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[1 FORE WORD

This report presents original work by Dr. A. V. Pershing

on determining the reliability of three-dimensional matrices.

The work was accomplisbid under Air Force Contract

AF 04(647)-787.
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ABSTRACT

This report develops a set of equations that describe the re-

liability of any three-dimensional matrix of equivalent com-[ ponents. In addition, it gives the step-by-step mathematical

sequence used in deriving the general equations from the[ equations for the most simple two-dimensional parallel-series

arrangement of components.
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UM NOTATION

f component failure factor

I limit for number of components on the x-axis

m limit for number of components on the y-axis

T n limit for number of components on the z-axis

p component reliability factor (equivalent to r)

q component reliability factor (equivalent to f)

RI signal path

Rk reliability of any element

3Rt total reliability

r component reliability factor

rt reliability of a component with respect to time

rL lower limit for summation

r upper limit for summation
U

{Us' signal source

s" signal destination

u •m

[ X component failure constant
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Section 1

INTRODUCTION

In the design of modern electronic equipment, the ability to establish and predict the

reliability of complex groups of components has become increasingly important. To-

day, designers are asked frequently to determine the reliability of component groups

that may contain thousands of components connected in multiple parallel-series ar-

rangements. In these arrangements, various combinations of failed and successful

components may be allowed, and the components may be placed in either two or three

dimensions. These conditions result in highly complex patterns of successful signal

paths, and the methods used previously to determine the reliability of simpler parallel

and series arrangements are no longer adequate.

As a result, new methods had to be devised to accurately describe the reliability of

these complex component groups. The initial work in this area - the algebra for deter-

mining the probability of signal success where signal paths are not mutually exclusive -

was done by Harold Balaban and others. * This work laid the mathematical foundation

which led to practical formulas that approximated the reliability of multiple parallel--

series arrangements of components. In this report, formulas are developed that will

accurately describe the reliability of any two- or three-dimensional group of equivalent
]" components.

]Matrices are used in this report as mathematical models for complex component groups,

and a unique method is employed in developing the equations describing the reliability

of these matrices. First, equations are derived empirically to given the reliability of

S- any two-dimensional matrix of equivalent components. Then, these equations are ex-

panded in steps to describe any three-dimensional matrix of equivalent components.

*ARINC Research Corporation, The Effect of Redundancy on System Reliability, by

Harold Balaban, Washington, D.C., May 1959.
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Finally, the binomial theorem is applied to the resulting equations. This application

makes it possible to readily determine the reliability of any matrix with any combina-

tion of failed and successful components.
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Section 2

GENERAL SOLUTION FOR SIGNAL SUCCESS
IN A TWO-DIMENSIONAL MATRIX

L 2.1 GENERAL

L In this section, a formula is developed empirically for describing the reliability (prob-

ability of signal success) of any two-dimensional matrix with the following characteristics:

e Matrix contains any number of sets connected in series

e Sets contain any number of members (components) connected in parallel

* Components have the same characteristic failure rate

Derivation of the formula begins with developing a formula for the simplest matrix con-

taining series sets with parallel components - two sets with two components in each set.

Then, the resultant formula is expanded in steps to include all two-dimensional matrices

with these characteristics.

1 2.2 SERIES OF TWO SETS, EACH SET CONTAINING TWO PARALLEL COMPONENTS

First, consider the arrangment of the four components shown in Fig. 2-1. There are

two sets (rI and r 2 ) connected in series; each set contains two parallel-connected mem-

j bers. The probability of a signal traveling from S' to S" is dependent on the possible

paths that the signal can take and on the path overlaps. Figure 2-2 shows the four pos-

sible signal paths (RI , RII, RIII , and RIV).

SThe total probability or reliability (Rt) of a signal traveling from S' to S" is found

by summing each separate signal path (RI , RII , RIII, and Rrv), subtracting the first

j overlap (sum of products RI• RII , RI RIII , etc.), adding the second overlap

(RI • RII * RIII, RI * RII• R IV etc.), and subtracting. the third overlap (R R H

R ,RIII * RIV).

j 2-1
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I

INPUT OUTPUTs 5-
SIGNAL SIGNAL

Fig. 2-1 Series of Two Sets, Each Containing Two Parallel Components

[
S S" S' S"

I A A'A II

A
I A'

Fig. 2-2 Possible Signal Paths in a Series of Two Sets, Containing
Two Parallel Components

