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SUMMARY

Part I: A Survey of Methods for Dynamic
System Identification

This section of the report summarizes the findings of the

first phase of a continuing study concerned with the utilization

of computers in the determination of mathematical models for

dynamic systems. In this initial phase, a careful review of

various types of models which have been previously used or

suggested for this purpose has been completed. A discussion

of these models and the associated experimental techniques makes

up the first part of this section. Following a critical evaluation

of the earlier methods, a new formulation of the general model

inference problem is presented; this new approach has been named

the "parameter space method". The computational advantages of

parameter space methods are discussed, and a foundation is laid

for the development of explicit computational procedures. The

continuation of this research will include the investigation of

several specific techniques for achieving the "identification"

of nonlinear systems.
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Part II: Research in Optical Coherence

A detailed study of certain aspects of the theory of optical

coherence has been carried out. A major objective of the study is

to obtain criteria for optimizing optical systems employing coherent

sources and amplifiers such as lasers. This is the first in a series

of studies to investigate the effect of various optical system devices

such as antennas, filters, modulators and demodulators, etc., on the

coherence properties of optical signals. The present report concerns

itself primarily with spatial and temporal filters.

A general coherence function is defined as the autocorrelation

function for field strengths. The field strength is a function of

three space variables and time. The coherence function is therefore

dependent jointly on the space separation and the time separation

of the measured field strengths. It is also a function of the origin

in space and time if the process is nonstationary in those variables.

Limiting cases of pure spatial coherence, pure temporal coherence,

pure spatial incoherence, and pure temporal incoherence are considered.

The concept of perfect coherence in a particular independent variable

is extended to include all deterministic functions which are completely

specified for the entire range of that variable.

The general integral equation relating image and object field

strengths in all variables is defined. A technique for determining

-iii-



the spatial and temporal weighting function for a linear optical

transducer is suggested. This evaluation is complicated by the

fact that the diffraction field for an arbitrary, aperture-field,

distribution has only been found (approximately) as the steady-state

response to a monochromatic source. Since temporally incoherent or

partially coherent sources are common, the weighting function in

both space and time must be found. This function may be found

approximately from the steady-state, sinusoidal, response by taking

the inverse Fourier transform of the spatial response to a sinusoid

over the frequency range for which the sinusoidal response function

is valid. This inversion is complicated by the fact that the spatial

response is a function of the temporal frequency.

The technique of obtaining the spatial and temporal weighting

function makes possible the evaluation of both the transient and

steady-state, statistical, behavior of far-field diffraction patterns

for sources exhibiting partial coherence in both space and time. In

particular, information rates may be calculated, and the transducer

may be optimized with respect to its variable parameters by maximizing

the image information rate with respect to these parameters.
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"1. INTRODUCTION

1.1 Purpose and Scope

This report summarizes the findings of the first phase of a continuing

research program concerned with the utilization of computers in the

determination of mathematical models for dynamic systems from experimental

observations. In this initial phase, a careful review of various types

of models which have been previously used or suggested for this purpose

has been completed. A discussion of these models and the associated

experimental techniques makes up the first part of this report. Following

a critical evaluation of the earlier methods, a new formulation of the

general model inference problem is presented; this new approach has been

named the "parameter space method". It is believed that parameter space

techniques offer significant advantages for the actual computational

determination of models for nonlinear systems in practical situations.

The continuation of the research reported herein is aimed at the develop-

ment of explicit computational algorithms for achieving the identification

of nonlinear systems by parameter space operations. This research will

provide the basis for future reports dealing with this topic.

1.2 Identification of Dynamic Systems

Since the time of Newton it has been known that the dynamical

behavior of mechanical systems is governed by differential equations.

In the ensuing centuries since Newton's discoveries, a complete theory

of classical mechanics has been constructed which, in principle, permits
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the description of the motion of any rigid body system in terms of a set

of coupled differential equations. In a similar fashion, electric circuit

theory has provided differential equation descriptions for lumped constant

electrical devices. More generally, it is now common knowledge that a

great many processes involving storage and interchange of mechanical,

electrical, and other forms of energy are properly described by complicated

sets of differential equations (or partial differential equations if the

systems are distributed rather than lumped). Systems of this type are

usually referred to as "dynamic" systems in engineering literature (1)

While basic physical theories often permit the form of the differen-

tial equation for a dynamic system to be written down, as a rule the

parameters of a particular system can be determined only by measurement.

For example, the equation for a pendulum with viscous damping can be

obtained from the simple moment equation:

IQ + -M gl sinG (1)

However, before any analysis of the behavior of a particular pendulum may

be effected, it is necessary to determine the constants in the equation.

Such determination of a specific quantitative model has been variously

referred to as the "identification problem" (2), the "characterization

problem" (3), and the "parameter estimation" problem (4),depending somewhat

upon the methods employed; it can be accomplished only by experimentation.

1 In this report, superscript numbers are used to indicate footnotes while
bracketed numbers refer to the list of references at the end of the text.
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In the case of a device as simple as a pendulum, the evaluation of the

unknown constants is not difficult unless a high degree of precision is

required. On the other hand, there are many practical situations in which

the measurement of system constants is extremely difficult due either to

the complexity of the processes involved or the subtleness of the effects

to be measured. Furthermore, even after the system parameters have been

established to a sufficient accuracy, analytic solution of the resulting

family of differential equations is an extremely difficult task in all

but the simplest of situations.

For the reasons just mentioned, engineers and physicists over the

past several decades have sought ways of characterizing physical systems

other than by a set of differential equations. Such efforts have been

quite successful with respect to the important but restrictive class of

systems possessing the properties of linearity and time invariance. For

more general classes of systems, results have been sparse. If the require-

ment of time invariance is relaxed while linearity is retained, weighting

functions offer an alternative to differential equation descriptions although

they may be very difficult to obtain. For general nonlinear systems, it is

only by considering a system as an operator effecting a transformation from

an input function space to an output space that it has been possible to

arrive at alternate descriptions.

The following paragraphs discuss various methods which have been used

to describe dynamic systems and suggest a particular characterization to be

used as the basis for the development of practical computation procedures

for identifying unknown nonlinear systems. The discussion will be confined
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to lumped constant systems; i.e., to systems described by ordinary rather

than partial differential equations. For the sake of completeness and

continuity, the development to follow begins with a review of methods which

have been developed exclusively for the characterization of linear systems.

2. LINEAR SYSTEM IDENTIFICATION

2.1 Frequency Response

2.1.1 Introduction

When a system is linear, the "principle of superposition" may be

applied to decompose arbitrary forcing functions and initial conditions

into component parts whose effects may be more easily analyzed. The

individual responses of these components may then be added to produce the

total system response. If the system under consideration is time invariant

as well as linear, this type of analysis is especially simple and effective.

In particular, when a sinusoidal or complex exponential decomposition of

the input signal is utilized, Fourier transform techniques may be applied

to determine the system output. In this approach, the system under considera-

tion is completely determined by the function, G(w), defined by 2

Y(w) = G(w) X(w) (2)

where X(w) and Y(w) are Fourier transforms of the input function, x(t),

and the output function, y(t), respectively. The function G(w) is

usually called the system "frequency response" (5,6,7). For a linear time

While input and output variables will be treated as scalars in this

discussion, no difficulties are experienced if equation 1 is a vector-
matrix relationship.
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invariant system, x(t) and y(t) are related by

Ay(t) - Bx(t) (3)

where A and B are linear constant coefficient differential operators;

the frequency response, G(w), is therefore a rational polynomial in W

in such circumstances.

2.1.2 Experimental Determination of Frequency Response

Within the class of stable, linear, time invariant systems, experimen-

tal evaluation of the frequency response function is carried out by a

procedure which is (mathematically) independent of the nature of the system.

This is a major advantage of the frequency method. No assumptions regarding

the system must be made beyond the basic constraint that it be stable,

linear, and time invariant. In the usual technique employed to experimen-

tally determine the frequency response, G(w), the input, x, is chosen to

be the function,

x(t) = a cos 1 t (4)

so that after a time sufficient for the decay of transients has elapsed

y(t) = b cos (wlt + 0). (5)

It is easily demonstrated that the "frequency response" at w = is then

given by

! -5-



G(WI) " e " (6)
1 a

The variables b. and 9 are commonly called "gain" and "phase shift"

a

respectively and are measurable by standard electronic devices.

The "Nyquist plot" is the locus of G(w) in cx,P coordinates.

Special purpose devices have been constiructed to plot Nyquist diagrams

automatically since the point by point determination of G(w) may be

very tedious (8).

2.1.3 Measurement of Frequency Response in the Presence of Interfering

Noise

When extremely precise measurement is attempted or uncontrollable

sources of interfering noise are present, it is found that the measured

gain and phase shift are random variables. To circumvent this difficulty,

cross-correlation techniques may be used to discriminate against the noise

(9). From equation 6, y(t) may be written

y(t) = (xa cos WIt - ap sinw•t (7)

With noise, n(t) added, this becomes

y '(t) - aa cos wit - ap sin Olt + n(t) (8)

Now assuming that y(t) and n(t') are uncorrelated, it follows that

2T,
lim y coswlt dt aa

lir J -y sin iWt dtu ap

T -- D



Finite time approximations to these cross-correlation functions can yield

arbitrarily precise measurements of a and 0 in the presence of arbitrarily

large noise voltages.

2.1.4 Extension of Frequency Methods to Nonlinear Systems

As a result of the simplicity and practical utility of the frequency

response characterization of linear systems, attempts have been made to

extend frequency methods to certain types of nonlinear systems. Perhaps

the most significant of these is the "describing function" method due to

R. J. Kochenberger (10). Kochenberger's method consists of determining

the gain and phase characteristics of a nonlinear element with respect to

the fundamental component of the output only. In general, the frequency

response defined in this way depends not only upon the frequency of the

test signal, but also upon its magnitude. Describing functions have found

considerable use in the investigation of limit cycles in nonlinear systems.

Since the method is approximate, it is of relatively little value in

determining the transient behavior of nonlinear systems.

The method for experimentally determining describing functions is

the same as for experimentally determining frequency response except that

the describing function depends on both a and w in equation 6 rather

than on w alone.

2.2 Determination of the System Transfer Function

2.2.1 Relationship Between the System Laplace Transform and the Frequency

Response Function

If the Laplace transform is applied to both sides of equation 3,

the result is

A(s) Y(s) u B(s) X(s) (10)
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so

B(s) (n)SH(s)

The function H(s) is commonly called the system transfer function.

Again, since A and. B are assumed to be linear constant coefficient

differential operators, H(s) is a rational polynomial. As is well known,

the frequency response function, G(w), may be obtained from H(s) by

utilizing the relation

G(w) = H(jw) (12)

Furthermore, since H(s) is an analytic function, its behavior along the

imaginary axis in the s plane completely specifies its behavior over the

entire complex plane. So, conversely, experimentally evaluated frequency

response may be used to determine H(s) for stable systems. The process

of obtaining H(s) from G(w) is called the "approximation problem" in

network theory (11,12,13,14).

2.2.2 Direct Measurement of the System Transfer Function

Up to the present time, the frequency response method has been over-

whelmingly favored in practice for the experimental characterization of

linear time invariant systems. Recently, however, a few investigators

have devised methods for measuring pole and zero locations directly by

using special test signals. These are sometimes referred to as "time

domain" methods (15,16,17,18). While these techniques have the advantage

that the approximation problem is by-passed entirely, the test equipment

required is generally. more complicated. In any event, the final result

of the measurement is mathematically equivalent to the frequency response.
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2.3 Weighting Function Methods

2.3.1 Relation to the System Transfer Function

The behavior of any linear system with respect to an input or

disturbance at a particular polmt is completely determined by its weighting

function or "impulse response" (19). If h(t,-r) is the weighting function

associated with a linear differential operator, L, and y(t) are input

and output variables respectively, then the solution to

Ly - x (13)

is given by

t
y(t) u h(t,T) x(T) dT (14)

If L is also time invariant, then h(t,T) becomes a function of (t-T)

only and is related to the system transfer function by

= - H(s) (15)

where ; denotes the Laplace transform operator (19). Thus the weighting

function and frequency response form a Laplace-Fourier transform pair.

