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"TURBULENT BOUNDARY LAYER IN A GAS FLOW WITH HEAT

TRANSFER AND A PRANDTL NUMBER DIFFERENT FROM UNITY

Yu. V. Lapin

The determination of surface friction and of heat transfer in a

turbulent boundary layer during the movment of substances with large

supersonic velocities is an urgent problem of aerodynamics. By now

there have appeared a significant amount of articles devoted to this

problem. However, the more or less full consideration 'of the influenc,

of all factors (pressure gradients, radiation, and others) on the

dynamics and heat characteristics of a boundary layer remains very

intricate.

The exlhting methods of calculation of turbulent boundary layer

in a gas with heat transfer for both the case of a flow past a flat

plate and for the flow with pressure gradients are based on the trans-

fer to gas dynamics of the formulas of semiempirical theories of turbu-

lence. This article is in this sense no exception. The solution is

obtained for the flow of gas with a moderate pressure gradient and

with an arbitrary temperature distribution at the wall since the

Karman semlempirical theory is used. The influence of the pressure

gradient is calculated only across the external flow. The temperature
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range is examined in which the Prandtl number and the specific heat

can be considered constant, regardless of temperature.

In this article we obtain the analytical expression for the

parameter H - 6-/•** depending on the conditions at the wall and at

the exterior boundary layer. The final formula obtained in this

article for the calculation of friction does not require the use of

various types of auxiliary graphs and tables, as in other existing

methods. This advantage can prove to be beneficial in a number of

cases. The calculation of heat transfer is based on Reynold's analogy.

1. Basic equations

The differential equations of continuity, of momentum and of

average stationary plane kinetic energy in a turbulent boundary layer

have -the form:

aT. a

_W7 NO= + -jy (QV) = 0;(1

Qu± **.(vJ. a (, a, a "T (3).

where x, y and u, v - are respectively the coordinates and the compo-

nents of the velocity along the surface and normal to it;

p = density of the gas;

p - pressure;

pI and E are respectively the coefficients of dynamic and of eddy

viscosity;

To = stagnation temperature in a boundary layer;

T - temperature of the gas in a boundary layer; - -

Cp = specific heat with constant pressure;
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J = the mechanical equivalent of heat;

g - the accelerating force of gravity;

Prim La-- _ the Prandtl number;

X = the coefficient of heat transfer of the gas.

The boundary conditions are:

u 0~, T=7 '. (x)whem y o; (4
u U,(x), T. T,(x) hAen y J

We will consider the external flow as isoentropic, i.e. the total

pressure peo and stagnation temperatur-e Teo are constant.

Outside of the boundary layer Bernoulli's equation holds true:

'pA, U (5)

From equations (I), (2), and (5) and boundary conditions (4)

the integral relation of momentum can be obtained by the usual method:

j6*0I __e

Ica hLP(x)-T** (6)

Here
2+fH-Af2, ll,

MA (T-)

where

H -(8)

6"* e-I1 dy-- is the thickness of theo (9)
momentum loss;

-- ef---7"udy_ -is the displacement.~ u (10)
Sthickness,,

h = 21r,/- j .( n
h•m�r- -8i7 (++
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where

V*(-t-- is the friction at the wall;

C1 = -- ,--is the coefficient bo.,frAetion.

Here and throughout the article, a dash will designate the dimen-

X- usionless values ( x =-, •** 6-* u .obtained by
t e

division of the dimensional value by a selected scale (for example,

L- airfoil chord)...

2. Relation Between Velocity Profile and Temperature Profile

In the laminar sublayer, the expression for stagnation tempera-

ture will be sought as a series in powers of u; in view of the small-

ness of u (separation close to the wall) we will confine ourselves

to three terms

T. = a + au + a•. (12)

We will note that To = T when u = 0 and, consequently,

a, = T.. (12a)

Having differentiated equality (12) with respect to Z and having

taken the obtained expressio., when y = 0, we will find that

qL-Pr
9c.Pr (12b)

* For the determination of the coefficient a2 we will twice

differentiate equality (12) with respect to Z and we will use -

equations (2) and (3) where y = 0; then after simple conversionwe

will obtain
. -I Pr Prq=p. dp
a.-.gJc . ... (12c)

.~P h



By the examined mean pressure gradients, the second term in

equality (12) proves to be negligible in value and can be omitted in

the future.

We will introduce with respect to h the value ht, expressed by

the equality

where the Stanton number

represents the dimensionless coefficient of heat transferq.---77

is the heat flow, Tt is the equilibrium temperature of the flow sur-

face without heat transfer.

