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SOME METHODS FOR INCREASING THE RATE
OF CALCULATION OF ELEMENTARY FUNO-
TIONS ON DIGITAL ELECTRONIO
COMPUTERS

_ Algorithas for table-polynomial approximation of ele-

e

mentary functions on.digital conputers are discussed. At the
" expense of & certain increase in the number of oonpdtor'ncnory

cells occupied with sub-routines for cﬁiéulating elemontiry

functions, these methods permit a'lignitlcant increase in the

" rate of calculation of these funotions.

FTd-TT-62- 08’62./1'1-. 2




INTRODUC TION

The use of digital eleotronic computers as devico; to
control complex technical instruments leads to the creation of
computers with a high operating spsed. In the literature such
computers are called computers which operate 1h the real time

acale,

Besides the increase in the rate of performing indlvidual
operations in computers which operate in the real tiﬁe scale, the
problem of creating mathematical methods which permit the ragld

| perform;nco of the required calculations becomes quite real,

ﬁere the expediency of increasing as much as possible the rate
for such basic elementary functiona as sinx, cosx, tgx, arcsinx,
arctgx, 1nx, eX andVi'ga immediately apparent. For many devices,
where the digl}al computer is the controlling complex, the cal-
culation of elemenﬂary functions ocan occupy up to 40 or even 60
percent of the time required for the solution of a control pro-
blem. Therefore, with a reduction in the time for computing ele-
mentary functions, the total solution time may be reduced signl-
ficantly, and the freed time can be used for correcting the con-

trol of the actual instrument.

~

Algorithms with which elementary functions are calculated
on digital cohputers intended for the solution of engineering pro-
blems are poorly suited for computers which operate in the real

time scale. This is explained by the fact that, for usual digital

F‘rb-rf— 62-1803/)+ 2
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computers, the choice of algorithms is based primarily on dom-
siderations of the space occupied by their programaing in the

memory unit,

Algorithms which are presently in use are construocted
in such a way that they give the values of elementary functions
on the entire interval of variation of the argument with a gilven

degree of accurasy.

' Algorithma used for the caloulation of elementary funs-
tions can be divided into four groupss

1) Algorithms which permit the calculation of elementary
functions with polynomials which approximate the given funotion
(polynomial approximation);

2) Algorithms which permit the calculation of elemeniary
functions with rational functions which approximate a given funo-
tion (rational approximation);

3) Algorithms whioch permit the calculation of eleneptary
functions with tables which contaln reference values of the funec-
tion on a glven interval (table approxlmation)é

4) Algorithms which permit the calculation of elementary
functions with the method of calculation éf values of the funo-
tion "aigit by aigit."

The enumerated algorithms for calculating elementary func-
tions have one part in common: they require a reduction, using
appropriate formulas, of the entire interval of variation of thi
afgument of a glver elementary function to some minimum interval,

where the approximation 1s accomplished by a.glven algorithm. We
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shall conslder this common part in the enumerated algorithms to
be identiocal, and we shall ses the distinction between algorithas
in the methods through which the calculation of the  function is

acocomplished in the reduced interval,

In widest use today are algorithms which permit s poly-
nomial approximation of elsmentary functlons. Therefors, these

algorithms wili be of greatest interest for us,

Algorithms which use rational approximation are not yet
"in wide use, since in the major}ty of exlsting cqnphiéro the
operation of division exceeds ihe operation of multiplication
in th& time required for 1ts performance by two or three times,
They are used only in computers in which the operation of divi-
sio; 1s to a certain extent equivalent to the operation of mulyi-

plication in the time required for its performance.

Algorithms which use tablea of reference values for ocal-
culating elementary functions are even less widely used, This 1s
-explained by the fact that the tablea are constructed to use the
most simple interpolation formulas which contain a minimua num-
ber of multiplications, and this leads to extremely large tables
of reference values when the condition of high accuracy of cal-
culations is'imposed. A large volume of tables increases the
time required to locate the necessary vaihea and requtres‘a large
memoby unit. Tables'éf reference values of functions can be con-
sidered fully_adeqqate for lower accuracy of oalcu}ation not ex-
ceeding 0.5-1976,fuj when a sufficlently liarge memory unit 1s

-
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Algovlthms which pernlt calculation of olonentary fune-
tions "dlgit by digit' are suitabdble for use in a computer. Here
certain e¢lementary functions, for example 1lnx and oX, oan be o8l)-
culated in the time of one multiplication. The inadequacy of
these algorithms 18 the fact that not &ll elementary tunotipﬂo
| oa;'§o calculated with this method, 1In addition-ea;h elementary
ruﬁction requires expensive additional equipment for its apprqxt-
mation by this method.

Experienco in the operation of digital electronio.com-
puters in use today has shown that algorithms whioh pernlt poly-
nomial or rational approximation of elementary runctions are most

suitable in practice.

(Here we shall examine rational approximation in the re-

LS

duced form, l.e. as the ratio of two polynomials.)

- -

Thus we may assume that in computers which operaté in the
real time scale these algorithms may be employed with certain
variationa in the method of application. With an 1ncrease'£n

sub-routines, tbey may be redesigned in such a way that the
'approximatlon of any elemgn;;ry tunction in the raduced 1nterval
1s conducted not with one polynomial. which insures a given
accuracy on the entire interval, buﬁ by a certaln.set of poly-
nomials_appllcablc on sub-intervals of this reduced interval,
Here ﬁhe degrees of the approximating polynomials increase from
one sub-interval to the next, and only in the last sub-interval
of the reduced intervalcan the polynomial have the form which is

now used over the entire length of the inverval of reduction.



Thus a combined table-polynomial algorithm, as 1t were, 1s being
used to approximate the elementary functions. The same considera-
tions apply to rationa;3approximatlon represcnted as the ratio of

two polynomials.

I. THE TABLE-POLYNOMIAL APPROXIMATION METHOD

The possibility and expedisncy of employing the method
of table-polynomial approximation of elementary functions may

be based on the following considerations.

As 18 generally known, a computer operates with digital

information with a certain degree of accuracy.

This accuracy is determined nct only by the error in
approximating a ziven function, but also by the fact that th&
computer performs the necessary ogerations on numbers which lie
in a fully defined range snd are discretely distributed within
this range. The accuracy of calculation of elementary functions
according to any algorithm is determined also by this discrete-
ness. For values of functions near zero in modulus,polynomials
which give a good approximation near the values of these funo-
tions wpich are maximum in modulus have a large number of terms
of higher orders in the sub-intervals near the zero values. How-
ever, the terms of higher orders in sub-intervals near the zero
values of the function take on values which are not caught by the
computer, as a result of its limited discrete perception of these
numbers, but . - . require a large number bf multiplications.,

Herein lies the bssis for hope that the entire interval of reduo-
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tion can judliclously be divided into smaller sub-intervals in
thoh an approxiiation of functions can be accomplished with

polynomials of lower orders,

Let us assume that we have succeeded in dividing the
interval of reduction (a,b) into the segments A), 4, ceer Bps

x
such that A; N Aj 2 0 Hl 2 (a, b).

Relative to the time required for their accomplishment
all arithmetic operations performed by the computer can be ex-
7 amined from %“he pointAof view of the time required for the per-
formance of the operations of addition and multiplication, so
that the operation of subtraction 1s in this sense equivalent
to the operation of addition, and the operation of division can

be thought of as several multiplications, etec.

