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ABSTRACT

Shock tube testtime limitation due to the premature arrival of the
contact surface is analytically investigated for wholly turbulent
wall boundary layers. The results are compared with those for
wholly laminar wall boundary layers. It is found that for a given
shock Mach number, M', the maximum possible test time (in a

5/4P¥4 and dzpm for the turbulent

long shock tube) varies as d
and laminar cases, respectively (d = tube diam, Py = initial
pressure). For 3 < Ms < 8 in air or argon, it is found that the
turbulent boundary layer theory for maximum test time applies
for dpoo 2 4 to 10 (air) and dpm 2 2 to 10 (argon), where d is in
inches, Poo is in cm Hg. Similarly, for 3< Ms < 8, thelaminar
theory applies for dpoo £ 0.3 (air) and dpoo < 0.6 to 1 (argon).
When dp . X 5, turbulent theory for both air and argon indicates
test times of about 1/2to 1/4 the ideal value for xsld = 45 to 150,
respectively (xs = length of low pressure section). Higher values
of dpm result in more test time, When dpoo %~ 0.5, laminar theory
indicates about 1/2 ideal test time for xs/d% 100. Lower dp
reduces test time. Working curves are presented for more accu-

rate estimates of test time in specific cases,
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I. INTRODUCTION

In an ideal inviscid shock tube, the separation distance between shock
and contact surface increases linearly with distance from the diaphragm
(Fig. 1). In a real shock tube, however, the wall boundary layer between the
shock ar.d contact surface acts as an aerodynamic sink and absorbs mass
from this region. This causes the contact surface to accelerate and the
shock to decelerate and reduces the separation distance, 1, below the ideal
value. The separation distance approaches a limiting (maximum) value, lm
At this limiting condition, the shock and contact surface both move with the
same velocity (Fig. 1). The limiting separation distance is that at which the
mass flow entering the shock equals the boundary layer mass flow moving
past the contact surface.

Separation distance imposes an upper bound on the test time in shock
tubes. (Nonuniformity of the flow between shock and contact surface may
further reduce test time. The amount of flow nonuniformity that can be
tolerated depends on the nature of the experiment and the instrumentation.)

It is thus importar.lt to know separation distance as a function of distance from
the diaphragm in order to estimate test times in shock tubes.

The effect of a laminar wall boundary layer on separation distance has
been studied experimentally by Duff {(Ref. 1) and both experimentally and
analytically by Roshko {(Ref. 2) and Hooker (Ref. 3). Some aspects of the
analyses presented in Refs. 2 and 3 are modified in Ref. 4. These references
can be used to estimate test time in low pressure shock tubes (roughly, those
shock tubes with initial pressures of the order of 1 mm Hg or leas, currently
being used to study dissociation, ionization, and other rate phenomena). The
test time limitation in low pressure shock tubes has received considerable
attention because the upper limit on test time is proportional to dzp ©
(Ref. 2) and very low dzp o Can result in virtually no usable test time
(d = tube diam, Py * initial pressure).

-1-
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The effect of a turbulent wall boundary layer on separation distance has
been treated only by Anderson (Ref. 5). It is interesting to note that Anderson
was the first to blame less than ideal shock tube test time on the premature
arrival of the contact surface. Anderson showed, for two practical examples,
that mass loss to a turbulent wall boundary layer reduced the theoretical test
time by about a half. This was in agreement with a rule-of-thumb presented
in Ref. 6 for shock tubes used to study re-entry heat transfer. In Ref. 6, it
was stated that 40 to 70 percent of theoretical test time was generally ob-
tained, and 50 percent was proposed as a mean value, (The test time
referred to was the period of essentially uniform conditions. The reduction
from the ideal value was attributed, in Ref. 6, to mixing at the interface and
flow nonuniformity associated with shock attenuation rather than to the pre-
mature arrival of the contact surface). Since test time did not appear to
represent a serious problem in re-entry heat transfer shock tubes studies,
the work of Anderson did not find widespread application.

As previously noted, the effect of a laminar boundary layer on shock
tube test time is now receiving considerable attention (Refs. 1-4). It is
therefore felt that it is worthwhile to develop the turbulent boundary layer
case beyond the preliminary work of Anderson. Anderson presented a first
estimate of the variation of separation distance with distance from the
diaphragm for a particular initial pressure (10 cm Hg) and two tube diameters
(1-1/2 and 4 in.). In the present paper, the problem is formulated more
accurately, and the results are presented in nondimensicnal form so as to be
applicable for arbitrary initial pressures and tube diameters. Criteria are
established to define when turbulent wall boundary layer theory is applicable
and when laminar wall boundary layer theory is applicable. The development
here is parallel to that used in Ref. 4 for the laminar case.

The present solution is primarily intended for the case where the wall
boundary layer introduces sizable reductions in test time. When the wall
boundary layer introduces only small perturbations of the ideal test time, the
linearized methods of Refs. 15 and 16 are more appropriate.

-3-
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II. MAXIMUM SEPARATION DISTANCE

Due to the wall boundary layer, the separation distance between shock
and contact surface approaches a maximum value such that the mass flow
through the shock equals the mass flow moving past the contact surface.
‘This phenomenon has been observed for laminar wall boundary layers (Refs.
1-3) and may also be assumed to occur, for suificiently long shock tubes, in
the case of a turbulent wall boundary layer. When the maximum separation
distance is reached, both shock and contact surface move with the same
velocity.* The flow between the shock and contact surface may then be
viewed as steady in a coordinate system in which the shock is stationary. In
this shock-stationary coordinate system, the wall moves with velocity u
(which equals the shock velocity Us in the laboratory system). This steady
flow is investigated in this section with the primary object of determining the
maximum separation distance between the shock and the contact surface. The

variation of separation distance with distance from the diaphragm is treated
in Section III.

