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ABSTRACT

Shock tube test time limitation due to the premature arrival of the

contact surface is analytically investigated for wholly turbulent

wall boundary layers. The results are compared with those for

wholly laminar wall boundary layers. It is found that for a given

shock Mach number, Ms, the maximum possible test time (in a

long shock tube) varies as d 5/4 p1/ 4 and d2 p for the turbulent

and laminar cases, respectively (d = tube diam, pao = initial
pressure). For 3 < Ma < 8 in air or argon, it is found that the

turbulent boundary layer theory for maximum test time applies

for dpa, > 4 to 10 (air) and dpa, > 2 to 10 (argon), where d is in

inches, paO is in cm Hg. Similarly, for 3 < Ms < 8, the laminar
theory applies for dpao 0 0.3 (air) and dp O 0. 6 to I (argon).

When dpao 0 5, turbulent theory for both air and argon indicates

test times of about 1/2 to 1/4 the ideal value for x /d = 45 to 150,

respectively (x, = length of low pressure section). Higher values

of dp Oa result in more test time. When dpa, O 0. 5, laminar theory

indicates about 1/2 ideal test time for xsa/d u 100. Lower dpo

reduces test time. Working curves are presented for more accu-

rate estimates of test time in specific cases.
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1. INTRODUCTION

In an ideal inviscid shock tube, the separation distance between shock

and contact surface increases linearly with distance from the diaphragm

(Fig. 1). In a real shock tube, however, the wall boundary layer between the

shock arnd contact surface acts as an aerodynamic sink and absorbs mass

from this region. This causes the contact surface to accelerate and the

shock to decelerate and reduces the separation distance, 1, below the ideal

value. The separation distance approaches a limiting (maximum) value, I

At this limiting condition, the shock and contact surface both move with the

same velocity (Fig. 1). The limiting separation distance is that at which the

mass flow entering the shock equals the boundary layer mass flow moving

past the contact surface.

Separation distance imposes an upper bound on the test time in shock

tubes. (Nonuniformity of the flow between shock and contact surface may

further reduce test time. The amount of flow nonuniformity that can be

tolerated depends on the nature of the experiment and the instrumentation.)

It is thus important to know separation distance as a function of distance from

the diaphragm in order to estimate test times in shock tubes.

The effect of a laminar wall boundary layer on separation distance has

been studied experimentally by Duff (Ref. 1) and both experimentally and

analytically by Roshko (Ref. 2) and Hooker (Ref. 3). Some aspects of the

analyses presented in Refs. 2 and 3 are modified in Ref. 4. These references

can be used to estimate test time in low pressure shock tubes (roughly, those

shock tubes with initial pressures of the order of I mm Hg or less, currently

being used to study dissociation, ionization, and other rate phenomena). The

test time limitation in low pressure shock tubes has received considerable

attention because the upper limit on test time is proportional to d2p

(Ref. 2) and very low d2 p O can result in virtually no usable test time

(d = tube diam, Puo a initial pressure).

-I-
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The effect of a turbulent wall boundary layer on separation distance has

been treated only by Anderson (Ref. 5). It is interesting to note that Anderson

was the first to blame less than ideal shock tube test time on the premature

arrival of the contact surface. Anderson showed, for two practical examples,

that mass loss to a turbulent wall boundary layer reduced the theoretical test

time by about a half. This was in agreement with a rule-of-thumb presented

in Ref. 6 for shock tubes used to study re-entry heat transfer. In Ref. 6, it

was stated that 40 to 70 percent of theoretical test time was generally ob-

tained, and 50 percent was proposed as a mean value. (The test time

referred to was the period of essentially uniform conditions. The reduction

from the ideal value was attributed, in Ref. 6, to mixing at the interface and

flow nonuniformity associated with shock attenuation rather than to the pre-

mature arrival of the contact surface). Since test time did not appear to

represent a serious problem in re-entry heat transfer shock tubes studies,

the work of Anderson did not find widespread application.

(I As previously noted, the effect of a laminar boundary layer on shock

tube test time is now receiving considerable attention (Refs. 1-4). It is

therefore felt that it is worthwhile to develop the turbulent boundary layer

case beyond the preliminary work of Anderson. Anderson presented a first

estimate of the variation of separation distance with distance from the

diaphragm for a particular initial pressure (10 cm Hg) and two tube diameters

(1-1/2 and 4 in.). In the present paper, the problem is formulated more

accurately, and the results are presented in nondimensional form so as to be

applicable for arbitrary initial pressures and tube diameters. Criteria are

established to define when turbulent wall boundary layer theory is applicable

and when laminar wall boundary layer theory is applicable. The development

here is parallel to that used in Ref. 4 for the laminar case.

The present solution is primarily intended for the case where the wall

boundary layer introduces sizable reductions in test time. When the wall

boundary layer introduces only small perturbations of the ideal test time, the

linearized methods of Refs. 15 and 16 are more appropriate.

-3-
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1I. MAXIMUM SEPARATION DISTANCE

Due to the wall boundary layer, the separation distance between shock

and contact surface approaches a maximum value such that the mass flow

through the shock equals the mass flow moving past the contact surface.

"Vhis phenomenon has been observed for laminar wall boundary layers (Refs.