Let the polynomisl which gives an approximation of a
particular elemsntary function on the entire interval (a, b)

require m additions and n multiplications,

The time expended by the computer to accomplish one
or another algorithm 1s determined as the number of arithmetis
operations of additlon and multipllcatldn, multiplied by the
corresponding time reqguired for the performance of these opeia-

tions on the computer.

Further, 1gt nj a?d m1 be‘ the number of mult}plicationl
and additions on the segment A;. Here we assume that n, < 'nj,44,.
ny £ By, .Then in the case of application of one polynomial
the number of multiplications on (a,b) is

-8



/1 .
'1(") -n , (1)

+
»

while in the case of application of several polynomlals the nun-

ber of multiplications is

f

x
Y (n) = tz_:1 P(By)ny, . (2)

where  P(a))are the probabilities that the argument for whose
values the e1ementary>tunotion 18 belng calculated will fall in 4,

We may obtain exactly the same expressions for the mathe-
matical expectation of the number of additions when calcuiating
an.slenentary function: ‘

¥(x) == : 3)
X .

Xy(n) = Z P(dy).my. (9

The time required for the accomplishment of the algorithm
on the computer in each of these cases will be:

l ) .
Ty =%1N1(n) +t3X1(n) = (r1n +1am) (s)

Ty =2 Xy(n) sahy(n) , (e)
! )
where 13 1s the time of one multiplication on the computer,

1@ is the time of one addition on the computer.,

Let us assume that a polynomial of appropriate degree

vhich approximates the given elementary function on A; is given




by its coefficients. Then the selection of the polynoalal reduces
to the seleottoﬁ of the appropriate coefficients froa the table.
Lot the time required to locate these coefficients on the tabdble

equal A Then the ratio

f
J . Tl + sgtyfn) 5

(<an + t3u)
!
permits an evaluation of the advantage of the table-polynomial

(7)

method of calculation of olefnentar, functions.

An evaluation of the charac.ter of the distridbution of
probabllities P(x) .t.t;at. the values of the argument x will 1lie
in the corresponding segment A; of the reduced interval is diffi-
cult even in the case of control units of relatively slight com-
plexity. We shall assume that P(x) is determined by uniform dis-
tridbution and that the occurence of x in one or ;not.her sub-interval

of the reduced interval is an independent event.

Then from (7) we easily £ind tha$

l
. ‘1?51"1 + XAy %o

. + « (8)
{v-a) (n-r1 . l‘ta) nt, ¢+ g

4

Thus we see that A consists of the two parts

1 "1% Agng < ‘Q%At Ry (8")
1 - .
(v-a) (nx, + mcy)
‘to < .
Az = ey * Btg (8'*")

«10e
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The ratio Aj, as we shall show subsequently for apecifio
elementary functions, can be made less than 1 through an appro-

priate choice of approximating polynomials. It will be near

| 0.3 - 0;‘7. . '

We shall opnsider briefly the question of how to organize '
the search in the table in such a way that we nmay determine the
corresponding A; according to the argument x reduced to the basioe
interval (more precisely, those coefficients a4 of the polynomial
which.approxlmatea the given function on the sub-interval Ai)

3

with the condition that the ratio A, = ;‘_“:f';’?z be as small

as possidle.

We may consider the usual program methods used during the
choice of one of k possible branches of the calculation process

as one method fbr solving this problea.

The division of the interval of reduction into the system
of sub-intervals A; can be organized in such a way that the sub-
interval A; 18 determined by several slsnificaﬁt digita of the
binary representation of the argument x, or that the argument x
1s assoclated with an appfopriately selected constant prior to
the selection of .the sub-interval, or that a somewhat more com-
plex function of x has been formed which contains certain charac-
teristic 1ndications for eaeh‘sub~1nterva1uA£. Then the cholce
of the sub-interval A; and, consequently, the choice of an appro-
priate approximating polynomial Ph (x) can be expediently accom-
plished by a very gimple deciphering unit which will control the
calculation of the polynomial with the required number of

-11-



coefficients. In this case the time v, required for the search
of the table een.be made very smsll in comparlieon to the tinme
Wt It 18 true that in this case certsin sub-routines will
require 1individual elementsary modifications, which do noi ocom-
plicate the design of the computer,in order for a very signifi-

cant advantage in rate of operation to be obtained,

In‘eeeence. we may provide iq.the computer a special
commanq whieb would determine the appropriate aedfele of the
sub-routine for determining P,(x) according to a given x. Then
this command ocould select several digits from x and add to them
a certain cdﬁetant, and the quantity thus derived eould be the
address of the sub-routine. We eould provide other, nofe complex
commands, apeclially adapted to this problem, which would permit
a maximum reduction of the time required to search the interval
to whith the given x belongs. This would permit a branching to
a speclal sub- routine for calculation of the appropriete approxi-

mation of the elementary runotion.
. P .

II. THE TABLE-POLYNOMIAL APPROXIMATION
OF ELEMENTARY FUNCTIONS

If.on the interval [},ﬁ] we are given an arbitrary
differentiable function f£(x), then the best plecewise approxi-
mation of this function on tee glven 1A;erva1 can be peiforned
with polyneeials or rationei }rection functlone of any degree,

with the assumption that the interval [a,b] 1s divided into &

-12-



series of smaller intervals.

We shall perform the division of the interval [p Q] in
one of the following two ways.

If the function f(x) has the property of evenness or odd-
ness, then in order not to loase these properties of the funetion
we shall divide the interval [h b] into a series of nested inter-
vals with the common point a. In this case the length of the
nested intervals into which the interval [h,b] 18 divided are
determined in such a way that the degree of the polynomials which
gpproxlmato the function r(;) with a given accuracy increases with

an increase in the length of the segment.

If the function f(x) does not have the property of &ven-
ness or oddness, the interval [},b] is divide& into a aseries of
small non-overlapping intervals. In this case we may design in
advance a system of easily calculated best polynomials of low de-
sreel whish approximate an arbitrary d1fferentiable function on
the interval [}1, x“i] éE b] The se poiynomiala will be re-
quired later during the construction of formulas for approxlmatins

‘the functions Vx and %,

Wb shall expand the given function f(x) into a Taylor
series at the polnt a4, which 18 the mid-point of the interval

[x4, "u-ﬂ s

!

rlaetleg) » 5 1 a1) » Sy

. (X:t) fu:(at)#... . (9)

.13~



Xeay~ X
Using the substitution x-a, = -ﬁé—-l-u and Chebyshev

polynomials of appropriate degrees, and returning again to the
old variable, we obtain the best polynomial of the necessary de-
gree whioh approximates the function f(x) on the interval [‘t' 2l

Thus the best polynomial which approximates the funotion
£(x) on the interval [xi, X443] w111 bes .

of the second do‘eru {

rlx)Xay + ?z(x"'t) + Cy(x-a)3 - {10)

where the coefficients of the polynomial are defined by the

following expreessions:

1 1, -
Ay = Uley) 5 xglf,-—;;xglz] .

, 1 4 3
[1f”() ? 23 ! /9]
- [— 8;) = —— 23R+ .
3 2| i 24 2" "2
1w 3,..3 -
No = [—r " (a;) +~R 125 ,
3 [4!r_ 3Rl

1 ., 1
Ny = [5ir" "(a1) +3253) 2§

-1 .3, VI
R, ';.' o (%),

»

1 .3 v,
'-—-Mf(al)'
4!

