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NOTATION

A Amplitude of incident surface wave

a0  Radius of circle on which spar axes are located

ai(zi) Radius of ith spar as a function of zi

g Acceleration of gravity

I, 3i. Ki Moment of inertia of ith spar about x-, y-, z-axes,
respectively

k Wave number of incident waves = w2/g

M Mass of one spar (assumed equal for each spar)

m(zf) Mass per unit length of ith spar

N Number of spars

R Space-fixed cylindrical polar coordinate

RA Body-fixed cylindrical polar coordinate

Sn, Tn Defined in Equations [ 13a], [ 13b]

2Si(zi) Cross-sectional area of ith spar = ir ai (zi)

31' Yi' Zi Components of force on ith spar

x, y, z Space-fixed Cartesian coordinates

xk, y', zo Body-fixed Cartesian coordinates

x0 , Y0 , z0  Linear displacements of structure

Ai, Bi, r• Components of moment on ith spar

a, P, ' Angular displacements of structure about x-, y-, z-axes

e Space-fixed cylindrical angular coordinate
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Body-fixed cylindrical angular coordinate

ei Equilibrium angular position of ith spar axis

v Kinematic viscosity of water

p Density of water

* Complete velocity potential

*0 Velocity potential of incident wave

*1 0- 0

W Circular frequency of incident waves
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ABSTRACT

A theoretical analysis is constructed for the hydro-

dynamic forces acting on a system of interconnected vertical,

slender, axisymmetric bodies which are floating in presence

of incident waves. The theory is based on linearized water

wave potential theory and the use of slender body techniques.

The resulting expressions for the hydrodynamic forces are

used to predict the motions of such a system. The effects

of viscous damping are also estimated.

INTRODUCTION

A spar raft as defined here consists of several long thin bodies of

revolution rigidly interconnected so that they will float vertically in the

water and support a platform or submerged weight. When regular waves

are incident on such a structure, it will generally oscillate in six degrees

of freedom. The purpose of this report is to provide an approximative

method for calculating such motions.

The assumptions are: (1) that the spars are identical, (z) that their

interconnections are made in such a way that the mass and the hydrody-

namic effects of the connecting members may be neglected, and (3) that

the individual spars are far enough apart for their hydrodynamic interac-

tions to be neglected. The motions of a single spar buoy have been treated

by Newman; 1 here his method is extended to the case of N spars arranged

in a circle. In addition to including the hydrodynamic and inertial forces

on several spars, it is necessary to extend Newman's analysis to allow

for all six degrees of freedom. (In his problem, only three degrees of

freedom involved nontrivial results.)

The basic assumptions of Newman's analysis are used here. In

particular, it is assumed that the wave amplitudes and body motions are

small enough that linearized free surface theory may be applied and that

'References are listed on page 30.



the spar radii are small enough compared to wavelength and spar sepa-

rations that slender body theory may be used. Equations of motion are

derived on these bases. These equations predict motions which are un-

damped; thus they are valid only for frequencies which are not near the

resonance frequencies.

Near the resonance frequencies, it is necessary to consider the

damping due to wave generation, and this report shows that forces of high-

er order in terms of spar radii must be included. The leading damping

forces are found, thus providing equations of motion valid near resonance.

In addition, this report indicates that viscous forces depend linearly

on the velocities for axial motions, and these forces are found explicitly.

GEOMETRY AND COORDINATES

It is convenient to define several coordinate systems. With the

structure floating at rest, we place the origin of a space-fixed reference

frame at the undisturbed free surface over the center of gravity of the

structure. Let the Cartesian coordinates of a point in this system be

(x,y, z), with the z-axis directed upwards. In this same system we de-

fine cylindrical coordinates (R, 8, z):

R 2  x 2 + y 2  ; = tan-1 Y
x

or

x R cos ; y = R sin e

z is here the same as the Cartesian coordinate z.

Let the undisturbed axis of the ith spar be located at R = a0 , 8 = 0i.

We define another set of space-fixed coordinates, (xi, yi, zi), with origin

at R = aO, 8 = 8i, z = 0. Let the cylindrical coordinates of a point in this

system be (Ri, Xi, zi), with the latter having the same orientation as the

previous cylindrical system.

In the undisturbed condition, the surface of the ith spar will be

specified by the equation:
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ZZ

X Xi
J zi =-H

Figure 1 - The ith Spar in Its Equilibrium Position

Ri= ai(zi) ; zi2- Hi

These quantities are all shown in Figure 1.

Finally, we introduce primed coordinate systems which correspond

to each of the systems just mentioned, but which are fixed in the body.

When the body is in its equilibrium position, the primed and unprimed

systems coincide.

The linear displacement of the raft will be described by three dis-

placement variables, x0 , y 0 , z 0 ; the angular displacement by a, O, Y,

which are the positive rotations, respectively, about the x-, y-, x-axes.
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Since the motions are assumed to be small enough that squares and prod-

ucts of these variables are negligible, the location of the raft is complete-

ly specified, and the three angular displacement variables can be treated

as the components of a vector.

