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FREPACE

This study is a contribution to research conducted by The RAND
Corporation in the field of game theory. The formulation presented
in this Memorandum has theoretical application in both military and

civilian situstions where searcher and evader tactics are involved,
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SIMMARY

The solution of the following hide and seek game is presented:
At each move Player I, the evader, is allowed to hide in one room,
while Player II, the searcher, is allowed to search some given number
of rooms., The restriction is made that Player II searches without
repetition, that is, he is never allowed to return to a room he has
previously searched, It is shown that if the payoff to Player I is
any increasing function of the number of wves\\before capture, his
_best strategy is also never to return to a room in which he has previously

hidden. A formula for the value of the game is presented.
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NTRODUCTION

The common situation of search versus evasion can be described
precisely in the -language of game theory: Player I, the evader, and
Player II, the searcher, each choose an integer from 1 through N (each
integer representing one of N separate rooms). This process is repeated
until either a match occurs (i.e., II finds 1) or the game has run some
preselected number n of moves. In the first case there is no payoff,
vhile in the second case II pays I one unit. If no restrictions are
placed on the strategies of the players the solution of this game is
trivial--each player chooses randomly with equal probability from the
complete set {1, 2, ... N} at each move, and the value of the game is
(1-1/m)".

This paper investigates the solution of the same game under the
restriction that II1's search be systematic--after Player II visits a
room he may not return to that room until he has searched through the
R-1 others. It is natural in this case to insist that n be equal to or

less than N. II's possible pure strategies are represented by the per-

mutations of n out of the N integers. (A permutation is defined as an ordered

set without repetition.) From the symmetry it is easily seen that II's
optimum strategy is to choose the ['_tl]u = (N) (N- 1) (W-2)...
(M - a4+ 1) permutations randomly and with equal probability.

The main result of this paper is a proof that under these circum-
stances I's optimum strategy is exactly the same as II's; I randomly
chooses n different integers, never making use of his option to return
to a room he has alreddy visited. A simple expression for the value of

the geme 1is derived, also yielding the expected payoff for any other



strategy Player 1 may choose. The theorems are actually proved in much
greater generality--when II is allowed to secarch more than one room per
move, when the payoff to I is any increasing function of his survival
time, and conditionally, when for any reason another rule hes been
followed up to a certain point. The universality of the "no return
rule” is of course very useful to Player I, who can play optimally with
practically no information on the actual structure of the gaﬁe.

The condition of systematic search is often encountered in practice,
either because of ignorance, physical inconvenience, or ulterior motives
on the searcher's part, The watchman, the detective, and the air recon-
naigsance team anxious to cover as much ground as possible are all likely
to search non-repetitively. If the evader has no additional information
on the searcher's pattern, then it is sensible for him to play the "no
return rule"”. For in this case the searcher's optimum strategy, all
permutations equally likely, coincides with the natural "ignorance"

distribution.

FORMAL DEFINITIONS AND A STATEMENT OF THE THEOREMS

In the most general situation discussed in this paper Player II
will be allowed to search Hl rooms on his f£irst move, H2 on the second,

... and “h on the nth, vhere the Hi are fixed constants such that

M1+H2... +Mn'-'=No$N.

(HBe searches without repetition, as explained in the introduction.)
Player 1 is allowed to hide in only one room per move but he may return
to rooms he has already visited if he so desires. If Player II first

finds Player I on the j th move, I receives a payoff of P(} ) units,
o o



(Pn+l) being the payoff if no detection occurs, P(l) < P(2) -+'< P(nt+l),

Formally we denote II's selection of N different rooms by

0
(F11s T12 v TIMps T2y cr Tompys ces Taloees Ty )

-a permutation of size No - Ml + Mz N Mn from the first N positive

integers. Player I selects an n-tuple

(R, R R)

g +o+ Ry

from the first N positive integers, repetitions being allowed. Rj is

Player I's hiding place and {r er] the rooms searched on
b}

j1° rj2 ce
the jth move. 1f jo is the smallest value of j such that

Rj € [rjl, tjz cee rjuj]

Player II pays Player I P(jo) units. If there is no such value of j,
I receives P(a+l) units, where the P(j) form a non-decreasing sequence.
This situation will be referred to as the general case.

When

M =M =M

1 2 3.“-%sn

and
P(1) ='P(2) ... = P(n) = 0
P(n+l) = 1,
we shall say we are in the special case. (The special case with M = 1
the game discussed in the second paragraph of the introduction.) .
Assume first that Player II plays "random permutations,"” that is

II chooses among the [N]NO possible permutations randomly and with
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equal probability. The main conclusion of this paper {s that Player I's
best counter-strategy is then also to play random permutations; Player I
selects the n-tuple (ll,xz...kn) randomly and with equal probability from
the [l]n possible permutations of n out of the N integers. But when I
plays in this manner, any strategy II may choose yields the same expected
payoff, which implies that random permutations is the optimum strategy

for both players. In the sequel it is always assumed that Player II,

but not necessarily Player I, behaves in this way.

