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" TURBULENT BOUNDARY LAYER IN A GAS FLOW WITH HEAT
TRANSFER AND A PRANDTL NUMBER DIFFERENT FROM UNITY

Yu. V. lapin

The determination of surface friction and of heat transfer in a
turbulent boundary layer during the movment of substances with large
supersonic velocities 1s an urgent problem of aerodynamics. By now
there have gppeared asignificant amount of articles devoted to this
problem. However, the more or less fgll consideration of the influenc
of all factors (pressure gradients, radiation, and others) on the
dynamics and heat characteristics of a boundary layer remains ve;y
intricate.

The existing methods of calculation of turbulent boundar& layer
in a gas with heat transfer for both the case of a flow past a flat
plate and for the flow with pressure gradients are based on the trans-
fer to gas dynamics of the formulas of semiempirical theories of turbu-
lence. This article 1s in this sense no exception. The golution is
obtailned for the flow of gas with a moderate pressuré gradient and
‘with an arbitrary temperature distribution at the wall since thé':
Karman semiempirical theory is used. The influence of the pressure .

gradient 1is calculated only across the external flow. The temperature

S
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Trange 18 examined in which the Prandtl number and the specific heat
‘can be considered constant, regardless of temperature.’

In this article we obtain the analytical expression for the
'parameter H = &n/En% depending on the conditions at the wall and at
the exterlor boundary layer. The final formula dbtaihed‘in this
"article for the calculation of rrictidn does not require tae use’ of
various types of auxiliary graphs and tables, as 1in other existing
methods. This advantage can prove to be beneficial in a number of

cases. The calculation of heat transfer is based on Reynold's analogy.

.1. Baslc equations

The differentlal equations of continuity, of momentum and of
avérage stationary plane kinetlic energy in a turbulent boundary layer

have the form:

(ou)+ - (@) =0; (1)
du , _ d d a r. Ou ? .
O e e AL Rk (2)
aT, ] , T, . 1 d ar
o o g (=) (0 5)- (3)

where x, y and u, v — are respectively the coordinates and the compo-

nents of the velocity along the surface and normal to it;

" p = density of the gas;

P = pressure,

1L and € are respectively the coefficients of dynamic and of eddy
- viscosity;
To = stagnatlon temperature in a boundary layer;

T = temperature of the gas 1n a boundary layer; . o

" ' c_ = specific heat with constant pressure;
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J = the mechanlcal equivalent of heat;

w
]

the accelerating force of gravity;
Pr=-2 « tne Prandtl number;
A = the coefficlent of heat transfer of the gas.

The boundary conditions are:

i

u
u

(%)

L}

v=0, T=T_,(x)wen y=0;
U, (x), T"T(A)whm y—ao}

We will consider the external flow as 1soentropic, l.e. the total
pressure p and stagnation te'mperature Teo are constant.

Outslide of the boundary layer Bernoulli's equation holds trues

dpe alu,
T T TNy (5)

From equations (1), (2), and (5) and boundary conditions (%)

the integral relation of momentum can be obtained by the usual method:

&', g 1 T,
= +P(x)9* =5 T (6)
Here
— 24 H~ M M,
P = k—1 2\ dr
M,(l-{»-—é-——M;) (7
where
. -
H=—w: (8)
6"-] Q,u. 1—g-)dy— 1s the thickness of the (9)
momentum loss;
o* 1— °“ dy — 18 the displacement
i of( ) (10) -
thickness, c— o
_ h=Ye _ /20 (11)
Ve ] C[Tw * .
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where

o= |/ == t.=p,(5-)_ — 18 the friction at the wall;

6 =-__ 13 the coefficlent of-friction.
[ bf A

Here and throughout the article, a dash will designate the dimen-
sionless values ( X = % , O#% = -5-;,: , u é—%— »...), Obtained by
e
divisior. of the dimensional value by a selected scale (for example,

L = airfoil chord).