Then

R..t [RIIII +RI +R +RI - [RI ,R1 1 +IIRRI + IIRIR + RI RI
+ R •v + I -v] + [ I , R-I, +i R R v

II IV III II]IR I I I

+ +R I R II R IV + R11 R III RIV] [RI *RRIIR RIVj (2.1)

2-2
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By substituting the component designations given in Fig. 2-1, Eq. (2. 1) becomes

Rt [1 21 1 r , rr + r r 2  +r 1 r 2 - [(r1r2)(r 1 r2'2 +

+ (r12r)(r12 2) + (rr r 2 )( r2 ) + (r2r 2)(r2ro)

+ (r12r 2 )(r12r22 )] + [(rlr2 2 )(r12r 2 )(1 r 2 ) + (rlr2 2 )(r2 2 2 )(1rr 2 )

+ ( 1r2 )(r r2 )(r 2 ) + (r 11r 2 )(r 2 r 2 )(r1 r 2 ) r

1 2t2 21))(1r r ) ~ r2)rr) (2.2)

L By striking component duplications in each overlap term and by setting all r's equal

(same failure constant), Eq. (2. 2) becomes

Rt = [4r 2] - [4r + 2r 4  
+ 14r'] - [r 4]

= 4r 2_ 4r3 + r4

1 24(1 - r) r2]

)212 r 21
[ 1 - (1 - rJ or 1j1 - f' (2.3)

Thus, Eq. (2.3) describes the reliability of the series of sets shown in Fig. 2-1.

I
2-3
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[ Equation (2.3) can be generalized as follows:

Rt R 2  Ik = r i A -k fi

or

Rt 11 [ f (2.4)[k
where

[ k = any set

j = any component

2.3 SERIES OF THREE SETS, EACH SET CONTAINING TWO PARALLEL
COMPONENTS

The effect of adding another like set to the series shown in Fig. 2-1 can be determined

by using the procedure described in paragraph 2. 2. Figure 2-3 illustrates the new

series.

~~F 7l 2 r31

S SIGNAL •SIGNAL

_ Fig. 2-3 Series of Three Sets, Each Containing Two Parallel Components

1 2-4
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By constructing a diagram similar to the one shown in Fig. 2-2, it can be seen that

there are eight possible signal paths (RI through RVIII). Hence, the reliability for this

series can be expressed as

Rt II I I + II + R111 + I +RV +RVI + RVII + RVmJI (8 terms) (2.5)

- [R, RI,+ .RR +... + RVI .RV m+ RVI i..Rv (28 terms)

-[RI• RI, RIII• RIV + + RV RVI * RVIi RVIII1 (70 terms)

+ [(RI. ... RV) + ... + (RIv .... RVIII)j (56 terms)

-[(RI ... R) +... + (RIII.. .. Rv (28 terms)

+ [(RI .-.. RV 1 )+ ... + (RII ... RVII1)J (8 terms)

-[RI... RVIII11  (1 term)

By substituting the designations given in Fig. 2-3, Eq. (2. 5) becomes

T
Rt ' r 2 r 3 ) + (r, r 2 r 3 ) + 1ri r 2 r 3 1) + yr 2 r (2.6)•o~ 1223 rr22r32)

1 + (r2 r 2 r 3 ) + (12 r 2 r 3 2) + (12 r2 2r 3 ) + (r12r 2 2r 3 2)]

[(rl r 2 r 3 )ri r 2 r 3 ) r (28 terms)

2-5
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I

L + f(ri, r r ,)(r r r)(rr) +2\ 3 1 11\~ 2 1 X21 1 2 231)

L + 2 )(r 1r)(r r) (56 terms)

1y [(r)(rr 2 1r3 ( 12r2 r3 ) +

F + r 2 r )(r 1 r 2 r 3 )(rr 2 ) 3 )(r rr r ) (70 terms)
L + \ 2 1 11 ] 12 X 2r22r3)

+ f (r2 r r3 1)(1ri 2 r 3 )(rjr 2 r 3)(r, r 2 r3 )(r, r 2 r3 ) + .