Using equality (11) and the expression for stagnation temperature

To -T +k21M 2T7?. (15)

we will convert the relation (12) to:

rP r-wu - P ,'v 2, (i6)

where

In the turbulent core we will use Reynolds analogy, which in

the case of a compressible gas is expressed by the formula [1]:

S jr.(18)

If we simply assume the constancy of the friction force T = '

and oi! heat flow q = q• across the boundary layer and integrating

(18) we will have:-.

"• ...... .... . .- 5-



(19)

Determining C(x) from the condition at the boundary of the laminar

sublayer we will obtain after conversion the following relation of

temperature profile with velocity profile in a turbulent core:

-f- Lou- - V-, (20)

where

(I - Pr) ("., -,-i4.). (21)

and Uit is the dimensionless velocity at the boundary of the laminar

heat sublayer.

From equality (20) and boundary condition T = Te where U = 1

we will obtain the expression for w:

1- 0, + c.(- Pr)= = r• ,,(22)

The previously obtained relations between temperature profile in

a laminar sublayer (16) and in a turbulent core (20) in the casd of a

flat plate (• = 0) and Pr = 1 convert to the known Crocco relation:

T = T_ -]_T k--1 ,2 T, - 2

U M, ... U (23)

Frzom the equalities (16), (20) and the equation of the component

p = eRT (24)

the expression for surface gas in a laminar sublayer is obtained:

I, I-Pr -'Pr;- , (25) -

-and in a turbulent core:

S... ....- 6--



,- (26)

3. Determination of Integral Thicknesses of a Boundary Vayer

We will show the method of determining the integral thicknesses

by the example of the calculation of momentum loss thickness 6**.

In the expression for momentum loss thickness (19) we will con-

vert to the universal coordinates:

Il yjV.
- -- '(27)

then we will have:

6**=--oh, - (28)

We can present equality (28) also in the form:

CU.* 0•v . ,-). (2g)

where dildVp "

The relations of densities -- in a laminar sublayer and in

a turbulent core are expressed by equalities (25) and (26) respect-

iveiV. Thus, for the determination of 6** it is necessary to have the

relationship of the value Tj to dimensionless velocity.

In a turbulent core for the determination of rj we will use the

Karman relation:

where x is the constant of turbulence, the value of which is taken

equal to n = 0.4 as in the case of an incompressible fluid; the prime

in equality (30) designates a derivative with respect to Z.

Converting in (30) to universal coordinates and bearing in mind



equality (20) after simple conversions we will obtain the equation

'" z.

" I . -.- (31)

The minus sign appears after the root extraction because V"% 0,

if the influence of the pressure gradient on the velocity profile

is not considered.

In equality (31) let us interchange the argument and the function,

then we will obtain the equation:

'1 (32)

the equality

Cexp ( arc-n (33)

is used for the first integral of (32).

For the determination of the constant C, we assume that this

value is the same as in the case of incompressible gas on the flat
1

plate, i.e. C = x= h, where a is the turbulent constant, the value

bf which, as in the case of incompressible gas, is taken to equal

a = 11.5. In other words, it is assumed that the value of the deriva-

tive Tj in the case of a turbulent core does not depend on compressa-

bility and gradient pressure. We note that the assumption of the

non-dependence of the value ij on compressability with no pressure

gradient agrees with the experiment.

The assumption leads to the following result:

-T-exp i7--(arc sin Fi+, a,

- --- 
if(+---

where a - j CP • .
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The integral in the right-hand part of equality (29), strictly

speaking, should be divided into two parts: 0 < U < E and < U < 1

and could substitute their own value for the values ' and -L

in each of these. However, in view of the relative thinness of the

laminar sublayer, we can omit the first part having continued the

second up to the wall.