2. Relation Between Veloclty Profile and Temperature Profille

In the laminar sublayer, the expression for stagnation tempera-
ture will be sought as a serlies 1in powers of u; in view of the small-
ness of u ( separation close to the wall) we willl confine ourselves

to three terms

T, =
o = Gy + aqyu + a.ud. (12)

We will note that Tg = Tm when u = 0 and, consequently,
G, = Tn’ (123)

Having differentlated equality (12) with respect to y and having
taken the obtalned expressliou when y = 0, we will find that

— qe-Pr
G=—- (12b)
| A
For the determination of the coefflcient az we will twlce

differentiate equality (12) with respect to y and we will use

equations (2) and (3) where y = 0; then after simple conversiont‘w‘g L

will obtain ! P =
11— Pr _ P'rq_._..gl,, dp [ SO
2gdc, 2(‘pqtl3. dx ‘

— as =

— . —— - © e - -u‘



By the examined mean pressure gfadients, the second term ir
'equality.(ia) proves to be negligible in value and can be omitted in
the future. : .

‘ We willl introduce with respect to g'the va}pé hé, exp?essed by

the equality

hy = 1/m-

(13)
where the Stanton number )
[ R “A__
(‘rUc cp (T~ T) (1“')

represents the dimensionless coefficlient of heat transfer,4.==—-( %5).

is the heat flow, '1‘t is the equilibrium temperature of the flow sur-
face without heat transfer.

Using equality (11) and the expression for stagnation temperature

To=T+257L MITE, (15)
we will convert the relation (12) to:

T _ .
Fo =1—Preu—pry2, (16)

where

o= () (1), ()

In the turbulent core we will use Reynolds analcgy, which 1n

I ap2
M e

the case of a compressible gas 1s expressed by the formula [1]:
—ge, T, (18)

» If we simply assume the constancy of the friction force =% = T
and o1 heat flow q = q,, across the boundary layer and integrating ~
(18) we will have: Sl T T



Tor Wz C 0. | (19)

Ml

Determining C(x) from the condition at the boundary of the laminar
sublayer we wlll obtaln after conversion the following relation of
temperature profile with veloclty profile in a turbulent core:

T - - '
o= I P—onu—vyi, ( 20)

where
B = (1— Pr)lou, -+ yuzy), (21)
and'ﬁit i1s the dimensionless velocity at the boundary of the laminar

heat sublayer.

From equality (20) and boundary condition T = Te where u = 1

we will obtaln the expression for w:

Tes
1 — P

@ = = ( r). (22)
: l-—(l—Pr)ul‘ .

The prevliously obtalned relations between temperature profile in
a laminar sublayer (16) and in a turbulent core (20) in the case of a
flat plate (%& = 0) and Pr = 1 convert to the known Crocco relations

I (i-Te)a- ARl (29)

From the equalities (16), (20) and the equation of the component
p = eRT . (24)

the expression for surface gas in a laminar sublayer 1s obtalned:

* e _ _1+Bp—e—y

— Ce - l—Pr::;—Pl\‘;: (25) ——

and in a turbulent core: ) o



¢ . 1-f—w—y

o T T P—wa—yut (26)

3. Determination of Integral Thicknesses of a Boundary layer

We wlll show the method of determining the integral thicknesses
by the example of the calculation of momentum ioss thickness &#%%,
In the expression for momentum loss thickness (19) we will con-

vert to the universal coordinates:

T - (21
then we will have:

»_ Ao 9 '
8 U, 6_(»7"1.—(]“{“)411- - (28)

1
oes ,\Bf,‘;‘.ga(x—ﬁiivlﬁ- ' (29)
where ' iR

The relatlons of densities -& in a laminar sublayer and in
a turbulent core are expressed by equalities (25) and (26) respect-
ively. Thus, for the determination of &%* 1t i1s necessary to have the
relationship of the value 7 to dimenslonless veloelty u.
’ In a turbulent core for the determlnation of 1 we will use the

Karman relation:

T=Q:¢=I-‘:—;, (ZO)

where n 18 the constant of turbulence, the value of which 1s taken -
Ec—mal to n = 0.4 as in the case of an incompressible fluid; the :‘pii:‘ime
in eq;xality (30) designates a derivative with respect to y. '

Converting in (30) to universal coordinates and bearing in mind

. o ~T~-



gquali;y'(QO) after simple converslons we will obtain the equaiion

—q—- :.':—_._ SN

N Plsp—wiyu . (31)

The minus sign appears after the root extractlon because "< O,
1I tpe influence of the pressure gradient on the velocity profile
is not considered.

