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ABSTRACT

Two problems are considered, both of which are characterized by essentially

the same geometry. In the first problem, the properties of surface waves propagating

in a slab of uniaxially anisotropic dielectric are studied. The slab is of finite thick-

ness and the relative dielectric constants of the dielectric tensor are all positive. Two

cases are studied simultaneously, one being the case where the optical axis is chosen

parallel to the slab, and the other being the case where the optical axis is chosen per-

pendicular to the slab.

Only E-mode surface waves are studied since these have the properties of ex-
traordinary type waves. The H-mode surface waves (ordinary surface waves) have the

same properties as surface waves propagating in an isotropic slab. Hence, the results

for the latter problem are well known.

A transverse resonance procedure is utilized in the determination of the surface

wave resonances. It is found that at any frequency the resonances are finite in number.

In addition it is found that surface waves will propagate only if certain conditions are

satisfied by the principal dielectric constants of the diagonal tensor.

In the second probelm the electromagnetic fields of a uniaxially anisotropic

plasma slab in the presence of a magnetic line source are studied. The geometry is

the same as for the first problem, except that the optical axis is chosen parallel to the

slab and perpendicular to the direction of the line source. The line source is located

either outside the slab or at a conducting plane (i. e., an infinite slot) covered by the

slab.

Under the conditions described, it is found that the structure can support an

infinite number of discrete E-mode surface waves for any frequency less than the

plasma frequency. The resultant surface wave field can be expressed as a convergent

series obtained by evaluating the residue terms which arise in the steepest descent

representation. Furthermore it is found that all the surface waves are forward waves

in so far as propagation along the slab is concerned.

In addition to the surface waves, an infinite number of nonspectral leaky wave

poles is found to exist for any frequency greater than the plasma frequency. However,

only a finite number of the leaky wave poles contribute residue terms for any angle of

observation less than 90°, where the angle of observation is measured from the normal

to the slab.
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CHAPTER I

INTRODUCTION

The problems to be considered in subsequent chapters will involve uniaxially

anisotropic dielectric media. Media possessing such properties can be constructed

by implanting dielectric obstacles in a suitable dielectric binder. Such obstacles

would have dimensions which are small in comparison to the wavelength of the

radiation and would be arranged in a geometric pattern which would give rise to the

uniaxial properties. If the obstacles possess finite conductivities, the resulting

artificial dielectric structure would be anisotropic both electrically and magnetically.

This possibility will not be considered here. The properties of artificial anisotropic

dielectrics as well as the techniques for constructing them have been considered by

various authors, and the results are available in the literature 2,4,5

The characteristics of surface waves guided by isotropic dielectric slabs have

been studied in great detail and the results are well known1 0 . An extension to this

problem consists of the study of such waves guided by a uniaxially anisotropic di-

electric slab. This latter problem will be considered in Chapter III and it will be

found that the surface waves which propagate at a given frequency are finite in number.

In addition, it will be shown that the relative dielectric constants of the dielectric

tensor must satisfy certain inequalities if surface waves are to propagate.

Another medium which possesses the uniaxial characteristics described above

is a plasma in the presence of an infinite, d. c. magnetic field. If a slab of sucb a

plasma, with the optical axis oriented parallel to the slab, is excited by a magnetic

line source some very interesting phenomena are observed. These will be discussed

in detail in Chapter IV. However, it is interesting to mention some of the results

here, and by way of contrast, to mention some of the results obtained by Tamir 11' 12, 13

in the analysis of the source-excited, isotropic plasma slab.

In the case of the uniaxially anisotropic slab it will be shown, for the E-mode

case, that an infinite number of surface waves can be supported by the slab at any

frequency below the plasma frequency. In addition, the waves are all forward waves.

In contrast, Tamir's results show that an isotropic plasma slab can support up to

four forward or backward surface waves, and these carry power in opposite directions

in the plasma and air regions. Other contrasting results are also found to exist.

Above the plasma frequency, in the anisotropic case, it is found that a descrete

infinity of nonspectral leaky wave poles exist, only a finite number of which contribute

residue terms to the field. In Tamir's problem the nonspectral leaky waves do not

occur. Of Lourse, the continuous %pectrum associated with open structures occurs

in both the isotropic as well as the anisotropic case.
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CHAPTER II

FORMULATION OF THE GENERAL EQUATIONS

The representation of electromagnetic fields in cylindrical regions is greatly

simplified by expressing the fields in terms of their longitudinal and transverse

components with respect to the longitudinal coordinate z. The transverse fields can

then be represented in terms of a complete set of vector modes characteristic of the

transverse field distribution, and the longitudinal fields can be derived directly from

the transverse fields. In this way the problem is reduced to one of solving a set of

one-dimensional transmission line equations. The techniques are equally valid for

isotropic, as well as uniaxially anisotropic regions. 6, 9, 19

The formulation described above will be outlined for a region filled with a

medium of permeability uo and a relative dyadic permitivity given by

S:e •XoXo + eloo+ 5_ZoZ (2--1)
! -2 Z-o 2-o + Y0100 +L, 0±O

for the case where the optical axis coincides with the x axis (o a x), and

S= C lX oX o + Y- 0oYo 0 "Cz -o - o (2-2)

for the case where the optical axis coincides with the z axis (o a z). The inhomo-

goneous Maxwell equations then have the form

V x E J wuo H-M (2-3)

and

VxH jiweo. E 4 3 (2-4)

where E, H, M and J are the electric field, the magnetic field, the magnetic source

current density and the electric source current density, respectively. A time

dependence ejWt is assumed.

The Maxwell equations can be put into the equivalent transverse (to z) form

by using the standard techniques outlined in the literature. 9119 It is pointed out that

the results will be given for the two dimensional case (I. e. a/ y u 0), since the

problems considered subsequently fall into this category. For the transverse fields

Ht and Et one readily obtains the following equations:
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•-t ÷~I 1 x
"-;-z'- jwo + - 7t • -to) + x Z (2-5)ko = -0 -0

alHit A
6z J wtt Vt tj (_zxEt) +zo0 XJt (2-6)

whe re
k 2

0  0Ioo

J=~i (oa ax)

, (o a z)

and

CI t 5 Mro o+ C2 -o -0, (o ax)

C x 0x 0+ Yo0 Yo) ,(o a a).