Thus, excluding n with the help of equality (34) and substitutini

the value QQ1  from (26), we will have the following expression

for the momentum loss thicknesst
+ -0- -

X exp arc + s

(35)

-arcsin dU

Introducing a new variable
- • (36)

, = #•arcsin -11 , (6

we will obtain

+_ _ _,'_ , " . (37)

T** = j 'exp h'z v -i ) X

X sin 1r~-sini Ij~rjr, [sin I Vyit, - sin i'ýVI 'tV.
where +P1  arcsin

arc sin_ _('8

,= arc sin -

A+ T P E



The value uh, as is obvious from its determination, essentially

pxceeds unity, therefore for the calculation of integral (37) we use

a general representation of the integral containing an exponential

function in the form of an asymptotic series which is obtained as a

result of integration by parts:

f r "(39)

Fulfilling in (37) the integration accurately to the term

containing Xt3h3 in the denominator and representing *1 approximately

as

- (40o)

we will obtain the following expression for the momentum loss

thickness:

b'* e--•,.= (, - -- -. 1 (Vi-vw) 2I -:- 4 -,.5ý-i
W WI h (41i)

The following expression for the di.splacement thickness can be

analogously obtained:

"=e-X . ( Y + X - e)

= I~Ua(4!2)y. (3 +3A- 1,5.-+• + •(1 -y y
where 2 lry

+P+ 4T(43)
-rc sin 2 (1s)

If we set up the ratio of the equalities (42) and (1i) we will

obtain the expression for H:

-10-



(I ( _ .. .. _

_=_ __- (+4-4,,-

In a limiting case of the flow of an incomp37essible gas without

heat transfer we will obtain the following expression for H:

xl z (45)

which with Reynolds numbers 106 107 yields the value H -1.3, Which

agrees with the experiment.-

4. Solution of Integral Equation of momenta

Introducing a new'variable in the equation of momenta (6)

~6exp [P (;)di (6

we will reduce it to

d__ = T. (47)

where

N _i (48)

and x is the dimensionless coordinate of the beginning of the

turbulent part of the boundary layer.

Integrating equation (47) and reverting 6** we will obtain:

T'"= -V r. T + . (49)

If in (49) in place of Z** we substitute its value from equality

0(1) we will have:

-- -- 25 -1,5+c- - • -V'-- "x~e w =_ e- ( 0 r' 47

6 ..- )-r--



where

FX -x (-TV;

ix~UL (51)

Equation (50) permits us to use the method of successive

approximation for the determination of h. Carrying out the conversion,

we will obtain:

C (52)

I In i
S• c'/z t 1 ' h 2 "l-- -w- y

The constant of Integration C is determined, as usual. from the

condition of the congruence of momentum loss thicknesses at the point

of conversion of the laminar boundary layer to the turbulent boundary

layer. Upon completion of the turbulent boundary layer, the constant

of integration C is reduced to zero, and equality (52) is converted

-to
ie"N T,
f:r (53)

h- In 2
2 1.5w- "_ -- I. -- y -

It is natural to take the value h calculated for a flat plate

as a zero approximation.

5. Calculation of Heat Transfer

Using the equalities (17) and (22), we will find the expression

for the parameter (h 2

t

_L)2 -8-- 1Z* P(
htit

FwrD-TT-63-284/3,+2+4J -12-



The numerator of the right-hand part of equality (54) can be
Tt

considered equal to I - -, although, strictly speaking, it differs

somewhat from that remainder since, in the conversion to the case of

qc = 0, the value lit changes; however, the influence of this change

is negligible. Therefore, with great accuracy the equality (54)

can be written as:

2S, I (55)
C, " - - .

This formula agrees in form with the Prandtl formula [2],

obtained by him for the flow of an incompressible fluid in a tube.

The value of a dimensionless veloc.ty at the boundary of a heat

laminar sublayer is expressed by the equality:

Uit h (56)

where Ut - a is the constant of a heat laminar sublayer.

We note that formula (55) yields the results agreeing with the

A. R. Colburn experimental data [3], who found that with small

velocities and minor temperature differences the relation of the Stanton

number to one-half of the friction is expressed by the ratio:

2St
-- r (57)

6. Calculation Example.

Calculations of friction and heat transfer on a wing profile in

a supersonic flow were carried out by the stated method. The profile

described by the formula • = 0.16 5 (I - I), at angle of attack e =

was taken as the initial profile.

The distribution of numbers Me on the profile were calculated

with respect to the conventional formnia of the theory of a profile in

FTD-TT-63-26S/1+2+4 -13-



supersonic flow.

L.-" V i•.-O +

o~•.G - o,1 4.M - o.4.M-' - 0.5

where ep is the local angle of attack.

In the external flow, conditions at a height of flight H = 20 kn

where M -=6 were used. The temperature at the wall was taken to be

Tw - 700" K. -

The results of the calculation of the coefficient of friction

cf and of the parameter 2St/cf are presented in the diagram. As

appears in the diagram, for practical purposes we can be satisfied

with the results of the second approximation.

Z3

11-
t2i
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