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SOME METHODS FOR INCREASING THE RT

OF.CALCULATION OF Z.LEWTARX I=-

TIONS ON DIGITAL L=mTONIG

CONPUTZR

Algorithms for table-polynomial approximation of @I*-

mentary functions on digital computers are discussed. At the

expense of a certain increase in the number of computer memory

cells occupied with sub-routines for calculating elementary

functions, these methods permit a significant increase in the

rate of calculation of these functions.
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INTRODUCTION

The use of d12ital eleoctronlo computers as devices to

control complex technical instruments leads to the creation of

computers with a high ope.rating spaed. In the literature such

computers are called computers which operate in the real time

sacle,

Besides the increase in the rate of performing Individual

operations in computers which operate In the real time scale, the

problem of creating mathematical methods which permit the rapid

performance of the required calculations becomes quite real.

Here the expediency of Increasin8 as much as possible the rate

ft such basic elementary functions as sinx, coax, tgx, arcsinx,

arctgx, lnx, ex and tis immediately apparent. For many devices,

where the digital computer is the controlling complex, the cal-

culation of elementary functions can occupy up to 40 or even 60

percent of the time required for the solution of a control pro-

blem. Therefore, with a reduction in the time for computing ele-

mentary functions, the total solution time may be reduced signi-

ficantly, and the freed time can be used for correcting the con-

trol of the actual instrument.

Algorithms with which elementary functions are calculated

on digital computers intended for the solution of engineering pro-

blems are poorly suited for computers which operate in the real

time scale. this is explained by the fact that, for usual digital

FID-rr-- -3- I V .



computers, the choice of algorithms Is based primarily on con-

siderations of the space occupied by their progl'S~ nS In the

memory unit,.

Algorithms which are presently in use are construoted

in Ruo'. a way that they give the values of elementary functions

on the entire interval of variation of the argument with a given

degree of accuracy.

Algorithms used for the calculation of elementary func-

tions can be divided into four groupst

1) Algorithms which permit the calculation of elementary

functions with polynomials which approximate the given function

(polynomial approximation);

2) Algorithms which permit the calculation of elementary

functions with rational functions which approximate a given func-

tion (rational approximation);

3) Algorithms which permit the calculation of elementary

functions with tables which contain reference values of the func-

tion on a given interval (table approximation);

4) Algorithms which permit the calculation of elementary

functions with the method of calculation of values of the func-

tion "digit by digit."

The enumerated algorithms for calculating elementary func-

tions have one part in commons they require a reduction, using

appropriate formulas, of the entire interval of variation of the

aitgument of a gtven elementary function to some minimum interval,

where the approximation Is accomplished by a given algorithm. We



shall consider this common part in the enumerated algorithms to

be identical, and we shall see the distinction between algorithms

in the methods through which the calculation of the function to

accomplished in the reduced interval.

In widest use today are algorithms which permit a poly-

nomial approximation of elementary functions. Therefore, these

algorithms will be of greatest Interest for us.

Algorithms which use rational approximation are not yet

in wide use, since in the majority of existing computers the

operation of division exceeds the operation of multiplication

In the time required for its performance by two or three times.

They are used only in computers in which the operation of divi-

sion is to a certain extent equivalent to the operation of multi-

plication In the time required for its performance.

Algorithms which use tables of reference values for cal-

culating elementary functions are even less widely used. This Is

.explained by the fact that the tables are constructed to use the

most simple interpolation formulas which contain a minimum num-

ber of multiplications, and this leads to extremely large tables

of reference values when the condition of high accuracy of cal-

culations is imposed. A large volume of tables increases the

time required to locatethe necessary values and requires a large

memory unit. Tables of reference values of functions can be con-

sidered fully adequate for lower accuracy of calculation not ex-

ceeding 0.5-10-, when a sufficiently lar-e memory unit is

available.
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Algorithms which permit calculation of elementary tune-

tions "digit by digit" are suitable for use In a oomputer. Here

certain elementary functions, for example lux and oz. ean be sal-

culated in the time of one multiplication. The Inadequacy of

these algorithms to the fact that not all elementary functions

can be calculated with this method, In addition each elementary

function requires expensive additional, equipment for Its approxi-

mation by this method,

Experience in the operation of digital electronic con-

puters in use today has shown that algorithms which permit poly-

nomial or rational approximation of elementary functions are most

suitable in practice.

(Here we shall examine rational approximation in the re-

duced form, I.e. as the ratio of two polynomials.)

Thus we may assume that in computers which operato in the

real time scale these algorithms may be employed with certain

variations in the method of application. With an increase in

sub-routines, they may be redesigned in such a way that the

approximation of any elementary function in the reduced interval

is conducted not with one polynomial, which Insures a given

accuracy on the entire interval, but by a-certain-set of poly-

nomials applicable on sub-intervals of this reduced interval.

Here the degrees of the approximating polynomials increase from

one sub-interval to the next, and only in the last sub-interval

of the reduced intervalcan the polynomial have the form which ti

now used over the entire length of the inverval of reduction.

-6-



Thus a combined table-polynomial algorithm, as it were, Ia being

used to approximate the elementary functions. The same considera-

tions apply to rational -approximation represented as the ratio of

two polynomials.

1 . THE TABLE-POLYNOMIAL APPROXI)(ATION METHOD

The possibility and expediency of employing the method

of table-polynomial approximation of elementary functions may

be based on the following considerations.

As Is generally known, a computer operates with digital

information with a certain degree of accuracy.

This accuracy is determined not only by the error in

approximating a given function, but also by the fact that the

computer performs the necessary operations on numbers which lie

In a fully defined range and are discretely distributed within

this range. The accuracy of calculation of elementary functions

according to any algorithm Is determined also by this discrete-

ness. For values of functions near zero in modulus~polynomials

which give a good approximation near the values of these func-

tions which are maximum in modulus have a large number of terms

of higher orders in the sub-intervals near the zero values. How-

everb the terms of higher orders in sub-intervals near the zero

values of the function take on values which are not caught by the

computer, as a result of its limited discrete perception of these

numbers, but • require a large number of multiplications.

Herein lies the basis for hope that the entire interval of reduo-



tion can judiciously be divided Into smaller sub-intervals in

which an approximation of functions can be accomplished with

polynomials of lower orders.