A A
The equivalent transverse source currents Mt and Jt are given by

t 0xM) (2-7)
-t - t " ==O' C -

and A Vt x (z 0 M) (2-8)
.It -t Jwt o(

The longitudinal field components can then be expressed in terms of the transverse

field components. Thus,

H " t "(z x 9]. (2-9)

and
E (H tx 31 (2-10)

z J W O c t _ _ o - S .

For the problems to be considered the transverse region is unbounded in the trans-
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verse direction, so that a radiation condition must be satisfied at infinity. In the z

direction the boundary conditions will be specified for the particular geometries

considered.

Since the region under consideration is uniform in the z direction, the trans-

verse components of the electric and magnetic fields can be expressed in the form

V(z, ý) e (x, g) and I(z, ý) h (x, g), where g is the continuous (real) modal wave-

number in the transverse (x) direction. Also, the homogeneous nature of the trans-

verse cross section permits the decomposition of the vector eigenfunction into E and

H modes relative to z. This is the saine as the representation for the isotropic case.

Thus, the transverse fields and source terms are expressed as follows:

Et(x, Z) fJ V'(z g) e'(x, g) dg + f V" (z, g) 1ý(x,ý) dg, (2-11a)

- a
Htx.z)= "I'(z. g lh'lx, g) dg + I"v(z, Z)lhlx, ýldg. (2-11b)

tt(X. Z) =? t(z, ý)e'(x, ý)dg +i i'(z, L)e'v(x, ý)d•.(-1c

-mD --.

A
Mt(x, z) v'(z, g) h'(x,g)dg + vv'(z,. )h' (x,!)dg, (2-11d)

h=z xe,

where the single and double primes denote E and H modes.

Upon substituting equations (2-11) into (2-5) and (2-6), and remembering the

facts that for E modes e = e x and for Hmodes h =hx 0 , and the fact that e' and

e# are linearly independent vector functions, one obtains the transmission line

equations and associated elgenvalue problems. Thus, for the (o a x) case, the

separation procedure yields for a particular E mode

-d V'(z,) Z*' ('0+v' Z Zla
dz =j zZI z )+ (, )(-Ia

- dl V zd =J R Y, V'(z,) + i' (zZ), (2-12b)

o1 , -el (2-1Zc)



and

vtt(x.•) = - 0_' (x,.) , (2-13a)

VtVth' (x, 0. (2-13b)

The E modes are usually referred to as extraordinary type modes. By applying the

same procedure for a particular H mode one obtains

d j ( J, 1 Z'l" (z,C) + v" (s) (2-14a)

- 4 J 'Y' V, (z, ') +l1 (i, ( ), (2-14b)

X Z. (2-14c)
K'

and
VtVt y (x. C) =- (2 hx, g) (2-15a)

VtVt . e = 0 (2-15b)

The H modes are referred to as ordinary type modes.

The same procedure outlined above, applied in the (o a s) came yields similar

results. Thus for E modes (extraordinary type modes) one obtains

d dV '( • = jC, Z 111 ( Z' 9) + V' (Z,. ) (2-16a)
dz z

""V- =1) i' Y' V' (z, ') + iI (Zg) (2-16b)

KI' ,/ k Z (2-16c)

C2 e2 a ' weoel

and

Vt Vt (x, 2N•, (2-17a)

vtVt. h' (x,g) = 0. (7-17b)

For a particular H mode (ordinary type mode) the results are

dV' •) (zZ I'(S '+ "(s.) (2-18a)
" dz z
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dI' (u L) --. , VV (M, ) +i'(z,') (2-l1b)
" dz z

/;kz 7 -1"• Z# L 0  (2-18c)

and

V t Vt (x,, = (X) (2-19a)

vt e (x,) 0. (2-19b)

It has been mentioned that the problems to be considered subsequently are

charactized by unbounded cross sections in the transverse direction. Hence, equation

(7-13a), (2-15a), (2-la) and (Z-19a) must all satisfy the radiation condition at infinity.

Appropriate solutions for these eqalations would then be of the form

e(x,) I e-j * x X0 (2-20)

for E modes, and

h (xL) 0--L- e'JP x (2-21)

for H modes.

The vector functions e and h are chosen to satisfy the usual orthogonality

conditions , so that the various current, voltage and source amplitude functions are

given by the following equations:

V(z, C) E•t(x,M) (x, g) dx, (2-22a)

U Z-,9) -- t(x, --) *(x. 9) dx, ? 2 b

V(- .Z)' _tlx,. Z) *(x.,C) dx, (Z- ZC)

OZ-,9) T. ( lX. Z) . _(x, g) dx, (2-Zd

where* denotes complex conjugate.

Although the preceding formulation has been outlined for two dimensional

uniaxially anisotropic regions, the problems to be considered will also involve isotropic

regions. Hence, the modal formulation for such regions9 will also be utilised in sub-

sequent work.
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CHAPTER III

SURFACE WAVES GUIDED BY A UNIAXIALLY

ANISOTROPIC DIELECTRIC SLAB

In this chapter the properties of surface waves guided by a uniaxially anisotric

dielectric slab will be studied, with the analysis being limited to the source free case.

The propagation of surface waves in a slab of dielectric (isotropic or anisotropic)

depends upon the phenomenon of total reflection at the inner boundaries of the slab. It

is well known that when total reflection takes place at a dielectric interface the propaga-

tion constant in the direction perpendicular to the interface and outside the dielectric

becomes purely imaginary. The fields outside the dielectric then decay exponentially

with distance from the interface.