Let r be the position vector of a point fixed in the raft, where

r-= (x', y ', z '). In terms of the space-fixed coordinates, r (x, y, z),

we have, to first order in small quantities:

rr + ro+xr + al]

where

0= (xo' YO' Zo)

In terms of components, this equation is equivalent to

x = x'+ Xo+ Pz'- yy

y = y' + yo + -x' -az" 1

z = z'+ Zo+ ay,- Px"

To first order also, it follows that

x' = x-Xo- Pz+ y

Y' = Y-Y O -Yx+ az [l"]

Z" = z- zO- •y+ Px

The unprimed coordinates are related by

x = a0 cos ei + xi

y = a 0 sin.i + Yi [2]

z = zi

4



and the same equations hold if x, },, z and xi, }'i' zi are all primed.

It is assumed that there are incident waves which are described by

the velocity potential

@0 (x,},,zt) = •0_•A ekz cos(kx- •ot) [3]

k

where A is the amplitude of surface wave,

k is 2•r/wavelength- wave number, and

Sis the circular frequency.

In the definition of the coordinates given above, the orientation of the x-

and },-axes was not specified, except for the orientation of the plane which

they defined. Now we specify that the x-axis points in the direction of

propagation of the surface waves and the y-axis completes the right-hand

system.

THE VELOCITY POTENTIAL

The surface of the ith spar can be specified by the equation:

0 = Fi (xi, Yi" zi )

= xi + Y12,2 , _ a.21...)

= [xi- xO- •zi +¥(a0 sinei+},i)]Z

+ [}'i - }'0 - Y(a0 cos ei + xi) + azi]2

- ai2[zi- z0- a(a0 sin8i + yi) + •{a0 cos 8i + xi)]

The boundary condition on the ith spar is then

8Fi
8"-• + (vi @ "Vi ) Fi = 0 on Fi = 0



where Vi indicates the gradient in the (xiy Yi zi) system, and 0 = O(xi, yi, zi #t)

is the velocity potential (viz., 00 plus a potential due to the presence and

motion of the structure). After some simplification, we find that the

boundary condition is

80 8 0
ft- a.' -ai = [:k + ft zi + aia.') - jao sin Ei ]cos X

+ [ r0- 1(zi + aia:') + ja 0 cos 6i] sinXi [4]

- [±k0 + a 0 (& sin Oi - p cos ei)] a.' on Ri = ai

dai
where a' - Second and higher order terms in the motion variables

have been consistently dropped.

Let 0 = O0 + 0I. We substitute this relation into the last equation

to obtain a boundary condition on 01. From Equations [2] and [3] we

note that

wA kz
=0 = k e cos (kx-wt)

[5]
= wA ekzi cos [k(a0 cos 8i + Ri cos Xi) - wt]

k

It follows that

00- 01 kzaiai 32
ai WAe { + k a ai + Fi k ai) cos Xi

1 ziIF - 0

+ - k2 ai cos 3 Xi] sin (ka 0 cos Oi- wt)

- [(ai'+ - kai) + kai cos 2Xi] cos (kao cos Oi- wt)

+ [6]

where the omitted terms are of third and higher order in terms of the

spar radius ai and its derivative ai, or of second and higher order in

6



the motion variables. Neglecting now second-order terms in ai and a!,

we find the condition on fI:

; A -.iai ; ÷ a o sin ei

+ w Aekzi sin (ka 0 cos Oi - wt)) Cos C i

+ {(O - &zi+ y ao cos Oi) sinXi

+ kaiw Aekzi cos (ka 0 cos ei- wt)} cos 2Xi

-( ai" + ao a! (61 sin Oi - ý cos i) [7]

- (aI' + * kai) wAekzi cos (ka 0 cos ei - wt)}

We note that the boundary condition is now applied at the surface of the

undisturbed spar, and the right-hand side is evaluated in the space-fixed

(xi, yi, zi) coordinate system.

If this ith spar were located alone in an infinite fluid with the above

boundary condition valid for -H < zi < 0, the solutions for 0l by slender

body theory would be

®•{_ ! ai [o •ai" + ao ai'(It sin Oi - ý Cos 0i)

- k (a.' + - kai) cos (ka 0 cos 6i - wt)]

+*ai[x0+pq-ya0 sin e +•Aek• sin (kao cos ei - wt)]---

+ 2ai2 [y - &, + ao a cosi]syi
8yi

0 [wkAeký Cos (ka0 coo Oi - wt)] 8 2  [Ri + -)22 d-ai 
8x }
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dai(,)
where a, = ai(,) and ai = - in the integrand. We adapt this type of

2 2 -1
solution to the present case as follows: (1) [Ri + (zi - •)]I is the poten-

tial for a source located at (0, 0, ;) in an infinite fluid.

