"Production Engineering Measure (PEM) in accordance with Step I of Signal Corps Industrial Preparedness Procurement Requirements No. 15, dated 1 Oct. 1958 for Gallium Arsenide Varactor Diode per Specification SCS-128, dated 2 March 1962 and Modification #1, 2 May 1962"

THIRD QUARTERLY PROGRESS REPORT

December 1, 1962 - February 28, 1963

Submitted to:

RD-405-775

Industrial Preparedness Activity PEM and Facilities Procurement Branch U. S. ARMY ELECTRONICS MATERIEL AGENCY 225 South Eighteenth Street Philadelphia 3, Pennsylvania

> Contract No. DA-36-039-SC-86736 Order No. 19058-PP-62-81-81

SYLVANIA SEMICONDUCTOR DIVISION

Woburn, Massachusetts

Prepared by: 2 Bakin T. Baker Device Engineer Isine Approved by: eldman Project Coordinator wei Edited by: H. Bower Mgr. R and D

Contracts

- i -

TABLE OF CONTENTS

.

.

			Page No.
Title	Page	•••••••••••••••••••••••••••••••••••••••	i
Table	of Cont	ents	ii
List o	of Figure	58	iii
Abstr	act	•••••••••••••••••••••••••••••••••••••••	iv
Purp	ose	• • • • • • • • • • • • • • • • • • • •	v
1.0	Narra	tive and Data	1
	1.1	Diffusion	1
	1.2	Ohmic Contacts	5
	1.3	Mesa Formation	6
	1.4	Packaging	12
	1.5	Engineering Samples	16
2.0	Conclu	usions	18
3.0	Progr	am For Next Interval	19
4.0	Man H	lours of Work Performed	21
5.0	Visits		22
APPI	ENDIX A		23
		Corps Technical Requirements SCS-128, ch 1962	
APPI	ENDIX B		24
	Data f	or Engineering Samples submitted this Quarter	

LIST OF FIGURES

د و دروه همو الارد ماه والارد الاردو مرد وارد و

.....

Figure'No.

Page No.

1	Ga As Surfaces With and Without Arsenic Pressure During Diffusion
2	Capacitance Versus Voltage Dependence For Elemental Zinc, Zinc-Arsenic and Zinc-Gallium Diffusion Source 4
3	Mask Used In KMER Mesa Formation 8
4	Vacuum Chuck Assembly
5	Mesa Alignment Jig
6	2 Mil Mesa Fabricated by KMER Technique (225 X) 11
7	Proposed Ga As Varactor Package Assembly 13
.8	First Ga As Varactor Package Assembly
9	Second Ga As Varactor Package Assembly
10	Project Performance and Planning Schedule

ABSTRACT

Studies to obtain the processes necessary for the high volume production of gallium arsenide varactor diodes are described in this report. These investigations include diffusion, ohmic contacts, junction formation and packaging. A diffusion process utilizing zinc and arsenic as a diffusant source is described as well as a low resistance P-type contact and a successful procedure for a uniform mesa formation.

PURPOSE

The purpose of the work being carried out under this contract is to establish the producibility, in accordance with Steps I and II of Signal Corps Industrial Preparedness Procurement Requirements (SCIPPR) No. 15 dated 1 October 1958, of Gallium Arsenide Varactor Diode per Specification SCS-128, dated 2 March 1962. Fulfillment of the stated purpose is being accomplished by the completion of the major steps as follows:

- 1. Engineering work necessary to establish capability to manufacture the subject varactor diode on a pilot line basis. This includes the development of production processes, materials design, and test procedures suitable for fabrication of the diode in accordance with the requirements of specification SCS-128 (See Appendix A) on a volume basis.
- 2. Manufacture and submission of samples for evaluation and approval according to established schedules as follows:

375 Engineering samples100 Preproduction samples

- 3. Design, development, procurement and/or fabrication of production type equipment necessary to manufacture and test units meeting the above mentioned specification at the rate of 200 per day on a single eight (8) hour shift basis.
- 4. A production type run of 1000 units for the purpose of demonstrating the capability of the pilot line processes and equipment to manufacture at the specified rate of 200 units per eight (8) hour day in accordance with the applicable device specifications.
- 5. Submission of monthly, quarterly, and final reports.
- 6. Preparation of a report in accordance with Step II of SCIPPR No. 15 outlining steps required to establish production of units meeting the applicable specification at the rate of 2000 units per eight (8) hour day.

- V -

1.1

DIFFUSION

Wafers are prepared for diffusion by etching them in an HF + HNO₃ solution to reduce the thickness of the slice to 0.011 inches. A final etch of $H_2O_2 + H_2SO_4$ is used to polish the $(\bar{1}\bar{1}\bar{1})$ face and to decrease the thickness to the desired 0.010 inches. This preparation procedure minimizes the surface damage and thus allows for shallower diffusions. In addition use of the $H_2SO_4 + H_2O_2$ solution makes it possible to identify the $(\bar{1}\bar{1}\bar{1})$ face easily. This is necessary, since it has been found that etching is more uniform on this face and therefore, is the side used for mesa formation.

After diffusing with a Zn or Zn + Ga source according to the procedure described in the second quarterly report, a rough hazy surface (Figure 1) results on both sides of the wafer. At first it was thought that this condition was caused by the diffusant condensing on the wafer during the cooling cycle. This idea was disproved by quenching one end of the tube which condensed the vaporized diffusant in the cooled end. Although this procedure cleaned up the wafer somewhat, the surface of the wafer was still visibly disturbed. It was concluded that the surface problem was caused by a loss of arsenic during diffusion.

To overcome this loss, an arsenic vapor pressure was put in the tube during an elemental zinc diffusion by loading in 99.99% pure As. The diffused wafer came out perfectly smooth as illustrated in Figure 1. The additon of an arsenic pressure was tried also during a Zn-Ga diffusion, but with poor results. The arsenic reacted with the gallium to grow gallium arsenide from dilute solution. Consequently, the diffusions done during the latter part of this period have utilized elemental zinc with an arsenic background pressure. In addition, in order to keep the tube and wafer as clean as possible, one end of the ampoule is cooled immediately after withdrawal from the diffusion furnace. The capacitance versus voltage variation in the above type diffusion is different than in previous diffusions. The n = .44 in the relationship:

$$C_{J} = \frac{Co}{(1 - V_{app})n}$$

using zinc and arsenic as a source. The (n) in the diffusions described in preceding reports was . 33 and . 5 (see Figure 2).

Hazy Surface (No As pressure)

Smooth Surface (.5 atm As pressure)

FIGURE 1

Ga As SURFACES WITH AND WITHOUT ARSENIC PRESSURE DURING DIFFUSION

Figure 2

- 4 ---

OHMIC CONTACTS

A significant increase in the adherence and lowering of the resistance of the P-type contact was attained during the past quarter. By changing the processing and increasing the amount of contact material, an improved and reproducible alloy was obtained. The series resistance of the diodes was lowered sufficiently to make possible the fabrication of several diodes with cutoff frequencies in excess of 200 Kmc at -6 volt bias. These results were repeated on several wafers to substantiate reproducibility. Prior to evaporation of the P-type contact the wafers are etched in HF for approximately five minutes and after rinsing are dried in instrument air. A Au-Zn alloy is evaporated through a .002 inch diameter mask. The mask is carefully removed so as not to smudge the evaporated dots; to prevent smearing the dots, a jig was built to insure removing the mask and holder in a vertical direction. Alloying of these dots is accomplished immediately after removing the wafer from the evaporator in order to minimize exposure to the air.