The geometry of the problem to be considered is illustrated in Fig. 3. 1. The

slab consists of an anisotropic dielectric with dielectric tensor given by equation (2-1)

or (2-2), and withr1 and C. real and positive. The medium which surrounds the slab

on either side is isotropic with a relative dielectric constant P. Because of the

obvious symmetry of the problem

4110 91L L'~ofM '1 0 , ILO

L.-2d4
0zo z -o

,\

%Ic

Fig. 3. 1: Anisotropic dielectric slab and equivalent transmission line.

two bisections will be considered, a short circuit or electric wall (s b), and an open

circuit or magnetic wall (o b). The analysis will be limited to the study of E modes

since the properties of H modes (ordinary modes) in the slab are the same as those

of waves propagating in an isotropic region.
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1. The Transverse Resonance Solution

It will be convenient to anticipate the fact that the surface wave resonances are

finite in number at any given frequency. Hence, the subscript m will be introduced on

all subsequent results to denote a particular surface wave. The wavenumbers inside

and outside the slab in the x direction are denoted, respectively,by * and k.xm m

These must be equal for the boundary conditions to be matched at the interface. The

characteristic impedance of the equivalent transmission line is given by

•zmZ, (o a x) , (3-1a)
Z = ®oe2

m

- , (o az) , (3-1b)

forlzl <d, and
k

z = z (3-Z)
om wo

for I z2> d. xzm and kzm are the wave numbers in the z direction, inside and outside

the slab respectively.

The values of x xm' K ZM' and kzm for the surface waves which will propagate

are obtained by solving simultaneously the transverse resonance equation and the

dispersion relation. This latter relation is obtained from equations (Z-1Zc) and (2-16c)

for the region I zj < d. For the present problem, the dispersion relation within the

slab is written as follows:

KxmC + K-m 1 C (o a x), (3-3a)

0 C l C .x 2 C X 2 ' ( o a z ) . ( 3 - 3 b )
•xml zm C

For the region 1 z I > d, the dispersion relation is given by

k =K + k . (3-4)
o xm zm

The transverse resonance equation for either bisection is given by

4-- ".

Z (d) + Z (d) = 0,
4-"

Where Z (d) is the impedance looking to the left at z = d and Z (d) is the impedance

looking to the right at z = d. Thus, for short circuit or open circuit bisections taken

at z = 0 in Fig. 3. 1, one obtains the following equations:
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a b case o b case
kk

Cz2 tan x d + k = (o ax) 3-5a) .jzm cot d0 (oax) dZi2c zm e 2

k
xm d + zm = fl, (oaz) (3-5b) -j! cotx td+ m =0, (oaz) (3-6b)

JTV tan K ur d ei m 9-

A necessary condition for the propagation of surface waves within the slab is

that the propagation constant in the z direction in the outer medium be purely

imaginary, that is

kzm Ikzm•.

With this last result, equations (3-3) and (3-4) can be combined to yield

k c2 (tI- 2) = 2z l+ ' (3-7)

for the (o a x) case, and

k2el(C? 2 e2 +I km 1el (3-8)

for the (o a z) case. Now, introducing the change of variables

p W xzmd (3-9)

and

q = (3-10)
[kzmd I• d (o az),

equations (3-7) and (3-8) both take the form

2 2q 2 (-1e+q = a (3-1)

where
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r 2 •2

(kod) - (cl- •) , (o ax), (3-1Za)

2a

(kod) -(2 -e) ,(o a z). (3-1Zb)

Under the same change of variables (3-9) and (3-10), equations (3-5) and (3-6) become

-- ,L p tan p s (s b), (3-13a)

q=

-C p cot p . (o b). (3-13b)

Note that equation (3-13) is valid for both the (o a x) came and the (o a z) case.
Equation (3-11) is the equation of a circle and it is to be solved simultaneously

with equation (3-13). The graphical technique for the solution is illustrated in Fig. 3. 2.

The cutoff frequencies for the various surface waves occur when 1m2

approaches ko6 , in which case it follows from equations (3-4) and

PTANp -ApCOTp

" I

0 W 3 I/9 2 V

Figl. 3. 2: Illustration of tihe graphical technique for the transverse resonance solution.



11

(3-10) that q = 0. To satisfy these conditions the relations

tan p = 0 cot p'= 0

must hold in the (s b) and (o b) case respectively. The last equations are. satisfied when

p X- d= a = m_ I (3-14)zm 2

where m = 0, 1., 2.... Note that m is even for the (ab) case and odd for the (ob) case.

The cutoff frequencies and wavelengths can be obtained from equations( 3 -12) and (3-14).

When the optical axis coincides with the x axis one obtains

f _-mc 1 ,(3-15)
cm 4d 2(£l -

and

aM -,/t2 ( ) (3-16)
m 9 1

where c is the speed of light in free space. When the optical axis coincides with the z

axis the results are
f _m c,/ t (3-17)
cm 4d v •I(•2- c)

and 4 I .g-4d 1, E)

cm -R t ' (3-18)

It should be pointed out that the lowest cutoff frequency is zero in the case of the short

circuit bisection.

Some important facts can now be obtained by interpreting some of the above

results. Reference to equation (3-12) shows that when the optical axis coincides with

the x axis no surface waves can propagate if el <_ . Likewise, when the dielectric

is anisotropic in the z direction, no surface waves will propagate if eZ < e.

Z. The Dispersion Curves

An overall picture of the behavior of the surface waves can be obtained from

an examination of the dispersion curves given by I/Xx vs. I/ d. X is the wavelength

in the x direction. In order to obtain the dispersion curves it will be necessary to

obtain an expression for X/X x in terms of p and q. This expression, together with

a knowledge of the behavior of the roots of the transverse resonance equation (see

Fig. 3.2), enables one to plot X/x vs. A/d.

Equations (3-3) and (3-4) can be written, with the aid of (3-10), as follows:

(o a x) case (o a z) case

p (kd 2  - ({xkod) d -C2 , (3-19a) p 2g k2 ce - tKxmd)2 -, (-19b)0~ = 2 tm) C1 0- M {3-Z
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q2 2 (k d)2 o t + (KXd)2 E2 (3-20a) q2 E= -k 2 E + (K d)2 (3-20b%

Now, combining equations (3-19) and (3-20) solving for X , dividing by ko, and using
xrn

equations (3-11) and (3-12), one obtains

(o a x) case (o a z) case

_._ £p+ e£1 qp q (3-21a) 7 + (3-21b)
S-•/ 2 2- 2

Equations (3-21) can now be used to obtain the qualitative curves shown in Fig. 3. 3.

