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".‘theory of (abstract) algebrae (cf.. [GB] ‘Fareward. on Algebra, and Ch. VI).

T ‘.Furthermore a variety of aspects of sequential machine decompositions

o are discussea

i‘,in [sc.2] [AG] [SHI. [KCJ, and [MY 1, 2}.

A fux;ther purpose: of this report.is the study of overlapping parti-
.ttons of automata state sets in connect:.on with a generalized approach to

“the decompositton problem Previously only output<consistent overlap-

. ping partitions of incompletely specified sequential machines have been

' nge,etion with the problem of state reduction (cf. [SGl]

A ';'ﬂ ughout this report the emphasis is on the algebraic rather
vv,:than ngmeering aspects of the problem. The applicability of the re-

' -:su-lts te he'actual synthesis of sequential machmes will be discussed in

. a subsequent report
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R=\V ~R!. “The identity relation over S will be denoted as I
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-sequel. For detailed equsitions of most of this material the neader.is

referréd to [GB],"TPD], or [HH].

1.1 "BINARY RELATIONS

Given two binary rela’cio'n’s"Rfl an‘d"Rz over the set'S, we denote in-
clusion, intersection, union, and reldtive product by les 'Rz‘, er\.Rz,
'Rl'(“J.‘.'Rz”a'ha‘"R'iRZ, respectively. For any positive integer i the i-th
M“Ri .of the binary relation R averS is defined recursively by
Rile-LR, B.LER, The transitive cl‘osulje R of Ris déﬁnedby

*

1=l .
(sIte» s=t), the universal relationas U (sUt for every s and t .inS).

Given a finite set.S, we denote the number of its elements as = S.

-We now state the following well-known, easily proved
Lemma 1.1 Let Sbe a finite set, # S=n, and R is a binary relation
over S, suchthat 'R2 1 . Then

R=RrR™ for every m3 n-l.

A convenient method of representing binary relations over finite
sets is by means of Boolean matricies. .However, in this report we
shall not make use of such a representation. Let now ZI(S) be the set of

all equivalence relations over a given set S ""We shall need the following

Theorem 1.1  E(S) forms a lattice with respect to inclusion. . The meet

(attice product) and join (lattice sum) of R, and R, in L(S) are given
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by RjAR, and R,i'R,“HKUR, , respectively.

"For.a proof see, e.g. THH], § T7. If’S is finite and #S#n, we have,
by lemma 1.1, for any "R, and™R, in L(S):

S n-~1
,RluRz —(RIU’BZ,) .

1.2 "DECOMPOSITIONS AND PARTITIONS

A decomposnion * of a glven set S is a family of non- empty sub-

sets of S (the 1r -blocks) whose sget :union is'S. .If the 4r -blocks ire
non-overlapping, M is a Eartition' of . S. If s&€S and wis a partition
of S, T (s) denotes the 4 -block containing s. If S is finite, and v ‘
any decomposition of S, we denotée by |1r l the number of elements of

the largest w -block. "

"With a given decomposition 1' of the set S we associate a binary
relation R, over S such that’ s"R,,rt whenever there exists a 'rr—block
containing both s and t. R'u’ is an equivalence rélation, if and only if
2 is a partition. In this case 4 is the .gAuo_ti,en_t set of 'S relatwe to -R."
(notation: T =S/R, ). U is a partition of S, the notation szt(7r)

instead of stt will also be used. l

The set of all partltions of a given set 'S will be denoted as Al (S)
For 7 and ¢ in ’]T(S) et 1r‘ ¢ mean that x is a subpartitlon of g
ie. R,,, € Ry . Clea’rly, by‘“’l‘hm 1.1, the system ([ (S), ¢) forms
. a lattice isomorphic to ( L(S), &) "“Denoting the lattice product -and sum
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of the partitions wrand ¢ by . ¢ and T+ @ , respectively, we thus have:

S/ RyuRy

™+

.The lattice T (S) includes . the zerc element 0=%/1 and the 1-element

1=8/U.