!It 1 1 1 2) 21)( 2• 1 ) i

(rter r r r r r rm)r r r r +er..
2i• 3 21 ] 31 1 22 3 2 312 )r,. 1 2)( 2 32 1)(2 21 2)]

I r [ rrr) (r,,r r) +

+ (,2r r 2r r23 1) 1 2 r ( r2r 32)] (23 terms)

"" + (r I r 2 r 3 ) (r 1 r 2 r 3 1 +

+ kr1 1r 2 r 3 2 ) 1 2 • r 2r2 r32)] (8 terms)

I(r, r 2 r3 r12r22r320 (1 term)
i \1 1 31)/

2-6
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By striking out component duplications in each overlap term and by setting all r's

equal (same failure constant), Eq. (2. 6) becomes

SRt 0 0 r0 + 0" r1 + 0" r2 + 8 * r3 _ 12-'r4 + 6 r5 - r 6

Iii = (er - r 2)

I 1-( r)2] or 0 [1 ._ f2] (2.7)

Thus, Eq. (2. 7) describes the reliability of the series of sets shown in Fig. 2-3.

Equation (2.7) can be generalized as follows:

Rt =R
3  

11 kRk = 
T k 1- JifIlk

or

R Rt 1k [ I f (2.8)

I where

I k = any set

j = any component

2.4 SERIES OF ANY NUMBER OF SETS, EACH SET CONTAINING TWO PARALLEL
COMPONENTSI.

I
By using the method employed in paragraphs 2. 2 and 2. 3, the reliability formula can

be determined for a series of any number of sets that contain two parallel components.

2-7
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I

The formulas describing these series follow a definite pattern as indicated in the tab-

ulation below:

No. of Sets Formula

1 Rt = 1 - (1- r)2

2[ 
r)2J2

3= [3 - (1- r)2]3

4 r - -r)214

{n R t [1 (1 -r)2]n

[ Hence, the reliability for any series of this type can be described by

Rt = -(i -1r- (2.9)

[ The general formula for this series can be expressed as

R = 11 1 - mn 1 - r . :k (2.10)

2.5 SERIES OF n SETS, EACH SET CONTAINING m PARALLEL-CONNECTED

L COMPONENTS

Equation (2. 9) describes the reliability of a series containing any number of sets, but

L each set is restricted to two parallel-connected members. In order to describe the

2-8
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reliability of any two-dimensional matrix of this type, it is necessary to remove this

restriction and to extend the members of the sets to any number as shown in Fig. 2-4.

L

L

L r, *. r. * . . .

INPUT OUTPUT
SIGNAL SIGNAL

E -. . LI . .

I
Fig. 2-4 Series of n Sets, Each Containing m Parallel-

Connected Components

By extrapolation from Eq. (2. 10), the number of parallel-connected components in each

set can be extended as follows:

-iii

lk 1 - j ( ri d k '

SI2-9
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If for any value of k

r 2k r 3 rjk = rk (constant)

then

I
Rt= rk (I - rim
t •= k [1 ( k)' k

T and if for any values of j and k

r r. = = r 2  = r. = r (constant)

then

L heeRt = 1 -(1 - r)m] (2.11)

S~where

m = number of parallel components in each set

n = number of sets in series

SThus, Eq. (2.11) describes the reliability of any two-dimensional matrix that contains

a series of sets in which the members of the sets are equivalent and connected in

[ parallel.

L
i

2-10
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Section 3

IfGENERAL SOLUTION FOR SIGNAL SUCCESS IN A
THREE-DIMENSIONAL MATRIX

3.1 GENERAL

In this section, a formula is derived, for describing the reliability of any three-

; dimensional matrix with the following characteristics:

* Matrix contains any number of elements connected in series

I * Elements contain any number of components connected in parallel

* Any element may have any characteristic failure rate

L Derivation of the formula begins by converting the formula for the general two-

L dimensional matrix into a formula for a three-dimensional matrix. Then, the resultant

formula is expanded in steps to include all three-dimensional matrices with these

characteristics.

3.2 CONVERSION OF THE GENERAL TWO-DIMENSIONAL MATRIX INTO A T"ICREE-
DIMENSIONAL MATRIX

A general two-dimensional matrix is shown in Fig. 2-4. This matrix consists of a

I series of n sets where each set contains a total of m components connected in

parallel.

Now, if the matrix is folded on itself as shown in Fig. 3-1, a three-dimensional matrix

"is formed. Since the connections between the components have not been changed by

folding, everything established empirically in Section 2 for the two-dimensional matrix

L is applicable also to this three-dimensional matrix.