' In equality (31) let us interchange the argument and the function,
then we will obtain the equation:

IS
x

Vi p—wd— vy (32)

A
)

the equality

1 =Cexp ,1;’5.: arc sin
T

(33)

is used for the first integral of (32).

For the determination of éhe constant C, we assume that fhis
value 1s the same as in the case of incompressible gas on the flat
plate, 1.e. C = %-= na, where a 1s the turbulent constant, the value
of which, as in the case of 1ncompress;b1e gas, 1s taken to equai
a = 11.5. In other words, 1t 1s assumed that the value of the deriva-
tive q in thé case of a turbulent core does not depend on compressa-
bility and gradiept pressure. We note that the assumptlon of the
noh-dependence of the value 7 on compressabllity with no pressure
gradilent agrees with the experiment.

‘The assumption leads to the following result:

-— o —— P2y ST
Vyudt —o 1 4 —
= = exp) 22| aresin ____Y 2Vy __.arc:sxx-——~——y_a—i-______2Vv ] (34) - -
f Vy b / ) ot * 1/1 we . .
—_—e 1 l'rp'f‘w ) -H‘+-4-§- J PR
whereE-:%- L J
IR S TR iR



The integral in the right-hand part of equality (29), strictly

speaking, should be divided into two parts; 0 u< adanda< u< i

and could substitute thelr own value for the values 7 and —f;

in each of these. However, 1in view of the relative thinness of the
laminar sublayer, we can omit the first part having continued the

second up to the wall.
Thus, excluding 7 with the help of equality (34) and substituting

the value ole, from (26), we will have the rollowing expression

for the momentum loss thick:ness. '

1 - -
ot _ (+B—w~V&ve 1 (=)
0%t = iUe 6"‘““‘"“""“’

- [~
X exp 2 arc sin —-—V-Ef_.:———i_-i———
vy Vbt
(35)
Vya + -
— arc Sin —— =z 2V du.
Vitsr
Introducing a new variable
el (")
. o VRit 5 (36)
\P = === aIC SIf ————me e
VY / ., @F
1 1+ff'TT
we will obtain Y
0+ B—0—y)vaht ]/14;_‘2‘_ K (37)
d** - Ay ‘ exp [%4 (g — )]
rea cs Vyp
) % [sin} y¢— sin 'y y.][sin Vyt,—sin}y ] dy,
where Vit —=
Y, = —l—arc sin 2Vy
vy —.
e it Tﬂ'*‘j‘—'-
—_—— L (38)
Yo = T/L: arc sin Vv -

—_— - ] ]+p+_§’_;_ H

TR .
— Vo= L arcsin— T IV T
1T rcsmm_____‘__

/yep . - -
]' *rﬁ'r-:%- J TR wEaE
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The»valué 1h, as 1s obvlious from its detefmination, essentlally
exceeds unity, therefore for the calculation of integral (37) we use
a general representation of the integral containing an exponential
function in the form of an asymptotic serles which 1s obtalned as a

result of integration by ﬁarta:

Jorvde= o [F ) — o )+ el () —--] - (39)

Fulfilling in (37) the integration accurately to the term
containing n°h® in the denominator and representing ¥, approximately
as

Y 3
H =¥+ (40)
we will obtaln the followlng expresslon for the momentum loss
thickness:

5% = e—x“":(""ﬁ—m-\') enh(tc_vw)(l_ 2L —150—y )
U xh}V I+ f—0—v)"

(%1)

The followlng expression for the dlsplacement thickness can be

analogously obtained:

5% = X8 (1 +-B+9) %) 5

7l (42)
9B
sefl — Y (3 3f — LS50 —y+ _-T : 'ﬁ-{)]
(BN YV 1+p—0—y
where m—%_—Tuwn ‘nﬁ
(43)
— - . 2ﬁ
—arc §ifl —— o
_ Vitesg-

If we set up the ratio of the equalitles (42) and (41) we will

obtaln the expression for H:

-10-



y (3';'3;7'_1'5“)"‘\' -+ -12_ -'--h';,i.'
(L Py 1=
H = {

‘.!)‘ _ '.Iy___
- BV T EFf—m—y ( )‘“‘l’)
. , Yt =150 — -
1Pyl — D= L
Aep=o w\ x/:)’].f-ﬁ._w._\.)