Given two partitions ur and ¢ of 'S, the quotient decomposition e/

of ¥ is defined as follows:
e /m =~'{(t(,s),: | seH}| He 'g}

‘Clearly if ¢» o , then @/ is a partition of 1 defined as follows:

T (s) mw(t) (g/m) &> szt (g) 1)

I. X-AUTOMATA

In this study we are only concerned with the transition (next-staute)

mappings of finite automata (sequential machines). “We, therefore, intro-

"~ duce the following

Definition . 'LetX be a finite alphabet. An X-automaton is a system

A = (S,8) where .S is a finite non-empty set (the states of A) and A

a single-valued mapping (next state or iransition map) of a subset of the

Cartesian product S x'X into.S. "The symbols of "X are the inputs of A,
If & is defined for each (s,X) -pair, seS and xéX, A is complete,
otherwise partial. '

We shall use.the (operational) notation s'Ax =t, rather than the

(functional) notation A ‘(s‘,,x)’, =t. If sBAx is defined, s will be said




to.admit x.

"Definition. Thé X-automata A = (§,A) and A? = {S’, A’) are isomorphic
(notation AT A’) .if there exists a one-one mapping w of .S onto ﬁ’ .

such that, for each 8¢S, s and sw_ admit the same inputs, and further-

more (s X = sn A’x for each s in 'S and each x admitted by s.

.'We now extend the concept of . .admissible partition (cf. (MY 1]) or

partition with substitution property [JH 1-5] *;o decompositions.

.Definition. Let A= {S A) be an’X-automaton. .The decomposition T of
.S is admissible by A, . if for each w-block H and each input x there

exists a w-block K such that sAxe¢eK for each s in H admitting x.

Next, we introduce the concept of "w-factor” , closely connected
with the concept of quotient-algebra (or factor-algebra) of an abstract

algebra (cf. [GB], p. IX).

Definjtion. Let A=(S,8) be anX-automaton and N a decomposition of :S;'
The X-automaton A =(8, &) is a o -factor of A, if i)8 =, Aii) any

& -block H admits any input x if and only if there exists an S in H
admitting x, and iii) sAxeHA& x for each H€S, each s« H, and each

input x admitted by .s.

Tre following two lemmata (2.1 and 2. 2) are immediate consequences of

the above definitions.
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"Lemma 2.1 Let X={v, A)be a  -factor of the X-automaton. A=(S,A) .

“Then the decomposition K is admissible by A. Conversgely, if the decom-

position % is admisgible by the "X-automaton A=(S,A) , there exists a
& -factor K={x, K)of A.

Lemma 2.2 If 4v is an admissible partition of the X-automaton A,

there exists exactly one w-factor A of A (notation: A= A/w).

If A is a complete X-automaton, and qv an admissible partition .of

A, 'R,‘ is a congruence relation of A. In this case the theor); of con -

gruence relations of abstract algebrae (cf. [GB] and THH]) directly applies.

In this connection we have the following

Theorem 2.1 If w and ¢ are partitions admissible by the complete

X-automaton A=(S,A), then a. ¢ and T+g¢ are also admissible by A.

.Thus the set W(A) of all partitions admissible by A forms a sublattice

of T (S).

For a proof of the corresponding theorem on abstract algebrae gee
e.g. [GB], p. 23, or [HH], p. 95. .The application of this result from the
theory of algebras to finite complete automata is due to J. Hartmanis

{cf. [JH1)).

Next, we apply a well-known isomorphism theorem on abs,;cra,ct
algebras (cf. [GB.]i, p. IX,Ex. 2) to both complete ‘(c‘_f. TKC]) and partial

automata.
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‘Theorem™2,2 If L8 and T, are admissible partitions df'fhé’X—-’gutomato\n

A and 3, then the partition ¥, /, is admissible by A/, and

A T S e Y AN Tt B e, A A T, 3 ST b e Mol St i i o o e et A st

.Conversely, let ar, be an adm_is’sible.parfit'ion of 'tﬁé"?(-antomatpm

A. .Then any admissible partition 4rof A/ x 9 uniquely detefmine‘s an

admissible partition W 1;( > ’7"2) of A, suchthat = ) /qr2.

