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* One pgrpose of this irepor is to serve as a short, unified introduc:-

.tion #i0to.th.e'algebrai.c de¢omposition theory of finite automata (sequential

iaLchies). This'theory-has been establiShedby J. Hartmanis in a ?eries

of papers JR 1-51, extending available results-from the decomposition

theory oif (bstkact). algebrae (cf, [GB1,:Foreword. on Algebra., and Ch. VI).

-..Furtherlmore, a variety of aspects of sequential machine decompositions

r e disus~sein [SG2 :[AG], [ SE]., [KC.J, and [MY 1, 2].

- A.further purpose;.of this report.is the study of overlapping parti-

.tions of automata state• sets in connection with a generalizedapproach to

the decoMposition p.roblemii-. Previously only output-consistent overlap-

ping partitions of incompletely specified sequential machines have been

considered Inti: c ection with the problem of state reduction (cf. [SGI]

T"'ugho ut this repo.rtthe emphasis is on -the algebraic; rather

". .thain•engieeringaspects .of the problem, The applicability of the re-

"sUlt: the.actual synthesis of.sequential machines will be .discussed in

a subsequent, report:

SIn:thTssectionwe summarize the ba~stc concepts, notations, and

theore•m • concerning binary relations and partitions, to be used in, the



sequel. For detailed expositions of most of this material the reader is

referred to [GBI3TPID], or [HH].

. 1 MBINARYIRELATIONS

Given two binary relationsý-R, and-R2 over the set S, we denote in-

clusion, intersection,, union., and relative product by -Rl R2' Rl1n'R2'

Rly.R 2 and"R1 R 2 , respectively. For any pos.itive integer i the i-th

pow••-R of the binary relation R over .- is ,defined recurpively by

R 1'R'-R L, 1'R, The transitive closure Rt of R is defined by00

"U= 7-R. The identity relation over S will be den6ted as I
i=1

(stIt ss--t), the universal relation as U (sUt for every s and t in S).

Given a finite setS, we denote the number of its elements as4S.

We now state the following well-known, easily proved

Lemma 1. 1 Let S be a finite set, # S-n, and R is a binary relation

over S, such that -Ra I. Then

1=Rm for every m: n-1.

A convenient method of representing binary relations over finite

sets is by means of Boolean matricies. -However, in this report we

shall not make use of such a representation. Let now E(S) be the set of

all equi-valence relations over a given set S. We shall need the following

Theorem 1.. 1 s(S) forms ,a lattice with respect to inclusion.. The meet

(lattice product) and join (lattice sum) of R. and R in Z (S) are given

2i
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"by -RiA-R 2 and-RliR 2 -=¶ 2 !"respectively.

."Fora proof see, e.g. -[HH], -17. If ."S is: finite andl*S.=n,-we have,

by lemma 1.1, for ahy "S and."•R 2 in s(S):

-L- .. -tR2  1(RlV R 2 )n.

1. 2 DECOIMYOSITION'S:'AND-PARTITIONS

A decomposition ir of a given set S is a family of non-empty sub-

sets of S (the 11" -blocks) whose set 'unmion is'S. If the -a -blocks are

non-overlapping, Ir is a partition' of S. If ' s C S and 'K is a partition

of S, Ki (s), denotes the -r -block containing s. If S is finite, and I"

any, decomposition of S, we denote by ji1W"I the number of elements of

the largest ir -block.'

:With a given decomposition i" of the set S we associate a binary

relation R, over S such'that sR'Rt whenever there exists a Wr -block

containing both s and t. R is an equivalence relation, if and only if

",K is a partition. In this case -r is the quotient set of S relative to -Rf

.(notation: Ir .=S/,). If -f is a partition of S. the notation sat(ir)

instead of sR t will. also be used.

The set of all' partitions of a given set -S will be denoted as "i (S).
For p and f in it(S) let 7 • mean that *• is a subpartition of ,

L.e. R, r R .Clearly, by-Thm. 1.1, the system <¶(S),- ) forms

a lattice isomorphic to ( L(S), 4), :2.-Denoting -the 'lattice product -and sum
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of the' partitions rand • by r..so and ir +f, respectively, we thus have:

.The lattice 11" (S) includes . the .zero element O S/I and the 1-element

1 s/U.