We replace this source potential by another source potential which,

in addition, satisfies the free surfaci condition. (2) We now impose the

condition that the radius ai is much smaller than the distance between

spars; i.e., ai/a 0 << 1. Then the potential obtained by satisfying the

boundary condition on the ith spar will produce negligible fluid velocities

at the other spars, and the total potential can be expressed as a sum of

potentials, each satisfying the conditions on one spar. The resulting total

potential is

~A kz
*(x,y,z,t) 0 - e cos (kx-wt)k

N 0

+ 'z . {½ a. [0ioa + a0 ai'(6 sin - cos 0i)-H
n=l

-w AAek (a.' + ½ ka.) cos (ka 0 cos 0i - Wt)]

+ a x[k0 + p -ja 0 sin8i +w wAe k sin (ka 0 cos 0i -ot)]1 0 8xi

8

'a4 [wkAe ký cos (ka0 cos ei - t)] 8-~2)
-i 2

-~~~ V a 1 +ý [JkOe co ka o -w

[R + (zi - ;)?- + IL..-• ev( J0( eRi)d d;
v-k

N 0

+ 7rwkZ f [ai [zoa. + a 0 a'(a sin i- Pcos i,
i=1

[8]
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[8]
k continued

+ Ae k (ai" + 1 kai) sin (ka 0  cos 0i - wt)]

+ aý [x 0 + -- ya 0 sin ei + Aekt, cos (ka 0 cos ei - wt)]I axi

+ a2 [yo - at + y a 0 cos Oi] _•-

+ -1 a4[kAek sin (ka0o cos i}- wk(zi+)J(kR0)}dt

In accordance with the assumptions of slender body theory, we eval-

uate these terms as Ri - 0 and identify the values so obtained with the

potential on the body surface Ri = ai. Because ai/ao << 1, the value of 4'

to lowest order on the ith spar depends only on the first term above and

one term in the first sum. By the same approximation procedure, we find

that all terms in the second sum contribute amounts of higher order in

terms of ai. Later we shall reconsider the second sum when we calculate

damping forces.

FIRST-ORDER FORCES AND MOMENTS

The pressure is obtained from Bernoulli's equation in linearized

form

P p a- - pgz [91

Thus it will be necessary to evaluate 0t on each spar and to integrate,

in an appropriate way, the result over all spars to find the forces and

moments.

Using slender body approximations again, we find that on the ith

spar

9



cA _kzi kz~ acs~-tk A e cos (ka 0 cos 0i- wt) - 2wAekei ai cosaXi sin (ka0 cosei -wt)

- [.oai + aoa!(sin ei - ý cos Oi)

- wAe kzi(a!" + k kai) cos (k a0 cos Oi - wt)] ai log ai

- 0+ -Zi-ja 0 sin Oi]ai cos i- [o- zi + j•a 0 co Oi] ai sinXi

+ O(af) [10]

Also, we note that on the surface of the ith spar

z = Z! + z0+ a(a 0 sin 0i + a. sin Xl) - P(a 0 cos 8i+ a cosX.')

Thus the pressure on the ith spar is

p pp{gAekzi sin (ka0 cos i - wt)

kz r+ 2 gkAek1 ai c' c o (k ao c os i - wt)

~ [ll]-;a! + a a '(¢i sin ei CO 0oe

kzf -
-gkAe W(a. + kai) sin(ka0cos .i-wt)]a. log ai

-[R + O3z.- ja 0 sin Oj]ai cos X.-[y0 - " + ja 0 cos Ojai sin

+ g [z! + z + a(a 0 sin 0i + ai sin X.i) - P(a 0 cos i + a. coo )L.')]

Let the force be resolved along the space-fixed axes which corre-

spond to the coordinates (x, y, z). In particular, designate the components

of'hydrodynamic force on the ith spar by Xi, Yi, Zi. Likewise, let the com-

ponents of hydrodynamic moment on the ith spar be denoted by A-, Bi, ri

which correspond to the rotations a, P, Y. Note specifically that the

moments are taken with respect to the space-fixed axes at the center of

10



the whole structure. If we let n be a unit normal vector out of the fluid,
then

Xi = fS pcos(n,x)dS [12a]

Yi = fS p cos(n,y)dS [1Zb]

Zi = fs p cos(n,z)dS [12c]

Ai = JS p[y cos(n,z)- z cos (n, y)] dS [12d]

Bi = fS p[z cos(n, x)-xcos(n, z)]dS [ire]

ri f fs p[x cos(n, y)- y cos(n, x)]dS [1Zf]

The integrals are taken over the instantaneous surface of the ith spar.

Here cos(n, x) is the cosine of the angle between n and the x-axis, etc.

We find readily that, to first order in small quantities,

cos(n,x) = - cos X)i + y sin X1 + Pa.'

cos(n, y) = -y cos V- sin >C - aa:

cos(n,z) = P cos V - a sin X- + a:'

For abbreviation, we also define two sets of integrals

0
n = S(z)(z)n dz,' [13a]

f-H

0

T. f 0. ekzi, S(zi (z.i)n dzi. [13b]
H

11L



where S(zi') = irai (z!) = cross-sectional area of ith spar at zi'.