While the weighting function bears a simple relationship to frequency

response only in the time invariant case, it is nevertheless (in light of

equation 14) a perfectly general way of characterizing any linear system.

The determination of h(t,T) from the operator Ad is apt to be a formidable

task, however. Most often, numerical methods or analog simulation are

required to find h(t,r).
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2.3.2 Direct Measurement of Weighting Functions

If the system under test is initially in a relaxed state, then for

t o 0, the lower limit in the integral of equation 14 may be replaced by

zero. If x(t) is then chosen to be a narrow pulse of unit area centered

at t = t1 > 0, the system weighting function can be measured directly.

Suppose that x(t) is narrow enough to be sufficiently approximated by a

unit impulse function, 6(t-t 1 ). Then

t
y(t) - h(t,r) 6(t-t 1 ) dT - h(t,t 1 ) (16)

By repeating this experiment with various values of t 1 , a family of curves

for h(t,¶) can be constructed.

When L is time invariant, it is sufficient to make a single exper-

iment with t 0 since h(t,T) depends only on t-T. In this respect,

weighting function measurement of system dynamics is markedly superior to

the frequency method which is a point by point procedure. On the other

hand, the equipment needed to record transient behavior is usually more

complicated and restricted in applicability than that used in determining

frequency response.

E. Miskin and R. A. Haddad have described an adaptive system which

uses integrals of impulse functions (i.e., steps, ramps, and parabolas)

for both identification and control of an object whose weighting function

is initially unknown (20). This method permits the control and identifica-

tion functions to proceed simultaneously but it is restricted to situations

where measurement noise is insignificant.
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2.3.3 Determination of Weighting Functions by Cross-•Correlation

All of the methods mentioned thus far for characterizing linear

systems share a common weakness. In order to make measurements on the

device in question, it is necessary to remove it from its normal function

and apply special test signals. That is, the methods described so far

involve essentially laboratory or "bench test" types of measurements.

There are many important situations in which it is either impossible or

undesirable to create such controlled conditions. In such cases, cross-

correlation of input and output may be used to discriminate against the

unwanted effects.

The application of cross-correlation to frequency testing has already

been discussed in this report. In 1950, J. B. Wiesner and Y. W. Lee pointed

out that cross-correlation can also be used to advantage in the measurement

of weighting functions (21). Following their suggestion, suppose that the

input to a system, x(t), is a wide-band stationary Gaussian process. Then

the autocorrelation function of this process is given by

S. E (x(t) x(t+O)) N &(T) - 0 (-¶ ) (17)

where N is the (two sided) spectral density of the input variable, x(t)o

If the cross-correlation between the input, x, and the output, y, is

defined by

$ (t,E) [ E fy(t) x(t+T)) (18)

-lx
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then

$yx(t,-T) - E (y(t) x(t-T))

yx lit

i0=jE Cx(t--r) x(ca)) h(t,a) dcx

0

SN0 h(t,t-¶) (19)

or

h(t,t-r) a N (20)
N

0

In the special situation when 0 yx is not time dependent, then

equation 20 reduces to

h(T) - h(-T) •a yx (21)"N
0

which may be replaced by a time average:

lim 1 y(t) x(t-r) dt
h( r) - (22)

T -- c

This is the result originally pointed out by Lee and Weisner (21) and the

one most often used in weighting function methods for system identification.

The input process, x(t), may represent either normal operating signals alone

or such signals plus a deliberately added wideband test signal. In the event

that a special test signal is added, it is only this signal which is cross-

correlated with the system output.
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2.3.4 Experimental Evaluation of Cross-Correlation Functions for Time

Invariant Linear Systems

Following the original publication of Lee and Weisner, a sizable

number of investigators have explored various techniques for the experimental

evaluation of 0 yx(T). Despite the considerable originality of some of

these methods, nearly all of them contain the basic elements of delay,

multiplication, and averaging as shown in Figure 1. Since the averaging

time, T, must be finite, the output of the process identifier is h(-),

A
an estimator of h(T). The mean square deviation of h(¶) from h(T) may

be made as small as desired by increasing the averaging time sufficiently.

The next few paragraphs discuss some specific hardware mechanization& of

equation 22 as well as some minor variations on the basic scheme.

J. A. Aseltine, et al. have suggested that a binary test signal offers

particular advantages in the experimental determination of weighting func-

tions (22). If an input is used which switches from one level to the other

in the manner of a Poisson process, then the delay time, T, is easily

realized by either a delay line or a shift register while the multiplication

required is replaced by a simple on-off electronic gate. While a Gaussian

random process has most often been used as a probing signal for weighting

function determination, equation 21 remains valid for any input with an

autocorrelation function which is sharp compared. to h(T). Consequently,

a binary signal is entirely satisfactory as a test signal so long as the

average number of switchings per second considerably exceeds the bandwidth

of the system under test.
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G. L. Turin has discussed the replacement of explicit elements of

Figure 1 by a filter matched to a particular test signal (23). When this

is done, the physical equipment involved is greatly simplified. Moreover,

h(t) is obtained as a continuous function of time rather than on a point

by point basis as in the conventional cross-correlation method. On the other

hand, Turin's method does not permit long averaging times to be used to

discriminate against outputs resulting from extraneous noise or normal

operating signals. W. W. Lichtenberger has suggested that this difficulty

can be circumvented by averaging the filter response over a number of

measurements (24). However, this again yields a point-wise estimate of

h(T) unless an analog memory is available to store successive samples of

h(T) in their entirety.

Several investigators have used multiple sinusoidal test signals

followed by syncronous detection in place of a Gaussian input (25,26,27,28).

In these schemes it is system coefficients which are to be determined directly

rather than the weighting function. Unlike simple frequency response testing,

these methods use averaging following the syncronous detection and are there-

fore able to function in the presence of interfering signals. Despite the

fact that the test signals are sinusoidal, this type of measurement is a

correlation method which fits into the framework of Figure 1.

Quite a number of investigations have been directed toward the

problem of determining weighting functions by correlation methods utilizing

normal operating records without the introduction of special test signals.

The first significant work in this direction appears to have been accomplished

by T. P. Goodman and J. B. Reswick (29). They constructed a special piece
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of equipment involving a tapped delay line and manually set weighting

potentiometers to match the cross-correlation properties of a system under

test. The unknown weighting function evaluated at evenly spaced time

intervals appeared as potentiometer settings at the end of an iterative

manual adjustment process. R. E. Kalman has demonstrated an automatic

iterative computational technique for obtaining a least squares estimate

of a z-transformed version of the system weighting function during normal

operation (30). P. Joseph et al. have proposed a variation in Kalman's

method which allows initial conditions to be considered (31). R. B. Kerr

and W. H. Surber have examined the relationship between time of observation

and accuracy of weighting function estimation (32). V. V. Solodovnikov

and A. S. Uskov have discussed transform methods for the solution of the

equation

9F = jD Oxx(t-t) h(t) dt (23)
0

for h(t) (33). This equation arises when the input correlation function is

not extremely narrow compared to h(t) and the averaging time of Figure 1

is allowed to become infinite.

There have been many other publications dealing with cross-correlation

since the original observation of Lee and Weisner. Since the present discus-

sion is intended simply to place the methods proposed in this report in

perspective, the examination of cross-correlation techniques has not been

exhaustive. The bibliographies attached to the publications referenced

provide many other sources of information concerning this topic.
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2.3.5 Identification of Time Varying Linear Systems by Cross-Correlation

The experimental determination of time varying weighting functions

using equation 20 is seriously hampered by the fact that expected value

operators cannot be replaced by time averages. Rather, it is necessary to

estimate 0 yx(t-T) by averaging the results of many separate experiments.

Furthermore, since h(t,¶ ) is a function of two variables, these repeated

experiments must be carried out for each value of T to be considered.

Thus the total number of experiments involved is very large. Moreover,

the system must be restored to a reference condition (t-O) at the start

of each experiment. It may not be feasible to achieve this type of operation

in many systems of practical concern. Despite these difficulties, equation

20 appears to offer promise of useful application in special situations.

The necessary storage and aVeraging could be accomplished by a digital

machine possessing analog inputs and outputs. As far as is known to the

writer, no application of this approach has been made to date.

2.3.6 Impulse Response Measurement by Regression Analysis

Due to the force of tradition more than anything else, analog

measuring and computing devices have been assumed almost exclusively in the

investigation of practical procedures for impulse response measurement.

Mathematically, this means that the techniques used have been restricted to

processes of analysis to the virtual exclusion of algebraic methods. By

contrast,, classical statistics is concerned mainly with discrete data

obtained from repeated experiments so algebraic methods predominate in

that subject. Thus, when conventional statistical methods are applied to
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the measurement of a system impulse response, a fresh viewpoint results.

An example of the statistical approach has been provided by M. JLevin

in an investigation dealing with the estimation of impulse response at

discrete values of time by linear regression analysis (34). In Levin's

approach, the convolution integral

y(t) o h(-!) x(t-r) d' (24)
0

is replaced by an approximating convolution summation

N

y(NT)- I h(nT) f x [(N-n)T)} T (25)

n-O

In this expression, x and y are physically measurable while h(nT) is

unknown. Since the equation is linear in the unknown weighting function

values, a set of N+l simultaneous equations resulting from application

of equation 25 may be solved for h(nT), n=O, 1, -. N, by matrix inversion.

However, since measurement errors are invariably present, Levin suggests

that redundant data be taken and h(nT) be determined by least squares

regression analysis. It is sho-n in his paper that this results in estimates

which are optimum in several senses.

By substituting equation 25 for equation 24 the difficult problem of

finding an inverse operator is reduced to the much easier one of finding the

inverse of a matrix. This is an operation well suited to a digital computer.

In a paper dealing with future trends in engineering analysis, Denis Gabor

has pointed out that it is quite typical that the discrete problem should

yield a solution more readily than the continuous problem (35). It is

further stated in his article that algebraic methods can be expected to

-18-



replace analytic approaches to a great many problems in applied mathematics.

This opinion, it seems, is supported by the fact that high speed computers

are now available to most mathematicians and engineers. While these machines

have great algebraic power, they are not naturally suited to limiting processes.

The point of view expressed by Levin appears to offer an attractive

alternative to correlation methods. The continuation of the research dis-

cussed in this report involves the application of similar approaches to

nonlinear systems.

3. FUNCTION SPACE DESCRIPTIONS FOR DYNAMIC SYSTEMS

3.1 Introduction

All of the methods employed for linear system identification appear

to run aground when attempts are made to apply them to general nonlinear

systems. This unfortunate situation results from the necessity of abandoning

the principle of superposition in dealing with nonlinear systems. In order

to gain a vantage point on nonlinear systems comparable to the conventional

treatment of linear systems, it seems to be necessary to introduce the much

more sophisticated idea of transformations defined over function spaces (36).

That is, it is necessary to recognize that the output of a physical system

in the most general case depends upon the entire past history of its input

in some complicated nonlinear fashion. This section provides a brief summary

of the function space point of view.

