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X-BAND SEMICONDUCTCR SWITCHING AND LIMITING USING WAVEGUIDE SERIES TEES

V. J,» Higgins

DA Task Nr. 3A99-21-001-03

Abstract

This report describes a new microwave semiconductor switching technique
X-band. This technique uses various types of varactor diodes operating in a
serles mode. Series mode switching is obtained by cascading several E-plane
tee junctions. ZEach tee is terminated in a fixed tuned crystal mount. A
diode when inserted in its holder is spaced in an integral hslf guide wave-
length from the junction of the series arm and the main waveguide, and each
series arm is separated by odd integers of quarter wavelengths. TIsolations
of 30 to 48 db and insertion losses of 0.3 to 0.8 db have been obtained at
a frequency of. 9375 Mc/ 8. Details of a semiconductor X-band power limiter
are given. The limiter consists of the same configuration as the switch
except that it is not externally biased. Isolations of 20 to 30 db over a
bandwidth of 180 to 250 Mc/s and insertion loss of 1.2 db and less over a
500 Mc/s bandwidth were noted.
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X-BAND SEMICONDUCTOR SWITCHING AND LTMITING USING WAVEGUIDE SERTES TEES

INTRODUCTION

The fact that the impedance level of a semiconductor diode can be
varied by the application of a bias voltage has led to the use of semicon-
ductor diodes in rf switching arxd limiting applications. The use of semi-
conductor diodes to control the leyel of mlcrgwave power transmission has
been detailed in the literature.l 1-6,9-1

Insertion of a diode in a waveguide or cther transmission line results
in attenuation and transmission of rf power incident upon the diode. Attenu-
ation of the power incident upon the diode is-achieved by reflection or
absorption, or both. When. rf power is transmitted past the diode with little
loss, the ratio of power incident upon the diode to power transmitted past
the diode is termed insertion loss. Similarly, when rf power is attenuated
by the diode with little transmission, the same ratio is termed isolation.

The level of rf power transmission is controlled through the application
of forward and reverse bias potentials to the diode terminels. PFor a parti- |
cular diode, the bias requirements will depend upon the semiconductor material ‘
(i.e., silicon, germanium, or gallium arsenide), the frequency of operation,
and the transmission line environment. For example, a semiconductor diode
shunted simply across the center of a waveguide at 9000 Mc/s is usually
biased in the forward direction to obtain & high impedance, zllowing trans-
mission past the diode with little loss, and biased in the reverse dtrgciion
to obtain a low impedance, preventing transmission past the dlcde
At 1000 Mc/s this is not necessarily the case. With the same diode now
shunted across & transmission line of lower characteristic impedance (coaxial
or stripline), a8 forward bias results in a low impedance and a reverse bias
results in a high impedance. The bias requirements for transmission and
ettenugtion of incident rf power are now the opposite of the X-band case.
This is primarily due to changes in the frequency dependent parasitic react-
ance gtitributed to diode lead inductance and package capacitance and to
capacitive reactance changes in the transition region or barrier layer
capacitance.

At frequencies in the X-band region (8.2 - 12.% kMc/s), particularly
9300 Mc/s, the simplest form of the semiconductor iw1tch consists of a diode
shunted across a wavegaide along the guide axis. The operation of
the diode in this simple form of switch can be explalned qualitatively by
referring to the assumed diode equivalent circuits of Fig. 1.

In the equivalent circuit the nonlinear capacitance of the diode, in
this case a varactor, is attributed to transition region or barrier layer
capacitance. This capacitance is predominant over any diffusion capacitance
arising from minority carrier storage.2»919 The barrier layer capacitance
as & function of voltage is defined approximately as

C;(b) = G /

(1)



where C, is the zero bias barrier capacitance, $ is the comtact or "built-in"
voltage of the barrier and is a function of semiconductor doping with impuri-
ty atoms. For abrupt junctions, e.g., alloy Jjunctions, point contact diodes,
n is two; for graded junctions, e.g., diffused mesa types as in most
varactors, n is three.