The slice, coated with P-type contacts, is given a thirty second preheat at 250° C before being pushed into the 500° C zone of the furnace for three minutes. The gas flowing through the furnace is hydrogen which as a reducing atmosphere facilitates a smooth alloy to the surface of the gallium arsenide.

- 5 -

MESA FORMATION

After much investigation it was found that Kodak Photo Resist (KPR) did not adhere well enough on the small mesa areas to mask them against intensive etching. The KPR peeled off repeatedly after a specific length of etching time.

Kodak Metal Etch Resist (KMER) was investigated and is being used successfully in place of the KPR. The KMER is extremely resistant to etching and is as easy to apply as the former. The KMER is flowed onto the P-type side of the wafer which has 0.002" alloyed dots spaced at 0.020" intervals. The wafer is rotated at a constant RPM for one minute in order to insure a uniform layer thickness. The excess KMER is thrown off by the centrifugal force of the rotation. A one-hour bake at 65°C is sufficient to harden the KMER enough for further processing.

Photographic masks have been developed in order to make possible the use of photo resist techniques. The facilities and techniques of the Sylvania Advanced Development Group were utilized to develop these masks. The fabrication of these masks is quite a difficult and elaborate process due to the fact that an 0.002" diameter dot must be repeated sixty times at 0.020" intervals in all directions to product a 1 1/4" X 1 1/4" array. Any minute error in spacing will be magnified across the array and result in a faulty mask. Consequently, tolerances on these masks must be kept to less than 0.0001". A negative mask with 0.006" holes on 0.020" X 0.020" centers is illustrated in Figure 3.

The procedure in developing a precise 0.0015" or 0.002" mask consists of drawing a perfect master dot several thousand times larger than the required size. This dot is photographed and reduced in size with a system of lenses until it is the desired size of 0.0015" or 0.002" diameter.

The reduced dot is photographed and put into a step and repeat machine which accurately places and exposes these dots on film at 0.020" intervals.

I

An entire array 1 1/4" x 1 1/4" consists of almost 4000 precision dots. Photographic negatives (Figure 3) of positive plates can be made from the master film. After hardening the KMER, the wafer is placed in a jig previously developed by the transistor group at Sylvania's expense. This jig holds the slice by vacuum and permits the mask to be moved above it (Figure 4). When alignment is attained, as seen through the microscope, vacuum #2 is turned on to hold the plate in position. The vacuum chuck is then exposed under a mercury arc lamp following which the slice is placed into a developer solution. The unexposed areas are removed by the developer leaving the exposed mesa areas covered with KMER. The masked slice is then baked to further harden the KMER coating and make it more resistant to etching.

After baking, the wafer is etched in a 25° C 18 HF + 1 HNO₃ solution until by probing it is found that the diffused P layer has been removed between the mesas. The time for this operation varies with the diffusion depth.

The KMER is removed from the top of the mesas by agitating a sufficient length of time in triad. The resultant 0.002" diameter mesa is illustrated in Figure 6 where it has been magnified 225 X.

A final HF + HNO3 etch is given to the individual diodes after mounting in the package and thermal compression bonding in order to bring the junction capacitance down to the desired value. In the past a problem was encountered in this etching procedure. The time for etching the individual mesas varied extremely from diode to diode; this could have been caused by poor wetting of the acid around the junction. By ultrasonically cavitating the solution during the etch, this problem has been eliminated, and uniform capacitance values are obtainable within a given etching time period. Generally a five second etch is sufficient to bring the capacitance into the desired range.

- 7 -

FIGURE 3

MASK USED IN KMER MESA FORMATION

U

,

I

I

[

L

FIGURE 6

2 MIL MESA FABRICATED BY KMER TECHNIQUE (225 X)

- 11 -

PACKAGING

Thirty prototype packages were received from Ceramics International as per Figure 7. The capacitance of this configuration is . 146 uuf which meets the contract specifications (see Appendix A). The ceramic is fabricated of alumina with a wall thickness of 0.015". The wall thickness is limited by strength considerations since it is most desirable to have it as thin as possible for minimum capacitance. Diodes have been fabricated in these packages and some of them will be included in the next 75 engineering samples.

The second group of engineering samples which were delivered on January 30, 1963 were packaged in two different configurations. One package had a capacitance of 0.35 uuf (Figure 8) and the other had a capacitance of .22 uuf (Figure 9). An 0.7 mil gold wire was thermal compression bonded from the mesa to the flange in both configurations. The series inductance of the two latter assembled packages was measured at 1 Kmc in a 50 ohm line using a conductor with the same external dimensions as the packages measured for a reference point. The package in Figure 9 with a Cp = 0.22 uuf has a series inductance (Ls) = 0.9 nh while the shorter package in Figure 8 with a Cp of 0.35 uuf has an Ls = .7 nh. The high values of inductance can be attributed to the thin contact wire in these packages used for ease of fabrication. Steps are being initiated to fabricate diodes with a ribbon-type contact in order to decrease the series inductance.

Since there are problems involved in contacting a wide ribbon to a small mesa, a fine gold mesh has been designed which will also be tried in order to compare its inductance with that of an equal sized ribbon.

1.4

Ŀ

- 12 -

PROPOSED GA AS VARACTOR PACKAGE ASSEMBLY

Ľ

ĺ

I

E

[

MATERIAL	KOVAR OR EGL	15% ALZ OS	KOVAR LA EGL	,	6.T. V.7 G
PART QUANT DESCRIPTION	WASHER	SHELL	PIN CAP	PRE FORM	POP. 1-2 4 2-3 6.T.
QUANT	1	-	-	~	
TART		'n	0	4	

ASSY MUST WITHOR AND ICLES PULL TEST. I SAADED AREAS DERIVAS TELATELIZING

AGS Y MUST WITH CLARD 10 LAS BUTAT 1 121

WITHIN 000 7.1.4.

State of the stranger

Figure

FIRST GA AS VARACTOR PACKAGE ASSEMBLY

Ľ

ļ

E

I

I

E

MATERIAL	Kever of Eq.	954 AL2 03	KOVAR ON EQL.	•	B.T. V.T.G.
PART QUANT. DESCRIPTION MATERIAL	WASHER	CHELL	PIN CAP	PRE FORM	FOR 1-2 4 2-3 8.T. V.T.G
QUANT.	-		-	a	
PART		<u>م</u>	ŝ	4	

2. ASS Y MUST WITHSTAND IOLOS, PULL TEST

WITHIN :004 T.I.R

Figure 8

SECOND GA AS VARACTOR PACKAGE ASSEMBLY

ĺ

[]

ľ

E

Ł

MATERIAL	KOVAR OF ER	954 AL2 03	KOVAR CA EQL		8,T, V,T.G
PART QUANT. DESCAIPTION MATERIAL	WASHER	SHELL	PIN CAP	PREFORM	FOR 1-2 4 2-3 8.T. V.T.G
QUANT.		-	-	. n	
PART	-	: rt	F)	4	

SHADLD AREAS DENOTE METALL' 2146

A ACE & MUST WITHSTAND ID LAS, DULL TEST.

3. ASS Y MUET WITHSTAND TO LAS, SHEAR TEST. 4. . 120 Dia 2. .063 Dia. Must. 25 Concentric

CONTRACTOR OF THE CONTRACTOR O

A B COOLOGIAN AND A B COULOGIAN AND A B COULOGIA

- Figure 9

ENGINEERING SAMPLES

Seventy-five engineering samples were delivered to the U. S. Army Electronic Research and Development Laboratory in Fort Monmouth, New Jersey according to schedule on January 30, 1963. These diodes were vacuum baked at $200^{\circ}C$ for thirty minutes prior to the final sealing which was carried out in a controlled environment with a dew point of $-90^{\circ}F$. The samples (see Appendix B) showed a significant improvement in comparison to the first lot of 75 units delivered to the Signal Corps on November 30, 1962. The average frequency cutoff improved by almost 30 percent from an average of 66 Kmc to 85 Kmc. The junction capacity spread on the second set of samples, for the most part, was within the desired SCS-128 specification (see Appendix A). The junction capacitance of the first set of units ranged between 0.025 uuf and 2.45 uuf while the second lot ran between 0.087 and 1.28 uuf.