The application of function space methods is considerably facilitated

by the expansion of input functions into orthogonal series. The particular
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type of orthogonal functions used for this expansion will depend upon the

nature of the input and the test being conducted. For example, if the

input is periodic, then a Fourier series expansion is appropriate. On

the other hand, if the input is not known to be periodic but is known to

have finite bandwidth, B, it can be completely represented by time samples

separated by intervals equal to 1/2B. This representation is called a

"signal space" expansion in communication theory (37). If the input is

a general random process unspecified except for the properties of contin-
/

uity and finite variance, then the entire past history of its values may

be summarized by the coefficients of an expansion in terms of Laguerre

functions (38). Whatever the type of expansion chosen, the result is that

the input may be thought of as either a point or a curve in a space of

infinite dimension; i.e. in a Hilbert space. Representation as a point

occurs when the entire input is known in advance while a space curve

results when the input is a random process with only past values known

and a "backward looking" expansion is used.

When the input to a system has been appropriately expanded, the out-

put of the system may be regarded as the result of a mapping or transformation

0 defined over the input space. Physically, this transformation is produced

by the reaction of the system under test to a "probing" signal applied at

an inpUt (38). When the entire input can be represented as a stationary

point in a Hilbert space, the output can be thought of as another point in

a similar space. This is the approach used, for example, in steady state

harmonic analysis of linear systems. When the input is represented by a

moving point in a Hilbert space as in the case of a random input process,
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then the output space is just the real line.. That is, the entire past

history of the input determines the present output; future inputs and outputs

are not known.

When the function space point of view is adopted, the system identifica-

tion problem becomes a matter of determining what transformation characterizes

the system under test. Again, there is considerable freedom of choice in

selecting a method for describing this transformation. For example, if the

system is known to be linear and time invariant, then the frequency response

is an appropriate characterization of the system input to. output transforma-

tion. Specifically, if an input x, is periodic in an interval T and is

square integrable within that interval, then

+ O

x(t) L an e T (26)

n=- a

The response of the system under test to this forcing function is given by

+ O

y(t) = bn e T (27)

where

b
-- -= G( ) (28)
a T
n

The complex function, G(w), is just the frequency response defined by

equation 2. Since x may be thought of as a point or vector in a space

whose coordinates are the complex quantities, an, and y is likewise a
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point in the bn space, equation 28 is an example of a particularly simple

transformation from a Hilbert space to a Hilbert space.

While equation 28 represents merely a rephrasing of the significance

of frequency response, as indicated, the function space point of view is not

limited to linear systems. It is possible to choose families of orthogonal

functions defined over the input Hilbert space coordinates which are capable

3of representing arbitrary nonlinear operators . Norbert Wiener, for example,

chose to represent a Gaussian input process in terms of normalized Laguerre

functions and then described the system output as an expansion involving

products of normalized Hermite functions whose arguments are the Laguerre

coefficients (3,38). In electing to use these particular series, Wiener

restricted himself to the use of broadband Gaussian random processes as a

source of probing or test signals and to time invariant operators having

the property that inputs applied arbitrarily far in the past have an

arbitrarily small influence on the present system output. This latter

restriction means, for one thing, that the Wiener expansion cannot be used

for the study of unstable or oscillating nonlinear systems.

It is certainly possible to choose expansions different from the one

chosen by Wiener to characterize a nonlinear operator. For example, A. Bose

has discussed an expansion which involves basically the idea of partitioning

a Hilbert space into cells and associating a particular output with each

cell (3). A. W. Balakrishnan has discussed the application of polynomials

defined over Hilbert spaces to the problem of nonlinear operator representa-

tion (39). L. A. Zadeh has provided a tutorial exposition of the Hilbert,

3 The operator may be of an arbitrary nature providing only that it
produces outputs which lie in the selected output function space.
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space characterization of nonlinear operators wherein several more expansions

are described (3'6)

No matter what orthogonal functions are used as a basis for the representa-

tion of the input and the system transformation, with each such pair of

expansions there will be a class of inputs and a class of transformations

which can be represented. The choice of representation is thus determined

by the problem to be solved.

3.2 A Function Space Definition of "Static" and "Dynamic" Systems

Function space terminology provides a basis for a precise definition

of the terms "static" and "dynamic" as applied to physical systems. A static

system is one in which the output is a function of the present input only.

Thus, to represent a general static transformation, it is sufficient to

expand the output variable in terms of orthogonal functions whose argument

is simply the present value of the input; it is not necessary to utilize a

Hilbert space description for the input. A static system, therefore, is one

which effects a transformation from a real line to a real line. In contrast

to static systems, in a dynamic system the output depends not only upon

present values of the input but also upon past values. Consequently, a

dynamic system performs a transformation from a Hilbert space to a line.

Such systems are sometimes said to have "memory" or "energy storage" while

static systems are often described as being "memoryless". By its nature,

the determination of the output of a dynamic system requires a double

orthogonal expansion. First, the past of the input must be expanded and

Zadeh also points out that infinitely iterated integrals can be used with
appropriate weighting functions to obtain an alternate representation for
nonlinear operators which does not involve expansion of the input.
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then the resulting coefficients used as independent variables for a multi-

variable expansion representing the transformation to the output variable.

In the remainder of this report, the adjectives "static" and "dynamic" will

always be used in accordance with the above definitions.

3.3 Experimental Evaluation of the Characteristics of Static Nonlinear

Devices

While this report is concerned fundamentally with the characterization

and identification of nonlinear dynamic systems, some interesting simplifica-

tion of function space methods occur when the system under test is either

static or linear. In the case of static nonlinear systems, the output depends

only on the present value of the input so an expansion of the input in

orthogonal functions is not necessary. The output may be represented simply

as

co
y(t) = fcx(t)] = ai Oi [x(t)] (29)

i =1

which is a single rather than a double expansion. L. A. Zadeh has described

several suitable orthonormal sets of functions, [0i(x)) , in a paper dealing

with static nonlinearities which are completely defined by their describing

functions (2) . H. J. Lory, et al. have discussed the application of harmonic

analysis utilizing growing real exponentials to obtain the coefficients of a

Taylor series expansion of f(x) (40).

3.4 Simplification of Function Space Representations for Linear Time

Invariant Dynamic Systems

When the system under test is linear and time invariant, only an input

function space is required. The transformation from the input function space
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to the output space need not be expanded in orthonormal functions since the

linearity of the system demands that the output be expressable as a simple

linear function of the input Hilbert space coordinates. For example,

Y. W. Lee shows that

h(t) - Z, i Ai(t) (30)
izl

where Ai(t) are the coefficients of an expansion of the part of the system

input in terms of orthonormal Laguerre functions and the ci are coefficients

characterizing the system (41). The orthonormal Laguerre functions used by

Lee are obtained from an orthogonalization of the family of functions

f (at)n at , n = 0,1,2, a. (31)

Another example of linear system representation utilizing a single expansion

is provided by T. P. Goodman and J. B. Reswick (29). As previously mentioned,

Goodman and Reswick used a finite term approximation to the expression

lim N N

y(t) = T -- • 0 ý T{ x(t-nT) h(nT)} (32)

NT =t n=O

In their mechanization, the values of x(t-nT) are obtained from a tapped

delay line while Teh(nT) represents potentiometer settings weighting these

delayed values. Other methods for describing linear systems in terms of a

single expansion are given in Lee (41) and T. Kitamori (42).
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3.5 The Wiener Theory of Nonlinear Systems

While the idea of expanding operators over Hilbert spaces is not new,

it appears that only recently has an explicit experimental technique been

proposed for the evaluation of the coefficients in such expansions. A

specific method was described by Norbert Wiener in a summer lecture series

in 1953-54. However, the first documentation of Wiener's approach apparently

occurred with the publication of A. Bose's dissertation in 1956 (3). Since

it is felt that the experimental approach taken by Wiener represents the

only reasonably well explored alternative to the methods proposed in this

report, the elements of the Wiener theory are summarized fairly completely

in the following paragraphs.

As proposed by Wiener, the input to a system is expanded in Laguerre

functions. These functions are derived from the conventional Laguerre poly-

nomials by including the square root of the Laguerre weighting function,
-t
e , as a multiplying factor on each polynomial. Thus, since the nth Laguerre

polynomial is given by

L (t) 1n e d-- t (n-1)ye- e> n-1,2 .. 0

n ,_n7i 2dt,3 ....

(33)

the n-th Laguerre function may be written

t
e2 Ln(t) t 0

hn(t) - -(34)

0 t <o

The functions h (t) are orthonormal over O,aD ]with unit weighting function.n

Using these functions, the past of the input may be expanded at any instant as
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w

x(-t Iun, hn(t) t 0 (35)

n-l

where

Un - Jo x(-T) hn(T) d? (36)

Now this equation has the form of a convolution integral. Furthermore, the

functions, h n(t), are of the same form as the impulse response of a linear

lumped constant network with a pole of order n . It is to be expected,

therefore, that the desired Laguerre coefficients can be obtained continuously

in time by feeding x(t) into a bank of appropriate linear filters. Wiener

pointed out that this is indeed the case. The appropriate filter transfer

function may be determined by application of the Laplace transform to

equation 33 yielding (41)

1 n-1

H (s) (37)
S + s +

This result is illustrated in Figure 2. It is interesting to note that the

filter depicted is nothing more or less than a low pass filter followed by a

lumped constant approximation to a tapped delay line 5. This type of filter

is easily constructed using standard analog computer elements.

Since the Laguerre functions form a complete basis for bounded, continuous,
square integrable functions, any nonlinear system of the class treated by
Wiener can be represented (for such inputs) by a bank of linear filters
(as in Figure 2) followed by a "zero memory" nonlinear function generator
having the uW(t) as inputs and y(t) as an output.
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In order to fully exploit the possibilities of a Laguerre function

expansion of the input signal, the Wiener theory requires that the input

used to probe the system response be a broadband Gaussian process such as

shot noise. With this choice, it turns out that the Laguerre coefficients

are themselves uncorrelated Gaussian random processes with equal variances.

This being the case, it seems natural to expand the system operator in

Hermite functions since the Hermite polynomials are orthonormal over

[-a), c] with a Gaussian weighting function. If %(x) is the n-th
-x 2

Hermite polynomial (orthonormal with e weighting function), then the

n-th Hermite function as defined by Wiener is, given by

2
x

4n(X) - e- 1n(x) (38)

These functions are orthonormal in [-ai, a] with unit weighting function.

Weiner has shown that the transformation from the Laguerre coefficient input

space to the system output can be written as an expansion in terms of Hermite

functions. Specifically (3)

ciD OD OD

y(t) = lim Z , Z(U 1 ) a ( (u2 ) h(Us) (39)s OD- I I j-- ... 1h

i=l j=l h=l

The coefficients in this expansion, a i... can be determined by multiplying

both sides of the equation by the appropriate products of n (x) functions
n

and averaging over [-aD,] . However, due to Wiener's judicious choice of

input signals and expansions, the necessary averaging can be accomplished by
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simply cross-correlating the system output with the proper products of

Hermite polynomials. Thus (3,38)

B/2 'lrn 1a ij ... h T ( T--• -%0 ODTy ~)Nu)l~
-T

This can be written more compactly by denoting the set of subscripts by

a the product of Hermite polynomials by VI(ý), and the time averaging

by the conventional bar symbol of statistics. Thus

a = (2n)s/2 y(t) V (U) (41)

This equation summarizes the experimental part of the Wiener theory.

Figure 3 is a schematic representation of the equipment required to carry

out the operations indicated (3).

3.6 Difficulties Associated with Implementation of the Wiener Theory

Despite the apparent simplicity of equation 41, about all that can

be said in its favor is that only a countable infinity of limiting

operations is involved in the evaluation of the required coefficients.