XQ.__L_I—_M-X .
2
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of the third degree

P(x)~ A3+ Balxay) + Calx-ag)? * Dyls—agj® , (11

where the coefficlients of the polynomial ares

. >

[4 ) 1 4 1 3
Aa - nf(at/ *;'g 13 sa '—25 13’8],

- {f'iag) + 1 §R —--x ¥,

PR ’e 9 3
C - [-_2-‘f (af,) - 7.3 83. * Is],

. [—f"‘ (a;) - 1383 '123”3 1,

1 v 3
Ko = [57 (ay) ’—2381 ).: ,
” =[x |f (ai) "—33]13 ’
Rq '—6!33 fvn{at):

1 a,.v1
S - kz (a ) L4
.8t : ¢

Xiey = %¢

Ag = 2

of the fourth degree

f(x) x Ay + By(x-ay)+ 04("'%)2*04{"“’1}3*34(-*-01)4 (12)
vhere the coefficients of the polynomial gre:

= (f(ay) -— ).41?4 1 14]

1
A (7' (ay) +-—-514 Pl 2412’4]

8 -
o .
04 - [.1_. .'l(at) - —— )'4 R n*z—;).ﬁ" ])
iy 1.2 8
b, - (= ' (ag) - Lars, o2, ),
: 3! 23

-15-




1 $ 3
Ly - [':ifn(“t}'_gi 3 R e '4_] ’

Xy - [—;;f“(“l) + 21 ,
1 1 .
¥, - [-g!fv(az) ‘S 5,03 -

1
R, 'E).i fm(a;) ’

*
1 Vi
Sy =— ?
4 ol Aﬂf at)

. Xisy = ¥{

R

of the fifth degree

i

[(x)sAg+Bg(x-a1)+C5(x~a1)? + Dgfx-ay)3+ Eg(x-ai)de .
+ Fy(x-ag)5 (13)

where the coefficients of the polynomilal are:

r

1 6’ 1- 4
Ag = (f(ay) _—2-7x5 Sg .?sxsys],
1 4. 7
Bg ={f'(ag) -—>§ Rs +—225 i),
28 2%

— oa 1 4 9 3
't r''(eg) s o oS5 o Mol -

" 151 7
Dg = [ f "(a1) "‘——-7\5 Rg -—).5 Is]
3l 9 23

=16~




1 5 3
by i at) -t &5+ e

"5 "t’;?fv (at)‘—z")s’ 83 23'& 1,

’

1
Y-l r™ay) *—Fs) ap
Ty = (=r"ay) « 25103 .

8l

1
R, --—x fa

1
ss--;q.f““hq)

2

Xieg = X

).s B om—— ¢

2

We now proceed with the direct derivation of formulas

for specific elemeniary functions,

Hereafter 1t is assumed that all formulas constructed

for the approximation of elementary functions insure the deri-

“vation of 10 significant decimal placess; we therefore will not

-

.

evaluate them in each separate case. :

Here we shall pause to analyze the formulas 5lven in
Ll] These formulas are used for the calculation of olementary
functions in the computers BESM 1 and BESM-II. Some of these-

- r

use rational approximation; others use polynomial approximatlon.

’
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It has been shown in [17 that, in comparison with pure
polynomial approximation, the use of theas fornulal pn;nitl a
.'fggniflcant reduction in the time required f;r calculation of
olcn;ntary }unction-. Thua a further ref‘nencnt of tbend for-

mulas 1- dcairablo for the purpose of obtaining [} turther oconony'

e o .

in calculutins time,

The following conalderationo, wvhich concera the oalou-

" lation of eleucntary functions 1n tbo analler sub-intervals of
the reduced intcrvul with polynomials of lower degrees, relate
equally to any other formulas which use polynomial or rational

"approximation.

1. Calculation c¢f the functions'sinx, cosx and tgx

As in [1], the expansion of the function ctgz into .
Laurent serles 18 used for calculation of the values of the func-
tions sinx, cosx and tex:
-
o 2%|B, |

zetgz =1 - X

3X-1
Z ol 2%x1 (14)

which converges for |zl < 7v.
Setting o = 5, we obtain the expression

2

|

2tg£2‘—-“ _,, * . (15)
1-3 [Byyl.22¥

=i (el
|
It is assumed that, befors calculation of the tangent of
half of the argumeit according to formula (15), the original

-18-



argument was redqccd to a quantity less than if. and from this
quantity a whole and a fractional part were extracted. The ar-
supont x in this formula is the fraotional p#rt of & quantity
less tbani}. and thus varies in the interval O(xil.

. Ve shall divide the interval of variation of the inde-
pendent variable x into four partial sub-intervals with the
pointl % ’ % and g .

‘For each of the sub-intervals thus obtained we conatruct
its best polynomial which approximates in it £h§ denominator of
the function defined by relation(15). Then we shall have the

following series of épproximating expresaions,

- In the interval [O; %J the function 2tsiis approximated

2t X 4
g 4, - BB - Cfk !

by the expressions

(18)

where the ccefficients A, Bl' and cl are defined as followss

1, 1,
4 = (1 M Ry - -Eguh] ’

11 1 9

By -[ETE-* -2—5)481 "?N? ¥ 1,
11 S 3

01 .[WE- 211% RI '—2-’110

’1.{_1';-1-’”1)’: .
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PR I BN TR
LR R
i
2

Formula (16) is used to ocalculate the values of 2t3§.
for any x on the interval [0;1].

For the interval [0; é]we find the expression which
approximates the funsction 2tg§;

x. x (17)
2 Az-Baxz-Cax*-Dz,\& ’

where the coefficients “2’ 32, 02 and l)2 are defined as followss

v

, 1 e
ig = L -og ARy +—paly ) |

11 25 , 1,
By = G g 28 rafa ¢ —ara Mol
11 = 5
02 > [—— t— 2t .3 X1,

41 30 25 2 2 232 3
1 1 35
”z'l’e'r R L R

1 5 2
I’z'( 1 ® 5 e

fes

1°53
Ry =101 65 *3 -

=20~



Foraula (17) 13 used to colcuhtc the values of 2&3&
only tor the argument 1n the interval lsxtg- since oalcuhuon
of the valuu of the function for the argument x onm the interval
‘ O:xs% is ao}oonpnsbod more economically aqeording to formula (16).

In the interval [o,g- Jthe following expression, which
approximates the function 2t3% in the indicated interval, holds:

X
dg - Bye® - Cack ~ Dyx® - Bgx®
| %
where the coefficients A}, B}. C}, 1)3 and R} are defined as

follows:

g -

(18)

- ~+ 2 ,8p 2,8 x3,
% .EzTe T R T S
1 1 10¢
fgo (= —- — 28 By +—abl))
.3 a 30 28 8 ‘3 sl
) 1 1.7 . 35 .
- v—— tmman P S—o— --t—.l
3" e e M 8 78%
. 1 1 2733 5']
- [ ——— e * v
2T PR
1 5 a2
37 (U a = ¥e) 28

Formula (18) 1s used to calculate the values of 21'.312‘-

only for those x which lie in the int.ervaI% sxs%.

e : ~-21-



For x from the interval Qgx¢ §tm values of the functiom
are calculated io'cordiné to formulas (16) and (17).

In the intcrval[b ; 1] thé.pedt- oxpruaion. whtoh,_abproxt- :

mates the function 2t.5 tioldl;

z‘tgx—. x
|

where the coerfici_ent.ur the denominator are defined aa follows:

2!