The combination of these formulas and definitions with the previous

pressure results yields for the force and moment components

Xi = 2 pgkA cos(ka0 cosOi - wt)T 0 - p -0 -a 0 sinei)So - POS 1  [14a]

Yi = - p(0 +ja 0 cos 8i)So + p SI [ 14b]

zi = pgkA sin(ka 0 Cos 0i - ot)T 0 + pgS 0  [14c]

-pg[A sin(ka 0 cosei--wt) + z0 + aa 0 sin0i- Pa 0 cos0i] S(O)

Ai = pgka 0 sin ei A sin(ka 0 cos ei - wt) T 0  [14d]

+ pg (yo + a0 sin Oi + y a0 cos 0i) So + p(Y0 + j a0 cos 9i - ga) S, - P 61S2

- pga 0 sinEi [z 0 + aa 0 sinEi - Pa 0 cosOi + Asin(ka 0 cosei - wt)] S(0)

Bi =- pgka 0 cos0iAsin(ka 0 cosOi- wt)T 0 + 2pgkAcos(ka 0 cosOi- ot)T 1

- pg(x 0 + a 0 cosOi - ya 0 sinOi)S 0 - p(x 0 - ja 0 sinOi + gP)Sl- p ý$S2

+ pga 0 cos0i [z 0 + aaosin0i - Pa 0 cosei + Asin(ka 0 cos6i- wt)] S(0)

[14e]

= -2 pgka 0 sin ei A cos(ka 0 cos i -wt)T0

+p[ao sin ai xo0- aocoss Oi O- a] SO [14f]
+ p [ a0 sin ei 0 + a0 cos eii] S1

S(0) is the cross-sectional area at zi = 0 when the whole system is at
rest and in equilibrium.

12



SIMPLIFIED INTERPRETATION OF FIRST-ORDER
FORCES AND MOMENTS

These expressions for the forces and moments can be viewed from

a simple point of view. Consider, for example, the x-component of force,

Equation [ 14a], which when written out becomes

0 ký
S= p S (z { 2 gk A ekZi cos (k a0 cos i -j w t)

-. H

- + j ao sin Oi - z dz [14a-]

From Equation [ 5] we see that

a2 4o kz
at ax- = gkAe 1 cos (ka 0 cos i- wt)

on the equilibrium position of the ith spar. Thus the first term in the

bracket in Equation [14a'] is just twice the local acceleration that the

water would have at the mean position of the spar axis if the spar were

not present. The terms, -x0 + y a0 sin - ,z give the negative ac-

celeration (in the x-direction) of the point on the spar axis. The quantity

pS(zi") is the added mass per unit length of a cylinder accelerating nor-

mally to its axis. Thus the x-component of force is the integral over the

mean spar length of

(added mass per unit length) times (Z times local

water acceleration on spar axis due to incident wave

alone minus acceleration of point on axis of spar).

It may appear strange that the water particle acceleration is doubled

in this formula. However, the cause is seen on examination of Equations

[8] and [10]. In the latter equation, the terms containing the factor

(cos ki) give rise to x-components of force. Here the term due to the

incident waves (the second term) is already doubled. Half of this con-

tribution comes directly from the first term of Equation [8] (i. e., direct-

ly from the incident wave potential) and half comes from the term

13



1 a2 wAek4 sin (kao cosn i - wt) 0R + (zi - 4)2] dý

LH

The latter is effectively a diffraction potential; it is part of the singularity

potential which offsets the normal velocity component of the incident wave

on the spar. These results can also be regarded as a special case of a

general body, accelerating in a time-varying (but spatially constant) in-

finite field of fluid. It follows from consideration of the forces, both in

the fixed and moving coordinate systems,z that the hydrodynamic force

on the body is the added mass times the relative acceleration plus the

displaced mass of fluid times the spatial acceleration of the (undisturbed)

fluid. For a circular cylindrical section, the added mass and the dis-

placed mass are equal, and the above relation for the x-component of the

force on the spar follows immediately. 0

The z-component of force, Equation [14c], consists of three parts:

(a) [pgS 0 ];

(b) [-pg(z0 + a 0 sin Oi-Pa 0 cos S(0)] ;

(c) pgA sin (ka 0 cos Oi - wt) [kT 0 - S(O) .

Part (a) is just the hydrostatic force. Part (b) is the decrease in buoyancy

which occurs when the spar is raised an amount (z 0 + aaOsinOi- Paocos Oi).

Part (c) is the integral over the undisturbed spar surface of the vertical

pressure force due to the incident wave alone. This is easily seen by

noting that

0 _kzv( dS d
kT 0 -S(0) = - fdzi

H dzi

and, thus, that Part (c) is equal to

0 kzedS o
[- ppgAe 1 sin (ka 0 coso i - wt)] I dzý fpo0cos(nz)dS

H dz i

14



to first order, where P0 is the first term of Equation [ 11].

