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SUMMARY

Part I: A Survey of Methods for Dynamic
System Identification

This section of the report summarizes the findings of the
first phase of a continuing study concerned with the utilization
of computers in the determination of mathematical models for
dynemic systems., In this initial phase, a careful review of
various types of models which have been previously used or
suggested for this purpose has been completed. A discussion
of these models and the associated experimental techniques makes
up the first part of this section. Following a critical evaluation
of the earlier methods, a new formulation of the general model
inference problem is presented; this new approach has been named
the "'parameter space method". The computational advantages of
parameter space methods are discussed, and & foundation is laid
for the development of explicit computational procedures. The
continuation of this research will include the investigation of
several specific techniques for achieving the '"identification'

of nonlinear systems.
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Part II: Research in Optical Coherence

A detailed study of certain aspects of the theory of cptical
coherence has been carried out, A major objective of the study is
to obtain criteria for optimizing optical systems employing coherent
sources and amplifiers such as lasers. This is the first in a series
of studies to investigate the effect of various optical system devices
such as antennas, filters, modulators and demodulators, etc., on the
coherence properties of optical signals. The present report concerns

itself primarily with spatial and temporal filters.

A general coherence functien is defined as the autocorrelation
function for field Strengths. The field strength is a.fﬁnction of
three space variables and time. The cohererice function is therefore
dependent jointly on the space separation and the time separation
of the measured field strengths. It is also a function of the origin
in space and time if the process is nonstationary in those variables.
Limiting cases of pure spatial coherence, pure temporal coherence,
pure spatial incoherence, and pure temporal incoherence are considered.
The concept of perfect coherence in a particular independent variable
is extended to include all deterministic functions which are completely

specified for the entire range of that variable.

The general integral equation relating image and object field

strengths in all variables is defined. A technique for determining
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the spatial and temporal weighting function for a linear optical
tranasducer is suggested. This evaluation is complicated by the

fact that the diffraction field for an arbitrary, aperture-field,
distribution has only been found (approximately) as the steady-state
response {o a monochromatic source. Since temporally incoherent or
partially coherent sources are common, the weighting function in
both'space and time must be found. This function may be found
approximately from the steady-state, simusocidal, response by taking
the inverse Fourier transform of the spatial response to a sinusoid
over the frequency range for which the sinusoidal response function
is valid. This inversion is complicated by the fact that the spatial

response is a function of the temporal frequency.

The technigue of obtaining the spatial and teméoral weighting
function makes possible the evaluation of both the transient and
steady-state, statistical, behavior of far-field diffraction patterns
for sources exhibiting partial coherence in both space and time. In
particular, information rates may be calculated, and the transducer
may be optimized with respect to its variable parameters by maximizing

the image information riate with respect to these parameters.
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1, INTRODUCTION

1.1 Purpose and Scope

This report summarizes the findings of the first phase of a continuing
research program concerned with the utilization of computers in ihe
determination of mathematical models for dynamic systems from experimental
observations. In this initial phase, a careful review of various tjpes
of models which have been previously used or suggested for this purpose
has been completed. A discussion of these models and the associated
experimental techniques makes up the first part of this report. Following
a critical evaluation of the earlier methods, a new formulation of the
general model inference problem is presented; this new approach has been
named the '"parameter space method'". It is believed that parameter space
techniques offer significant advantages for the actual computational
determination of models for nonlinear systems in practical situations.

The continuation of the research reported herein is aimed at the develop-~
ment of explicit computational algorithms for achieving the identification
of nonlinear systems by parameter space operations. This research will

provide the basis for future reports dealing with this topic.
1,2 Identification of Dynamic Systems

' Since the time of Newton it has been known that the dynamical
behavior of mechanical systems is governed by differential equations.
In the ensuing centuries since Newton's discoveries, a complete theory

of classical mechanics has been constructed which, in principle, permits

1=
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the description of the motion of any rigid body system in terms of a set
of coupled differential equations. In a aimilar fashion, electric circuit
theory has provided differential equation descriptions for lumped constant
electrical devices. More generally, ié is now common knowledge that a
great many processes involving storage and interchange of mechanical,
electrical,and other forms of energy are properly described by complicated
sets of differential equations (or partial differential equations if the
systems are distributed rather than lumped). Systems of this type are
ﬁsually referred to as "dynamic" systems in engineering literature (l)l.

While basic physical theories often permit the form of the differen-
tial equation for a dynamic system to be written down, as a rule the
parameters of a particular system can be determined only by measurement.
For example, the equation for a pendulum with viscous damping can be

obtained from the simple moment equation:
I0 +BO = - M gl sin @ (1)

However, before any analysis of the behavior of a particular pendulum may
be effected, it is necessary to determine the c;;stants in the equation.
Such determination of a specific quantitative model has been variously
referred to as the "identification problem" (2), the '"characterization
problem" (3), and the "parameter estimation" problem (4),depending somewhat

upon the methods employed; it can be accomjplished only by experimentation.

In this report, superscript numbers are used to indicate footnotes while
bracketed numbers refer to the list of references at the end of the text.



In the case of a device as simple as a pendulum, the evaluation of the
unknown constants ig not difficult unless a bigh degree of precision is
required. On the other hand, there are many practical situations in which
the measurement of system constants is extremely difficult due either to
the complexity of the processes involved or the subtleness of the effects
to be measured. Furthermore, even afiar the system parameters have been
established to a sufficient accuracy, analytic solution of the resulting
family of differential equatiops is an extremely difficult task in all

but the simplest of situations.

For the reasons just mentioned, engineers and physicists over the
past several decades have sought ways of characterizing physical systems
other than by a set of differential equations. Such efforts have been
quite successful with respect to the important but restrictive class of
systems possessing the properties of linearity and time invariance. For
more general classes of systems, results have been sparse. If the require-

ment of time invariance is relaxed while linearity is retained, weighting

functions offer an alternative to differentiasl equation descriptions although

they may be very difficult to obtain. For genersl nonlinear systems, it is
only by considering a system as an operator effecting a transformation from
an input function space to an output space that it has been possible to
arrive at alternate descriptions.

The following paragraphs discuss various methods which have been used
to describe dynamic systems and.suggest a particular characterization to be
used as the basis for the development of practical computation procedures

for identifying unknown nonlinear systems. The discussion will be confined
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to lumped constant systems; i.e., to systems deacribed‘by ordinary rather
than partial differential equations. For the sake of completeness and
continuity, the development to follow begins with a review of methods which

have been developed exclusively for the characterization of linear systems.

2. LINEAR SYSTEM IDENTIFICATION

2.1 Frequency Response
2.1.1 Introduction

When a system is linear, the "principle of superposition' may be
applied to decompose arbitrary forcing functions and initial conditions
into component parts whose effects may be more essily analyzed. The
individual responses of these components may then be added to produce the
total system response., If the system under consideration is time invariant
as well as linear, this type of analysis is especially simple &and effective.
In particular, when a sinusoidal or complex exponential decomposition of
the input signal is utilized, Fourier transform techniques may be applied
to determine the system output. In this approach, the system under considera-

tion is completely determined by the function, G(w), defimned by 2

Y(w) = G{w) X(w) (2)

where X(w) and Y(w) are Fourier transforms of the input function, x(t),
and the output function, y(t), respectively. The function G(w) is

usually called the system "frequency response" (5,6,7?)., For a linear time

2 While input and output variables will be treated as scalars in this

discussion, no difficulties are experienced if equation 1 is a vector-
matrix relationship.
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invariant system, x(t) and y(t) are related by
Ay(t) = Bx(t) (3)

where A and B are linear constant coefficient differential operators;
the frequency response, G(w), is therefore a rational polynomial in w

in such circumstances,

2.1,2 Experimental Determination of Frequency Response

Within the class of stable, linear, time invariant systems, experimen-
tal evaluation of the frequency response function is carried out by a
procedure which is (mathematically) independent of the nature of the system.
This is a major advantage of the frequency method, No assumptions regarding
the system must be made beyond the basic constraint that it be stable,
linear, and time invariant, in the usual technique emp;oyed to experimen-
tally determine the frequency responsey, G(w), the input, x, is chosen to

be the function,
x(t) = a cos w,t (L)

1

s0 that after a time sufficient for the decay of transients has elapsed
y(t) = b cos (wlt + @), (5)

It is easily demonstrated that the "frequency response" at w = wy is then

given by



PP —

6la) =2 o 2o v gp (6)

The variables %% and @ are commonly called "gain' and "phase shift"
respectively and are measurable by standard electronic devices.,

The "Nyquist plot" is the locus of @(w) in a,P coordinates.
Special purpose devices have been constructed to plot Nyquist diagrams
automatically since the point by point determination of G(w) may be
very tedious (8).

2.1.3 Measurement of Frequency Response in the Presence of Interfering

Noise

When extremely precise measurement is attempted or uncontrollable
sources of interfering noise are present, it is found that the measured
gain and phase shift are random variables. To circumvent this difficulty,
cross-correiation techniques may be used to discriminate against the noise

(9). From equation 6, y(t) may be written
y(t) = aa cos Wt - ap sin o t (7)
With noise, n(t) added, this becomes

y'(t) = aa cos wyt - &P sin wt + n(t) (8)

Now assuming that y(t) and n(t) are uncorrelated, it follows that

2 d '
1lim T I Y cos wlt dt = aa

T=*®

P 9
lim a‘fo - y sin wlt dt = ap
T =

-6



Finitg time approximations to these cross-correlation functions cam yield
arbitrarily precise measurements of a and f in the presence of arbitrarily

large noise voltages.

2.1.4 Extension of Frequency Methods to Nonlinear Systems

As a result of the simplicity and practical utility of the frequency
response characterization of linear systems, attempts have been made to
extend frequency methods to certain types of nonlinear systems. Perhaps
the most significant of these is the 'describing function" method due to
R. J. Kochenberger (10). Kochenberger's method consists of determining
the gain and phase characteristics of a nonlinear element with respect to
the fundamental component of the output only, In general, the frequency
response defined in this way depends not only upon the frequency of the
test signal, but also upon its magnitude., Describing functions have found
considerable use in the investigation of limit cycles in nonlinear systems.
Since the method is approximate, it is of relatively little value in
determining the transient behavior of nonlinear systems.

The method for experimentally determining describing functions is
the same &s for experimentally determining frequency response except that
the describing function depends on both & and @ 1in equation 6 rather

than on o alone,

2.2 - Determination of the System Transfer Function

2.2.1 Relationship Between the System Laplace Transform and the Frequency
Response Function

If the Laplace transform is applied to both sides of equation 3,

the result is .
A(s) Y(s) = B(s) X(s) _ (10)

 ———
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The function H(s) is commonly called the system transfer function.