’ (19)

i, - [1--—13344%;1‘],
11 4 9
Bys Gry s E
05
c4.::'_.;_).+.§zn4 -..1__.14],
D-«l-l-ifz +—-7—-l')
4 6l 42 o7 4 347 °

1 5 77
Fg = Ia-g-—z-‘—i?"ﬂ“:
1 691 7
4 2 o 2t
17 )
- LRV e

Pormula (19) ie used, not for the entire interval for

whioch 1t was derived, but only for values of the argument from
the intorvalg-sxil. . |

Graphically the reglon of existence of .each of expressions

.



(16), (17), {18) amd (19) and the intervals of variation of the

1ndopohdopt variable for each of these -expressions oan be de-

blotod as rollov's.

Values of argument Valwesof ’
fs'_muq e gl (1
Vahies of argument thnulup-.d
b expesmion (16) / foe 19)
Interval of de '
of expression (16) -

Interval of definition
of expression (17)

Interval of definition of expression(18)

After the value of 21'.55-!1&3 been found, the absoluts
value of the functions sinx, cosx and tgx are easlily calculated

according to tho'fornula.z

ek
21,‘% 1-¢ 2
, cosx =

sinx = ———— —
1+ 1% 1+ Hﬁ'% >+ (20)

sin x

tp-cosx J

For calculation of the functions sinx, cosx anmd tgx, it
would have heen possible to construétlstill other apbroximatina
formulas based on theirﬁexpanslon into a Taylor sefle- and

Chebyshev polynomials of appropriate degree.

The expansion of otgz into a Laurent serles was used

L N A} N

here as the'mbﬁé economical for the sfhuitaneoua determination
of all three funations, Hence we have demonatrated a method for

constructing approximating funotions which accelerate the calcu-




lation process based on this expansiom,

2. ©Caloulation of the function ln;

During caloulation of the natural logirithl.ﬂﬁbOt
argusent x, is ao-unod to be given in normalized form, i.e.
in the form . . ' . '
X - 2P x4, (21)

;.‘
where p 18 the order of the number x,xfr.ﬂ tip deqinmal part of

the nusber x which 1s contained in the interval 2’{2151.

Taking the logarithm of relation (21), we obtain

lox = pln2 + lnx,, (22)

where 1lnx, in formula (22) can be expressed by means of ¢

series

i

|

-
xi"l 2n+1 2 (
.Z' ; . 23)
lnxl n-O(x1¢1) '250-1

!
Using relation (23), the 1dentity

iy
1!’11 - lnutXI - lnut

with certain assumptions relative to the parttcular values of
Mo and Chebyshev polynomials of appropriate degree, we easily
obtain the best polynomials which approximate the funotion lnx

on the given interval with a glven degree of acouracy.

We shall divide the interval [§, 1] of varistion of the

24~



‘indopondont varlsblo Xy by the points x Y, Zand x.® ginto
four partial nested sub-intervals with tho conmon point xla %
and in each of ths 1nteyvals thus obtained, including the entire
intérval 1tself, .wo‘uhall construct 1ts best polynomial which
approxizates the function lnx,

Then for the interval [1; ll]wc will have the following
relation containlng the best. polynonisl of the third dogru

wbich approxlnates funoction 1nx:
' H

1
lnx = (p-s)lnz +21017 + dqu + Byl , (24)

where the coefficients are defined as follows:

Formula (24) 1s used for calculation of values of the

funct.ion Inx for all X, lying in the intervall $x,€ LZ.
3 2

The following relation, which containa the best poly-
nomial of the fifth degree, 18 obtained for the 1ntarva1|3.j 3]&

26
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lox = (p-2/ln2 + —;us edgu + By uds Cqub,  (25)

where the coefftolents are defined as followss

1 7
4= l2-—=8 o —adn) ,
3 273 g8

2 & 1 7
R -[—‘———- 6-——l3')
375 3 233 9

2 3, 7
Cy =lm-—y +—1, )

£ 23 23 ’

L4

: 2 1, 3
X, = {""""_"3 .
2 Ty 2 ) %2

Formula (25) is used for calculaticn of the values of the func-
tionlnx only for those values of x; 1lying in the interval

;_‘%.‘~ sxis 3..

For xlsg% it 1s more expedient to use formula (24).

The following relation with the best polynomial of the
seventh deagree 1s constructed for the 1nterval[%; %%J:

lnx = (p~3)1n2 *ni-lnz% + Agu + Byud+ Cqaub+ Dau” , (26)

L\
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where the coefficients of the polynomial are defined as followss

A

1 ‘9
‘3. [2*"-110"—;"".:"] »

2° 3 2 .

By - E"":'F 3 ‘*‘1%5 eyl

3

2 7 27
Cg= [+—2§- —23N,),
> s = 24""_

2°1 4 9

D, = [—-“.% +—1 ]p‘
3 ", g2 @l

2 1
Yp= (53 g,

sY28

Ag =

106 + 21N26 -
8

us.ﬁo

u —8
e

Formula (26) 18 used to calculate the values of the
function lnx for values of x; lying in the 1nterva18.$x1$§.

The following expression containing the best polynomial
of the ninth degree 1s construoted on the lntervalt%; 1l ]:

1
lnx = (p~3)1n2 + dgu + B CouSe D™+ Eo® -, (21
where the coefficlents of the polyndmial are defined as followss

‘ 1 11
13 8
Ae = B =311 % * Fomaddd

2 4 10 £5 e
84 - [5" —2‘9 7.4 ~§r>‘4" l »




N 2 7 @ 4
c‘. Eé'";o “ & k"‘] ]
g 3 1 -
Dy = &+ o0 ?—).1141 ’ .
3 5, u
oGt
2 1 .
ree (e n
o
A\ ool
u;"ﬁ—'
Y2
T2
u- -
o X

Formula (27) 1s used for calculation of the values of

thé function lnx for x1 lying in‘iherinterva1§%sxl(1t

The reglons where polynomials (24) - (27) approximate

- 1nx with the glven accuracy may be presented graphically as
follows:

Values oY argument " Valuesof
for expression (25)

Values of argument Values of argument
for expremion (24) for (20
Interval of deﬂnit!onéﬁ
for expression (24) / .
Interval of definition
interval of definition for expression (27)
for expression (25)

From the very construction of the approximating best

-28-



polynomials introduced horg, 1t follows that each successive poly-
nomial ovcrlapsxthp preceeding ores and permits the derivation of
the value 1lnx with the giveﬁ accuracy in those intervals more to
the left than the region of variation of the argument ;or vhich
this polynomial was constructed. Although the utilization of all
of these poiihomials will require additional 1oad1ﬁg of the com-
Aputer's memory unit, it will nonetheless lead to a significant
sconomy of machine time during repeated c&iculation of the values

of 1inx, cu

3. Calculation of the funotion eX

The calculation of the function e* begina with the re-

pressntation of this function in the form:
P ,
X X X
R i L e
| I

where | -X_ ] 1s the whole part of the indox_i_. and 1s
[ | fhs o oma {2

(28)

the fractional part of the index Ila.-.
n

The part of the quantity eX which is expreased by the
factor 2[.'ng1 we assume to be calculated and ready to add to the
x .
other part of .x. 1.0, to 26112 L , which remains to be calculated.

Here we note the applicability of the equality

- o~

(%)}  {(Sghns
2:"%2‘--1::,'_“3 -d, (29)

Where ___ x
' v {7 N2

Clearly the variable ¥ varies within the limits [v]<1n2,
80 that the quantity{'ﬁf‘g Jvaries between O and 1.