1-3) and may also be assumed to occur, for sufficiently long shock tubes, in

the case of a turbulent wall boundary layer. When the maximum separation

distance is reached, both shock and contact surface move with the same

velocity. The flow between the shock and contact surface may then be

viewed as steady in a coordinate system in which the shock is stationary. In

this shock-stationary coordinate system, the wall moves with velocity uw

(which equals the shock velocity U8 in the laboratory system). This steady

flow is investigated in this section with the primary object of determining the

maximum separation distance between the shock and the contact surface. The

variation of separation distance with distance from the diaphragm is treated

in Section Ill.

The steady flow is illustrated in Fig. Za. The shock is located at

I = 0, and the free stream portion of the contact surface at I = I . The flow

upstream of the shock is denoted by subscript co and moves with velocity uw,

as does the wall. Free stream conditions between the shock and the contact

surface are denoted by subscript e. Free stream conditions directly down-

stream of the shock have the additional subscript o. The percentage of mass

flow in the boundary layer increases with I such that all the mass flow is in

the boundary layer at In, and the free stream is stationary at that location.

* For laminar boundary layers, the shock and contact surface velocities tend

to remain constant after the maximum separation distance is reached
(Ref. I). For turbulent wall boundary layers, the shock and contact surface
may both continue to decelerate after the maximum separation is reached.
This deceleration depends on the driver gas. If the shock continues to
decelerate, then the present steady solution is a quasi-steady solution.

-5-



The physical parameters upon which I depends can be found as
follows. The flow rate through the shock, rhns, is

ns = (PeUe)o A , pOUw A (la)

where A is the cross-sectional area of the tube. If it is assumed that the

boundary layer is thin relative to the tube radius, the mass flow in the

boundary layer at the contact surface location, rmc, can be characterized by

nc = Lp o(uw Ue o)6 R (Ib)

where

Here, L is the perimeter of the tube; 6 R is a characteristic boundary layer

m ,o W e,o

and velocities, respectively; I is a constant; and n = 1/2 for laminar and 1/5

for turbulent boundary layers. Equating Eqs. (la) and (lb) yields

u u _u nIl-n = d Pe, o e,.o w-e,'o°2

m 4P p u -u ~V
w,o 0w e, o0 w,o0

where d = 4A/L is the hydraulic diameter of the tube.

Assume that the temperature upstream of the shock is at a standard

condition so that T OD Tst, aCI = ast, and goi = 4st" Also, assume that the

-6-



wall remains at its initial temperature so that T = T t. Equation (2) canw st

now be put in the form

a (3)
whereWd 4u -p /p;4) a;

where W = Uw/Ue, o 7 Pe, o/P0o; Ms = Uw/aoo; and pat is a standard pressure,

usually taken to be one atmosphere. For n = 1/2, these equations reduce to

those presented in Ref. 4. For n= 1/5, Eq. (3) becomes

( /t)4 m = Ir I Nf5/4p 00 W M 1/4(aP) 1/4 (4)

LPOO' d e,o st

The right-hand side of Eq. (3) depends primarily on Ms. For a given M.,

I -'- d2p for a laminar boundary layer, and I - d 5 / 4 pI/ 4 for a turbu-
m m 00

lent boundary layer. Therefore, for turbulent boundary layers, I is lessm
sensitive to variations of d and po0 than is the case ;or laminar boundary

layers.

Equation (4) does not yield numerical results for I unless an accuratem
estimate of P is available. Actually, P must be found from Im rather than

vice versa. That is, Eq. (2) is taken as defining P, that is,

d p O W Iuw ueol (5)
4 1 1-n pe, - I Vw,°

m

and I is found as accurately as possible from a consideration of them
boundary layer development in Fig. Za. A first estimate for P, termed Pol
is made below by assuming the boundary layer to develop in a uniform

external stream. An improved estimate, termed Pl, is then made by

-7-



considering a variable external stream and employing the concept of local

boundary layer similarity.

A. UNIFORM EXTERNAL FREE STREAM APPROXIMATION

Boundary layer development for the case of an external free stream

that does not vary with I is illustrated in Fig. 2b and is discussed in

Appendix A. Let I correspond to the value of I at which the excess mass

flow in the boundary layer equals the mass flow entering through the shock.

The mass flow past the contact surface is then

u- ~ 1/5
fc -- = K 14/5 wO o (6)

L(peue)o m a m (uw - ue, o)

where 6* is the displacement thickness at I and K is a function defined inm m 0
Appendix A. Equating Eqs. (lb), (Ic), and (6) then yields

POD W
S- ow - I K (7)ec, a

Values of Po have been computed for y = 7/5, r = 0.72 and y = 5/3, T = 0.67

using the turbulent boundary layer theory of Appendix A together with the

Sutherland viscosity law. (y = ratio of specific heats, a- = Prandtl number).

Values of Po have also been computed for the flow behind strong shocks in

air at initial pressures of 0. 5 and 10 cm Hg. These four cases are further
identified in Table I and the numerical results for P are listed in Table 2.

These values of P° can be used to find turbulent boundary layer displacement

thickness (Eqs. 6, 7) and will be used later to find P 1.
It is expected that these values of P will overestimate Im,particularly

for shock Mach numbers that are not large, due to the fact that the relative

velocity between the wall and the free stream increases from uw - u at

I = 0 to uw at I (compare Figs. Za and Zb). Hence, the excess mass flow

-8-



in the boundary layer will be greater at a given I than the excess obtained

from the above model. This will result in smaller I and larger P thanm

obtained from Eq (7). However, for very strong shocks, where u ise,o0

small relative to uw, Eq. (7) should give accurate resuilts.