Again, since A and B are assumed to be linear constant coefficient
differential operators, H(s) is a rational polynomial. As is well known,
the frequency response function, G(w), may be obtained from H(s) by

utilizing the relation
G(w) = H(jw) ' (12)

Furthermore, since H(s) is an analytic function, its behavior along the
imaginary axis in the s plane completely specifies its behavior over the
entire complex plane, So, conversely, experimentally evaluated frequency
response may be used to determine H(s) for stable systems. The process
of obtaining H(s) from G(w) is called the "approximation problem" in

network theory (11,12,13,14),

2.,2.,2 Direct Measurement of the System Transfer Function

Up to the present time, the frequency response method has been over-
whelmingly favored in practice for the experimental characterization of
linear time invariant systems. Recently, however, a few investigators
have devised methods for measuring pole and zero locations directly.by
using special test signals. These are sometimes referred to as 'time
domain' methods (15,16,17,18). While these techniques have the advantage
that the approximation problem is by-passed entirely, the test equipment
required is generally more complicated. In any event, the final result

of the measurement is mathematically equivalent to the frequency response.

=8



2.3 Weighting Function Methods
2.3.1 Relation to the System Transfer Function

The behavior of any linear system with respect to an input or
disturbance at a particular point is completely determined by its weighting
function or "impulse response' (19), If h(t,T) is the weighting function
associated with a linear differential operator, L, and y(t) are inpat

and output variables respectively, then the solution to

Ly = x (13)
is given by
t
y(t) -j h(t,r) x(t) de (14)
-

If L is also time invariant, then h(t,T) becomes a function of (t-1)

only and is related to the system transfer function by

Loln(t-1)} = "™ H(s) (15)

where 5f denotes the Laplace transform operator (19)., Thus the weighting
function and frequency response form a Laplace-Fourier transform pair.

while the weighting function bears a simple relationship to frequency
response only in the time invariant case, it is nevertheless (in light of
equation 14) a perfectly general way of characterizing asny linear system,
The determination of h(t,t) from the operator I is apt to be a formidable
task, however, Most often, numerical methods or analog‘simulétion are

required to find h(t,T).
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2.3.2 Direct Measurement of Veightipg Functions

If the system under test is initially in a relaxed state, then for
t » 0, the lower limit in the integral of equation 14 may be replaced by
zero. If x(t) is then chosen to be a narrow pulae of‘unit area centered
at t = tl‘> Oy the system weighting function can be measured directly.
Suppoée that x(t) is narrow enough to be sufficiently approximated by a

unit impulse function, 6(t-t1). Then
t
y(t) = fo h(tyT) &(t-t;) dr = hit,t,) (16)

By repeating this experiment with various values of tl s a family of curves
for h(t,T) can be constructed.

When L is time invariant, it is sufficient to make a single exper-
iment with t, = O since h(t,?) depends only on t-T. In this respect,
weighting function measurement of system dynamics is markedly'auperior to
the frequency method which is a point by point procedure. On the other
hand, the equipment needed fo record transient behavior is usually more
complicated and restricted in applicability than that used in determining
frequency response.

E. Miskin and R, A. Haddad have described an adaptive system which
uses integrals of impulse functions (i.e., steps, ramps, and parabolas)
for both identification and control of an object whose weighting function
is initially unknown (20). This method permits the control and identifica-
tion functions to proceed simultaneously but it is restricted to situations

where measurement noise is insignificant,

«l0-
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2.3.3 Determination 6f Weighting Functions by Cross-Correlation

All of the methods i;ntioned thus far for characterizing linear
systems share & common weakness. In order to make measurements on the
device in question, it is necessary to remove it from its normal function
and apply special test signals. That is, the methods described so far
involve essentially laboratory cf "bench test'" types of measurements.

There are many important situations in which it is either impossible or

undesirable to create such controlled conditions, In such cases, cross-
correlation of input and output may be used to discriminate against the

unwanted effects.

The application of cross-correlation to frequency testing has already
been discussed in this report. In 1950, J. - B, Wiesner and Y. W. Lee pointed
out that crosse-correlation can also he used to advantage in the measursment
of weighting functions {(21). Following their suggestion, suppose that the
input to a system, x(t), is a wide-band stationary Gaussian procéss. Then

the autocorrelation function of this process is given by

ﬂxx(1) = E {x(t) x(t+1)]} = N, 8(1) = ¢xx(-T) (17)
where No is the {two sided) spectral density of the input variable, x(t) .
If the cross~correlation hetween the input, x, and the output, y, is

defined by

ﬂyx(t.v) = E {y(t) x(t+r)) (18)

=ll~
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then

E {y(t) x(t-7)}

B tamm)

E [x(t-1) jt n(t,a) x(a) da)
[+]

t
j E {x(t-7) x(a)} h(t,a) da
o]
t
= I N, 8(a~t+r) h(t,a) da
0
=N, h(t,t-v) (19)

or
g, _(ty~r)
h(tyt-r) = L (20)
°
In the special situation when ny is not time dependent, then
equation 20 reduces to
ACL)

B(1) = h(-1) = Lemm (21)
o

which may be replaced by a time average:

T
lim %; Io y(t) x(t-7) dt

h(r) = (22)

T ~w
This is the result originally pointed out by Lee and Weisner (21) and the
one most often used in weighfing‘function methods for system identification,
The input process, x(t), may represent either normal operating signals alone
or such‘signals plus a deliberately added wideband test signal. In the event
that a special test signal is added, it is only this signal which is cross-

correlated with the s&stem output,

12~

i e e et st %% 40 e s



2.3.4 Experimentédl Evaluation of Cross-Correlation Functions for Time
Invariant Linear Systems

* Following the original publication of Lee and Weisner, a sizable
number of investigators have explored various techniques for the experimental
evaluation of ¢yx(T). Despite the considerable originality of some of
fhese»methods, nearly all of them contain the basic elements of delay,
multiplication, and averaging as shown in Figure 1. Since the averaging
time, T, must be finite, the output cf the process identifier is ﬁ(f),
an estimator of h(v). The mean square deviation of ﬁ(T) from h(1) may
be made as small as desired by increasing the averaging time sufficiently.
The next few paragraphs Aiscuss some specific hardware mechanizations of
equation 22 as well as some minor variations on the basic scheme.

J. A, Aseltine, et al. have suggested that a binary test signal offers
particular advantages in the experimental determination of weighting func-
tions (22). If an input is used which switches from one level to the other
in the manner of a Poisson process, then the delay time, T, is easily
realized by either a delay line or a shift register while the multiplication
required is replaced by a simple on-off electronic gate. While a Gaussian
random process has most often been used as a probing signallfor weighting
function determination, equation 21 remains valid for any'input with an
autocorrelation function which is sharp compared to h(T). Consequently,

a binary signal is entirely satisfactory as a test signal so long as the
average number of switchings per second considerably exceeds the bandwidth

of the system under test.

~13~
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G, L, Turin ha; discussed the replacoiont of explicit elements of
Figure 1 by a filter matched to a particular test signal (23). When this
is done, the physical equipment involved is greatly simplified. Moreover,
h(t) is obtained as a continuous function of time rather than on a point
by point basis as in the conventional cross-correlation method. On the other
hand, Turin's method does not permit long averaging times to be used to
discriminate against outputs resulting from extraneous noise or normal
operating signals. W, W. Lichtenberger has suggested that this difficulty
can be circumvented by averaging the filter response over a number of
measurements (24). However, this again yields a bointfwise estimate of
h{T) unless an analog memory is available to store successive samples of
h(r) in their entirety.

Several investigators have used multiple sinusoidal test éignals
followed by syncronous detection in place of a Gaussian input (25,26,27,28).
In these schemes it is system coefficients which are to be determined directly
rather than the weighting function. Unlike simple frequency response testing,‘
these methods use averaging following the syncrcnous detection and are there-
fore able to function in the presence of interfering signals. Despite the
fact that the test signals are sinusoidal, this type of measurement is a
' correlation method which fits into the framework of Figure 1.

Quite a number of investigations have been directed toward the
problem of determining weighting functions by correlation methods utilizing
normal operating records without the introduction of special test signals.

The first significant work in this direction appears to have been accomplished

by T. P, Goodman and J. B. Reswick (29). They constructed a special piece

-15-



of equipment involving a tapped delay line and manually set weighting

¢

"potentiometers to match the cross-correlation properties of a system under

teat. The unknown weighting function evaluated at evenly spaced time
intervals appeared as potentiometer settings at the end of an iterative
manual adjustment process. R. E. Kalman has demonstrated an automatic
iterative computational technique for obtaining a least squares estimate
of a z-transformed version of the system weighting function during normal
operation (30); P, Joseph et al, have proposed a‘variation'in‘Kalman‘s
method which allows initial conditions to be considered (31)., R. B. Kerr
and W. H., Surber have examined the relationship between time of observation
and accuracy of weigﬂ£ing function estimetion (32). V., V. Solodovnikov
and A. S. Uskov have discussed transform methods for the solutién of the

equation

, @ '
B () = jo‘ g, (1-t) n(t) at ' (23)

for h(t) (33). This equation arises when the input correlation function is
not extremely narrow compared to h(t) and the averaging fime of Figure 1
is allowed to become infinite.

There have been many other publications dealing'with éross-co?relation
since the original observation of Lee and Weisner. Since the present discus-
sion is intended simply to place the methods proposed in: this report in
perspective, the examination of cross-correlation techniﬁues has not been
exhaustive, The bibliographies -attached to the publications referenced

provide many other sources of information concerning this topic.

=16~




2.3.5 Identification of Time Varying Linear Systems by Cross-Correlation

The experimental determination of time varying weighting functions
using equation 20 is seriously hampered by the fact that expected value
operators cannot be replaced by time averages. Rather, it is necessary to
estimate ¢yx(t-7) by averaging thg results of many separate experiments.,
Furthermore, since h(t,r ) is a function of two variables, these repeated
experiments must be carried out for each value of T to be considered.
Thus the total number of experiments involved is very large. Moreover,
the system must be restored to a reference condition (t=0) at the start
of each experiment. It may not be feasible to achieve this type of operation
in many systems of practical concern. Despite these'difficulties, equation
20 appears to offer promise of useful application in special situations.
The necessary storage and averaging could be accomplished by a digital
machine possessing analog inputs and outputs. As far as is known to the

writer, no application of this approach has been made to date.
2.3.6 Impulse Response Measurement by Regression Analysis

Due to the force of tradition more than anything else, analog
measuring and computing devices have been assumed almost exclusively in the
investigation of practical procedures for impulse response measurement.
Mathematically, this means that the techniques used have been restricted to
processes of analysis to the virtual exclusion of algebraic methods. By
contrast, classical statistics is concerned mainly with discrete data
obtained from repeated experiments so algebraic methods predominate in

that subject. Thus, when conventional statistical methods are applied to

~17-




the measurement of a system impulse response, a fresh viewpoint re;ulf;.
An example of the statistical approach has been provided by M. J,Levin

in an investigation dealing with the estimation of impulse response at
discrete values of time by linear regression analysis (34), In Levin's

approach, the convolution integral

t
y(t) = J‘ h(r) x(t-r) dr . (24)
(]

is replaced by an approximating convolution summation
N

y(NT) = }: h(an) { x (-1} T (25)
n=0

In this expression, x and y are physically measurable while h(nT) ‘is
unknown, Sincevthe equation is linear in the unknown weighting function
values, a set of N+l simultaneous‘equations resulting from application

of equation 25 may be solved for h(nT), n=0, 1, “*+ N, by matrix inversion.
However, since measurement errors are invariably present, Levin suggests

that redundant data be taken and h{(nT) be determined by least squares
regression analysis. It is shown in his paper that this results in estimates
which are optimum in several senses.