~29-




The limits of variation of the index tunouon.on be re-

duced further if we multipiy’and divide it by V2. Tiﬁn ve obétin:
Z - ¢ st VT, (30)
’ .

where u » {f‘-}-lne - m varies within the limits |u| ¢ 123

Caloulating o“. we at the same tlno £ind the value of the
quantity 2<&“?} accordlng to (29).

" The values of the function e¥ can be calculated in two

ways, -
First method.

As the initial series for calculation of the funcilonm
" oY we take its expansion into a Mﬁclaurin‘aoriolz

uu‘u’u‘u‘

U -

Ve shall divide the interval [o; 1%&] of variation of the

(31)

modulus of the indeﬁendont variable u by the three points 2%5% ’
391n2 :
1024 and 5%%2 into fou? nested lntervals.vith the common po}ntl
0, and we ahill construct for each of these intervals tbs best
polynomial which appf&kimatesvths funotion eV,

Using serles (31) and cﬁebyshev polinonials. for the in-
terval [0; z%g%f]vn obBtaln the following best. polynomials

el = 4, + U cul, . (32)
!

H
where the coefficients are definqd as tollovs:

N u+’xs 3,
26 *1

1 g 3
By = [ - by gy b — X ] .
1 1 241,1 2 1)



The best polynomial (32) 1s used for calculation of the

values of the function eY for all values of u in the interval

[o; 2222].

The following best polynomial is constructed for approxi-
. “ . . 3
mation of the function e" on the interval [o; :g%g%]s

]
3

.
el - Ag + Bgu + 03u3 + D?.ua + 33u4 , _(33)

where the coefficlents are defined as follows:
1 1 K
2 - [1 -"'z" lzs + o 13’3] »

26
B 1 4 § 3
3-[1'—67‘238’—12'2] ’

1 1
Cy = fz— ? _?3”3] ’
1
by = I - *J% 'z] ,
E ! 5 2 S 3 ]
3 - Eﬁ k) 3 PRl R




The polynomial (33) 1s used for caléulation of the val-

I3

ues of eV only for those values of the argument which lie in the
interval i

3ln2 €U 391n2 .
4094 1024

Por the interval [0; 2;_:2] we obtain the following best

polynomial to approximate the function eYs

¢ =dy ¢+ Bu +Cud+ Dyu® + Bak + Pt +6u8; (34)
|

where the coefficlents are fo(ulzd from the relations:

i 8 1 8

1, 7 4
By= 02 e B I rslsl,
1 25 _e 1 4
c o [ o € s ,
s [ﬂ 28 M§8 P 33],
1 5§ 1 7
D, = [— + .__-'__.14 ___18 ]'
L 373 prs a¥s
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.“
]

~
!
*

2
Gg= B -3 M5 2],
) { ! —Ry)

® (o P x
1 -]
I = (= +75%) ",
iy
R3 '—8-113 »
1 3
83 -"1'0'1 ’
£1n2
B

The polynomial (34) is used for calculation of the val-

-

ues of ¢! for values of the argument contained in the interval

[1023 {u \[5.}.92]

For the interval [0 32] we obtain the following best

polynomial to give the values of the function eY:
el = A4‘ +Bgu + CauB + Dgu® + Baut » Fyu 5+ Gqub +
+ F4u7 + J‘u8 , : | (35) :

vhere the codfficléntas.of the polynomial are defined bys




de= -5y *P 1,
IR TRLY P
- b —— PR v
4 21011 4 28 4 .9 »
1 9 25 4
04'[35"23’:34‘?’1'4 ),
e - B
4 2 ‘2-5 4 25 4J) ,

1 165"5
R SR LR
1 27
- —_— - )
7e [! 231"434 ;4”-4'4 )
1 7 .
4 3
o[+t =28, —— 2, ¥, ]
Gy [61 3 M T M
1 1 g
E4-[E-§ 234.4?'4]’
1 27
Iom -5 % Sev gl
11 3
I‘u(a't-z—a-R‘)l‘ »
By = (—+38) % ,
: 2
Sy O ) ,
T or M
1 3
S,
LTI
In2
14 —z— .



Polynont‘l (}5) is used for calculation of the values
of &Y only for those values of the arguaent lying im the interval

51n3 Cus 1n% .
24 2

{

Second method. |

¥e shall divide the positive part of the interval of
variation of the independent variable u into 8 equal parts and
detormine the midpoint of each of these segments. '

W2 12 slnz 1z Sn2 ez 7oz 1ng

16 8 16 4 16 8. 18 "2
% t : : A, ' ) ardh, 2
) |
4 % ag % e L7 oy ag
Having established that -
1n2 9lnz
01 "3 » 05"—33' ’
31n2 111n2
az --E’ e.-?z—’
38
51ln2 . 131n2 } (28
Gy = ——, Ny m——
332 32
Na2 151n2
64""—"32 ) . 08 -——3-2—-.

and that A= 1352?‘ identically for all of the segments, we shall
find the values of the function oY and its Buccossivo derivatives
at the points a, (36). . '
Through estimations we find that, with an accuracy not
less than 0.3-10-11, a polynonial of the fourth degree approxi-
mates the function eV on each of the segments.
Thus to find the values of the function e" on each of the

eight segments we can use & best polynomial of the form (12),find-

«35-



ing the coefficiénts of ;hoao polynonials acoording to the

saze formulas as fon\ (12)., Here we need to find only the values
of the funotion and its derivatives to the eighth or&qr. inelu-
sively, st each of the points s, (1 =1, 2, cess 8)e

"7 ¥ith this method of calculating e¥ 5 additions and &
multiplications rust be expended in the derivation of the values
of the function, Tﬁ; nooossari intebval,.dopondlﬁg'oy the valua
of u, 18 found by means of 3 conpsrlsonl: ‘ '

" The foregoing diecussion relative to u >0 relates oqutlj.).
to u<0, which also require approximsting polynomials of the Ath
d;groc. Thus one more conditidnal step is added for rocosniilon
of the sigm of u. |

Thus 96 constants of 16 approximating polynomials ndgt
be stored in the computer's memory unlt to determine the values
of ‘e¥ for any u. h '

After the quantity e“ has been determined, the value of

the function eX 1s found by means of relation (28).

A, Calculation of the square root VX

»

In the calculation of the square root it i1s assumed
that the argument is always given in normalized form, 1.e. that

all values of x, lle 1n the lnterval %(xi(l. Then calculation

1
of the square root of the number x reduces to the extraotion of

the squsre root of the two factorss

L]

'
x -v&r-‘.\&; .
i

Extraction of the square root of the first faotor poses

no particular problems sinoce

-36-



. e

N
2% , U p~2x
A '{z"‘li’ 4 p =21,

To extract the square ;oot of the second faotor we
divide the region of definition of the argument into 16 equal
sesmenta,andvoonstruct for each of them gbc best polynomial to
approximate the function f(x) = VX in that interval,

" We shall denote by 8, the midpoints of the segments,
Then, with the above division of tbe total interval, we lhlll
h&ve the following values for the points LTLR

3 a - 49 €7 1
8, *F ¢ % "8+ % " . %a"FEg
% 43 51 £9
-__.‘ 0. -..__.’ a‘_--——' a Ay —
63 Py ¢ "53 107 ey 14 7 o &( )
' 37
a7 45 - . £3 a 61
Ug=— , Gp=~—, Sl 4 16"
3" ea LYY Y 84
a -39 a r47 a E 55 a -—GE_.
ryall 8 oa 15 'B? 16 54 ‘

The distribution of the intervals in which polynomials
tc approximate the funotion will be constructed can be depicted
graphically as follows:

B l

N
11 9 1B 5 21 11 2 3 25 13 27 7 ¥ 1
zaeuazaazuaa4.szxasz‘§"&'1'¢"§!'