Let us assume that we have succeeded in dividing the

interval of reduction (a,b) into the segments Al, a2, ,'
N

such that A 0. i{

Relative to the time required for their accomplishment

all arithmetic operations performed by the computer can be ex-

amined from the point of view of the time required for the per-

formance of the operations of addition and multiplication, so

that the operation of subtraction is in this sense equivalent

to the operation of addition, and the operation of division can

be thought of as several multiplications, etc.

Let the polynomial which gives an approximation of a

particular elementary function on the entire interval (a, b)

require m additions and n multiplications.

The time expended by the computer to accomplish one

or another algorithm Is determined as the number of arithmetic

operations of addition and multiplication, multiplied by the

corresponding time reqýired for the performance of these opera-

tions on the computer.

Further, let nj and m be the number of multiplications

and additions on the segment & 1 . Here we assume that nl "n,41,.

MI 4 m,+1. Then in the case of application of one polynomial

the number of multiplications on (ab) Is

-8-



(~tn) -n,()

while in the case of applioationof several polynomials the nun-

"ber of multiplications ti

12(n) - (At)nt,. (2)

where P(Ai) are the probabilities that the argument for whose

values the elementary function Is being calculated will fall In AL.

We may obtain exactly the same expressions for the-mathe-

matical eipectation of the number of additions when calculating

an elementary function:

N,(n) - x (3)

N " L1 P(A()..4)

The time required for the accomplishment of the algorithm

on the computer in each of these oases will be:

71 -"Tf 1(n) T,211 (a) 2 ) ()

where -1 is the time of one multiplication on the computer,

"T, is the time of one addition on the computer.

Let us assume that a polynomial of appropriate degree

which approximates the given elementary function on Ai Is given

-9-



by its coefficlents. Then the selection of the polynoatal reduces

to the selection of the appropriate coefficients from the table.

Let the time required to locate these coefficients on the table

equal or, . Then the ratio I

A - i(n) + rC2 ) * o (+)
(vin + 'aT)

permits an evaluation of the advantage of the table-polynomall

method of calculation of elementary functions.

An evaluation of the character of the distribution of

probabilities P(x) that the values of the argument x will lie

in the correspondin8 segment Al of the reduced interval is diffi-

cult even In the case of control units of relatively slight com-

plexity. We shall assume that B(x) is determined by uniform dis-

tribution and that the oocurence of x in one or another sub-interval

of the reduced interval is an independent event.

Then from (7) we easily find that,

S+ To
A - 0 (8)

(b-a) ("ýnr + r.3) ncL + ,-h %

Thus we see that A consists of the two parts

A1, .92 Atnt T2 tA t (8')

(b-a) (n%1 + ,,,)

A-S-
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The ratio Aki as we shall show subsequently for specific

elementary functions$ can be made loes than 1 through an appro-

priate choice of approximating polynomials. It will be near

0.4 - O.T.

We shall consider briefly the question of how to organize

the search in the table In such a way that we may determine the

corresponding A- according to the argument x reduced to the basic

interval (more precisely, those coefficients a 1 of the polynomial

which approximates the given function on the sub-interval Aj)

with the condition that the ratio A2 -- I% be as small

as possible.

We may consider the usual program methods used during the

choice of one of k possible branches of the calculation process

as one method for solving this problem.

The division of the interval of reduction into the system

of sub-intervals Ai can be organized in such a way that the sub-

interval Ai is determined by several significant digits of the

binary representation of the argument x, or that the argument x

is associated with an appropriately selected constant prtor to

the selection of .the sub-interval, or that a somewhat more com-

plex function of x has been formed which contains certain charac-

teristic indications for each sub-interval A. Then the choice

of the sub-interval Ai and, consequently, the choice of an appro-

priate approximating polynomial P. (x) can be expediently accom-

plished by a very simple deciphering unit which will control the

calculation of the polynomial with the required number of

-11-



coefficients. In this case the time-t. required for the searob

of the table can be made very small in comparison to the time

+,r,. It ti true that in this case certain sub-routines will

require individual elementary modifications, which do not com-

plicate the design of the computerjin order for a very signift-

cant advantage in rate of operation to be obtained.

In essence, we may provide in the computer a special

command which would determine the appropriate address of the.

sub-routine for determinirg Pn(x) according to a g iven x. Then

this command could select several digits from x and add to then

a certain constant, and the quantity thus derived could be the

address of the sub-routine. We could provide other, more complex

commands, specially adapted to this problem, which would permit

a maximum reduction of the time required to search the interval

to whieh the given x belongs. This would permit a branching to

a special sub-routine for calculation of the appropriate approx&-

mation of the elementary function.
.4..

II. THE TABLE-POLYNIOM4IAL APPROXIMATION

OF ELEMENTARY FUNCTIONS

Ifton the interval [a,b] we are given an arbitrary

differentiable functioii f(x), then the best piecewise approxi-

mation of this function on the given Interval can be performed

with polynomials or rational fraction functions of any degree,

with the assumption that the interval Ca,bJ is divided Into a

-12-



seri.es of smaller intervals.

We shall perform the division of the interval,[&,bJ in

one of the following two ways.

If the function f(x) has the property of evenness or odd-

ness, then In order not to lose these properties of the function

we shall divide the interval Cab) Into a series of nested Inter-

vale with the common point a. In this case the length of the

nested intervals into which the interval Ca,b) is divided are

determined in such a way that the deeree of the polynomials which

approximate the function f(x) with a given accuracy increases with

an increase in the length of the segment.

If the function f(x) does not have the property of even-

noes or oddness, the interval ra,bJ is divided into a series of

small non-overlapping intervals. In this case we may design in

advance a system of easily calculated best polynomials of low de-

gree1 which approximate an arbitrary differentiable function on

the Interval [1X, X14 11 E,),b:. These polynomials will be re-

quired later during the construction of formulas for approximating

the functions V and ex.

We shall expand the given function f(x) into a Taylor

series at the point ai, which is the mid-point of the interval

[XI, x14.13"

x-at (x--at)s,
rw -)r(at) r.• -F(at) ÷ (at).