By substituting equation 25 for equation 24 the difficult problem of
finding an inverse operator is reduced to the much easier one of finding the
inverse of a matrix. This is an operation well suited to a digital computer.
In a paper dealing with future trends in engin;ering analysis, Denis Gabor
has pointed out that it is quite typical that the discrete problem should
yield & solution more readily tﬂan the continuous problem (35). It is

further stated in his article that algebraic methods can be expected to

«]18=-




replace analytic approaches to a great many problems in applied mathematics.
This opinion, it seems, is supported by the fact that high speed computers

are now available to most mathematicians and engineers. While these machines

have great algebraic power, they are not naturally suited to limiting processes.

The point of view expressed by Levin appears to offer an attractive
alternative to cog;elation methods, The continuation of the research dis-
cussed in this report involves the application of similar approaches to

nonlinear systems.
3. FUNCTION SPACE DESCRIPTIONS FOR DYNAMIC SYSTEMS

3.1 Introduction

All of the methods employed for linear system‘identification appear
to run aground when attempts are made to apply them to general nonlinear
systems. This unfortunate situation results from the necessity of abandoning
the principle of superposition in dealing with nonlineér systems. In order
to gain a vantage point on nonlinear systems comparable to the conventional
treatment of linear systems, it seems to be necessary to introduce the much
more sophisticated idea of transformations defined over function spaces (36).
That is, it is necessary to recognize that the output of a physical system
in the most general case depends upon the entire past history of its input
in some complicated nonlinear fashion. This section provides a brief summary
of the function space point of view.

The application of function space methods is considerably facilitated

by the expansion of input functions into orthogonal series. The particular
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type of orthogonal functions used for this expansion will depend upon the
nature of the input and the test being conducted. For example, if the
input is periodic, then a Fourier series expansion is appropriate. On

the other hand, if the input is not known to be periodic but is known to
have finite bandwidth, B, it can be completely represented by time samples
separated by intervals equal to 1/2B, This representation is called a |
"gignal space" expansion in communication theory (37). If the input is

a general random process unspecified except for the pro;erties of contin-
uity and finite variance, then the entire past history of its values may
be. summarized by the coefficients of an expansion in terms of Laguerre
functions (38). Whatever the type of expansion chosen, the result is that
the input may be thought of as either a point or a curve in a space of
infinite dimension; i.e. in a Hilbert space. Representation as a point
occurs when the entire input is known in advance while a space curve
results when the input is a random process with only past values known

and a "backward looking'" expansion is used.

When the input to a system has been app;opriately expanded, the out-
put of the system may be regarded as the result of a mapping or transformation
defined over the input space. Physically, this transformation is produced
by the reaction of the system under test to a '"probing" signal applied at
an input (38), When the entire input can be represented as a stationary
point in a Hilbert spece, the output can be thought of as another point in
a gimilar space. Tﬁis is the approach used, for‘éxample. in steady state
harmonic analysis of linear systems. When the input is represented by a

moving point in a Hilbert space as in the case of a random input process,
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then the output space is just the real line. That is, the entire past
history of the input determines the present output; future inputs and ocutputs

are not known.

When the function space point of view is adopted, the system identifica-

tion problem becomes a matter of determining what transformation characterizes
the system under test. Again, there is considerable freedom of choice in
selecting a method for describing this transformation. For example, if the
system is known to be linear and time invariant, then the frequency response
is an appropriate characterization of the system input to output transforma-
tion. Specifically, if an input x, is periodic in an interval T and is

square integrable within that interval, then

+ @
x(t) ="z a e’ Z—KTIE (26)
n=- o

The response of the system under test to this forcing function is given by

+ @®
y(t) = Z b e’ 2—"1,”5 (27)
N=z= W
where
bh 2nn
n

The complex function, G(w), is just the frequency response defined by
equation 2. Since x may be thought of as a point or vector in a space

whose coordinates are the complex quantities, a5 and y is likewise a

-2la
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point in the bn space, equation 28 is an example of a particularly simple
transformation from a Hilbert space to a Hilbert space.

While equation 28 represents merely a rephrasing of the significance
of frequency response, as indicated, the function space point of view is not
limited to linear systems. It is possible to choose families of orthogonal
functions defined over the input Hilbert space coordinates which are capable
of representing arbitrary nonlinear operators 3. Norbert Wiener, for example,
chose to represent a Gaussian input process in terms of riormalized Laguerrs
functions and then described the system output as an expansion involving
products of normalized Hermite functions whose arguments are the Laguerre
coefficients (3,38)., 1In electing to use these particular series, Wiener
restricted himself to the use of broadband Gaussian random processes as a
source of probing or test signals and to time invariant operators having
the property that inputs applied arbitrarily far in the p;sﬁ have an
arbitrarily small influence on the present system output. This latter
restriction mesns, for one thing, that the Wiener>expansion cannot be used
for the study of unstable or oscillating nonlinear systems.

It is certainly possible to choose expansions different from the one
chosen by Wiener to characterize a nonlinear operator. For example, A. Bose
has discussed an expansion which involves basically the idea of partitioning
a Hilbert space into cells and associating a pafticular output with each
cell (3). A. W. Balakrishnan has discussed the application of polynomials
defined over Hilbert spaces to the problem of nonlinear operator representa-

tion (39), L. A. Zadeh has provided a tutorial exposition of the Hilbert.

The operator may be of an arbitrary nature providing only that it
produces outputs which lie in the selected .output function space.
I
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space characterization of nonlinear operators wherein several more expansions
are described (36) 4;

No matter what orthogonal functions are used as a basis for the representa-

_ tion of the input and the system transformation, with each such pair of

expansions there will be a class of inputs and a class of transformations
which can be represented. The choice of representation is thus determined

by the problem to be solved.

3,2 A Function Space Definition of "Static'" and "Dynamic'" Systems

Function space terminology provides a basis for a precise definition
of the terms "static'" and '"dynamic' as applied to physical systems. A static
system is one in which the output is a function of the present input only.
Thus, to represent a general static transformation, it is sufficient to
expand the output variable in terms of orthogonal functions whose argument
is simply the present value of the input; it is not necessary to utilize a
Hilbert space description for the input. A static system, therefore, is one
which effects a transformation from a real line to a real line. In contrast
to static systems, in a dynamic system the output depends not only upon
present values of the input but also upon past values. Consequently, a
dynamic system performs a transformation from a Hilbert space tc a line,
Such syétems are sometimes said to have 'memory" or ''energy storage' while
static systems are often described as being "memoryless'". By its nature,
the determination of the output of a dynamic system requires a double

orthogonal expansion. First, the past of the input must be expanded and

b Zadeh also points out that infinitely iterated integrals can be used with

appropriate weighting functions to obtain an alternate representation for
nonlinear operators which does not involve expansion of the input.
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then the resulting coefficients used as independent variables for a multi-

variable expansion representing the transformation to the output variable.

In the remainder of this report, the adjectives '"static" and "dynamie' will
always be used in accordance with the above definitions,
3.3 Experimental Evaluation of the Characteristics of Static Nonlinear
Devices
While this report is concerned fundamentally with the characterization
and identification of nonlinear dynaﬁic systems, some interesting simplifica-
tion of function space methods occur when the system under test is either
static or linear. In the case of static nonlinear systems, the outputldepends
only on the present value of the input so an expansion of the input in

orthogonal functions is not necessary. The output may be represented simply

as

@
y(8) = flx(0)] = ) a @ [x(£)) (29)

i=l

which is a single rather than a double expansion. L. A. Zadeh has described
several suitable orthonormal sets of functions, [ﬂi(x)] y in a paper dealing
with static nonlinearities which are coMpletely defined by their describing
functions (2) . H. J. Lory, et al. have discussed the application of harmonic
analysis utilizing growing real exponentials to obtain the coefficients of a
Taylor series expansion of f(x) (40},
3.4 Simplification of Function Space Representations foir Linear Time

Invariant Dynamic Systems .

When the system under test is linear and time invariant, only an input

function space is required. The transformation from the input function space

. L9
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to the cutput space need not be expanded in orthonormal functions since the

linearity of the system demands that the output be expressable asz a simple

linear function of the input Hilbert space coordinates. For example,

Y. W. Lee shows that

@
h(t) = }5 c; A (L) (20)

i=l
where Ai(t) are the coefficients of an expansion of the part of the system

input in terms of orthonormal Laguerre functions and the ¢, are coefficients

i
characterizing the system (41), The orthonormal Laguerre functions used by
Lee are obtained from an orthogonalization of the family of functions

£ = (at) 2t . n=0,1,2, o0 @ (31)

Another example of linear system representation utilizing a single expansion
is provided by T. P. Goodman and J. B. Reswick (29). As previously mentioned,

Goodman and Reswick used a finite term approximation to the expression

1im SN
y(t) = T -=>0 E: T{ x(t-nT) h(nT)} (32)
NT = ¢ n=0

In their mechanization, the values of x(t-nT) are obtained from a tapped
delay line while Te¢h(nT) represents potentiometer settings weighting these
delayed values. Other methods for describing linear systems in terms of a

single expansion are given in Lee (41) and T. Kitamori (42).
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3.5 The Wiener Theory of Nonlinear Systems

While the idea of expanding operators over Hilbert spaces is not new,
it appears that only recently has an explicit exggrimenta; technique been
proposed for the evaluation of the coefficients in such expansions. A
specific method was described by Norbert Qiener in a s;mmer lecture series
in 1953-54, However, the first documentation of Wiener's approach apparently
occurred with the publication of A. Bose's dissertation in 1956 (3). Since
it is felt that the experimentai approach taken by Wiener represents the
only reasonably well explored alternative to the methods proposed in this
report, the elements of the Wiener théory are summarized fairly completely
in the following paragraphs.

As proposed by Wiener, the input to a system is expanded in Laguerre
functions. These functions are derived from the cohventiqnal Laguerre poly- ;
nomials by including the square root of the Laguerre weighting function,

e-t, as a multiplying factor on each polynomial. Thus, aince the nth Laguerre

polynomial is given by

(n-1)
_ 1 t d (n-1) =t vee
Ln(t) = Thil: e dtzn—_n <t e Jr n=1,2,3 ®
(33)
the n=th Laguerre function may be written
-t
2
e “L(t) t>»0
h (t) = (34)
0 t<o0

The functions hn(t) are orthonormal over [0, ® Jwith unit weighting function,

Using these functions, the past of the input may be expanded at any instant as

«2be



x(=t) = z:un{hn(t) t>0 (35)
ns=]
where
[o 0]
u_ = J’o x(=1) B (1) d% (36)

Now this equation has the form of a convolutioﬁ integral. Furthermore, the
functions, hn(t), are of the same form as the impulse response of a linear
lumped constant network with a pole of order n . It is to be expected,
therefore, that the desired Laguerre coefficients can be obtained continuously
in time by feeding x(t) into a bank of appropriate linear filters. Wiener
pointed out that this is indeed the case, The appropriate filter transfer
function may be determined by application of the Laplace transform to

equation 33 yielding (1)

10}
]
o
]
]

Hn(s) = (37)

n
+ |~
AV o
VR
n
+
oo
../

This result is illustrated in Figure 2, It is interesting to note that the
filter depiéfed is nothing more or less than a low pass filter followed by a
lumped constant approximation to a tapped delayAline‘s. This type of filter

is easily constructed using standard analog computer elements.

