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TAKING JNTO ACCOUNT THE MOLECULAR COMPOSITION
OF AIR IN CALCULATIONS OF AERODYNAMIC FORCE
COEFFICIENTS AND BODY TEMPERATURE IN FREE~
MOLECULE FLOW AT HIGH SUPERSONIC VELOCITIES

V. S. Galkin

In the mechanics of a continuous medium when there are no 'chemica.l
reactlions, a mixture of gases 1s consldered as a single-component gas
with an average value of the molecular welght, speclflc heat, ete.

Foar free molecular fléw, this corresponds to introducing a single
distribution function for the gas mixture with the same temperature,
average mass density, and average molecular weighf . The aerodynamic
coefficients and energy flows obtained in this way wlll be denoted by
appropriate subscripts with a superscript of O (e.g., a drag coefficient ~'
C;, etc.). In reality such a consideration is, generally speaking, ;
incorrect. Actually the distributlon function in a'free molecular flow %
1s the sum of Maxwell's distribution functions .of the separ.at'e cCOMmpo~
nents of the gas. The mass, momentum, and energy flows are calculated
separately for each component of the gas and then the results are added.
o

Because of this, 1t 1s natural to assume that the quantities c;, x?

etc, may differ appreciably from their true values.
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The obvlous exception 1s the case of free molecular flow past
bodies, whose angle of 1lnclinatlon 8 of the surfaceAto the direction
of the hilgh supersonic macroscoplc veloclty V; 1s greater than O,
Then the thermal veloclties 6f the molecules 1mpinging on the body can
be neglected in comparison with_v;, aud 1t may be assumed that the
molecules travel parallel to each oth2r with velocity V; right ub to
collislon with the surface.

For diffuse reflection and an accomodation coefficient 4 ~ 1, the
momentum component of the reflected molecules parallel to-$; is negli-
gible in comparison to the momentum of the oncoming flow ppvf sin 6 ds,
per surface element ds. Therefore the drag coefficient of a surface
element ds 1s 2 sin 6 regardless of whether the gas 1s single-component
or multicomponent, i.e., Cx = C; .

Analogously the kinetic energy flow of the molecules impinging on
the body is E = E°. Since in this case the internal energy flow of
these molecules 1s negligible 1n cbmparison with E°, the total energy
flow of the molecules implnglng on the body 1s W = W ~ E°. )

As opposed to drag, 1ift in a free-molecule flow with a high
supersonlic veloclity 1s caused not by the momentum of the oncoming
stream, but by the momentum of the reflected molecules. In this casé
C; ~~%-, where the criterlon S 1s the ratlo of the velocity V_ to the
most probable veloclty 011/7E§§§f Here Ro 1s the absclute gas constant;

N,
the average molecular welght m= “ﬂv‘?-- and p, and N, are the molecular

weight and concentratlon of the i-th component of the mixture.

In the case of a two-component mixture [1]
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Nip
where m 1s the ratio of the density of the 1-th component to
the density -»f the mixture.

VQ N' -
Introducing S = 'l*‘/“‘ﬁ,ff—:- N=5r. and u-t!s, we obtain:
n .

4 Nopy 1 1+Vp N ' a
Nipy+ Napy ™~ § }/“_’_ﬁ,“"_;m 3__'

.
Co~5 2%

A graph of a plotted against § for various W is presented in Fig. 1.
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Fig. 1.

A regime of free-molecule flow past satellites and rockets occurs
at altitudes H > 150 km. In the range 150 km < H< L00 ¥m the air
consists of monoatomlc oxygen (u; = 16) and diatomic nitrogen (u2 = 28).
At altitudes H 3 %00 km the atmospheric gas 1s malnly monoatomlc oxygen.
Thus, in the range 150 km ¢ H < 400 km, & * 1.75 and N { 1. For this
value of | we have 0.99 ¢ a ¢ 1, with a attaining a minimum when N - 1.

Consequently, since 1 is sufficlently close to unity at high
altitudes, it 1s possible to set a = 1 and Cy = C; with an accuracy to
1%. We shall again stress that in the general case C v may be consider-
ably less than Cj. |

It remalns to investligate the flow past a surface set at zero

angle of aftack, when the effect of the multicomponent nature of the

gas may also be large. In this case the influx of the mass, momentum,
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and energy of the molecules agalnst the surface 1s proportional to the

mean thermal veloclty of the molecules,
For example the kinetlc energy fliow

E~C, .N:V'.., +G mMV’ Analopuus iy EB~C "_‘A."'*;“”'.’”g_ . Hence 1t

c
follows that E/E = a. Analogously [1] Z®=a (the latter for any S).

Consequently by virtue of the reasons setx}orth above, Cxo = Cxo and
E = EC with an accuracy to 1% (as soon as & = 1.75).
Thus, assume a high flight velocity (S » 10) and a flight altitude
H » 150 km. Then, on calculation of the aerodynamic forces and the
kinetic energy flow of the particles inpinging on the body, the alr
may be considered as a single-component gas with the same density,
temperature, and average molecular welght. In additlon, calculatlons
have shown that this conclusion 1s also valld with an accuracy to ~ 3%
for moderate flight velocltles S 2 1. It 1= also easy to show that
these conclusions regarding the calculation of aerodynamlc forces are

valid also for an accomodation coefficlient a << 1, 1f the average

temperatures of the reflected molecules are the same for all components

of the gas
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