The application of a forward bias voltage greater than the contact or
barrier potential @ will effectively short the barrier. For this bias con- .
dition, the dicde equivalent circuit is an R-L circuit shunted by the package
capacitance. In the absence of conductivity modulation, R is simply the
spreading resistance Ry, and I% is the lead inductaunce. The diode impedance
is then:

Ls _ 4R !
Co wCp .
(2)

Rt y(ws -,)

Z,

If the parameters Lg and Cy are such that antirescnance occurs, thai is
/ D . P . .
w Lg = AJCP,’me diode impedance Z, is simply

23; = .fli (3)

o~ 7.-—1.. .
%5Co w Co

For an antirssonant frequency of 9300 Mc/s, the ratio LS/CD is 30 kilohms
and the diocde impedance is wvery large for small values of Ry. Thus, trans-
mission of incident microwave power is achieved with little loss, for if the
diocde impedznce is much larger than the characteristic impedance of the
standard X-band waveguide, power division between the matched waveguide load
and the diode is small.

Consider now the semiconductor diocde piased in the reverse direction.
This negative bias results in a large barrier resistance which is shunted by
the capacitive reactance of the barrier layer. The diode eguivalent circuill
is now a series R-I~C circuit shumted by the vackage capacitance. Ry is the
spreading resistance, Lg is the lead ihductance, and Cp is the barrier layer
capacitance. The .impedance of the negatively biased diode is

) / ‘
R~y (wis — E&;f-y))
7‘0.)C,a

A +'7'[w£5 —(‘E%}-ﬁ'cﬁm)] (&) -

ZD

If the negative bias is such that the lead inductance resonates with the i
barrier capacitence Cp(-v), that is, Wis = {Aﬁjgéﬁvg the expression for
diode impedance (Z,), reduces to:

2 - 1



Z=R{U~-juCR) (5)
RE& X2,

For a series resonant frequency of 9300 Mc/s and a lead inductance of
3 nanchenries, the zero bias capacitance of the diode must be of the ordexr of
0.2 to 0.4 picofarads. Then from Equationm (1), it is evident that a proper
value of negative bias will reduce the zero bias capacitance to a value vhere
series resgomance occurs. In this resonant condition the diode impedance Zd’
Equation (5), is very small. Thus, microwave power incident upon the nega-
tively biased diode is mostly reflected with little absorption, and high
isolation is achieved.

It must be pointed out that while the simple theory of operation out-
lined above gives correlation between experimental and predicted results, the
correlation is unique to dicdes, such as the silver-bonded germanium varactors,
whose parameters satisfy the rescnant conditions specified (Table I). Other
diodes, such as silicon diffused junction varactors (Table I), whose para-
meters do not satisfy the resonance requirements, have been used in this
simple switching mode and have given good experimental results. However, an
extension of the same analysis for nonresonant conditions in the package and
Junction fails to predict with amy reasonable degree of accuracy the experi-
mental results cbtained. The reason for this discrepancy is as yet unknown,
but it 1is believed due to a difference between the assumed and actual diode
equivalent circuits as seen by the incident microwasve energy.

The simple model of a diode shunted across a waveguide is an example of
shunt mode switching one of the two basic modes of semiconductor switchiang
operation; the other being appropriately the series mode. In the simple mode,
as described, a diode is inserted across a transmission line of characteris-
tic impedance Z, in paraliel with maitched load and generator impedances. In
the simple series mode, the diode is inserted in the same transmission line
in series with matched load and generator impedances (Fig. 2).

The following will describe a three-element limiting and switching con-
figuration, operating in a series mode at a center frequency of 9375 Mc/s.

THE SWITCH SERIES

Design

A photograph of the three-element series switch is showm in Fig. 3. The
switch consists basically of three series arms (tees), each arm containing a
erystal mount terminated by a shorting plate exactly one-guarter of a guide
wavelength behind the crystal seat. Bach series arm is separated by quarter
guide wavelengths along the main guide. This antiresonant spacing makes the
isolation of each of the three diodes almost additive. For this particular
configuration, the separation between each series arm, along the main guide,
is 5>1y4i where Ag is L.48 cm or a frequency of 9375 Me/s. In each series
arm, the crystal seat is a distance of ruls/é, where N is any integer, from
the junction of the main guide and series arm.

3
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If it were possible to move the shorting plate to the crystal seat, a
nominal half wavelength from the waveguide junction, the plate would be
translated to the wall of the main guide effectively shorting out the series
arm. This would be almost as if no series arm existed and microwave energy
would propagate down the main guide with little insertion loss. 20

Similarly, a perfect open circuit across the guide at the crystal seat
would be translated to the wall of the main guide as an infinite impedance.
This would have the effect of cutting off all the main guide lying to the
right of the waveguide junction, providing almost infinite isolation. (This
assumes incident power propagates left to right) If at the crystal seat, an
instantaneous change belween open and short circuits were obtainable, an ideal
switch would be realized.