L
3-1
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ISII

I _ __ ___ A

I

Fig. 3-1 Forming a Three-Dimensional Matrix from a Two-Dimensional Matrix

Since another dimension (f) has been added by folding, the total number of parallel

components in each set is determined by the product of the number of sheets (k) formed

[• by the folding and the number of components (m) on each sheet.

If each set of parallel components is considered an element, the matrix shown in Fig.

3-1 can be conceived as a group of series-connected elements like those shown in

Fig. 3-2.

3.3 RELIABILITY OF A THREE-DIMENSIONAL MATRIX COMPOSED OF EQUIVA-[, LENT ELEMENTS

Now, since the three-dimensional matrix was formed from the two-dimensional matrix

without altering the connections between components, the two-dimensional matrix

L equation (2. 11),

j 3-2
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I

x V
L , Y j--m,-m

4*1 Z • -- ,--n

Fig. 3-2 Typical Three-Dimensional Matrix

R =1 - (1 - r) (3.1)

U can be converted readily into a three-dimensional matrix equation by changing the nota-

F- tion that indicates the total number of parallel components in a set (element). This

L change is required because the components in a set lie on two dimensions instead of

one.

1 3-3
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Thus, Eq. (3.1) becomes

Rt I (I r)Im]n (3.2)

h = number of components along the x-axis,

number of components along the y-axis

number of components along the z-axis

TBy setting I m equal to, u , Eq. (3.2) becomes

Rt 1 - (1 - r)u (3.3)

Equation (3.3) describes the reliability of any three-dimensional matrix in which all

L components are equivalent and all elements are equivalent.

3.4 RELIABILITY OF A THREE-DIMENSIONAL MATRIX COMPOSED OF NONEQUIV-
ALENT ELEMENTS

If the three-dimensional matrix is not a right prism (right parallelepiped), the elemrrents

will contain varying numbers of parallel components (u). The reliability equation can

be generalized to cover these variations by accounting for each element individually.

Thus, Eq. (3.3) becomes

rn uk1]
Rt= -lk 1 - (1 - r)]k (3.4)

L
i where k represents any given element from 1 to n.

1 3-4
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I
Equation (3.4) can be expressed also in terms of componeht failure constants (X) if

I rt = r where r = xe-xtdt or e7Xt

Then, Eq. (3.4) becomes

n Rt= [1 - e-Xt) (3.5)

k 
_

orIk[ k

~n

RI 1% (1 e- - t)u] (3.6)

where uk is also equal to a constant.

Equations (3. 4) and (3. 5) describe the reliability of any three-dimensional matrix in

I which the reliability of any element may assume any value.

3.5 RELIABILITY OF A THREE-DIMENSIONAL MATRIX WHEN ALL COMPONENTS
MUST FUNCTION

If it is assumed that every component in a matrix must function to achieve signal

success - there are no failure factors in any term - the total reliability of any given

Lj element or slab can be expressed as follows:

Rt -R sk

L

3-5
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!
Then, Eq. (3.4) becomes

J Rt : [nk(r~k] (3.7)

I or

IRt (~ru)n] [r nu] (3.8)
I4

where uk is equal to, a constant.

SEquations (3.7) and (3.8) can be expressed also in terms of component failure constants-At

(A) by setting r equal to e Equation (3.7) becomes

Rt = k (eXt (3.9)

and' Eq. (3.8) becomes

IRt = (eXt nu] = [e nu~t]1 (3. 10) '

Thus, Eqs. (3.7) and (3.9) describe the reliability of any three-dimensional matrix in

Slwhich every component must function.

I:i

L

3-6
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I

Section 4

I APPLICATION OF THE BINOMIAL THEOREM
TO MATRIX RELIABILITY FORMULAS

I ~iJ
4.1 GENERAL

In Section 3, equations are developed for determining the reliability of any three-

dimensional matrix in which the reliability of the individual series elements may as-

sume any value. However, the elements in these equations are treated as single

complex components with given reliability factors instead of component groups contain-

ing various combinations of failed and successful components. Since most practical

matrix reliability problems are given in terms of the minimum number of successful

components required or the maximum number of failed components allowable, the equa-

tions must be expanded to cover all possible combinations of failed and successful

I - components in each element. This expansion is accomplished by applying the binomial

theorem to the equations derived in Section 3.