Define l(nl,nz...nk) as the set of n-tuples (nl"2f"nh) involving

k distinct integers with frequencies Ryfg,eeee respectively, where
necessarily
n1+n2+....nk -n

Each element of R(nl,nz....nk) is a pure strategy for Player I. It is

important to note that in the special case, all of these pure strategies
(and hence any probabilistic mixture of them) give Player I the same pro-
bability of escaping detection for the duration of the game when Player
11 is playing random permutations. We denote this probability by

V(nl,nz. R .nk)

For convenience we call the set of all mixed strategies for Player I

involving only the elements of l(nl,nz...nk) “the strategy l(nl. By oo 'k)"
(or, 1f wo confusion is possible, simply "the strategy 8".) Thus
"“1"‘:""‘19 e V(8)

is the expected payoff versus random permutations of strategy
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S(nl,nz...nk) a8

in the special case.

(As a specific example of these definitions let N=8, n=3, nl-l,
n2-2. Then (RI,RZ, 3) = (2,7,7) and (31,32,13) = (3,5,3) are both
elements of R(nl.nz). The pure strategy for player I '"room 2 first
move, room 7 second move, room 7 third move" is a member of s(nl,nz),

as is the mixed strategy "20% of the time room 2 on the first move,
room 7 on the second, room 7 on the third; 80% of the time room 3 on
the first move, room 5 on the second, room 3 on the third.")

For the purpose of evaluating V(nl,nz....nk) we can use any ele-

ment of ‘(nl’nZ"'“k) to realize S(nl,nz...nk) . A particularly useful
choice will be

RyRy - R) 8 (L1,eeeid, 2,2, 2peiniii bk e k)

s

" b ] "

Given

Se® s(nl,nz...nh.. LI ""'k”
vhere n, < o,

the two strategies

3' L s(nl)nz"°nh_1$nh + llnh+1"' -_1"-'1.n"1-.-nk)
and

g u 8‘“1’“2'"nh"'nn-l’nn'l’nmi""k’ 1)
are both said to be simply derived from 8. 82 is derived from '1 if

it can be attained from 8l by a sequence of simple derivations.

Theoren 1 (special case): If 82 is derived from 81 then V(sz) > V(sl).
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Among all strategies s(nl’nZ"'“'k) such that n, + ny, .. + n, "n, the

"no return” rule S= §(1,1...1) maximizes V(S).

n
Define -
s’ (nl', nz' n,;,) < s(ny, o,... w)
if K< k
and nii i i=1,2 ...%k% .

A representative realization of S is the permutation

(RpRye o R)D=(1,1...1,2,2. .. 2.0k L KL, 1L LG L KGK 4, K L Lk L L LK)
S~ N~ e ol S ———————— N

’

b ng e T A L "
vhich shows that Player I may think of playing strategy S’ first and then,
if he is not detected by Player II, completing it to strategy §. The con-
ditional probability that Player I will escape detection playing strategy

S, given that he has already played 8' without detection is defined as

V(S | 8'). (A formal definition of the conditional expectation is post- '

poned until the next section.)

Theorem 2 (special case): Suppose s°~< 81, s°<s2, and s2 is derived

from 81. Then V(sz| so)z V(sll so). Given any strategy so = s(ni, “i"'n'k')’

Vhere
ni+n£+...+ni.gn'$n,
Let 8, =8 (n), nyseeemy L1, ... 1).

The—n V(§° \ so ) = max V(8 | so) among all strategies S(nl,nz,...%) such

that s°< ] nndjL-i- n, L ST n =n. (In other words, Player I should

—— ————

begin playing the "no return rule” as soon as he is allowed to do so.)
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Given strategy S(nl,nz,. . ’"'k)’ define

k
O =
1 z By
i=1
k-1 k
C =
2 Z Z nyny
iml  y=i#l

Qevsscas

k = nlnz...nk.

(the O, are the elementary symetric functions of nl,nz...nk.)

i

Yalue Theorem (Special Case)

Mo Mo (.u)ko
V(n,,n L)=1-« S 2 ...4 k.
10727k’ [l]l [N]z [N];

In particular for

s = 8(1,1...1),
n

n
( Qh ' g ).
e - Ne -h o
V(S) Z "o n.h oh-
h=0
vhich i{s the value of the game (attained when both players play random

permutations o)
Theorem 3 (gensral case)

Random permutations is the optimmm strategy for both players.

