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ABSTRACT

Twoproblems are considered, both of which are characterized by essentially
the same geometry. In the first problem, the properties of surface waves propagating
in a slab of uniaxially anisotropic dielectric are studied. The slab is of finite thick-
ness and the relative dielectric constants of the dielectric tensor are all positive. Two
cases are studied simultaneously, one being the case where the optical axis is chosen
parallel to the slab, and the other being the case where the optical axis is chosen per-
pendicular to the slab.

Only E-mode surface waves are studied since these have the properties of ex-
traordinary type waves. The H-mode surface waves (ordinary surface waves) have the
same properties as surface waves propagating in an isotropic slab. Hence, the results

for the latter problem are well known.

A transverse resonance procedure is utilized in the determination of the surface
wave resonances. It is found that at any frequency the resonances are finite in number.
In addition it is found that surface waves will propagate only if certain conditions are

satisfied by the principal dielectric constants of the diagonal tensor.

In the second probelm the electromagnetic fields of a uniaxially anisotropic
plasma slab in the presence of a magnetic line source are studied. The geometry is
the same as for the first problem, except that the optical axis is chosen parallel to the
slab and perpendicular to the direction of the line source. The line source is located
either outside the slab or at a conducting plane (i. e., an infinite slot) covered by the
slab.

Under the conditions described, it is found that the structure can support an
infinite number of discrete E-mode surface waves for any frequency less than the
plasma frequency. The resultant surface wave fieldcan be expressed as a convergent
series obtained by evaluating the residue terms which arise in the steepest descent
representation. Furthermore it is found that all the syrface waves are forward waves

in so far as propagation along the slab is concerned.

In addition to the surface waves, an infinite number of nonspectral leaky wave
poles is found to exist for any frequency greater than the plasma frequency. However,
only a finite number of the leaky wave poles contribute residue terms for any angle of
observation leas than 90°, where the angle of observation is measured from the normal
to the slab.
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CHAPTER |
INTRODUCTION

The problems to be considered in subsequent chapters will involve uniaxially
anisotropic dielectric media. Media possessing such properties can be constructed
by implanting dielectric obstacles in a suitable dielectric binder. Such obstacles
would have dimensions which are small in comparison to the wavelength of the
radiation and would be arranged in a geometric pattern which would give rise to the
uniaxial properties. If the obstacles possess finite conductivities, the resulting
artificial dielectric structure would be anisotropic both electrically and magnetically.
This possibility will not be considered here. The properties of artificial anisotropic
dielectrics as well as the techniques for constructing them have been considered by
various authors, and the results are available in the literaturel' 2,4, 5.

The characteristics of surface waves guided by isotropic dielectric slabs have
been studied in great detail and the results are well knownw. An extension to this
problem consists of the study of such waves guided by a uniaxially anisotropic di-
electric slab. This latter problem will be considered in Chapter III and it will be
found that the surface waves which propagate at a given frequency are finite in number.
In addition, it will be shown that the relative dielectric constants of the dielectric
tensor must satisfy certain inequalities if surface waves are to propagate.

Another medium which possessses the uniaxial characteristics described above
is a plasma in the presence of an infinite, d. c. magnetic field. If a slab of such a
plasma, with the optical axis oriented parallel to the slab, is excited by a magnetic
line source some very interesting phenomena are observed. These will be discussed
in detail in Chapter IV. However, it is interesting to mention some of the results
here, and by way of contrast, to mention some of the results obtained by Tamlru' 12,13
in the analysis of the source-excited, isotropic plasma slab.

In the case of the uniaxially anisotropic slab it will be shown, for the E-mode
case, that an infinite number of surface waves can be supported by the slab at any
frequency below the plasma frequency. In addition, the waves are all forward waves.
In contrast, Tamir's results show that an isotropic plasma slab can support up to
four forward or backward surface waves, and these carry power in opposite directions
in the plasma and air regions. Other contrasting results are also found to exist.
Above the plasma frequency, in the anisotropic case, it is found that a descrete
infinity of nonspectral leaky wave poles exist, only a finite number of which contribute
residue terms to the field. In Tamir's problem the nonspectral leaky waves do not
occur, Of course, the continuous spectrum associated with open structures occurs

in both the isotropic as well as the anisotropic case,



CHAPTER 11
FORMULATION OF THE GENERAL EQUATIONS

The representation of electromagnetic flelds in cylindrical regions is greatly
simplified by expressing the fields in terms of their longitudinal and transverse
components with respect to the longitudinal coordinate z. The transverse flelds can
then be represented in terms of a complete set of vector modes characteristic of the
transverse field distribution, and the longitudinal fields can be derived directly from
the transverse fields. In this way the problem is reduced to one of solving a set of
one-dimensional transmission line equations. The techniques are equally valid for
isotropic, as well as uniaxially anisotropic regions. 6,9,19

The formulation described above will be outlined for a region filled with a

medium of permeability Uy and a relative dyadic permitivity given by

3 =€250-’5o+°lxoxo+°l£o-§o (2-1)

for the case where the optical axis coincides with the x axis (o a x), and

€ e X X te1YoYo tep 202 (2-2)

for the case where the optical axis coincides with the z axis (0 a z). The inhomo-

gcneous Maxwell equations then have the form
VxE=-juy H-M (2-3)

and

VxH=jue e E43 (2-4)

where E, H, M and J are the electric field, the magnetic field, the magnetic source
current density and the electric scurce current density, respectively. A time
dependence e’ wt is assumed.

The Maxwell equations can be put into the equivalent transverse (to z) form
by using the standard techniques outlined in the literature. %19 it is pointed out that
the results will be given for the two dimensional case (i. e. a/B y = 0), since the
problems considered subsequently fall into this category. For the transverse fields

H t and E ¢ one readily obtains the following equations:



a@.t 1 . ﬁ
- T LU lt+;2"— Ve |- (Hyxz )t M xz (2-5)
0%
_Eg_‘— T S E)+ \?
57 - Jug) 5y ot Ry TR X oy (2-6)
4]
where
k =wu°eo.
¢ (o a x)
£ =
€2, (oaz)
and
el_x_ol(.o+gzxoxo, (oax)
€t "

er{x x,+y 1,) +» (oan.

