 significant digits.
(b) Results obtained with F(s) given
to only 5 significant digits.

e e i 4 s apan et 5 e it e .
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only 5 significant digits.

i T g Wil e s s i e

)5
- Table 2
INVERSION OF THE FUNCTION F(s) =,i~::§*~
K £(t) asﬁa) ge(a) | 35(b)‘
0.1 | 0.1 0.09503 | 0.09071 | 0.09527
N 0.2 0.2 0.19919 0.20221 | 0.19932
a 0.3 0.3 0.31035 | 0.30070 | 0.31023
‘ 0.4 0.4 0.42236 0.40346 | 0.42210
0.5 0.5 0.52943 0.51122 | 0.52918
0.6 0.6 0.62734 0.61827 | 0.62720
0.7 0.7 0. 71354 0.71736 | 0.71357
E : 0.8 0.8 0.78702 0.80294 0.78721
H \ 0.9 0.9 0.8478% 0.8722% | 0.84815
: 1.0 1.0 0.89684 0.92498 | 0.89722
- 1.1 1.0 0.93526 0.96268 | 0.93565
b 1.2 1.0 0.96456 0.98779 | ©0.96492
% 1.3 | 1.0 0.98624 | 1.0031 0.98652
' 1.4 1.0 1.0017 1.0112 1.0019
f 1.5 1.0 1.0122 1.0144 1.0123
! 1.6 1.0 1.0189 1.0146 1.0188
1.7 1.0 1.0227 1.0130 1.0224
; 1.8 1.0 1.0243 1.0107 1.0240
. 1.9 1.0 1.0244 1.0082 1.02%0
: 2.0 1.0 1.0236 1.0060 1.0231
3.0 1.0 1.0074 1.0041 1.0070
i 4.0 1.0 1.0058 1.0060 1.0062
! 5.0 1.0 1.0087 1.003% 1.0098
! 6.0 1.0 1.0109 1.0009 - 1.0123
! 7.0 | 1.0 1.0120 0.99959 | 1.0136
g 8.0 1. 1.0126 0.99895 1.0141
’ 9.0 1.0 1.0128 0.99866 1.014%
! ' 10.0 1.0 1.0129 0.99854 1.0145
i 00 1.0 1.0130 0.9984}4 1.0146.
) ~ (a] Results obtalned with F(8) glven To
h 8 significant digits.
| (b) Results obtained with F(s) given to
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0.9
0.8}
0.7
0.6 |
e |
0.5
‘ - = Analytic solution
0.4} o sseserses = G (1) when F (s) is given
// to B significant digits
,/ e e - 3“5(1.‘) when F (3).is given
0.3 ‘ to 5 :xgnmcqnt digits
, .
0.2
0.1}
0 ‘ —L >
o 0.2 0.4 0.6 0.8 1.0 1.2 .4 1.6
t .
Py ) . g . « 1““‘e-s
Fig. 1 — Inversion of the function F(s)= —5
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‘recalling from equation (3.3) that

1
By = <> = w5t -

Equation (3.8) takes the algebraic fomm
(7.3) o6, (0,k0) = <X 2,0 >,

and (2.7) takes the form

(7.%)  oF(ko) = <x,g>,

Since (® ) 4s complete and orthogonal in £210,1],
and since

G, (o,ks) = 0 for n >k,

equation (7.3) implies that

n-O ——~7§:—-— ¢ (x)

(7.5)

for k = 1,2‘,0060

Therefore, we have

k-l 0G (a ko)
F(ko) = —-< z ®,08>
n=0
khl G (c,ka) k-1

nFO ]; n’g>" nfo chGn(anG),

which 1s our desired result.

Equations (7.3) and (7.5) yield an interesting
result. We let

pr— v e et cEE R e e e . e i s o e
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Gn (k) = Gn (L,k) = O'Gn (0,k0), |

and (7.5) becomes

G (k + 1)

k ¢ _(x).
”“"7?“‘" n

k
x = 2
ne=0

We therefore have ébtained the formuls for the expansion

“of x* in terms of the shifted Legendre polynomials:

(7.6) = goy(x) + ¢ - BT 0y (x)

n4+l k=1 k-2  ke=ng/
T EFTCKEF? T E n al®)
+ooo+’2k.—loknlok_2ooo'1‘

K k+1 k+2 2k ATI_ k-1

The functions Gn are related in the followlng way to
the coefficlents a . introduced in,(2.4). 'Letting
Gn(m + 1)
b= —
so that the quantities bnm are the coefficients in
(7.6), we have the following two equations of the

"basls change" between (x"} and t¢n}:

m

m
(7 e 2 by, o ™

n—O

We therefore can use the functions qn(m) to determine
the coefficients a_ , and conversely.

Al e b s e = [, -.AA{‘» U RN
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