It is seen, from Fig. 3. 2, that for a infinite, q becomes infinite and p approaches some

multiple of '/2, for a particular surface wave resonance. Hence all the curves

intersect

Af e 1 , (oox) ,z 2 ,(o0 x)

S( .de (o00 ) 4 , (0oo: )

r4 /'•O._,

Sl-I/ I , sA

XCM: [ ,m x 0,1, 2,...4' ~(C t (Oct)

I I

XC3/d Xc2/d Xci/d d

Fig. 3. 3: Dispersion curves for the surface waves.

the I/X axis at,/-, where Ci is defined in Fig. 3.3. The lowest surface wave

resonance (m = 0) has an asymptotic value of x = -as a approaches zero. This

fact can be obtained from equations (3-13a) and (3-21a). The higher order resonances



13

have curve. which end on th~ line •/x @ at values of /d given by equations (3-16)

and (3-18).

The slope of the curves is Fig. 3. 3 is always negative and consequently the
surface waves are all forward waves in the x direction. It is expected, then, that

the net transfer of power is in the positive x direction. This is actually the case since

the only real component of the Poynting vector is P = - E H (* see equations (3-26)x B y
and (3-27) in section 3).

3. The Spatial Variation of the Fields

It is a simple matter to derive the field expressions for the surface waves.
These can be expressed directly in terms of the current function which satisfies the

equivalent transmission line in Fig. 3. 1. It will only be necessary to obtain an

expression for the y-component of the magnetic field Hy, the electric field being given

by

1o a x) (3-_2a)
J® Co C2 Iz

Ex ,z< d.

I BH - (o a z) (3-ZZb)

JW eoel 1ZL

JWol ax (o a x) (3-23a)

E z ,1 s. d.
I aH (o a s) (3-23b)

E I , > do (3-24)

I~ BH

I C x fd

If the amplitude of the current function at I = d is specified as Id. and if one
keeps in mind the continuity requirement for E and H at the slab interface, then,

x ywith the aid of equations (3-22) to (3-25), the following field distributions are obtained:
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a b case

(a) 0 < z < d

E d- It~ z Jo xnix sin x zm z

(3-z6a)

H Idejx COBK ItE

dTT K zm

E d %xim e Jxxm x CosK zm

E W 9cooCK d

where [ 1 *(o ax) f , (o ax)

e2  (o a z) i *(o a z)

(b) z> d

E 'd Ke in
4 ~~m

(3- 26b)

H: e_* XxmyXa kejkmI(zd).

E z I d x- lTD. xnh 'S - k MI (z -d)

4r~r Cjz w 0

o b came

(a) 0 < z < d

d 
COSK x

E =~ zm * -JLm amZ

x fIto0"Cj amin X

H T- 8 nJXD UfK rd 
(3-27a)

E z= d Kxm 6 -SK xm si amz

a We C 
finp
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(b) > d

--x- Id asm co.amrnd e'-JR x e IkI(z-d)x - a n xsttsd

H y d . -K x - Ik..( d) (3-27b)

E 'd Mtxm x aK - Ikzmm(z-d)S.- S xm e" mJ -d
z A- t o0

Equations (3-46) and (3-27) show that the spatial variation of the fields to
sinusoidal within the slab and exponentially decaying outside the slab. Furthermore,
it can be seen from Fig. 3. Z that as frequency increases for a given surface wave
the wave becomes more tightly bound to the slab. Fig. 3.4 shows the spatial variation
with z of H for the m=.O surface wave. The field distribution it shown for a low
frequency as well as for a high frequency.

Hy

(a)

H1

-d d
(b)

rig. 3. 4: Spatial variation of H for the m = 0 resonance, (a) low frequency, (b) high
frequency.
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CHAPTER IV

THE ELECTROMAGNETIC FIELD OF A UNIAXIALLY ANISOTROPIC

PLASMA SLAB EXCITED BY A MAGNETIC LINE SOURCE

The problem to be considered next consists of an analysis of the properties

of the electromagnetic field of a uniaxially anisotropic plasma slab excited by a

magnetic line source. The slab is infinite and planar with a thickness Zd and bounded

on both sides by free space. The infinite magnetic field is applied parallel to the

slab so that the optical axis coincides with the x axis. Maxwell's equations for the

situation described are given by equations (2-3) and (2-4) with 3 = 0 and

M 8 (x) 8 (z - b) yo" It is seen that the direction of the magnetic line source is

chosen perpendicular to the optical axis. The dielectric properties of the plasma are

given by the relative dielectric tensor

p +Zoo -so- (4-I)

where

Cp =I- (!P 2 (4-2)

MAGNETIC LINE
_ _ _ _ _ _SOURCE

b 410 PC

s PC

Fig. 4. 1: Geometry of the source excited plasma slab.

and Wp is the plasma frequency. The geometry of the problem described above is

illustrated in Fig. 4. 1. Two cases will actually be considered, one where the source

is outside the slab and the other where the source is located at a = 0 in the form of

a slot in a ground plane.

1. The Formal Solution

a: The magnetic line source is located outside the slab.

It follows readily from Maxwell's equations that, for the configuration in
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Fig. 4. 1. the magnetic field will have only a y component and the electric field will

have only x and z components. Hence, only E-modes with respect to the z direction

will be of interest. The symmetry of the geometry warrants the simultaneous

consideration of the usual short circuit and open circuit bisections of the equivalent

transmission line network. This is illustrated in Fig. 4. 2. The propagation factor

SHORT CIRCUIT (Cb)
OPEN CIRCUIT (ob)

K z I k

z tvd
Z:o z:d z=b

Fig. 4. 2: Equivalent transmission line network for the geometry of Fig. 4. 1.

and characteristic impedance of the equivalent transmission line in the region 0 < z < d

are obtained from equations (Z-1Zc) with C, = 1 and C.= Cp. Thus,

JI T (4-3)
Zp v0

and

z - C * P (4-4)

where • is the wavenumber in the x direction. For z > d, the corresponding para-

meters are

k = o J, (4-5)

and
k

1 _ z (4-6)
o 0 o

The magnitude of the voltage generator in Fig. 4. 2 is obtained from equation (Z-Z2c).