5 Since the Laguerre functions form a complete basis for bounded, continuous,
square integrable functions, any nonlinear system of the class treated by
Wiener can be represented (for such inputs) by a bank of linear filters
(as in Figure '2) followed by a '"zero memory" nonlinear function generator
having the “i(t) as inputs and y(t) as an output.

-27-



"MYOMLIN ¥VINIT V A8
S1N310144300 3¥¥3INOVT 40 NOILVH3INI9 SNONNILNOD 27914

+s < +s

[

M T
. 2z T | A+vx,Hsz_

ey

H

-28~



In order to fully exploit the possibilities of a Laguerre function
expansion of the input signal, the Wiener theory requires that the input
used to probe the system response be a broadband Gaussian process such as
shot noise. With this choice, it turns out that the Laguerre coefficients
are themselves uncorrelated Gaussian random processes with equal variances.
This being the case, it seems natural to expand the system operator in
Hermite functions since the Hermite polynomials are orthonormal over
[~w, ®] with a Gaussian weighting function. If 'nn(x) is the n-th
Hermite polynomial (orthonormal with e.x2 weighting function), then the
n-th Hermite function as defined by Wiener is given by

2

X

b0 =e 2700 (38)

These functions are orthonormal in [-®, @] with unit weighting function,
Weiner has shown that the transformation from the Laguerre coefficient input
space to the system output can be written as an expansion in terms of Hermite

functions. Specifically (3)

@® @ a
ye) = 0 Z z Zau---h o) b)) e g w) o (39)

The coefficients in this expansion, a can be determined by multiplying

ij"'h'
both sides of the equation by the appropriate products of ¢n(x) functions
and .averaging over [-o,®] . However, due to Wiener's judicious choice of

input signals and expansions, the necessary averaging can be accomplished by
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simply cross-correlating the system output with the proper products of
Hermite polynomials. Thus (3,38)

s/a'lim 1 T
igeeen = @) p 0 j‘_T y(8) M) M) ooe Ra) gt (4o)

a

This can be written more compactly by denoting the set of subscripts by -
a , the product of Hermite polynomials by va(E), and the time averaging

by the conventional bar symbol of statistics. Thus
s, = (20%2 (1) v @D ©(41)

This equation summarizes the experimental part of the Wiener theory.
Figure 3 is a schematic representation of the equipment required to carry

out the operations indicated (3).

3.6 Difficulties Associated with Implementation of the Wiener Theory

‘ Despite the apparent simplicity of equation 41, about all that can
be said in its favor is that only a géuntable infinity of limiting
operations is involved in the evaluation of the required coefficients.
This is of scant comfort to an investigator faced with the task of actually
determining the characteristics of a real physical system. In order to
actually make use of the Wiener theory, it is necessary to truncate all
of these limiting operations both with regard to measurement time and the
number of terms taken in the series for y(t) . So far as is known to the

writer, there has been no analysis of the errors of such truncations.
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Such analysis would certainly be very difficult sincé nested limiting
operations of high dimensionality are involved in the Wiener theory. In
addition to this analytic difficulty, there are serious pr&blems involved
in attaining the computing speeds needed to implement the experimental
arrangement shown in Figure 3. It appears that a hybrid computer possess-
ing the best features of both analog and digital devices will be required.
The extensive literature search undertaken in conjunction with the Qriting
of this report has produced no reference relating an actual experiment of
the type indicated by Figure 3,

The difficulties discussed above rclate to dimensionality and time
of observation. Even if these problems should be resolved, there are other
fairly serious weaknesses inherent in the Wiener theory. First of all,
there remains the problem of obtaining some relationship.between thé
Wiener coefficients and meaningful system parameters. That is, from an
engineering point of view, it would be very desirable (and in many cir-
cumstances essential) to invert the Wiener coefficients to obtain the
parameters of the system differential equation. There is no evidence
that this can be done. Secondly, the Wiener theory provides a basis only
for a 'bench test' type of experimental system identification somewhat
analogous to frequency testing for linear systems., The experimental
technique requires that the system under test be disconnected from its
normal operating signals and subjected to a speci;l test signal over a
long period of time and under rather ideal conditions of observation.

This is not possible in many identification problems of practical impor-

tance. Finally, in addition to all the other stumbling blocks, there
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remains the fact that the Wiener theory is not completely general, It
excludes the very important classes of time varying and unstable systems
from consideration.

Regardless of these shortcomings, the Wiener theory appears to
stand as the only general experimental technique for the identification
of nonlinear systems which has been proposed up to the present time.
Whether or not the theory is ever actually used in its present form, it

serves a very useful purpose in providing a new conceptual basis for the

experimental aspects of nonlinear theory. The practical problems associated

with the theory are certainly worthy of further attention .

L4, PARAMETER SPACE METHODS

4,1 Introducticn

The Wiener theory of nonlinear systems is applicable in situations
where a complete state of ignorance exists concerning the nature of the
nonlinear system under test. This is rarely the case in practice. As a
general rule, systems or devices subjected to experimental tests are
governed by physical principles which are reasonably well understood.
The uncertainty in such tests usually relates to the magnitude of various
effects rather than to the basic mechanisms operating to produce the
observed data. Even when this is not the case, the investigator is at
least able to suggest several competing theories to explain the observed
phenomena. Under these circumstances, it is possible to construct a
finite parameter model for the system under test rather than an infinite

parameter model as proposed by Wiener. This approach will be called a



"parameter space method" in this report to distinguish it from the
function space methods used by Wiener and others. Parameter space may be
viewed as a generalization of the familiar "phase' or "state'' space employed
in mechanics for the description of the state of a physical system.

When the object under test is a dynamic system, a very natural
finite parameter characterization may be obtained by utilizing the system
differential equation, The previously mentioned damped pendulum equation
provides a simple example. Referring to equation 1, the pendulum angle,

9, 1s governed by
IO + BO + Mgt sin @ = 0 ‘ (k2)

which can be normalized to

c,@ + ¢,@ + sin O = O (43)

The determination of 5, and ¢y along with two initial conditions
provides a complete characterization of the system. This report is bas-
ically concerned with the formulation of an approach to permit the inference
of parameters of this type from unreliable records of the input and output
of a system under test.

As mentioned at the beginning of this report, the idea of representing
a system by a differential equation is scarcely a new concept. Indeed it
would seem tc be somewhat paradoxical to advocate a return to differential
equation models in light of the remarks made previously. The explanation
for this apparent regression lies in the emergence of electronic computers

as a revolutionary force in acientific and engineering methodology.
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While it is indeed difficult to solve a nonlinear differential oquation‘
such as equation 43 by analysis, it is quite simple to obtain a solution

by electronic computation. In fact, electronic analog computers are specif-
ically constructed for the purpose of solving high order sets of nonlinear

differential equations and are pocrly suited to any other task., Graphical

and various approximate methods which have been found extremely valuable

by human investigators are of little or no value to a computer. In
recognition of this fact, the parameter space methods to be described in
the remainder of this report are entirely computer based. Both the
determination of the system parameters and the evaluation of the resulting
response will be accomplished by completely automatic methods.
4,2 An Abstract Comparison of Function Space and Parameter Space
Characterizations
In the Wiener theory, the input to a system is regarded as a trajec-
tory in a Hilbert space. Time appears parametrically along this curve.
The output at a particular instant is obtained by the apﬁlication of a
transformation from the appropriate point in the Hilbert space to the
real line. This transformation is completely described by the infinite

set of Wiener coefficients, {a Figure 4 shows this situation

ij---h} .
graphically. In this figure, T[A] stands for the transformation given
by equation 39, The distinctive feature of the expansions chosen by Wiener
is that when the trajectory in the input space is produced by a wide-band
Gaussian random process, the transformation from the input space to the

output space is uniquely determined and simply (conceptually) computed

from simultaneous observation of the input and output trajectories.
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In contrast to the Wiener theory, in the parameter space method
uncertainties relating to both the input end the system (including initial
conditions) are described by a finite number of parameters. Moreover, due
to the uniqueness properties of solutions to specified differential equa-
tions, the output variable is completely determined for all time from the
initial point in parameter space. Thus, solution of the differential
equation is equivalent to performing a transformation, To s from a point,
c y in a finite dimentional vector space to a point in function space.
Figure 5 illustrates this relationship 6. Because the transformation,
To(g). operates in a space of finite dimensionality, deducing the system

description is no longer a problem in functional analysis. Rather, in the

formulation to be employed in this research program, the system differential

equation is found by utilizing the techniques of nonlinear programming.

This approach will be explained in detail in subsequent reports.

L,z Choice of a Metric for the Output Function Space
In order to permit iterative techniques to be employed in the
estimation of parameter vectors, it is necessary to define a distance

function or metric which measures the distance between two functions.

For the purpose of this investigation, the metric chosen is the conventional

"Buclidian" or L2 metric

b
92(‘:/1, ¥,) = f [y, (t) - ya“)]a at (bl)
a

6 It is possible that the input signal, x(t), may be a random process.

In that event, for identification processes taking place in real time,
only past values of x(t) will be known so that the output, y(t), can be

determined only up to the present time, In such circumstances, the output

can be thought of as a trajectory in a space of coordinates associated

with a semi-infinite "backward looking'" expansion rather than as a single

point derived from an expansion over [-®, +®] or [0, +®] .
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With this metric, a complete linear function space is commonly called a
"Hilbert space'. Note that while p is a functional in the output space,
it is an ordinary function of the parameter space coordinates. This is of
the utmost importance so far as the computational aspects of system
identification are concerned.

One reason for choosing a Euclidian metric is that a considerable
body of knowledge exists relating to Hilbert spaces. However, an even
more important reason from the point of view of this research program is

that the L, metric yields a set of linear simultaneous equations in the

2
process of iteratively deducing the system parameters from response data.
It will be shown in subsequent reports that this is the only metric which
has this property. Since nonlinear simultaneous equations are very difficult

to solve even by computer methods, this feature of the L. metric makes its

2
use almost mandatory in some of the computational procedures to be described

in the sequel to this report.

b4 Experimental Evaluation of Parameter Space Coordinates

. The parameter space method begins with the specification of a finite
dimensional parametric model for the system under test. For example, the
behavior of the system described by equat;on 43 is completely determined

. . . . - -y
by the specification of a four dimensional parameter vector, ¢ ¢

1
[+
g e - (45)
03
ey
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In the event that a forcing function with certain unknown parﬁnotore were
present, the dimensionality of this vector would be increased. Having
established a model, experimental observation of the system output may
begin. when a sufficient length of record has been obtained, say

0 <t <T, the identification or inference process described in the
following paragraphs may be initiated.