The wafer used for this pilot run was from an ingot horizontally grown by Monsanto Chemical Company and oriented on the (111) axis. The resistivity of the slice was .0037 ohm-cm and had a Hall mobility of 2700 cm²/volt sec.

The slice was etched in a $H_2SO_4 + H_2O_2$ solution which polished and thus distinguished the $(\bar{1}1\bar{1})$ face. The wafer was diffused at $800^{\circ}C$ with an elemental zinc source. The penetration depth on the As side was approximately .2 mils. The N-type contact was put on the Ga face and consisted of Au-Sn which was evaporated and alloyed in forming gas. The P-type contact was evaporated through a 1 x 2 mil mask and was sintered at $500^{\circ}C$ in forming gas.

The mesas were masked by wax evaporation and etched until the desired capacitance value was reached. The dice were header mounted with Au-Sb

- 16 -

preforms and an 0.7 mil Au wire was attached to the mesa by thermal compression bonding. Before final sealing, the individual diodes were given a final etch when necessary to bring the capacitance into the specified by SCS-128.

MR.

Conclusions

During the past quarter, the second group of 75 engineering sample diodes were manufactured and sent to the United States Army Electronic Research and Development Laboratories for evaluation.

Investigations have continued in order to evolve the procedures necessary for the high volume production of gallium arsenide varactors.

A P-type production contact has been developed which has a sufficiently low resistance to make possible the production of varactor diodes with frequency cutoffs in excess of 200 Kmc.

2.0

PROGRAM FOR NEXT INTERVAL

 Fabricate two groups of seventy-five engineering samples for delivery on March 31, 1963 and May 31, 1963.

3.0

- 2. Investigate foil and ribbon type contact in order to lower the inductance of the present package.
- 3. Continue refinement and simplification of processes in order to facilitate volume production.
- Note: A planning and scheduling chart breaking down the major tasks into five divisions is shown in Figure 10.

Figure_10 SEMICONDUCTOR DIVISION, SYLVANIA ELECTRIC PRODUCTS INC. PROJECT PERFORMANCE AND PLANNING SCHEDULE

Contract No. DA-36-039-SC-86736 Order No. 19058-PP-62-81-81

% Completion Information as of February 28, 1963

<u>962</u> 1964 .6 JJJASONDJFMAMJJJASONDJFMAMJ 1-1 Engr. - Prod. Device Processes Diffusion COMPLETED a. Furnace Set Up & Calibration COMPLETED b. Const. of Diff. Prep. Equip. J. COMPLETED c. Diff. Parameters(prel. sel.) d. Diff. Parameters(final sel.) 74% e. Final Prod. Type Diff. Proc. Contacting N-Type COMPLETED a. Prel. Dec. Prod. Type Cont. B0% b. Sel. Final Contact c. Final Prod. Cont. Process P-Type COMPLETED a. Prel. Dec. Prod. Type Cont. 757 b. Selection Final Contact c. Final Prod. Contact Proc. Packaging 809 a. Prel. Study of Parameters 80% b. Decision Best Combination 75 c. Finalized Package Design Sealing Package a. Init. Welder SetUp Contr. At. **OMPLETED** COMPLETED b. Prel. Sealing Processes 90% c. Finalized Sealing Processes Measurements **OOMFLETED** a. Reflectometer Set Up b. Capacitance Measurement Set COMPLIET ED COMPLETED c. Contract Holder Set Up d. Compl. Prod. Meas. Of era. COMPLETED 1-1-1 75 Engineering Samples 75 Engineering Samples 75 Engineering Samples 75 Engineering Samples **75 Engineering Samples** 1-1-2 100 Preproduction Samples **Production Type Equip** 1000 Pilot Pred. Units

1-2

1-3

Figure 10

and the scattered administration of the state

SEMICONDUCTOR DIVISION, SYLVANIA ELECTRIC PRODUCTS INC. PROJECT PERFORMANCE AND PLANNING SCHEDULE

			1	_	-	6	-			,		-	9	-									-	96		
		J	3	A	S	0	N	D	J	F	Μ		M	J	J	A	S	0		N	D	J	F	M	A	M
1-4 <u>Re</u>	ports																		l							
1-4-1	Monthly																									
1-4-2		C	ţo	M	þι	EJ	E	þ								ן י							ļ	Į		
	2 nd Distribution Quarterly Report (draft)	c	01	hı	L	FТ	EI	þ																1		
	Distribution 3 rd Quarterly Report (draft)	c	01	h	L	ÉТ	E	þ						ł		ł								1		
	Distribution	İ.				ļ								.												
	4 th Quarterly Report (draft) Distribution					Į	ļ							'	Î	x						Į	ļ			
	5th Quarterly Report (draft)						ł						1		[:	¥		X						
	Distribution 6 th Quar terly Report(draft)																			1		k				
	Distribution	[ł					1	ł					x			
	7th Quarterly Report (draft) Distribution																	ļ							X	x
1-4-3	Final Report - Step I (draft) Distribution																								:	k
1-4-4	Bills of Material & Parts																									k
2	General Report-Step II(draf Distribution																									×
			ł	1				ł				ł												Ì		
																					l					
					1												l						ł			
																	1	ł								i
																						ł				
																										$\left\{ \right. \right\}$
																					ł					
										1																
																								!		1
																			ļ							
						ł		ł					ł				ł				ł			ł		
													ł													
																					Į					
								4	201	4-		1														
																				l						1

MAN HOURS OF WORK PERFORMED

Engineers	Third Quarter	9 Month Cumulative Total
T. Baker	432	1224
G. Bowne	36	153
G. Ching	13	99
F. Tausch	32	232
H. Ramsey	-	15
K. Gunn	32	32
Technicians		
W. Hyde	-	18
E. Juleff	88	496
D. Johnson	-	324
E. Penny	-	116
A. Marmiani	424	1056
G. Kokk	488	872
F. Skalkos	68	140
R. Greene	-	1.5
D. Hapgood	40	40
Operators		
Grade 5 Operators	49	130
TOTAL HOURS	1702	4948.5

(

_ 21 _

.

VISITS

.

December 20, 1962 - Mr. S. Sokolove, USAEMA, visited Woburn to review contract progress. A review was made of each of the processes and the new KPR process was demonstrated. The new package design was described and a thorough analysis made of the data. The problems involved in recuding contact resistance to the mesa were discussed and the solutions for the same which involve double diffusion and different contact materials.

January 28, 1963 - Mr. G. Hall, USAERDA, visited Woburn, and discussions were held regarding the contract progress with special regard to the correlation of USAERD diode holders to Sylvania.