This is of scant comfort to an investigator faced with the task of actually

determining the characteristics of a real physical system. In order to

actually make use of the Wiener theory, it is necessary to truncate all

of these limiting operations both with regard to measurement time and the

number of terms taken in the series for y(t) . So far as is known to the

writer, there has been no analysis of the errors of such truncations.
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Such analysis would certainly be very difficult since nested limiting

operations of high dimensionality are involved in the Wiener theory. In

addition to this analytic difficulty, there are serious problems involved

in attaining the computing speeds needed to implement the experimental

arrangement shown in Figure 3. It appears that a hybrid computer possess-

ing the best features of both analog and digital devices will be required.

The extensive literature search undertaken in conjunction with the writing

of this report has produced no reference relating an actual experiment of

the type indicated by Figure 3.

The difficulties discussed above relate to dimensionality and time

of observation. Even if these problems should be resolved, there are other

fairly serious weaknesses inherent in the Wiener theory. First of all,

there remains the problem of obtaining some relationship between the

Wiener coefficients and meaningful system parameters. That is, from an

engineering point of view, it would be very desirable (and in many cir-

cumstances essential) to invert the Wiener coefficients to obtain the

parameters of the system differential equation. There is no evidence

that this can be done. Secondly, the Wiener theory provides a basis only

for a "bench test" type of experimental system identification somewhat

analogous to frequency testing for linear systems. The experimental

technique requires that the system under test be disconnected from its

normal operating signals and subjected to a special test signal over a

long period of time and under rather ideal conditions of observation.

This is not possible in many identification problems of practical impor-

tance. Finally, in addition to all the other stumbling blocks, there
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remains the fact that the Wiener theory is not completely general. It

excludes the very important classes of time varying and unstable systems

from consideration.

Regardless of these shortcomings, the Wiener theory appears to

stand as the only general experimental technique for the identification

of nonlinear systems which has been proposed up to the present time.

Whether or not the theory is ever actually used in its present form, it

serves a very useful purpose in providing a new conceptual basis for the

experimental aspects of nonlinear theory. The practical problems associated

with the theory are certainly worthy of further attention.

4. PARAMETER. SPACE METHODS

4.1 Introduction

The Wiener theory of nonlinear systems is applicable in situations

where a complete state of ignorance exists concerning the nature of the

nonlinear system under test. This is rarely the case in practice. As a

general rule, systems or devices subjected to experimental tests are

governed by physical principles which are reasonably well understood.

The uncertainty in such tests usually relates to the magnitude of various

effects rather than to the basic mechanisms operating to produce the

observed data. Even when this is not the case, the investigator is at

least able to suggest several competing theories to explain the observed

phenomena. Under these circumstances, it is possible to construct a

finite parameter model for the system under test rather than an infinite

parameter model as proposed by Wiener. This, approach will be called a
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"parameter space method" in this report to distinguish it from the

function space methods used by Wiener and others. Parameter space may be

viewed as a generalization of the familiar "phase" or "state" space employed

in mechanics for the description of the state of a physical system.

When the object under test is a dynamic system, a very natural

finite parameter characterization may be obtained by utilizing the system

differential equation! The previously mentioned damped pendulum equation

provides a simple example. Referring to equation 1, the pendulum angle,

@, is governed by

IQ + BL + Mgt sin O = 0 (42)

which can be normalized to

c2 Q + c 1 + sin 9 a 0 (43)

The determination of c2 and c1  along with two initial conditions

provides a complete characterization of the system. This report is bas-

ically concerned with the formulation of an approach to permit the inference

of parameters of this type from unreliable records of the input and output

of a system under test.

As mentioned at the beginning of this report, the idea of representing

a system by a differential equation is scarcely a new concept. Indeed it

would seem to be somewhat paradoxical to advocate a return to differential

equation models in light of the remarks made previously. The explanation

for this apparent regression lies in the emergence of electronic computers

as a revolutionary force in scientific and engineering methodology.
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While it is indeed difficult to solve a nonlinear differential equation

such as equation 43 by analysis, it is quite simple to obtain a solution

by electronic computation. In fact, electronic analog computers are specif-

ically constructed for the purpose of solving high order sets of nonlinear

differential equations and are poorly suited to any other task. Graphical

and various approximate methods which have been found extremely valuable

by human investigators are of little or no value to a computer. In

recognition of this fact, the parameter space methods to be described in

the remainder of this report are entirely computer based. Both the

determination of the system parameters and the evaluation of the resulting

response will be accomplished by completely automatic methods.

4.2 An Abstract Comparison of Function Space and Parameter Space

Characterizations

In the Wiener theory, the input to a system is regarded as a trajec-

tory in a Hilbert space. Time appears parametrically along this curve.

The output at a particular instant is obtained by the application of a

transformation from the appropriate point in the Hilbert space to the

real line. This transformation is completely described by the infinite

set of Wiener coefficients, (aij.. h) . Figure 4 shows this situation

graphically. In this figure, T(A] stands for the transformation given

by equation 39. The distinctive feature of the expansions chosen by Wiener

is that when the trajectory in the input space is produced by a wide-band

Gaussian random process, the transformation from the input space to the

output space is uniquely determined and simply (conceptually) computed

from simultaneous observation of the input and output trajectories.
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In contrast to the Wiener theory, in the parameter space method

uncertainties relating to both the input and the system (including initial

conditions) are described by a finite number of parameters.. Moreover, due

to the uniqueness properties of solutions to specified differential equa-

tions, the output variable is completely determined for all time from the

initial point in parameter space. Thus, solution of the differential

equation is. equivalent to performing a transformation, T , from a point,

c , in a finite dimentional vector space to a point in function space.
6

Figure 5 illustrates this relationship . Because the transformation,

T o(), operates in a space of finite dimensionality, deducing the system

description is no longer a problem in functional analysis. Rather, in the

formulation to be employed in this research program, the system differential

equation is found by utilizing the techniques of nonlinear programming.

This approach will be explained in detail in subsequent reports.

4.3 Choice of a Metric for the Output Function Space

In order to permit iterative techniques to be employed in the

estimation of parameter vectors, it is necessary to define a distance

function or metric which measures the distance between two functions.

For the purpose of this investigation, the metric chosen is the conventional

"Euclidian" or L2 metric
2 ]

p2 (yl' Y2 ) - ;b ryl(t) - y2 (t)0 2 dt (44)

6 It is possible that the input signal, x(t), may be a random process.

In that event, for identification processes taking place in real time,
only past values of x(t) will be known so that the output, y(t), can be
determined only up to the present time. In such circumstances, the output
can be thought of as a trajectory in a space of coordinates associated
with a semi-infinite "backward looking" expansion rather than as a single
point derived from an expansion over [-D, +aJ or [0, +CD)

-37-



Differential Equation
Parameters

To,'( -C)

Parameter Vector, -c Output Function,

Initial Conditions

Input Signal
Parameter

System Parameter Space Output Hilbert Space
(Finite Number Of Coordinates) (Denumerable Number Of Coordinates)

FIG.5 PARAMETER SPACE DESCRIPTION OF A NONLINEAR
SYSTEM.

-38-



With this metric, a complete linear function space is commonly called a

"Hilbert space". Note that while p is a functional in the output space,

it is an ordinary function of the parameter space coordinates. This is of

the utmost importance so far as the computational aspects of system

identification are concerned.

One reason for choosing a Euclidian metric is that a considerable

body of knowledge exists relating to Hilbert spaces. However, an even

more important reason from the point of view of this research program is

that the L2 metric yields a set of linear simultaneous equations in the

process of iteratively deducing the system parameters from response data.

It will be shown in subsequent reports that this is the only metric which

has this property. Since nonlinear simultaneous equations are very difficult

to solve even by computer methods, this feature of the L2 metric makes its

use almost mandatory in some of the computational procedures to be described

in the sequel to this report.

4.4 Experimental Evaluation of Parameter Space Coordinates

.The parameter space method begins with the specification of a finite

dimensional parametric model for the system under test. For example, the

behavior of the system described by equation 43 is completely determined

by the specification of a four dimensional parameter vector, c

c c
c 2 c 2 ,

c - (45)

c3 G(O)

G(O)
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In the event that a forcing function with certain unknown parameters were

present, the dimensionality of this Vector would be increased. Having

established a model, experimental observation of the system output may

begin. When a sufficient length of record has been obtained, pay

0 < t < T , the identification or inference process described in the

following paragraphs may be initiated.

For the most general sort of nonlinear system, the parameter

space identification can be accomplished by an iteration procedure

utilizing a metric in the output function space. The process begins

with an initial guess for each of the coordinates of the parameter

vector, c . This guess may be generated either by a computer as part

of the inference process or it may represent the best estimate of a

human investigator. Let this vector be denoted by c1. Furthermore,

let the true parameter vector be denoted c and the observed system0

response be y0 (t) . Associated with the vector c will be another

response, yl(t), which can be determined by a computer. When this has

been accomplished, the distance between the two functions can be computed

by evaluating the integral:

S2 (yo, Y )- [Yo(t) _ yl(t)J dt = 0(7l; Yo) (46)

This notation emphasizes the fact that while p is a functional in the

output space, it can be equated to a simple function, $ , defined over

the parameter space for a given set of data, yo * Such a function is

usually called a "criterion" or "objective"' function in the terminology

of mathematical programming Q+3,44).
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Since 0 can be evaluated for every c , partial derivatives can

be determined in the parameter space yielding a gradient:

ýc 1

Vn

ýc n c C c1

This gradient can serve as a guide in choosing a new set of parameters

S= 0 + A (48)

such that

O(C 2 YO) < O(c1 ; Yo) (49)

Since for an arbitrary parameter vector, c

( o= p2 (y, y) 0 0 (50)

it follows that when equation 49 is satisfied at every stage of an iteration,

the resulting sequence, 101' 02' - 0k .'') must converge to some limiting

value, say 0 . Under ordinary circumstances, the corresponding sequence

in parameter space will also converge to a limiting value, say c = c

ee
When this occurs, the limit vector, c e, provides an "estimate" of the

true parameter vector, co Specific algorithms for obtaining the conver-

gence specified by equation 49 are being developed as part of the continuation

of this research program.
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Figure 6 summarizes the steps involved in the experimental determina-

tion of the parameter space coordinates of an unknown physical system. In

the actual implementation of such an experiment, all operations could be

performed by a general purpose digital computer with analog inputs. However,

in many circumstances it would be preferable to construct the block labeled

"computer model" on an analog computer under the control of tho digital

computer.

4.5 Local Minima and Non-uniqueness

The conceptual and experimental simplicity of parameter space methods

is not achieved without penalty. Aside from the fact that the method requires

considerable apriori knowledge concerning the system under test, there are

certain computational and mathematical difficulties involved. First of all,

equations 49 and 50 do not guarantee that 0(-e ; y) = 0 . It may turn out

that C - C represents merely a stationary point for the function 0 ine

the parameter space. That is, the computed response, y e(t), may represent

the data very poorly even though a small change in any parameter makes the

fit even poorer. When this is the case, correct identification of the system

under test requires that a more sophisticated search be carried out in the

parameter space to locate the absolute minimum of 0(cc y ) rather than

a simple stationary point. This problem will also be explored as part of

this research program.

In addition to the local minimum problem, there is a more fundamental

difficulty associated with parameter space methods. Since it is not assumed

that a special test signal can be applied to the system to be identified,
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there is no guarantee that the mapping shown in Figure 5 is one-to-one.

It may, in fact, be many-to-one. A single example suffices to show this.

Suppose that the system under test is an unforced linear time invariant

system with an observed time response resulting entirely from unknown

initial conditions. In such a situation, it is possible to select initial

conditions which excite only one normal mode of the system. This boing the

case, all systems possessing this particular mode are indistinguishable

from. one another when so excited.