Proof. Let 'H2 be & state of A/fn’2= (1 9* A'?‘)‘ admitting"t‘he‘ input x,
and let 'H)p= (v,/ w)H,y), K 5= (W /wy)(H, A"%). Given now another
'1r2—block, H, which belongs to le
P A 2 . . _
lows from (1), that (;1!‘1 /qrz)(H"z A°x) = K_1’2" ie. T l/ -/7r o i8 admis~

and also admits the input x, it fol-

sibleby A/ T 9

Let now 8 be an arbitrary state of A, and let‘HI=’lf1(s), Hz,= '!I'.Z(s). ‘We
define the mapping w_of ™ onto i/ wy 38 followg:

H‘l\\=1'1 /',r2 (Hz)‘ for each s.

.Dueto 7,> Nos M is one-one. “Furthermore ~ is an isomorphsim of

1
A/, onto A/q 2‘/11- /% 5

Conversely, let  be an admissible partition of A /‘qr'z‘.' “"We define the
partition LY of A by 1‘1/‘1‘2='l', i.e. - |
szt (7)) & T, (EELE) (7).

The partition 1( > m 2){ is thus uniquely detérm‘iriéd and, furthermore,

1”1.‘ is admisgsible by A..
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-Bo ‘far‘, the theory of parallel (direct) or cascade decomppsitiogs of
Sequeﬁtial machines (cf. [JH 1-5] , [MY 1, 2]) was based on the study of
admissible partitions. In the sequel it will be shown how this theory may
be extehded, by also cqpsidering admissible -decompo}s_i‘ti.ons of X -automata.

_ In this connection we s,haIl .need the following two theorems.

."Theorem. 2.3 Let A=~('S;A) be an X-automaton, -w an admissible

decomposition of A, and A= {x, K)a T-factorof A. Then there exists
an X-automaton A’ = (S’, A’) admitting partitions @ and 5, .such

that || = || and
A'je F A | (2)
A/m:= K (3)

.Proof. Let .§*.= § {s,H)| seH, Her} |
We define (s, H)A’x for each s in S, s¢Her, and each input x ad-
m'itted"by s by |

(s, H) A’x = (s,A X, HK::)
Now, let -

(s, )24, K)  (Q)e s+t

.H:4,K)  (w)ed HK
Evidently, ¢ and w’ are admissible pa_rtitio!ns of the " X-automaton
A= (S‘ A ’) .satisfying (2) and (3), and l'l’ |=]'r|

Theorem 2.4 Let A= {S,A) be a complete "X-automaton, X and ¢ ad-
missible partitions of A, such that 4 (§/w)=#$ . . Then there exists

a g/w-factor of A/¥ isomorphicto Afg :
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Proof, Let~w be the mapping of ¢ onto §/1r defined as follows:

Hy= {we) |seH} 7 foreach Heg
#(9/7) =4¢ implies that w is 1-1.
Let A/¢ =g, b0%) and Ajmw = ( A7) .

We now deinfe an X—'automatr)n ‘A= (g/m R Z.) such'that X TA/ ¢ ., i.e:

HA Ax = (HA®x)W_ -for each HeQ andeach xeX.

Next, we have to show that A is a ‘9/w-factor of A/~ . -Indeed, let K
be an arbitrary g/ -block, and . xeX. Let H:K-.il and L=K'A x=
H'\K x= (HAS x)\. If MeK, there .exists, due to H—mﬁK, an element
s ¢H, such that M= N(s). Then

s¢ Ho sdx e HAY x = n(s4 x) . (H &S x)w_=L.
Furthermore

M=%(s)=> M A" x = o (sAx).
Thus, MATxeL =KA x for each ¢t-block ‘M’é-lK,,‘ i,e. K is a
§/¥-factor of A/

Theorem 2. 4 is thus proved.

The condition # (/) =# @ of Thm. 2.4 is satisfied, if §>x.