5,0

APPENDIX A

و ومتعقق ما

١

Signal Corps Technical Requirements SCS-128, 2 March 1962

(and Amendment #1, 2 May 1962 See Note #9)

SCS-128 2 March 1962

SIGNAL CORPS TECHNICAL REQUIREMENTS

SEMICONDUCTOR DIODE, GALLIUM ARSENIDE, VARACTOR, MICROWAVE TYPE SigC-IN(X-2)

1. SCOPE

1.1 <u>Scopa</u>. - This document covers the detail requirements for gallium ersenide, variable reactance, semiconductor diades for application as low-noise amplifiers in microwave-frequency receiver circuits, and capable of proper performance (see 3.4 herein) under the following conditions. (See 3.2 herein):

	C perating temperature	Cparating altitude	Cperating CW dissipation	Roverso voltajo
Minimum	• <u>c</u>	ft.	mW	Vcc
Maximum	200	Any	500	6.0

2. APPLICABLE DOCUMENTS

2.1 The following documents, of the issue in effect on date of invitation for bids, form a part of this specification to the extent specified herein:

SPECIFICATIONS	
MILITARY	
MIL-S-19500	Semiconductor Devices, General Specification For
STANDARDS	
MILITARY	
MIL-STD-15	Electrical and Electronic Symbols
MIL-STD-202	Test Methods for Electronic and Electrical Component Parts
	Sheet 1 of 12 sheets

FSC-5960

DRAWINGS

SIGNAL CORPS

SC-A-46600

Preproduction Sample Approval In Lieu Of Qualification Requirements In Spacifications

(Copies of spacifications, standards, drawings, and publications required by contractors in connection with specific procurement functions should be obtained from the procuring agency or as directed by the contracting officer. Both the title and number or symbol should be stipulated when requesting copies.)

3. REQUIREMENTS

3.1 <u>Requirements.</u> – Requirements for the semiconductor diodes shall be in accordance with Specification MIL-S-19500, and as specified herein.

3.2 <u>Abbreviations and symbols.</u> - The abbreviations and symbols used herein are defined in Specification MIL-S-19500, and as identified in Tables I and II, and paragraphs 4.8.1 through 4.8.8 herein.

3.3 Design and construction. - The design and construction of the semiconductor diodes shall be in accordance with requirements of Specification MIL-S-19500, and shall be compatible with intended installation and application of the devices.

3.3.1 Operating position. - The semiconductor diodes shall be capable of proper operation in any position.

3.3.2 Polarity indication. - The graphic symbol for polarity indication on the semiconductor diodes shall be as designated in Standard MIL-STD-15.

3.4 Performance characteristics. - The semiconductor diode performance characteristics shall be as specified in Tables I and II herein. (See 6.3 herein.)

3.5 <u>Marking</u>. - The semiconductor diades shall be marked in accordance with Spacification MIL-S-19500 and as follows. In instances where the diminutive size or lack of suitable surface area on the device would prevent a marking accomplishment readable by the unaided eye, 20/20 vision, at eight inches distance from the device, such marking may be omitted directly on the device. All required marking shall be placed on the unit package.

3.5.1 Type-designation marking. - The semiconductor diodes shall be marked with the letters "SigC" and the "IN" designation of the device. The "IN" designation of the device: shall be "(X-2)" until an identification number conforming to type designation requirements of Spacification MIL-S-19500 has been established.

4. QUALITY ASSURANCE PROVISIONS

4.1 General. - Except as otherwise specified herein, the responsibility for inspection, general procedures for acceptance, classification of inspection, and inspection conditions and methods of test shall be in accordance with Specification MIL-S-19500, Quality Assurance Provisions.

4.2 Preproduction Sample Approval. - The Proproduction Sample Approval requirements in Signal Corps Drawing SC-A-46600 hereby replace any Qualification requirements referation to the product covered herein.

4.3 <u>Sampling and acceptance criteria for Acceptance Inspection (see 6.2 herein).</u> -For all tests except Life tests, sampling and acceptance criteria shall be in accordance with paragraphs 4.3.1 and 4.3.2, respectively, herein. For Life tests, sampling and acceptance criteria shall be in accordance with requirements for Method B in Specification MIL-S-19500, Appandix C. The respective LTPD (Lot Tolerance Percent Defective) and Max. Acc. No. (Maximum Acceptance Number) requirements in Tables 1 and 11 herein shall govern relative to the details in paragraphs 4.3.1 and 4.3.2 herein.

4.3.1 Sample size. - The sample size shall be selected by the manufacturer, using Toble III herein. The sample size so chosen shall be within the Max. Acc. No. limit associated with the LTPD specified in Tables I and II herein.

4.3.2 Sample acceptance criteria. - For the sample size tested, the Acceptance Number "(a)" in Table III shall not be exceeded. (Rejection Number "r" = "(a)" +1).

4.3.3 <u>Tightened inspection.</u> – Tightened inspection on resubmitted lots is obtained by testing to an LTPD equal to or less than one-half of the specified initial LTPD.

4.4 Specified LTPD and Max. Acc. No. - The LTPD and Max. Acc. No. specified for a subgroup in Tables I and II herein shall apply for all of the tests, combined, in the subgroup.

4.5 Destructive tests. - None.

4.6 <u>Disposition of sample units</u>. - Sample units that have been subjected to and have passed Group 8, Subgroups 2, 3, 4, and 5 tests may be delivered on the contract or order provided that, after Group B inspection is terminated, those sample units are subjected to and pass Group A inspection. Defective sample units from any sample group that may have passed group-inspection acceptance criteria shall not be delivered on the contract or order until the defact(s) has been remedied to the satisfaction of the Government.

4.7 Holdor for test measurements. - The semiconductor diodo shall be affixed within the holdor spacified in Figure 1 herein for all electrical test measurements.

4.8 Particular examination and test procedures. -

4.3.1 Frequency Cutoff test. - This test may be performed in accordance with Method A or Method B, following:

- (a) Mathod A: Applying the condition specified for the test (see Table I herein), the test shall be performed using a test circuit mutually agreed upon between the contractor and th authorized Government technical representative. The cutoff frequency determination shall be based on the measurement of the 10 kmc or higher small-signal reflection coefficient of the tunable holder containing the diode. The applied microwave signal level shall be such that a 6 db increase in level does not change the measured cutoff frequency by more than 10%.
- (b) Mathod B: The frequency cutoff may be computed from the formula: $f_c = Q \times frequency of measurement (10 kmc or higher), where Q is$ determined from the test procedure for the Diode Q test (see Table I herein). $The condition specified for <math>f_c$ (See Table I herein) shall be applicable.

4.8.2 Diode Q test. - The diode Q may be determined in accordance with computations per (a) or (b) below. Test circuitry shall be as mutually agreed upon between the contractor and the Contracting Officer's technical representative. It should be noted that the presentations in (a) and (b) below are based upon Smith Chart plot of the diode impedance as a function of frequency. The impedance of the diode as a function of frequency will rotate along a constant resistance circle, and the self-resonance frequency will coincide with the point of minimum VSWR and the crossing of the real axis on the Smith Chart.

(a) The diode Q (including the effect of strays) at resonance may be computed from the following:

$$Q = \frac{F(resonance)}{2\Delta F}$$

whore:

 $2\Delta F$ is the difference between the frequencies, when the reactive component is equal to the resistive component at self-resonance at any blas voltage.

(The Q of the diode junction alone is the product of:

Note: The construction of a solid brass dummy diode for short-circuit reference will be necessary.

(b) The dioda Q may be computed from the known junction capacitance and the VSWR at resonance in accordance with the following relationship:

$$Q = \frac{1}{2r(resonance)} \times \frac{10}{r} \times C_{o} \times \frac{1}{1+C_{s}}$$

where: P = VSWR normalized to 10 ohms in the test holder C_ = stray capacitance $C_{n} =$ junction capacitance

4.8.3 Solf-Reconance Frequency test. - The solf-resonance frequency shall be determined from the test procedures per 4. 8.2, Method A or B, herein.