• (• F' (at*" "(9)

-13-



Using the substitution x-a 1  -u and Ohebyshev

polynomials of &ppropriate degrees, and returning again to the

old variable, we obtain the best polynomial of the necessary de-

gree whiob a~pproximates the funotion f(x) on the interval' rh, 1 x1a,

Thus the best polynomial which approximates the funotion

f(x) on the interval [xI- x1÷w. will be:

of the second degree

r(x) ý1 2 + R 2(x-aj) + C2(x-at)2, (10)

where the ooefficients of the polynomial are defined by the

following expressions:

1 13
E2 - [f(ar) - --2R2 -. 212 ,24 23

£3 . (f(at) 12 3
2121 9

C2 - E- "7(a t) - --- a R. l, j
21 2

#,- f--•r"(fat) *2.R3 ,]4,

1 1 2

N2 - [--22S2a1) -S2J 1

" 61

-L 2
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of the third degree

f(x) 'v A3 * L,8X-Ct) Ca(x-at)2 '; D•3(x-at)- (11)

where the coeffictents of the polynomial ares

1 1

A3 - [f'ja1 ) -" )'; 3 -` "X2 131,

26 P4 3;

3a - " 2/. s4 ]

1 1 51,9

1 iv 3E-j" (at) 2-7 3 + l
V 3

N3 - (at) +-Sa.X

1 3 vi.)

Xt+i - Xi

2

of the fourth degree

f(x) - A4 + B4 (x-at). C4 (X-at) 2 +D4(x.-a•,J+E4 (xt)4 (12)

where the ooeffioients of the polynomial are:

A4 .[(at) __L 4 R4 + 41 4]"

A- 2
4 27 PS 4 ]o1 5

- [ ,,(at) 1_)4 S4

31 23 22

-15-



24 - 41 (ajPj 42 R 4

114 - [-f'a)*284A

61

14- r-rf(aj) .-5S2
' 5!

R4 - IL fI('a t)

61

Xt,1 - xt

2

of the fifth degree

ffýx)'-A5+Bs(x-at).C5(x..at)2 D5,(x-CL)3+ Er(x-at)
4+

+ -y5 (x-at)5  
,(s

where the coefficients of the pcilynomata are:

A5-[r(at) -- '5s IX45

2,7 X5f a2)

B5-10, R5, L. .7
28

CS [-f"(at) +*2- -_

D5-..-r"(at) +-- 2b9X R5 23X5ia

-16-



15 2 3

3 7

76 " (•rtag) +-y4)
x5 ~ ~ j -•Ii•'t ~]x,1

Its fVO(ad)

7122)?

t+ - A5 I

XL1 2 Xi~

X11- - .

2

We now proceed with the direct derivation of formulas

for specific elementary functions.

Hereafter it is assumed that all formulas constructed

for the approximation of elementary functions insure the derl-

"vation of '10 significant decimal places; we therefore will not

evaluate them in each separate case.

Here we shall pause to analyze the formulas given In

L13. These formulas are used for the calculation of elementary

functions in the computers BESM-1 and BEkS-Ii. Some of these

use rational approximation; others use polynomial approximation.

-17-



It has been shown in [11 that, in comparison with pure

polynomial approximation, the use of these formulas permits a

siornificant reduction in the time required for calculation of

elementary functions. Thus a further refi.nement of these for-

mulas is desirable for the purpose of obtaining a further economy

in caloulating tins.

The following considerations, which concern the calou-

lation of elementary functions in the smaller sub-intervals of

the reduced interval with polynomials of lower degrees, relate

equally to any other formulas which use polynomial or rational

"approximation.

1. Calculation of the functions sinx, coax and tgx

As in £1], the expansion of the function ctgz into a

Laurent series is used for calculation of the values of the func-

tions sinx, coax and tg:

zctgz - I - E 2 SR .I z23X * (14)
Yc-1 (2x) I

which converges for z4 < 7r.

Setting r , we obtain the expression

2tg 2. XD - (1)
,€-i (2c) !

It is assumed that, before calculation of the tangent of

half of the argument according to formula (15), the original

-18-



argument was reduced to a quantity less than • and from this

quantity a whole and a fractional part were extracted. The ar-

Sument x in this formula Is the fractional part of a quantity

less than.Z, and thus varies in the Interval O(xjl.
4

We shall divide the interval of variation of the Inde-

pendent variable x into four partial sub-intervals with the

points 6 ~and.

For each of the sub-intervals thus obtained we construct

its best polynomial which approximates in it the denominator of

the function defined by relation(15). Then we shall have the

following series of approximating expressions.

In the interval LO; Aj the function 2tsjis approximated

by the expression:

x X
2tg- _ 1 (16)

2 A1  B1. IX4

where the coefficients A1 , B 1 , and C1 are defined as follows:

1.e 1 4
Al -i 1+27) R, - -293'k",

B . [ .I + 19

11 3

6! 42



-1 1 #-,a

Formula (16) is used to calculate the values of 2ta

for any x on the interval O0;,1.

For the interval [0; 3Jwe find the expression whioh
approximates the function 2tg&;

2
2 .X X (17)

2 • - B 2 -CX 4 - D2X '

where the coefficients A2 , B 2 , C 2 and D2 are defined as followes

22

1 1 25 14"2 1 8 2R2 2 4 f

II 25 5
C2 - X-~.4 i 2 - -- X ,

41 30 25 2 2223 2

11 5
155

N2 -jZ )).3.

2

-20-



Formula (17) Is used to calculate the Values of 2t41
2

only for the arEument In the Interval IXV1, sinces alculation

of the values of the function for the aerument x on the Interval

601x1L is accomplished more economically agoording to formula (16).
8

In the interval [0:,3 ]the following expressiong which

approximates the function 2t$& in the Indicated Interval, holdst

2

2t x x

4f 3 -B3X2 - C394  D3 X6 - '13Xe 18

where the coefficients A 3 B 3 , C , D and E£3 are defined as

follows:

.4 + • 18

421 3 28 i2

- 1 1 74 35

1 1 27 5
8t 30 28 2

1 5

D - jI- 43 R 3 I

1 691

13"-I---- g . -iY

RT - (ý-t733S

121 2730 3

"3
5

Formula (18) is used to calculate the values of 2tg

only for those x which lie In the interval5x*.

-21-.



For x from the interval OxfStbe values of the function

are calculated according to formulas (16) an (17).

In the interval j; 1) tui..neat. expressions whIeh approxi-

mates the function 2t6 2 holds;

*
2tg - - .-48 X O)

where the coefficients cf the denominator are defined as follows:

1 1

1 1 49 9
B4 ' [21 5- M73R4 # 7'4Jr.