Thus, with

h(x, 1 e-J•Xo

one obtains

v (z, 1) _ (z - b).
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The magnetic field H is most readily expressed in terms of the current

function which satisfies the transmission line in Fig. 4. 2. The x and z components

of the electric field are then readily derived as derivatives of H . These results cany
then be expressed as follows:

H (z, )ej x dý , (4-7)

and
E - I -gI 0 u< <d, 14-Ba)x JWCoe p a s -

aH

E 1 . D d < d < ,, (4-8b)

z H c, 0< z<z . (4-Sc)

The solution for the transverse current function is readi y obtained 9 and is given by

O -Jkz (b-d) coos •zS[co (s b), (4-9a)

(z e-Jkz (b - d) @in its 5
, (o b), (4-9b)

"sinx d

for0< z<d, and

I(z, W) = ° JkzIe b - 1(d) e-jkz ,+ b (4-10)

for z> d, where

J Ko tan x d +- ' (s b), (4-11a)

WCOC P z W Co

(d) =
k

z cotkXd+- (o b), (4-11b)
0909op Sd 00

anti
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1
j- L tan f d - k

(s b) (4-12a)
- Kztan x d+k

C p z z z

r (d) =

j 1 x zct Xtd+ k
r (o b) (4-lZb)
r I xz cot zd - k z
p

b: The magnetic line source is located at z = 0.

When the magnetic line source is located at z = 0 in the form of a slot in a
conducting ground plane, the only difference in the equivalent transmission line net-
work in Fig. 4. 2 is that the voltage source is located at z = 0. The current function
is then given by (remembering that only the (s b) case is of interest)

"" I I-itz cos K z(z-d) -j kz sin K. (z-d)"

____,x) - (4-13)S•" xt(k cosKt d+ J I-- sin•:d)

r Tz p "

for 0< z< d, and

I ( 0 p e -jkz(z-d)I(z, !) - + sn(4-14)

SA pkz coos z d + Jiz sin zKd

for d< z< a..

c: Evaluation of the free space field.
In evaluating the fields, interest will be centered on the region above the slab,

so that equations (4-10) and (4-14) will be the functions in the integral given by (4-7).

The treatment of the fields within the slab can be handled by the same techniques
presented in the subsequent outline, although this will not be carried out here. TamirII

has evaluated the fields within the slab for the isotropic plasma and a complete

development of the techniques involved can be found in his work. The methods employed
in the evaluation of the integral in (4-7) are well known9' I0, lland will be considered
only briefly here.

To insure the convergence of the integral and the satisfaction of the radiation
condition,it is required that Rek > 0 and link <0. The integrand has branch pointsz a
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at k = 0 and the choice of branch cuts which satisfies the necessary conditions is

lm kz>o Im kz <o
Z (2) ( Rk)>

Re kz>o Re kt>0

-k _0 ,,,/PATH OF INTEGRATION

- -0% - - - - - - VCCCU Cr

Im Y <o (3) Imkz>o (4)

Re kz >o Re kz >0

Fig. 4. 3: Illustrating the choice of branch cuts in the ý plane.

illustrated in Fig. 4. 3. The situation In Fig. 4. 3 to depicted for the came of

vanishingly small losses, so that the path of integration in clearly defined.

In order to obtain a steepest descent approximation for the fields it is con-

venient to put the integral in a more suitable form. This it accomplished by intro-

ducing a cylindrical coordinate representation and a change of variable given by the

transformation

S= k sin o , (4-15a)

kz =k 0 coso,, (4-15b)

P = Tr + J~i "(4-15c)

The cylindrical coordinate system for the line source outside the plasma slab is

illustrated in Fig. 4. 4, while the geometry for the source located at z = 0 is illustrated

in Fig. 4. 5. In the former case the change to cylindrical coordinates is accomplished

by the transformation

x = r sin8 , (4-16a)

z+ b - Zd = r coso , (4-16b)

while in the latter case the required transformation is given by
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(xz

MAGNETIC
LINE SOURCE

z+b-2d

BISECTING d
PLANE dIMAGE SOURCE

PANEI - _ -r--2--- - -- -

Fig. 4. 4: Cylindrical coordinates for source outside the slab.

(x,z)

1/

CONDUCTING MAGNETIC LINE

PLAlIE SOURCE

Fig. 4. 5: Cylindrical coordinates for source located at z = 0.

x = r sin e, (4-17a)

z - d = r cos B. (4-17b)

The integrals which represent the magnetic field above the slab can then be written as

H = -Hco 4 2 )(k P) - f ýp e-Jk 0 r Cos (CP d 4-8
y = T - [r 0 0

p

for the case where the line source is located above the slab, and

-Jkr cos (a, - B)

Hy W f _ co dep (4-19)

p C coo eC o coose) *j jgpin (d/;;kcooep)~
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for the magnetic line source located at z = 0. The path of integration in the C plane

is indicated as p. The transformation given in equation (4-15) %,naps the two sheeted

S- plane into a connected strip in the e - plane. The result is indicated in Fig. 4. 6,

with the numbers indicating those quadrants in the 1 plane which map into the

corresponding strips in the r plane.

#5

SDP

(3) (2) 0I) (4)

-V -7r/2 A r/2 n r O

(2) () (4) (1)

Fig. 4. 6: Paths of integration in the T - plane.