B. LOCAL SIMILARITY APPROXIMATION

In this subsection, the streamwise variation of free stream properties

due to the increase in boundary layer mass flow with I is taken into account.

The development of the boundary layer and the variation in free stream

properties are treated simultaneously. The boundary layer growth is found

by assuming that at each station it is similar to a corresponding boundary

layer developing in a uniform free stream behind a shock moving with uniform

velocity (i.e., local similarity).

Since the flow is steady (Fig. Za). the net mass flow through the shock

equals the net mass flow at any station I. Thus

A(PeUe)° - Ap eue + Lfr(Pu - peUe) dy (8)

In Eq. (8), it is assumed that the boundary layer thickness is small compared

with d; thus the integrand is nonzero only in the region close to the wall.

Otherwise, for circular tubes, the coefficient L would have to be replaced by

a factor ii(d - Zy) in the integrand of Eq. (8). Define

4 CC (-6") (9)
d (p eu e)

where 6* is the boundary layer displacement thickness based on the local

free stream

f* O(I - Pu ) dy (10)

-9-
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Note that 6 is the ratio of the excess mass flow through the boundary layer at

I to the mass flow through the shock. Thus 6 varies from 0 at I = 0 to I at

I = I . Equations (8)-(10) then give

PeUe (o1)

which relates the free stream conditions to the local boundary layer displace-

ment thickness.

The concept of local similarity is now introduced. It is assumed that

the boundary layer profile at each I corresponds to the profile for a boundary

layer associated with a uniform free stream (equal to the local free stream)

and a wall velocity uw. The origin of this fictitious boundary layer is at I it
which is initially an unknown function of I. (See Fig. 3.) The origin I. is

chosen such that the excess flow ". the boundary layer at each I has the

correct local value. If M is sufficiently large that variations in pe and pe

can be ignored, Eqs. (11) and (A-I Ia) become

6 =1 - V (lZa)

6 He (I - i)4/5 (I2b)

where V = u /u and H is a function of the local free stream as defined inC eO e
Eq. (A-11b). The problem is now to solve these equations simultaneously to

find 6 as a function of I. The value of I at 6 = I defines I and thus pro-
m

vides an improved estimate for P.

-11-



Assume that the local rate of growth of 8 follows the local similarity

law 8 H e (I Ii)l'n(withHe and i. considered constant at the local values).

This is the approach used in Ref. 4. It follows that

T (0-n) I
I-I

IH\" -n)
0 n ( l ) &1t (13)

For n 1 1/2, this expression is the same as that derived in Ref. 4. For

n = 1/5, Eqs. (13) and (12a) give, in integral form,

1(1 -V) dV (14)
4 V H 5 / 4

Substituting Eq. (A- 1Ib) for He and considering the limit V = 0, m -

yields

4K05/4 1/4 5 1 1I-)/4 W + BVIW- I•Z

j -V) - dV F (15)\d v\wo . U4' W+-B VW- - -v/

The constant B is defined in Appendix A. Equation (15) can not be integrated

in closed form. For W > 2, F can be expressed as

iB i+ 1

F = I - 5 +i B4+ W W -Wi-1 1 (16)
(5 + 41)(I - W)



so that F -, 1, from below, as W - co. Equation (15) has been numerically

integrated for B = 7/3 and 2, which correspond to air and argon, respectively.

The numerical results have been correlated to within 3 percent for W > 1. 5

and to within 2 percent for W > 2. 0 by the expression

F-- W(W - 1) (17)
W + 1.25W - 0.80

Substitution of Eq. (15) into Eq. (5), to eliminate I yields the

following value for PI:

P o = [W2 + 1.25W - 0.80.]4/5
1F 01 WW5 (18)

This expression has been used with the values of P° in Table 2 to obtain

corresponding values of PI.* These values are presented graphically in
Fig. 4a.
C. NUMERICAL RESULTS FOR 1m' Re inAND 26 m/d

The values of P1 in Fig. 4a have been used to compute Im from Eq.(4).
The results are given in Fig. 4b. Standard conditions were assumed to be

Tat = 522 0R and pat = 76 cm Hg so that

Ia) = 6.93 x 106 ft 1 air (19a)Sst

= 7.39 x 106 ft- argon (19b)

In order for the present theory to be valid, it is necessary that the

boundary layer be turbulent. This will be the case if the Reynolds number

at I is considerably larger than the transition Reynolds number. An

m

-13-
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Table 2. Values of P (Eq. 7)

Case I Case II Case III Case IV

Ms o Ms o M Po M Po
m 0 PO 0 P 5 0 S 0

1.41 0.0263 1. 35 0. 0253 6 0.0283 6 0.0270

1.73 0.0326 1.58 0.0332 8 0.0220 8 0.0210

2.24 0.0345 1.89 0. 0389 10 0.0188 10 0.0175

3.00 0.0312 2. Z4 0.0413 12 0.0157 12 0.0149

3.46 0.0284 2.65 0. 0413 14 0. 0129 14 0.0122

4.12 0.0245 3.16 0.0391 16 0.0116 16 0.0106

5.ZO 0.0195 3.87 0.0348 18 0.0104 18 0.0095

6.08 0.0164 5.00 0. 0282 20 0.0094 20 0.0084

7. 55 0. 0126 5.70 0.0248 ....-- -- .