.Thus Thm. 2. 4 generalizes the Isomoxjph‘ism,Theo_rém 2.2,
.In the sequel we shall also need the following two definitions. -

Definition, The X-automaton A= (S‘, A) is a subsystem of the
X-automaton A’= l(:S_.",' A’): ~ (notation: .A€ A”) if i) S&8S’, -ii) every
input x admitted by any state s in A isalso admittedby s in A’,

and iii) sAx =s A’x for each s in.S and each input x admitted by s.
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.Definition, Let A= {S,A) and A’=4{S’, A’) be X-automata. A’

covers A (notation: .A’2A) if there exists a single-valued mapping

of a subset “3* onto S, such thateach s’ in §’ admits any input x

admitted by s"qk,and, -furthérmone, ‘s";LA_,x =8’ A’ %) -

The relation 3> is ‘clearly reflexive and transitive, i.e. a weak or-

" dering of the system of all. X-automata. Furthermore, if A» A’ and

A’> A, then AT A’, Obviously, A’2 A => A’> A,

The concept of covering introduced above is especially important
from an engineering point of view. -Given the specifications of a Moore
or Mealy type sequential machine ‘M, engineers will frequently construct

a larger machine M’, which will cover M, i.e. will perform atleast

as much as the specified machine M (cf. [PU] .aria“.‘[‘SG‘l‘])‘. If the

‘X-automaton corresponds to. M, and A’3> A, it is easily seen that ‘A’

can be converted into an M’ -machine covering M by a suitable specifi=

cation of its output function.

II. . DIRECT PRODUCTS OF X-AUTOMATA

The concept of dire¢t product of universal algebras is directly ap-

plicable to. X~automata:

.Definition. The complete “X-automaton A= {8,d) is the direct product

of the complete X-automata "Ai"'= (‘S‘i., Ai) , i=1, ..., r, (notation:

A=A x... XA ) if S=Sx... xS_ andif, for each 8 =(8;, ..., 8}
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(s €8, sie'?Sif) and each x€X, sAx-= (13,115;1 X, ouus .srArcx) .
“Evidently (Al x Az). x A'3 = A.1 x (A2 x As)* AlezxA3 and Alez?AzxAl.
"I.et now A = Al'x .. xAr, where A = (S-,A) and 'Ai = (Si Al).
i=1, ..., r.
Let us define the partition— i of 8 by 5
s ¢ A : > 8, .=

| IR A R RCTRTITR W N AR i
Obviously, X, is admissible by A and A/, = A,
Furthermore, o, " ¥ , ... '-i‘\’u'r, = 0 and ’(‘ﬁ-f‘n"l) N (ﬁf(r) =4S,

Conyersely, we have the following

Theorem 3.1 Let ¥ .» W, be admissible partitions of the com-

1,‘ .
plete’ X-automaton A = {S,A) such that

T A =0 (4)
and (#4)) ... (@) =HS (5)

then. A?A/"lrlx e XA[0 .

Proof. Considering any state s of A, let 8; .= ’lri,(s‘), i=1, ..., r.
We define the mapping % _of § into: S = M X... xx, by

sy = <81‘ e B .

Due to (4), 1 is one-one, and due to (5) 4 is onto 5. One now easily

verifies that m is an isomorphism of A onto Af/Tw P X0 X A /’7",1-‘

As mentioned at the end of section II, we are fr.equenﬂy intér.e‘ste,d ;
in finding an : X-automaton A’ 'covéring a: gpecified X"—a;ﬁtomaton A,

in as far as A’ is preferable to A from some engineering point of “view.
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In this connection the following theorems are rather useful.

Theorem 3.2 Let A = (SL,A) be a (complete or partial) X-automaton,

and Wy, ..., a7, admissible partitions of A, .satisfying

LORIORS I

‘Let X;= (-'S,'f, 'A'l) , 1=1, ..., r be compléetée. X-automata ‘such. that

E YRV
.Then AQKI X ... x A,

I

"Proof. Let N4 be the .mapping corresponding to Ki > A/ frr i

Let .8¢'S and 8; S ,"i,.(s)’ i=1,.,,, r. We now define a singlé= valued

mapping A of a subset of 31 X... for onto. S as follows:

a1 -t - —
.S’Y\ —SI")‘LI x....xxsr')kr .
It is easily seen that Kl x...xA covers A with respect to o -