1 1 49 105
C + --,RI4 3,

4130 284

1 1 147 7
D4  --- R4 2ak 4

I4 0 -_R - 27 14V4-181 .10 25 4 28

1 5 77F4 - t1- .... - + jZR4* ,4
10! m 24

1 691 7

_ý21 2730 2

17R4 "1-7T

Formula (19) to used, not for the entire interval for

which it was derived, but only for values of the argument from

the interval.1 x(l.
5

Graphically the region of existence of .each of expressions

-



(16), (.17)o (18) ana (19) and the intervals of variation of the

Independent variLble for each of these -expressions can be de-

picted as follow$s

A*exo (17);y of S1

DO escarole 1114 for /pae 1

After the value of 2tgxhas been found, the absolute

value of the functions sinx, coax and tgx are easily calculated

according to the formulas:

ý9 I

8ii 244 COSX2
1 +t• 1I' tga1 -(01t42~ 2

sin x
COS X

For calculation of the functions sinx, coax and tgx, it

would have been possible to construct still other approximating

formulas based on their expansion into a Taylor series and

Chebyehev polynomials of appropriate degree.

The expansion of otSz into a Laurent series was used

here as the most economical for the simultaneous determination

of all three functions. Hence we have demonstrated a method for

constructing approximating functions which accelerate the calcu-

-23-



lation process based on this expansios.

2. ealoulatlon of the funotion lux

During calculation of the natural logaritbartbht

argument x, Is assumed to be given In normalized form. i.e.

In the form
X.- 2P- X1  ( si)

where p is the order of the number x,xi.U t4p de~laal part of

the number x which is contained in the Intervalitxl.I

Taking the logarithm of relation (21), we obtain

lnx - pln2 + lnX1., (22)

where lnx1 in formula (22) can be expressed by means of the

series I
'i1 _& T (23)

Using relation (23), the Identity

lnx. - lnILX1 - 1nj

with certain assumptions relative to the parttoular values of

and Chebyshev polynomials of appropriate degree, we easily

obtain the best polynomials which approximate the function lnx

on the given interval with a given degree of accuracy.

We shall divide the interval [I, 1] of variation of the

-24-



independent variable x, by the points x 2
132 ~

four partial nested sub-intervals with the common point xZ1 3 ,

and in each of tha Intervals thus obtained, Including the entire

Int4evtl Itself, we shall construct Its beat polynomial which

approximates the funotion lux,

Then for the interval (1; il]we will have the following
S32

relation containing the best polynomial of the third degree

which approximates function lnxi

lnx - (P -3)lrQ '_2_n17 + Alus+ B1 U3 (24)

where the coefficients are defined as follows:

1 5

B- [2 _ 1i1

5 2

256 33TITr
8

xIi

18

Formula (24) is used for calculation of values of the
function lnx for all x1 lying in the interval} a ,.

2 32
The following relation, which contains the best poly-

nomial of the fifth degree, Is obtained for the Intervall•,i U-7S

-25-



mX - ( 4-)n2 -i• • * " , "÷ c,, #, (2R)

where the ooefftolents are defined as follovls

1S8 74

3 2

20 X + 9f5-

4

U X -

Formula (25) is used for calculation of the values of the funo-

tionlnx only for those values of x, lying In the Interval.

For x1%2 it to more expedient to use formula (24).

The following relation with the best polynomial of the

seventh degree is constructed for the 1nteral[2; fill

22

Inx" (v-3)n2 + -hIn21 + A3- + Bu30- C301-÷ D,3"u7 (26)
2
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where the ooefficients of the polynomial are detined as follows:

1 10 6
A 28

5 15

30 21' " 2

2 7 27 3C3 - -- _j;)
5

E 7 2 22ja

21

z•~ ~~1 - (-.),. -9•, + e,-2 c=.•,•.x•.

104 +2P1iI

8

Is 8

Formula (26) is used to calculate the values of the

function Inx for values of xl lying In the interval i $x 1<9

The following expression containing the best polynomial

of the ninth degree is constructed on the intervarlf; 1 It
12

nx - (p--1n2 + A~z * 84u- C4u5+ D4u'7+ 141' -, (27

where the coefficients of the polynomial are defined as follows:

"4- 1 2 21 1i 8

2 7 55
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2 7 8 77 4

C4 - )-4-#4, 1-

3_ , 11 _

14. - , , ,

2 1

iL4 "f2,I

?..2
U - -

2

Formula (27) is used for calculation of the values of

the function lux for x lying in the intervaloxI<1..

The regions where polynomials (24) - (27) approximate

lnx with the given accuracy may be presented graphically as

follows:

Values&o• iluzat Valuees "Ofmaf
foe e (25) fo essim (PS)

Values of augment Value8ofarvuwhat
for expeion (24)f

Interval of definition

[nu• o~efnitm ,Inte'ml o~deftiton

for expresion(125m) mnter~aido~efintiom
\for expression (26)

From the very construction of the approximating best
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polynomials Introduced here, it follows that each successive poly-

nomial overlaps the preoeeding ones and permits the derivation of

the value lnx with the given accuracy In those Intervals more to

the left than the region of variation of the argument for which

this polynomial was constructed. Although the utilization of all

of these polynomials will require additional loading of the oom-

puter's memory unit, It will nonetheless lead to a significant

economy of machine time during repeated calculation of the values

of lax.

3. Calculation of the function ex

The calculation of the function ex begins with the re-

presentation of this function in the form:

X

21n2. 2 2"1;. S2 P (28)

where [ x ] Is the whole part of the index and tois
1n2 ln2 53-21

the fractional part of the index ...
ln2

The part of the quantity eX which is expressed by the

factor 2 we assume to be calculated and ready to add to the

other part of eX, i.e. to 2AD which remains to be calculated.

Here we note the applicability of the equality

2 (29),
Whe e 1n2

Clearly the variable 'V varies within the limits 5vj•ln2,

so that the quantity{1x varies between 0 and 1.
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The limits of variation of the lIdex function can be re-

duced further if we multiply and divide It by VT. Then we obtains

ins
F2 - (30)•

whe re u x frIln2 - varies within the limits Iuji ( 12,

CaloulatinS ou, we at the same time find the value of the
fX I

quantity 2&11MZ according to (29),

The values of the function eu can be calculated in two

ways.

First method.