The use of semiconductor diodes readily lends itself to the microwave
circuit described above. It has been shown how the impedance level of a semi-
conductor diode in a weaveguide environment at a frequency in the 9 ko/s
range will change with sudden changes in the applied bias. It has been re-
ported that the time required for a diode to switch between high and low_ _
impedance states, as the bias is suddenly changed, is a few nanoseconds.s’L6

Operation

The operation of the three-element series switch is the reverse of the
simple shunt mode operation. In the series switch, diodes are inserted in
each series arm and biased negatively to obtain transmission, and biased
positively to prevent transmission.

Silver-bonded germanium varactors of Japanese manufacture, and silicon
diffused junction varactors of the MAUSO-type were tested for switching
action. The characteristics of these diodes are listed in Table I. In this
particular series configuration, the better switching performance was ob-
tained using the silver-bonded germanium varactor diodes. The parameters
of the2 silver-bonded diodes fully satisfy the resonant conditions described
in the simple shunt mode operation, based on the assumed diode equivalent
circuit. When forward biased, the diode equivalent cirecuit becomes an R-1L
circuit shunted by the package capacitance. Since wlg = l/a) » the diode
is essentially a loaded tank circuit of high impedance which will, to a
great degree, prevent transmission of microwave power. When reverse biased,
the diode eqguivalent circuit is an R-I-C series circuit shunted by the
package capacitance. The diode is usually biased negatively to the point
where‘l/u)CB(-V) = WLg. Then the diode equivalent circuit in this resonant
condition is simply Rg, the spreading resistence, shunted by C,, the package
capacitance. The net result is a low impedance circuit which Zllows trans-
mission of microwave power with little loss.

Figures L and 5 show isolastion and insertion loss as & function of fre-
quency for the diode series switch. The data of Fig. 4 illustrates typical
switching performance obtained using GSB2 silver-bonded germanium varactors.
Insertion loss lower than that of Fig. 4, of the order of O. 25 db, is obtain-
able at the expense of a decrease in isolation of a few db, and with a
nerrowing of 10 to 15 Me/s of the 20 db and 30 db isolation bandwidths.

l‘. }



Figure 5 shows the series switching performance vsing selected silicon
Junction varactors. These units were selected by testing each diode individ-
ually for switching ratio, i.e., ratio of isolation to insertion loss. In
the shunt case for best switching performance, diodes with low junction capac-
itance and high cutoff frequency were found to have best switching ratios.

Any similar basis for choosing silicon units for acceptable switching action
in the three-element configuration was wmsuccessful and the empirical approach
described above had to be used.

In Fig. 5, the peak isolation occurs at a freguency of 9450 Mc/s > 15 Mc/s
greater than the design frequency of the three-element configuration. This
shift is attributed to a susceptance introduced by the back plate in each
series arm which, at the design frequency, is exactly & quarter of z guide
wavelength behind the crystal axis. This susceptance varies rapidly with
frequency. It is believed that this susceptance interacts with the diode
admittance such that for the silicon wnits, with their higher package capaci-
tance, peak isolation is attained at 9450 Me/s rather than at the design
frequency of 9375 Mc/s. This may also explain the narrower bandwidths ob-
tained with the silicon vearactors.

In the meesurement of isolation and insertion loss versus frequency, the
incident power level was 500 mw CW using the GSB2 diodes. The GSB2 is rated
as capable of dissipating 500 mw. However, VSWR measurements indicated that
in this particular mode of operation, 50 to 60 percent of incident power is
absorbed so that as a safety factor, the incident power levels -were restricted
to upper levels of 500 mw CW. :

The silicon units with 6-volt breakdown voltages are rated as capable of
dissipating 250 mw and were tested at 250 mw CW incident power levels.

Also tested at 250 mw were the GSBlA and GSBLB silver-bonded varactors
with 6-volt breakdown voltage ratings. The performance of these diodes is
illustrated in Fig. 6.