The moments are obtained by calculating the force per unit length

along each spar, multiplying by the appropriate lever arm, and integrating

along the lengths of the spars. It should be noted again that the moments

are calculated with respect to the space-fixed axes. Thus a point located

at z! on the ith- axis has space-fixed coordinates (see Equation [I']):

x = aO cos ei + xO + Pzi- Vao sin ei;

y = a 0 sin ei + y0 + y aO cos 8i- az,;

z = z• + zO + aaO sin 0i- Pao cos i".

FIRST-ORDER EQUATIONS OF MOTION

Let M be the mass of a spar. (The N spars are assumed to be iden-

tical. ) Let Ii, Ji, Ki be the moments of inertia of the ith spar about the

x-, y-, z-axes, respectively. Moreover, let M 0 , I0, JO, and Ko denote

the m'ass and moments of inertia for any additional superstructure, and

assume (0, 0, zo) to be the center of gravity thereof. Then the equations

of motion are

N

(M 0 + NM)R 0 = xi [15a]
i= 1

N

(M 0 + NM)j 0 = Yi [5b]
i= 1

N

(M 0 + NM) O = z - g(NM + M0 ) [15c]
i= 1

N N N

MogzO+ Ii -- ' Ai - g f . m(zi')y dz! [15d]

i=O i=l i=l

15



N N N

Mogo+ E ii X ~i+ g Jm (zý)x dz1 ' (i~e]

i-- i=1 i=l

N N

i=O i=l

m(zj') is the mass per unit length of the spar itself. The integral is taken

over the length L of the spar. This length generally extends from zi =-H

to some value of zi' greater than zero. x and y are the distances from the

fixed reference frame to a point on the axis of the ith spar.

The moment of inertia Ii about the x-axis is

f= m(zý)(y2 + z÷)dz
L

where y = a 0 sin i+ yo+yaocos ei- azi+ ... and

z = ziý + z 0 + cia 0 sin Ei - Pa 0 cos ei +

the omitted terms being of higher order in the small motion variables.

Since Ii is multiplied by 6, we need keep only the zero-order terms in

Ii. Clearly then,

i= L m(zi')[a2 sin2 i + z'2e]dz'

to the required order in small quantities; that is, Ii has the same value as

in the equilibrium position. Similarly,

S= f m(zi)(x2 + z 2 )dzfi

= fL m(Z') [ao cos Gi + Z.2 ] dzi`

16



Ki M(Z.9(x 2 + y2 )dz!

= L 10 d1 a0

The integral terms in Equations [ 15d] and [ 15e] can also be written

explicitly by expanding x and y in the integrands. Thus

m(zi•)y dzi' = m (zi')[ao sin i + yO + -ao cos 0i- azi']dzi•

(a 0 sin ei + y 0 + y a 0 cos Oi)M - a J m(zi)zijdzi'

Lm(zi)xdzi = JL m(zl)[ao cos Oi + x 0 + PzI - yaO sin Oi]dz(fL fL III

(aO cos Oi + x 0 - yaO sinOi)MM + JL m(z!) ziýdzf'

We note that the final integral terms here would have vanished if z! had

been measured from the spar center of gravity.

Now let us write the equations in full. Equation [1 5a] becomes

N

(Mo + NM) 0 = 2pgkATO 'cos (kaO cos Oi- wt)- pN 0 SO

i= 1
N [15a']

- pNPSI + pa 0 jS 0  'sin.0
i= I

Clearly, M 0 + NM = PSON, since at rest the buoyancy of the total raft

equals its weight. Also, we now impose the condition that the spars have

a regular angular spacing. Thus

0. = +A-(i- 1 ) ; i 1,2,...,N

1 1 N

17



If N = 1, then a0 = 0, and the last term in Equation [15a'] vanishes.

If N>1,

N N-I . sin(e +2 N)sin(N (2 )

,rsin Oi =27sin(6i1+ -)= Af i
i-I i=0 sin

and again the last term in [ I5a] vanishes.

Therefore, the equation of motion for x0 is

N

2(Mo + NM)Ro + pNSI = 2 pgkATo cos (kao cos Oi- wt) [16a]
i= 1

By similar arguments, the equation of motion for Yo' Equation

[15b], becomes

2(Mo+ NM)jo- pNS 1 d = 0 [16b]

The equation for z 0 , written out, is

N

(M 0 + NM)(iio + g) = pgkAT 0  sin (ka 0 cos 9i- wt) + N pgS 0
i=1

N

- pgAS(O) 'sin (kao coB - wt)- pgNzoS(O)
i=l1

N N

- pgaaoS(O) sin oi + pgpa o S(O) coo e
i=1 i=l

Again we note that M 0 + NM = p SO N, which enables us to eliminate the

gravity term on the left. Also,

N

Z cos 6i = 0 ; >1

i=l1

18



and a 0 = 0 for N = 1. The equation becomes

N
(M0÷NM) -0 = -N pg zoS(0) - p gA [- kT0 + S(0)] sin (k a0 con 8i - Wt)

j= I

[16c]

The first term on the right-hand side is just the change in buoyancy which

accompanies a vertical displacement of the raft. The remaining terms

correspond to the vertical force obtained by integrating the dynamic pres-

sure due to the incident wave over the surface of the spar. This is the

Froude-Krylov hypothesis: To a first approximation, the presence of the

body does not distort the incident wave or the pressure associated with it.