4.2 CHANGE OF NOTATION

Before applying the binomial theorem to the matrix reliability equations, it is expedient

to change the notation as follows:

Let

r =p

f =q

L and

p +q =1

j 4-1
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f Then, general Eq. (3.4) becomes

nt 1k1 1 puk]

11  - -(1 P) (4.1)

I1 k

where uk varies with k and is equal to k m.

Or, since p+q = 1,

Rt = - q (4.2)

If uk is a constant, Eq. (4. 2) becomes

i n

Rt 1 -iq- (4.3)

or

- n
± Rt =1 - Cup 0qu (4.4)

and Eq. (3.8) becomes

Rt C•uf0P q j (4.5)

L =• fi Pu.q 0 °

j 4-2
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I
I lpuln (4.6.)

4.3 APPLICATION OF THE BINOMIAL THEOREM

I The term qU from Eq. (4.3) is actually the last term in the binomial (p + q)U .

Therefore the expression [ 1 - qU] from Eq. (4. 3) consists of all terms in the bino-

mial expression (p + q) excep the last term.

IT Now, let (B. T.) represent any binomial term. Then, the expression [1 - qU] from

Rt = quj

may be written in binomial form as

[ Rt j[ (B.T.). - (B.T.)u+ 1 ] (4.7)

UU

Equation (4. 7) is equal to the sum of all the binomial terms of (p + q) uexcept the last

term, (B. T.) u + I or qu Also, the value of pU in Eq. (4. 6) is really the first term

in the binomial (p + q)u

Lj 4.4 REVERSING THE ORDER OF TERMS

In order to use the "Tables of the Cumulative" Binomial Probability Distribution,* the

order of terms in the binomial series given in Eq. (4.7) must be changed as follows:

*The Staff of the Computation Laboratory, Tables of the Cumulative Binomial Proba-

bility Distribution, Vol XXXV, Cambridge, Mass., Harvard University Press, 1955

1 4-3
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If the sum of all (B. T. )s is

I n+1Si (B. T.)i
11

then the binomial series can be written as

I [ n + qni1n-I + + Cnp r + + cn n-I 1 Cn pn
[COp+q I q r pr q +n- n p q +n q

In this series, the normal order of terms in the binomial (p +q)n is reversed, i.e.,

complete failure is now represented by the first term (C p0 q and complete suc-

cess is represented by the last termy ( Cnn pn q 0

This expression sums to

i• S" =ru=n

S' =rL=O

If n is set equal to u the expression becomes

_ S" =r u=u

SS' =r L=

In this form, the expression [1 - quI consists of all the terms in the binomial

(p + q)U except the first term; and the term p in Eq. (4.6) represents the last term

in the binomial expression.

fT4-4
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1 4.5 MATRIX RELIABILITY WHEN (u - r) COMPONENTS FAIL

If signal success occurs in the three-dimensional matrix excep when at least the

quantity (u - r) components fail in any element, the reliability of the matrix can be

I expressed as

Si S,=ru=r In

! t S1 =rL=i [Cru Pr q (U~r) (4-8I t= - S=1 r lrP ( l](4.8)

or
S"t =r U =u In

Te fo a c l Rt :-) (4.9)

L [ rLr= (r-4-)

Then, for a complete general case where the elements have different u values, Eq.

(4.8) becomes

n sit =ru=r r kr u-)
I Rt = qkF1 - S c kprq (4.10)

S' =rL=0 iJk

L

A 4-5
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i
and Eq. (4.9) becomes

Rt'= rL= (r+1) (4k1
4. ATI ocur [ r~U uk r (uk-r) 1

4.6 MATRIX RELIABILITY WHEN r COMPONENTS SUCCEED

If signal success occurs in the, three-dimensional matrix only when at least r compo-

nents succeed in any element, the reliability for the matrix can be expressed as

S!'" =ru=(r-1) n

Rt 1- ' i [Cu Pr qpq(u-r) (4.12)

L S' =r L=0

or

5"t =r U=u n

IiRt [C rqur.(4.13)
St =r L= r

For a complete general case where the elements have different u values, Eq. (4. 12)

becomes

I [ 5~" =rU=(r-l)I\1
n U k r (u k-r)• - .

2Rt= jk [i 1 1 FCrkprq] (4.14
S' =r L=0 i Jk
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and Eq. (4.13) becomes

n S" r. = u k r k r (uk-r) k

I 1 [1r

IL

I

[
r
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