The steady flow is illustrated in Fig. 2a. The shock is located at

L = 0, and the free stream portion of the contact surface at { = Im. The flow
upstream of the shock is denoted by subscript oo and moves with velocity u_,
as does the wall. Free stream conditions between the shock and the contact
surface are denoted by subscript e. Free stream conditions directly down-
stream of the shock have the additional subscript 0. The percentage of mass
flow in the boundary layer increases with £ such that all the mass flow is in
the boundary layer at £ i’ and the free stream is stationary at that location.

*For laminar boundary layers, the shock and contact surface velocities tend
to remain constant after the maximum separation distance is reached

(Ref. 1). For turbulent wall boundary layers, the shock and contact surface
may both continue to decelerate after the maximum separation is reached.
This deceleration depends on the driver gas. 1f the shock continues to
decelerate, then the present steady solution is a quasi-steady solution.

-5



The physical parameters upon which Im depends can be found as
follows. The flow rate through the shock, r'n‘, is

m_ = (peue)oA =Pl A , (1a)

where A is the cross-sectional area of the tube. If it is assumed that the
boundary layer is thin relative to the tube radius, the mass flow in the

boundary layer at the contact surface location, r'nc, can be characterized by

m_ = pr,o(uw - ue'o)ﬁR (1b)
where
1-n w, 0 g
bp = pe 2 (1c)
u -u
w e, 0

Here, L is the perimeter of the tube; 6R is a characteristic boundary layer
displacement thickness at £_; p andu_ -u are characteristicdensities
m' "w,o w e,o
and velocities, respectively; P is a constant; and n = 1/2 for laminar and 1/5

for turbulent boundary layers. Equating Eqs. (la) and (1b) yields

n
ll-n__d_pe.o Ye, 0 (uw'ue,o) ()
m u v
, 0 w, 0

where d = 4A/L is the hydraulic diameter of the tube.

Assume that the temperature upstream of the shock is at a standard

condition so that Too = Tat’ a_ Tag., and B = Mgy Also, assume that the

[e o]
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wall remains at its initial temperature so that Tw = Tst' Equation (2) can

now be put in the form

p Il-n p l1-n n

st m 1 (oo} w nfpa

8t = 0 m?(E2 (3)
(Paj d 43<pe'o w - > S(")st

where W = uw/ue’ 0" pe’olpm; M = uw/am: and P, isa standard pressure,

8
usually taken to be one atmosphere. For n = 1/2, these equations reduce to

those presented in Ref. 4. Forn= 1/5, Eq. (3) becomes

/4
Pat)  ‘m :(_1>5/4__"°° W1 /a(en) ()
Peo dsl4 4P Pe o -1 8 Mgt

The right-hand side of Eq. (3) depends primarily on My. For a given Mg,
2 i ~ q5/4 ,1/4

Im ~d Py for a laminar boundary layer, and !m a5/ Py for a turbu-

lent boundary layer., Therefore, for turbulent boundary layers, lm is less

sensitive to variations of d and Py than is the case ior laminar boundary

layers.

Equation (4) does not yield numerical results for lm unless an accurate
estimate of B is available. Actually, B must be found from !m’ rather than

vice versa. That is, Eq. (2) is taken as defining B, that is,

)

. n
P u, _u
g = d foe) wV&i l(wv e,o) (5)

41;;!1 pe,o w, 0

and lm is found as accurately as possible from a consideration of the
boundary layer development in Fig. 2a. A first estimate for , termed po.
is made below by assuming the boundary layer to develop in a uniform

external stream. An improved estimate, termed ﬁl' is then made by



considering a variable external stream and employing the concept of local

boundary layer similarity.
A. UNIFORM EXTERNAL FREE STREAM APPROXIMATION

Boundary layer development for the case of an external free stream
that does not vary with £ is illustrated in Fig. 2b and is discussed in
Appendix A. Let lm correspond to the value of £ at which the excess mass
flow in the boundary layer equals the mass flow entering through the shock.

The mass flow past the contact surface is then

1/5

m v
__© . _gx =g 2Y3[_w.o (6)
L(p u) m om \u_ -u

e eo w e, o

where &rkn is the displacement thickness at Im and Ko is a function defined in
Appendix A. Equating Eqgs. (1b), (lc), and (6) then yields

B -2 W g (7)

Values of ﬁo have been computed for y = 7/5, 0 = 0.72 and y = 5/3, ¢ = 0. 67
using the turbulent boundary layer theory of Appendix A together with the
Sutherland viscosity law. (y - ratio of specific heats, ¢ = Prandtl number).
Values of Bo have also been computed for the flow behind strong shocks in
air at initial pressures of 0.5 and 10 cm Hg. These four cases are further
identified in Table 1 and the numerical results for Bo are listed in Table 2.
These values of ‘30 can be used to find turbulent boundary layer displacement
thickness (Eqs. 6, 7) and will be used later to find Bl.

It is expected that these values of Bo will overestimate lm,particularly
for shock Mach numbers that are not large, due to the fact that the relative

velocity between the wall and the free stream increases fromu at

-u
w e,0
1=0to u,, at lm {compare Figs. 2a and 2b). Hence, the excess mass flow




)

in the boundary layer will be greater at a given { than the excess obtained
from the above model. This will result in smaller lm and larger P than
obtained from Eq (7). However, for very strong shocks, where U o is

small relative to u Eq. (7) should give accurate results.
B. LOCAL SIMILARITY APPROXIMATION

In this subsection, the streamwise variation of free stream properties
due to the increase in boundary layer mass flow with £ is taken into account.
The development of the boundary layer and the variation in free stream
properties are treated simultaneously. The boundary layer growth is found
by assuming that at each station it is similar to a corresponding boundary
layer developing in a uniform free stream behind a shock moving with uniform

velocity (i.e., local similarity).

