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This study is a contribution to research conducted by The RAND

Corporation in the field of Same theory. The formulation presented

in this Kaaorandum has theoretical application in both military and

civilian situations where searcher and evader tactics are involved.
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The solution of the following hide and seek game is presented:

At each move Player I, the evader, is allowed to hide in one room,

while Player II, the searcher, is allowed to search sows given number

of rooms. The restriction is made that Player I1 searches without

repetition, that is, he is never allowed to return to a roam he has

previously searched. It is shown that if the payoff to Player I is

any increasing function of the number of moves before capture, his

.gat strategy is also never to return to a room in which he has previously

hidden. A formula for the value of the game is presented.
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The common situation of search versus evasion can be described

precisely in the language of game theory: Player 1, the evader, and

Player 11, the searcher, each choose an integer from 1 through N (each

integer representing one of N separate rooms). This process is repeated

until either a match occurs (i.e., 1I finds I) or the game has run some

preselected number n of moves. In the first case there is no payoff,

while in the second case II pays I one unit. If no restrictions are

placed on the strategies of the players the solution of this game is

trivial--each player chooses randomly with equal probability from the

complete set (1, 2, ... N] at each move, and the value of the game is

(1-_/N)n.

This paper investigates the solution of the same game under the

restriction that II's search be systematic--after Player II visits a

room he may not return to that room until he has searched through the

V-1 others. It is natural in this case to insist that n be equal to or

less than N. 1I's possible pure strategies are represented by the per-

mutations of n out of the N integers. (A permutation is defined as an ordered

set without repetition.) From the symmetry it is easily seen that II's

optimin strategy is to choose the 1N)n (N) (N - 1) (N - 2) ...

NI - n + 1) permutations randomly and with equal probability.

The main result of this paper is a proof that under these circum-

stances I's optimam strategy is exactly the same as 1I's; I randomly

chooses n different integers, never making use of his option to return

to a room he has already visited. A simple expression for the value of

the Sam is derived, also yielding the expected payoff for any other
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strategy Player I may choone. The theorems are actually proved in much

greater generality--when II is allowed to search more than one room per

move, when the payoff to I is any increasing function of his survival

time, and conditionally, when for any reason another rule has been

followed up to a certain point. The universality of the "no return

rule" is of course very useful to Player I, who can play optimally with

practically no information on the actual structure of the game.

The condition of systematic search is often encountered in practice,

either because of ignorance, physical inconvenience, or ulterior motives

on the searcher's part. The watchman, the detective, and the air recon-

naissance team anxious to cover as much ground as possible are all likely

to search non-repetitively. If the evader has no additional information

on the searcher's pattern, then it is sensible for him to play the "no

return rule". For in this case the searcher's optimum strategy, all

permutations equally likely, coincides with the natural "ignorance"

distribution.

FORMAL DEFINITIONS AID A ST AMM OF THE THEORN4S

In the most general situation discussed in this paper Player II

will be allowed to search N1 rooms on his first move, V2 on the second,

... and Mn on the nth, where the Ni are fixed constants such that

(He searches without repetition, as explained in the introduction.)

Player I is allowed to hide in only one room per move but he may return

to rooms he has already visited if he so desires. If Player 1I first

finds Player I on the Joth move, I receives a payoff of P(j ) units,
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(Pn+l) being the payoff if no detection occurs, P(l) g P(2) ... r P(n+l).

Formally we denote It's selection of N different rooms by

(rll, r12 ... rl 1 , r21 ... r2.2 , ... rnl ... rn~in) ,

-a permutation of size N0 a M1 + M2 ..- + Mn from the first N positive

integers. Player I selects an n-tuple

(R1, R ... Rn)

from the first N positive integers, repetitions being allowed. Ri is

Player I's hiding place and lrj,, rJ 2 ... riM3 the rooms searched on

the jth move. If J is thp smallest value of J such that
0

R (r.jl rJ2 rJMM

Player 11 pays Player I P(jo0) units. If there is no such value of J,

I receives P(n+l) units, where the P(J) form a non-decreasing sequence.

This situation will be referred to as the general case.

When

M1 1M2 = 3 .. n = M

and

P(l) -P(2) ... - P(n) - 0

P(n+l) = 1,

we shall say we are in the special case. (The special case with H * 1

the game discussed in the second paragraph of the introduction.)

Assume first that Player II plays "random permutations," that is

11 chooses among the CNN1 0 possible permutations randomly and with
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equal probability. The main conclusion of this paper is that Player I's

best counter-strategy is then also to play random permutations; Player I

selects the n-tuple (l,R2 ... R n) randomly and with equal probability from

the Iu)n possible permutations of n out of the N integers. But when I

plays in this manner, any strategy 11 may choose yields the same expected

payoff, which implies that random permutations is the optimuu strategy

for both players. In the sequel it is always assumed that Player 11,

but not necessarily Player 1. behaves in this way.