For the most general sort of ﬁonlinear system, the parameter
space identification can be accomplished by an iteration procedure
utilizing a metric in the output function space. The process begins
with an initial guess for each of the coordinates of the parameter
vector, e . This guess may be generated either by a computer as part
of the inference process or it may represent the best estimate of a
human investigator. Let this vector be denoted by 2&. 'Furthermore,
let the true parameter vector be denoted 30 and the observed system
response be yo(t) « Associated with the vector 31 will be another
response, yl(t). which can be determined by a computer. When this has

been accomplished, the distance between the two functions can be computed

by evaluating the integral:

2 T 2 - -
02(rge ¥p) = [ [y (8) - 3, ()0 at = 95 §) (46)
[¢)

This notation emphasizes the fact that while p is a functional in the
output space, it ¢an be equated to a simple function, # , defined over
the parameter_space for a given set of data, Yo - Such a function is
usually called a '"criterion" or "objective" function in the terminolegy

of mathematical programming @&3,44),
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Since @ can be evaluatéd for every c s partial derivatives can

be determined in the parameter space yielding a gradient:

-l
'M:;ﬁ: (47)
ac
='c'l
This gradient can serve as a guide in choosing a new set of parameters
e, = ¢, + B¢ (48)
such that
¢(c2 : yb) < ¢(c1 : yo) ' (49)
Since for an arbitrary parameter vector, c
- 2
#c 3 yo) = p(y, yo) >0 (50)

it follows that when equation 49 is satisfied at every stage of an iteration,

the resulting sequence, {¢1. ¢2. se+ @ +++} nmust converge to some limiting

k
value, say qa . Under ordinary circumstances; the corresponding sequence
in parameter space will also converge to a limiting value, say T = Ee .
When this occurs, the limit vector, :e s provides an "estimate' of the
true parameter vector, 36 . Specific algorithms for obtaining the conver-
gence specified by equation 49 are being developed as part of the continuation

of this research program.
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Figure 6 summarizes the steps involved in the experimental determina-
tion of the parameter space coordinates of an unknown physical systém. In
the actual implementation of such an experiment, all operations could be
performed by a general purpose digital computer with analog inputs. However,
in many circumstances it woula be preferable to construct the bBlock labeled
"computer model' on 'ah analog computer under the control of the digital

computer,

4,5 Local Minima and Non-uniqueness

The conceptual and experimental simplicity of parameter space methods
is not achieved without penalty. Aside from the fact that the method requires
considerable apriori knowledge concerning the system under test, there are
certain computational and mathematical difficulties involved. First of all,
equations 49 and 50 do not guarantee that ¢(E; H yo) =0 . It may turn out
that ¢C = ge represents merely a stationary point for the function ¢ in
the parameter space. That is, the computed response, ye(t). may represent
the data very poorly even though a small change in any parameter makes the
fit even poorer. When this is the case, correct identification of the sysie
under test requires that a more sophisticated search be carried out in the
parameter space to locate the absolute minimum of ¢(cl 3 yo) rather than
a simple stationary point. This problem will also be explored as part of
this research program.

In addition to the local minimum problem, there is_a more fundamental
difficulty associated ;ith parameter space methods, Since it is not assumed

that a special test signal can be applied to the system to be identified,

a2



"W3LSAS JINVNAG v 30 SHILIWVHVYd FHL 40 NOILVNINYIL3A TVINIWIN3LX3 9914

SIONVHO ¥IL3INWVHW

" o s, e

¥31NdWO) ¥31NdWOD — ‘
¥3l3awvevd | | NONYT ¥31NdWOD
(4) K (4)x
"
39VHOLS ‘
| 1831
o —| ¥3aNn [——————0
(4) %% ‘1ndLno WalsAs | (VX ‘LndNI

<43




e e et e M e e e

there is no guarantee that the mapping shown in Figure 5 is one-to-one.
It may, in fact, be many-to-one. A single example suféicea to show this.,
Supposg that the system under test is an unforced linear time invariant
system with an observed time response resulting entirely from unknown
initial conditions. In such a situation, it is possible to select initial
conditions which excite only one normsl mode of the system, This being the
case, all systems possessing this particular mode are‘indistinguishable‘
from one another when so excited.

Abstractly, the non-uniqueness propexrty of parameter space methods
may be said to result from the fact that the metric used for iteration is
in the wrong space. Let the grdinary Euclidian distance associated with the

parameter vector space be denoted by

2

(-O

n
. (e, » 3k>= E:(coi - cy) (51)
i=1

2
p
Then what is really desired is a computational algorithm which will guarantee

-

Po (30 , °k+1) < Py (30 ' ck) (s52)

Unfortunately, Po (20 R 8k) cannot be computed from an observation of the

response functions yo(t) and yk(t) associated with 3; and 3#

tively. Instead, it is necessary to base iteration upon the computable

respec-
function space distance, p(yk ’ yo), given by equation 46. Now in the

abgsence of measurement error, if equation 43, for example, is indeed an

exact description of the system under test, it does follow that p(yo‘, yk) >0

bl
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is a negessary condition for F!‘°o ’ °k) —» 0 ; i.e., for
However, as the example discussed previously shows, p(yo * yk) —» 0 is

not sufficient to ensure that :; —» 30 . In order to make p(yo ’ yk) -5 0
a sufficient condition, it is necessary to restrict the region of parameter
space to be explored to a subspace S in which the mapping is one-to-one,

The determination of suitable subspaces by purely mathematical techniques

is apt to be extremely difficult in the majority of situations. It seems

more likely that such regions would be determined by a preliminary computer

investigation of the properties of the particular parametric model under

investigation.

4,6 Effects of Noise, Measurement Errors and Imprecise Models

For any one of a number of reasons, the computer solution for y(t)
may fail to correspond exgctly to the measured response data even when the
correct values of the system parameters (C = Zo) are used in the calculation.
Among the major contributors to this situation will be measurement errors,
random noise internally generated by the system under test, and the use of
a computer model which ignores some of the more subtle effects influencing
the actual physical system., In such circuﬁstances. the minimum value of
the distance function @(2 ; yo) over the permitted subspace § will be
greater‘than.zero and the parameter vector, Ee s associated with the minimum
will represent a 'least squares estimate" of the true parameter value, 80 .
The optimal quality‘df shch estimates may be shown in a varity of circumstances

(34,45).
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b7 An Alternate Criterion Function for the Evaluation of Parameter
Space Coordinates

The distance function @(3 ; yo) is computed by an implicit procedure
requiriné solution of the assumed system differential equation. It is
possible to use another distance which can be defined explicitly in a
parameter épace. Suppose that the experimental observation of a system
to be identified is carried out in such a way that values are obtained for
all derivatives up to the nth, the order of the systems. Furthermore,

suppose that the system description can be written in the form

F(Zd ,¥) =0 (53)

(n-l))

where ;‘ is the conventional phase space vector, ; = (y, &.Sﬂ tee y
and a represents the m remaining parameter space coordinates (to be

determined), Thus

ol

(54)

L}
ol Rri
+
<3 O}

where ; is an n dimensional vector and a is a vector with dimensionality
m., If ; can indeed be measured without error, then equation 53 must hold
for the observed data; i.e.

F@E, 4 ¥,) =0 . (55)

This equation must be satisfied for all values of time in (0, T) . Utilizing
this fact, an objective or criterion function, ¢(: H ;o) may be defined over

the: : space for a given experimerital record:
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T,
#(3 ; }‘o‘) = J‘o r‘g (: . -"o‘(t)) dt >0 (56)
In light of equation 53,
o(a; ¥,) = 0 (57)

This relationship may be used to calculate zo by iterative methods in
exactly the same way that the function @(2 ; yo) is used.

In an actual physical experiment, it will usually be extremely
difficult to directly measure all of the system derivatives. On the other
hand, attempts to differentiate experimental data several times are likely
to fail due to the inevitable presence of small amounts of system noise
and measurement error. As is well known, these effects are accentuated by
differentiation and may even lead to derivatives which are unbounded in a
mean square sense, Most likely, statistical estimation o? thethecessary
derivatives will be required to obtain values for substitution in equation
56, Whatever method is used to obtain derivatives, in the practical situa-
tion the various sources of error will prevent equation 57 from holding
true. Rather, és with the function ¢ , there will be an estimator, Eé ’

which possesses the property

;i“ ¥@ , 7)) =@, ,T) | (58)

The vector ae is a least squares estimate of 20 in a sense somewhat
different from the estimate obtained using the criterion function # . An
analog computer mechanization of equation 58 has been described by Y. Kaya

and S. Yamamura in a paper dealing with the identification of linear
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systems (46). Kaya and Yamamura used identical filtering on all derivatives
to obtain a relation derived from equation 53 which would be satisfied
exactly in the absence of noise. Thenstatisticai optimalify of their method
was not discussed.

The choice between ¢ or @ as a criterion function appears to
depend to a large extent upon the relative difficulty of obtaining a suffi-
cient number of derivatives of the system output as compared‘to solving
the assumed system differential equation with a computer. Clearly, attempts:
to minimize ¢ by iterative nonlinear programming methods will encounter
the same difficulties as occur in the minimization of @ ., There is one
special situation however, in which the function ¢ appears to offer
siénificant‘advantages, When the differential equation expressed by

equation 53 is linear in the parameters a s then according to equation

56, ¢ is a quadratic form in the paraméter space., Moreover, ¢ is pos~
itive definite and therefore has a ﬁnique stationary point which is the
minimum existing at 2= Ee » the least squares estimate of 30 . As a
consequence, the non-uniqueness and local minimum problems associated‘ﬁith
the general nonlinear system identification problem do not occur in this
case, The nonlinear system described by equation 43 is linear in the

and ¢ and so furnishes an instance in which the above

parameters ¢ 2

1
statements apply.
It is worth noting at this point that the.conventional way of

employing equation 53 when yo(t) is an analytic function (rather than an -

experimental fupction) involves substituting yo_ and its derivatives into

v
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equation 53 at m diftor&nt values of time. This results in m simultsneous
equations, geﬁorally nonlinear, which can be solved for the m unknoﬁn
parameters. While‘this approach has also been suggested as an experimental
procedure, it does not appear to be appropriate due to the difficulties

associated with differentiation of experimertal response data (47,48,49),

4.8 Parameter Tracking Servomechanisms

If the minimization of a criterion function is undertaken in real
time concurrently with the unfolding of a real physical process, then it is
possible to devise computagional procedures which permit parameter tracking
for time variable processes (49,50). This approach permits a considerably
simpler model to be used for the short time description of complicated

systems. In most of the work carried out thus far in‘thiS‘connection,

§analytic methods, (i.e., analog computer methods) rather than algebraic

methods of tracking have been used. As a consequence of this somewhat
unnatural restriction, severe stability problems have been encountered in
attempting to carry out actual experiments. It has been necessary to use
functions of error rather than functionals in most cases to achieve stable
parameter determining loops. For example; M. Margolis found in the investiga-
tion of a simple linear first order system that the parameter determining
loop was necessarily unstable when an integral squared error criterion was
used (50). 1In contrast to this situation, it is not difficult to devise
algebraic methods for parameter estimation which are always stable. The
development and experimental evaluation of such techniques is being pursued

in the continuation of this research effort.