Since the flow is steady (Fig. 2a), the net mass flow through the shock
equals the net mass flow at any station £. Thus

‘A(peue)o = Apeue + L A {(pu - peue) dy (8)

In Eq. (8), it is assumed that the boundary layer thickness is small compared
with d; thus the integrand is nonzero only in the region close to the wall.
Otherwise, for circular tubes, the coefficient L would have to be replaced by
a factor m(d - 2y) in the integrand of Eq. (8). Define

peue
.—_(-5*) (9)
{p u

e eo

1]

5=4
d

where &% is the boundary layer displacement thickness based on the local
free stream

QO
&= j; (- Pe“:e) » o



Ue, Pe Ue, Pe

£ Uy £

Fig. 3. Boundary Layer Development With Uniform Free
Stream, Wall Velocity u and Origin at ‘i

-10-



Note that & is the ratio of the excess mass flow through the boundary layer at
L to the mass flow through the shock. Thus & varies fromOat £ = O to 1 at
L= Im. Equations (8)-(10) then give

s Pele 1
5:1-r——rpu (11)

e eo

which relates the free stream conditions to the local boundary layer displace-

ment thickness.

The concept of local similarity is now introduced. It is assumed that
the boundary layer profile at each £ corresponds to the profile for a boundary
layer associated with a uniform free stream (equal to the local free stream)
and a wall velocity u, The origin of this fictitious boundary layer is at li,
which is initially an unknown function of £. (See Fig. 3.) The origin !i is
chosen such that the excess flow ‘1 the boundary layer at each £ has the
correct local value. If M’ is sufficiently large that variations in Pe and P,
can be ignored, Eqs. (11) and (A-11a) become

5=1-V (12a)

5 - 4/5
§=H_(L -2) (12b)

where V = “e/ue o and He is a function of the local free stream as defined in
Eq. (A-11b). The problem is now to solve these equations simultaneously to
find & as a function of £. The value of £ at § = 1 defines lm and thus pro-

vides an improved estimate for B.

11



Assume that the local rate of growth of § follows the local similarity
law & = He 1 - !i)l'n(with He and Ii considered constant at the local values).
This is the approach used in Ref. 4. It follows that

5 L -1,

H l/(l'n)
(1-n) (—") Al (13)

B8 (1 qy AL

11}

5

For n = 1/2, this expression is the same as that derived in Ref. 4. For

n=1/5, Eqs. (13) and (12a) give, in integral form,

1 1/4
! =§f a-vi'- gy (14)
4)y HZ/4 '

Substituting Eq. (A-11b) for He and considering the limitV =0, £ = lm

yields

5/4 1/4 1
(4K°\ ( ‘w0 I} zif (1-vyt/4 W+Bv(w' 1)2 dV: F (15)
u 4 A

d/ -u m W+B \w -
w e, 0

The constant B is defined in Appendix A. Equation (15) can not be integrated

in closed form. For W> 2, F can be expressed as

iB +1+l

= W W 1
F=1-52; B+ " (16)
=L (5 + 4i)(1 - W)'~

-12-




so that F -~ 1, from below, as W = . Equation (15) has been numerically
integrated for B = 7/3 and 2, which correspond to air and argon, respectively.
The numerical results have been correlated to within 3 percent for W > 1.5
and to within 2 percent for W > 2.0 by the expression

W(W - 1)
w? 4+ 1.25W - 0.80

Substitution of Eq. (15) into Eq. (5), to eliminate lm’ yields the

following value for [51:

(18)

5 - Bo [w24+1.25w - 0.80f%5
17 " Vo

This expression has been used with the values of ﬁo in Table 2 to obtain
corresponding values of [31. These values are presented graphically in
Fig. 4a.

C. NUMERICAL RESULTS FOR £ _, Re_,AND 25_/d
m m m

The values of Bl in Fig. 4a have been used to compute Im from Eq.(4).
The results are given in Fig. 4b. Standard conditions were assumed to be
Tst = 522°R and Pgt = 76 cm Hg so that

(P_a) - 6.93 x10° ¢! air (19a)
Lt st

6

= 7.39 % 10° £t argon (19b)

In order for the present theory to be valid, it is necessary that the

boundary layer be turbulent. This will be the case if the Reynolds number

at lm is considerably larger than the transition Reynolds number. An

-13-
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Table 2, Values of Bo (Eq. 7)

Case l Case II Case III Case IV

Ms po Ms '30 Ms [30 Ms ﬁo
1. 41 0. 0263 1. 35 0. 0253 6 0. 0283 6 0. 0270
1.73 0. 0326 1. 58 0. 0332 8 0. 0220 8 0. 0210
2,24 0. 0345 1. 89 0. 0389 10 0.0188 10 0.0175
3. 00 0.0312 2.24 0. 0413 12 0. 0157 12 0.0149
3. 46 0. 0284 2.65 0. 0413 14 0. 0129 14 0.0122
4,12 0. 0245 3.16 0. 0391 16 0. 0116 16 0.0106
5,20 0. 0195 3.87 0. 0348 18 0.0104 18 0.0095
6. 08 0. 0164 5. 00 0. 0282 20 0. 0094 20 0. 0084
7. 55 0. 0126 5. 70 0. 0248 -- .- .- .-
8,77 0. 0105 6.71 0. 0208 -- --- -- -
10. 82 0. 0080 8. 37 0. 0161 -- --- -- ---
.- --- 9. 75 0. 0133 -- --- -- ---
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. . _ 2
appropriate Reynolds number, based on !m’ is Rem =ua, o(W - 1) !m/ve