4.8.4 Capacitance tests. - The specified voltage and a-c signal (see balow) shall be applied to the terminals, and the capacitance shall then be measured. The junction capacitance Co is the capacitance associated with the barrier at zero bias. Capacitance shall be measured at 100 Kc with a Boonton Electronics 74-C Capacitance Bridge, or equal. The a-c signal level applied to the junction shall be such that a 3 cb increase in level produces less than a 10% change in junction capacitance. Junction capacitance may be calculated by subtracting the capacitance of the empty package from the measured total capacitance. The capacitance of the empty package, measured at 100 Kc, shall not exceed the limit specified (see Table 1 harein). The definition of "package" shall be: complete unit minus the gallium arsonido wafor.

4.8.5 <u>Reverse Voltage Breakdown test.</u> – The specified reverse current, and associated reverse bias voltage shall be applied to the terminals. Breakdown shall occur when the minimum specified reverse bias voltage level is reached.

4.8.6 Series Resistance test. - The measurement of series resistance shall be based upon the capacitance change or the diode, and shall be made at a frequency $\gg 10.0$ kmc. The method of measurement shall be as mutually agreed upon between the contractor and the Contracting Officer or his authorized technical representative.

4.8.7 <u>Normalized Incremental Capacitance test.</u> – Determination of normalized incremental capacitance test shall be based upon a measurement of ΔC and C1 per the formula:

Normalized Incremental Capacitance = ΔC

Where: ΔC = difference between capacitance values at 2 voltage points at the extremes of the non-linear portion of the C-V curve.

C1 = measurement of the pump capacity at its terminals, when terminated by the diode.

The test procedure and test circuit(s) shall be as mutually egreed upon between the contractor and the Contracting Officer or his authorized technical representative.

4.8.8 <u>Durnout test.</u> - The specified d-c forward power, computed as the product of d-c forward current and d-c voltage drop, shall be applied to the diode for at least 10 seconds. The external temperature of the diode under test shall be at least $25^{\circ} \pm 3^{\circ}$ C,

HAVE IN CIVILY MANUCLICH.

ì

Í

ł

!

Appx. C	Exca.inotion or test	Consitions	I TPC	Nax.			Liuits	•
kct. Por.			1	92 2	icali k e	Min.	Max.	tin'
	Suigroup I		10	4				
30.13	Visual and mechanical inspection	tion	,		ł	8	1	
2	<u>Subgroup 2</u> Frequency cutoff	V = -6V c'c	ŝ	m.	•	Ş		
7	Diode C				_u (CIV2		knic
<u>k</u>	Self-resonance frequency	1 8 8			ۍ د ا	<u>s</u>	22	1 .
	Subgroup 3		Ś	m	-	2	1	knc
21	Junction capacitance		i		Ű	6.0	5 (
4	Puckage capacitunce				ף ر			5
	Subgroup A	1 -10µ4dc	S	m	<u>م</u>		<u> </u>	ţ
<u>5</u>	Reverse vultuge breakdown	F			>			
16	Series resistance	i			ب			, Vdc
1	Normalized incremental	¦					7.0	0.1113
	capacitance				리	ŗ	\$ 8 8	3
-See 4.8.1		2/ - See 4.8.2 hcroin.	rerein.) ří	<u>3(00 4 8 3 horiz</u>		
-/see 4.8.4 herein.	hcrein.	5/see 4. 8 5 hos. 1-			3		icrein.	
//			:cielu.		ï	-See 4. 8. 6 herein.	screin.	