A A
The equivalent transverse source currents h_dt and lt are given by

A vtx(zon)
LA A TR (2-7)
o1
and A v, x (2 M)
e A T : (2-8)
Ho

The longitudinal field components can then be expressed in termas of the transverse

field components. Thus,

1
B Tong [Vt 2o xE ) - Msz]’ (2-9)
and
- 1
Ez - we ey [vt . (}_!t x!o) - Jz] * (2-10)

For the problems to be considered the transverse region is unbounded in the trans-
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verse direction, so that a radiation condition must be satisfied at infinity. In the 2
direction the boundary conditions will be specified for the particular geometries
considered.

Since the region under consideration is uniform in the z direction, the trans-
verse components of the electric and magnetic fields can be expressed in the form
V(z, €) e (x, £} and I{z, €) h (x, g), where £ is the continuous (real) modal wave-~
number in the transverse {x) direction. Also, the homogeneous nature of the trans-
verse cross section permits the decomposition of the vector eigenfunction into E and
H modes relative to z. This is the saine as the representation for the isotropic case.

Thus, the transverse fields and source terms are expressed as follows:

E (x,2) = f V'(z,8) e’(x,8) dg + J? Vi(z,g) ¢"(x, £)dg, (2-11a)
H(x, z) = f 1'(z,2)h’(x, €) dg + ]: 1"(z, g) h¥(x, g)de, (2-1ib)
3x 2 = fi'(z. g)e’(x, £)de +j1'(z, £)e’(x, £)de, (2-11c)
Mx, 2) = f v/(2,€) h'(x, g)dg + Iv'(z, OB’ (x,)de, (2-11d)
h=z xs--

Q

where the single and double primes denote E and H modes.

Upon substituting equations (2-11) into (2-5) and (2-6), and remembering the
facts that for E modes e = e X and for H modes h = hx’-‘o' and the fact that ¢’ and
_e_' are linearly independent vector functions, one obtains the transmission line
equations and associated eigenvalue problems. Thus, for the (o a x) case, the

separation procedure yields for a particular E mode

-S_V_ASZE.LS.) = n’zz'l' (z,g)+v’(z,§), (2-12a)

S ALmE) oy ¥ VI (5,8) + 1 (5 0), (2-12b)

’ ‘2 A U X _
k o €1~ » Z =~ -‘”eoez ’ (2-12¢)




and
V7,9, & x,8) = - gzg_' (x,8) »

V.V B/ (x2) =0,

The E modes are usually referred to as extraordinary type modes.
same procedure for a particular H mode one obtains

- - =§ u"Z' ) o (z,g) +v' (s, e,
SAEABE) Lyt vV (s, ) 1 (8D,
w
)l'zz koel—g ’ z 3-;‘;0—
£

and
v,9, . b* (x, 8) = - £%0" (x, ¥)
v, .e=0

tt

The H modes are referred to as ordinary type modes.

(2-13a)

(2-13b)

By applying the

(2-14a)

(2-14b)

(2-14¢)

{2-15a)

{2-15b)

The same procedure outlined above, applied in the (o a z) case ylelds similar

results. Thus for E modes (extraordinary type modes) one obtains

- AVHEmE) L 201 (5 g) + v (52

_dl’ z )=j”-'zY' V! (=, g""“ (z'g)

’

€1 [+ 2 2 "z
oz [ - ! =
X 2z ‘\/cz k 32 g 4 z weoel

V.9, - &' (x,8) =~ !zg' (x, 2),

and

vy, . b’ {x,2) = 0.

For a particular H mode (ordinary type mode) the results are

- =j,'_'lz’ (e, 8)+ v (5,9

{(2-16a)

(2-16b)

(2-16¢)

(2-17a)

(2-17b) .

(2-18a)
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SALARE) Lyt vV (ng) 417 (ne) (2-18b)

w .
R D (2-18¢)
]
and
7,9 - b (x,8) = - 220" (x,8) (2-19a)
vy, . & (x8) =0 (2-19b)

It has been mentioned that the problems to be considered subsequently are
charactized by unbounded cross sections in the transverse direction. Hence, equation
(2-13a), (2-15a), (2-17a) and (2-19a) must all satisfy the radiation condition at infinity.
Appropriate solutions for these eguations would then be of the form

e lx, 8) = — e"gxf_o (2-20)
w

for E modes, and

hixe) =—L ed8%x (2-21)
o

for H modes.
The vector functions e and h are chosen to satisfy the usual orthogonality
conditionsé, so that the various current, voltage and source amplitude functions are

glven by the following equations:

V(z, g) =.[§t(x' z) . 2*(Xp g) dx , (2-22a)

I(z,8) =I Et(x' z) . _l;l_*(x, g) dx, (2-22b)

v(z, £) =f @t(x. z) . _lf(x.g) dx, (2-22¢)
A *

i(z,8) =IL(x. z) . e (x,2) dx, (2-224d)

where* denotes complex conjugate,

Although the preceding formulation has been outlined for two dimensional
uniaxially anisotropic regions, the problems to be considered will also involve isotropic
regions. Hence, the modal formulation for such re'gione" will also be utilized in sub-

sequent work.,



CHAPTER Il

SURFACE WAVES GUIDED BY A UNIAXIALLY
ANISOTROPIC DIELECTRIC SLAB

In this chapter the properties of surface waves guided by a uniaxially anisotric
dielectric slab will be studied, with the analysis being limited to the source free case.
The propagation of surface waves in a slab of dielectric (isotropic or anisotropic)
depends upon the phenomenon of total reflection at the inner boundaries of the slab. It
is well known that when total reflection takes place at a dielectric interface the propaga-
tion constant in thc direction perpendicular to the interface and outeide the dielectric
becomes purely imaginary. The fields outside the dielectric then decay exponentially
with distance from the interface.

The geometry of the problem to be considered is illustrated in Fig. 3,1. The
slab consists of an anisotropic dielectric with dielectric tensor given by equation (2-1)
or (2-2), and with G and € real and positive., The medium which surrounds the slab
on either side is isotropic with a relative dielectric constant «. Because of the

obvious symmetry of the problem

Fig. 3.1: Anisotropic dielectric slab and equivalent transmission line.

two bisections will be considered, a short circuit or electric wall (s b), and an open
circuit or magnetic wall (o b). The analysis will be limited to the study of E modes
since the properties of H modes (ordinary modes) in the slab are the same as those

of waves propagating in an isotropic region,



8
1. The Transverse Resonance Solution

It will be convenient to anticipate the fact that the surface wave resonances are
finite in number at any given frequency. Hence, the subscript m will be introduced on
all subsequent results to denote a particular surface wave. The wavenumbers inside
and outside the slab in the x direction are denoted, respectively, by 1xm and kxm'
These must be equal for the boundary conditions to be matched at the interface. The

characteristic impedance of the equivalent transmission line is given by

. 3

" :
: 2, (ax) , (3-1a)
Zm = €of2
P.
%
wf:‘ , f(oaz) |, (3-1b)
“o~1
for' zl <d, and
k
Z = z -
om “weoe (3-2)

for | z|> d. x,m and kzm are the wave numbers in the z direction, inside and outside
the slab respectively.