The integrals in equations (4-18) and (4-19) have saddle points at 0 =0 so

that a steepest descent procedure is used to obtain asymptotic expressions for the

magnetic field. The steepest descent path (S D P) is given by

cos (qr - 6 ) cosh 1i = 1. (4-40)

With the line source located outside the slab the magnetic field it given asymptotically

by 14
WH e -j (k-r -o)/4

Hwhere 2)H(kp)- 4 ýlr(a)e (4-1)
y 01

where
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tan (kd P coo 0) "•-p ,(s b) , (4-22a)
j tan (kde coo 8) +r

p

r(e)
j cot (kd..IF coo 0)/

EE (o b). (4-22b)
j cot (kd /e'pcoS 0)- f-

p 'p

In addition to the assymptotic term given in equation (4-20) the field also

contains residue terms due to poles which are located between the original path of

integration P and the steepest descent path(S D F1 A typical residue term is given by

[Jkor coo p ] (e4-23)

where N(T) and D(c) are the numerator and denominator of F(T) respectively. When

equation (4-23) is evaluated the result is

Hp = ( W)2 c -Jk r coo ( (4-24)

When the line source is located at z = 0 the asymptotic evaluation of equation

(4-19) yields

-J(ko0r- TI/4)

H y- WeOCP coo(Ikd cos e) sin dýep o coo 0)].d r (4-25)

while the evaluation for a particular residue term yields the result

COG W 2 csc CPp -jk0 r con (ep -)Hpp= - --F (i.) e p (4-26)
p cos (,-pkod cos p)

It is pointed out that the radiation field given by equation (4-25) is considerably less

complicated than the corresponding term given in equation (4-21) for the case where

the magnetic line source is located outside the slab.

The expressions obtained above represent the solutions for the free space field.

Before investigating the properties of tht field it is necessary to studythe transverse

resonance equation.
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2. Solution of the Transverse Resonance Equation

In order to obtain a more quantitative picture of the fields described in the

last section it will be necessary to study the behavior of the poles of the various

integrands. These poles correspond to the roots of the transverse resonance

equation, given by

j. K tant d+k =0, (ab), (4-Z7a)
Cp z

and
-j -Lx cotK d ÷+k = 0, (ob), (4-27b)

e P z z

subject to the auxiliary condition

2 2
(4-28)

obtained from equations (4-3) and (4-5). For convenience, the change of variables

p = xzd = Pr + J Pi

q =" kzd =qr +jqi

is introduced. Equations (4-27) and (4-28) then take the form

q = j -L p tan p , (s b) (4-29a)
C p

q . j pcotp (ob) (4-29b)
Zp-

p 2  q -g =q0. (4-30)

By eliminating q from equations (4-29) and (4-30) one readily obtains the

eq'iations
I + _I tan2p =0 , (eb) , (4-31a)

(p

1 + I cot2 p=0 , (o b) . (4-31b)
ep

It follows readily from equations (4-31) that p is real only if gp <0. However, this

fact will fall out as a special case of the subsequent development. By separating the

real and imaginary parts of equations (4-31) one readily obtains the results
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* sin2 2 Pr - sinh2 2 Pi (s b) (4-32a)

(cos 2 Pr 4 cosh 2 p) 2

p s in2 2 pr - sinh 2  P , (o b) (4- 32b)

(coo 2 pr - cosh 2 pi)' b

and

sin 2 Pr sinh 2 Pi = 0, (4-33)

for both the (s b) and (o b) cases. Equation (4-33) permits two possible cases, namely

either

Pt = 0,

in which case surface wave resonances exist, or

niT
pr= T , n = 0, 1, 2,

in which case leaky wave resonances exist.

In the surface wave case, substitution of pi = 0 in equations (4-32) yieldsI an -
2 1r , (s b), (4-34a)

•p -cot p , (o b). 
(4-34b)

It is seen that the existance of surface waves is possible only when ep < 0, that is,

when the plasma is opaque. For the case where pr = nT /2, equations (4-32) yield

the result

e = tanh 2pi (4-35)

for both bisections, with the stipulation that n is even for the (a b) case and odd for

the (o b) case. The above results can be summarized by sketching the loci of the poles

in the p-plane with frequency as a parameter. The sketch is shown in Fig. 4. 7. It

is seen that the surface wave pole loci lie along the pr axis and the surface wave

poles become complex at the plasma frequency. It is also noted that the surface wave

poles are infinite in number for any frequency below the plasma frequency.
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tw -0"- D a) -"•OD WJ--*CD 11 - -OD I -- 4WOD a-0-Oa

.0• €* -. - -

U, - ---. )-0 '

b0 b 0
0 -Q K in

cose oO th s a wn oe oot

1:O W: -- 'CD C1W' D (00C W -- W O W-ODW -Wp

Fig. 4. 7: Pole loci in the p-plane. Arrows indicate increasing frequency.

The roots in the q-plane can be obtained from equations (4-29). Thus, in the

case of the surface waves with p = pr and q =jcq one obtains

q Pr tan Pr (s b) , (4-36a)

""p i Pr Cot Pr ( o b) (4-$36b)

But from equation (4-30) one can write

2
q Pr (4-37)

and hence the result
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E o Pr cot P: j (o b) (4-38a)

qi Pr tan p r ( o b) (4- 38b)

is obtained. Equations (4-38) can be used to obtain the surface wave loci shown in

Fig. 4.8.

q:jql qzJq4 q Jql q:jql

W-4UP f0w (&rWpt
O°Pr<f "PIr<r | r<P,<i" PROPER

RESONANCESI
W=:O q= WO q:O W= q =O W=O q:O.

w I - I I I(='W -1

Pa IMPROPER

n:O Tl rr 2 n=2 n:
ob ob sb ob

Fig. 4. 8: Surface wave pole loci in the q-plane.

In order to obtain the loci of the leaky wave poles in the q-plane, equation

(4-35) and the fact that pr = nrt/Z are substituted into equations (4-29). This last

operation yields q as a complex function of frequency (or gp ). and after separating

the real and imaginary parts and eliminating the frequency parameter, one obtains

for the equation of the leaky wave loci in the q-plane.

q q coth -l Zq, n = I, Z, 3g .4-39)

qi rn nf v nn q r(-"g9)nby
The range of values on qris given by
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qr = * for W W or ep = 0

and

qr = * forn or p =1.

For the special came where n =0, equations (4-Z9a) and (4-35) yield

qi = - pi coth pi. (4-40)

in which case qi takes on values from -1 to -. with increasing frequency. It is pointed

out that a pole given by equation (4-40) will not contribute to the field. This fact will

become apparent when

-21r -37/2 -w -,#2 w& ii 3W/2 2rI I ,I I

I tI I I
I I II I ItI

St ,
tr

MC !u nxO n 3 ,x4

I ItI

Fig. 4. 9: Leaky wave loci in the q-plane.

the pole loci are mapped into the e plane. The loci of the leaky wave poles are

sketched in Fig. 4. 9 with the arrows indicating increasing frequency.