SC5-128
_
schion
- 63
-
•
- r
li i
63
Group
<u>د</u>
Ā
- 65
_
Table

MonNo.No.Subgreap ISubgreap I24.3Prysical vincantionsSubgreap 224.3Subgreap 2Subgreap 224.3Subgreap 2 $V = -\delta V_{cc}$ 26.3Subgreap 2 $V = -\delta V_{cc}$ 26.3Frequency cutsff $V = -\delta V_{cc}$ 6.2Subgreap 2 $V = -\delta V_{cc}$ $V = -\delta V_{cc}$ Subgreap 2 $V = -\delta V_{cc}$ $V = -\delta V_{cc}$ Subgreap 2 $V = -\delta V_{cc}$ $V = -\delta V_{cc}$ Subgreap 2 $V = -\delta V_{cc}$ $V = -\delta V_{cc}$ Subgreap 2 $V = -\delta V_{cc}$ $V = -\delta V_{cc}$ Subgreap 2 $V = -\delta V_{cc}$ $V = -\delta V_{cc}$ Subgreap 2 $V = -\delta V_{cc}$ $V = -\delta V_{cc}$ Subgreap 2 $V = -\delta V_{cc}$ $V = -\delta V_{cc}$ Subgreap 2 $V = -\delta V_{cc}$ $V = -\delta V_{cc}$ Subgreap 2 $V = -\delta V_{cc}$ $V = -\delta V_{cc}$ Subgreap 2 $V = -\delta V_{cc}$ $V = -\delta V_{cc}$ Subgreap 2 $V = -\delta V_{cc}$ $V = -\delta V_{cc}$ Subgreap 2 $V = -\delta V_{cc}$ $V = -\delta V_{cc}$ Subgreap 3 $V = -\delta V_{cc}$ $V = -\delta V_{cc}$ Subgreap 4No voltegeus C = -\delta V_{cc} $V = -\delta V_{cc}$ Subgreap 5 $V = -\delta V_{cc}$ $V = -\delta V_{cc}$ Subgreap 5 $V = -\delta V_{cc}$ $V = -\delta V_{cc}$ Subgreap 5 $V = -\delta V_{cc}$	Apr. C	Apor C Exercite at last	Con lititions LT	LTP:- A.	Mox. S	Svs	Li-	Limits	
Subgrave 1Subgrave 1Subgrave 1Subgrave 2Prysicol UlmansioneSubgrave 2Subgrave 2Subgrave 2Subgrave 2P = 5X m/vZ3Europoint tasts:P = 5X m/vZ3Europoint tasts:P = 5X m/vZ3Frequency outsiffV = -6V ccFrequencyFrequencyFrequency outsiffV = -6V ccFrequencyFrequencySubgrave 3IXFrequencySubgrave 3IXFrequencySubgrave 4No valescurveFrequencySubgrave 2Subgrave 4No valescurveZuSubgrave 2Subgrave 4No valescurveZuSubgrave 2Subgrave 4No valescurveZuSubgrave 2Subgrave 5SubscurveSubgrave 6SubscurveSubscurve 4No valescurveZuSubscurveSubscurve 5SubscurveSubscurveSubscurveSubscurve 6No valescurveZuSubscurveSubscurve 7No valescurveSubscurveSubscurveSubscurve 7No valescurveSubscurve <t< th=""><th></th><th></th><th></th><th>Ż</th><th></th><th></th><th>Min.</th><th>Nex.</th><th></th></t<>				Ż			Min.	Nex.	
Physical Unacasions 20 3 Subgrasp 2 $2 u = 52 u w$ 2 3 Europi Europi $P = 52 u w$ 2 3 Europi Encryonin tests $V = -\delta V_{cc}$ E_{cc} $2 u = 2 u c$ Europi $V = -\delta V_{cc}$ E_{cc} E_{cc} $2 u c$ Europicit tests $V = -\delta V_{cc}$ E_{cc} E_{cc} E_{cc} Subgrasp 3 $V = -\delta V_{cc}$ E_{cc} E_{cc} E_{cc} E_{cc} Matture restance H_{cc} initial confitionia, E_{cc} E_{cc} E_{cc} E_{cc} Matture restance H_{cc} initial confitionia, E_{cc} E_{cc} E_{cc} E_{cc} Matture restance H_{cc} initial confitionia, E_{cc} E_{cc		Subgrays 1	Š.						
Subscrop 2Subscrop 22:3Burnout $P = 5 \times a^{1} \times 10^{10}$ $P = 5 \times a^{1} \times 10^{10}$ $P = 5 \times a^{1} \times 10^{10}$ Encippini 15313Frequency cutsff $V = -U_{V,C}$ $E_{V,C}$ Frequency cutsff $V = -U_{V,C}$ $E_{V,C}$ $E_{V,C}$ Suif-restance frequency -195^{6} $to \pm 200^{6} C_{V,C}$ $E_{V,V}$ Suit-restance $H_{V,V}$ initial conditionin, $E_{V,V}$ $E_{V,V}$ Suit-restance $H_{V,V}$ $H_{V,V}$ $E_{V,V}$ Suit-restance $H_{V,V}$ $H_{V,V}$ $E_{V,V}$ Suit-restance $E_{V,V}$ $E_{V,V}$ $E_{V,V}$ Suit-restance $H_{V,V}$ $H_{V,V}$ $E_{V,V}$ Suit-restance $E_{V,V}$ $E_{V,V}$ $E_{V,V}$ Suit-restance $E_{V,V}$ E_{V,V	33.9	Physical Vinensions	3				ł	ł	1
BernoutP = 53% a/VEncipain test:P = 53% a/VEncipain test:V = -0V.cFraguencyLanguageSubgradeSubgradeSubgradeSubgradeMaiture resistanceH/s initial conditionityFractioneH/s initial conditionityFractioneNo voltegescondeticyFractioneStoreFractioneStoreFractioneStoreFractioneStoreFractioneStoreFractioneStoreFractioneStoreFractioneStoreFractioneStoreFractioneStoreFractioneStoreFractioneStoreFractioneStoreFractioneStoreFractioneStoreFractioneStoreF		Subgroup 2	3						
End-point tests:Frequency cutoff $V = -\delta V_{cc}$ ϵ 2ϵ Frequency cutoff $V = -\delta V_{cc}$ ϵ 2ϵ 2ϵ S-titres manace frequency -195° $to +200^{\circ}c_{cc}/$ 1° 1° 1° Subpray 3 1° 195° $to +200^{\circ}c_{cc}/$ 1° 1° 1° Maiture resistance N_{2} initial conditionia 1° 2° 1° 2° Maiture resistance N_{2} initial conditionia 1° 2° 2° Subpray 4No volteges/S=64.5 2° 2° 2° Subscription 5° inversion 5° inversion 2° 2° Subscription 5° inversion 2° 2° 2° Subscription 5° inversion 5° inversion 2° 2° Subscription 5° inversion 5° inversion 5° inversion 2° Subscription 5° inversion 5° inversion 5° inversion 5° inversionSubscription 5° inversion 5° inversion	≥,	Burnout	P = 530 aW		-	1	3 5 8		
Frequency cutoff $V = -\delta V_{cc}$ E Z_{cc}		Ena-point tests:							8
Self-restance frequency <u>Subgrave 3</u> Largeretore cycling <u>-195</u> to +200°C 2/ Maisture resistance Maisture resistance Subgrap 4 Stack St	17,	Frequency cutoff	V = -6V.c		-		•	,	-
Subgrace 3 I.e. The section of the s	ले।	Suifurusinance fragueney			· •	J.	- 1		
retura cycling –195° to +200°G (ur tratura cycling –195° to +200°G (ur tratua – 195° to +200°G (John tratua – 195° to +200°G (John tratua – 10 – 10 – 10 – 10 – 10 – 10 – 10 – 1		Selo group 3	 	×	-	L		2 2 4	Kare
Moisture resistance Moisture resistance Frietpoint tests Moisture consistants Some as for Subgroup 2, co.w. Subgroup 2, co.w. Subgroup 4 No voltegeusC=Edus Stack Stans co. of I mace ca. in Stars orientetions X1, Y1, Y2 Corry FURMISHED Stack Stars = 15	<i>е.</i> и				•		•		
Fridmant Letts Same as for Julyroup 2, aunus Subyrup 4 Stack Stack 20 Stack No valtegeus C = 3(1) Stack No valtegeus C = 3(1) Stack Opr v Stack Opr v Corr Possible R (tatel Libuus = 15) Corr FURNISHED	ç. ç	Maisture resistance	the initial conditionia		•				1 9 9
Shock Shock 20 5 Shock No voltegus C = EL; 5 Liows co. of 1 msec ta. in orienterions X1, Y1, Y2 (rotel Ulows = 15) (rotel Ulows = 15) COPY FURNISHED		Fnd-point tests: Some as for Sougroup 2, align				r		ļ	8
ORIGINAL COPY V UST POSSIBLE R UDPY FURNISHED.	ic. 10	Shack	時に		I	l k	!	1	l l
COPY FURNISHED			I msec ca. in oriuntetions X1, Y1, Y2 (totul k1, 2005 = 15)	•	-	ORIGINAI LEST POS COPY FUN	C COPY W	IS OF POOL	
THE FURNISHED							WISHED.	Noncongon	CUALTT.
					-		RNISHED,	NORA WITTONAN	N FRON

(Cantinued)	
- ES	
Inspecti	
Group B	
Table II.	

1

ł

MIL-S-17500	Examination or test	Conditions	LTPD	Ntax. Acc.	Śvinbol	ני	Limits	15.4	
Xel. Pcr,				No.		<i>N</i> in.	Nox.		3
40.20	<u>Subgroup 4 - (cent'e)</u> Vibration, variable frequency	f = 50 to 2000 cps; 4 svceps; 15G							CS-123
40.4	Constant acceleration (centrifuge)	G = 20, 030; Cri entations X1, Y1, Y2				8		1	
4C.2	Axiol stroin	force = 1 lb.			1	•	;	1	
	<mark>End-point t</mark> acts: Same as for Subgroup 2, about								
40.7	<u>Storage life</u>	Mathod R TA=200°C max t = 500 hrs.)= 1 (1		*	1	•	
	End-point tests: Same as for Subgroup 2, above								
1/ - See 4.8.8 herein. 4/	cin.	<u>-500 4.8.1 hcrcin.</u>		3/503	3/~ -503 1. 3. 3 hercin.	.ċ			

. eren

Fer Method 102A in Standard MJL-STD-202.

-9-

.

SCS-128

SCS-123

5. PREPARATION FOR DELIVERY

5.1 <u>Proparation for delivery.</u> - Proparation for delivery shall be in accordance with Specification MIL-S-1950.

"Y r

6. NOTES

6.1 Notes. - The notes included in Specification MIL-S-19500, except for those covering gualification (see 4.2 herein) and the following, are applicable to this document.

CON FROM

6.2 Ordering data. - If this document is used with the "C" or later issue of Specification MIL-S-19500 containing LTPD-method Acceptance Inspection requirements, the solicitation should indicate that the Acceptance Inspection LTPD-method requirements in peragraphs 4.3 through 4.3.3 herain shall be considered supersoded by the participant requirements in the "C" or later issue of Specification MIL-S-19500.

6.3 Establishment of additional trais and parameters. - The resolution of any additional tests and parameters that will serve for optimum performance evaluation of the device relative to the application need is encouraged. It is expected that such datamination(s) will be by mutual agreement between the contractor and the responsible Government agency, and will be included in the final acceptance criteria for the device. Pertinent electrical, physical, mechanical, and environmental test coverage in Specification MIL-S-19500 should be considered as a primary guide in this regare.

NOTICE: When Government drawings, specifications or other date are used for any purpose other than in connection with a definitely related Government producement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoaver; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other date is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any right or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

Figure 1. Advance representation of diode test-holder.