, 0
A form convenient for calculation is
5/4 1/4
P v 1
158) Re = (W - 1M 2 (93) ——5’/“4(&> (20)
d pm p'e' o H st|d pm

This parameter is plotted in Fig. 4c. The transition Reynold's number has
been investigated (Ref. 7) and is in the range 0.5 < Ret X 10-6 < 4 for

1 <M <9. Itappears to increase markedly for larger Ms' due to the
stabilizing effect of the low wall temperatures, but only limited data are
available. The present turbulent boundary layer theory should be applicable

if Rem is significantly larger than Ret (say, Rem >5 Ret).

It has also been assumed (e.g., Eqs. 1, 8) that the boundary layer
thickness is small relative to the tube radius. This condition will be satisfied
if 26_/d is small. Here, § is the boundary layer thickness atf . If §

m m m m
is assumed to vary as in the case of a uniform external stream, it can be

shown that

m

28 4/5
1F (1 -w) (21)
d  2W-1\s%/5

This parameter is plotted in Fig. 4d. It is seen that 26m/d >1 for Ms <2
so that the assumption of a small boundary layer thickness is violated. For
argon considered as an ideal gas (Case I), the quantity 26m/d doesn't go
below 0.6; and for ideal air (Case II), it doesn't go below 0.45. The real gas
gsolutions for air (Cases III, IV) have values below 0.5 for Ms > 6. However,
it should be noted that Zﬁm/d provides a very conservative estimate for the
validity of the present theory. What is mainly required is that the boundary
layer not become fully developed (i.e., 26m/d < 1) and that the integrand in

Eq. (8) not require the factor w(d - 2y) (for circular cross sections). The

-20-




second of these conditions is probably satisfied when 26m/d < 1 since most of
the boundary layer excess mass flow occurs in the portion of the boundary
layer near the wall, For example, by neglecting density effects and assuming
a 1/ 7th power velocity profile, it can be shown that 56 percent of the excess
mass flow occurs within a distance 6m/4 from the wall, The higher gas
density at the wall (particularly for strong shocks) will considerably increase
the fraction of excess mass flow in this distance. The present approach is

therefore considered probably valid for M_ > 3,
s~
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III. VARIATION OF SEPARATION DISTANCE WITH
DISTANCE FROM DIAPHRAGM

In Section II, the limiting value of the separation distance between the
shock and contact surface was found as a function of Ms. This value defines
the test time in shock tubes that are sufficiently long to permit the separation
limit to be reached. In order to estimate test times in shorter shock tubes,
it is necessary to consider the rate at which separation distance increases
with distance of the shock from the diaphragm. This problem is now
discussed, using the approach in Ref. 4. It will be assumed that the shock
moves with uniform velocity and that the flow between the shock and contact

surface is steady in a shock-fixed coordinate system.
A, SEPARATION BETWEEN SHOCK AND CONTACT SURFACE

Consider flow in a coordinate system in which the shock is fixed and
the wall moves with velocity u Assume that at t = 0 the contact surface
coincides with the shock, and at some later time, t, the portion of contact
surface that is in the free stream is located at £ (Fig. 5). The problem is to
find £ as a function of t. (In the present section, ! is considered a dependent
variable defining the location of the contact surface relative to the shock as

a function of time. )

For steady flow, the mass flow through the shock equals the mass flow
through a control surface at £. This yields an equation identical to Eq. (11),

namely,

-6 peue
=1 RN (11)

e e'o
where § is again the ratio of the excess boundary layer mass flow at £ to the

mass flow through the shock. For the present purposes it can be assumed

that the excess mass flow in the boundary layer varies as ‘l-n. Then,
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Shock and Contact Surface as a Function of Time
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T = (l/lm)‘l-n. Also, it will be assumed that pe/pe o° 1 (valid for strong
shock). These assumptions have been shown to be accurate (Ref. 4), except
near W = 1 where the present solution for Im is invalid anyway. Equation

(11) then becomes

) l-n ue
(T—) =1 " (22)
m

Introduce the nondimensional variables

ue Ot xs
XEg— *wi_— (23a)
m m
S |
T = - {(23b)
m

where x, =ut is the distance of the shock from the diaphragm in laboratory
coordinates (Fig. 6). Noting that dt/dt = U, write Eq. (22) in the form

1- dT
T "=1. T (24)
Integrating,
T
dT
X-= f B— (25)
o 1-T
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Thus,

-.’%:1;,(1 -+ TR forn=1/2 (26a)
n

= g (1,. 1-T o 2tanlTh4 4T“) forn = 1/5 (26b)
1+ 1"

£ 3
Equation (26a) was first derived by Roshko,

The variation of T with X is tabulated in Table 3 and is plotted in Fig. 7
for n = 1/2, 1/5. Note that T = X corresponds to an ideal (no boundary
layer) shock tube. The departure of the curves in Fig. 7 from T = X repre-
sents the departure from ideal performance. For X $ 0.1, the departure is
small, and for X3 10, the sei:aration distance equals the limiting value.