As the initial series for calculation of the function

ou we take its expansion into a Maclaurin sertes:

u u$ u U4  U5
O+ +IT + (31)o" 1 • -• • 41 5!" (t

We shall divide the interval[Of; of variation of the

modulus of the independent variable u by the three points

591n and I into four nested intervals with the common point
1024 2f
0, and we shell construct for each of these intervals the best

polynomial which approximates the function 's.

Using series (31) and Chebyshev polynomials, for the In-

terval 010; ]#is obitin the followiiS beit-polynoUmal$

OU aA 1 # Bl. , .s, (32)

where the coefficients are defined as follows:

14 1
A, •- [I +- ).I 2v-

Bk, - 1 - % •la 3 c]•2,8

24 2'
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1 #.c- •- • 8= 2
C: Lt i1

41 2

R1 -41& •

31n2

The best polynomial (32) Is used for calculation of the

values of the funotion qu for all values of u in the interval

The following best polynomial is oonstruoted for approxi-

mation of the function eu on the interval [0; 391u2

ell .As 4 Bu +C3 Se2+D4s 3 + C;U 4 , A33)

where the coefficients are defined as follows:

162 3S3 + ).43

B2 _ (1 [_2 ,4R3 2* R 13

1 14 94

D2 - (2 -1 12 5

1 5 3

E2 - -, +4! 2



Ira P 51 gaRA

Ra-61 is

2S~

391nZ

1024

The polynomial (33) Is used for caldulation of the val-

ueS of •u only for those values of the argument which lie In the

interval

31n2 391n2

4096 1024

For t.e Interval [0; 5D we obtain the following best

polynomial to approximate the funotion oU3

e" . 1A 3 Bsu + .C3U D3 .13u 4  +? F*, + G5u6 ; (34)

where the coefficients are found from the relations:

1 15 a
3 7 3 3

21 514 23

D3- 1- 413~-7,3 3131
31 25 3
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1 25 4 533

1 33XSP3- ES _ - _ - , , .o.

1 35
E.- E-- X,8 2,, 1
6--! z~l ,8*2
1 5

R3 13

24

The polynomial (34) is used for oaloulation of the val-

ueu of eu for values of the argument contained In the interval

L 1024J"'- u T2, J"

For the interval [0; T.• we obtain the following best

polynomial to give the values of the function out

eU - A4 + 84+L + C4 u2 4 D4*t3 + Z4U4 ?4U 5+ 04 U6 +

+ J4, U, (35):

where the ootffio~nttAuof the polynomial are defined by:
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2101

1 9 25

04- -[ -, 44*~41 1

D4 31 7257

5! 2. 2T

04 1 7 4 35 a

1 272 5
14~ 8! [;- xi4 2 N4'

'F 1.1 2.s) L

14 10!

-10!1~

14- 2
212 4

1n2
)4 2
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Polynomial (35) it used for oaloulation of the values

of Ou only for those values of the argument lying In the interval

51R.2

24. 2

Second method, I
We shall divide the positive part of the Interval of

variation of the independent variable u into 8 equal parts and

determine the midpoint of each of these segments.

1n2 1n2 31n2 1n2 51n2 31n2 71n2 ln2

18 8 1-6 -4- 16 _8 16 _T
a. % 0a 0 % a 7 a.

Having eatablimhed ftt

ln2 91n2a , " a r" -_72
31n2 111n2

0, -~ ,"• e"--
2 32 32(36)

51n2 131n2
a3 a-- 7 . 3232

71a2 151n2
a4 - -a-, 32

and that A : identically for all of the segments, we shall

find the values of the function eu and its successive derivatives

at the points a. (36).

Through estimations we find that, with an accuracy not

leos than 0.•.101, a polynomial of the fourth degree approxi-

mates the function eu on each of the segments.

Thus to find the values of the function *u on each of the

eight segments we can use a beet polynomial of the form (12)ifind-
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ing the ooeffloints of these polynomials according to the

same formulas as for, (12.). Here we need to find only the values

of the function and its derivatives to the eighth order•, ineol-

sivelys st each of the points a, (1 a 1s 2@ .. 6,8).

Wi~th this method of calculating 0u 5 additions and 4

multiplications must be expended In the derivation of the values

of the function. The necessary intearval, depending on the value

of us Is. found by means of 3 oomparisons.

The foregoing discussion relative, to u >0 relates equally

to u 0, wh'ich also require approximating polynomials of the 4th

degree. Thus one more conditibnal' step is added for recognition

of the sign of u.

Thus 96 constants of 16 approximating polynomials must

be stored in the computer's memory unit to determine the values

of'ou for any u.

After the quantity eu has been determined, the value J

the funotion ex is found by means of relation (28).

4. Calculation of the square root V'

In the calculation of the square root it is assumed

that the argument is always given in normalized form, i.e. that

aýl values of lie in the Interval i,<x1<l. Then calculation

of the square root of the number x reduces to the extraction of

the square root of the two faotores

Extraction of the square root of the first factor poses

no particular problems since
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2X . p- 2%+1.

To extract the square root of the second factor we

divide the region of definition of the argument Into 16"equal

segments% and construct for each of them the best polynomial to

approximate the function f(x) = VX In that interval.

We shall denote by aI the midpoints of the segments.

Then, with the above division of thetotal interval, we sball

have the following values for the points &is

33 41 49 C7

543 51 -9

46 a14 P
(37)

37 45 C3 61"U3 "--4 0 a7 "-'J. -,"-"• a18 --- ab

64 64. 64 84

39 47 55 W3.4 -- • , a8 - -, Wl• ale" at ',•
84 4 64 A46

The distribution of the Intervals In which polynomials

to approximate the function will be constructed can be depicted

graphically as follows:

17 _ 19 5 21 11 23 3 25 1 327•7•29 15 31

: 32 1 s " 2 F74- -a F 4 -2 7a -52T - -

a' t 3030 4 a& of a? a$ % a29 421 all a 's .1 4 a"l

In acoomplishing this division we at the same time have

xdil - Xi
determined the quantity A z In the-present case A

is the same for all segments and equals 26
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Calculating the values of the derivatives for the poimto

a1 (1 a 1, 2, ... , 16) from (37) according to the formulas:

311r,(a,) %X, Ar -. -

11* 5111

S-711 1

i 131 1
.y... 1 , rf"••, - -.