Given two partitions ir .and of S, the quotient decomposition r/ Tr

of ir is -defined as -follows,:

5 'r t3-"(s); I sCHII HE C.

'Clearly if 9 - , then 91"r is a partition of ir defirre- as follows-:

. 1"r (s) •=a!"(t (T/lr,) = sat (r).(1

IL. X-AUTOMATA

In this study we are only concerned with the transition (next-state)

mappings of finite automata .(sequential machines)..We, therefore, intro-

diuce the following

Definition. 'Let-X be a finite alphabet. AnX-automaton is system

A = <S,, 6 where .S is a finite non-empty set (the states of A) and A

a single-valued mapping (next state or transition map) of a subset of the

Cartesian product S x-X into.S. .The :symbols of -X are the inputs of A.

If & is defined for each <s, x> -pair, s. S and xIX, A is complete,

otherwise partial.

We shall use the (operational) notation sA x = t, rather than the

(functional) notation ,' (s, x) = t. If. sA x is defined, s will be said

__________________________________________ __________________________________ ___________ ______________________
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to .admit x.

:Definition. -Th6-X-.automata A = )S,/) and At = (S', A') are isomorphic

(notation A` A') 4if there exists a one-one mapping 1, of S onto.

such that, for each sES, s and sv, admit the same inputs, and fUrther-

more (sA x) = s,,&A'x for each s in ýS and each x admittedby s.

We now extend the concept of ..admissible partition (cf. [MY 1]) or

partition with substitution property [3-I 1-5] to decompositions.

Definition. Let' A= <.% 6) be an-X-automaton. .The decomposition ir of

* S is admissible by A,. if for each -ir-block H and each input x there

exists a %:block K such that sAxtK for each s in H admitting x.

Next, we introduce the concept of "M,"-.factor" , closely connected

with the concept of quotient-algebra .(or factor-algebra) of an abstract

algebra (cf. [GB], p. IX).

Definition. Let A= (S,'&) be an X-automaton and it a decomposition of S,

The X-.a'utomaton A = (, A) is a ¶ -factor of A, if i).' =Tr, ii) any

iw -block H admits any input x if and only if there exists an S in H

admitting x, and iii) sAxe-l' x for each H 'S, each s r-H, andeach

input x admitted by s.

MM following two lemmata (2. 1 and 2. 2) are immediate consequences of

the above definitions.
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:Lemma 2.1 Let A.=<r, >be a Wr-factor of theX-automaton. A=<S,&)

Then the decomposition i0, is- admissible by A. Conversely, if the decom-

position iK is admispible by the X-automaton A< (S,A> , there exists a

j -factor K= (.K, -)of A.

Lemma -2.2 If ir is an admissible partition of the X-au~omatQn A,

there exists exactly one jr-factor X of A (notation:--= A/wr).

If A is a complete -X-automaton, and Ir an admissible partition of

A, R I is a congruence relation of A. In this case the theory of con -

gruence relations of abstract algebrae (cf. [GB] anrid*IH]) directly applies.

In this connection we have the following

Theorem 2., 1 If ,a and? are partitions admissible by the complete

X-automaton A= (S, A), then "r. 9 and 1+? are also admissible by A.

Thus the set "T(A) of -all partitions admissible by A forms a sublattice

of T (S).

For a proof of the corresponding theorem on abstract algebrae see

e. g. [GB], p. 23, or [HH], p. 95. The application of this result from the

theory of algebras to finite complete automata is due to J. Hartmanis

(cf. [JH 1]).

Next, we apply a well-known isomorphism theorem on abstract

algebras (cf. [GB], p. .X, Ex. 2) to both complete .(cf. 'IKC]) and partial

automata.
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Theorem-2.2 If j"1 and 1r2 are admissible partitions of the X-automaton

A and W• 1:.•2, thet. the partition 'r /T 2 is admissible by A/-r2 and

Conversely, let 'r 2 be an admissible partition of ftheo-automatOn.