8, 08y Gy a3, G ag Gy g G 69 84, ‘u 013 834 %914 %4

In accomplishing this division we at the same time have
determined the quantity A= ELZAEZ_EL. In the.present case A

48 the same for all segments and equals ;5 .



Caloulating the values of the derivatives for the poimts
s, (151, 2, ...y 16) from (37) scoording to the formulas:

atl 1
rlag) -\GT 122 70 W
¢ 7*%%ay) B o
11 -
I(a,) mom — sl 1
! ﬂ.; zwc fIV(ai).-—z‘-(
fII(a v n !
"""W o) =5 e
B P [ @ g
r'ley) = -—— 3 rey) - e o
Y N T T
. . (26}
111! 1 1511 -1
Miey) -2 L, ((a,) -
%y 27 M;)—Ij' i 20 W J

aﬁd estimating the size of the remainder terms, we find that,
with an accuracy not less than 0.35.10-12, the function VX 1s
aporoximated in the first five segments from the left with best
polynomials of the fifth._degree of ﬁhe form (13). The coeffi-
cients are determined in the same way‘as for the polynomial (13).
Here the values of the function and its derivatives are deter-
mined aoeordingyto férnuia'(}G) for each point as(i = 1,2,3,4,5)
trom (37). o

With an accuracy not less than 0.8'10"13

» the function

} £(x) = Vi';s approximated on all of the remaininz segments by
4-th degree polynomials of the form (12), where the coefficlents
are deteruineﬁ in the same way as for pdfynomial (}22; The
values of the derivatives ard-fqund acoordihs to formula (38)

for each point a, (i = 6, 7, .:.. 16) from (37).'
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Thus, in 'dividing the interval [ %. 1] 1nto 16 partial
segnents, we are able to calculats the root of Xy with one of
16 polynomials, requiring in the worst case 6 additions and §

lultgpliottion;, and iﬁ the best case 5 additions and & multi-
| plications., Finding the necessary interval requires 4 coampari-
sons, |

In the computer's memory unit 101 coefficients must be
stored. . | .

It 18 poesidble that the following method of caloulating
the values of the ;quaro root with an accuracy to ten deocimal
places would be more economiocal,

As before, we divide the interval of definition of the
independent variable into 16 segments.

We shall use second-degree polyncmials of the form (10).
Estimates indicate that the accuracy of the square root ocalcula-
tion with these polynomials will not be lower than 0.3:10% om
any of the 16 segments. Adding one iteration, which doubles the
accuracy, we obtain the valao of the square root in 4 additions,
3 multiplications and 1 division. -

" If calculation of the value of the square root 1s per-
formed with second-degree polynomials with one iteration for the
8 left segments, and with fourth-degree polynomials for the 8
right segmenta, the number of coeffioclents to be stored reduces
to 60. o

If the value of the square root in all 16 intervals 1is
calculated with second-degree polynomials with one subsequent

iteration, the number of coorfiolonts to be astored will be 64,



5. Caloculation of the function arotgx

The function arctgx can be calculsted for all numbsrs
x which can be represented in the given computer.

However, ‘t.ho formulas with which arctgx is caloulated
hold only for |x) £ 1; Thereor, 1t |x| D1, cﬂeuiattou of the

function arctgx is accomplished with the formula
|

arctgx = 3 - arctg;;—-n (39)
‘ .

1.6. it 18 reduced to the calculation of the arctangent of an
" argument less than unity. |

The point A i1solates from the interval -1¢x €1 the
interval |x! € Asuch that the polynomial obtai:nch by expanding
the function arotgx into a Maclaurin series and rotated by means
of Chebyshev polynomials eives-tba values or- the arctangent om
the tntgrva_.l Ix} £ A with the required accuracy when the polyno-
mial of a giv'en' degree 18 used. Thus vwe are al‘;lc to calculate
the values of the arctangent on the interval ‘lxlé A . To calocu-
late arctgx on the interval [A; 1] , We use the familiar formula
for the sum of two arctangents:.

 arctg tg rotgmnt (40)
arc ‘u + arc /] .amtg——_ . 40
t =
. ‘ 1 uvt

If we use the substitution

%] - vg

- —— 41
u = Ty (41)

from relation (40) we easily obtain:

e
arctgu + arcigu; = arctgx. (42)



_ Thus, to caloulate the values of arotgx at; any point of the
intorval A€ix} €1, for a given x in this interval ve must csl-
culate, accqr'.dtng to forsuls (41), the u wbich corresponds to
1t, taking the value of vy necessary for this, and gublut.uh
this value of u in place of x iu the derived best polynogpial.
Then we add . the nluc of arctgu thus obtuncd vith the value
of arctgvl calculatod uruer. whioh aerou vith rolauon (42).
Iu order to bc a.blo to use the best polynonial which
holds on the interval IxI€A to calculate the values of the
funeti.on on the interval A £ x| £1, we must insure that the u
whioch 6ox;x:esponds to a given x 18 not greater than 1' -Honoo
the int.orval[ A; 1] 1s aivided into the k intervals [z %21,
‘_[x.-,,xﬂ, cees [xk,:l], in each of which jul¢A. The dividing

cw

points are determined fron_ the formula
1

S ) (43)
x STy s *1,4,000,%) ,
ts1 "1 - DU
where x; = A, xy.q $¢1. In each of the intervals fxl, x“,ﬂ the
constant.s v4 are found from :hvcomula
x % X ’
vy -t (44)
1 - X%
The values of arotgv, are calculated in advance,
Now we shall consider the construction of approximating
polynomials on the interval lxl< A,
=2 the best polynomial which provides

3%
the indicated acocuracy on the interval Ix) (:7«1 will bve

If we set 7«1

erctgx = 4;x - Byx3 + 01x5 - Dyx7 + 51x9 - Fyxl, (45)




where N

39 ¢
?*—2‘;"1':]'

“N
L ]

3’3 Tt MmNl

13

15
2

1 55 65 4
?‘

t 3 2,
—_—y ¢ —27 X
17 TPt

11
'1 -1—3'—' ""231? .

The interval A ¢ |xj £1 1s not divided 1nt6 smaller intervals,

For 1t v, = ﬁ} and arotgv, = g.' )

The degree of the polynomial which approximates ‘the
function arctgx on the interval [x)< A,can be made loior than
the degree of polynomial (4S5) 1f we aetlle = J-.%:Bl . Then the best
polyngmlie.l whi;:b approximates arctgx on the interval Ix!¢ 32

will be
arctge = dyx - Byx3 + ‘C;ts - Dyx7 , (49)

‘
+
'

where
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1 109 &
43-0 ~;fe *3 “28 \alyl,
1 8, 15 4
B el -
1 7 s ' 27. 4 :
Cy = [-5-'-2-5).3- - ? 13'3] »
1 1 9
- 34 e 2
D’ [7"23 A3 ?’ xﬁ'ﬂ] 2
1 1

faeg-@h-

For calculation of arctgx on the remaining interval,
' the 1ntervai[12;i] 18 divided into the three intervals Byixs),
[xo3%3]s [i3:%]. The values of v;, v, snd v, are found from
formula (44), Then the values of arctgvy, aroctgv, and arotgvj
are calculated. The values of arctgx on the 1nterval.[)2;1] are
calculated with formulas {46), (40) and (41) using one of the
three pairs of final constants.