29 (36)
fVI - .1 !L 1 151 -1 l

and estimating the size of the remainder terms, we find that,

with an accuracy not lese than 0.35.10-12, the function Y'x ti

approximated In the first five segments from the left with best

polynomials of the fifth-degree of the form (13). The coeffi-

cients are determined in the same way as for the polynomial (13).

Here the values of the function and its derivatives are deter-

mined according to formula (38) for each point al(i a 1,2,3,•4,5)

from (37).

With an accuracy not less than 0.8h10l13, the function

f(x) = •V is approximated on all of the remaining segment* by

4-th degree polynomials of the form (12), where the coefficients

are determined in the same way as for polynomial (12). The

values of the derivatives are found according to formula (38)

for each point a1 (I : 6, 7, ... , 16) from (37).
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Thus, in'diuidinS the interval [It 13 into 16 partial
2

segments, we are able to calculate the root of x, with one of

16 polynomials, requiring in the worst case 6 additions and 5

multiplioations, and in the best case 5 additions and 4 multi-

plications. Flnding the necessary interval requires 4 oompari-

sons.

In the computer's memory unit 101 coefficients must be

stored..

It Is possible that the following method of calculating

the values of the square root with an accuracy to ten decimal

places would be more economical.

As before, we d~vids the interval of definition of the

independent variable Into 16 seacents.

We shall use second-degree polynomials of the form (10).

Estimates indicate that the accuracy of the square root calcula-

tion with these polynomials will not be lower than 0.3.10- 0n

any of the 16 segments. Adding one iteration, which doubles the

accuracy, we obtain the value of the square root in 4 additions,

3 multiplications and 1 division.

If calculation of the value of the square root is per-

formed with second-degree polynomials with one iteration for the

8 left segments, and with fourth-degree polynomials for the 8

right segments, the number of coefficients to be stored reduces

to 6o0.

If the value of the square root in all 16 intervals is

calculated with second-degree polynomials with one subsequent

iteration, the number of coefficients to be stored will be 64.
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5. Calculation of the function arotgl

The function arotgx can be calculated for all numbers

x whioh can be represented in the given oomputer..

However, the formulas with which arotgz is calculated

hold only for jxi 4 1. Therefor, If, jxj >1, osleoultion or the

function arotgx is accomplished with the formula

arctgx - &-tg- (3o)

I.e. it ts reduced to the calculation of the arotangent of an

argument less than unity.

The point A isolates from the interval -1j x 1 the

interval JxI4. ).such that the polynomial obtainsd by expanding

the function arotgx into a Maclaurin series and rotated by means

of Chebyshev polynomials gives the values of the arotangent ou

the interval lxi < #1 with the required accuracy when the polyno-

mial of a given degree Is used. Thus we are aile to calculate

the values of the arotangent on the interval lx)4 X. To oalou-

late arotgx on the interval [A; 1] , we use the familiar formula

for the sum of two aretangenti:

arct .pu *aretgvt - arctg-1uL. (40)
iI

If we use the substitution

lid - U
, - -V , (41)

from relation (40) we easily obtains

arctgu + arctgut - arottx. (42)
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Thus, to calculste the values of arotex at any point of the

Interval %f•lxJ*1. for a given x in this interval we must cal-

oulate, according to formula (41), the u wbioh oorresponm to

It, taking the value of vY necessary for this, and substituts

this value of u in place of x in the derived best polynsaisi.

Then we add. the value of arotgu thus obtained with the value

of arctgvi calculated earlier, which aerees with relation (42).

In order to be able to use the beat polynomial which

holds on the Interval JxJA"Xto calculate the values of the

function on the interval A 4 lxj 4 1, we must insure that the a

which corresponds to a given x is not greater than A. Hence

the IntervalC;k; 11 is divided into the k intervals rxl; x22.

.[xC,:,x ... , fxk;lJ, In each of which ul,, X. The dividing

points are determined from the formula

XL + V1

1 - , (t-.2......u) . (43)

where x1 xk*l 41 . In each of the intervals hxi; x14.," tbe

constants vi are found from the. formula

1t -XLX1

The values of arotgvi are calculated in advance.

Now we shall consider the construction of approximating

polynomials on the interval 1x4 ;o

If we set A = M the best polynomial which provides

the indicated aocuraoy on the interval |x| i1 will be

arctx - A1x - 81x0 + CIX5 
- De 1+x9 - Fli, (45)
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where

1 14 13 12,e• .. 21 -"4 .- a• J=]

1 1 7 1 91 10

3 3 1 .0

1 1 8 1
Ca 1 X10

D.. 115839

[--A + -2
7 27 2

1155~ 65 4

1 3 13

I-tg -• - #• -~x -a NIL, (k

11 2 2

The Intoerval X lxi &l s1 not divided Into Smaller intervals.

For It v1 and arotgvu.

The degree of the polynomital which approximates the

function tarotgx on the interval IxJ* ;L,oan be made lower than

the degree of polynomial (45) If we set Az-128 . Then the best
polynomital which approximates arotgz on the interval 1x1i 1%

will be

aretgx-z~ Be3x + CjcS DaX7 
,(0')

where
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[1 5 15.

1 1 9.

12 111

For calculation of arctgx on the remainin8 interval,

.74 27 ).

tbe interval L ' 2 ;iI is divided into the three int~rvals L';x2].

formula (44). Then the values of arot21 , arotsv2 and arot4v 3

ar. oalculated. Tb. u alues of arotgx on the interval ,•2 ;1 are

calculated with formulae (46), (40) and (41) using one of the

three pairs of final constants.

Without sacrificin e.ccuracy, we may lowe'r the degree of

the approximating polynomial still further If we take A * L-
3 16

In this case the best polynomial which approximates the funo-

tion arotgx on the interval 1XIfA? X with the same accuracy will

have the form

aretgx A ,x - BS + CS (47)

where 1 7

4a . . a 7 4•}

B [- 4-
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3 4

1 A1

To calculate the function on the remaining interval, we divide

Sthe sgment r;l31 into 6 segments, [13,x2]#. fN .0*...

(x6 ; 11, for which the values Tit V2, -. v 6 aid arstgvl,

arctgv2 , ... , arotgv6 are found. Uken the" e.values are used.

the value of u does not exceed 1 on each of the segmentst and

formula (47), together with formula (40), will give the values

of Arotgx on the entire interval (0;i7.