More elaborate results are obtainable in the general case, but they
will not be investigated here. It should be noted that theorem 3 holds
true regardless of the constants '1"'2""‘::‘ and hence they nsed not be
assused knowm to Player I.

h rm e e g
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The second halves of Theorems 1 and 2 are simple consequences of
the first statements. To prove these it is sufficient to consider only
the subcase M = 1, since the strategy
S=8(n,n, ...n)

for general M is equivalent to the strategy

s*- s(nlu, nzl(, nkll)

for M = 1. PFurthermore, using the obvious notatiom, if sz is derived

* *
from 8, then s; 1s derived from §), and if 8,<8 then Sq <5 .

In the special subcase with M = 1 we change notation slightly and

denote Player II's randomly selected permutation by

(x(1), r(2) ... r(n)).
as commented previously, a strategy s(nl,nz.. .nk) for Player I can be

realized by the n-tuple

(R Ry ) = (L,1...1, 2,2...2 ... kK. K).

o "2 &
Define
i-1 1-1 i1-1 .
aafra+ } apxer ) om) re+ Y wpd} tel2.k
J-]_ j-l j.l
A= f 15K

A‘ is the set of rooms Player 1I searches vhile Plgyer I is hiding in

room 1 under the strategy (ll.lz....ln) above. 1In what follows it is
assumed that I plays this fixed pure strategy, vhile II plays random



permutations. Then the sets Ai are functions of the random permutation

(r(1), r(2),.....2(n) ), and the event of no capture,

r(3) fnj J=1, 2,.....n

is equivalent to the event

1¢Ai. 1=1,2 ...k
in Lemmna
k
l.e:ph-r(hc{’ Al 1#A,1=1,2...%

h=1,2...K.

'rhcnifnlanz 2.2,

Plipz ioo- ipul-pm-oo. -pn.

Proof: s.tnh-0£orh>kmd suppose that for some m and h, n‘> n.

Define
-1 n-1 n-l
B ={r(1+ :Zl“d)’ r(2+ 32'1 n,) ... rlo, -m + 521 nj)}
and A,sA -3
l1 2A ., 1#m
Then

PpoR(LfA 1=12..K=
=rheB, nfB, LfA 1=12..K

k
+r(hfl,-f|,hcg_1 Ki.tlii 1=1,2 ... k)



=10~ .

pm'P(’.‘Ai 1-1,2 ses k) k
-P(hgl,m‘l,ilxi 1-1,2...k.m¢UA1)
a

k
+Ph¢B, n¢é¢B,mg U A, 14'&1 t=1,2 ... k).
1=1

The second terms on the right sides of these two equations are equal by

symmetry, and comparing the first terms verifies the lemma.

Given
St(ni, nzl . n{,) < 8(n,, n, ... nk)
define
i-1 i-1 {-1
’
A -{r(l-l- Z nj), r(2+ z nj) r(n{+ z uj)} L=1,2 ...k%
j-]_ j-l j-l

The value and conditional value are formally defined by

v(S) :V(n1 "'k) sP(i¢ Ai , 1=1,2...Kk)

ves | sharra, 11,2k liral ta12. 0.
Finally, for n, <no '(n‘l may equal zero), let

sos s(nl,n2 cer By e n‘-l "k)

813 s(nl_,n2 TR NETTR SRy nk)

825 s(nl,n2 cee nh+ 1... n, -1 ... nk).

“!Oll!n vIsz ' 30)2 v(sl ' so)-
Proof: v(8, ' 8 =1-(1-p)
N-n+1

v(sz‘so)-l-(l-ph)
N-n+1l °




Applying the lemma proves the corollary.

Pxgof of Theorems 1 gnd 2
Applying the definitions, if s/ <s then

ves) = v(s)) vis | 89.
Thus the corollary implies that v(sz) 2 V(Sl). and itersting this result
proves Theorem 1. The equality above also shows that Theorem 1 implies
Theorem 2.
Define .
T, = {(r(l), r(2) ... t(m))| 1 ¢ A } 1i=1,2 ...k

(the elements of Ti are permutations of size n from the first N positive

integers) so that the event

i A 1=1,2 ...k
is equivalent to the event X
(x(1), r(2) ... x(n)) ¢ U T .
T

By direct evaluation a n n
4L, i L .

)" )

P(T, R ;

T
1 L X

Applying a well-known fotnula(l') yields the value theorem for M = 1,
and the remark at the beginning of this section extends the result
to general M.

In the general case let (Rl, Rz ces Rn) be any element of
l(nl. n, ... "'k)’ m any integer that appears more than once in
(‘ll. Rz cee ln). and h the largest integer such that

lh--.
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It is a simple consequence of the main lemma that the n-tuple

]
(ll’ nz LN %-1’ %’ %+1 s 0 ‘n)
yields a greater expected payoff than (ll, Rz cee Rn) versus random
permutations whenever

»/ !{11, S nn},.

Theorem 3 follows by induction.
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