The a-equation is

N N

aM a? N -a i ni + 1I + N fL m(z-)(-_i 2 dz. }
0i=lil

N

-pga 0 A(S(0)- kTo] sin i sin(ka0 cos 0i-wt)
i= 1

+ NpSlY0 - NpgaS1 - NpaS 2

N

- pga20S(0) ' [a sin2
1i- - sin Oi cos Oi]

i=l

N

+ ag[= fL m(zi')z' dz' + Moo]

If N > 2,

N N

X7 sin2 0 i- cos2oi = IN

i=1 i=1

- 19



N

sin ei coo ri = 0

i-I1

Thus, for N > 2,

&{*NMa6+NpS2÷+1+N JL i)(z'.)2 dzij+uaNpgSl [16d]

+ INpga2S(0)-M 0 gz 0 -Ng f m(zi)zfdzij

N

- NpSlj 0 = - pga 0 A[S(O)- kT 0 ] E sin ei sin (ka 0 cos Oi- wt)

i=l

Similarly, for N > 2, the P-equation becomes

I ½NMa+NpS2 +JO+N m (zi)(z)2 dzj + P NpgSl

+ -Npga 2S(O) -Ng mL m(zC')z.'dz.}

N

+ N pSO = pgaoA [S(O) - kT 0 ] Z'cos Oi sin (ka 0 cos Oi- wt)

i=l

N

+ 2pgkATI L'cos (ka0 cos i- wt) [16e]

i=l

Under the same assumptions, we obtain for the last equation

N

+{K+ ZNMa) :-2 pgka0AT0 X sin0i cos(ka 0 cose - wt) [16f]

i=l

In the case of N = 1, the above equations reduce to Newman's equa-

tion for a single spar. If N = 2, these equations do not hold. However,

20



the special conditions that follow from N = 2 can easily be applied here to

obtain simple equations. The case is not considered sufficiently interest-

ing to warrant writing out the equations here.

The heaving motion can be obtained immediately, if desired, since

the z 0 -equation contains no coupling terms. In addition, the equation for

rotation about the z-axis is not coupled to the other equations. However,

the y0 and a motions are coupled; also the x 0 and P motions. Similarly,

the couplings are simple enough for these equations to be solved directly.

We should note that there are two resonance frequencies. In heave,

there is resonance when

2 = pgS(O) [l7a]
M+M 0 /N

In either of the coupled motions there is resonance when

2Mg[PSl + ½pa2S(O)-Mozo/N fL mz) 'dz

2 = [17b]

2M[1 Ma?+ p 2 + L m(zi(zi)dzi]- p2 S+

Since the equations contain no damping forces, infinite response ampli-

tudes are predicted when resonance occurs. Of course, this is meaning-

less in the linearized model and so the above equations ([l7a] and [ 17b])

can be valid only in frequency ranges, not including neighborhoods of the

two exceptional frequencies. When such neighborhoods are excluded from

consideration, the predictions should be fairly accurate if the small ampli-

tude and slenderness restrictions are observed, since damping forces are

of higher order than the forces considered. Near the resonance frequen-

cies, however, the damping forces are important, even if small. This

problem is considered in the next section.

21



EQUATIONS OF DAMPED MOTION

In the previous section, we considered only buoyancy and accelera-

tion forces on the spars because, generally, these were the forces of

lowest order in the small parameter ai(z). At resonance, these forces

cancel each other, thus they are no longer the lowest order forces. We

must re-examine the previous analysis and include terms of a higher

order in ai(z) to obtain equations of motion which have meaning at and

near resonance.

The boundary condition, Equation [7], was valid only to first order

in ai(z). If we now include second-order quantities (in ai(z)) in the bound-

ary condition, Equation [7], and add the necessary corresponding terms in

the potentiai function, Equation [ 8], we simply obtain more terms in the

acceleration and buoyancy forces. Since these terms are much smaller

than those already considered, they can alter the response only slightly,

principally by changing the resonance frequencies somewhat. They still

contribute no damping forces.

Nevertheless, the desired damping forces can be obtained from the

second summation in the potential function, Equation [ 8]. These terms

were discarded earlier because they contributed forces of higher order

than those being considered. It is easily seen, however, that these terms

do lead to damping forces, which will be the lowest order forces at reso-

nance. We also see that the terms in this second sum which involve the in-

cident wave amplitude A do not contribute damping effects. They simply

affect the driving force, again by an amount of h.igher order.