-11-

Table III. Minimum size of sample to be tested to assure, with 90%confidence, an LTPD no greater than the LTPD specified.

L

Î

			ίαγ	Maximum Percent Defective (LTPD)	Defactive (L	(FD) J/			
·	20	15	10,	5	2	-	0.5	0.2	6.1
Acceptance Number (o)				Minimum Sample Sízes	mple Sízes				
•	=	15	22	45	116	231	461	. 1152	2303
	(0.46)	(0.34)	(0.23)	(0.11)	(1.0.0)	(0.02)	(0.01)	(0.005)	(0.02)
	<u></u> c	22 2	35		195	055 055	778	1945	3391 1955
· C	(0.2)	(8-1)	(0.54) 53	(0.2.0)	(0.13) 322	(40.0)	(0:0.0)	(0.013)	(C.COX)
1	(3.4)	(2.24)	(9. I)	(0.78)	(0.31)	(0.15)	(0:0:0)	(0.031)	(0.015)
m	32	43	65	132	333	663	1337	3341	6,31
	(* . *)	(3.2)	(2.1)	(0.1)	(17.0)	(0.20)	(0.10)	(1;-0.0)	(510.0)
4	33	52	73	153	35:3	5.57	5551	25.57	152
	(5.3)	(3.9)	(2.6)	(1.3)	(0.50)	(0.25)	(0.12)	(5:-0:-0)	(0.025)
•••	Ċ;	60	16	31	462	527	13:55	. 4033	5275
	(6.0)	(? - ?)	(2.9)	()・()	(0.57)	(0.20)	(0.14)	(9:0:0)	(0.023)
ې د		63	1C<\$	209	528 -	1026	2107	5267	10, 533
	(5.6)	(4.9)	(3.2)	().1)	(0.52)	(0.31)	(0.155)	(0.052)	(0.031)
2	57	11	116	234	5.9	11/3	2355	53.6	1.7.11
	(7.2)	(5.3)	(3.5)	(1.7)	(0.67)	(0.34)	(0.17)	(0:0:7)	(0.034)
< 3	63	Ŝŝ	128	253	ć43	1000	. 2599	6453	12,555
	(2.7)	(2.6)	(3.7)	(1.8)	(0.72)	(0.30)	(0.18)	(0.072)	(0.035)
نہ 	63	93	021	. 232	209	1251	7,727,	7103	14,205
	(3.1)	(0: ?)	(3.9)	(5.1)	(0.77)	(0.35)	(0.19)	(0.077)	(0.033)
<u>.</u>	75	100	152	30°	0//	1541	30:32	7704	15, 407
	(3.4)	(5.3)	(4.1)	(2.0)	(0::0)	(0:~0)	(0.20)	(0.03)	(0.0%)
	1/The r is	minimum qua is indicated ir	lity (approx parentheses	imate AQL pa , respectively	rcent defectiv below, for in	1/ The minimum quality (approximate AQL percent defective) required to accept (on the average) 19 to 20 tois is indicated in parentheses, respectively below, for information purposes only.	accept (on th oses only .	is averago) l	9 to 20 lots

SC5-120

.

The second designment of the second s

APPENDIX B

Data for Engineering Samples

submitted this Quarter

	SYLVANI		Sheet No				
	\$	EMI-CONDUCTO			Test Dept.		
Nature of Test						Type	
Electricei) Environmental		🔲 Mechanical		Proj. No	
		5 \$1 ar age		Centrifu	9•G's	Test Oper.	<u></u>
		-	as*c □_*c		n 🏎	Engineer Dete 30 Ja	nuary
		Hours Tomp, Cyclo			m 4. G's G's	Dete	
		•C Helsture Res	°C°(: 🗌 Sheek 🛛	G'+	JOD 199	
Bernite Da	ta for Second			Sambles Ga	1111m Aree	nide Varactor	Diada
	ntract No. D			<u> </u>		HIGE YATACLUT	10 <u>0e</u>
Or	der No. 1905	58-PP-62-81	-81			· · · · ·	
Background: Ro	quested by			pt	Date Revd.	[] Pred. [] Dev	•I. 🗆 C•
Cond.	B.V	Ce	C 5	Fco	9	R.	
Unit Unit	10 10		0 .	-6	-6 4	ohms	
	7.5	.35	.4.34	111.0	11.7	8.8	
2	9.0	. 35		116.0	12.3	8.6	
3	6.2	.35	. 360	103.0	10.5	12.0	
4	16.4	35	365	57.8	6.1	19.0	
5	6.0		.343	86.8	5.1	17.5	
6	8.0	.35	.5/7	105.0	11.5	6.5	
7	1.2	. 35	.278	76.0	8.0	17.5	
	8.0		.433	137.0	14.4	1.0	 . . .
5	9.0		.435	103.0	10.7	8.5	
	5.6		.422	81.2	8.5	<u> </u>	• • •
1	6.8	.35	.335	\$1.2	8.5	13.5	
	6.6		,405	96.0	10.1	10.0	
13	9.5			85.2		13.0	
19	8.4	36	.445	37.5	10.3		
15	7.0		349	76.0	8.0	14.0	
16	8.8	35	.419	75.2	7.5	13.0	
	8.0	.35	.538	91.0	9.6	8.6	
18	9.2	.35	.503	<u> </u>	5.5	8.2	
19	8.4	.25	. 700	105.g	<u> </u>	5.5	
20	9.0	.35	101	70.0	7.4	53.0	
<u></u>	15.0		. 105	77.2	8.1	32.0	
22	17.0	.35	. 057	70.8	7.5	50.0	
23	12.0	.35	.255 .215	78.4 94.0	8 .3 9 .7	18,0	
24	5.2	.35					

	SYLVAN	A ELECTRI	C PRODUCTS	S INC.		Sheet No. TT	a II	
	:	R DIVISION			Test Dept,			
						Туре		
Mature of Test	r] Envirenmentel				Let No Proj. No		
	L			Mechanical		• • • • • • • • • • • • • • • • • • • •		
		Storage	s*c 🗆_*c	Centrilug	• G's	Test Oper,		
		Hews		🗌 Vibretie	· ~	Dete 30 Ja		
		Tomp. Cycle	•c •c)'s G's	Job No		
		Meisture Rec		_ Sueck _	G's			
Remerks Dat Cor	ta for Second ntract No. D	l Group 75 E A-36-039-80	ngineering 8 2-86736	Samples Gal	lium Arsei	nide Varactor D	lode	
Ore	der No. 1905	8-PP-62-81-	-81					
Background: Re	iquested by				Date Revd.	[] Pred. [] Deve	1. DC	
Cond.	B.	<u> </u>	<u> </u>	Fc	Q	R.		
Unit v	IRma		Obies	-6 bins	-6 biss	ohms		
26	6.3	.350	.876	99	10.4	11.0		
87	9.3	.350	.3/8	126	13.3	11.0		
28	15.8	.350	0196	81.2	8.5	24.0		
89	8.7	.350	720	70.0	7.4	. 7.9	_	
30	9.7	.350	.109	67.0	7.2	50.0		
31	10.8	.350	- 139	73.0	7.8	a.s.o		
32	9.6	.350	.142	76.0	8.0	38.0		
33	7.7	360		80.0	8.4	32.0		
34	16.6	.350	542	103.0	10.9	• 7.0		
36	10.8	350		A 3.0	8.8	25.0		
_36	/4.4	360	153	91.0	9.6	29.0	 	
	45.6	.350	332	92.0	9.7	13.0		
38	2.4	.350	435	88.0	9.3	10.0		
	12.0	850	820	90.0	9.5	5.2		
- 10	8.2	.350	206	82.0		18.0		
41	11.0	350	.515	92.0	9.7	9.0		
42	8.0	.350	.623	89.0	9.3	9.0		
43	10.0	· .350	+97	80.0	8.4	12.0	·] · -]	
44	8.4	.350	410	73.6	7.8	18.5		
45	8.8	.350	168	67.6	7.8	40.0	.	
46	5.8	.350	.207	70.0	2.4	26.0	-	
47	15.3	350	. 930	67.0	6.8	6.0		
18	9.6	.350	.355	69.0	6.8	19.0		
49	10.7	.350	.887	64.0	6.8	6.5		
50	15.8	.350	.311	57.0	6.1	23.0	1	