In a 1limiting case of the flow of an lncompressible gas without
heat trénsfer we will obtain the following expression for H:

'1___.,_-. . (45)
xh
which with Reynolds numbers 10® + 107 yilelds the valﬁe H=1.3, which
agrees with the experiment.

4. Solution of Integral Equation of Momenta

Introducing a new variable in the equation of momenta (6)

L=38**exp [z P(i)di] .

! (46)
we will reduce it to
&£ _ & T, (47)
x| B Ty’
where .
v=ir@a (18)

and Eh 1s the dimenslonless coordinate of the beginning'of the
turbulent part of the boundary layer.

Integrating equation (47) and reverting 5%% we will obtailn:

. X ehv T' _
o "’"=e"”67?'r, +C)- (49)
. \a. ’ .
" If in (49) 1in place of T** we substitute its value from eqdaliﬁq_
(%1) we will have: [
- ¢ ; .
T = 242 —150—y \ V) _ [ T4z o) T
PO (- ) - (I BT T (50
(]

-1~



where

_ e —e—yv, :
F(x) = UL . (51)

Equation (50) permits us to use the method of successive
approximation for the determination of h. Carrying out the conversion,

we willl obtain:

x .
A
[ &I (52)
2 Tﬂ‘
1 l,‘
_V.N'r—h*.p Nrofi— 2 R ey )'
xhl’] p—w—y

I

The constant of integfation C 18 determined, as usualQ from the
condition of the congruence of momentuﬁ loss thicknesses at the point
of conversion of the lamlnar boundary layer to the turbulent boundary
layer. TUpon completion of the turbulent boundary layer, the constant

of integration C is reduced to zero, and equallty (52) 15 converted

.to

: I T, ,— .
nhf'“f;d" (53)

It 1is nétural to take the wvalue h calculated for a flat plate

as a zero approximation.

5. Calculation of Heat Transfenr

Using the equalities (17) and (22), we will find the expression

for the parameter (%:—) 2,
. t

_.., (_,‘_),= ast r——;ﬁ'—+a~Prn-Z-’ (5‘0
o he rf (l—-i,?-.—)“—(l-—}’rult] i e =

Te =Tl

FTD-TT-63-284/142+4 1o



The numerator of the right-hand part of equality (54) can be
considered equal to 1 — ;i’ although, strictly speakling, 1t difrers
somewhat from that remainder since, in the converslion to the case of
gy = 0, the value -li'lt changes; however, the influence of thls change
is negligible. Therefore, wlth great accuracy the equality (54)

can be written as:

E R N (55)

i l— (1= Priu,
This formula agrees in form with the i’ran;i{:i -formula [2],
obtained by him for the flow of an incompresslible fluid in a tube.
The value of a dimensionless veloc.ty at the boundary of a heat

laminar sublayer 1s expressed by the equality:

’—‘n=gh" . (56)

where ¢t = ;/%’— is the constant of a heat laminar sublayer.
We note that formula (55) ylelds the results agreeing with the
A. R. Colburn experimental data [3], who found that with small

velocitie s and minor temperature differences the relation of the Stanton

number to one-half of the friction 1s expressed by the ratlo:

-

i’-fi‘—=p;‘?. (57)

6. Calculation Example.

Calculatlions of frictlon and he;at transfer on a wing profile in
a supersonic flow were carried out by the stated method. The profile
described by the formula ¥ = 0.16 X {1 — X), at angle of attack 6 = 3°
;waé taken as the initlal profile. _*_

The distribution of numbers Mé on the profile were calculated _ _

with respect to the convertional formula of the theory of a profile in

FTD-TT-63-284/1+2+4 -13-



supersonic flow,
M, -02482

]2 g

M, ]/Za- —1 P

004ME = 01435 — 0,432, —05
B (ML—1p

where 6 is the local angle of attack.

In the external flow, conditions at a helght of flight H = 20 km
where Moo= 6 were used. The tgmperatp.xze ‘?t,, t}ﬁxer wal;l was taken to be
T, = 700° K. . " |

The results of the calculation of the coefficient of friction
Cp and of the parameter 28’(‘/‘,f are presented in the d:[agram. As
appears in the dlagram, for practical purposes we can be satisfied

‘with the results of the second approximation.

&’
L \ (4
B . mw
¢ =%
vs

N
AN - |

15

1 N
N \%

9 \%
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