The mapping of the pole loci into the c - plane is accomplished by means of the

transformation given by equation (4-15b). Thus, one obtains

q -k sd = - kod coo p , (4-41)

with
+ =•r ÷Ji



29

Equation (4-41) is readily separated into the real and imaginary parts to yield

qr ' kod corn r cosh ept (4-4Za)

qt kod sin lr link (1 " (4-42b)

The surface wave loci in the q-plane were all located on the imaginary axis
and hence it is recognized from equation (4-42a) that theme loci will lie on the line

Cr = 'T/ 2 in the @ - plis . Equation (4-4Zb) can then be written as
qj

sinh ei = k d (4-43)
0

Equation (4-43) can be written, with the aid of equation (4-30), as

Z
h2 r (4-44)

where c is the speed of light. Then, considering the n 0 resonance it is seen that as

a approaches zero, pr approaches "/Z and equation (4-44) yields

Trc

sinh V i = -

p

Also, as w approaches wp, pr approaches zero and q, approaches -1, so that equation

(4-43) yields

sinh "- "

p

It is noted that a surface wave pole for the n = 0 case cannot contribute a residue term

to the fields. By reasoning similar to the above one can obtain the behavior of the

higher surface wave loci in the c - plane. Thus, for the next three resonances, the

following results are obtained:

n = 1,

at W -0 0 (proper resonance)

sinh ei =

W77 (improper resonance),

at w = p

Binh rp=m;
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n =2,

at w= 0

Y (proper resonance)
psinh ep,3i 3 n c ripoe

(improper resonance),

at w = W0

sin{ .

nt =03

at W=0

0W-7p (proper resonance)

sin fo1 P (improper resonance),

at W = Wp

sinh la :*e

The above informatio" for surface wave poles it summarized in Fig. 4. 10.

t w PI PROPER
RESONANCES

w:0 SINH* 1

w:O SINHOI

2wpd

120 W20IYO 0130:O * * V

wi: -0 i SINHO.
=: .:WO SINHIN 

IP: .7IN :0 SIN H,6
W .=0 SIN H.61  W•d w O SI1NHN

wpd-
wWpd Wýwp, W""WpI IMPROPER

RESONANCES

n:O niI n:2 n:3
sb ob sb ob

Fig. 4. 10: Surface wave pole loci in the m - plane
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The location of the leaky wave loci in the cp - plane is a more complicated

matter. In this case

p = j • tanh , (4-45)

and

q = T - j 1 tanh-1  p (4-46)

p p
Equations (4-42) can then be written

k0d cosrn r rcohTi =+, (4-47a)

ppk i p ihI tanh"I (Z , (4-47b)

From equation (4-47b) it can be concluded that, since .1- tanh-W /p.> 0. leaky wave

pole. will map into the strips 0 <epr < IT, cpi <0 and -• epr < 0, cpi> 0. Hence,

contributions to the fields will be due only to leaky wave poles located in the region

0 <ip r < T/2' cPi < 0. Also, from equation (4-47b), it is seen that the poles are

located symmetrically about the origin of the p - plane. In subsequent calculations

attention will be limited to the strip 0 <tPr < " /2, tp < 0.

Next, limiting values will be calculated. Equations (4-47) can be written as

cos r cosh rpi n*c (4-48a)

c tanh'l- (I/®

"sinhpr uinhq,1i -c 7_- P7 (4-48b)

Also from equations (4-47) one obtains

Now =we cppoahetan fpr tanh (4-49)

Now, when q r approaches nTT/Z it follows from (4-49) that
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tan {Or tanh epi = - ,

and hence T r = •/2" The corresponding value of Vpi, obtained from equation (4-48b) is

Ti = 0. These limiting values correspond to w = co. When w = w p the limiting values,

obtained from equations (4-48b) and (4-49) are given by cpr = 0, Ti = -W .

Further properties of the roots can be obtained from equation (4-48a). Note

that at a given finite frequency, as n is made to increase, cosh (p, must increase (since

0 < coo tPr < I in the region of interest). This means that the poles corresponding to

large n at this fixed frequency must be in the region, cPr small and cpi very negative.

Consequently, it follows (from the shape of the steepest descent curve in Fig. 4. 6)

that a finite number of leaky wave poles will contribute to the field for a given angle

of observation 0 < 8 < T/2.

The above information yields a qualitative picture of the leaky wave pole

loci in the c - plane. It is possible to obtain a more exact picture by graphical calcula-

tion. Thus equations (4-47) and (4-49) can be used to obtain an explicit equation for

the pole loci, namely

slnh { •-tan er tan•i - - { -) {•} svc Tr sech tPi, (4-50)

where X p is the plasma wavelength. Equation (4-50) can be solved graphically to yield

quantitative results for the poles in the ep - plane. The qualitative information obtained

above, together with a knowledge of the quantitative behavior of the pole loci obtained

from equation (4-50), shows that the leaky wave loci in the cp - plane are as illustrated

in Fig. 4-11 a and b. The steepest descent path for 9 = "/2 is shown dotted.

_ wr2 'r

_3

nnI

/
S /I

/

1ir

Fg 4. Ila: Leaky wave pole loci for different values of n and fixed].
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Fig. 4. lib: Leaky wave pole loci for same value of n and p--i < +2 )<(4)3.

3. Some Properties of the Surface Waves

One of the unexpected features of the surface wave resonances is the fact

that an infinite number of these exist and give rise to residue terms at any frequency

below the plasma frequency. Actually this result is not so strange when one considers

the dispersion relations given by equations (4-3) and (4-5). These are plotted in

Fig. 4. 12, on the same set of axes, for w < W . It is seen from an examination of the

curves in Fig.. 4. 12 that an infinite number Jimaginary values of kz will satisfy both

curves for real values of ý and ,z. Another point of interest is the fact that the

vector drawn from the origin to a point on the plasma dispersion curve (i. e. the

wavenumber) tends to become collinear with the line , = I C for higher surface

wave resonances (higher values of g). It is also noted that for the higher resonances

the values of g and Xz are larger and hence the electrical length of the slab K zd increases

with n.