A. Then any admissible partition wrof A/-r 2 uniquely determinels an

admissible partition Xi ( ' " of A, such that -ir = .ri2.

Proof. Let -H2 be a state of A/ •r 2  "&) admittingthe input x,

and let Or 2 H K& 2 x). Given now another

In"2-block H- which belongs to H12 and also aZmits the input x, it foo-r

2•lows:from,(1), that (.r1 /,ir 2 )(H'2 A x) K12 , i.e. Trl/ r 2 is admis.•-

.sible by A/,Tr 2`

Let now s be an arbitrary state of A, and let.Hi='l,(s), H2 = 'f 2 (s). We

define the mapping Y of 1rr1 onto 'r1 / -'t 2 as follows:

HIA--rl/T 2 (H2 ) for each s.

* Due to I1 1 > 'N2" k is one-one. "Furthermore -nis an isomorphsim of

A/ it 1 ontor A/'1 2 /Irl1 /, 2"

Conversely, let ir be an admissible partition of A /qr 2 . -. 'We define the

partition j' 1 of A by -l//ir2=lr, i.e.

se-t Or•I 4= r 7•()•2(t) (1r)'.

The partition I i r 2): is thus uniquely determined and, furthermore,

"is admissible by A..
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So far, the theory of parallel (direct) or cascade decompositions of

sequential machines (cf. [JH 1-5] , [MY 1, 2]) was based on the Study of

admissible partitions. In the sequel it will be shown how this theory may

be extended by also considering admissible decompositions of.X -automata.

In this connection we shall need the following two theorems.

Theorem. 2..3 Let A= (S,,) be an X-automaton, -w-an admissible

decomposition of A, and N= <ir. A~a ffr-factor of A. Then.there exists

an X-'automatpn A' = (S', A '> admitting partitions • and -iw'. such

that w'1 -I"1. and

A'/• .• A (2)

A'/•:• X(3.)

Proof. Let -S'= , (s,i)l sellH, HET}

We define (s,H>'A'x for each s in -S, s• He 'ir, and each input x ad-

mittedby s by

xsH>A'x <sAx, H x)

Now, let

<s , B)-, K) ., . H =K

Evidently, • and -fr' are admissible partitions of the-X-automaton

A'ý = (S', & "> satisfying (2) and (3), and 1-"r .=1i.

Theorem 2. 4 Let A- 'S•k•> be a complete "X-automaton., KN andsad-

missible partitions of A, such that - (•I'f),-5 . -Then there exists

a Y/-.,factor of A/ir isomorphic'to. Al?

½ ___________ ________
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Proof, Let -o be the mapping of F onto S Ir defined as follows:

HXt= t7r(s) I rs 7 for e 1ach H6 d

/(?IT) 4$ implies that-v.is 1- 1

Let A/S = -•, L> and A/-r = 1 "r , >"i >

We now deinfe an X-automaton A = ('R/M, 2j> such that*XT A/ ?, i..e.

H 4x = (H h x)h.. -for .each H e? and each x e-X.

Next, we have to show that A is a "/Vw-factor of A/h . Indeed, let K

be an arbitrary _9/'r -block, and x reX. Let H=K-I and L=KE x=

H-vj x= (H&V x)-.. If Me K, there ,exists,, due to H-i-$K, an element

s elH, such, that M= Ir(s). Then

s*H -sAx e H& 9X (sAx)e.(H x)k=,L.

Furthermore

M=I (s)=> M &W x = r(sA.x).

Thus, "MAhrxe L = K x for each qc-block MEK, i.e. A is a

S/iY-factor of A/T-

Theorem 2. 4 is thus proved.

The condition 44 (,N'tr) = 4 ? of Thrn. 2. 4 is satisfied, if >, ,K.

.Thus Thn. 2.4 generalizes the Isomorphiim Theorem 2.,2.

In the sequel we. shall. also need the following two definitions.