Without sacrifiocling soccuracy, we msy lower the degree of
the approximating polynomial st111 further if we take Ay = %3 .
In this case the best polynomial which approximates the funo-
tion ar;tex on the interval leé-%3 with the same accuracy will
have the form ' ' |

, L
arctgx = Agx - Bx3 + Cxb , (47)

where 1 7



3
C,-[1 ""z"

11 s
-'3‘-*-ff;'1g .

To oslculato the runouon on the ronunlng interval, ve divide
_ the segnent. ['13.1] 1nt.o 6 aesnntu [13,32 o [x23%3]s ooy
[x5. 1], for which the values '1' Vo eces v‘ and arotgvy,

’arctsva. coes arotgvg are found. When t.hou values are used,
the v.alue of u does not exceed 13 on each of the aesncntl; and
formula (A7), together with forzula (40), will give the values
of arotgx on the entire interval fo;l]._ '

A polynomial of lower degr'e'o will approximate the fune-
tion arotgx on the interval |x/< Awith the same accuracy if we
set X, = 5}- . In this case the best polyncmial which gives the

values of the function arotgx on the interval lxl(& will bes
arctgx = d,x - B3, (48)

- where

’ 1 ] 4
‘4 - [1 -‘E 14 - ?14’4 ]l
1 1

o .4 .

23
1 1 3
=5~ 23N
The interval[2,;1] 1s divided by the points x,, deternined
by formula (43), into the 29 segments [).4;12‘1, [xzzis], ceey
[129;1]. for whioch the values of Vis Y25 eeey 129 and srct.gvl.

»
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arctsvz. veep np;tsvag are ocalculated. With these constants ve

may make the absolute value of u less than or equal to A, on ahy
'or.tho segments, ard compute the values of arotgx om thn-ontiro

int;rval [0;17 using formulas (‘é) and (40).

Finally, the degree of ths approximating polynomial ocaa
be reduced to unity 1if we reduce further the interval on whioh
this polynomial is defined,

Setu_n.e 15 s 2—3—5-5 , for any x on th? int.or.vgl Ix) & 15
ve obtaln the values of the funsction arctgx, accurate to ten
) &oéimal plaéos, using the following best polynomial of the first
~ degrees

!

arctgx = 4.x | (49)
/1
i

whers

1 5 3 1 1. 5
8 3 3‘ 4
A= [1-—.1 - —)‘”)4.._.)' - = e / ]'
[ ( 265 245 3 23 53 23 ] 22 5)

1 1.3,.3
Ng = (== =g ) Az .
5 (5 35/ %

Clearly, 1t 18 not possiole to obtain a more siaple
polynomial ghan polynomial (49) for calculation of arstgx at
any point of the interval |xi<a. l

) The interval[ X5;17 1 a1vided by the points x, into
more than 100 segments.. .

If for these segments we determine the constAnts A/
‘.and arotgv, from formula (44), then we may use formulas (49)
and’ (44) to calculato‘;hi véluea of arctgx on the entire inter-

val [0;1].

-45-



6. OCalculatiou of the funetion srosinx

During calculation of tho function arcsinx, it is assumed
" that the argument is contained in the intervsl -1§x41, 1.6,
that only the priuclpal values of the funotion are oalculatod.
As the initial seriol we take tho scriou

] - (2}1‘1)” x3n+1
arcsiny =x + X THTT Tl (50)

. l
defined on the interval |x| 1.

ﬁe'shall divide the interval of variation of the inde-

pendent variable into four partial sub-intervals by the points
1/10, 2/5, and 3/4, and construct in each of these sub-lntor-
vals [0;1/10], [0;2/5], [0;3/4] and Lo 1‘] the best polynomial

which approximates the function arclinx 1n 1t,

Uaine seriea (50) and Chebyshev polynonlall of appro-
priate degree, ‘for the interval EO 1/10] we obtain the follow-

1n3 best polynomial: .
arcsinx = Alx + Bixa . C'1x5 + Dlx” ’ - (51)

whero the coefriciento are defined as rollon.

L]
1

1 5 4 15 4
By = [—= = 37¥ é—mll
'R 9311 211
M1 7, 27,
- + - Sy
Cy s 2 - P ahnl,

: sit1 1 9
1- L—--—-—— 10——11]'
all 7 23 28
\
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The best polynomial (51) is used to calsulate the values

of the funotion arcsinx on the interval [0;1/10]. For the inter-

" val [0;2/5'] , 8 best polynomial of highar degree is constructed:
. ’ .
auminx-lzx¢‘%ﬁ34-c£& 41&;74

3zx9 + P’xll 0sz18 ' (52)

-

where the cooftloiont.s are dcfinod ag followe:

15
—— 412 —_—a2
- [1 215*2 '3 * 214*1 "2] ’
3 35
B, = [—+——y 210N, - —2lOF; 1,
3 [ ‘2'132 a "Ioz 2 *3

111 21 8 8
Cy = %5 ZT1af2 *—‘5'12’31.

pg- LB, B
& [ e b e Of e X,
2Ty g e

'

Wt 1
711 55 , 275

E, » [——- — 4
2 [gn o 28 3 * 38 rglyl ,

. [9111 13 5 45
2 o 11 3 e *3"]

1111 1 o9 15

z. -———..—

1 13 2t = Tk




13111 1 1811 4
I3 = (3T 5* D 1611232

1811 4
Ys=Zeml % ¢

] =
%

Polyncmial (52) is used to caloulate values of the
functioxi‘ aresinx not on the entire interval of definition, but
Aonli for those values of the aréument. x which lie 1n.t.lu inter-
val 1/10 ¢ |x) £ 2/5. For the values |x) <1/10, calculation of
the funotion arcsinx with the same accuracy is much more easily
acoonpnshed vith polynomial {51). T

" A best polynomial of 21st degree is ‘constructed to ap-
proximate the function arcsinx on the interval [0;3/37]
. arcsine =~ Xx + Lxd + x5 + X ‘;7 .
*;5,,9;16,,11.{7,,13,18,‘15.;9,‘&7. , (£3)
+ Egel? + K x31

vhere the coefficients are defined by t.he_oxpreulonas

t . 1 23
n=-n-2 ).:0}13 +7583 ).2013] ,
I - s 28 1,
- — N I

3" T Ag dg < 21913 3
all 1 10011 ;4 3289 44

I, = — e———a ¥ 2o ¥

"N T st il
511 1 715 14 0887 )

‘4- é-‘_;.-7—+ -;Te—).a 3+—T°-K3 '3 »

711 1 715 18445
Iy = b~ — ?”s * —-";31’3
all 9 218 214
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The best polynomial (53) 1s used to caiculato values of
the function arcsinx for vaiues of x 1ying in the interval '
2/5 ¢ Ixl £3/4, -

For Ix1 % 2/5; calculations aée acoomplished with for-
mulas (51) and (52). To caloﬁlate the values of the function

arcsinx with the required accuracy for x on the intérval




%'<1Xl< 1, we could construct the best polynosial for the in-

terval [0;1]. However, this polynoaisl will contain terms of

the 29th degree and thus.lk operdtions of addition and Jﬁi;pcra-

tions of multiplication will be rcqutrod'ror the caloculations,
From the point of view of the rate of caloculation of

" this function for 2-$lxl<.1, it is more advantageous t; use the

5follow1ng formulaes

!
x
uvsﬁu'-gungvfﬁfff‘ ’ (54)

from which the calculation of the values of arcsinx requires
the performance of 8 addition, 7 multiplication, 2 division and
3 comparison operations. _ .