A polynomial of lower degree will approximate the fune-

tion arotgx on the interval JxI4twith the same accuracy if we

set L4 *-2 In this case the best polynomial which gives the

values of the function arctgx on the interval Wx- 4 will be:

aretg- A4x -B4X (48)

.where

S1" 5
A4 - ft--- "

113

Thi interval(X,4 ;J] is divided by the points x,, determined

by formula (43), Into the 29 sepmentsf). 4 ;xJ, fx 2 ;x 3 ], .6.,

£X29;1], for which the values of vT, v2 , .*., v29 and arctgv1,
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arctgv2 , ... , arotgvpg are oaloulated. With these constants we

may mate the absolute value or U less than or equal to X4 on 4hA

of the segments, anv oomputs the values of arotgx on the entire

interval 5O;1) using formula$ (4g) d"(AO).

Finally, the degree of the approximating polynomial oan

be reduced to unity if we reduce further the interval on whioh

this polynomial to defined.

Setting ) 30 , for any x on the interval Jx|)6X5

we obtain the values of the function arotgx, accurate to ten

decimal places, using the following best polynomial of the first

degrees

arctgx - Arx , (49)

where

1 51
4a-52 ((9  

).4 - i

A ~1 (- X5V) 2)5 -

5 22

Clearly, it is not possiole to obtain a more simple

polynomial than polynomial (49) for calculation of arotgx at

any point of the interval |xSij).

The interval 15;lI it divided by the points x, into

more than 100 segments.

If for these segments we determine the constants vi

and arotgvI from formula (44), then we may use formulas (49)

and' (44) to calculate thi values of arotgx on the entire inter-

val [OalJ.
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6. Calculation of the function arohlfx"

During calculation of the function arosinx, It is assuae4

that the argument Is contained in the interval -1# xk 1s I.e,

that- only the principal values of the function are calculated,

As the initial series we take the series

S(2n-1) I! x•n#1.
arcsir•v - x + (2n)1 I 2n1 ' (0)

defined on the interval lxi l1.

We shall divide the interval of variation of the Ind*-

pendent variable Into four partial sub-intervals by the points

1/10, 2/5, and 3/4, and construct in each of these sub-Inter-

vals rO;1/101, [0;2/5, C0;J/4J and fo;lj the beat polynomial

which approximates the function arosinx In it.

"Using series (50) and Chebyehev polynomials of appro-

priate degree, for the interval [0;1/10J we obtain the follow-

ing best polynomial:

arcsinx -Al x 1x
3 + C~xS +D~x (51)

where the coefficients are defined as follows:

A - [1 + 0,

[1_5 4 15 4

IS --- 25i

311 1 7 s 27 2

C,-F411.5 2'dAl ý II

511 1 1 9D, P- - N+ - l.]

811 7 22 2 '



V' 1 1 91!

91 !

1

The best polynomial (51) ts used to caloulate the values

of the funotion arosinx on the interval ro;1/10o. For the inter-

val [0;2/51 , a best polynomial of highar degree is Oonstruoteds

aresizrx - A~x + BgX3 + *g~ Dge +

1SX9 + Fgxll *G 2 x1 , (52)

where the coefficients are defined an follows:

1 15

1aI+3 35 1)
82 - [ . 4012 n " 2]

'311 1 21 8 189
C" 5411 5 •--, + 3--'2 212

511 1 33 225
D2-611 7 ;)2~ a-....)~~

711 1 55 4 2754[•- [- T---- X 'r2+ , ) VWX
8119 28g

9•1 1 133 452

1ii i 1 7 15

1 -1324•

-47-



151! 4
13S 1! %a

Polynomial (52) is used to calculate values of the

function aroslnx not on the entire interval'of definitions but

only for those values of the argument x which lie In the inter-

val 1/10 $ |x| ,F 2/5. For the values ix < 1/10, calculation of

the function arosinx with the same accuracy is much more easily

accomplished with polynomial (51).

I best polynomial of 21at degree Is constructed to ap-

proximate the function arouinx on the interval (o;3/4 I

arcsinx. X 11 x y I3 * r *z j 1

+ ZSx 9 * # ell +* ~7x13 +* OISx1 + 9XV1 7 + (53)

+ E :I1• + Z11 X 2 1

where the coefficients are defined by the expressionst

1 1__l• 2- 020 2
-17 3 N13 +-.2-A )- i1]31

1 13 18 25 8i
13 F- X )3 NS - -1 )$ J1318 231 21"

311 1 1001 1 1 3289

411 5 220 5 1

511 1 715 9867 14
"4 61! 7 8 +

7!! 1 715 12 18445 1s

Is 811[ 9 -- 2 s 12 )4 + xX ' ,



oi9 1 2110 2093l
I, (- - 3 13 10i-i sloll 11 21-

Jr, 1 1 35 2737
Z? i 121 35' 7 2

1311 1 969 1 1173

1115 28 5 20

15I1 285 4 1311 4

17!! 2... 3511
Z0 - - )3N -V3 s

19 [ 111 11 23z11"k [2•"•i"."N "•x]

211! 1 2311
13 (-W(Ft + -2r 241.1 ')'

2311

4

The best polynomial (53) lo'usid to caiculate values of

the function arceinx for values of x lying In the interval

2/5 f• l* 3/4.

For Wx6's 2/5, calculations are accomplished with for-

mulas (51) and (52). To calculate the values of the function

arcsinx with the required accuracy for x on the interval



"fixt < 1, we could construct the beat polynomial for the In-

terval [O;1. However, this polynomial will oontain terms of

the. 29th deeree and thus 14 operations of addition add 16 oper*-

tions of multiplioation will be required for the oaloulations,

From the point of view of the rate of calculation of

this function for I $ lxi ( 1, it is more advsntageous to use the

following formula:

arsinx - artgv _ X2 ' (54)
1

from which the calculation of the values of arcsinx requires

the performance of 8 addition, 7 multiplication, 2 division end

3 comparison operations.

Although formula (54) holds for all 1xJ1l, for fxl<

It is less useful than formulas (51), (52) and (53).

7. Calculation of the function f(x) a 1X

Some computers do not have the division operation;

hence an iteration process Is used to obtain inverse quantities.

We shall examine the possibility of obtaining Inverse

quantities using beat polynomials constructed for different

segments into which the *ntIre interval of definition of the

Independent variable is divided.