Theorem .3.3 Let A= ( S,A) be a complete X-automaton, “r an

admissible decomposition, and ¥ an admissible partition of A, such

that Rq N Ry =1 Then A< KxA/y , where X = {7, A)isa

N .-facfor of A,

(s’, A",

é.&mitting partitions § and %’ , such that A’/ 2 A, ie. A’z A,

Proof. By Thm. 2.3 there exists an X-automaton A’

and A’ /y* FX. 'S, ¢, and v’ were defined as follows (see proof
of Thm 2..3): " |
S s { (s 1) ‘seH, Hew}
(s, BYS ¢, K)(g) € st
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6, H)E ¢, K)(w') <= HK
We now define the partit_jbn V'’3¢9 of A’ by
’ (s, H)E (t, KY(}’) &> 8= t ().
\ is admissible by A, hence ~p’ is a‘dmiss,ible by A’. ‘Furthermore
(cf. Thm 2.2), A/ ¥ A/ /N19¢ T A/ «.f
Let now {s, H)and {t, K> be elements of 5, i.e. seHen,
teKenr. I (s, B)= {, Kyin’ «P) then H =K, by definition of
X’ ,and 8% t(’f), by the definition of 4}’ . ‘H=Kimplies SRt, whence,
dueto s =t () and R A ARyp= 1 s=t. Thus, {s, )=t KD, L.
“q**4’ =0. Applying Thm 3.2 we obtain:
AGA/T o x AP
‘Now A’/ o’ T X and ,_A’/"{‘" = A/"’b . Hence
A & A s KxA/y .

e

-IV. CASCADEPRODUCTS OF X- AUTOMATA.

Cascade compositions of sequential machines are discussed in [SG 2],
[AG], [MY 1] and [ JH 2-5]. Extending these considerations to X-automata,

we introduce the following

:Definition. Let A, = (Si, Ai)-b‘e complete X.-automata, i.=1, ..., T,
such that

:x‘i*l = ;Si X Xi‘ i=i, ..., r-1. |

.The cascade product A of the A, (notation: A=A 9...0 A_)is the

complete X-automaton . A = (S, A ) defined as follows:

e = JUBNY R e T T St U o VU S R G




~ where A =A/mw = W, A 1) and #5, = | .

U
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0xex,
i) .8 ='Sl X... X8,
iii) for each 8 = <S-‘1*' «ew, 8.y in. S and each x in X

. = ‘1 r
we have ] Ax = <sl A xl 3 wsey srA xr) o

where x; =x and X, = (si, xl) , i=1, ..., r-1,

.Let us now assume that A =7€S,A) = A1 0...0A, where Ai = (Si,, A‘i’) ..

""We detine the partition: w4 of 8.(i=1, ... r-1) by:

‘(s:l, oo s) = (t,l" e tr) (’ﬂ‘i)"@ 8 i we., 8y T tb:?
,Cl_early TS Wy dees ’Tr = 0. Furthermore, ¢ 7 is admissible by A, v\
and 5
~
A /’yri . A1 O... oAi .
Conversely, we first consider the case r =2, For this case we have the

following

‘Theorem 4.1 . Let A =(S,A> be a complete X-automaton and - an

admissible partition of A. Then there exists a complete ¥x X-automaton

A, = <SZ' Az‘) suchthat A;0A , 2 A,

Proof. Let ¢ be.a partition of S, suchthat ‘T =0, and #T= l7r].
.Such. a partition T obviously ‘;é;disté? “We now construct a suitable
T x X-aﬁtomaton A, = ("6, Az)‘ as follows:
Let He v , K & T, suchthat HNK#§. Dueto 7T =0, the
interesction Hn K includes a single element s €S. Let x be any
input of A. .Then

KA% (B x)= <T@EA.