The values of Mem’ ®zm’ and kzm for the surface waves which will propagate

m
are obtained by solving simultaneously the transverse resonance equation and the
dispersion relation. This latter relation is obtained from equations (2-12¢) and (2-16c)
for the region [zli d. For the present problem, the dispersion relation within the

slab is written as follows:

2 2

2 Xem€2 "’sz € ¢ (o a x), (3-3a)
ko €1 %2 2 2
’lxmel + szez ’ (0 a Z). (3-3b)

For the region |z|> d, the dispersion relation is given by

2 .2 2 )
Koe =n + koo (3-4)

The transverse resonance equation for either bisection is given by

Z(d) + Z () =0,

h ) -
Where Z (d) s the impedance looking to the left at z = d and Z (d) is the impedance
looking to the right at z = d. Thus, for short circuit or open circuit bisections taken
at z = 0 in Fig. 3.1, one obtains the following equations:



s h case ob case

L3

X
zIn
j

) k
tan "zmd + zem =0, (oax) (3-5a) -j :m cot "‘zmd+ :m =0, (oax) (3-6a)
2

k
" zm zm em Yzm _
j'—el— tan )(,zmd + € =0, (oa z) (3-5b) -j—e-z— Cothmd"’ . —0, (oa z) (3-6b)

A necessary condition for the propagation of surface waves within the slab is
that the propagation constant in the z direction in the ocater medium be purely
imaginary, that is

Kom =

k
zm

With this last result, equations (3-3) and (3-4) can be combined to yield

zez ’ (3‘7)

2 2
k, eZ(el. -e) = Yzm €1 +'kzm

for the (0 a x) case, and

2 2 z
kO el (CZ - Q) = ﬂ.zmez + lkzm 810 (3’8)

for the (o a z) case. Now, introducing the change of variables

Pex, d (3-9)

and

[ ]
‘kzmtd/-e—l-z— , (oax),

q = ' (3-10)
€1
lkzmd ’—e—z-,(oaz),

equations (3-7) and (3-8) both take the form

lpz + qz = az (3-11)

where



s e 3 2 b AN bt O e i ot s

10

(kod)zie-zl—- (el -¢) , (oax), (3-12a)
2 -
(k o.'l)z l(cz -¢) ., (oaz). (3-12b)
o' &y

Under the same change of variables (3-9) and (3-10), equations (3-5) and (3-6) become

| —f— ptanp , (sb), (3-13a)
€1 €2
q=
—%—pcotp , (ob). (3-13b)
€] €2
A

Note that equation {3-13) is valid for both the (0 a x) case and the (0 a z) case.
Equation (3-11) is the equation of a circle and it is to be solved simultansously
with equation (3-13). The graphical technique for the solution is illustrated in Fig. 3.2,
The cutoff frequencies for the various surfacs waves occur when "em
approaches k:e. in which case it follows from equations (3-4) and

|
!
|
|
I
l
l
I
(
|
I
I
I
(
!

0 /e ” 3n/R 2w sn/2 ’p

Fig. 3.2: lllustration of the graphical technique for the transverse resonance solution.
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(3-10) that g = 0. To satisfy these conditions the relations

tanp=0 cot p=0
must hold in the (8b) and (ob) case respectively, The last equations are.satisfied when

mw

p::rzmd=a= 5

. (3-14)

where m = 0,1, 2,... Note that m is even for the (sb) case and odd for the (ob) case.
The cutoff frequencies and wavelengths can be obtained fromequations(3-12) and (3-14).
When the optical axis coincides with the x axis one obtains

€

- mc 1
fcm_ ;—;— — ’ (3-15)
cz(cl - ¢€)
and
44 /°
Aem=—A/ 20 . (3-16)
m 5
where c is the speed of light in free space. When the optical axis coincides with the z
axis the results are o
mc 2
= — , (3-17)
cm 44 g leg - ©)
and 4d
)‘cm *m €, (52 - €) ¢
2 (3-18)

It should be pointed out that the lowest cutoff frequency is zero in the case of the short
circuit bisection.

Some important facts can now be obtained by Interpreting some of the above
results. Reference to equation (3-12) shows that when the optical axis coincides with
the x axis no surface waves can propagate if ey <e. Likewise, when the dielectric
is anisotropic in the z direction, no surface waves will propagate if ez S e

2. The Dispersion Curves

An overall picture of the behavior of the surface waves can be obtained from
an examination of the dispersion curves given by x/xx vs. Ma. A is the wavelength
in the x direction. In order to obtain the dispersion curves it will be necessary to
obtain an expression for )‘lxx in terms of p and q. This expression, together with
a knowledge of the behavior of the roots of the transverse resonance equation {see
Fig. 3.2), enables one to plot "/xx vs. }/a.

Equations (3-3) and (3-4) can be written, with the aid of (3-10), as follows:

(o a x) case (o a z) case

2 2 2 2% 2 2 2 €€
Pe=(k,d” c,e-(xn d —6?21_ 1 (3-192)  pe =kg g -lemd) = (3-19b)
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2 2 2 2
e = -tk et (2 AP e, 3-200) Py = ader(x ale (3-20b°

Now, combining equations (3-19) and (3~20) solving for ,xm’ dividing by ko' and using
equations (3-11) and (3-12), one obtains

(o a x) case {o a z) case

,  (3-21a) %—= ——. (3-21b)

Equations (3-21) can now be used to obtain the qualitative curves shown in Fig, 3.3.
It is seen, from Fig. 3.2, that for a infinite, q becomes infinite and p approaches some
multiple of /2, for a particular surface wave resonance. Hence all the curves

intersect

€, (o0x) €,,(00x)
€ = € =
7] €p loa2) 171 € (0an)

/_‘.‘L(c,-q s (oax)
/c
-.l(‘r‘, ' (ocz)

‘y|>r

,m=0,1,2,...