Abstractly, the non-uniqueness property of parameter space methods

may be said to result from the fact that the metric used for iteration is

in the wrong space. Let the ordinary Euclidian distance associated with the

parameter vector space be denoted by

n

Pp ( ) - ckii~l

Then what is really desired is a computational algorithm which will guarantee

p (C0 , ) (o 0 ck) (52)

Unfortunately, p p , 0 c) cannot be computed from an observation of the

response functions yo(t) and Yk(t) associated with cOand respec-

tively. Instead, it is necessary to base iteration upon the computable

function space distance, p(Y' Yo), given by equation 46. Now in the

absence of measurement error, if equation 43, for example, is indeed an

exact description of the system under test, it does follow that p(yo, y)t O
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is a necessary condition for ( ' kok)- 0 i.e., for ak - 0

However, as the example discussed previously shows, p(yo0  yk) -- '0 is

not sufficient to ensure that ek co . In order to make p(yo , yk) -- 0

a sufficient condition, it is necessary to restrict the region of parameter

space to be explored to a subspace S in which the mapping is one-to-one.

The determination of suitable subspaces by purely mathematical techniques

is apt to be extremely difficult in the majority of situations. It seems

more likely that such regions would be determined by a preliminary computer

investigation of the properties of the particular parametric model under

investigation.

4.6 Effects of Noise, Measurement Errors and Imprecise Models

For any one of a number of reasons, the computer solution for y(t)

may fail to correspond exactly to the measured response data even when the

correct values of the system parameters (* - Zo) are used in the calculation.

Among the major contributors to this situation will be measurement errors,

random noise internally generated by the system under test, and the use of

a computer model which ignores some of the more subtle effects influencing

the actual physical system. In such circumstances, the minimum value of

the distance function 0(• ; ) over the permitted subspace S will be

greater than zero and the parameter vector, ce t associated with the minimum

will represent a "least squares estimate" of the true parameter value, co

The optimal quality of such estimates may be shown in a varity of circumstances

(34,45).
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4.7 An Alternate Criterion Function for the Evaluation of Parameter

Space Coordinates

The distance function 1(• ; y is computed by an implicit procedure

requiring solution of the assumed system differential equation. It is

possible to use another distance which can be defined explicitly in a

parameter space. Suppose that the experimental observation of a system

to be identified is carried out in such a way that values are obtained for

all derivatives up to the nth, the order of the systems. Furthermore,

suppose that the system description can be written in the form

S- 0 (53)

where y is the conventional phase space vector, ( -y, , "Y, " ( )

and a represents the m remaining parameter space coordinates (to be

determined). Thus

-0a 0
( ) + ( (54)0 y

where y is an n dimensional vector and a is a vector with dimensionality

m . If y can indeed be measured without error, then equation 53 must hold

for the observed data; i.e.

.00FCOIO 0 (55)

This equation must be satisfied for all values of time in (0, T) . Utilizing

this fact, an objective or criterion function, 0( ;* o may be defined over

the a space for a given experimental record:

-46-



T
" "Y 0~f F2.(ýa YO t))dt> 0 (56)

In light of equation 53,

*(3o; 7) o (57)

This relationship may be used to calculate ao by iterative methods in

0exactly the same way that the function 0(• ; yo is used.

In an actual physical experiment, it will usually be extremely

difficult to directly measure all of the system derivatives. On the other

hand, attempts to differentiate experimental data several times are likely

to fail due to the inevitable presence of small amounts of system noise

and measurement error. As is well known, these effects are accentuated by

differentiation and may even lead to derivatives which are unbounded in a

mean square sense. Most likely, statistical estimation of the necessary

derivatives will be required to obtain -values for substitution in equation

56. Whatever method is used to obtain derivatives, in the practical situa-

tion the various sources of error will prevent equation 57 from holding

true. Rather, as with the function 0 , there will be an estimator, a

which possesses the property

min *(j , yO) . , (58)

The vector a is a least squares estimate of a in a sense somewhat

e o

different from the estimate obtained using the criterion function 0 . An

analog computer mechanization of equation 58 has been described by Y. Kaya

and S. Yamamura in a paper dealing with the identification of linear
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systems (46). Kaya and Yamamura used identical filtering on all derivatives

to obtain a relation derived from equation 53 which would be satisfied

exactly in the absence of noise. The statistical optimality of their method

was not discussed.

The choice between * or 0 as a criterion function appears to

depend to a large extent upon the relative difficulty of obtaining a suffi-

cient number of derivatives of the system output as compared to solving

the assumed system differential equation with a computer. Clearly, attempts

to minimize ($ by iterative nonlinear programming methods will encounter

the same difficulties as occur in the minimization of 0 . There is one

special situation however, in which the function j appears to offer

significant advantages. When the differential equation expressed by

equation 53 is linear in the parameters a , then according to equation

56, q is a quadratic form in the parameter space. Moreover, ý is pos-

itive definite and therefore has a unique stationary point which is the

minimum existing at a = a , the least squares estimate of a . As a

consequence, the non-uniqueness and local minimum problems associated with

the general nonlinear system identification problem do not occur in this

case. The nonlinear system described by equation 43 is linear in the

parameters 01 and c2 and so furnishes an instance in which the above

statements apply.

It is worth noting at this point that the conventional way of

employing equation 53 when yo(t) is an analytic function (rather than an

experimental function) involves substi:tuting y and its derivatives into

-48-



0

equation 53 at m different values of time., This results in m simultaneous

equations, generally nonlinear, which can be solved for the m unknown

parameters. While this approach has also been suggested as an experimental

procedure, it does not appear to be appropriate due to the difficulties

associated with differentiation of experimental response data (47,48,49).

4.8 Parameter Tracking Servomechanisms

If the minimization of a criterion function is undertaken in real

time concurrently with the unfolding of a real physical process, then it is

possible to devise computational procedures which permit parameter tracking

for time variable processes (4 9 ,50). This approach permits a considerably

simpler model to be used for the short time description of complicated

systems. In most of the work carried out thus far in this connection,

ý analytic methods, (i.e., analog computer methods) rather than algebraic

methods of tracking have been used. As a consequence of this somewhat

unnatural restriction, severe stability problems have been encountered in

attempting to carry out actual experiments. It has been necessary to use

functions of error rather than functionals in most cases to achieve stable

parameter determining loops. For example, M. Margolis found in the investiga-

tion of a simple linear first order system that the parameter determining

loop was necessarily unstable when an integral squared error criterion was

used (50). In contrast to this situation, it is not difficult to devise

algebraic methods for parameter estimation which are always stable. The

development and experimental evaluation of such techniques is being pursued

in the continuation of this research effort.
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The parameter space methods described in this report are of course,

entirely applicable to time varying systems. The variation of parameters

may be accounted for either explicitly by increasing the dimensionality of

the parameter space or implicitly by evaluating the selected criterion

function over a sliding time interval.

5. SU.MMARY AND CONCLUSIONS

The parameter space approach is believed to represent a new point of

view regarding the general problem of system identification. The method is

restricted only by the requirement that a parametric model of finite dimen-

sionality must be provided for the system under test. In contrast to the

Wiener approach, the parameter space method involves the determination of

transformations defined over a finite dimensional vector space rather than

over a Hilbert space. The computational consequences of this difference

are of fundamental importance; by adopting the parameter space point of view,

a problem in functional analysis is reduced to a nonlinear programming problem.

In addition to the computational advantages gained by a parameter space

approach, there is the further advantage that no special test signals are

required as in the Wiener theory. The model for a nonlinear system can be

inferred from normal operating records.

The current phase of this research is directed toward the development

of explicit computational procedures for carrying out the proposed minimiza-

tion of error functionals by parameter space methods. This work will provide

the basis for future reports.

-50-I .t-------- -. -- -



REFERENCES

1. Stout, T. M., "Mathematical Models for Computer Control Systems",
Proceedings of the First International Congress of the International
Federation of Automatic Control, Moscow, 1260, Butterworths, London,
1961, pp. 991-997.

2. Zadeh, L. A., "On the Identification Problem", IRE Transactions on
Circuit Theory, Vol. CT-3 No. 4, pp. 277-281 (December, 1956).

3. Bose, A. G., A Theory of Nonlinear Systems, TR 309, Massachusetts
Institute of Technology, Cambridge, Masi. (May 15, 1956).

4. Eykhoff, P., Process Parameter Estimation, Technological University,
Electronics Laboratory,, Delft, Netherlands.

5. Nyquist, H., "Regeneration Theory", Bell System Tech. Jour., XI.,
pp. 126-147 (1932).

6. James, H. M., Nichols, N. B., and Phillips, R. S., Theory of Servo-
mechanisms, Rad. Lab. Series, Vol. 25, McGraw-Hill Book Co., Inc.,
New York, 1947

7. Fuchs, A. M., "A Bibliography of the Frequency Response Method as
Applied to Automatic Feedback Control Systems", Trans. of the ASME,
Vol. 76, pp. 1185-1194 (November, 1954).

8. Ehret, R. J., et al., "An Automatic Transfer Function Measuring and
Recording System", AIEE Transactions, Vol. 72, Part I, pp. 664-669
(November, 1953).

9. Leonov, Yu P. and Lipatov, L. N., "The Use of Statistical Methods for
Determining the Characteristics of Objects", Automation and Remote
Control (English Translation), Vol. 20, No. 9, pp. 1254-1258 (September,
1959).

10. Kochenburger, R. J., "A Frequency Response Method for Analyzing and
Synthesizing Contactor Servomechanisms", AIEE Transactions, Vol. 69,
Part I, pp. 270-284 (February, 1950).

11. Truxal, J. G., Control System Synthesis, McGraw-Hill Book Co.., Inc.,
New York, 1955.

12. Dudnikov, E. E., "Determination of Transfer Function Coefficients of a
Linear System from the Initial Portion of an Experimentally Obtained
Amplitude Phase Characteristic", Automation and Remote Control (English
Translation), Vol. 20, No. 9, pp. 552-558 (May, 1959).

-51-



13. Levyt E. C., "Complex Curve Fitting", IRE Transactions on Automatic
Control, Vol. AC-4, No. 1, PP. 37-43 (May, 1959).

14. Kardashov, A. A., and Karniushin, L. V., "Determination of System
Parameters from Experimental Frequency Characteristics", Automation
and Remote Control (English Translation), Vol 19, No. 4, pp. 327-338
(April, 1958).

15. Brussolo, J. A., "Pole Determinations with Complex Zero Inputs",
IRE Transactions on Automatic Control, Vol. AC-4, No. 2, pp. 150-166
(November, 1959).

16. Darovskikh, L. N., "Experimental Determination of Automatic Control
Systems Links', Transfer Functions by Means of Standard Electronic
Models", Automation and Remote Control (English Translation), Vol 20,
No. 9, pp. 1180-1187 (September, 1959).

17. Lendaris, G. G., and Smith, O.J.M., "Complex Zero Signal Generator for
Rapid System Testing", AIEE Transactions, Vol. 77, Part II, pp. 534-539
(January, 1959).

18. Huber, E. A., "A Technique for the Adaptive Control of High Order
Systems", IRE Transactions on Automatic Control, Vol. AC-7, No. 3,
pp. 22-29 (April, 1962).

19. Laning, J. H., and Battin, R. H., Random Processes in Automatic Control,
McGraw-Hill Book Co., Inc., New York, 1956.

20. Mishkin, E., and Haddad, R. A., "Identification and Command Problems in
Adaptive Systems", IRE Transactions on Automatic Control, Vol. AC-4,
No. 2, pp. 121-131 (November, 1959).

21. Wiesner, J. B., and Lee, Y. W., "Experimental Determination of System
Functions by the Method of Correlation" presented at the IRE National
Convention, New York, N. Y., March 1950.