Define i(nl,n2. .. n.k) as the set of n-tuples (11,R2...R n) involving

k distinct integers with frequencies nl,n 2 , . . . .. nk respectively, where

necessarily
nn1 + n n....n - n

Each element of R(nlpn 2 .... nk) is a pure strategy for Player 1. It is

important to note that in the special case, all of these pure strategies

(and hence any probabilistic mixture of them) give Player I the same pro-

bability of escaping detection for the duration of the game when Player

11 is playing random permutations. We denote this probability by

V(nn 2 "...n k")

For convenience we call the set of all mixed strategies for Player I

involving only the elements of R(n I,n 2 ... nk) "the strategy S(a, n2  . k)"

(or, if mo aonfusion is peosible, simply "the strategy ".) Tom

V(nl,a 2... ak) S V(S)

is the expected payoff versus random permutations of strategy
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S(nl,n 2 ... nk) M s

in the special case.

(As a specific example of these definitions let N'4, n-3, n 1 l1,

n2 =2. Then (R1,R12,R3) - (2,7,7) and (R1,R 2,R3) - (3,5,3) are both

elements of R(nl,n 2 ). The pure strategy for player I "room 2 first

move, room 7 second move, room 7 third move" is a member of S(nl,n2),

as is the mixed strategy "201 of the time room 2 on the first move,

room 7 on the second, room 7 on the third; 80% of the time room 3 on

the first move, room 5 on the second, room 3 on the third.")

For the purpose of evaluating V(nl,n2 .... nk) we can use any ele-

ment of R(nl,n 2 ... nnk) to realize S(nl,n 2 ... nk). A particularly useful

choice will be

(i,1 ... n .( 1,1..1, 2,2 . 2................ k,k ..... k )

Given

8 • 3(nl.,n2... %...n a...,k),

where nh < n ,

the two strategies

8' s s(nln2...h.l,nh + 1'%h+l...n-I"l,,',l+1'..%)

and

e n S(nl,n2...%...nMl,-n l,n.m- ... 1, )

are both said to be simoly derived from S. 8 is derived from 1 if

it can be attained from 81 by a sequence of simple derivations.

Theorem 1 (special case): If 82 is derived from 81 then V(S 2 )> V(8 1 ).
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Among all strategies S(nl,n 2 ... nk) such that n1 + n2 ... + nk = n, the

"no return" rule Si S(1,1..1) maximizes V(S).

n

Define

S' (n, n/ n S(n., n

if kV< k
and n' <ni i - 1,2 ... k"

i -

A representative realization of S is the permutation

(RJI,2'... _)=(1,1 ... 1,2,2 ... 2...•' k •..k,,1 '... -'°l...kk ' ... k,k +Is + ... k '+1 ... k~k... k)•

n n"2 n, n1 no n-~ nk

which shows that Player I may think of playing strategy S" first and then,

if he is not detected by Player I1, completing it to strategy S. The con-

ditional probability that Player I will escape detection playing strategy

S, given that he has already played 8' without detection is defined as

V(S 1 5'). (A formal definition of the conditional expectation is post-

poned until the next section.)

Theorem 2 (special case): Suppose So-s S 0-S 2, and 82 is derived

from 81. Then V(S21 So)> V(Slj 8o). Given any strategy So 0 S(n , ni,..nl 00

vhere

-n +2 +...4*+,, v n' < n,

Let io 0 8(n,, ni 1,1k 0 .0 1).

n "'

Then V(8 0 I SO ) 0 max V(S 1 So) among all strategies S(nl,n 2 , ... n.,nk) such

that S0 a 1 + n 2 + .... +nk - n. (In other vords, Player I should

begin playing the "no return rule" as soon as he is allowed to do so.)



Given strategy S(nl,n 2, ... Rk), define

k

I" z • ni

k-i k

a 2  1 1 nZn

i-l J-i+l

k 1 nl2"""•

(the at are the elementary symetric functions of nln2... .)

Value Theorem (Special Case)

V( 1,n. No I + 1432 ('M)ktlk

In particular for

S - (,..1)

n

V(O) - n!W. -!
KN (n-h) !h:

h-6i

which is the value of the game (attained when both players play random

perutations.)

Tbeorm 3 (zmAurl case)

tandom permutations is the optimsm strategy for both players.