3l 3>

— —— ——— —— — —  ——

L |
Ac3/g Ac2/d Aewd

o.|y

Fig. 3.3: Dispersion curves for the surface waves.

the )‘/)Lx axis at ./'e—i'. where € is defined in Fig. 3.3. The lowest surface wave
resonance (m = 0) has an asymptotic value of >‘/)‘x = /e as a approaches zero. This
fact can be obtained from equations (3-13a) and (3-21a). The higher order resonances
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have curves which end on the line ‘/xx =Je at values of "/d given by equations (3-16)
and (3-18),

The slope of the curves is Fig. 3.3 {s always negative and consequently the
surface waves are all forward waves in the x direction. It is expected, then, that
the net transfer of power is in the positive x direction. This is actually the case since
the only real component of the Poynting vector is l'-")t = - EzHy* (see equations (3-26)
and (3-27) in section 3).

3. The Spatial Variation of the Fields

It is a simple matter to derive the field expressions for the surface waves.
These can be expressed directly in terms of the current function which satisfies the
equivalent transmission line in Fig. 3.1, It will only be necessary to obtain an
expression for the y-component of the magnetic field Hy' the electric field being given

by

1 d Hy
m tots 3. , (oax) (3-22a)
Ex = ¢ ’ lz! < d,
aH
-t Y
To O az y (0oaz) {3-22b)
4 aH
1 Y
choel E , (oax) (3-23a)
E, = 4 .l sl< 4,
1 3H
3-23
]'_”—e—oe_z -5;1 » (oax) ( b)
E 1 _a.lil : 3-24
ST Teee L |=]> (3-24)
2H
E = 1 Yy |, |z|> d. (3-25)
z Jw €48 3y

If the amplitude of the current function at z = d is specified as I Y and if one
keeps in mind the continuity requirement for Ex and H_ at the slab interface, then,
with the ald of equations (3-22) to (3~25), the following field distributions are obtained:



e e Ve €T P A RO i 0 18 et

14

s b case
() 0<z<d
1 " siny__ z
d zm o x zm
E &= ——— e xm ’
L = Jwe ¢ 5 cos n, d
1 cos x__ 2
4 % zm
Hy = e ' xm W ’
I ™ _ cos z
E =- d —Xm_ . J"m‘nx cos zm ’
z o W %o% Xzm
where
ey » (0ax) ¢, » (oax
€4 = ‘:j =
ey » (02 2) e » (0az),
(b)) z>d
1 ' siny _d g -
E -4 zm zm e -""'xm‘ e -'kzm|(z d).
x J-zv— jw eogj cos xzn“l
Ia g x -k, |(z - 4d)
H - e txm” e ’ zm' R
y "
1 " - -
E --—3 xm_  Moen® e Kym (z d).
z w Yeo e
ob case
(a) 0<z<d
r ” cos x__ Z
d zm -jn zm
E =« e xm ——[—'—T ’
x ﬂ;‘— W egey sln X,

1 sin x Y
_ d jn x m
HY = = e xm -an—;;n-a- ’
1 % x sinax__ 2z
E =- d xm e-j"'xm T—z-n-‘a' ’

(3-26a)

(3-26b)

(3-27a)
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(b z> d
1 " cos y d
.. _d S x o lk -d
oo e tet i,
Ta o x ’k (x - d) (3-27b)
H’= . xm e zm ’ -

d xm e It ™ o 'kzml("d) .

B Jz“— e,

Equations (3-26) and (3-27) show that the spatial variation of the fields is
sinusoidal within the slab and exponertially decaying outside the slab. Furthermore,
it can be seen from Fig. 3.2 that as frequency increases for a given surface wave
the wave becomes more tightly bound to the slab. Fig. 3.4 shows the spatial variation
with = of l-ly for the m=0 surface wave. The field distribution is shown for a low
frequency as well as for a high frequency,

Hy
| |
)
| ]
| 'y 2
-d d
(o)
Hy
'
: |
| |
i |
A z
-d d

)

Fig. 3. 4: Spatial variation of H_ fnr the m = 0 resonance, (a) low frequency, (b) high
frequency. y
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CHAPTER 1V

THE ELECTROMAGNETIC FIELD OF A UNIAXIALLY ANISOTROPIC
PLASMA SLAB EXCITED BY A MAGNE TIC LINE SOURCE

The problem to be considered next consisis of an analysis of the properties
of the electromagnetic field of a uniaxially anisotropic plasma slab excited by a
magnetic line source. The slab is infinite and planar with a thickness 2d and bounded
on both sides by free space. The infinite magnetic field is applied parallel to the
slab so that the optical axis coincides with the x axise. Maxwell's equations for the
situation described are given by equations (2-3) and (2-4) with J = 0 and
M= (x)8 (= - b) Yo it is seen that the direction of the magnetic line source is
chosen perpendicular to the optical axis. The dielectric properties of the plasma are
given by the relative dielectric tensor

[P PS5 PR XD FIE PP (4-1)
where ®
ep=1-12)° (4-2)

d
MAGNETIC LINE

r/ SOURCE

€51 M0

. DM

o

€1 Mo

Fig. 4.1: Geometry of the source excited plasma slab,

and w_ is the plasma frequency. The geometry of the problem described above is
illustrated in Fig. 4.1. Two cases will actually be considered, one where the source
is outside the slab and the other where the source is located at s = 0 in the form of

a slot in a ground plane. '

1. The Formal Solution
a: The magnetic line source is located outside the slab.
It follows readily from Maxwell's equations that, for the configuration in
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Fig. 4.1, the magnetic field will have only a y component and the electric field will
have only x and z components. Hence, only E-modes with respect to the z direction
will be of interest. The symmetry of the geometry warrants the simultaneous
consideration of the usual short circuit and open circuit bisections of the equivalent

transmission line network. This is illustrated in Fig. 4.2, The propagation factor

SHORT CIRCUIT (sb)
OPEN CIRCUIT (ob)

d v
—— -
Ky t ks
| \")
d
|[ 4 N Z,
z=o0 2=d 2=b

Fig. 4.2: Equivalent transmission line network for the geometry of Fig. 4.1.

and characteristic impedance of the equivalent tranamission line in the region 0 < z < d

are obtained from equations (2-12c) with € = 1 and €, o' Thus,

ny <oy -6, (4-3)

Xz

l .
Z = R — » (4'4)
Y T

and

where £ is the wavenumber in the x direction. For z> d, the corresponding para-

meters are

k =/ kg -8 (4-5)
and
zZ = = R -
° o Yeo

The magnitude of the voltage generator in Fig. 4.2 is obtained from equation (2-22c).
Thus, with

1 e-jgx

B(x'§)= xon

one obtains !

n

vz )= 8 (z - b).
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The magnetic field Hy is most readily expressed in terms of the current
function which satisfies the transmission line in Fig. 4.2. The x and z components
of the electric field are then readily derived as derivatives of Hy' These results can

then be expressed as follows:

o1 ¢ e IEx

Hy = = -J; I(z, 2) de (4-7)

and 1 3H

= - —X -

Ex IT;O—;p—- a. ’ 05 s<d, (4 ..)