Ī

		A ELECTRIC				Shoot No e Tost Dopt	
	. 3	SEMI-CONDUCTO	R DIVISION			Туро	
Netwo of Test	_			_		Lot No	
Electrical		Envirenmentel		Machanice I		Proj. No	
		D Storege		Contrify	g•G's	Test Oper.	
		25°C []	85°C 🗆°C		m	Engineer Dete 30 Jan	uar
		Tomp. Cycle	•		G's G's	Job No	
		Moisture Reg	°C°C	🛄 Sheek .	G's		
Remerks Dat	a for Second			amples Ga	llium Arser	nide Varactor Di	ode
Cor	ntract No. D.	A-36-039-80	5-86736				
Ord	ler No. 1905	8-PP-62-81	-81				
Beckground: Re	1		Dep		Deto Revd	the second s	
Cond. Spec.	<u> </u>		<u> </u>	- FLO	9	R	_
Unit			0 V.	-6 y.	-64	ehms	
	4.3	.25	.473	66.0	7.0	13.5	↓
52	7.0	.35	1.280	64.0	6.8	5 <u>5.</u> 0	_
<u> </u>	15.4	.35	. 650	· 60.2	<u> </u>	11.0	╄
- 64	15.6	.35		62.0	6.6	40.0	
55	13.Q			64.0	6.8	39.0	
- 56	4.0	_اخدر	.087	66.2	7.1	<u>50.0</u>	
	6.2	.35	.541	17.0	8.1	8.5	∔
58	7.2		.408	74.0	7.8	11.0	+
- 55	4.0		.424	48.0	10.3	9.0	
60	7.5		.650	101.0	10.6	6.0	+
61	6.5	.35	.237	66.8	<u> </u>	27.0	4 -
62	7.0	35	. 280	82.0	8.6	17.0	- -
63	6.0	.35	.414	51.0	5.6	5.0	.
64	7.0	.35	780	40	8.8	6.0	4
65	6.5	.35	.930	66.9	6.3	7.0	
66	7.8	.22	. 145	55.0	10.4	33.0	ł
67	6.6		.406	852	8.6	13.0	1
68	9.2	.22		116.0	12.2	12.0	+
69	8.4	22	.320	82.0	8.6	16.0	
	7.2	.33	.154	80.0	- 45	38. P 8.1	
71	6.0		.385	114.0	12.0	6.8	
72	9.2	.22	220	78.4	<u> </u>	8.3	
73 74	8.2		.341	111.0	11.1	2.1	+
7 1 1	<u> </u>	.22	.630				+

Sylvania Electric Products Inc. ORDER NO. 19058-PP-62-81-81

4

÷.

DISTRIBUTION LIST

No. of Copies

1.

Commanding Officer U. S. Army Electronics Research & Development Agency ATTN: Dr. Harold Jacobs Solid State & Frequency Control Division Fort Monmouth, New Jersey	3
Commander Wright Air Development Division Wright Patterson Air Force Base, Ohio ATTN: Mr. R. D. Alberts WCLKS	1
Advisory Group on Electronic Devices 346 Broadway, 8th Floor New York 13, New York	6
Director Armed Services Electro-Standards Agency Fort Monmouth, New Jersey ATTN: Adjutant	1
Armed Services Technical Information Agency Arlington Hall Station Arlington 12, Virginia ATTN: TICSCA/42740	10
Commander Air Research & Development Command Andrews Air Force Base	
Washington 25, D. C. ATTN: RDTCT Air Force Cambridge Research Center	1
L. G. Hanscom Field Bedford, Massachusetts ATTN: Mr. R. A. Bradbury CRRSC	1
G. Abraham, Code 5266 U. Ş. Naval Research Laboratory	
Washington 25, D. C. Commanding Officer U. S. Army Electronics Research & Devel. Agency	1
ATTN: Mr. F. Brand Solid State & Frequency Control Division Fort Monmouth, New Jersey	2

No. of Copies

يو بديد اه

A 1974

1.

Dr. Robert H. Rediker, Gr 85 Division 8, Room C-310 Lincoln Laboratory Lexington, Massachusetts	1
Doxington, Massachusetts	•
U.S. Army Electronics Materiel Agency ATTN: Chief, Quality Assurance Operations Div. 225 So. 18th Street Philadelphia 3, Pennsylvania	1
Commanding Officer	
U.S. Army Electronics Materiel Support Agency	
ATTN: Mr. Leon Kramer	
Fort Monmouth, New Jersey	1
· ·	
Commanding General	
U. S. Army Electronics Command	
ATTN: Mr. Fitzpatrick	
Room 309, Russell Hall	-
Fort Monmouth, New Jersey	1
Diamond Ordnance Fuze Laboratories Connecticut and Van Ness Streets, N.W. Washington 25, D. C.	
ATTN: DOFL Library, Room 211	
Bldg. 92	
(ORDTL-C11-59-138L)	1
General Electric Company Electronic Park	
Syraçuse, New York	
ATTN: Mr. J. Flood	1
Hughes Products	
Semi-Conductor Division	1
Newport Beach, California	*
Motorola, Inc. 5005 East McDowell Road	
Phoenix, Arizona ATTNA Ma Lamaa S. LaPua	1
ATTN: Mr. James S. LaRue	
Pacific Semi-Conductors, Inc. 14520 S. Aviation Blvd. Lawndale, California	
ATTN: Dr. H. Q. North	1
mSi Electronics Incorporated 116-06 Myrtle Avenue Richmond Hill 18, New York	
ATTN: Mr. Sederman	1

x x

.

- 2 -

Philco Corporation Lansdale Division	
Church Road	
Lansdale, Pennsylvania	
ATTN: Mr. Frank Mayock	
Mgr Govt Sales	1
Radio Corporation of America	
Somerville, New Jersey	
ATTN: Mr. R. Wicke	1
Raytheon Manufacturing Company	
Chelmsford Street	
Lowell, Massachusetts	
ATTN: Mr. W.W. Robinson	1
Texas Instruments, Inc.	
Semi-Conductor Components Division	
P. O. Box 5012	
Dallas 22, Texas	
ATTN: Semi-Conductor Library	1
Transitron Electronic Corporation	
168-182 Albion Street	
Wakefield, Massachusetts	
ATTN: Dr. D. Bakalar	1
Bomac Laboratories, Inc.	
Salem Road	
Beverly, Mass.	
ATTN: Mr. Fink	1
Westinghouse Electric Corporation	
Youngwood, Pennsylvania	1
Western Electric Co.	
Marion & Vine Streets	
Laureldale, Pennsylvania	
ATTN: Mr. Robert Moore	2
Microwave Associates	
Burlington, Massachusetts	
ATTN: Mr. D. Atchley, Jr.	1
U.S. Army Electronics Materiel Agency	
ATTN: SELMA-R2b	
225 So. 18th Street	•-
Philadelphia 3, Pennsylvania	(Balance o

- ...

<u>~</u> *

ance of Copies)

1.

.