Definition. The X-automaton A= (S, A. is a suqbsstem of the

X-automaton A' = (S'L, As). (notation: .A A") if i) S S', ii) e.very

input ýx admitterdby any state s in A is also admittedby s in A',

and iii) sAx =sA' x for each s in. S and each input x admitted by a.
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-Definition. Let A= (S,,> and A' =,S(S, t') be 'X-automata. A'

covers A (notation: A';%.A) if there exists a single-valued ,mapping "i,

of a subset " onto S, such that each s' in. S' admits 'any input x

admitted by s"'!j.and, -furthermore, s',LA x = (S' A' x) -j..

The relation 4 is •clearly reflexive and transitive, i..e. a weak or-

dering of the system of all. X-automata. Furthermore, if A),A' and

A' >,A, then A • A". Obviously, A' Q'A =P A' >.,

The concept 'of covering introduced aboveý is especially important

from an engineering point of view. Given the specifications of a Moore

or Mealy type sequential machine M, engineers will frequently construct

a larger machine M', which will cover M, i. e. will perform at least

as much as the specified machine M (cf. [PUi .andjlSG 1]). If the

X-automaton corresponds to. M, and A' >,A, it is easily seen that 'A'

can be converted into an M' -machine covering M by a suitable specifiý-

cation of its output function.

III. DIRECT PRODUCTS OF'X-AUTOMATA

The concept of direct product of universal algebras is 'directly ap-

plicable to X-automata:

IDefinition; The complete 'X-automaton A= <S,4) is the direct -product

of the complete X-automata A.:= (S. i, i=l, ... r, (notation:

A=Ax ... xA) if S- x... xS and.if, for each s= <st,1 r SSx. rS"'" r'



(sCS, s 6S.) and each x .X, sx = (s. 1 A1 X, ... sArx >.

Evidently (A 1 x A2 ) x Ait A (4 Alx(A2 x Aý" lXA 'X4,3 .and AI A21.A2*AlO

Let now A= A1 x... xAr, where A <SA) and A. 0s
i 1I, . . ., r.

-Let us •define the pirtition-rWi of ;S by

Obviously, "it is admissible by A and A / "jir . A.

Furthermore, w 2 0!" :"K =and .(14il) ... (#r) --•-S.

Conyersely, we have the following

eorem 3. 1 Let- . .... r be admissible partitions of the :com-

plete X-automaton A (=S, 0. such that
"1T" .. " *i""•r = 0 (4)

IN 2 ./r=0

and (411) ... (*'ir) *S (5)

then A:-A/ir x... xA/- rK .

Proof. Considering any state s of A, let s . "li.(s), i=1, ... , r.

Wedefine the mapping iý_ of S into: S = Ti. x ... X N'ri by

s\-<Sip -... Sr

Due to (4), V¶is one-one, and due to (5:) - is onto 5. One now easily

verifies that fjis an isomorphism of A onto A/,%1 x ... x A

As mentioned at the :end of section U, we are frequently interested

in finding an X-automaton A' covering a: specified X-automaton A,

in as far as A' is preferable to A from :some engineering point of .view.
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In this connection the following theorems are rather useful.

Theorem 3.2 Let A = (SA> be a :(complete or partial) X-automaton,

and "r1 , .Ir admissible partitions of A, .satisfying
rI .... -=0.

1r
i0

-Let >X= <', £ , i = 1, .... , .r be complete: X-automata such that

Aj A "i =.A/q•" !.

Then A4 .. x x X1 r

"Proof. Let '•i be the •mapping corresponding to •. • A/•r i.
Let .s e'S, and si = 'ir(S), i 1,., r. We now define a singie- valued

mapping 0f a subset ofr'Si x ... X'Sr onto. S as -follows:

.s ,.-1 = sl 'A.l -x.... x -r "+"

It is easily s:een that x ... x Xr covers. A with respect to,

Theorem .3. 3 Let Az (S,.6) be a complete X-automaton, wir an

admissible decomposition, and - an admissible partition of A, such

that, A.r, RV I., Then AxAxA/,f ,where X= ("r, Z)is.a

'1" -factor of A.