8.77 0.0105 6.71 0.0208 --

10.82 0.0080 8.37 0.0161 --

--- 9.75 0.0133 --
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appropriate Reynolds number, based on Im, is Rem = Ue, o(W - 1)21r/re, 0,

A form convenient for calculation is

Pst" 5/4 •c a• d-4sPt
LSt Re -- (W - 1) 2M 11co/ (0m ( , -[5 m-at(PO 4e, o st 1'(D)

This parameter is plotted in Fig. 4c. The transition Reynold's number has

been investigated (Ref. 7) and is in the range 0.5 < Ret X 10-6 < 4 for

1 <M s<9. It appears to increase markedly for larger Ms, due to the

stabilizing effect of the low wall temperatures, but only limited data A..re

available. The present turbulent boundary layer theory should be applicable

if Re is significantly larger than Ret (say, Re > 5 Re
m min-

It has also been assumed (e. g. , Eqs. 1, 8) that the boundary layer

thickness is small relative to the tube radius. This condition will be satisfied

if 26 m/d is small. Here, 6m is the boundary layer thickness at I . If 6nm m
is assumed to vary as in the case of a uniform external stream, it can be

shown that

Z6m I F 4 / 5  
___I W1 W

d 2W-I k 6* /

This parameter is plotted in Fig. 4d. It is seen that 26 m/d > 1 for Ms < 2

so that the assumption of a small boundary layer thickness is violated. For

argon considered as an ideal gas (Case I), the quantity 26 M/d doesn't go

below 0. 6; and for ideal air (Case II), it doesn't go below 0.45. The real gas

solutions for air (Cases III, IV) have values below 0.5 for M > 6. However,

it should be noted that 26m/d provides a very conservative estimate for the
validity of the present theory. What is mainly required is that the boundary

layer not become fully developed (i. e., 26 m/d < 1) and that the integrand in

Eq. (8) not require the factor ir(d - 2y) (for circular cross sections). The

-20-



S
second of these conditions is probably satisfied when 26m/d < I since most of

the boundary layer excess mass flow occurs in the portion of the boundary

layer near the wall. For example, by neglecting density effects and assuming

a 1/7th power velocity profile, it can be shown that 56 percent of the excess

mass flow occurs within a distance 6 m/4 from the wall. The higher gas

density at the wall (particularly for strong shocks) will considerably increase

the fraction of excess mass flow in this distance. The present approach is

therefore considered probably valid for M > 3.

-21-



III. VARIATION OF SEPARATION DISTANCE WITH
DISTANCE FROM DIAPHRAGM

In Section II, the limiting value of the separation distance between the
shock and contact surface was found as a function of M . This value defines

s

the test time in shock tubes that are sufficiently long to permit the separation

limit to be reached. In order to estimate test times in shorter shock tubes,

it is necessary to consider the rate at which separation distance increases

with distance of the shock from the diaphragm. This problem is now

discussed, using the approach in Ref. 4. It will be assumed that the shock

moves with uniform velocity and that the flow between the shock and contact

surface is steady in a shock-fixed coordinate system.

A. SEPARATION BETWEEN SHOCK AND CONTACT SURFACE

Consider flow in a coordinate system in which the shock is fixed and

the wall moves with velocity uw. Assume that at t = 0 the contact surface

coincides with the shock, and at some later time, t, the portion of contact

surface that is in the free stream is located at I (Fig. 5). The problem is to

find I as a function of t. (In the present section,1 is considered a dependent

variable defining the location of the contact surface relative to the shock as

a function of time. )

For steady flow, the mass flow through the shock equals the mass flow

through a control surface at 1. This yields an equation identical to Eq. (11),

namely,

1- e ue (11
(Pe e o

where " is again the ratio of the excess boundary layer mass flow at I to the

mass flow through the shock. For the present purposes it can be assumed

that the excess mass flow in the boundary layer varies as I1-n Then,

-23-
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" = (1/1 M)1n. Also, it will be assumed that p e/Pe,o = 1 (valid for strong

shock). These assumptions have been shown to be accurate (Ref. 4), except

near W = 1 where the present solution for I is invalid anyway. Equationm

(11) then becomes

( )l-n =1 - e (22)
me, o

Introduce the nondimensional variables

u t xe,O SS,- 0 (23a)
m m

I
T E T- (23b)

m

where xa u wt is the distance of the shock from the diaphragm in laboratory

coordinates (Fig. 6). Noting that d1/dt = ue, write Eq. (22) in the form

T -n =I - dT (24)

Integrating,

o dT (25)

o I T

-25-
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0
Thus,

x
-X-- In (1 - Tn) + Tn for n = 1/2 (26a)

( In I Tn - Z tan" Tn + 4 T for n = 1/5 (26b)

Equation (26a) was first derived by Roshko.

The variation of T with X is tabulated in Table 3 and is plotted in Fig. 7

for n = 1/2, 1/5. Note that T = X corresponds to an ideal (no boundary

layer) shock tube. The departure of the curves in Fig. 7 from T = X repre-

sents the departure from ideal performance. For X 1 0. 1, the departure is

small, and for X •> 10, the separation distance equals the limiting value.

Note that I equals 59 percent of the ideal value when X = 1, n 1/5.

B. TEST TIME

In the previous subsection, the separation distance was obtained as a

function of t. A quantity that is perhaps of greater interest is the test time

(i. e. , the difference in time between the arrival of the shock and the arrival

of the contact surface) at a fixed distance from the diaphragm, x . This

quantity will now be discussed.