Note that ! equals 59 percent of the ideal value when X = 1, n = 1/5,
B. TEST TIME

In the previous subsection, the separation distance was obtained as a
function of t. A quantity that is perhaps of greater interest is the test time
(i. e., the difference in time between the arrival of the shock and the arrival
of the contact surface) at a fixed distance from the diaphragm, X . This

quantity will now be discussed.

Designate the test time by r. For X, ™ @, T = T S Im/uw. Define
TE T/Tm, which is the test time at xg divided by the test time at Xg = 0.
If it is assumed that the shock moves with constant velocity, X and ¥ are
related (Ref. 4) by

X=X, - (T, /W) (27a)

*
Equation (26b) was derived by Dr. E. F. Brocher in an as yet unpublished
study of test time for the case of small departures from the ideal flow.
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Table 3, Variation of T with X (Eq. 25)
X

T n=1/2 n=1/5
0. 01 0. 0107 0. 0101
0. 05 0. 0590 0. 0527
0.10 0,128 0.110
0.20 0. 291 0,238
0. 30 0. 491 0. 388
0. 40 0. 737 0. 564
0. 50 1. 04 0.776
0. 60 1.43 1. 04
0.70 1.95 1. 39
0. 80 2.71 1.88
0.90 4. 04 2,73
0.92 4,48 3.01
0. 94 5. 04 3. 37
0. 96 5. 84 3.87
0.98 7.22 4,73
0. 99 8. 60 5.60
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T = Tb (27b)

where Xb. Tb are corresponding values from Table 3. The variation of ¥
with X is plotted in Fig. 8a for W =2, 4, 8, .

An analytical expression relating T and ¥ can be found as follows.
Assume that the contact surface velocity is constant during the period of time
between the arrival of the shock and the arrival of the contact surface at X

The test time would then equal 7 = l/(uw - ue), or, from Eq. (22),

(27)

-
i

WT
W-14+T!P

At the start of the motion, T = WT/(W - 1). After long times, T = T = 1. For

large W, T = T for the entire motion.

The parameter ¥ compares the test time v to the asymptotic test time
lm/uw. It is also of interest to compare r to the test time for an ideal shock

tube, TS The ideal test time at a distance Xg from the diaphragm is

T = xs/(u -u_ )W

w e,o0

The actual time, assuming u, is constant between arrival of shock and contact

surface, can then be expressed as

T T w-1
LI . (28)
r. X w

i -1+TI M

This is plotted in Fig. 8bforn=1/5and W = 2, 4, 8, 0. For large W,
v/ TS T/X. Note that when X = 1, the test time is about 1/2 of the ideal
value. The ratio ‘r/-ri equals (W - 1)/WX for X S,
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IV. COMPARISON WITH ANDERSON'S SOLUTION

There is a basic difference between the separation distance solution
presented by Anderson (Ref. 5) and the one presented in this paper.
Anderson's method for finding the separation distance corresponding to
a given shock location, X is as follows. He assumes that the shock
moves with uniform velocity, and finds the separation distance by equating
Alpe, o to° the difference between the ideal amount of shocked gas, Axspm.

and the amount of gas that has slipped past the cox/‘xtact surface. The latter
9/5
8

boundary layer) where Kl is a function of Ms, d, I and is tabulated by

he finds, incorrectly, to be of the form KlApoox (assuming a thin

Anderson. The separation distance is then

P
g = xs(l - Kx4/5)

‘t is seen that as Xg increases, 1 first increases, reaches a maximum at a
finite value of Xg [ namely, X, = (579 Kl)5,4]. and then decreases. In the
present solution, { increases monotonically with xg and asymptotically

approaches Im as x_ ~oo. Hence the two solutions have different behaviors.

Anderson's expression for the net mass loss past the contact surface
is based on the ideal separation distance between shock and contact surface.
It can be readily shown that his estimate is too large, except for small X
If the free stream is assumed to remain uniform, the mass flow past the

4/5.

contact surface at any instant is proportional to { The net mass loss

since the start of the motion for a shock moving with uniform velocity is

proportional to

-/:(314,5dx'
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For small x_, where { varies linearly with X_ the net mass loss has the
9/5

form x'7, as derived by Anderson. For large X 1 approaches m’ and

the net ma.ss loss tends to become proportional to 14/5

X which is con-
siderably smaller than the x9/5 dependence used by Anderson Thus,
Anderson's solution overestlmates the mass loss and underestimates the
test time for large X This accounts for the differences in the behavior of

the two solutions.

)5/4. it is difficult to

For moderate values of x_, say X, S (5/9!(l
predict how Anderson's numerical results will compare with ours. Note
that the present theory includes the interaction between the boundary layer
and the inviscid flow (pl solution), which reduces the predicted test time as
compared with a non-interaction theory ([30 solution and Anderson's solution).
Anderson's overestimation of mass loss tends to compensate for his neglect

of the boundary layer-free stream interaction, at least for moderate Xg-

In Anderson's illustrative examples, Ms = 6; Py = 10 crm Hg;
d=3/2in; x, = 15 ft; and d = 4 in.; x_ = 50 ft. His theory predicted about
50 percent of ideal test time. The present theory predicts about 30 percent
of ideal test time for these cases. Thus, in these examples, Anderson
predicts more test time than does the present theory. However, with

increase in X his theory must eventually predict lower values.




()

V. DISCUSSION

The present results can be used to estimate shock tube test time
reduction due to mass loss to a turbulent wall boundary layer. The pro-
cedure is as follows. First, Rem is found from Fig. 4b for given Ms' d,
and S If this is substantially larger than Ret {say Rem >5 Ret). the

limiting separation between shock and contact surface will be due mainly to

. a turbulent boundary layer. Hence the turbulent boundary layer analysis can

be used to estimate major reductions in shock tube test tirne. Next, ‘tm is
found from Fig. 4b and the value of X = xs/W.tm can be determined for a
given test section distance from the diaphragm. Finally, the test time can

be found from Figs. 8.