I HaK =6, K A’z (H, x) may be arbitrarily determined.
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Let now S = § (H, K)| Hew, Kexr , HAK # ﬂ}and W _the mapping
of ”S onto S deter@ned:.by' -

| (H, K)n= 54> scHAK .
We shall now show that ‘A, 6 A, = A’ 7="{8* , A”’> is a.cover of A
with respect to“{. Indeed, let x&X, s€S, andlet ‘H =m(s), K .= z(s).
Then HAK = is} Hence {H, K)n=s. Now,{H, K)A’ x = (H al X, KAl {H, ‘x)>,=
{H A x, T (sA%)) . |
se¢H implies s Ax e H Al x. Thus sAx iscommon to HA x and
T(s Ax). Therefore, (H, KA x = <H Al X, ’C(sAx‘)> belongs to. 8 and

its m -image is sAx. This completes the proof that A’> A.

Let now & 1. and 72’ be admissible partitions of the complete .'Xf;au,tomaton

A = {S,A) , where >y >0, Applying Thm 4.1 to¥,, we deduce: the

existence of a Ty x X-automaton A’ = <S’ , A ’)> such that #S’ = | Tg'l

and -
AfNy0 A 2 A, ' (6)

By Thm. 2.2, W, /W, isan admlsmble partition of A /qrz, and

A/, = A =Aln, /[« 1 5 Applymg now Thm 4. 1 to the partltlon

q.llq( 2 of A/qrz, we derive the existence of an X2=automaton

Ay = (S, 8%, where #5, = | [7,| suchthat A, oA, is defined and
Ay oA, > A/, : (.

Combining (6) and (7) one easily derives the existence of an Xg-automaton

Ag = ¢, As‘), such that Allo‘ A, o0 A, 1is defined and

A 0A,0Az3A

By induction on r we immediately. obtain the following Cascade De,cbmeo.-‘
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:gition ‘Theorem:

Theorem 4, 2. LetW y» +++» M. be admissible partitions of the com-

plete X-automaton A = (S, A) , Where Uy o Wp PNy =0. Then
thgre exist complete X;-automata A, = <‘—Si.’ A 1) , i=1, ..., r, such
that Al'é eee O Ar 18 defined and

A‘l O.ue O Ar‘)-A,
where A1 = Alqr;" -Al. 0... 0 Ai > _A/"ﬂ’ﬁi i=2, ..., ‘r--l) and
#s; = |w,_, /o fl, i=2, ..., r )

" Finally we wigh to show that cascade decompositions of X-automata may

be derived from-their admissible decompositions in accordance with the
following

Theorem 4.3 Let A = (S, A) bea complete X-automaton, ¥ an admis=

sible decomposition of A, and A a - -factor of .A, Then there exist

-automata Al and AZ' such that A‘l?x’*'AZ = I’Wl and A1 o A2,_>/' A,

Proof., By Thm 2,3 there exists an X-automaton A’ = N > admitting

partitions @ and &’ such that A’ /9 FA, A/ FX and I 1’].‘=‘ I’Ir l‘.
Applying Thm 4, 1 to the partition ° of A’ we derive the gxiétence of
automata A, and A, suchithat A, =A*/W~, #A, =[x’ | and

Aj oA, 2 A’ Clearly A”/§ = A implies A’ > A, Thus A oA, >A,

" "lg. . Thm,. 4.3 is thus proved‘.

where A; =A’ /7' FE and A, s |x.|r

An important step toward the efficent realization of a sequential
machine is usually considered to be state reduction, by which the corres-
ponding .X-automaton A is replaced by A /-4r, where f'is an admissible

(and output cqnsistient) partition of A, "Recently J, "Hartmanis-has pointed
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out.certain negative effects of state reduction [JHw:l]..‘ Namely {cf. _4‘Thr‘n,‘2.‘2),'
only those a-dmissible paﬁitions of A which include ‘W are pr.e'éerv’ed in
A /7 . .Thus, state reduction may destroy possibilities of machine decom-
positiong, especially if only admissible p,artitionél of the reduced machine