We shall assume that the inverse quantity Is calcula-

ted for a normalized argument, I.e. that iL•x 1 4 1.

We shall divide the3 intire Interval of definition of

the independent variable into 32 partial segments, and at the
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midpoint of each of these segments we shall calculate, the val-

ues of the function and Its first 6 derivatives,

Through estimations we establish that function f(x):L

can be approximated accurately to 10 decimal places by fifth-

degree polynomials of the form (13) on the 16 left segment*, and

by fourth-degree polynomials of the form (12) on the 16 right

intervals. The coefficients of the polynomials are calculated

Just as they were oaloulated for polynomials (12) and (13).

Calculation of f(x) = L6 with these polynomials will require 6x
addition and 5 multiplication, or 5 addition and 4 multiplica-

tion operations. Additionally, 5 conditional branches will be

necessary to search the required interval. In the computer's

memory unit 208 constants must be stored.

In conclusion we shall determine the values A1 and A2

for the mcthods examined above of caloulating the elementary

functions. This will permit an estimation of the increse in the

rate of calculation of these functions. In oases where the de-

gree of the approximating polynomial does not increase from one

sub-interval to the next (in calculating ex by the second method,

S, arotgx), the value of A1 will be determined relative to the

old formulas for oalculatin•x elementary functions.

In finding A2 it should be noted thatr 0 (the time for

searching in the table) usually does not exceed two V of addi-

tion, since in the majority of cases we have a division into

four sub-intervals, and thus two comparisons must be performed

to find the necessary interval. In the case where the number of
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sub-intervals Is greater than four, the number of comparisons

will be ln2Z, where & is the number of sub-intervaler7j. Tyip-

cally, in all cases the boundaries of the sub-Intervals can be

defined by two or three decimal places. This will permit the

insertion into the computer code of 1n instraotl6nfo'" ehortine4

comparison which can effect a comparison over half of a word In

the computer. Additionally, if automatic search of the table Is

employed, as in the IBM-650 computer (77, or the arithmetio unit

is specially adapted for such problems, the search time can be

out at least in half. Hence we shall estimate A2 from two

siden. The right estimate will be suitable for computers not

specially adapted for the problim of searching in the tablet

while the left estimate will be suitable for computers which

are thus adapted. Here all estimations will be based on the

assumption that the ratio of the time required to perform 4

multiplication to the time required to perform an addition

operation will equal two, and the ratio of the time required

to perform a division operation to the time required to perform

an addition operation will equal four. These ratios hold in

best present-day computers. If these ratios are larger, the

values of A1 and A2 will diminish significantly.

The application of subroutines which use the methods

discussed above to calculate elementary functions requires an

additional volume of memory units. This increase In volume Is

caused by:

1) the additional storage of constants for polynomials

which approximate the value of a function in various sub-Inter-
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vale, and of constants which define the boundaries of. these sub-

intervals;

2) Instructions necmssary for the calculation of the

polynomials in these sub-intervals;

3) instructions which effect a branch to a sub-routine

for oalculating the polynomial in the appropriate sub-interval

(in the simplest case these will be Instructions for comparing

values of the argument with the table of subeintetva] boundaries).

An analysis of the sub-routines' in the BESM-1 code indi-

Oates that the sub-routines are inceeased as follows:

ClSEtM-d mb-uties New mb-mud.eCalcuated I.o
NO. fuCt•om NO.of Cell No.od fC

con- No.of OCCu- con- No.of ccu-
StaU Imt. pied 8n lzu pjied

1 S i Fix, c X,

tox 12 M8 50 33 40 73

2 lx 8 19 27 28 22 50

3 Ox Istmetod 14 25 39 33 28 61

ex 2nd method - - - .98 21 117

S1 stmethod 10 27 37 102 28 130

4 2n0dmethod - - - 64 24 88

W-3rd method - - - 80 25 105

5 aretgx 13 23 41 18 25 43

6 arcsinx 24 57 81 27 67- 94

7 10- 2 12 25 37 12 25 37

8 2-10 13 26 39 1 13 26 39

Total b 351 d 540
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CONCGWSICF5

We have desoribed a method whioh, at tUe eXpense 6f

cestain additional l oading of the computer's memory unit# per-

mite an Increase in the rate of ealoulation of elementary funo-

tiers.

The formulas suggested here are not the best for every

electronic computer. For any speitioe computer, appropriate

formulas should be selested which allow for the properties of

the computer relative to the time required for the perioraanoe

of arithmetio op.orations, which insure calculation with the

maximum" speed, and whose programming does not severely load the

computer's memory unit.

The formulas presented here can be quite suitable for

specialized computers, where the occurrence of values of the

funotionts argument -is not uniform in the reduced interval.

In this case, instead of using all of the divisions, we may

use only certain ones and thus increase the rate of operation

of the. computer with only slight additional loading of the

memory unit.

If the methods ditcussed in 3 and 6 are used, the

number of multiplications in the formulas presented here can

be reduced still further because of the increase in the number

addition operations.



All formulas derived here are designed for caloulation

of functions accurate to 10 decimal places.

If the values of funotions are to be calculated with

fewer digits, the formulas may be simplified considerably.

One of the indicated variants for calculating elemen-

tary functions will require the use of approximately 200 memory

units to store nbcoessary constants. The maximum number of

constants required for the accomplishment of all of the calou-

lation sub-routines for the elementary functions examined here

is around 30"0. However, around 200 of these are used to formu-

late the sub-routines of the function VY with 4th- and 5th-

degree polynomials, and the function ex using 4th-degree poly-

nomials.

The use of the sugges.;ed formulas for the function

arotgx significantly increases the rate of calculation of the

arotangent°

The methods described here apparently can serve as one

way of achieving a significant reduction of the operating time

of the computer during the solution of various problems.

These methods can be transferred in their entirety to

the case of rational approximation of elementary functions. In

this case their application permits a significant economy of

computer operating time.
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FOOTWOUS

1. Througbout the article we use the phrase *oest
polynomials to denote polynomials obtained, from the Taylor
expansion.of a funotion by multiple rotation with Cheblshev
"polynomials. These polynomials are close to polyaotals
which are best in the generally accepted sense. The error
In approximating polynomials used in the article consists of
the remainder term of the Taylor series and the errors which
arise with each rotation.
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