Designate the test time by T. For x. - 0, T - Tm m /u . Define
S=_ T/Tm, which is the test time at x divided by the test time at x - oo.

If it is assumed that the shock moves with constant velocity, X and s are

related (Ref. 4) by

X = Xb - (Tb/W) (27a)

Equation (26b) was derived by Dr. E. F. Brocher in an as yet unpublished
study of test time for the case of small departures from the ideal flow.
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Table 3. Variation of T with X (Eq. 25)

x
T n = 1/Z n= 1/5

0.01 0.0107 0.0101

0.05 0.0590 0.0527

0.10 0. 128 0.110

0.20 0.291 0.238

0.30 0.491 0.388

0. 40 0. 737 0. 564

0. 50 1.04 0. 776

0.60 1.43 1.04

0.70 1.95 1.39

0.80 2.71 1.88

0.90 4.04 2.73

0.92 4.48 3.01

0.94 5.04 3.37

0.96 5.84 3.87

0.98 7.22 4.73

0.99 8.60 5.60
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= Tb (27b)

where Xb, Tb are corresponding values from Table 3. The variation of T

with Xis plotted in Fig. 8a for W = 2, 4, 8, oo.

An analytical expression relating T and T can be found as follows.

Assume that the contact surface velocity is constant during the period of time

between the arrival of the shock and the arrival of the contact surface at x .

The test time would then equal T 1/(Uw - u e), or, from Eq. (22),

WT

"W - 1 -n (27)

At the start of the motion, 7 = WT/(W - 1). After long times, T = T = 1. For

large W, T = T for the entire motion.

The parameter "f compares the test time T to the asymptotic test time

Im /u w. It is also of interest to compare T to the test time for an ideal shock

tube, Ti. The ideal test time at a distance xs from the diaphragm is

T 5 s/(uw - Ue, o)W

The actual time, assuming ue is constant between arrival of shock and contact

surface, can then be expressed as

T T W-1
Ti W-I+T

This is plotted in Fig. 8b for n= 1/5 and W = 2, 4, 8, co. For large W,

T/.i = T/X. Note that when X = 1, the test time is about 1/2 of the ideal

value. The ratio TI/ri equals (W - 1)/WX for X Z S.
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IV. COMPARISON WITH ANDERSON'S SOLUTION

There is a basic difference between the separation distance solution

presented by Anderson (Ref. 5) and the one presented in this paper.

Anderson's method for finding the separation distance corresponding to

a given shock location, xs, is as follows. He assumes that the shock

moves with uniform velocity, and finds the separation distance by equating

Atp e' o to the difference between the ideal amount of shocked gas, Ax spco,

and the amount of gas that has slipped past the contact surface. The latter

he finds, incorrectly, to be of the form K Ap X9/ 5 (assuming a thin

boundary layer) where K1 is a function of M s, d, p 0, and is tabulated by

Anderson. The separation distance is then

J=Poo x(I Kl 4/5•

Pe, • s

I is seen that as x increases, I first increases, reaches a maximum at a

finite value of xs [namely, x. = (5/9 K1 ) 5 , and then decreases. In the

present solution, I increases monotonically with x and asymptotically

approaches Im as xs -co. Hence the two solutions have different behaviors.

Anderson's expression for the net mass loss past the contact surface

is based on the ideal separation distance between shock and contact surface.

It can be readily bhown that his estimate is too large, except for small xs.

If the free stream is assumed to remain uniform, the mass flow past the

contact surface at any instant is proportional to I4/5. The net mass loss

since the start of the motion for a shock moving with uniform velocity is

proportional to

o dx

(
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For small xs, where I varies linearly with x. , the net mass loss has the

form x• , as derived by Anderson. For large x , I approaches I , ands 4/5 m'

the net mass loss tends to become proportional to I mxs, which is con-

siderably smaller than the x9/5 dependence used by Anderson. Thus,s

Anderson's solution overestimates the mass loss and underestimates the

test time for large x.. This accounts for the differences in the behavior of

the two solutions.

For moderate values of x., say xs• (5/9K 1) 5/4, it is difficult to

predict how Anderson's numerical results will compare with ours. Note

that the present theory includes the interaction between the boundary layer

and the inviscid flow (P1 solution), which reduces the predicted test time as

compared with a non-interaction theory (Po solution and Anderson's solution).

Anderson's overestimation of mass loss tends to compensate for his neglect

of the boundary layer-free stream interaction, at least for moderate xs.

In Anderson's illustrative examples, Ms = 6; Poo = 10 cm Hg;

d = 3/2 in.; x = 15 ft; and d = 4 in.; x = 50 ft. His theory predicted about

50 percent of ideal test time. The present theory predicts about 30 percent

of ideal test time for these cases. Thus, in these examples, Anderson

predicts more test time than does the present theory. However, with

increase in x., his theory must eventually predict lower values.
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V. DISCUSSION

The present results can be used to estimate shock tube test time

reduction due to mass loss to a turbulent wall boundary layer. The pro-

cedure is as follows. First, Rem is found from Fig. 4b for given M., d,

and p,. If this is substantially larger than Ret (say Rem > 5 Ret), the

limiting separation between shock and contact surface will be due mainly to

a turbulent boundary layer. Hence the turbulent boundary layer analysis can

be used to estimate major reductions in shock tube test time. Next, Aim is

found from Fig. 4b and the value of X = xs/W1m can be determined for a

given test section distance from the diaphragm. Finally, the test time can

be found from Figs. 8.