More elaborate results are obtainable in the general case, but they

will not be investigated here. It should be noted that theorem 3 holds

true reardless of the constants N ... U, , and h•ene they ned not be

assummd known to Player I.
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The second halves of Theorems 1 and 2 are stmple consequences of

the first statmnts. To prove these it is sufficient to consider only

the subcase N - 1, since the strategy

S a 8(nl, n2 ... k)

for general 1 is equivalent to the strategy

S * S(n¢K, n?, ... ohM)

for N - 1. Furthermore, using the obvious notation, if S2 is derived

from 3 1 then S2is derived from SI, and if S< then So < S*

In the special subcase with K - I we change notation slightly and

denote Player 1l's randomly selected permutation by

(r(l), r(2) ... r(n)).

as comented previously, a strategy S(n 1,n 2 .. .nk) for Player I can be

realized by the n-tuple

1, 2.2..... ...kk k)
n1 I 2 n k

Define

i-l i-1 I-l

A, {r(l4. I n,), r(2+ n,) ... r(ni + I AP)} i 1 ,2..k

j-l Ja1 j=n

Ai 0tL > k.

Ai is the set of rooms Player II searches while Player I is hiding in

room i under the strategy (1,12 .... %) above. In what tolIls it is

"simed that I plays this fized pure strategy, whiLle U plays random
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permutations. Then the sets A are functions of the random permutation

(r(l), r(2) ..... r(n) ), and the event of no capture,

r(j) R j - 1, 2 ..... n

is equivalent to the event

i i sL, i - 1,2 ... k.

Main Lema

Let Ph - P(h £ l A, i ' Ai, - 1,2 ... k)

h - 1,2 ... N.

Then if 1n 1 kn 2 a ... a nk

Pl < P2 -< "' Pk+l - Pk+2 " nP

Proof: Set nh - 0 for h > k and suppose that for some a and h, nU> nh.

Define

S-{jr(+ .. ), r(2+I n ... r(n -%+ r n-i

and A

1  A1  , i mu.

Then

Ph . 1(i0 A 1 i-1,2 ... k)-

-P1,h , a , i i -1,2 ... k)

k
+ P(h I, a I, h €U £-I 1 1-12 ... k)



-10-

p •P(i d 1A i- 1,2 ... k)
k

P(h 1 B, u B, I L 1,2...k, a € U A1 )
k a

+ P(h Ai, miB, m U A i i - 1,2 ... k).

The second terms on the right sides of these two equations are equal by

sysmetry, and comparing the first terms verifies the lemma.

Given

1'n; 2 ... 2(l ... k

define

i-i i-i i-I

"A4 r(1+ I nj), r(2+ nj) ...r(n + n 1  1,2 ...k

j.1 Jl j-1

The value and conditional value are formally defined by

V(S) -V(n 1 ... nk) sP(i • Ai , I - 1,2 ... k)

V(S I S') ,(i Ai, - 1#,2 ... k I i f A 1- 1,2 ... k').

Finally, for nh < nI (nh may equal zero), let

81 s s(n 1 ,n 2 ... n. -' ... -. )

82l5 s(n1,n 2 ... n h+ ... a -k...

Corollary v I 2 S)- V(Sl I So)"

Proof: V(sl 8 0) 1 - (1 -p.)
lI-r + 1

V(S 2 I 8 0) ) 1 - (1 -Ph)

N-n+l
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Applying the lema proves the corollary.

Proof of Theorems 1 and 2

Applying the definitions, if S-( S then

V(S) - V(S/) V(S S S ).

Thus the corollary implies that V(S 2 ) > V(S 1 ) , and iterating this result

proves Theorem 1. The equality above also shove that Theorem 1 implies

Theorem 2.

Define

Ti 2 {(r(l)8 r(2) ... r(n)) i 4 A, I i 1,2 ... k

(the elements of Ti are permutations of size n from the first N positive

integers) so that the event

i $ Ai i - 1,2 ... k

is equivalent to the event k

(r(l), r(2) ... r(n)) V U Ti

By direct evaluation n n n

1 2N2

Applying a well-know formula(1) yields the value theorem for K - 1,

and the remark at the beginning of this section extends the result

to general M.

In the general case let (R1, R2 ... itn) be any element of

R(n 1 , n2 ... nk), a any Integer that appears more than once in

(Rl, R2 ... Rn), and h the largest integer such that

Rh am
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It is a simple consequence of the main lemma that the n-tuple

2h ... "'" -l' h, +l "' 'a

yields a greater expected payoff than (RI. R 2 ... Rn) versus random

permutations whenever

%I f{J3 . R2 ...*

Theorem 3 follows by induction.
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