1 2y
Ex --]FGT az . d<l<.. (4-05)

1 3H

Ez =}w—eo —lax y Ocz<cwm, (4-80)

The solution for the transverse current function is readi y obtained9 and is given by

-

e-jkz (b-d) cos X, 8

1 W— » (s ), (4-9a)

T

-1k -
1 oikelb-d) sinxs (4-9b)

B T E(d) linu,z d

I(z, g) =9

for0<z<d, and

Iz, &) =- 2% [,-szlz-b| -F(a) e k(2D -za)]. (4-10)
ZJZ'TTkl
for z > d, where
7 l' k l
,———w‘o¢p tan uzd+w‘° ’ (s b), (4-11a)
e, et tee (ob), (4-11b)

and
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f
1
j;—; ", tan “‘zd - kz
1 » (U b) ’ (4-123)
je—p- L tan u,zd +kz
r (d) = 4
j—l-— coty d+k
(."Luz nz z
1 ’ (0 b) . (4-12b)
j—;—;—- ", cot "‘zd - kz
\

b: The magnetic line source is located at z = 0,

When the magnetic line source is located at z = 0 in the form of a slot in a
conducting ground plane, the only difference in the equivalent transmission line net-
work in Fig. 4.2 is that the voltage source is located at z = 0. The current function
is then given by (remembering that only the (s b) case is of interest)

L x, cos uz(z-d) -j kz sin ", (z-d)

we o |s
{z,g) = - —2B| P ¥ (4-13)
JEm l- "z(kz cos nzd+j;; sinv.zd)
for 0 < z<d, and
-jk (z-d)
_ Wty e *
I(z. g) o ﬁ- epkz cos Kzﬁ jnz 'W (4-14)

ford< z< =,
c: Evaluation of the free space field.

In evaluating the fields, interest will be centered un the region above the slab,
s0 that equations (4-10) and (4~14) will be the functions in the integral given by (4-7).
The treatment of the fields within the slab can be handled by the same techniques
presented in the subsequent outline, although this will not be carried out here. Tamir
has evaluated the fields within the slab for the isotropic plasma and a complete
development of the techniques involved can be found in his work, The methods employed
' 9,10, uand will be considered

11

in.the evaluation of the integral in (4-7) are well known

only briefly here.
To insure the convergence of the integral and the satisfaction of the radiation

condition,it is required that Rekz > 0 and Imkz <0. The integrand has branch points
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at € = £ k_ and the choice of branch cuts which satisfies the necessary conditions is

&

4
>
Im kl 0 (2) . Im kz<° “)
Rog>o ' Re k, >0
]
L}
[}
-k, _/ /PATH OF INTEGRATION
SRR NERNCNC NN INING NN =
R €
[
]
Im k<o Imk,>0
) 4
Re k; >0 (3) Rokz>o )

Fig. 4.3: Illustrating the choice of branch cuts in the £ plane.

illustrated in Fig. 4.3. The situation in Fig. 4.3 is depicted for the case of
vanishingly small losses, so that the path of integration is clearly defined.

In order to obtain a steepest descent approximation for the fields it is con-

venient to put the integral in a more suitable form. This is accomplished by intro-

ducing a cylindrical coordinate representation and a change of variable given by the

transformation
g = ko singy, (4-15a)
k, =k, cosp, (4-15b)
(4-15c¢)

co=wr+.itvi .

The cylindrical coordinate system for the line source outside the plasma slab is
{llustrated in Fig. 4.4, while the geometry for the source located at z = 0 is illustrated
in Fig. 4.5. In the former case the change to cylindrical coordinates is accomplished

by the transformation
(4-16a)

x=rsinph ,

z+b-2d =rcos§ , {4-16b)

while in the latter case the required transformation is given by
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(x,z)

MAGNETIC

LINE SOURCE
P t+b-2d

BISECTING 1 b Jf/
SN I R T N

Fig. 4.4: Cylindrical coordinates for source outside the slab.

CONDUCTING
MAGNETIC LINE
PLANE \ SOURCE -
Fig. 4.5: Cylindrical coordinates for source located at z = 0.
x=r sing, (4-17a)
z-d=rcos8@. (4-17b)
The integrals which represent the magnetic field above the slab can then be written as
we -k _r cos (p-0)
- ) 2) °
H = -2 LH‘O (k,p) - [ Fig) e dg (4-18)
|4

for the case where the line source is located above the slab, and

we . -jkr cos (o - 8)
H = - P J' e do  (4-19)
ep OO L/;;kodcouq))+jJ;|ln(J;k¢confp)




22

for the magnetic line source located at z = 0. The path of integration in the p plane
is indicated as p. The transformation given in equation (4-15) :mapsthe two sheeted
2 - plane into a connected strip in the ¢ - plane. The result is indicated in Fig. 4.6,
with the numbers indicating those quadrants in the £ plane which map into the
corresponding strips in the ¢ plane.

$

SOP

(3) (2) (n (4)

-7 -m (7] we |«w ¢

P

(2) ﬂim @ | o

Fig. 4.6: Paths of integration in the p - plane.