Although formula (54) holds for sll |xi<l, for (xI<#
1t 18 less ueeful than formulas (51), (52) and (53).

7. Calculation of the function f(x) = %

Some computers do not have the diviaiop operation;
hence an iterstion process 1is used.to obtain lnvgrao quantities.

¥We shall examlne the possibility of obtaining inveru;
quantities using best polynomials constructed for different
segments into which the ¢ntire interval of definition of the
independent variabl§ 1s dlvided. .

Wo shall assume that the inverse quantity 1s calocula-
ted for a normalized argument, 1.e. that %Szl <1,

We shall divide tha énbtire interval of definition of
the indep;ndent variable into 32 partial seémanta, and at the
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midpoint of each of these segments we shall calculate the val-
ues of the funotion and 1ts first 6 derivatives.

. Through estimations we establish that funotion f(i)=§
can be approximated accurately to 10 decimal plaooi by fifth-
degree polynomials of the form (13) on the 16 left segments, and
by tourth-dégreo polynomials of the form (12) on the 16 right
intervals. The coefficlents of the polynomigla are calculated
Just ;s_they were caloulatsd for polynomials (12) and (13).
Calculation of f(x) = } with these polynomials will réqulro 6
addition and 5 multiplication, or 5 addition and & multiplica-
tion operations. Additionallj, 5 conditional branches will be
neoissary to sehrqp.the required interval, In the computer's
memory unit 208 constants must be stored.

' In conclusion we shall determine the values A, and A,
for the methods examined above of calculating the elementary
fhncttons. Tﬁia will permit an estimation of the increse in the
rate of caloulation of these functions. In cases where the de-
gres of the approximating polynomial does not increase fron one
sub-interval to the next (in calculating eX* by the second method,
vx , arotgx), tbe‘value of Al will be.detepmined relative to the
old formulas for calculating elementary functions.

' In finding A it should be noted that To (the time for
' searching in the table) usually does not exceed two Y of addi-
tlon} since in the majorlti of cases we have a division into
four sub-int;;vals, and thus twé comparisons must be performed

td find the necessary interval. In the case where the number of

C e e e ————— e e+ 3 e = e e — s ——— s ———




sub-intervals ilogrcater than four, the number of comparisons
yill be 1n21, vhere ig the number of sub-intervallfl]. Typti-
cally, 15 all cases the boundaries of the sub-intervals can be
defined by two or three decimal places. This will permit the
insertion into the computer code of an instruotién- for' shortened
comparison which can.crfcct a comparison over half of a word ia
the computer. Additionally, if automatic search of the table s
emplc}cd, as in the IBM-650 computer [7], or the arithmetiec unit
is Gpccially adapted for such problems, the search time can be
cut at least in half, Hence we shall estimate A, from two .
slden. The ;1ght estimate will be suitable for computers not
speclially adapted for the problaam of searching in the tables,
while the left estimate wiil be sultable for computers which

are thus adapted, Here all estimations will be based on the
assumption that the ratio of the time required to perfora &
m&ltiplication to the time required to perform an additiom
oberatlon will equal two, and the ratio of tﬁe time required

té perform & division operation to the time required to perform
an addition éberation will ;&ual four. These ratios hold in : ..
best present-day computers. 1If these ratios are larger, the
values of 2\1 and A, will diminish significantly.

The application of subroutines whioh use the methods
discussed above to calculate elementary functions requires an
additional volume of memory units. Thils increase in volume is
caused by: -

‘ 1) the additional storage of constants for polynomials

vhich approximate the value of a function in various sub-inter-
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vals, and of constants which define the boundaries of these sub-
intervals; ‘
2) 1instructions necasaary for the csloulation of the

polynomials in these sub-intervals;

| 3) 1instructions which effect a branch to & sub-routine
for calculating the polynomial in the appropriate sub-interval
(1n the sinplest case thess will be instructions for comparing
values of the argument with the table of sub.interfval boundariol).

' .An analysis of the sub-routines in the BESM-1 code indi- -

cates that the sub-routines are inceeased as follows:

BSEM-1 sub-routines New sub-routine

No.| “function  |No.of ] cells | Nojot | | cemts
con=- ] No.of occu- con- |[No,of | occu~

stants | inst. R pled | stants [ inet, | pled

1 (sinx, cos X,

titx 12 | 38 | s0 33 90 |73
2 |inx 1 8119 |27 |28 |22 50
3 |oX tstmethod [ 14 | 25 | 39 33 28 61
&* 2ndmethod| - - - 9% |21 |17

\x 1stmethod | 10 | 27 | 37 [102 |28 | 130

4 |\ 2odmethod | - | - - |64 |24 | e8
\/admethod | - - - 80 25 | 105

5 arctgx 13 23 41 18 25 43
A arcsinx 24 57 81 27 67 94
7 | 10—=2 12 {25 | 37 |12 |25 | 3
8 2—=10 13 | 28 | 39 13 26 | %9
Total * fas a ]540
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CONCLUSIONS

We have dcloribod a nothod vhloh, at the expense of &
certain additzonal loading of the oonputor s memory unit, per-

" mits an inorease in the rate of caloulation of slementary funo- -

tions.

The rorlula- sugecated horo are not the best tor svsry
glootfonic co-puter. For any specifie oonputer. approprtcto
formulas should ﬁo sslected which allew for the properties of
the computer relative to the time required ?or the porfbrnanoo
of;arlfhnetio op&rations, whioh insure calculation V1th ihc
m#%indn'apced. and whose programming does not sevefcly load the

computer’s memory unit.

The formulas presented here can be quite sultable for
speciaslized computers, where the occurrence of values of the
function's argunani .18 not uniform in the rédﬁ;;&.intorval.
in this csase, 1np§ead of using all of the divisions, we may
use onli certain ones and thus increase the rate of opeéatlon
of the computer with only slight additional loading of the

nemory dplt.

If the methods dircussed in 3 and 6 are used, the
number of multiplicatioﬁs in the formulas preasented here can

be reduced still further because of the increase in the number

. addition operaﬁlonc. o -



All formulas derived here are designed for caloulation

of functions accurate to 10 decimal places.

If the values of funotions are to be calculated with

fewer digits, the foraulas ﬁaj be simplified considersbly.

) One of the indicated variants for ocalculating elexen-
tary functions will require the use cf approximately 200 memory
units to }tore necessary constants. The maximum number of
oénatants required for the accompllshmegt';r all of the caleu-
lation sub-réutines for the elementary functions examined here
is around 305. 4However,‘around 200 of these are used to formu-
late the-;ub-roﬁtinea of the function VE'with~4th- and 5th-

' degree polynomials, and the function e* using 4th-degree poly-

nomials.
The use of the sugges:ed formulas for the function
arotgx significantly increases the rate of calculation of the

‘arotangent.

The methods described here apparently can serve as one
'way of achieving a slgniflcéﬁt reduction of the operating time

of the computer during the solution of various problems.

These methods can be transferred in their entirety to
the case of rational apppoiimation of elemeptary'fundtions. ‘In
) this case their application permits a signiticanf.éconony of

13

computer operating time.
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POOTNOTES

1. Throughout the article we use the phrase "best
polynomials to denote polynomiala obtained. from the Taylor
expansion.of a funotion by multiple rotation with Chebyshev

‘polynomials. These polynomials are closs to polynoalals

which are best in the generally accepted sense. The error
in approximating polynomials used in the article consists of
the remainder term of the Taylor series and the errors which
arise with eash rotation.
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