If Rem# based on a laminar boundary layer, is less than Ret, laminar

boundary layer theory is applicable and a similar procedure is followed

using the corresponding curves in Ref. 4.

The parameter that primarily determines Rem is dp . For a given

value of dpOD, the length-to-diameter ratio, xs/d, determines the amount

of test time reduction. Typical values for these quantities can be obtained

from Figs. 9 and 10, for turbulent and laminar flows, respectively. These

figures are based on the identities

Re j[Rem(Zj s)]d(-n)](dP.* /I) (29a)

Pst n/(l-n) PO nI/(l-n) (29b)

A =m Wd m( 7 "n l Pst)

_--P_ -(/29b)

where the terms in square brackets have been evaluated for both laminar

(Ref. 4) and turbulent wall boundary layers (Fig. 4).

.,
• -35-



Values of Rem are plotted versus Ms for fixed values of dpo. in
Figures 9a and 10a; the product dp has the units (in.) (cm Hg). Also

plotted in these figures are estimated values of Ret and 5Re t* (It was

assumed that Ret varies linearly on the loglog plot from Ret = 0.5 X 106 at

Ms = 1 to Re=t = 4 X 106 at M s = 9. The curves are not continued beyond

Ms = 9 because of uncertainty in Ret. ) Turbulent boundary layer theory is

applicable for values of dp that result in Rem Z 5 Ret. These values

(from Fig. 9a) are

air argon

dp 0_ 4 for Ms =3 dpa O 2 for Ms=3

dpOD _10 for Ms = 8 dp 0 l 10 for M8 = 8

Similarly, laminar boundary layer theory is applicable when Rem f Ret, or

(from Fig. 10a) when

air argon

dpo_ 0 0.3 for Ms =3 dP -. 6forM s3

dp 0o<0.3 for Ms = 8 dpOD_< 1 for M. = 8

It follows that, roughly, turbulent theory applies for dp C; 5 and laminar

theory applies for dp° 00 0.5, for 3 5 M 8 9.

In Figures 9b and 10b x /Xd is plotted versus M for various dpCI.

The ordinate may be viewed as the value of xs/d corresponding to X = 1;

that is, the length-to-diameter ratio that results in about 1/2 the ideal

test time. For air or argon turbulent boundary layers and Ms > 3,

xs/Xd *45, 80, 140 for dp O 5, 50, 500. (Thus, a shock tube with

dpo° 0 5 and xs/d w 50 will have about half the ideal test time). Similarly,

for air or argon aaminar boundary layers, Fig. 10b shows x s/Xd n 100, 10,

and 1 for dpco f 0.5, 0.05, and 0. 005, respectively.
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These numerical results are intended to give an indication of when

turbulent or laminar theory applies, and rough estimates of the test time

limitation. More accurate estimates are made from Figs. 4 and 8.

Before the present generation of low pressure shock tubes,* the

typical low pressure section of a shock tube had an internal diameter in the

range 1 in. < d < 4 in. and a length-to-diameter ratio in the range 40- 150

(Ref. 8). Longer tubes were sometimes used, particularly in studies of

shock attenuation; for example, a 2-in. X 40-ft tube (x s/d = 240) was used

in Ref. 9, and a 3.75-in. X 120-ft tube (x s/d = 384) in Ref. 10.

In a given shock tube, the largest reduction in test time, due to a

wholly turbulent boundary layer, occurs at dp C, 5 (in.) (cm Hg), for which

xa/Xd ; 45. Tubes with x/d s 45 will have X = 1, or around half the theo-

retical test time (see Fig. 8b). Tubes with x /d I 150 will have XS 3, or

around 1/4 of the ideal test time. (The 40 percent lower limit on test time,

noted in Ref. 6 and discussed in Section I, is therefore not sufficiently low
for this case). With regard to the larger values of x s/d considered in

Refs. 9 and 10, it might be noted that X-5.5 for x s/d = 240 and Xf 8.5
for xs/d = 384. Here, the test times are approximately 0.15 and 0.1 of the

ideal values, respectively. For these values of X, the separation distance

has reached its maximum value (Fig. 7).

The smallest reduction in test time, due to a wholly laminar boundary

layer, occurs when dp cO; 0. 5. From the results given in Ref. 4, it can

be seen that the test time is about 1/2 the ideal value when x /d ;z 100. The

test time is slightly larger than the corresponding value for a turbulent

boundary layer with dp O 5.

Present day low pressure tubes have low pressure sections: 6 in. x 30 ft
(AVCO), 24 in. X 50 ft (AVCO), 17 in. X 36 ft (Aerospace), 17 in. X 70 ft
(Caltech).
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It is thus seen that, for a given shock tube, operation at an initial

pressure such that dp00 it 5 results in a local minimum in the maximum

possible test time. Higher values of dp will result in thinner turbulent

boundary layers and therefore more test time. With a decrease in dpo,

the onset of a wholly laminar boundary will first tend to increase the test

time; however, with further decrease in dp., the boundary layer mass

flow will increase and severe test time limitations will occur.
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VI. CONCLUDING REMARKS