22. Aseltine, J. A., et al., "A Self-Adjusting System for Optimum Dynamic
Performance", IRE National Convention Record, 1958, Part 4, pp. 182-190.

23. Turin, G. L., "On the Estimation in the Presence of Noise of the Impulse
Response of a Random, Linear Filter", IRE Transactions on Information
Theory, Vol. IT-3, No. 1, pp. 5-10 (March, 1957).

24. Lichtenberger, W. W., "A Technique of Linear System Identification Using
Correlating Filters", IRE Transactions on Automatic Control, Vol. AC-6,
No. 2, pp. 183-199 (May, 1961).

-52-



25. McGrath, R. J. and Rideout, V. C., "A Simulator Study of a Two Parameter
Adaptive System", IRE Transactions on Automatic Control, Vol. AC-6, No. 1,
pp. 35-42 (February, 1961).

26. Smith, K. C., "Adaptive Control Through Sinusoidal Response", IRE
Transactions on Automatic Control, Vol. AC-7, No. 2, pp. 129-139 (March,
1962).

27. Weygandt, C. N., and Puri, N. N., "Transfer-Function Tracking and Adaptive
Control Systems", IRE Transactions on Automatic Control, Vol. AC-6, No. 2,
pp. 162-166 (May, 1961).

28. Eykhoff, P., and Smith, O.J.M., "Optimalizing Control with Process
Dynamics Identification", IRE Transactions on Automatic Control, Vol..
AC-7, No. 2, pp. 140-155 (March, 1962).

29. Goodman, T. P., and Reswick, J. B., "Determination of System Characteristics
from Normal Operating Records", Trans. of the ASME, Vol. 78, pp. 259-271
(February, 1956).

30. Kalman, R. E., "Design of a Self Optimizing Control System", Trans. of
the ASME, Vol. 80, pp. 468-478 (February, 1958).

31. Joseph, P., Lewis, J., and Tou, J., "Plant Identification in the Presence
of Disturbances and Application to Digital Adaptive Systems", AIEE Trans.
Vol. 80, Part II, pp. 18-24 (March 1961).

32. Kerr, R. B., and Surber, W. H., "Precision of Impulse-Response Identifica-
tion based on Short Normal Operating Records", IRE Transactions on
Automatic Control, Vol. AC-6, No. 2, pp. 173-182 (May, 1961).

33. Solodovnikov, V. V., and Uskov, A. S., "A Frequency Method for Determining
the Dynamic Characteristics of Objects of Automatic Control from Data-on
their Normal Usage", Automation and Remote Control (English Translation),
Vol. 20, No. 12, pp. 1533-1542 (December, 1959).

34. Levin, M. J., "Optimum Estimation of Impulse Response in the Presence of
Noise", IRE Transactions on Circuit Theory, Vol. CT-7, No. 1, pp. 50-56
March, 1960.

35. Gabor, D. "Communication Theory and Cybernetics", IRE Transactions on
Circuit Theory, Vol. CT-l, No. 4, pp. 19-31 (December, 1954).

36. Zadeh, L. A., "On the Representation of Nonlinear Operators", IRE
Convention Record, 1957, Part II, pp. 105-113.

-53-



37. Resa, F. M., An Introduction to Information Theory, McGraw-Hill Book
Co., New York,N. Y., 1961, pp. 315-317.

38. Wiener, N., Nonlinear Problems in Random Theory, John Wiley and Sons,
Inc., New York, N. Y., 1958.

39., Balakrishnan, A. V., A General Theory of Nonlinear Estimation Problems
in Control Systems, Department of Engineering, University of California,
Los Angeles, California (November, 1961).

40. Lory, H. J., Lai, D. C., and Huggins, W. Hý, "On the Use of Growing
Harmonic Exponentials to Identify Static Nonlinear Operators".,
IRE Transactions on Automatic Control, Vol. AC-4, No. 2, pp. 91-100
(November, 1959).

41. Lee, Y. W., Statistical Theory of Communication, John Wiley and Sons,
Inc., New York, N. Y., 1960, pp. 473-476 and 487-489.

42. Kitamori,. T., "Applications of Orthogonal Functions to the Determination
of Process Dynamic Characteristics and to the Construction of Self
Optimizing Control Systems", Proceedings of the First International
Congress of the International Federation of Automatic Control, Vol. 2,
Moscow, 1960, Butterworths, London, 1961, pp. 613-618.

43. Vadja, S., Mathematical Programming, Addison-Wesley Publishing Co., Inc.,
Reading, Massachusetts, 1961.

44. Bellman, R., Dynamic Programming, Princeton University Press, Princeton,
N. J., 1957.

45. Graybill, F. A., An Introduction to Linear Statistical Models, McGraw-
Hill Book Co., Inc., New York, N. Y., 1961.

46. Kaya, Y. and Yamamura, S., "A Self Adaptive System with a Variable
Parameter PID Controller", AIEE Transactions, Vol. 80, Part II,
pp. 378-386 (January, 1962).

47. Staffin, R., "Executive-Controlled Adaptive Systems", AIEE Transactions,
Vol. 78, Part II, pp. 523-530 (January, 1960)..

48. Braun, L., "On Adaptive Control Processes", IRE Transactions on Automatic
Control, Vol. AC-4, No. 2, pp. 30-43 (November, 1959).

49. Potts, T. F., Ornstein, G. N., and Clymer, A. B., "The Automatic Determina-
tion of Human and Other System Parameters", Proceedings of the Western
Joint Computer Conference, Vol. 19, pp. 645-660 (May, 1961).

50. Margolis, M., On the Theory of Process Adaptive Control Systems, the
Learning Model Approach, Report No. 60-32, University of. California,
Department of Engineering, Los Angeles, California (May, 1960).

-54-



PART II: RESEARCH IN OPTICAL COHERENCE

-55-



PART II.

RESEARCH IN OPTICAL COHERENCE

A detailed study of certain aspects of the theory of optical

coherence has been carried out. A major objective of the study is to

obtain criteria for optimizing optical systems employing coherent sources

and amplifiers such as lasers. This is the first in a series of studies

to investigate the effect of various optical system devices such as

antennas, filters, modulators and demodulators, etc., on the coherence

properties of optical signals. The present report concerns itself pri-

marily with spatial and temporal filters.

After defining the weighting function and aperture field distribu-

tion for a spatial frequency filter, the general transfer function for the

spatial filter is defined, with a discussion of the approximations involved.

The weighting function or transfer function concept is then extended to

include both spatial and temporal variations. The weighting function of

the system in this sense is equal to the response of the filter to a

point source in space and a unit impulse in time. An image equation is

then defined which relates the image field strength (as a function of

the spatial coordinates and time) to the object field strength (as a

function of the same coordinates) and the weighting function of the

filter. A generalized coherence function is then defined as a correla-

tion function involving the spatial separation of two sources in space

and the time separation of two points on a signal as well as the space
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and time variables themeelves. Ensemble, time, and space averages are

then defined and it is shown that the dependence of the coherence function

on the origin in space and time can be removed by appropriate time aid space

averaging. This operation yields a coherence function which is a function

of the separation in space and time but not the origin in these variables.

If the process is stationary in these variables, no space and/or time

averaging is needed. A normalized correlation coefficient or correlation

function can then be defined. After these general definitions are made,

ceveral special cases of interest are considered. In particular, the

case where the object field strength is separable into the product of an

object field strength in space and an object field strength in time is of

interest. The special cases of combinations of perfect time coherence and

incoherence and perfect space coherence and incoherence are considered and

the coherence function evaluated for these cases. The image equation is

written for each of these cases and the image function evaluated. It is

pointed out that the problem of temporal partial coherence or incoherence

is particularly difficult to treat because the spatial frequency filter

transfer function is a function of the wavelength and hence of the tem-

poral incoherence. This means that the transfer function of the filter

depends upon the input. Consequently, the general problem is nonlinear

and very difficult to treat. Basically, what is needed to handle this

problem are the general solutions of Maxwell's equations without the

simplifying assumption of a sinusoidal time variation of the driving

function. A first approximation to the solution to this problem was

-57-



made by assuming that the modulation bandwidth is small compared to the)

carrier frequency, which is almost always the case in opti,;s. This

assumption yields a quasi-stationary approach in which the frequency

variations are sufficiently slow so that the response f'cr any given input

frequency will be the steady-state response of the filtor to that frequency.

The overall response is found by summing the responses to each individual

frequency.

This initial study on the coherence properties of opitical filters

will be extended not only to other devices, but will provide a basic

statistical description of the processes to be analyzed in the future.

In particular, the effect of coherence on information ;ontent and rate

will be considered. Ultimately, the optimum system wLll be synthesized

using the criterion of maximization of information rate at le 2irfd

output of the system. The determination of information ratis will be

strongly affected by the coherence properties of the signali§ involved.

The principal effort during this period has concerned itself with

the effects of coherence on filtering. In particular, the effect of linear

spatial and/or temporal frequency filters on optical waves has been inves-

tigated. Optical filters differ from ordinary low frequency filters in

that both spatial and temporal frequency effects must be taken into

account. Let the weighting function G of a spatial frequency filter,

such as an optical antenna, be defined as the response of the filter to a

point target in the far field. It is a function of the ima.e coordinates

x' and the y' , the object coordinates x andy , and of time t • Let
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us temporarily assume that the time variation is sinusoidal and determine

what the spatial weighting function must be for this case. The antenna

spatial weighting function or "spread" function may be related to the

iaperture field distribution across the spatial filter. It can be shown

that the far field pattern arising from an aperture distribution F(g,J)

with nearly uniform phase across the aperture is given by

G(x,y) = njkCe -- g(x,y) (1)

where

g(xy) 1 1 A 2 eJk(xý + y) d dJ (2)
(21t) TA

and R x distance between the aperture and a far-field point

k - 2n/k

The object coordinates x and y are

x - sin Q cos

y = sin 9 sin 0 (2a)

All the object dimensions are given in terms of spherical angular

co rdinates whose origin is coincident with the phase center of the

spatial frequency filter. The object field strength is O(x,y,t) .

Note that the object field strength in general depends not only on the

position of the source in space but also on time. The time dependence

E.ilver, S., "Microwave Antenna Theory and Design", McGraw-Hill, New
)Ybrk, 1949, p. 173, equation 9.
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may.rise from several sources. In the first place, the energy illuminating

the object or the radiation from a passive object will in general be time-

varying so that the object field strength will also be time-varying. Or

if the object is a source, the source field strength will be time-varying.

In addition, the object may be moving so that it will be located at a

different position. at a later instant of time yielding a time depiendence.

