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PREFACE

This report discusses the effects of gravity and of the

atmosphere' s nonuniform density on sound propagation. It is

part of RAND's ccntinuing study of the atmospheric waves

generated by nuclear explosions.

This report should be of interest to agencies and contractors

concerned with the detection of nuclear explosions. It should

also be of interest to other research workers who are studying

low frequency sound propagation in the atmosphere.



SUWKUUR

A theoretical discussion is presented of the influence of gravity

on sound propagation from a small source in an isothermal atmosphere

where ambient pressure and density decrease exponentially with height.

A solution for the free-space case is derived which indicates that
waves with angular frequency w between (1)1/2 and (/2)g/c will

not be propagated, while those with w between 0 and (Y-i)i/2(g/c) cos 0
will not be propagated in a direction making an angle of 9 with

the vertical axis. A formal solution incorporating appropriate
boundary conditions at the ground is derived and discussed. The

field along the vertical line passing through the source is found

explicitly. A consideration of the energy intensity shows that no

energy is propagated within a cone above and below the source if

W < (7-1) 1/2g/c A calculation of the intensity for the case when

(y-1)i/2g/c < w < (7/2)g/c indicates that the energy flowing from the

source tends to concentrate in the lowest layers of the atmosphere.

The field for large horizontal distances appears as a sum of a direct
wave, a reflected wave, and a surface wave. Reflection coefficients

are derived and the criteria for the surface wave to be dominant are

discussed.
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II. INTRODIUTION

The effects of the earth's gravitational force on the propagation

of infrasonic waves to great distances has been extensively studied by

a number of workersl -10) Interest in this subject dates back to 1883,
when the eruption of the Krakatoa volcano generated a pressure pulse

which was detected in widely spaced regions of the world. The detection

of waves from the great Siberian meteorite in 1908 and, in recent years,

from the detonation of hydrogen bombs created additional interest.

Early theoretical studies(I-5) showed that one of the principal
effects of the earth's gravitational attraction was that it permitted

the existence of horizontally propagating modes trapped in the lower

atmosphere. These modes were found to exist when the assumed temperature-

height profile of the atmosphere had no temperature minimum, and when

the conventional acoustic theories (i.e., those neglecting the influence

of gravity) precluded the existence of such modes.

In this paper we shall study the manner in which these trapped

modes (or gravity modes) evolve from a small source located above the

ground. In particular, we shall derive expressions for the acoustic

field in regions relatively close to the source and shall study the

effects of the ground on this field.

The model we shall study is that of an isothermal atmosphere

bounded by a flat earth. Although this model is an oversimplification

of the real atmosphere and, as is well known, it does not lead to a

correct prediction of the form of the pressure pulse which would be

observed at large distances, we feel that a study of this model may

lead to a better understanding of the origin of the phenomena predicted

at great distances by more sophisticated models. In particular, the

theory developed here should complement the recent asymptotic theories

of Hunt, Palmer, and Penney7)" and of Weston. (8)

The subject of wave propagation in an isothermal atmosphere has

been considered previously by Lamb,(') by Pekeris,(4) and by Sretenskii.(11)

Lamb discussed the problem of the vertical and horizontal propagation

of plane waves and Pekeris extended the discussion of horizontal

propagation to illustrate his theory of the excitation of gravity
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modes by a small source on the ground in an atmosphere having a

constant lapse rate in the troposphere. Sretenskii considered the

propagation of waves from a point source in an isothermal atmosphere

with the influence of the earth's surface neglected (i.e., the source

was sufficiently far above the earth that reflections could be dis-

regarded). It appears, however, that Sretenskii's theory is in error.

His initial equation,

a c2 2  -c (1g1)

for the velocity potential is inconsistent with the equations of

hydrodynamics for air. Lamb•l) has shown that a velocity potential

does not exist for the isothermal atmosphere unless y - 1. If

Sretenskii's theory were to have any application to the real atmosphere,

he would have to take 7 = 1.4. Furthermore, Sretenskii imposed the

requirement that

a 0 (1.2)rz

everywhere in the horizontal plane of the source except at the

source. The only Justification given by Sretenskii for this require-

ment is that it is applicable when gravity is neglected. The early

portion (Sec. III) of this paper will be concerned with the presenta-

tion of the correct solution of this problem.