LIMITER OPERATION

The three-diode series switch has been successfully operated as a passive
microwave power limiter for CW input up to 650 mw. The use and operation of
the three-element switch correspond with Garver's criteria "... that any dicde
switch providing high isolation with diode conduction will function passively
as a limiter. Iow rf power does not cause significant diode conduction, while
high rf power results in conduction which changes the diode impedance, in-
creasing the attenuation."15

By short-circulting the diode biasing terminals of the three-element
switch, & relatively flat limiting characteristic has been obtained. Using
three silver-bonded diodes, the output power is limited to 1.8 mw for an
incident power of 500 mw CW, as illustrated in Fig. 7. The output character-
istic of Fig. T, while not perfectly flat, shows an increase of only 0.7 mw
in output for an increase in input power from 10 to 500 mw. For the same
three diodes, Fig. 8 demicts the frequency dependence of the limiter showing
& peak isolation of 24.6 db with a 20 @b isolation bandwidth of 207 Mc/s.
The low-level insertion loss at 250 microwatts is less than 0.6 db from
9.1 to 9.45 Ge/s rising to 1.2 db at 9.6 Ge/s. Other units have been tested
which give & low~level insertion loss of less than 1.05 db over the whole

5



band for ioss of 1 db in lsolation, and a slight narrowing of the 20 db band-
width. This case Is illustrated in Fig. 9.

A technique, giving limited output power at levels lower than can be
obtained with the three-diode limiter just described, is available. This.
technique utilizes the rectification properties of the silver-bonded diode
which is reported to have a rectificablon ratio of 1 .19

The diode first seen by the incident microwave energy, diode A in
Fig. 10, is inserted in its mount in a direction opposite to the direction
of insertion of diodes B and C. The diode terminals are then comnected to
each other. Measurements indicate that most of the incident microwave energy
is absorbed in diode A, giving rise to a substantial rectified current which
at 500 mw of input power is as high as 10 ma. Since diodes B and C have been
inserted in their respective mounts in a direction of "easy current flow," the
current from diode A biases diodes B and C into forward conduction. In this
state, each diocde represents a high Impedance and if driven deep enough into
conduction to a point where resonance occurs, the diode impedance can be very
large. Thus, at incressed input power levels (200-600 mv) the large diode
impedance tends to maintain a low output power level, but not a flat oubput
characteristic.

Figure 11 depicts the oubtput charecteristic for this type of limiter with
the output power limited to 1.1l mw for 650 mw of input power. The freguency
dependence of the limiter is illustrated in Fig. 12. A peak isolation of
30 db with a 20 db isolation bandwidth of 245 Mc/s is shown. The low-level
inservion loss is less than 1.0 db from 9.1 to 9.45 Gc/s, rising to 1.4 db
at 9.6 Gc/s. This form of the three-diode limiter gives higher peak isolation
and broader 20 db bandwidths at the expense of an increased insertion loss.

SUMMARY AND CONCLUSIONS

The purpose of this report was to describe a technigue for achieving
series mode switching and limiting at X-band, using semiconductor diodes in a
wavegulde structure. Switching was achieved by the application of forward
and reverse bias potentials to the diode terminals. When operated as a switch,
the three-element configuration provided high isolation and low imsertion loss,
using either silver-bonded germanium varactors or silicon Jjunction varactors.
The better switching performance, i.e., higher isolation and lower insertion
loss over wider bandwidths was obtained using the silver-bonded germanium
diodes. '

The three~element series configuration has also functioned passively as
e microwave power limiter. Good limiting action was attained only when
silver-bonded germanium units were used. This can be attributed primarily
to the low voltage at which these diodes enter conduction (approximately
0.3 volt) and the diode parameters which allow resonant operation. The sili-
con units enter conduction at approximately 0.8 volt and have higher package
capacitance; O.Me;wf, precluding rescumant operation inm the 9 to 10 Gc/s
region.

If the lead inductance of the silicon units were reduced to 0.7 nano-
henries for the same package capacitance of O.h-;;ﬁ} resonant operation in
the 9 to 10 Gec/s region could be achieved. However, due to the higher con-
tact potential of silicon, the threshold of limiting would be higher and the
output power as a function of input power would resemble the curve of Fig. 3,

6



in Reference 18.

One of the principal disadvantages of this series mode of coperation is
power absorption. Most of the incident microwsve power is absorbed within
+the dicdes. Thus, for reliable operation, incident power levels must be
restricted to levels lower than the dissipation ratings of the particular
type diode being used to prevent diode burnout.

The effect of harmonic generation has not been investigated. It is
believed that this effect would only become serious in the case of the
limiter at the higher power levels. Thus, if the harmonics were removed by a
filter, the isolation at the fundamental frequency would be enhanced.
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