If Rem. based on a laminar boundary layer, is less than Ret. laminar
boundary layer theory is applicable and a similar procedure is followed

using the corresponding curves in Ref. 4.

The parameter that primarily determines Rem is dpm . For a given
value of dpm » the length-to-diameter ratio, xs/ d, determines the amount
of test time reduction, Typical values for these quantities can be obtained
from Figs. 9 and 10, for turbulent and laminar flows, respectively. These

figures are based on the identities

P, 1/(1-n) p 1/(1-n)
= Bt -2
Re [Rem(a- P ) ] P ) {29a)

Q0
d " (29b)

where the terms in square brackets have been evaluated for both laminar
(Ref. 4) and turbulent wall boundary layers (Fig. 4).



Values of Rem are plotted versus Ms for fixed values of dpmD in
Figures 9a and 10a; the product dp has the units (in.) (cm Hg). Also
plotted in these figures are estimated values of Re and 5 Re (It was
assumed that Re varies linearly on the loglog plot from Re =0.5x10° at
M =1lto Re = 4 x 106 at M = 9, The curves are not contmued beyond

M
]

applicable for values of dp(Jo that result in Rem 25 Ret. These values

"

9 because of uncertamty in Ret } Turbulent boundary layer theory is

(from Fig. 9a) are

air argon
dp 24 forM_ =3 dp 22 forM_ =3
(6o} s @ s
dp 210forM_ =38 dp 210forM =38
@ s @ 8

Similarly, laminar boundary layer theory is applicable when Rem < Ret. or

(from Fig. 10a) when

air argon
dp <0.3forM_ =3 dp 0.6 forM_=3
fe el s
dp <0.3forM =28 dp <1 for M_ =8
oo s

It follows that, roughly. turbulent theory applies for deZ 5 and laminar
theory applies for dp_ £ 0.5, for 3< MBS 9.

In Figures 9b and 10b xs/Xd is plotted versus Ms for various dpm
The ordinate may be viewed as the value of xs/d corresponding to X = 1;
that is, the length-to-diameter ratio that results in about 1/2 the ideal
test time. For air or argon turbulent boundary layers and Ma >3,
xs/XdN‘tS, 80, 140 for dp_, % 5, 50, 500. (Thus, a shock tube with
dpw s 5 and xs/ d ® 50 will have about half the ideal test time). Similarly,
for air or argon Jaminar boundary layers, Fig. 10b shows x’IXdN 100, 1o,
and } for dp = 0.5, 0.05, and 0.005, respectively.
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These numerical results are intended to give an indication of when

turbulent or laminar theory applies, and rough estimates of the test time

limitation. More accurate estimates are made from Figs. 4 and 8.

Before the present generation of low pressure shock tubes,* the
typical low pressure section of a shock tube had an internal diameter in the
range 1 in. <d <4 in. and a length-to-diameter ratio in the range 40-150
(Ref. 8). Longer tubes were sometimes used, particularly in studies of
shock attenuation; for example, a 2-in. X 40-ft tube (xs/d = 240) was used
in Ref. 9, and a 3.75-in. X 120-1t tube (xs/d = 384) in Ref. 10.

In a given shock tube, the largest reduction in test time, due to a
wholly turbulent boundary layer, occurs at dpoo x5 (in.) (cm Hg), for which
xs/Xd & 45. Tubes with xs/d % 45 will have X = 1, or around half the theo-
retical test time (see Fig. 8b). Tubes with xs/d % 150 will have X = 3, or
around 1/4 of the ideal test time. (The 40 percent lower limit on test time,
noted in Ref. 6 and discussed in Section I, is therefore not sufficiently low
for this case). With regard to the larger values of xs/d considered in
Refs. 9 and 10, it might be noted that X®= 5.5 for xs/d =240 and X~ 8.5
for xs/d = 384. Here, the test times are approximately 0.15 and 0.1 of the
ideal values, respectively. For these values of X, the separation distance

has reached its maximum value (Fig. 7).

The smallest reduction in test time, due to a wholly laminar boundary
layer, occurs when dpmz 0.5. From the results given in Ref. 4, it can
be seen that the test time is about 1/2 the ideal value when xs/d ~ 100. The
test time is slightly larger than the corresponding value for a turbulent

boundary layer with dpoo = 5.

PR,

*Present day low pressure tubes have low pressure sections: 6 in. X 30 ft
(AVCO), 24 in. X 50 ft {AVCO), 17 in. X 36 ft (Aerospace), 17 in. X 70 ft
(Caltech). '
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It is thus seen that, for a given shock tube, operation at an initial
pressure such that dp‘ao = 5 results in a local minimum in the maximum
possible test time. Higher values of dpoo will result in thinner turbulent
boundary layers and therefore more test time. With a decrease in dpoo‘
the onset of a wholly laminar boundary will first tend to increase the test
time; however, with further decrease in dpoo’ the boundary layer mass

flow will increase and severe test time limitations will occur.
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V. CONCLUDING REMARKS