The effect of wholly laminar and wholly turbulent wall boundary

layers on shock tube test time has been discussed. It has been shown that,

for given shock Mach number, the maximum test time, rmt, and separation

distance, Im' depend primarily on

"rm -m l d(dpc:r)n/(l-n) -d~p• onT 1 dd )n(In _d2 O for n -- 1/2

d5/4 1/4 for n= 1/5-• d POO

Since the ideal test time, "r., is proportional to distance from the diaphragm,1

x , it also follows that
s

T /T -d for n = 1/2
"rm i dPoo

d 1d (dpo) 1/4 for n = 1/5
s

These equations show that the maximum test time is proportional to p 0 for

laminar flows and to p1/4 for turbulent flows. Hence the laminar wall"00

boundary layer case is more sensitive to po '

Examples of previous studies have been noted where turbulent wall

boundary layers have reduced the test time from 0. 1 to 0. 5 of the ideal

value. The rule-of-thumb (see Section I) that assumes about one half of the

ideal test time to be actually available is therefore not dependable. The

methods outlined herein should be used to estimate test time when necessary.
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It should be kept in mind that the present calculations actually provide

an upper limit on the test time. It is also necessary to consider (a) non-

ideal diaphragm rupture (which promotes interface mixing and causes non-

ideal flow near the diaphragm) and (b) flow nonuniformity between the shock

and contact surface. When the maximum separation is reached, the flow

nonuniformity between the shock and contact surface can be estimated from

Eq. (22) by assuming steady isentropic flow in a shock-fixed coordinate

system.

It should also be noted that the validity of the turbulent boundary layer

theory used in the present report has not been established for strong shocks

(see Appendix A). The present results are therefore intended as a first

estimate for the effect of turbulent boundary layers on shock tube test time.

Experimental confirmation of these results would be desirable.
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APPENDIX A

Turbulent Boundary Layer Behind Moving Shock

The turbulent boundary layer behind a moving shock was analytically

studied in Refs. 11 and 12. The general validity of some of the analytical

results given in Refs. 1 1 and 12 was experimentally established in Refs. 13

and 7 for Mach numbers up to about 3 and 6, respectively. Higher Mach

numbers were not studied therein; hence the accuracy of the results in Refs.

11 and 12 has not been fully established, particularly for strong shocks

(Ms > 6). Nevertheless, the results in Refs. 11 and 12 for displacement

thickness will be summarized here and put in a form suitable for studying

test time in shock tubes. This will provide at least a first estimate of the

effect of turbulent wall boundary layers on shock tube test time.

Assume that a shock moves with constant velocity, that the inviscid

flow behind the shock is uniform, and that the wall boundary layer is

turbulent (Fig. '2a). The variation of displacement thickness with distance

behind the shock (from Refs. 11, 12) is

5_ K 1 4/5( wo W,0 1/5

O Uw . Ue, o)(-

where

6, / ( -w •4/5 iw 9 /5I•_ pw P m 31l/
K 0.0575 6* (W - 1)9'4 (A-2)
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Here, 6 is the boundary layer thickness, and 9 the momentum thickness.

The subscript m refers to conditions evaluated at a mean reference static

enthalpy defined by

n- = 0.5 + 1 + 0.22 1 (A-3)
e,o e eo

where hr is the recovery enthalpy (i.e. , the wall value of h for which there

is no heat transfer).

In order to find K0 , it is necessary to evaluate (6*/6)/(1 - W) and

(0/6)/(l - W), which are functions of W, hr/he, oand h w/h e, that can

be found from

171 h e, o f46[ _ (W _ "0• d4 I (A-4a)

I-W-W-I hW- -'l o b4-c4

/6= 7 heP 6W - (2W - 1); + (W - 1)M 2 dt (A-4b)
1 -W h I + b4 - c~z

where

h h h
r r e,oF c = (A-5)
w w w

[In reviewing the work of Refs. 11 and 12, it appears that for strong shocks
it might be advisable to replace he /h and h /h in Eqs. (A-4) and (A-5)

e,o w r w
by pw/pe 0 and pw /Pr respectively. However, this point will not be

pursued. Equation (A-4) can be evaluated for given b, c, and W, using the
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tables presented in Refs. 10 and 11. For strong shocks, these tables

require taking the differences of large, nearly equal numbers; thus the

accuracy is reduced. (Approximate expressions for evaluating Eqs. (A-4)

for strong shocks are given in Appendix B.) If convenient, it is preferable

to evaluate 6*/6 and @/t by the numerical integration of Eq. (4).

Ideal Gas

Eqs. (A-4) and (A-2) can be evaluated as a function of M for gases
5

with constant specific heat ratios, -y, obeying the perfect gas laws, p = pRT

and h = c T. For these gases,P

h 2r w+ (W l r(0) (A-6a)
e,o

hw _ W(Z - W) (A-6b)

he,o0 z

where Z = (y + 1)/(y - 1), and r(O) = (w)1/3 is the recovery factor

(w = Prandtl number). Eq. (A-6a) follows from the definition of recovery

factor, and Eq. (A-6b) is a normal shock relation. The latter assumes that

the wall temperature is the same as the gas temperature upstream of the

shock.

Equations (A-4) have been evaluated for y = 7/5, r(0) = 0.897 and for

*-y = 5/3, r(0) = 0.875. These values correspond to ideal air and to ideal

argon, respectively. The cases y = 7/5, r(0) = I and y = 5/3, r(0) = I have

also been evaluated to find the effect of r(O). The results are given in

Fig. 11 and can be approximated by the following expressions.
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ci
0/6 = W + B W + (7/3) forN 7/5 (A-7a)

I - W C 80/3

W + 2 for Y 5/3 (A-7b)
24

6*/6 = D = 0. 157 for -= 7/5, W> 2 (A-7c)
l-W

= 0.176 for ' = 5/3, WŽ> 2 (A-7d)

These expressions agree with the numerical integrations to within 3 percent.