The integrals in equations (4-18) and (4-19) have saddle points at o = 8, so
that a steepest descent procedure is used to obtain aaympfotlc expressions for the
magnetic field. The steepest descent path (S DP) is given by

cos (q;r - 0) cosh ®; = 1, {4-20)
With the line source located outside the slab the magnetic field is given asymptotically

by
; we I -jlkr-"/4
H . - _;fnﬁ[n rtff’ (ke p) - /rzo", Te)e ° ] (4-21)

where
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( j tan (kd./?p cos 9)-,\/5; (o b)
’ ’ -22
j tan (kd./g_;) cos ) + J% ° (4-222)

‘-
T (8) =%
j cot (kd./gp cos g} «/el

[ ) cot (de;;cos 8) -.\/g

, (ob). (4-22b)

In addition to the assymptotic term given in equation (4-20) the field also
contains residue terms due to poles which are located between the original path of

integration P and the steepest descent path(S D F} A typical residue term is given by

vp =T | 2™ |G Dlo)] e o=, (4-23)
where N{(qp) and D(p) are the numerator and denominator of ?((p) respectively. When
equation (4-23) is evaluated the result is

ce -jk r cos (p_ - 8)
H_ = la(aﬂp)’- ﬁ e ©° P (4-24)

When the line source is located at z = 0 the asymptotic evaluation of equation
(4-19) yields

-3k r-"/4)

H_ . we e : € (4-25)
y P 5 cos(.\/;; k d cos @) + jjg_p sin (./,; k_d cos §) ,ﬂnEor,

while the evaluation for a particular residue term yields the result

H :-coc(lz csc g,

-jk T cos (epp-e)
e
yp & Yo cos L,{;:kod cos cpp)

(4-26)

It is pointed out that the radiation field given by equation (4-25) is considerably less
complicated than the corresponding term given in equation (4-21) for the case where
the magnetic line source is located outside the slab.

The expressions obtained above represent the solutions for the free space field.
Before investigating the properties of the field it is necessary to study the transverse
resonance equation.
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2. Solution of the Transverse Regonance Equation

In order to obtain a more quantitative picture of the fields described in the
last section it will be necessary to study the behavior of the poles of the various
integrands, These poles correspond to the roots of the transverse resonance
equation, given by

_ J;l;nztannzd+kz=0. (s b), (4-27a)
and
-J;l;uzcotxzd+kz=0. (ob), (4-27b)

subject to the auxiliary condition

2
Ny - cpki =0 (4-28)

obtained from equations (4-3) and (4-5). For convenience, the change of variables
Pax,d=p tip

q=-kd=a, +igy

is introduced. Equations (4-27) and (4-28) then take the form

q=3iptanp ’ (sb) , (4-292a)
€
P
qa- j-L pcotp , (o b) , (4-29b)
‘p
pz - (pqz =0, (4-30)

By eliminating q from equations (4-29) and (4-30) one readily obtains the
egquations

1+L tan®p=0 , (sb) (4-31a)
[
P
12
1 +é-— cotp=0 . {ob) . (4-31b)
o

It follows readily from equations (4-31) that p is real only if o <0. However, this
fact will fall out as a special case of the subsequent development. By separating the
real and imaginary parts of equations (4-31) one readily obtains the resuits
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-mzz P, - sinn®2 Py
- Z ! ( L] b) ’ (4'32‘)
(cos 2 P, cosh 2 pi)

L uinzz P, - .mhzz P
- 5, f(ob) , (4-32b)
(cos 2 p_ - cosh 2 pi)

and
sin 2 P, sinh 2 P = 0, {4-33)

for both the (s b) and (o b) cases. Equation (4-33) permits two possible cases, namely
either

Pi=°0

in which case surface wave resonances exist, or

P, = l‘z‘-' ,m=0,1,2,...

in which case leaky wave resonances exist.
In the surface wave case, substitution of Py = 0 in equations (4-32) yields

- tanznr , (s b), (4-34a)

- cot’p_ , (ob). (4-34b)

It is seen that the existance of surface waves is possible only when ¢ <0, that is,
when the plasma is opaque. For the case where P, = BT /2, equations (4-32) yield
the result
2
€ = tanh P; (4-35)

for both bisections, with the stipulation that n is even for the (s b) case and odd for

the (o b) case. The above results can be summarized by sketching the loci of the poles
in the p-plane with frequency as a parameter. The sketch is shown in Fig. 4.7, It

is seen that the surface wave pole loci lie along the Py axis and the surface wave

poles become complex at the plasma frequency. It is also noted that the surface wave

poles are infinite in number for any frequency below the plasma frequency,
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tw—.m 1«»—-@ 'w-—om tw—om

n=0 (sb)
n=i(ob)
n=2(sb)
n=3(ob)
n=4(sb)
n:?(ob) N

] ]

‘w—-a) lw—o-m lw——a) lw—-m ‘w—om lw-—.a)

Fig. 4.7: Pole loci in the p-plane. Arrows indicate increasing frequency.

The roots in the q-plane can be obtained from equations (4-29). Thus, in the
case of the surface waves withp = P, and q = jqi one obtains

p tanp . , (sd) , (4-36a)

[P P
' Y-pycotp, . (om) . (4-36b)

But from equation (4-30) one can write
pZ
S (4-37)
‘pql q ’

and hence the result
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-ppcotp. , (sb) (4-38a)
q =
! P tanp. , (ob) , (4-38b)

is obtained, E_quationl (4-38) can be used to obtain the surface wave loci shown in
Fig. 4.8.

9=)a; qQzjq, q=jq, 9:Jq,
w-*w,' w-oup' wewg
<p < 1.4
o<p, ¥ Feom & 7'<",<§2' i PROPER
) RESONANCES
l | {
w:o( q'zo wzOf qlzo w0 qlzo w:o}qlgo « o o I
1 | {
w=w"-l
eyt o] |
ww “ w-l;,‘ 37 pl th"sz':&%egﬁs
<p < <p< <p <21
nzo Z o as T 2 2% L,
sb ob sb ob

Fig. 4.8: Surface wave pole loci in the q-plane,

In order to obtain the loci of the leaky wave poles in the g-plane, equation
{(4~35) and the fact that P, = BT/2 are substituted into equations (4-29). This last
operation yields q as a complex function of frequency (or ‘p)' and after separating
the real and imaginary parts and eliminating the frequency parameter, one obtains
for the equation of the leaky wave loci in the q-plane.

qu -1 qu
qi=-—n_ﬂ- coth TT_T-' n=1 2,3, .... . (4-39)

The range of values on q, is given by
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q, =%*=, forw=wpor¢p=0,
and
qg‘*qu' I°"“’='°rcp=l.