The effect of wholly laminar and wholly turbulent wall boundary
layers on shock tube test time has been discussed. It has been shown that,
for given shock Mach number, the maximum test time, T and separation

distance, ‘!m’ depend primarily on

n/(1-n) ~ de forn=1/2

T~ ~dldp) -

m

- d5/4pcle4 forn=1/5

Since the ideal test time, T is proportional to distance from the diaphragm,

Xg it also follows that

d =
Tl T~ x dp_, for n = 1/2

/4

d 1 _
~ ;‘: (dpoo) for n=1/5

These equations show that the maximum test time is proportional to Py for
laminar flows and to pg‘t for turbulent flows. Hence the laminar wall

boundary layer case is more sensitive to Py

Examples of previous studies have been noted where turbulent wall
boundary layers have reduced the test time from 0.1 to 0.5 of the ideal
value. The rule-of-thumb (see Section I) that assumes about one half of the
ideal test time to be actually available is therefore not dependable. The
methods outlined herein should be used to estimate test time when necessary.
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It should be kept in mind that the present calculations actually provide
an upper limit on the test time. It is also necessary to consider (a) non-
ideal diaphragm rupture (which promotes interface mixing and causes non-
ideal flow near the diaphragm) and (b) flow nonuniformity between the shock
and contact surface. When the maximum separation is reached, the flow
nonuniformity between the shock and contact surface can be estimated from
Eq. (22) by assuming steady isentropic flow in a shock-fixed coordinate

system.

It should also be noted that the validity of the turbulent boundary layer
theory used in the present report has not been established for strong shocks
(see Appendix A). The present results are therefore intended as a first
estimate for the effect of turbulent boundary layers on shock tube test time.

Experimental confirmation of these results would be desirable.

e ——— -
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APPENDIX A

Turbulent Boundary Layer Behind Moving Shock

The turbulent boundary layer behind a moving shock was analytically
studied in Refs. 11 and 12. The general validity of some of the analytical
results given in Refs. 11 and 12 was experimentally established in Refs. 13
and 7 for Mach numbers up to about 3 and 6, respectively. Higher Mach
numbers were not studied therein; hence the accuracy of the results in Refs.
11 and 12 has not been fully established, particularly for strong shocks
(Ms > 6). Nevertheless, the results in Refs. 11 and 12 for displacement
thickness will be summarized here and put in a form suitable for studying
test time in shock tubes. This will provide at least a first estimate of the

effect of turbulent wall boundary layers on shock tube test time.

Assume that a shock moves with constant velocity, that the inviscid
flow behind the shock is uniform, and that the wall boundary layer is
turbulent (Fig. '2a). The variation of displacement thickness with distance
behind the shock (from Refs. 11, 12) is

-O%

[y 1o
eeo

v 1/5
x’(—‘"—) a1
w

e, 0

where

o5 341/5
K =o. osvsfi’:,( w) w - 1?/5{km Pw (p"’ ) (A-2)
o Pw Pe,oVe,o/ |
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Here, 6 is the boundary layer thickness, and 8 the momentum thickness.
The subscript m refers to conditions evaluated at a mean reference static

enthalpy defined by

h h h
h——m = o.s(r_‘” + 1>+ o.zz(ﬁ--_r - 1) (A-3)
e,o0 e,o0 e,o

where hr is the recovery enthalpy (i.e., the wall value of h for which there

is no heat transfer).

In order to find Ko’ it is necessary to evaluate (6*/6)/(1 - W) and
(6/6)/(1 - W), which are functions of W, hr/he o,and hw/he,o that can

be found from

16
s2/6 _ 1 LMo [O[wow -],y . (A-4a)
1-w w-1 hw[ 1+ bG - cgl :
/6 h, O/L [w- (2w - )¢ +(W - l)ﬁzl
=7 2 dy (A-4b)
l‘w hw o l+bg'C‘
where
by , by by a5)
RN TR '

[In reviewing the work of Refs. 11 and 12, it appears that for strong shocks
it might be advxsable to replace h /h and h /h in Eqs. (A-4) and (A-5)
by pwlpe and Pw / Py’ respectwely However. thm point will not be

pursued. Equanon (A 4) can be evaluated for given b, ¢, and W, using the
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tables presented in Refs. 10 and 11. For strong shocks, these tables
require taking the differences of large, nearly equal numbers; thus the
accuracy is reduced. (Approximate expressions for evaluating Eqgs. (A-4)
for strong shocks are given in Appendix B.) If convenient, it is preferable
to evaluate 6%/6 and 8/¢{ by the numerical integration of Eq. (4).

Ideal Gas

Eqs. (A-4) and (A-2) can be evaluated as a function of Ms for gases
with constant specific heat ratios, y, obeying the perfect gas laws, p = pRT

and h = cpT. For these gases,

h 2
r (W-1)
=z 1 + se—t—r(0) (A-6a)
..o ZW - 1
h
w o W(Ez-W) (A-6b)
h, o ZwW-1

where Z = (y +1)/(y - 1), and r(0) = (0')”3

(¢ = Prandtl number). Eq. (A-6a) follows from the definition of recovery

factor, and Eq. (A-6b) is a normal shock relation. The latter assumes that

is the recovery factor

the wall temperature is the same as the gas temperature upstream of the
shock.

Equations (A-4) have been evaluated for y = 7/5, r(0) = 0.897 and for
Yy =5/3, r(0) = 0.875. These values correspond to ideal air and to ideal
argon, respectively. The cases y=7/5, r(0) =1 and y = 5/3, r(0) = 1 have
also been evaluated to find the effect of r(0). The results are given in
Fig. 11 and can be approximated by the following expressions.
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1ef6w sWiB. W ;0(/73/3) for y = 7/5 (A-Ta)
= Wz‘;z for y = 5/3 (A-7b)
laf/&ED=0.157 for y = 7/5, W>2 (A-Tc)
- 0.176 " fory=5/3, W>2 (A-7d)

These expressions agree with the numerical integrations to within 3 percent.