Proof. By. Thmi. 2. 3 there exists an X-automaton A' 30, AS')

admitting partitions 9 -and "W' , such that A'/ • A, i.e. A-' ,A,

and A' / 0" A. .S', • , and 'r I were defined as follows .(se.e proof

of-Thm 2.3):

S= . (U, )-H) sIH, H 1"1
<i, ..')+ . :K) ,•> ,-,,, SI•.-t
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"We now define the partition -V 'v T of A' by

<s, H>Z:<, >(t' - s'M t q•).

SiSi admissible by A, hence -•' is admissible by A'. .Furthermore

(cf, thm 2.2), A/N ' A'/j / 'P 7 A'/

Let now <s, H>.and <t, K> be elements -of 'S',. i.e. s4-.H*,%

t K '•. If <s, H>= <t, K>l1' i', then I, by definition of
• and s t(), by the definition of 4'. H = K implies slt, whence,

due to s-t (% an'dR. --R = I, s - t. Thus, (s, H>- <, K>, ie.

= 0. Applying Thm.3.2 we obtain:

A'PAs/ir, x AA/ I I

.Now A'fjr'X a nd. A A R- ence

A 4 As x A/I'

IV,,. CASCIADE"PRODUCTS OF X- AUTOMATA.

Cascade compositions of sequential machines are discussed in [SG .2],

[AGL, *[MY 1] and [ JH 2-5]., Extending these considerations to X-automata,

we introduce the following

-Definition. Let Ai,=. (Si, &'>be complete X..-automata, i 1, ... r,

such that

:Xi1+ = :si x X, i = 1, r-l.

.The cascade product A of the A. (notation: A = A1 ýo.... o Ar) is the

complete X-autoimatcn, A :=S, 6 defined ab follows:
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i) X =X 1

i~i) :=SI x .... x :Sr

.iii) for each s- <si, ..... , Sr in.'S and each x in X

we have sAx <s1 A, .... str Xr)

where x x and x i 1 = (si Xi) , i 1,... ,r-1.

Let us now assume that A -s,,> = A1 o ... o Ar where A1 .- , A .

We define the partitions: -w i of 'S (i = I, .... r-1) by:

Or,. ,s _<tl .. tr) (1ri) 4-0. s 1 --tj, ... to si l'

Clearly rl >•, r 2  .... OTr - 0. Furthermore, -ri is admissible by A,

and

Ao... oAi

Conversely, we first consider the case r 2. For this case we have the

following

Theorem 4.1 . Let .A =<S,A> be a complete X-automaton and -r an

admissible partition .of A. Then there exists a complete .lTx X-automaton

A 2 =S2P A 2 > suchthat A 1 oA 2  A,

where. A A/jr 1> > and *.S2 "ir.

Proof. Let - be -a partition of :S, such that it 'It 0.,, and -4 - .

-Such, a partition T obviously ex'istS9 --We now constru~ct a suitable

x X-automaton A2 = K.'c, • 2 as follows:

Lot H r-ir , 'K 6 It , such that HA K D %. Due to 7K"CV =0, .the

interesction HA K includes a single element s eS. Let x be any

input of A. -Then

K A 2 <H, x> = IC (s Ax).

If H nK -, K X 2A<H x) may be arbitrarily determined.
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Let now " <H, ,K>I iH6,', K,'e , HNK K •and the mapping

of-S onto'-S determined#by

(H, Ky= s4=o scHtK

We shall now show that A1 0A 2 = A' -<S1 ,1 '> is a cover:of A

with respect to . Indeed, 'let x 4 &X, s &-S, and let .H 7((s), XK= Zc(s).

Then HAK Hence (H, K>V s. Now, (H, KW' x = <H x, •K& <H, x>>
<H A',x, t: (sAx)>.

seH implies S AxeH 1 x. Thus sAx isc~ommon. to HA1 x and

"C(s A x). Therefore, <H, K>&' x = <H A' x, tC(s x)> belongs to. S and

its V-image is s A x. This completes the proof that A'O , A.