<49~
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The parameter space methods deacribed in this report are of course,
entirely applicable to time varying systems. The variation of parametersa
may be accounted for either explicitly by increasing the dimensionality of
the parameter space or implicitly by evaluating the selected criterion

function over a sliding time interval.

5. SUMMARY AND CONCLUSIONS

The parameter space approach is believed to represent a new point of
view regarding the general problem of system identification. The method is
restricted only by the requirement that a parametric model of finite dimen-
sionality mu$£ be provided for the system under test. In contrast to the
Wiener approach, the parameter space method involves the determination of
transformations defined over a finite dimensional vector space rather than
over a Hilbert space. The computational consequences of this difference
are of fundamental importance; by adopting the parameter space point of view,
a problem in functional analysis is reduced to a noniinear programming problem.
In addition to the computational advantages gained by a parameter space
approach, there is the further advantage that no special test signals are
required as in the Wiener theory. The model for a nonlinear system can be
inferred from normal operating records.

The current phase of this research is directed toward the development
of explicit computational procedures for carrying out the proposed minimiza-
tion of err&r functionals by parameter space methods. This work will provide

the basis for future reports.
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RESEARCH IN OPTICAL COHERENCE



PART 1I,

RESEARCH IN OPTICAL COHERENCE

A detailed study of certain aspects of the theory of optical
coherence has been carried out, A major objective of the study is to
obtain criteria for optimizing optical systems employing coherent sources
and amplifiers such as lasers., This is the first in a series of studies
to investigate the effect of various optical system devices such as
antennas, filters, modulators and demodulatorshAetc.. on fhe coherence
properties of optical signals, Theypresent report concerns itself pri-

marily with spatial and temporal filters.

After defining the weighting function and aperture field distribu-
tion for a spatial frequency filter, the general transfer function for the
spatial filter is defined, with a discussion of the approximations involved.
The weighting function or transfer function concept is then extended to
include both spatial and temporal variations. The weighting function of
the system in this sense is equal to the response of the filter to &
point source in space and a unit impulse in time. An image equation is
then defined which relates the image field strength (as a function of
the spatial coordinates and time) to the object field strength (as a
function of the same coordinates) and the weighting‘function of the
filter. A generalized coherence function is then defined as a correla-
tion function involving the spatial separation of two sources in space

and the time separation of two points on a signal as well as the space
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and time variables themeelves. Ensemble, time, and space averages are
then defined and it is shown that the dependence of the coherence function
on the origin in space and time can be removed by appropriate time &ud space
averaging. This operation yields a coherence function which is a function
of the separation in space‘and time but not the origin in these variables.
If the process is stationary in these variables, no space and/or time
averaging is needed. A normalized correlation coefficient or correlation
function can then be defined. After these general definitions are made,
several special cases of interest are considered. In particular, the

case where the object field strength is separable into the product of an
object field strength in space and an object field strength in time is of
interest. The special cases of combiﬁétions of perfect time coherence and
incohereénce and perfect space coherence and incoherence are considered and
the cohérence function evaluated for these cases. The image equation is
written for each of these cases and the image function evaluated. It is
pointed out that the problem of temporal partial coherence or incoherence
is particularly difficult to treat because the spatial frequency filter
transfer function is a function of the wavelength and hence of the tem-
poral incoherence. This means that the transfer function of the filter
depends upon the input. Consequently, the general problem is nonlinear
and very difficult to treat. Basically, what is needed to handle this
problem are the general solutions of Maxwell's equations without the
simplifying assumption of a sinusoidal time variation of the driving

function. A first approximation to the solution to this problem was



made by assuming that the modulation bandwidth‘is‘sm511 c0mpared to the
carrier frequency, which is almost always the case in optiss. This
assumption yields a quasi-stationary approach in which the frequency
variations are sufficiently slow so that the response for any given input
frequericy will be the steady-state response of the filter o that frequency.
The overall response is found by summing the responses ‘o cach individual

frequency.

This initial study on the coherence 'properties of optical filters
will be extended not only to other devices, but will provice a basic
statistical description of the processes to be analyze# iﬁ the future.
In particular, the effect of coherence on information gontent and rate
will be considered, Ultimately, the optimum system will be synthesized
using the criterion of maximization of information rate .8t tte desircd
output of the system., The determination of information ratis will‘be

strongly affected by the coherence properties of the signals involved.

The principal effort during this period has concernedl itself with
the effects of coherence on filtering., In particular, the e¢ffect of linear
spatial and/or temporal frequency filters on optical waves lLas been inves-
tigated. Optical filters differ from ordinary low frequency filters in
that both spatial and temporal frequency effects must be taken into
account. Let the weighting function G of a spatial frequency filter,
such as an optical antenna, be defined as the response of the filter to a
point target in the far field. It is a function of the imagé coordinates

x' and the y' , the object coordinates x and y , and of time t . Let
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us temporarily assume that the time variation is sinuscidal and determine
what the spatial weighting function must be for this case. The antenna
spatial weighting function or "spread" function may be related to the
aperture field distribution across the spatial filter. It can be shown‘
that the far field pattern arising from an aperture distribution F(¥,7)

with nearly uniform phase across the aperture is given by

e'ij
G(x,y) = njk % gix,y) (1)
vhere
g{x,y) = ___1__2. J‘ F(§,T]) ejk(x§ +ym dg€ dn (2)
(2n)= “A

and R = distance between the aperture and a far-field point

k = 2n/k
The object coordinates x and y are

X = sin © cos ¢

¥y = sin © sin ¢ (2a)

All the object dimensions are given in terms of spherical angular

co rdinates whose origin is coincident with the phase center of the
spatial frequency filter. The object field strength is O0(x,y,t) .
Note that the object field strength in general depends not only on the

position of the source in space but also on time. The time dependence

»*
filver, S., "Microwave Antemna Theory and Design', McGraw-Hill, New
York, 1949, p. 173, equation 9. .
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may rise from several sources, In the first place, the energy illuminating
the object or the radiation from a pnsaivo‘objoct will in general be time-
varying so that the object field strength will also be time-varying. Or

if the object is a source, the‘source field strength will be time-varying.
In addition, the object may be moving so that it will be located at a
different position st a later instant of time yieldihg a time dependence.

This dependence is implicit rather than explicit. The image field strength

. I depends upon the cvordinates x' and y' along the image surface as well

as on time, where

x' = sin Q' cos ¢

H

y' = 8in @' sin @' (2vb)

Note that equation (2) is a Fourier transform, that is, the far field
pattern g(x,y) 1is the Fourier transform of the aperture field
distribution F(£,7) . Since x and y are spatial coordinates, the
corresponding transfcérm variables k% and kT have the dimension of spa-

tial frequency. Let us therefore relabel both § and TN as

£ = w = 2nfx .
N=w = onf (3)
Y y -
where fx and fy are spatial '"frequencies' which are the Fourier
transform variables corresponding to x and y , respectively. For the’
special case of nearly uniform phase across thg aperture, thg Fourier
transform pair relating the far field pattern G(x,y) and the aperture

field disfribution F(£,7) is (except for a constant)
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) | g(x,y) = z;:;i f F(w ' oy ) .Jk(xmx + yuy) dw, dwy
[+ ] i
=Jk(xw, + yu_ ) :
Fla,, wy) -f &(x,y) e x Y ax dy (4)
-®

When the simplifying assumption of uniform phase cannot be made, the aperture

field distribution F(wx. wy) corresponding to the given far field pattern

' ' .
must be found by solving the integral equation

-jkR

G(x.‘y) = ¢ g) .

J k(xw, + yw )
. e * Ve do, (5>

where iz‘ is a unit vector normal to the aperture and the 2 is a unit

vector normal to the phase front. Since G(x,y) is the response of the

spatial filter to a point source, the filter has an impulse response
G(x,y) . The transfer function of this filter is then the Fourier trans-

form of G{(x,y) or

®
T(ux,uy) = ”
“®

k{xw_+3jw_) -j(xu*fyu )

(cos @ +T « Be XY qu doe ] e Y dax dy (6)
z X Yy
» In the special case of nearly uniform phase across the aperture, equation

(6) becomes

»
Ibid, p. 173, equation 8.
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| L e =30, + yu )
T(“x’“y) = njk e-i-— JI g(xyy) e - % Y dax dy
-
. e-JkR :
= njk F(u‘x‘,uy) B (?7)
where
u = ka
x x
uy = ku)y (8\)

ﬁquatidn (7) shows that to within o ccnstant the spatial frequency transfer
function of the filter is equal to the aperture field distribution over the
aperture of the filter, providing the phase is reasonably uniform over the
aperture. If the phase differs markedly from being uniform over the
aperture, then the aperture field and transfer function are related by

the more general equation (6).

In the more general case where the temporal as well as the spatial
filtering effect of the filter is taken into account, the overall weighting
function of the filter is G(x,y,t) . The function G(x,y,t) is equal to
the response of the filter to a point source in space and a unit impulse
in time, or in cther words, the response of the filter‘ig an object

specified by
O(x,yyt) = 8(x,y,t) = &(x,y) &(t) ‘ ‘ " (9)

The corresponding spatial and temporai frequency transfer function is

given by
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i filter is given by

1 t

I(x',y'yt) = ffq

-1 °

the transform relationship is given by

J [ux' uyv wJ,-G‘(u'x. Uyy w) ‘I‘(ux‘, uy, W)

the Fourier transform of the object field strength.

o For convenience, let us now restrict outselves to one

variable x(t) . In general, the object field strength will

63~

J(xui + ya_ + ot)

|| ax dy r da O(x,ysa) G[x'-x,y'~y,t-a)
oo 7

. Tuysu, v0) = II dx dy I’-at Glxyyyt) @ y (10)
- -
where
2nt w2 |
w=sonf = X = ke (11)

This more general weighting function G takes into account both the spatial
and. temporal filtering properties of the filter. In order to find the
response of the filter, or the image field strength, from an extended
source or object (designated by O(x,y.t)), the object fieidistrenggh 0

- is convolved with the weighting function, G . Thus, when both spatial
and temporal frequency filtering effects are taken intc account, the image

field strength at the output of a two dimensional linear additive spatial

@2y

If a 3 dimensional Fourier transform is taken of both sides of equation (12),

(13)

where of is the Fourier transform of the image field strength and (@ is

spatial

be random and




will be a function of two independent variableés x and‘tk. ‘The random
process O(x,t) will be completely defined by the following 2N dimen-

sional probability distribution:

p(g) = p[O(xl,tl), 0(x2,t2),"',0(xi'tn);'0(x2,t1).0(x2,t2),“' .O(XZ,tN);

"“"; O(xN’tl), O(xN:{tZ)'..'.’ O(xN'tN)] ‘ (l‘f)

where O represents the 2N dimensional row matrix. For convenience
let

O(xi,ti‘) = oij . ) (15)

A complete statistical description 6f the process is usually obtained in
much fewer dimensions than 2N as indicated in equation (14), depending
on the nature of the process. The general ''coherence'" furiction will herein

be defined as the correlation function

Ry (x, 8ty x,t) = 00xyt) O(xedx, t+8t) = O(xjat,) O(x; g 0bs 1)
@
* Jf Olxg o) 0(x; gatyg) PO 00y 5yq) 9055 A0y ) (16)
L
where
tj = t *i = X
t;i+1 =t + At X R X | : (‘17;),

The overscore indicates an ensemble avérage as indicated in equation (16).