This dependence is implicit rather than explicit. The image field strength

I depends upon the coordinates x' and y' along the image surface as well

as on time, where

xt = sin Q' cos 0'

y' = sin @' sin 0' (2b)

Note that equation (2) ia a Fourier transform, that is, the far field

pattern g(x,y) is the Fourier transform of the aperture field

distribution F(F,,I) . Since x and y are spatial coordinates, the

corresponding transform variables kr and kP, have the dimension of spa-

tial frequency. Let us therefore relabel both • and T as

S=•- 2itf
x x

T1w = 2if (3)
y Y

where f and f are spatial "frequencies" which are the Fourier
x y

transform variables corresponding to x and y , respectively. For the

special case of nearly uniform phase across the aperture,. the Fourier

transform pairrelating the far field pattern G(x,y) and the aperture

field distribution F(QJ) is (except for a constant)
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g(x,y) u F(W~ X ) WY Jk(xwx + yw~y) dw dO(2N) JA

F(, g(x,y) + + dx dy (4)

-CD

When thesimplifying assumption of uniform phase cannot be made, the aperture

field distribution F( x , wy) corresponding to the given far field pattern

must be found by solving the integral equation

PXY e= j j '(W , Wy) (Cos Q +• T aY

eJ k(xw x + yw . ) d w()• • d~x y•(5

where is a unit vector normal to the aperture and the s is a unitZ

vector normal to the phase front. Since G(x,y) is the response of the

spatial filter to a point source, the filter has an impulse response

G(Xy) . The transfer function of this filter is then the Fourier trans-

form of G(x,y) or

T(u, u) 'J. 1ýW1

x c I .... [T A Fw tw

-CD

jk(xw +ja) -j(xu +yU
(cos Q+C z • s)e x X dwyd e dx dy (6)

In the special case of nearly uniform phase across the aperture, equation

(6) becomes

Ibid, p. 173, equation 8.
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-TUOD)(k jkR- "j(x + yU)
T(uu O--JkL-Z-- g(xy) • Y dx dy

-JkR= jk e0-- F(Uxu) (7)

R x y

where

u n kw
x

u akc (8)Y Y

Equation (7) shows that to within a constant the spatial frequency transfer

function of the filter is equal to the aperture field distribution over the

aperture of the filter, providing the phase is reasonably uniform over the

aperture. If the phase differs markedly from being uniform over the

aperture, then the aperture field and transfer function are related by

the more general equation (6).

In the more general case where the temporal as well as the spatial

filtering effect of the filter is taken into account, the overall weighting

function of the filter is G(x,y,t) . The function G(x,y,t) is equal to

the response of the filter to a point source in space and a unit impulse

in time, or in other words, the response of the filter is an object

specified by

O(x,y,t) 8(x,y,t) 6(x,y) 6(t) (9)

The corresponding spatial and temporal frequency transfer function is

given by
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T(UU,)I Cj dxdyjO dtG(x,y,t) X + (10)

where

w•a 2f "- kc

This more general weighting function G takes into account both the spatial

and temporal filtering properties of the filter. In order to find the

response of the filter, or the image field streng-th, from an extended

source or object (designated by O(x,y,ýt)), the object field strength 0

is convolved with the weighting function, G . Thus, when both spatial

and temporal frequency filtering effects are taken into account, the image

field strength at the output of a two dimensional linear additive spatial

filter is given by

1 t

I(x',y',t) = dx dy I dc O(x,y,a) Grx'-x,y'-y,t-a] (12)

If a 3 dimensional Fourier transform is taken of both sides of equation (12),

the transform relationship is given by

f[u Jut wJ.-f(ux u I,) VuU I W) (13)
x y x w) ~uw (13

where J is the Fourier transform of the image field strength and &'is

the Fourier transform of the object field strength.

For convenience, let us now restrict outselves to one spatial

variable x(t) . In general, the object field strength will be random and
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will be a function of two independent variables, x and t . The random

process O(x,t) will be completely defined by the following 2N dimen-

sional probability distribution:

P(O) £ p[O(Xlt 1 ), O(x 2 't 2 )''",O(xl'tN);,O(x 2 'tl),O(x2't 2)'.".O(x 2,tN);

• O(xtl), O(xN,t 2 ) .... , 0(X(NtN)] (14)

where 0 represents the 2N dimensional row matrix. For convenience

let

O(xiti) = 0ij (15)

A complete statistical description of the process is usually obtained in

much fewer dimensions than 2N as indicated in equation (14), depending

on the nature of the process. The general "coherence" function will herein

be defined as the correlation function

Ro(AX, At, x,t) = O(x,t) O(x+Ax, t+At) = O(ki,tj) O(Xi+ltj+I)

" jj O(Xit 0()c O(i+l tj+l) P(OijO i+lj+l dOij idOi+lj+l (16)

where

t Ut x i x

t t+ At x A

j+11 -=x+x (17)

The overscore indicates an ensemble average as indicated in equation (16).

Note that the object corr1lAtion function defined in equation (16) is a
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function not only of the space and time difference. A and At respc-

tively, but also of the origin in space and in time x: and t * This is

the mostgeneral case. If R is explicitly a function of x it is said

to be space nonstationary, if it is explicitly a function of t it is

said to be time nonstationary, if it is explicitly a function of both X

and t it is said to be both space and time nonstationary. If the spatial

bounds on the object field strength 0 are + X , and if the temporal

bounds on the object fields time strength are + T , let-us define the

ensemble average of a function g as

OD

gcy(,x,t), x,t) J = f g[y(x,t), x,tJ p [y(x,t), x,t] dy (18)r

-a)

Let us define the time average as

lm T

:g~y(xt), x,t] = i F g[y(x,t), x,t] dt (19)

Let us define the space average as

g~y x~ ), x~ ], lim 1 X
gly(xt), x't] = 1 J g[y(x,t), x,t] dx (20)

S® -X

If the process is time stationary, equations (18) and (19)' are equal.. If

the process is space stationary equations (18) and (20) are equal. If the

process is both time and space stationary, equations (18), (19) and (20) are

all equal to each other. The space-and-time-averaged correlation function,

or coherence function, is then
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I

R Ro(Ax,At) R 0 (hX,At,x,t) (21)

"If the; process is both time-and space-stationary,, then the time and space

averaging indicated in equation (21) are superfluous, since R does not
0,

depend explicitly on x and t in this case. The normalized coherence

function,, or correlation coefficient, is. defined -a.

i ~~~~R (Ax,At,xjt):-ilt~)(2
Ro(xt7 x)- j(x,t ) +1

o j 0 +'tj +l

where

•(xt) = 0(x,t) p [O(tx_,t)1.dO (23)

02 (x,t) . 02 (x,t) p [(x,t)] do (24)

= R (Ax = 0, At = 0, x, t)

a 2(x,t) - O7(x,t) - O(x,t) (25)
0

If the process is time stationary but not space stationary R0 and p0

are not explicitly dependent upon t; similarly, they are space stationary

if they are not explicitly a function of x

Let us consider some special cases of interest. In certain cases,

the function O(xt) is separable as follows

O(x,t) 0(x) O0(t) (26)
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The most common examples of situations satisfying equation (26) are when

the object radiation or reradiationtis monochromatic or the source is a

point source, or both. Thus, for a monochromatic source,, equation (26)

i! becomes

O(x,t) u O(x) Cos w0t (27)

where is the frequency of the monochromatic radiation. In this case

equation (16) becomes

R R(AX,At,x,t) = O(x i) O(x i+) cos (° tj cos Wo t j+ (28)

Note that the cosine function is not affected by the ensemble average since

it is nonrandom. Furthermore, O(x,t) is not stationary in time, although

it has been assumed that the object is stationary in the space variable.

Therefore, a further average must take place in time yielding

R0 (Ax,At) - O(xi) O(xi+1 ) Cos W0 tj Cos W0 tj+1

= O(xi) O(x ) cos W At (29)
22 i+l 02

Note that the coherence function in equation (29) is periodic in T

Coherence or correlation functions which are periodic in T are said to

be "perfectly time coherent" since a time function is perfectly predictable

from a knowledge of its value at any given time. This is true of periodic

functions in general, since they may be represented as a Fourier series,

therefore their correlation functions are a sum of cosine terms of the form

-67-



occurring in equation (29). Any periodic or predictable waveform has

zero bandwidth occupancy, in the sense that although there are many

frequencies present, the set of spectral frequencies is a countable set

of measure zero. In other words, the spectrum consists of delta func-

tions at the various discrete frequencies involved with a net zero measure

for the bandwidth occupancy. From henceforth, then, a time function is

said to be perfectly time coherent if its coherence function is a periodic

function in r

Now let us consider the case where the object is a point target in

space. Equation (26) then becomes

0(x,t) Ab(x-x ) 0(t) (30)

where A is a constant. For convenience assume the process to be time

stationary; then the coherence function becomes

RO ('Xit,x,t) = A 6(x 8ixo) 6(x i+i-Xo) 0(t ) 0(t (31)
0 ±0 il o j j+1

The portion of equation (3N) involving space variables is not random and

therefore a space average is needed to remove the space dependence. Thus

Ro(AxAt) - A20(t)O(t l 1 (xx 0)(-x+Ax) dx

z A 2oft )0(t ~ lim 6 KA2 0(tj)O(to) for Ax a 0
j j-el X- CD 2x-j 0+1

-0 for Ax 0

(32)
where

'I', -2(X) K for Ax &o"xCD 2X -

.0 for Ax 0 (32a)

i i.. -------



The limiting operation in equation (32a) in indeterminate in that both

the numerator and the denominator approach infinity. Assuming that in

the limit this ratio approaches a constant K for Ax a 0 , the space

averaged coherence function is a constant for Ax = 0 and is zero for

Ax 4 0 . This is the limiting case of a periodic function of a space

variable where the period approaches infinity or the repetition frequency

approaches 0 . The function is then said to be "perfectly space coherent.".

In general, if the coherence function is a periodic function of the space

separation 6x , it is said to be perfectly coherent in that variable.

An example of a case where the process is both space and time coherent is

CO~,t) ib(x) coS 'wt (33:)

In this case, the coherence function is:

KA2 o
Ro6(Ax. & ,t) •Tcos Wo~t(4

Note that equation (34) is periodic in both the space and the time variable

and therefore is both space-and time-coherent.

We have now considered a case where the variables may be perfectly

space coherent, perfectly time coherent or both. Let us now consider the

opposite extreme where the functions may be perfectly space incoherent,

perfectly time incoherent or both. Let us again assume that the object

is separable in the sense of equation (26). If the object is perfectly
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space incoherent, the correlationeltween: x1  and x2  is zero except
-

' when x 1 equals x 2 . A. similar argument holds, for perfect time incoherence.

Thus,,the coherence function for a space-incoherent object is

R0 (4xat) - KI6(ax) O(tl)O(t 2 ) - (35)

In equation (35), K1 is proportional 'to the spectral density of O(x)

Similarly, for a temporally incoherent source, the coherence function

becomes

R (&xAt) = O(x,)O(x2) K 26(t) (36)

whe;re K is the temporal spectral density. if the source, or object, is
2

both spatially and temporally incoherent, the coherence function becomes

Ro(Ax,bt) = KIK2 6(bx)6(At) (37)

Thus, if the function is space incoherent it will involve a delta function

with argument Ax :, if it is temporally incoherent, it will involve a delta

function with argument At and if it is both spatially and temporally

incoherent it will involve the product of the two delta functions. In the

most general case defined by equation (16), the coherence function will

be neither periodic nor involve a delta function in either of the variables;

under these circumstances the object is said to be partially' coherent.

It is important to consider the coherence properties of the image

of a spatial and/or temporal frequency filter under thsze,,caircumstances.