Let now 'I1 and "Y2 be admissible partitions of the complete .X;automaton

A = KS,A>, where 1"r•1 ' 2 . 0. ApplyingThm 4.1 to.'1 2 , we deduc'e•.the

existence of a 7r2 x X-automaton A' = <S', & '> such that *,S' = I T2 I
and

A/12 o A' I -A,(6

By ,Thin. 2.2, ¶f 1/q2 is an admissible partition of A/-7r 2 , and

A/1r 71  = A/-K 2 / _r 11-K 2. Applying now Thin 4. i to the partition
of A 2' we derive the existence of an X-automaton

A2 = (S 2 , 2- 2 > , where 'S2 = I 1•hr• 2 .I such that A1 o A 2 is defined and

A1 oA 2 P A/qf-2 . (7)
Combining (6) and (7) one easily derives the existence of an X 3 -automaton

A 3 = KS' , A3), such that Ao A2 o A3  is defined and

A1  2 A 2 o A 3 A.

By induction on r we immediately, obtain the following.Cas'cade, Decompo-



-1.6

sition :Theorem:

Theorem 4. 2. Let 1' ...I Tr- be admissible partitions of the com-

plete X-automaton A WS, 4) Where l>Y1 2 . r-r1",r =0. Then

there exist complete- X.-automata Ai = A( > , i = 1 .. ., r, such

that A1  .... o A is defined andr
A! o....0 Ar A,

r

where A1 =FA/,i, A1 0o... o A,--* A/-rKi (i =2, ... r-1) and

-Si= i 1 /,7( J, i 2, .... r.

Finally we wish to show that cascade decompositions of X-automata may

be derived from'-their admissible decompositions in accordance with the

following

Theorem 4. 3 Let A = ,S. A> be a complete X-automaton, ir an admis-

sible decomposition of A, and A a, iT -factor of A. Then there exist

automata A1 and A2 , suchthat A IlK,*A 2 = 111 and A 1 oA 2 ŽA.

Proof. By Thin 2.3 there exists an X-automaton A' = (S', & I> admitting

partitions 9and iri suchthat -A' /•.•A, A'/I'T 'A and lvi = in.

Applying Thin 4. 1 to the partition -' of A' we derive the existence of

automata A1 and A2 suchthit A1  ALI/-K A 2 = -n' d

A oA 2 A'. Clearly,A*/? 7A implies A' ) A. Thus A1 oA 2 NA,2 2

where A1 = A' /I' I'X and 44A 2 = T = 1 I,1 . Thhm. 4. 3 is thus: proved.

An important step toward the'efficent realization of a sequential

machine is 'Usually considered to be state: reduction, by whichthe corres-

ponding .X-automaton A is replaced by A /-7r, where T'is an admissible

(and output consistent) partition of A. -Recently J. Hartmanis has pointed
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out certain negative effects of state reduction [JH 4. Namely (cf. Thin 2. 2),

only those admissible partitions of A *which include IT are preserved in

A/ • . Thus., state reduction may destroy possibilities of machine decom-

positionp, especially if only admissible partitions of the reduAced machine

are considered.

However, by also taking into consideration admissible decomposi-

tions of the reduced machine this danger of state reduction is considerably

diminished. To illustrate this point, let us assume that the _X-automaton

B = A/Ir" is obtained from the complete X-automaton A by state reduc-

'tion, and that .,is an" admissible partition of A, which does not include 1K.

If, however, -*,-- -(Y(/), Thm 2. 4 applies, i..e. there exists a g/,-#factor

M of B = A/fr. Thus, Thm. 4..3 leads to a cascade-decomposition of the

reduced automaton B, although the admissible partition. of A has

been destroyed by state reduction.

CONCLUSION

The basic ideas of an algebraic decomposition theory of finite auto-

mata, essentially due to J. Harttmanis, have been 'resented. "Furthermore,

these ideas have been generalized by also considering admissible decom-

positions (overlapping partitions) of-finite, automata.

Further research is required in order to derive from the'basic theory,

presented in this report., efficent techniques for the -synthesis of sequential

machine networks.
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On the other h!nd, the extention of some of the results obtained

in. this. report to abstract algebras in general might be of some interest.
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