Note that the‘object'coriélaiion function defined in equation (16) is a

- -6“'-




function not only of the space and tihe‘diffgrenqqy Ax and At respecs
tively, but also of the origin in space‘and‘ih*time x and t . This is
the most general case. If Ro is explicitly a fuﬁction of x itria said
to be space nonstationary, if it is explicitly a function of t it is
said to be time nonstationary, if it is explicitly a‘functionvof both x
and t it is said to be both space and time nonstationary. If the spatiﬁi
bounds on the object field strength O are + X , and if the temporal
bounds. on the object fields time strength are + T , let us define the
ensemble average of a function g as

®

gyl t)y ) J= [ elyGat), xit] p [y(x,t), x,8] o (18)

-0

Let us define the time average as

“glyGnt), mtl = o 2 [ gly(ot), x,t] at (19)

Let us define tpé space average as

PP E T N § .

g[y(x’t)’ x,t] = X-*(D ﬁ . X g[y(x,t)' x’tj dx (20)
If the process is time stationary, equations (18) and (19) are equal. If
the process is space stationary equations (18) and (20) are equal. If ‘the
process is both time and space stationary, equations (18), (19) and (20) are

4 ‘
all equal to each other. The space-and-time-averaged correlation function,

or coherence function, is then
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R, (8x,4t) --Ro(Ax.At.x.t)‘ : (21)
It{the:pzocesszisrboth‘time-and Apace-stafionary, then the timeé and space
averaging indicated in equation (21) are superfluous, since Ro does not
-depend explicitly on x and t in this case, The normalized coherence

function, or correlation coefficient, is defined as

R, (Ax At xit) - o(x,.t ) o(xi 10 )
; 0 441+1 ;
po(Ax'At'x‘t) =T e (xi,tj) cg(xi+1't3+l) (22)
where =
_ o
0lx,t) = f  0(x,t) p [0(x,t)].40 (23)
.
— )
02(x,t) :‘f 02(x,t) p [(x,t)] dO (24)
';_,m‘
= R (& = 0, 4t = 0, x, t)
ol (xyt) = 02(x,t) = 02(x,t) (25)

If the process is time stationary but not space stationary Ré and po
are not explicitly dependent upon t; similarly, they are space stationary

if they are not explicitly a function of x .

Let us consider some special cases of interest. In certain cases;

the function O(x,t) is separable as follows : y

O(xst) = O(x) O(t) | (26)




-,

The most common examples of situations satisfying equation (26) are when
the object radiation or reradiation is monochromatic or the source is a
point source, or'bothm Thus, for a monochromatic source, equation (26)

becomes
0(x,t) = 0{x) cos w t (27

where R is the frequency of the monochromatic radiation. In this case
equation (16) becomes

Ro(Ax,At,x,t, O(xi) 0(xi+1) cos u tj cos tj+l (28)
Note that the cosine function is not affected by the ensemble average since
it is nonrandom. Furthermore, O(x,t) is not stationary in time, although
it has been assumed that the object is stationary in the space variable.
Therefore, a further average must take place in time yielding

;;ﬁfVVNNAJV\Aﬁ/VVVV
Rb(Ax,At) -‘O(xi) O(xi+1) cos tj cos w_ tj+1

= . X . '
Oles O(xl+15-cos o Aot (29)
2

Note that the coherence function in equation (29) is periodic in 7 .
Coherence 6r correlation functions which are periodic in T are said to

be "perfectly time coherent" since a time function is perfectly predictable
from a knowledge of its value at any given time., This is true of periodic
functions in genéral, since they may be represented as a Fourier series,

therefore their correlation functions are a‘sum‘of cosine terms of the form
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occurring in equation (29). Any periodic or predictable wavefors hu
zero blndvidfh.occupnncy."in the sénse that‘-lthouéh there are many
frdquencidg present, the set of spcctrai,freqwenéiQa is a countable set ;

of measure zero. In other words, the spectrum consists of delta fune-

tions at the various discrete frequencies involved with a net zero measure

for the bandwidth occupancy. From henceforth, then, a time function is

said to be perfectly time coherent if its coherence function is a periodic

function in T .

Now let us considg; the case where the object is a point target in

space. Equation (26) then becomes

Ot = M) O (30)

where A is a constant. For convenience assume the process to be time

stationary; then the coherence function becomes
‘ 6(x, = oty olt, ,) ‘
Ro(Ax,At.x,t) = A‘b(xi-xo) 6(xi+1-x°) 0 tj 0 tj+l) (31)

The portion of equationl(Bl) involving space variables is not random and

therefore a space average is needed to remove the space dependence. Thus

- ) lim 1

: x .
) D m———— ‘ ‘ ]
R (Ax,8t) = A O(EJOCE, 1) Y10 & f_xb(x-xo)a(x-x°+Ax) ax

B j+1

= A2 0t Jo(t, ) Lim &80 2 OTEJ0TE,,,)  for tx =0

37054 de T 2K T
=0 for Ax £ O
(32)
where
im 6(4x) .
X~  2X _l‘ K for Ax = O
7 =0 for Mx 40 (32a)
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The limiting operation in equation (32a) is indeterminate in that bwfh

the numerator and the denominator approach infinity. Assuming thab;in

the limit this ratio approaches a constant K for 4x = O , the space
averaged coherence function is a constant for 4x = 0 and is zero»fdr

Ak £ 0, This is the 1imi¥ing case of a periodic function of a space
variable where the period approaches infinity or the repetition frequency
approaches O . The function is then said to be '"perfectly space coherent'.
In general, if the coherence function is a periodic functiorn of the space
separation Ax , it is said to be perfectly coherent in that variable.

An example of a case where the process is both space and time coherent is
O{x;t) = #6(x) cos ot ) o (33)

In this case, the ccherence function is:

2

Ro(Ax4z 0, &t) = E%— cOS‘woAt (34)

Note that equation (34) is periodic in both the space and the time variable

and therefore is both space-and time-coherent.

We have now considered a case where the variables may be perfecfly
space coherent, perféctly timé coherent or both, TLet us now consider the
opposite extreme where the functions may be perfectly space incoherent,
perfectly time incoherent or both, Let us‘ggain assume that the object

is separable in the sense of equation (26). If the object is perfectly
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"7 when :1 équals;x2 « A sifiilar argument holds for perfect time incoherence.

space incoherent, the correlation atween: x, and x, is Zero except

Thus,the colierence function for a space-incoherent object ias C

RO(Ax,At) = Klé(Ax) o(tl)o(ta) - (35)

In equation (35), Kl is proportional to the spectral density of O(x) .
Similarly, for a temporally incoherent source, the coherence function

becomes
Ro(Axsﬂt) = O(xl)O(xa) K26(At) (36) -

where K2 is the temporal spectral &ensity. If the source, or object, is

both, spatially and temporally incoherent, the coherence function becomes
R (8x,8t) = K K, s(ax)s(at) 37)

Thus, if the function is space incoherent‘it"will‘invélve‘a delta function
with argument Ax ; if it is temporally incoherent, it will involve a delta
function with argument At and if it is both spatially and temporally
incoherent it will involve the product of the two delta functions. 1In the
most general case defined by equation (l6)g the coherence function will

be neither periodic nor involve a delta function‘in either of the variables;

under these circumstances the object is said to be partiallyrcoherént.

It is important to consider the coherence properties of the image -
of a spatial and/or temporal frequency filter under thess.circumstances.

First let us consider the case where the object is perfectly space coherent
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and time coherent. Then, substituting equation (33) in equation (12) .
and limiting the equation to one ‘space variable only,

1t
L I(x'yt) = I dx I da O(x,a) G(x'=x;t=a)
-1 o '

t .
!Ajildx’}; dab{x) cos woa‘G(xF-x,t-a)

"4
= f G(x',t=a) cos w o da (38)
o

In a device which is intended to be a spatial frequency filter only, sich

55 an antenna, it is common to try to make the device as independent of

temporal variations as possible.. If this is the case, the weighting
function of G(x,t) is approximately independent of ¢ ; and consequently

equation (38) becomes
1 .
I(x't) = f dx 8(x) G(x'=x) cos w t dx = G(x') cos w_t (39)
-1 ‘o o

The image coherence function for equation (39) is

Rp(8x'y8t,x" 4t) = I(x'yt) T(x'+ix" s t+dE)
= G(x") G(x#Ax')cos-wot cos u (t+at) (40)

Averaging with respect to both space and time,

R (8x",8¢) = 9‘3-’—‘*2‘—*1“—*—’ cos u_ Bt (41)

Since the time-averaged coherence function in equation (41) is periodic

in At ; the image is perfectly time coherent. The
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coherence ‘tun;:tio‘n will, in general, be space coherent in gpite of the
bandwidth limiting effect of the spatial=frequency filter, since the
spatial signal response is known for all x' and is not random. In the
case of the image represented by equation (38), the temporal response

will be perfectly time coberent but its coherence function will not be
periodic with finite period until the steady state is reached. Whern

the transient terms have died out, then the steady;state response of a
linear temporal filter to a cosine wave is another cosine wave changed in
anrlitide and shifted in phase. The steady-state i&, of course, temporally
céherent. Spatial coherence should not be expected in the sense that the'
spatial coherence function will be periodic with firite period or constant
because there is, in effect, no equivaleént steady~state phenomenon in the
spatial domain. The reason for this is that the bounds of integration on
the spatial domain are from -1 to +1 .and the concept of steady-state
loses its significance. Let us assume the special éase where the weighting
function is separable into the product of a space weighting function and a

time-weighting function, or

Glxyt) = G (x) G (t) (42)

For a spatial filter, every effort is made to make Gt(t) équal to one and
likewise in a;femporal frequency filter every effort is .made to make Gx(x)
one, The latter probleii seldom comes up because temporal filters are
usually used on voltages which are pure time funet;ons‘ Now let us consider

the image function for the case of pure spatial coherence only. Then,

I(x'yt) ;'I_yll

4 t
5(x) Gi(x-"-e,x-): dx I da 0(a) Gt(t-a)
= G*(‘?:!‘\?t‘ fo da 0(a) G (t-a) (43)

"
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The coherence function for thie case is

Rp(Ax' ,At,x! yt) = G (x') G (x'+ax')

t ¢ ‘
f L4 j 2 4B 0(t -a) O(t,-P) G, (a) G,(P)
o [

b b .
= G (x') G, (x'+4x) fo 'daf; dB R, (8t+a-Byt) G (a) G, (o)  (44)

In general, the imsge in this case will be coherent in neither space nor
time. Now let us consider the coheirence properties of the image when the

object is coherent in time but not in space.
1 t )
I(x',t) = f ofx) Gx(x'-x) dx f cos mb(t-a) Gt(a)‘da (45)
Y-l o

The image coherence function in this case becomes

1
RI(Ax',At,x',t) = Jf ox)o(y) Gx(x'-x) Gx(x‘+Axf-y) dx dy ®
-1

8o
[o da Jo dp cos wo(tl-a) cos wb(tz-ﬁ) Gt(a) Gt(ﬁ)
1
= ff Ro(x-y) Gx(x'+Ax~y)‘Gx(x'-x) dx dy
-1
R 1 t

f;} da,J;z aplcos wb(tl+t2-a-B) + cos mo(At+a-B)] Gf(a) Gt(ﬂ) 46)

-

Thus, even though the object is perfectly correlated in time, the image
coherence function will not be periodic with finite period except in

the steady state. Notice that in all of these integrations

N
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the bounds on ‘the space dimensions of the object are -1 to 1, The

corresponding analogous bounds on t should be zero to infinity. It

is interesting that this definition of the possibility of a transient

‘coherence function, that is, one in which coherence is monsured‘atterlfhe

signal has beén applied for only a finite period of time. .It is clear
that if the object covers a finite solid angle instead of the 4n radians
required to take into account all of the volume of space, the bounds on

the space dimension would be less than from -1 to 1.