are considered,

However, by also taking into consideration admissible decomposi-
tions of the reduced machine this danger of state reduction is considerably
diminished, To illustrate this point, Tet us assume that the X~automaton
B = A/qy is obtained from t‘h,e' complete X-automaton A by state reduc-
‘tion, and that 9 is an admissible partition of A, which does not - include .
If, however, #§ =#(Q/T), Thm 2, 4 applies, i.e. there exists a g/"m-‘fa'ctor
Bof B=A /"n’ . Thus, Thm, 4.3 leads to a ca‘s.‘cade,-decompojsition of the
reduced automaton B, although the admissible partition. § of A has

been destroyed by state reduction,

CONCLUSION

The basic ideas of an algébraic decomposition theory of finite auto-
mata, essentially due to J. Hartmanis, have been presented, 'Furthermore,
these ideas have been generalized by also considering admissible decom- 4

positions: (overlappihg partitions) of finite automata.

Further research is required in order to derive from 'thé’b’a'sic theory,
presented in this report, efficent techniques for the synthesis of sequential

machine networks,.
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‘On, the otherthan.d,' the extention -of some of the results obtained

in t}ns iépont to abstract algebras in general might be of some interest,




1AG)

[GB]

[HH]

[JH 1]

[JH 2]

[JH 3]

[JH 4]

[JH 5]

[KC]

~ 19 -
"REFERENCES

A, Gill, "Cascaded Finite-State Machines", .IRE Trans. on

Electronic Compiters, ‘EC'} 10, 35393'7?0;:,Sept;, 1061,

'G. Birkhoff, "Lattice Theory", Am. Math. Soc, .Coll. Publ., -

vol. 25, New York, N, Y., Rev, Ed., 1948,

H. Hermes, "Einfhrung in die Verbandstheorie", Sprmger-

Verlag, Berhn-thtmgen-Heldelberg, 1955,

J. Hartmanis, "Symbolic Analysis of a Decomposition of Informa-
tion Processing Machines", Inf, and Control, 3, 154-178; June, 1960,

J. Hartmanis, "On the State Assignment Problem for Sequential

Machines, I", IRE Trans. on Electronic Computers, EC-10,
157~ 165; June, 1961, -

J. Hartmaﬂis'. "Loop-free Structure of Sequential Machines",
Inf, and Centrol, 5, 25-43; March, 1962,

J. Hartmanis, R. E. Stearns, "Some Iangers in State Reduction

of Sequential Machines.", Inf, and Control, 5, 252-260; Sept., 1962.

J. Hartmanis, "Further Results on the Structure of Sequential

Machines', General Electric Research Lab. Rep, 62-RL-3070E,
Schenectady, N.Y,, July, 1962,

V. A. Kozmidiadi, V. C. Cherniavskii, "On.the Ordering, of the
- Set -of Automata . VOprosi Teoril Math, .Mashin,, No. 2, .34-51,

Fizmatgiz, Moscow, 1962,

[MY 1] M. Yoeli, "The:Cascade Decomposition of Sequential Machines",

IRE Trans, on Electronic ‘CQmputens, EC-10, »53.8*7'-‘5192; Dec., 1961,




| - 20 - o
[MY 2] M. Yoeli,. ""Cascade-Parallel Decomposition of Sequential Machines",
. to appear in IRE Trans, on Electronic Computers,

[PD] P. Dubreil, "Algebre I, 2nd, ed., Dunod, Paris, 1954,

[PU] M. C, Paull, .S, H. Unger, "Minimizing the Number of ‘States in
" Incompletely Specified Seuqential Switching Functions", IRE Trans,
on Electronic Computers, EC-8, 356-387; Sept., 1959,

{SG 1] .S, Ginsburg, ."A Technique for the Reduction of a Given Machine -
to a ‘Minimal State Machine'', IRE Trans, on Electronic Computers,
EC-8, 346-356; Sept., 1959,

[8G 2] 8. Ginsburg, "Some Remarks on Abstract Machines", Trans, Am,

Math, Soc, , 96, 400-444; Sept., 1960,

[SH] 'S. Huzino, "Theory of Finite Automata", Memoirs of the Faculty
of Science, Kyushu University, Fukuoka, Japan, Ser, A, vol, 15,
No. 2, 1861,