First let us consider the case where the object is perfectly space coherent
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and time coherent. Then, substituting equation (33) in equation (12),

and limiting the equation to one space variable only,

1t

1 (x',t)- dX da O(xl) G(x'-xt-a)
1 0

dx, .. dab(x) Cos W a G(x'-x,.t-o)
0

1:VfGxI,te-ax) coo (3 d 8)
00

In a device which is intended to be a spatial frequency filter only, such

as an antenna, it is common to try to make the device as independent of

temporal variations as possible. If this is the case, the weighting

function of G(x,t) is approximately independent of t ; and consequently

equation (38) becomes

I(x',t) d1 x 6(x) G(x-x) cos wot dx = G(x') cos w t (39)
-l 0

The image coherence function for equation (39) is

Ri(x' ,At,x',t) . I(x',t) I(x'+ax',t+At)

G(x') G(x'+Ax')cos w t cos w (t+At) (40)

Averaging with respect to both space and time,

"Ri(Ax',At) - G(x') G(xa+6xI ) os o At (41)

1 2

Since the time-averaged coherence function in equation (41) is periodic

in At ; the image is perfectly time coherent. The
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coherence, function will, in general, be space coherent in spite of the

bandwidth limiting. ffect of the spatial-frequency filter, since the

spatial signal response is known for all x' and is not random. In the

case of the image represented by equation (38), the temporal response

will be perfectly time coherent but its coherence function will not be

periodic with finite period until the steady state is reached. When

r .the transient terms have died out, then the steady-state response of a

linear temporal filter to a cosine wave is another cosine wave changed !in

4 amplitude and shifted in phase. The steady-state is, of course, temporally

coherent. Spatial coherence should not be expected in the sense that the

spatial coherence function will be periodic with finrite period or constant

because there is, in effect, no equivalent steady-state phenomenon in the

spatial domain. The reason for this is that the bounds of integration on

the spatial domain are from -1 to +1 and the concept of steady-state

loses its significance. Let us assume the special Case where the weighting

function is separable into the product of a space weighting. function and a

time-weighting function, or

G(xdt) - G`(x) G (t) (42)x t

For a spatial filter, every effort is made to make Gt(t) equal to one and

likewise in a. temporal frequency filter every effort is .made to make G (x)x

one. The latter proble.i seldom comes up because temporal filters are

usually used on voltages which are pure time functions. Now let us consider

the image function for the case of pure spatial coherence only. Then,

t
I(x"t) P 6(x) Gx(x"-x) dx.j da O(a) Gt(t-d)

Stt
WGx' o da 0(a)Gt(t-a) (43 )
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The coherence function for this' case is

R(Ax(,&t,x 't) G Cx') ( x(' +Ax')
x x

t t1

•1d6 2 drO ý(t1-0) O( 2 -0) G t(a) G t(

* G (X') G (x +&X)I dat dP R (At+(-,t)'Gt(a) G (w) (44)

In general, the image in this case will be coherent in neither space nor

time. Now let us consider the cohecence properties of the image when the

object is coherent in time but not in space.

I(X',t) = J (-1 ) A ('Gx (x I )I Jo w 0(t-a) Gt(a) da (45)

The image coherence function in this case becomes

1

R (Ax',At,x',t) - .fJ O(x)O(y) Gx(x'-x) Gx(x'+Wxi'y) dx dy •

1-
.0 Jo d 0 cos1 0~ -2) co (

fT Ro(X-y) G (x'+Ax6y)' G (x'-x) dx dy
-1

1 l da dP[cos w0(tl+t2 -a-P) + 0os W (At+a-P)] Gt(a) Gt (P) (46)
2 . , -

Thus, even though the object is perfectly correlated in time, the image

coherence. function will not be periodic with finite period except in

the steady state. Notice that in all of these integrations
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the bounds on the.space dimensions of the objeit are -1 toi . The

corresponding Analogous bounds on t should be zero to infinity. It

is-interesting that this definition of the possibility of a transient

F coherence function, that is, one in which coherence is measured after the

signal has been applied for only a finite period of time. It is clear

that if the object covers a finite solid angle instead of the 4 n radians

required to take into account all of the volume of space, the bounds on

the space dimension would be less than from -1 to 1.

Now let us consider the opposite extreme, namely pure space incoherence,

pure-time incoherence and both time and space incoherence Jointly. Assume

that the object is separable in the sense of equation (26) and that the

weighting function is separable in the sense of equation (42). The image

field can then be written as

I(Xt) dx O(x) G (x'-x) da O(x) Gt(t-a) (47) -I't)-"i X -"O

If the object field strength is purely incoherent in both space and time,

then

O(x ) O(x2) - K 6(x -xi) = K b(Ax) (48)
1 2 1 21 1

O(tI) O(t ) - K 6(t -t ) - K 6(at) (49)
1 2 2 2 1 2

The corresponding coherence function for I is then
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the bounds on.the space dimensions of the object are -1 to 1. The

corresponding analogous bounds on t should be zero to infinity. It

is interesting that this definition of the possibility of a transient

coherence function, that is, one in which coherence is measured after the

signal has been applied for only a finite period of time. It is clear

that if the object covers a finite solid angle instead of the 4n radians

required to take into account all of the volume of space, the bounds on

the: space dimension wouid be less than from -1 to 1.

Now let us consider the opposite extreme, namely pure space incoherence,

pure-time incoherence and both time and space incoherence jointly. Assume

that the object is separable in the sense of equation (26) and that the

weighting function is separable in the sense of equation (42). The image

field can then be written as

1 t
I(X' ,t) - J dx O(x) G (x'-x) F da O(a) Gt(t,-a) (47)

-i0

If the object field strength is purely incoherent in both space and time,

then

0(.x,) O(x ) u K6 (x-xl) K, 6(Ax) (48)
2 .1 21 1

O(t) O(t2) =K2 6(t2-t ) -K2 6(at) (49)

The corresponding coherence function for I is then
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Ri R(Ax' At'x't); - dx dy 0(x)O(y) G x(Xl-X) ax(X,',-Y)

t 1 da • dP Oct-c) Oaýt Gt(C) 0-t(0)
i2 l

1-1 z dx K a G(xI-) d G(O(0

It is interesting to consider the case of a spatially-incoherent or diffuse

source which emits monochromatic radiation. In this case the image field

strength becomes

1t
I(x',t) f dx O(x) G (x'-x) o da Gt(t-a) Cos W 0 (51)

If the temporal characteristic of the spatial frequency filter is a very

broad compared to the spatial attenuation characteristic,

Gt (t) - 6(t)

The image field strength in this case is

I(x',t) = cos Wot I dx O(x) G (x'-x) (52)

and the coherence function is
1

Ri(Ax',At,t,x') =cos Wot cos W0 (t+&t) dx dy
-l

0 Ox =O(y GxlX-X) G x x, +Ax'-Y)

K1 cS o0t Ccos wo(t+at)ý G (x'-x) :a.(x'+ax'-x) dx (53)-7
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The corresponding mean square value for the image, sometimes called the

image intensity, is

2o' '(dt r aixii-x) dx(54)I (x' ,0t) XKcs

Similarly, when the object field strength is spatially coherent and

temporally incoherent, for example,. when the object is a point source

emitting white noise, the image field strength, coherence function and

intensity or mean square value are, respectively,

I(x',t) - G (X') 0(a) O)G t-(tx-) dc (55)x JO

R~~~~~~ ~ ~ 0 A"txt X)GX~lal a d

O(tl-aC) O(t 2-0) Gt(a) G•(•) =

t
G(x) G.(x'+Ax') X Gt(a) G (At+a) da (56)

12 - G2 (J' 02 t
x2 aG' x G2 (a) da (57)

Equations (54) and (57) illustrate the often-mentioned fact that image

intensity is proportional to the integral of the square of the weighting

function of the spatial filter for incoherent sources.
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Before the advent of the lasert most optical problems made 'use of

intensity relationships such as those in Equations (54) and (.5Y-t !Wh..

the possibility of nearly coherent or at least partially coherent light,

however, coherent optics,,ust be considered, and their coherence properties

can be measured and evaluated as has just been illustrated.

It will be observed' that this weighting function G(x,t) which is

the transform 'of the s:patial frequency filter transfer function in equation

(7) is a function of the wavelength (k;= 2n/X) . Thus, the spatial

weighting function is dependent on the temporal frequency of the input.

This means that G in equation (1) is a function of X and, consequently,

so is the image field strength I . This frequency dependence must be

taken to account when the input or object field strength is temporally

partially coherent, that is, has a finite temporal bandwidth. In such a

case, the time-varying portion of the object field strength canalso be

written as a function. of wavelength or frequency by means of the Fourier

integral theorem. Thus,

]. J 2,TB t0 (t) Ot0 e't d

Ot(t 2n - 2 nB t

1 2B e(t)z
du Ot(z) e dz (58.)

2 -2OD -o

where

2i- c =1kc (59)
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Qt(t) is then a function of the spectral bandwidth B , and' if the

spectral bandwidth consists only of discrete lines, and the integral in

equation (58) reduces to a Fourier series which involves the various.

frequency components in the series. Strictly speaking, the basic Fourier

transform pair, equations (7) and (8) were derived from Maxwells: equations

on the assumption that the time Variation of the driving function in the

wave equation was sinusoidal and is only a steady state solution. To be

strictly rigorous, these equations should be solved for the' case when the

input is not sinusoidal, but rather as represented in equation (58), that is,

when the driving function for Maxwell's equations is not sinusoidally

time dependent, but rather a spectrum of frequencies. The image time func-

tion in the steady state can be found as the sum of the solutions to the

various frequency components emitted by the object by employing equations

(7) and (8) for every frequency component and then summing the outputs,

providing tlfe filter is linear. This procedure does not in general lead

te a Ctosed form solution and furthermore does not yield the transient

response. If the modulation bandwidth is very small compared to the carrier

frequency, which is almost always the case in optics, the weighting function

of a spatial frequency filter can be thought of as being the response to an

input sinusoid which is frequency variant. This is analogous to the so-

called quasi-stationary approach used in f-m. It is assumed that the

frequency variations are sufficiently slow so that the response for any

given input frequency will be the steady state response of the filter to

that frequency from which the over-all response is found by summing the

responses to each individual frequency. This sum becomes an integral in
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I the limit of A continuous frequency variation. With t hese approximations

F in mind, employing equations (7) and: (8), the response of the filter to a

point source (for example, at the origin in space) ,and a sine wave of

frequency w in time is

H(xytO). ! H(xy•w) el

jut -- j (x•+fly)
Jwc e l• F(gqt) e dg dj

jKt j_ 
_ 

R

,nUwe e c g(xý,y,) (60)
C Rt

In order to apply equation (12), however, the function G(x,y,t)

which is the response to a unit impulse in both time and space must be-

found. Since the temporal weightini function is simply the integral of

the steady state response to a sinusoid in time over'all frequencies, the

function G can be found from H(x,y,t,w) in equation (60) as follows:

G(x,y,t) O D H(x,y,w) ej~t dw (61)

Equation (12) then becomes
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lx, ',t) 'y,oYi) O(tla) .

= , J)d y u~,~ f j~~

fi

" R__ g(x'-x,'.-y,0)) (62)

where

g(X,y,W) = -, f F(9,1) e C d( dlj (65)

If the modulation bandwidth is extremely small compared to the, carrier

frequency, to a first approximation the weighting function in equation

(60) becomes independent of frequency w in the sense that w is equal

approximately to a constant. In this case, the spatial weighting function

is independent of time, that is, there is no temporal filtering by such

Sa filter. The evaluation of the integral (62) is clearly difficult.i

Even equation (62.) does not apply if the modulation bandwidth of the

object spectrum is an appreciable fraction of the carrier frequency.

When these expressions are invalid, the general expression for the image

is even more complicated. Because of the difficulties associated with

time incoherent signals, the principal effort for this report has been

with temporally coherent sources but with any degree of spatial coherence.
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Work is currently under progress to evaluate information rates under these

conditions.. Once the information rate has been evaluated, it can be

maximized with respect to the variable parameters of the filter, thereby

optimizing- the filter.

Work for the forthcoming period will include an investigation of

the difficulties associated with temporel incoherence and an attempt to

evaluate information rates for signals which are partially time coherent

I as well as partiallyispace coherent. Investigation will continue into

the behavior of devices other than filters in an optical system, and

particularly the effect of these devices on coherence and information

rate. Included in this study will be the effect of receiver noise added

after spatial frequency filtering, that is, in addition to the background

noise present in the image. The effect of nonlinear operations will also

be considered, especially simple nonlinear algebraic operations such as

encountered in modulators and demodulatorsi
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