Now let us consider the oppogite extreme, namely pure space incoherence,

pure-time incoherence and both time and space incoherence jointly. Assume
that the object is.separable in the sense of equation (26) and that the
weighting function is separable in the sense of equation (42). The image
field can then be written as

1

t
I,t) = [ ax 000 6 (x-x) |
=1 “o

If the object field strength is purely incoherent in both spacé‘and time,

then
0(x,) O(x,) = K b(x,~x;) = K 8(ax) (48)
0(t,) O(t,) = K, 8(t,-t,) = K, 6(at) (49).

The corresponding coherence function for I 1is then

=P

da O(a) Gt(‘t-a) (47) -
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the bounds oﬁ.tho space dimensions of the object are -1 to 1, The
corresponding analogous bounds on t should be zero to infinity. It

is interesting that this definition of th; possibility of a transient
coherence function, that is, one in which coherence is measured after the
signal has been applied for only a finite period of time. .It is clear
that if the object covers a finite solid angle instead of the Un radians
required to take into account all of the volume of space, the bounds on

the:space*dimension‘wouid be less than from -1 to I.

Now let us consider the opposite extreme, namely pure space incohe?enée.
pure~-time incoherence anq both time and space incoherence jointly. Assume
that the object is'separable‘in the sense of equation (26) and that the
weighting function is separable in the sense of equation (42). The image
field can then be wriften as

1

t R
T(x',t) = dx 0(x) G (x'-x) | da 0(a) G, ,(t~a) (47)
-1 x 1o t

If the object field strength is purely incoherent in both space and time,

then
O(,;gl) 0(x,) = K; 8(x,mx)) = K 6(ax) (48)
O(tl) O(ta)‘ = K, 6(t2-tl} = K, 6(4t) (49)

The corresponding coherence function for 1 is then
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1
Ry(ax'sbtx'st) = [[ ax dy SO0 @, (x'-x) G (x'y) *

¥
‘ -1
tl t2 , . '
[ da [2 ap 8Tt-a) O(E=P) G, (a) G, (P)
o Jo ;
1 > t 5 ‘
- Q | B "™ f q
- J' Lo 6 2(x' ~x) I da K, G2(a) ~(50)
- (-]
: It is interesting to consider the  case of a spatially-incoherent or diffuse
i ’
i source which emits monochromatic radiation. In this case the image field
' strength becomes
.
1 t
Ix'yt) = [ ax 00x) 6 (x'=x) [ da 6 (t=0) cos uga (51)
-1 x . Yo t ° .
&
If the temporal characteristic of the spatial frequency filter is a very
broad compared to the spatial attenuation characteristic,
G, (t) = 6(¢)
The image field strength in tiiis case is
ol
I(x',t) = cos w t | dx O(x) G_(x'-x) (52)
o"Jd_4 x
and the ¢oherence function is
1
RI(Ax'.At."’c:.:é' ) =cos w t cos mo(t+At) ” dx dy °
. -1
3
- 00A0(Y) G, (x'=x) G, (x' +bx"-y) =
- N . 1 )
o e ‘ y rox) G (x! tex) d ‘ ‘
K, cos w,t cos wb(t+At)’I;l G, (x'=x) Gx(x +4x'~x) dx (53)




The co:réspondiné mean square value for the image, sometimes called the
image intensity, is
I%(x',t) = K‘cdsz,w t F
! [+ b
-1

Similarly, when the object field strength is/sﬁatially-coherent and
temporally incoherent, for example; when the object is a point source
emitting white noisé. the image field strength; coherence function and

intensity or mean square value are, respectively,

\
I(x'yt) = Gx(x') I O(a)>Gf(t-a) da (55)
o

£
R(8x' 18ty ) = G (x') G (x'+sx’) jol do joz as

0(t,-0) 0(t,-) G (a) G, (B) =

| t ,
G (x') G (x'+ax") K, n[o G, (a) G, (t+a) da (56
a2k [ 62 (57)
I" =G~ (x') K, f ¢ (@) da (57

o

Equations (54) and (57) illustrate the often-mentioned fact that image

intensity is proportional to the integral of the square of the weighting

function of the spatial filter for incoherent sources.
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Before the advent of the laser, most optical:problgms made use of
intensity relationships such as those in Equations (54) and (57). With - .-
the possibility of nearly,ccheraﬁt or at least partially cohere¢nt light,

however, cdherent‘opiiéSwﬁdét'bé considezed@.and'fﬁeif?é6ﬁbrence'properties

can bé measured and evaluated a8 has just been illustrated.

It will be observed tiiat this weighting function G(x,t) which is
the transform of the spatial frequency filter transfer function in equation
(7) is a function of the wavelength (X = 2rn/X) . Thus, the spatial
weighting function is dependent on the temporal frequency of the input.
This ‘means that G in equation (1) is a function of X and, consequently,
so is the image field strength I . This frequency dependence must be
taken to account when the input or objectrfield strength igptemporallyﬂ
partially coherent, that is, has a finite temporal bandwidth. In such a

case, tle time-varying portion of the object field strength can dso be

written as a function of wavelength or frequency by means of the Fourier

integral theorem. Thus,

2nB

0,(t) = & f_anB 0,(w) 3% au
= %E ‘ 2nB‘dw f ® Ot(z)vejw(t-Z)dz (58)
=2nB -®
where
o= sk (59)

.




0, (t) dis then a function of the 5pectral bandwidth B, and u the

spectral bandwidth consiats only of discrete lines, and the integral in
equation;(58) reduces to a Fourier series which inyolves the various
frequency components in the series. Strictly speaking, the basic Fourier
transform pair, equations (7) and (8) were derived from Maxwell's equations
on the assumption that the time wvariation of the driving function in the 7
wave equation was\éinusoidal and is only a steady state solution. To be
strictly rigorous, these equations should be solved for the case when the
input is not sinusoidal, but rather as represented in equation (58), that is,
when the driving function for Maxwell's equations is not sinusoidally

time dependent, but rather a spectrpm of frequencies, The image time func-
tion in the steady state can be fouﬁd as the sum of the solutions to the
various frequency components emitted by the object by employing equations
(7) and (8) for every frequency compcnent and then summing the outputs,
providing tite filter is linear. This procedure does not in general lead

té & 4losed form solution and furthermore does not yield the transient
résponse. If the modulation bandwidth is very small compared to the carrier
frequency, which is almost always the case in optics, the weighting function
of a spatial frequency filter can be thought of as being the response to an
input sinusoid whi¢h is frequency variant, This is analogous to the so-
called quasi-stationary approach used in f-m. It is assumed that the
frequency variations are sufficiently slow so that the response for any
given input frequency will be the steady state response of the filter to
that frequency from which the over-all response is found by summing the

responses to each individual frequency. This sum becomes an integral in
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the limit of & continuous frequency vqriation. w1th[fhéso approximations

in mind, employing gquations‘(7) and (8), the responsa of the filtér tora

‘point source (for example, at the origin in space) and a sine wave of

frequency w 1in time is

H(X‘,y‘.t,a‘_\): - H(x,y;m) gd‘wt

| jut -3%8 | J % (xE+Ny)
= 1“’,1‘“:“. - fA F(E,M) e dg dn
Jut -j‘%§
. Liwe e . g(x,yy0) (60)
c R -

In order to apply equatioﬁ.(la), however, the functien G(x,y,t)
which is thé response to a unit impulse in both time and space must'be
found: Since the temporal weighting function is simply the integral of
the steady state response to a sinusoid in time over all frequencies, the

function G can be found from H(x,y,t,w) in equation (60) as follows:

® ,
G(xyy,t) = %; j H(x,yyw) 39t 4 (61)
-

Equation (12) then becomes
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%%féﬁnn(*'-XJY'-l.w) 03?(t %) 4o
: ¢ 1 (% ju(tea)
o 1% e(tea),
= Lfldx dy fo olxarsa) 35 f_ . ‘.

o 3T
__nl:u; = - g(x"=x,y' =¥ y0) (62)

R

where

15 (xgeym

glxyyy0) = _l-z"f F(&,M) e az an - (63)
4x® YA

If the modulation bandwidth is extremély small compared to the Zarrier
frequency, to a first approximation the weighting function in equation
(60) becomes independent of frequency w in the sense that o is equal
approximately to a constant. In this case, the spatial weighting function
is independent of time, that is, there is no temporal filtering by such
a filter. The evaluation of the integral (62) is clearly difficult.
Even equation (62) does not apply if the modulation bandwidth of the
‘object spectruh is an appreciable fraction‘éf the ¢arrier frequency.
When these expressions are invalid, the general expression for the image
is even more complicated. Because of the difficulties associated with
time incoherent signals, the principal effort for‘tﬁis report has been

with temporally coherent sources but with any degree of spatial coherence.
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Work is currently under progress to evaluate information rates under these.
conditions. Once the information rate has been evaluated, it can be
maximized with ruspect to the variable parameters of the filter, thereby

optimizing the filter.

Work for the forthcoming period will include an invgstigation of
the difficulties associated with temporai incoherence and an attempt to
evaluate information rates for signals which are partially time coherent
as well as partially space coherent. Investigatien will continue into
the behavior of devices other than filters in an‘optical system, and
particularly the effect of these devices on coherence and information
rate. Included in this study will be theﬁeffect‘of receiver noise aé&éd
after spatial frequency filtering, that is, in addition to the background
noise present in the image, The effect of nonlinear operations will also
be considered, especially simple nonlinear algebraic operations such as

encountered in modulators and demodulators.
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