The dispersion curves for the individual surface waves can be easily obtained

from the results which have already been derived. Hence, using the fact that

Cp = - ()-) =1 --
p a
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IK k ,9KZ.

WAVENUMBER FOR

A PLANE WAVE
WITHIN THE
PLASMA

Fig. 4. Z: Plot of dispersion relations for free space and for the plasma when w< lo.

and introducing the results given in equations (4-34) one obtains( " secpr , (ab) ( (4-Sla)

P cic Pr (o b) (4-Sib)

Now, introducing equations (4-38) into equation (4-5) one obtains

d ý)2iW csc ~r b) ,(4-52a)

-LX,

X-I )- -( sec- p' (o b). (4-52b)

Equations (4-51) and (4-SZ) are the parametric equations of the surface wave dispersion

curves. The range of values on the parameter pr can be obtained from Fig. 4. 7, with

the result that the dispersion curves can be sketched as shown in Fig. 4. 13.
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Fig. 4. 13: Surface wave dispersion curves.

The slopes of the curves in Fig. 4.13 are all negative. Since the group velocity is

related to the negative of the slopes of these curves, the phase and group velocities

are both positive and the waves are all forward in the x direction.

The spatial variation of the surface waves is sinusoidal within the slab and

exponentially decaying outside the slab. If, in the source free case, Id is the amplitude

of the current function at z = d the field distribution can be written as follows:

s b case

(a) 0 < z < d

E Id nz _-jx sinxzz
x 1/ T JWCoC p coo X z d

(4- 5 3a)
Id -Jgx cos rzz

H d• e cos Sz
y co p

Ed .=,_L e-Jgx cos X z

S= we 0coo Ks d
a~ z/* W
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(b) z > d

E I d z @in Itad -ix •jks( d)
x "=opcoo xt

Ida

H = d-j e ex -kz 1 (z -d) (4-53b)Y 4r
I e-Jrxe I(=-z d)

E - d

o b case

(a) 0 < z,< d

E d x coox I
x 4-- TWCe coo R,,d

'In. $in =
H - - 1- 0x * li(4-4a)

z 4,.,-1- sC inx z d
E I- d .. in*-j=x

(b) z> d

- d )tn cooxzd -x. kz(z- d)

x JWe p x

H- d O*J 1  ,1I(d) (4-54b)Y

Id "1k,.l( d)

z ý/771W CO

One of the interesting consequences of the anisotropy in the present problem

is that the a component of the electric field is continuous over the plamma-free space

interface. As a result power travel@ in the same direction both inside and outside the

plasma. This result follows from the fact that the only real component of the Poynting

vector is P = - E H . It im interesting to point out that in the case of the isotropicx z y
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plasma slab, which has been thoroughly studied by Tamiru, power travels in opposite

directions in the plasma and free space regions. Again, this result occurs because

of the discontinuity in Ez over the interface.

One more point of interest should be mentioned in connection with power. If

the fields within the slab are interpreted as being composed of plane waves which are

reflected back and forth within the slab, then the wavenumber for a particular plane

wave is given by the vector which is constructed in Fig. 4. 12. The average power

flow vector P = R (E x H) is directed normal to the dispersion curve8' 80. It ise- -

seen from Fig. 4. 12 that the angle between the wavenumber and P is less than 900. It

is pointed out that the net power transfer is in the x direction even though Phas a

component in the negative z direction. This follows from the fact that when the plane

wave is reflected at the plasma interface the resulting Poynting vector will have a

component in the positive z direction. Hence, the Poynting vectors due to the two

plane waves combine to give a net component in the x-direction.

4. Some Properties of the Fields Above the Slab

Some of the properties of the fields due to the residue terms, and their

relationship to the geometry of the structure will now be considered. Since the general

properties of the surface and leaky wave fields are essentially independent of the

source location the discussion will be limited to the case where the line source is

located at z = 0. Also, since the characteristics of such waves have been discussed

in great detail elsewhere, 10 '1the presentation here will be brief.

From equation (4-26) it is seen that the residue fields vary as

-Jk 0 r cos (pp -8)
f (r, 8) = e• (4-55)

where

S= - + qip

for the surface waves, and

ep = Crp + jP ip

for the leaky waves. Now, considering the surface waves separately, it is seen that

the constant phase surfaces are perpendicular to the x-axis and given by

r cos (f - 8) = constant,

while the constant amplitude surfaces are parallel to the x-axis and given by

r sin (Y - 8) = constant.
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It follows that if a surface wave is observed along a plane of constant phase the

amplitude decreases exponentially with the distance from the interface. These remarkp

are illustrated in Fig. 4. 14. The angle 80 is the angle of observation at which the

FREE: SPACE,C
PLASMA I
INTERFACE

- - - CONSTANT PHASE
- CONSTANT AMPLITUDE

Fig. 4. 14: Constant phase and amplitude surfaces for the surface wave field above

the slab.

residue field for a particular surface wave pole is first observed, i. e., the angle

for which the steepest descent curve intercepts the pole.

Remarks which are similar to the above can also be made for the leaky waves.

In this came cprp < 0 and the constant phase surfaces are given by

r cos (9 - tprp) = constant,

while the constant amplitude surfaces are given by

r sin (0 - 'Prp} = constant.

It follows from these results and equation (4-55) that the leaky wave decreases

exponentially with distance from the wave vector k which is indicated in Fig. 4. 15.--p
This last result implies growth in the direction perpendicular to the slab and decay
in the direction parallel to the slab. These remarks are illustrated in Fig. 4. 15.

One more fact is of interept and this follows from the expression for the phase velocity
for a surface or leaky wave

cV = Zos (8- e8 rp, cosh ca p "
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k

FREE SPACE,
PLASMA
INTEFCE

CONSTANT PHASE
CONSTANT AMPLITUDE

Fig. 4. 15: Conotant phase and amplitude surface. for the leaky wave field above the
slab.

It is seen that the surface waves are slow waves, while the leaky waves are fast waves.
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