Equations (A-7) have been used to evaluate Ko as a function of Ms’
using the Suthe - nd viscosity relation for argon and for air. The results

are given as Cascs I and I1 in Table 2 in terms of BO.
Real Gas

For strong shocks the previously noted ideal gas relations are no longer
valid. The following procedure has therefore been used to obtain an estimate

of the turbulent boundary layer behind a strong shock in air (Ms 2 6).

The proBlem is to evaluate Ko (Eq. A-2) for a strong shock. First
it was assumed that Eqs. {A-7a) and (A-7c) could be used with W obtained
from the equilibrium shock solutions of Ref. 14, [Eqs. {({A-7a) and (A-Tc)
agree with the limiting values of 8/5 and 6*/6 obtained by strong shock

assumptions, Eqs. (B-3), to within 5 percent and 8 percent for W = 10 and

15, respectively.] It then only remains to evaluate the term [ ]I/S in
Eq. (A-2). The energy equation for a strong shock gives
h
L=l : £(0) (A-8)
e,0 !

with r(0) = 0. 897 for air. Reference 14 was used to find W and

_ - o .
Te,o/Too = Te,o/Tw for given M_, P, and T, = 300"K. It was then
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assumedthatp o/pw ~ hw/he o N Tw/Te o+ The latter, with Eq. (A-8),

permits hm/he ~ Tm/Te, 0% Pe, o/Pm to be found and Eq. {(A-2) to be

)
evaluated. The assumption that h ® T = 1/p is only approximately correct
but should be sufficiently accurate for the present purposes (i.e., evaluation

of[ 1Y% inEq. A-2).

The resulting values of Ko are also given in Table 2 (in terms of Bo).
This table, together with Eq. (7), defines the turbulent boundary layer
behind a strong shock in air. It should be kept in mind that the turbulent
boundary layer theory of Refs. 11 and 12 has not been verified for strong

shocks and that further simplifying assumptions were made to obtain Ko.

Boundary Layer Theory for Local Similarity Approximation

The turbulent boundary layer equations will be put in a form that is
appropriate for an origin at !i, a wall velocity u e and free stream conditions
Ugs Pg: which are isentropically related to conditions directly behind the
shock (ue,o’ P }. This boundary layer is illustrated in Fig. 3 and is

e,0
used in the local similarity approximation in the body of the report.

For the boundary layer in Fig. 3, Eq. (A-1) becomes

v 1/5
6% = x(—L-) (0 - 145
u -1 1
w e
) ) 1/5

K[ w w-l)”"’]( Yw, 0 ) 4/5

= K o 2 ) (2 -1) (A-9)
O[R;(vw,o w-V Yw " Ye,0 1
where V = ue/ue'o. Equations (A-7) have the form
T R (A-102)
T-s"i:v!i;ﬁ =D (A-10b)
) -50-
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where B, C and D are constants. If the free stream Mach number relative

to the shock, Me o
’

variation of fluid state properties in the free stream can be neglected

(pe *Pe ol Pe = Pg o), and Eqs. (A-9) and (A-~10) then yield

= (ue/ae)o, is small (i.e., strong shock), then the

5 = AVEEH gy og . )Y/5 (A-11a)
d e i
where
4K 8/5 4/5/ v 1/5
H - o(W-V) (W+B w,0 (A-11b)
e~ "3 \W<-1 Wt BV - u .

Note that B = 7/3 for air and 2 for argon (Eq. A-7).
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APPENDIX B

Limiting Forms for 0/6 and 6%/&

Limiting forms for 0/6 and 6%/6 are presented herein for the cases of

both very weak shocks and very strong shocks.
Weak Shock

For the case of a weak shock, Eqs. (A-4) become

4

6*/6 =31+ 0w - 1)] (B-1a)
L= a1+ 0w - 1] (B-1b)

Strong Shock

For strong shocks, b>>1, ¢>>1 and the ratio c¢/b has a limiting value

given by

Ideal Gas (B-2a)

- r{0) Real Gas  (B-2b)

[(W+ D/(W - 1]+ £(0)

Thus c/b = 0,391, 0.344 for y=1.4, r(0) = 0,897 and y = 5/3, r(0) = 0,875,
respectively, These are the values for ideal air and argon. For a real gas
with r(0) = 0,9, it follows that ¢/b = 0, 375, 0,424, and 0,440 for W = 5, 10,
and 15, respectively.
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If terms of order b'l compared with 1 are neglected, Eqs. (A-4)

yield
Q0
§4/6 1 c c/mNr w -1
= w1 - ) SR e+ T o Th -
N=0
= D(-V\‘L—'_Ea[l + 0™ 1)) (B-3a)
/6 _ . ¢ S (c /)N 2w -1
T-w="0-82 mrnerNesw * Y[+ oe )]
N-: ')
ELN—EE[ 1+0( 1)) (B-3b)

The constants, B, C, D, E have been evaluated for several values of c/b

and are given in Table 4,

For strong shocks in air, Eqs. {A-7a) and (A-7c) agree with Eqs.
(B-3) to within 5 percent for W = 10 and to within 8 percent for W = 15,
Hence Eqs. (A-7a) and (A-7c) are sufficiently accurate for a first estimate
of 8 and §* behind strong shocks in air.

Table 4. Constants Defining /5 and 6%/§
for Strong Shocks (Eqs. B-3)

c/b B C D D

0.35 3.16 28.2 0.148 0.413
0. 40 3.19 29.2 - 0.144 0.511
0.45 3.23 30.3 0. 140 0.632
0.50 3.27 . 31.6 0.135 0.781
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