So now we consider the potential

N o(
4= 7rw k (ai[ zoa! + ao a!(a sin 8i- cos E~)]

+ a? [xo + Y- y ao sin 8i]
1 8 )

+ a? [y 0 - aý + ya 0 cos Oi] [ek(zi+)Jo(kRi)d
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(See the second sum in Equation ( 8]. ) Here ai and ai are functions of t.

To calculate the associated force on the ith spar, we must evaluate !1 -0
at

for Ri = ai(zi).

For small values of (kRi), the Bessel function in 4* can be approx-

imated by the beginning of its Taylor series, that is,

Jo(kRi) = -- ¼(kRi) + +

Similarly,

Si k 2
axi JO(kRi) k - Ri cosXi +

a JJo(kRi) = - ½k2 R. sinX. +C'yi i

Keeping a one-term approximation in each case, we find

Iwa [zo+ aO(a sin 0.-O cos ei)] [S(O) -kTO] ekzi

- wk3 ai(zi)ekzi {[(xo- yao sin ei)TO + PTl]cos Xi

+ [(yo + y ao cos 0i) To - aT 1 ] sin Xi

The pressure due to this potential is, when evaluated on Ri = ai,

p = - Pt
Ri=ai RiR=ai

= -½p k [io + ao(dt sin Oi - ý Cos Oi)] [S(O) - kT0] ekzi

+ .1 3 ~~~~kzi k j sni) +Tj sX

+pwk 3 ai(zi)e {[(i0-a0sinei)T0+pTl]COSki

+ [(Y 0 +.sa0 cos Oi)T 0 -6tTl]sinLi}
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In the expressions for f* and p*, several terms which are of higher

order in small variables have been omitted.

The forces and moments due to this pressure distribution are calcu-

lated from Equations [ 12a] through [ 12f], with asterisks inserted where

appropriate. The results are as follows:

I~ ý( •0 •0'• 0• ÷ •0 )

iw + aocsO)TZ-i oT

Z• ; p• + 0 0,ao(&sin ei- 0 cos.)}[S(O) -kT012

p-- kao 0 "• •(0 0•'o0-• ,[5,0)- kT0]•
Aý = - pwka0 sin O i + aO0 & sin O -- Cos 0i,) [0,- -T0 CB

+ jpwak3{(j0O + j ao Cos 8i)To T, i- T 2)

2 2

There is no need for a damping moment rý, since the y-motion has no

resonance in any case.
N

The modified equations of motion are obtained by adding Xý,
i=l!

etc., to the right-hand sides of the previous equations, [15a] through

[15f ], or alternatively, to [16a] through [ 16f]. After simplification,

the equations become, for N > 2,

N{[2(M+ M 0 /N)•i 0 +I pwk3T2i 0 ] + [PSp1  + *pwk• ToT 1O]T

N [la]
=2pgkAT0 fcos (ka0 coo 0i -wt)

i=l
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N{(Z(M+Mo/N)# 0 +*-Pwk3T2i 0 ]-I pS,&+IZpwk3T Tit]}=0 [18b]

{(M+M /N)i +iLpwk[S(O)-kTo]2 i+PSO

N
- -pgA[S(O) -kT 0 ] 'sin (k a 0 coosei- w) (18c]

N ([-LMa + PS + I /Nt. rn z 1pk2[()-k

+ pwk T2 +[ pg l p g a2S(O) _ gMOzIN- mdz
1 pS + 1 foo jmdz

tS, ] -[I pwk3 T T1]Y 0

N
=- pga0 A[S(O)-kT0 ] l sin 0 sin (kao Cos e1 - w) [18d]

i= 1

N {[-LMa2 + p S2 + K0/N J Z mzdz] +(pwka2 [S(O) -kT0 1 2

3 0)_Imzdz]p

+ [PS1 ]ii 0 + [I pwk T0 T1 ],~

N

p pg aoA S(O) - k To] coosO sin (kao coo O8 - wt)

N

+ 2pgkAT, ~cos (kaocos 6i- wt) [18e]
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N

(K 0 + NMa2) 9- pgka 0 AT 0  'sin Oi cos (ka 0 cosi - t) 18f
0: 1

Of course these equations can be solved very easily by substitution

of x0 = C 1 sin(wt + 61), YO = C2 sin(cot + 62), etc. The results will not

be written because no additional perspicuity seems to follow.

VISCOUS DAMPING

All damping forces introduced so far correspond to the energy lost

through radiation of surface waves. In addition, energy will be lost through

the mechanism of viscosity. The viscous damping forces, in general, will

be of second order in the motion variables. As an example, suppose that a

right circular cylinder translates in a direction perpendicular to its axis.

The viscous drag is proportional to the velocity squared, and so is negli-

gible by the standards already assumed.