For the special case where n =0, equations (4-29a) and (4-35) yleld

q = P‘ coth Py (4-40)

in which case 9 takes on values from -1 to -» with increasing frequency, It is pointed

out that a pole given by equation (4-40) will not contribute to the fleld. This fact will
become apparent when

9

3w/ 2w

(030!9

Fig. 4.9: Leaky wave loci in the g-plane.

the pole loci are mapped into the o plane. The loci of the leaky wave poles are
sketched in Fig. 4.9 with the arrows indicating increasing frequency.

The mapping of the pole loci into the p - plane is accomplished by means of the
transformation given by equation (4-15b). Thus, one obtains

q z-k‘d = - kod cos @, (4-41)
with

® =9, *Jo; -
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Equation (4-41) is readily separated into the real and imaginary parts to yield
q, = - kod cos p  cosh L (4-42a)
q = k,d sin ®, sinh L (4-42b)
The surface wave loci in the q-plane were all located on the imaginary axis

and hence it is recognized from equation (4-42a) that these loci will lie on the line
o, = T/2 in the @ - plme . Equation (4-42b) can then be written as

sinh g, = -&3‘3— . (4-43)
o
Equation (4-43) can be written, with the aid of equation {4-30), as
pl
sinh’y = r , (4-44)

w_ . 2 2
[(‘EN -2 ]d

where c is the speed of light. Then, considering the n = 0 resonance it is seen that as
w approaches zero, p_ approaches "/2 and equation (4- 44) yields

sioh ) = - 74 -
P

Also, as g approaches wp, P, approaches zero and 9 approaches -1, so that equntioﬁ
(4-43) yields
= .=
sinh o = - IDPT .

It is noted that a surface wave pole for the n = 0 case cannot contribute a residue term
to t.h‘e fields. By reasoning similar to the above one can obtain the behavior of the
higher surface wave loci in the p - plane. Thus, for the next three resonances, the

following results are obtained:

=1,
atw =0 0
llnh¢i=

{proper resonance)
. ne
- Jp_d. (improper resonance),
atw = w

linhcpi=t- ;
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n= z.
atw =0
Z'JT;—CJ (proper resonance)
sinh o =
-z?”L:d. (improper resonance),
t =
atw WP
sinkh Qi =t ®;
n=
aty =0
E".p—cd (proper resonance)
sinh 9=
-E.ﬂi:. (improper resonance),
w
P
t =
ato =w,

sinho ==.

The above information for surface wave poles is summarized in Fig. 4,10.

it ats $7 w-..,fj'f

w~w W-—ew
p' p' | PROPER
RESONANCES
{
w=0ﬂsmn¢'
? " ot
w=O§SINHe,
prd
$=0 w=0 =0 =0 $=0 oo —_—
W= wp SINH¢'
“-_-.Gfa wz0 smng,'
"&L w=0f SINHG,
ws=0 S|NH¢| P - ﬂ% w=0 smn¢‘
:-Lc— r"lwp _ 2we
wpd 4 '"&';%' 1
' - IMPROPER
w=wp| wwp| w “’p” ~ RESONANCES
n=0 nst n=2 n=3
sb ob sb ob

Fig. 4.10: Surface wave pole loci in the ¢ - plane



3

The location of the leaky wave loci in the ¢ - plane is a more complicated
matter, In this case

pr=silaytam e, (4-45)
and
nm 1 -1
q=1 -3 tanh™ [¢_ . (4-46)
z‘v‘: Je P P
Equations (4-42) can then be written
k dcosp_cosheo, =% Ll , (4-47a)
o r i 2[?;
k d sing_ sioh p, = - —— tanh™ o (4-47b)
°p
From equation (4-47b) it can be concluded that, since L tanh'l ,./gpz 0, leaky wave
[
P

poles will map into the strips 0 <P <M. 0 <0 and -nn< 9, < 0, ®; > 0. Hence,
contributions to the fields will be due only to leaky wave poles located in the region
0< o, < e, Py <0, Also, from equation (4-47b), it is seen that the poles are
located symmetrically about the origin of the ¢ - plane. In subsequent calculations
attention will be limited to the strip 0 <o < /2, @, < 0.

Next, limiting values will be calculated. Equations (4-47) can be written as

cos @, cosh 9 = SIS ' (4-48a)

Zde - wy
-1 w
tanh /1-( {w)
il Plw (4-48b)

dw-wp

sincpr ainhq)i = -

Also from equations (4-47) one obtains
q, =—'¥-’- coth [Ez’ltan @, tanh cpi] . (4-49)

Now, when Q, approaches BTT/2 it follows from (4-49) that



32

tan o, tanh ==,

and hence p_ = n/ 2 The corresponding value of @y obtained from equation {4-48b) is
9 = 0. These limiting values correspond to y = ., When w = w__ the limiting values,
obtained from equations (4-48b) and (4-49) are given by 9, = 0, L AERLE

Further properties of the roots can be obtained from equation (4-48a). Note
that at a given finite frequency, as n is made to increase, cosh o, must increase (since
0<cosg, < 1 in the region of interest). This means that the poles corresponding to
large n at this fixed frequency must be in the region, P, small and p; very negative.
Consequently, it follows (from the shape of the steepest descent curve in Fig. 4.6)
that a finite number of leaky wave poles will contribute to the field for a given angle
of observation 0 < 8§ < n/2.

The above information yields a qualitative picture of the leaky wave pole
loci in the o - plane. It is possible to obtain a more exact picture by graphical calcula-
tion. Thus equations (4-47) and (4-49) can be used to obtain an explicit equation for
the pole loci, namely

sinh ( %ﬂ— tan o, tanh qpi) = - (%) (o.i) sec @ sech ®y (4-50)

where x is the plasma wavelength. Equation (4-50) can be solved graphically to yield
qunntitative results for the poles in the ¢ - plane. The qualitative information obtained
above, together with a knowledge of the quantitative behavior of the pole loci obtained
from equation (4-50), shows that the leaky wave loci in the ¢ - plane are as illustrated
in Fig, 4-11 a and b. The steepest descent path for § = T/2 is shown dotted.

i

r

Fig. 4.1la: Leaky wave pole loci for different values of n and fixed_? .
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4

2 ¢r

w=®o

by P\ X
Fig. 4.11b: Leaky wave pole loci for same value of n and (—ae-)l< (—g)2 < (—f)3 .