Equations (A-7) have been used to evaluate K as a function of Ms,

using the Suthe-'; nd viscosity relation for argon and for air. The results

are given as C•b#to I and II in Table 2 in terms of P0o

Real Gas

For strong shocks the previously noted ideal gas relations are no longer

valid. The following procedure has therefore been used to obtain an estimate

of the turbulent boundary layer behind a strong shock in air (Ms >- 6).

The problem is to evaluate K (Eq. A-2) for a strong shock. First

it was assumed that Eqs. (A-7a) and (A-7c) could be used with W obtained

from the equilibrium shock solutions of Ref. 14. [Eqs. (A-7a) and (A-7c)

agree with the limiting values of e/6 and 6*/6 obtained by strong shock

assumptions, Eqs. (B-3), to within 5 percent and 8 percent for W = 10 and

15, respectively.] It then only remains to evaluate the term 1 11/5 in

Eq. (A-2). The energy equation for a strong shock gives

r 1W - I r(0) (A-8)h -= +'-~
e, o

with r(0) = 0.897 for air. Reference 14 was used to find W and

Te,0 /Too T e,o/Tw forgiven Ms, POD, and Tw =3000K. It was then'
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0
assumed thatp pe,o/pw h w/he, o T w/Te, o" The latter, with Eq. (A-8),

permits h m/he,o Tm /Te, o Pe, o/pm to be found and Eq. (A-2) to be

evaluated. The assumption that h ;, T % I/p is only approximately correct

but should be sufficiently accurate for the present purposes (i.e., evaluation

of[ 11/5 in Eq. A-2).

The resulting values of K are also given in Table 2 (in terms of p 0).

This table, together with Eq. (7), defines the turbulent boundary layer

behind a strong shock in air. It should be kept in mind that the turbulent

boundary layer theory of Refs. II and 12 has not been verified for strong

shocks and that further simplifying assumptions were made to obtain K 00

Boundary Layer Theory for Local Similarity Approximation

The turbulent boundary layer equations will be put in a form that is

appropriate for an origin at Ii, a wall velocity uw, and free stream conditions

ues Pe' which are isentropically related to conditions directly behind the

shock (u e, o eo). This boundary layer is illustrated in Fig. 3 and is

used in the local similarity approximation in the body of the report.

For the boundary layer in Fig. 3, Eq. (A-i) becomes

K r w • ( W - 1i)1/5 W,0 1/ 145 (A9

where V =u /u Equations (A-7) have the form

0/6 B B + (W/V) (A-10a)

I - (W/V) C

,6 - D (A-10b)
I - (W/V)



where B, C and D are constants. If the free stream Mach number relative

to the shock, Meo = (ue/a e)o is small (i.e. , strong shock), then the

variation of fluid state properties in the free stream can be neglected

(Pe = Pe,o; Pe = Pe, o' and Eqs. (A-9) and (A-10) then yield

6 = 4V(-6*) = He (I 14/5 (A-1la)
d

where

H OW - 8/5 W a (A)4/5b)01/5e -T --" (W +BV u -

Note that B = 7/3 for air and 2 for argon (Eq. A-7).

(
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APPENDIX B

Limiting Forms for 9/6 and 6*/6

Limiting forms for 0/6 and 6*/6 are presented herein for the cases of

both very weak shocks and very strong shocks.

Weak Shock

For the case of a weak shock, Eqs. (A-4) become

6*"6 1 + O(W - 1)] (B-la)

T-- V [ i + O(W - 1)] (B-lb)

Strong Shock

For strong shocks, b»>1, c>> and the ratio c/b has a limiting value

given by

c _ r(6)y r(+) Ideal Gas (B-2a)

r(0) Real Gas (B-2b)

[(W + 1)/(W - 1)] + r(O)

Thus c/b = 0.391, 0.344 for y = 1.4, r(6) = 0.897 and y 5/3, r(6) = 0.875,

respectively. These are the values for ideal air and argon. For a real gas

with r(0) = 0.9, it follows that c/b = 0. 375, 0.424, and 0.440 for W = 5, 10,

and 15, respectively.
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If terms of order b- compared with I are neglected, Eqs. (A-4)

yield

6 1 1 0 (c/b)N W7( /l - + 1] 1jE 0(bl )] 1
N=O

1DW-- N[ I + 0(b-I)] (B-3a)

7/0 (c /b) N + I + 0(b-1)]
9 F+ N) (8 + N) + 1

W+B 1
_F + O(b )](B-3b)

The constants, B, C, D, E have been evaluated for several values of c/b

and are given in Table 4.

For strong shocks in air, Eqs. (A-7a) and (A-7c) agree With Eqs.

(B-3) to within 5 percent for W = 10 and to within 8 percent for W = 15.

Hence Eqs. (A-7a) and (A-7c) are sufficiently accurate for a first estimate

of 0 and 6* behind strong shocks in air.

Table 4. Constants Defining 0/6 and 6*/6
for Strong Shocks (Eqs. B-3)

c/b B C D D

0.35 3.16 28.Z 0.148 0.413
0.40 3.19 29.2 0. 144 0.511

0.45 3.23 30.3 0. 140 0.632

0.50 3.27 31.6 0. 135 0.781
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