If the cylinder has an axial motion, however, the viscous force will

be linear in the velocity. For example, if a right circular cylinder of

radius a has an axial velocity Re { Weiwt" } MW0 cos (wt + E), then we can

see easily from elementary fluid mechanics that the velocity anywhere in

the fluid is

w(r,t) = Re (KO Wer) }
= W0 Re f ei(wt+E)}

lkerJ a +ikei NJ' a]

where K0 (x) is the modified Bessel function of argument x and order

zero, and the second expression gives K 0 (x) in the Kelvin representation

of its real and imaginary parts. The only velocity component is that which
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is parallel to the cylinder axis, and this component depends in space only

on the distance r from the axis.

A tangential (axial) stress on the cylinder surface is given by

aw(
= f-W Cos •ot+G +3-'Y+Lraw r=a W(4

where b, c, 3, y are real numbers defined by

belP = ker I N--a + ikei 1 ---a

c eiY = ker V---a + ikei Nf -a

V V

Thus there is an axial force component per unit length on the cylinder:

F 2 ?r p a N"•'v WO osbtG+-yLrF=- - ccos(a•t+, + -y+•)~

c

2 ir p a 47-wv Ob
- Cos (Wt+ C) Cos( Y + 4)

-sin (wt+E) sin( .~+ 3)j

The first term in brackets in the last equation gives the drag force.

For the slender bodies considered in this report, it is consistent to

calculate the viscous force in a stripwise manner. That is, at each cross

section of the ith spar, where the radius of the section is ai(zi'), we con-

sider that particular section to be part of an infinitely long right circular

cylinder translating axially, calculate the axial viscous force per unit

length, and integrate such results over the length of the spar. To first

order in the motion variables, the axial velocity of the ith spar is

0+ a 0 (i sin 0i - cos 0i)
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Thus we add to Equations [14c], [ 14d], and [ 14e], respectively, the addi-

tional force and moments

2f j'.0 ai(zi)bi(zi) 8[P

IH ci(zi)

(io + ao0 i sin 6i - ao0 Cos ei)dzi

0 ai(zi)bi(zi)sin(r
H J cj(zi)

S+ 
a0 ý sin Oi - ao 0 cos ei)dzi}

A = a 0 sin . 1*

B* -ao cos Oi Z1*

If these additional quantities are inserted into the equations of mo-

tion, we can still obtain solutions by the same method used previously.

Although the viscous forces thus obtained are linear in the veloci-

ties, they do not fit properly into the perturbation scheme in terms of

small radius. The modified Bessel functions encountered have singulari-

ties when the argument approaches zero. In fact,

b 1
;as a - 0.

a a log a -

Thus, as the slenderness of the spars is accentuated, the viscous forces

increase. This is in contrast to the potential flow forces, which become

smaller and smaller. No general conclusion can be drawn concerning the

relative importance of the viscous and nonviscous damping forces as far

as dependence on radius is concerned. Calculations should be made in

individual cases.
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DISCUSSION

Equations of motion have now been obtained, based on the assumption

that wave amplitude, body motions, and spar radii are small quantities. If

damping is neglected, there are two resonance frequencies (as given by

Equations [ 17a] and [ 17b]) at which infinite amplitudes of motion will oc-

cur. Of course, there does exist damping which prevents the responses

from actually being infinite. That part of the damping due to generation of

outgoing waves is small (of second order in terms of spar radii) and so

is of importance only near resonance. Generally there is also a viscous

damping which may be of importance throughout the interesting range of

frequencies, or possibly only near resonance, or perhaps not at all. This

damping is associated only with axial velocities of the spars, but its ef-

fects appear in each of the modes of motion for which there is a resonance.

The relative importance of viscous damping can be determined in individ-

ual cases only by actually carrying out solutions of the equations of motion.

If it is desired to minimize the motions of the structure over a range

of practical wave lengths, the most effective procedure is to attempt to re-

move the natural frequencies from the desired range. If this is not possi-

ble, the natural frequencies should be chosen as frequencies for which the

incident wave amplitudes are smallest. In practice, this will generally be

equivalent to reducing the natural frequencies as low as pi;ssible.

From Equation [ 17a] we see that the heave natural frequency is

proportional to the radius of the spars at the undisturbed waterline. (S(O)

is the cross-sectional area at the equilibrium waterline.) Assuming that

the total mass, M 0 +NM, is approximately fixed, we have no other param-

eter to adjust; thus we would minimize S(0) as far as possible.

In the case of the other resonance frequency, we see from Equation

[l7b] that, apparently, there are several parameters available for adjust-

ment. We note that if the center of buoyancy and center of gravity coin-

cide, then

ps- Mozo - J m(z)z dz = 0
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By raising the center of gravity and/or lowering the center of buoyancy,

we can make this difference negative and thereby possibly decrease this

natural frequency. However, in general, the exact amount by which such

adjustments will affect the natural frequency is not certain, since the de-

nominator in Equation [17b] will also be affected. In any case, reductions

in S(0) (for lowering the heave frequency) will also lower the pitch-surge

frequency.
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