3. Some Properties of the Surface Waves

One of the unexpected features of the surface wave resonances is the fact
that an infinite number of these exist and give rise to residue terms at any frequency
below the plasma frequency. Actually this result is not so strange when one considers
the dispersion relations given by equations (4-3) and (4-5). These are plotted in
Fig. 4.12, on the same set of axes, for w< w_. It is seen from an examination of the
curves in Fig. 4.12 that an infinite number olp imaginary values of kz will satisfy both
curves for real values of £ and LY Another point of interest is the fact that the

vector drawn from the origin to a point on the plasma dispersion curve (i.e. the
1

wavenumber) tends to become collinear with the line xg = g for higher surface

wave resonances (higher values of £). It is also noted that for the higher resonances
the values of £ and n, are larger and hence the electrical length of the slab "zd increases
with n.

The dispersion curves for the individual surface waves can be easily obtained
from the results which have already been derived. Hence, using the fact that

ep =1~ (ER)2 =1 - (1)
P
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k 1Ky

"z='|¢—p|€ z Kz'mt

WAVENUMBER FOR
A PLANE WAVE
WITHIN THE

PLASMA

Fig. 4.12: Plot of dispersion relations for free space and for the plasma when w< wp.

and introducing the results given in equations (4-34) one obtains

-secp (sb) , (4-51a)

P csc p, , (ob) . {4-51b)

Now, introducing equations (4-38) into equation (4-5) one obtains

VA +(Ldr')z(;§)z cuczpr , (sb), (4-52a)
.L=4
Ax
| ﬁ + (-M’-)Z(;%)z.eczpr ., (ob). (4-52b)
d

\
Equations (4-51) and (4-52) are the parametric equations of the surface wave dispersion
curves. The range of values on the parameter p can be obtained from Fig., 4.7, with
the result that the dispersion curves can be sketched as shown in Fig. 4.13.
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NOTE: HORIZONTAL ASYMPTOTES

GIVEN BY ., ;+(l‘ag)2(o.‘:1)2

n=1,2,3,...

|
|
|
|
|
:
»\/l+(),/2d?f-——— —{-— ————————————
|
‘\/l+()\p/4d? T rpe. WY ey S

|

I

I

1

{ My
Fig. 4.13: Surface wave dispersion curves.

The slopes of the curves in Fig. 4.13 are all negative. Since the group velocity is
related to the negative of the slopes of these curves, the phase and group velocities
are both positive and the waves are all forward in the x direction.

The spatial variation of the surface waves is sinusoidal within the slab and
exponentially decaying outside the slab. If, in the source free case, I d is the amplitude
of the current function at z = d the field distribution can be written as follows:

s b case
(a) 0<z<d
E - Id L e-ng linuzz
xJTw Tuegep conn 3’
(4-53a)
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One of the interesting consequences of the anisotropy in the present problem
is that the =z component of the electric field is continuous over the plasma-free space
interface. As a result power travels in the same direction both inside and outside the

plasma, This result follows from the fact that the only real component of the Poynting
vector is Px = - E‘HY*. It is interesting to point out that in the case of the isotropic
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plasma slab, which has been thoroughly studied by Tamiru, power travels in opposite
directions in the plasma and free space regions. Again, this result occurs because
of the discontinuity in Ez over the interface.

One more point of interest should be mentioned in connection with power. If
the fields within the slab are interpreted as being composed of plane waves which are
reflected back and forth within the slab, then the wavenumber for a particular plane
wave is given by the vector which is constructed in Fig. 4,12, The average power

8, ZO. It is

seen from Fig. 4.12 that the angle between the wavenumber and P is less than 90°. 1t

*
flow vector P = Re (_E_ x H') is directed normal to the dispersion curve

is pointed out that the net power transfer is in the x direction even though Phas a
component in the negative z direction. This follows from the fact that when the plane
wave is reflected at the plasma interface the resulting Poynting vector will have a
component in the positive z direction. Hence, the Poynting vectors due to the two

plane waves combine to give a net component in the x-direction.

4. Some Properties of the Fields Above the Slab

Some of the properties of the fields due to the residue terms, and their
relationship to the geometry of the structure will now be considered. Since the general
properties of the surface and leaky wave fields are essentially independent of the
source location the discussion will be limited to the case where the line source is
located at z = 0. Also, since the characteristics of such waves have been discussed

10,11

in great detail elsewhere, the presentation here will be brief.

From equation (4-26) it is seen that the residue fields vary as

-Jk r cos (cpp-e)

f(r, 8) =e (4-55)

where
o, =5 +io
P ip

for the surface waves, and

= +
®p = Prp Jmip

for the leaky waves. Now, considering the surface waves separately, it is seen that

the constant phase surfaces are perpendicular to the x-axis and given by

‘r cos (-TZT - B) = constant,

while the constant amplitude surfaces are parallel to the x-axis and given by

r sin (g- - @) = constant.
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It follows that if a surface wave is observed along a plane of constant phase the
amplitude decreases exponentially with the distance from the interface. These remarks
are illustrated in Fig. 4.14. The angle eo is the angle of observation at which the

Hll | L
"8 Al |
Le ! M
FREE. SPACE, ¢ L
SEEENREN N
——

PLASMA

INTERFACE ™ | 111+
~ — «— CONSTANT PHASE

CONSTANT AMPLITUDE

Fig, 4.14: Constant phase and amplitude surfaces for the surface wave field above
the slab.
residue field for a particular surface wave pole is first observed, i.e., the angle
for which the steepest descent curve intercepts the pole.
Remarks which are similar to the above can also be made for the leaky waves.

In this case eprp < 8 and the constant phase surfaces are given by

r cos (8 - q’rp) = constant,
while the constant amplitude surfaces are given by
rein (6 - cprp) = constant.

It follows from these results and equation (4-55) that the leaky wave decreases
exponentially with distance from the wave vector Ep which is indicated in Fig. 4.15.
This last result implies growth in the direction perpendicular to the slab and decay

in the direction parellel to the slab. These remarks are illustrated in Fig, 4.15.

One more fact is of interest and this follows from the expression for the phase velocity
for a surface or leaky wave

c
v.= .
P cof(@-cprp) cosh ®p
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Fig. 4.15: Constant phase and amplitude surfaces for the leaky wave field above the
slab.

It is seen that the surface waves are slow waves, while the leaky waves are fast waves.
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