II. MATHEMATICAL FORMULATION OF THE PROBLEM

For an isothermal atmosphere, the characteristic length is the

scale height,

H - c 2(7g) (2.1)

where c is the (constant) speed of sound, g is the acceleration of

gravity, and 7 is the specific heat ratio, which for air may be taken

as 1.40. The characteristic time is H/c. We shall accordingly

develop our theory in a system of units in which distance is in units

of H and time is in units of H/c. (Typical values of H and H/c for

the real atmosphere are 8 km and 24 sec.)

Let the pressure and density at a point r at time t be represented

by po0 + p and p + p, where p0 and p are their ambient values. For

an isothermal atmosphere, p0 and p0 are given by the expressions

Po = c 2P = Poo e , (2.2)

where p 0 is the pressure at the ground and z denotes the height

above the ground (in units of H). The quantities p, p, and the

particle velocityyv are presumed to obey the linearized equations

of hydrodynamics. For an isothermal atmosphere, with distances in

units of H and times in units of H/c, these have the form:

ca(p 0)/at +Z +j.c 2 p/7 - - [EcPcrX (2.3a)

cap/at + 7- (po = (2.3b)

p/at - c2p/at + cyAe" (p) 2 0 (2.3c)
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where e denotes the unit vector in the z-direction andýz

A2 = (7 - )/y2 .2o4. (2.4)

These equations may be derived in the manner outlined by Pridmore-

Brown. (12) The term in braces in (2.5a) is included in order that

we may qualitatively take frictional forces into account. The

parameter e is a positive constant which we shall assume to be very

small. The inclusion of this term is a well known device(13) which
is generally attributed to Rayleigh.

A

The Fourier transforms ', p, and v of p, p, and v, where

co^P(w) = (2o)- fp(t) e"i dt ,(2.5)

0

etc., will satisfy three simultaneous differential equations which

may be formally obtained by replacing 6/bt by -iw in equations (2.3).

(Here w represents the angular frequency in units of c/IH.) From

these equations one may derive a single differential equation for

the Fourier transform of any one of a number of quantities associated

with the acoustic field. (Lamb,(l) for example, derived a differential

equation for the vorticity.) We choose to concentrate on the pressure.

If we define

p = zez/2 (2.6)

then this quantity P will satisfy the following differential equation

.(7p) + (f0/L)P 0 (2.7)

where

2 n2 ,(2.8)

p. 2 0 A, (2.9)
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and

2
0 w(W + ic) (2.10)

The operator has components (lla2 )•l~x, (ll 2 )•l~y, (iI• 2 )•I• in

Cartesian coordinates. Thus

1 2 2 a27.7 - •2(•-•+ + +- -- •(2.11)
- 2 U 2z2

The quantity P plays the role of a potential. Once it is known,

p and v may be obtained by use of the following formulas:

c = e 2{a2 - (y/2)A'+ 7 A2 (+/•z. Pl 2  (2.12)

A +z/2J1c, =e+ (02/ 2  2  , (
i(W + ia)cP V e0 zB.3

where

2
B = (1/y) - (1/2) (2.14)

Since the vertical component of the particle velocity must

vanish at the ground, P must satisfy the boundary condition

6Pl6z + B2 P = 0 (2.15)

at z-O. This follows directly from (2.13).

In addition, P must conform to causality. In conventional

acoustic theories, this would be interpreted as requiring that P

behave as an outgoing wave in regions remote from the source

(radiation condition). A general formulation of this requirement

is that, for all r such that z > 0, the quantity Pe*i tO, where t

corresponds to any time before the source is initially excited,
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should be analytic everywhere in the upper half of the complex

w-plane and should vanish as Im(w) tends to infinity. This implies,

in particular, that P should have no poles or branch lines in the

region for which Im(w) > 0. That this requirement guarantees

causality is clear, since the inverse transform

P(., t) = e"Z/2 j P(r,w)e-i(t dw (2.16)

will then vanish for all t < t
0
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III. THE FREE-SPACE SOLUTION FOR A SMALL SOURCE

To examine the nature of the field close to the source, we shall

solve the free-space problem. The presence of the ground is neglected

and the boundary condition (2.15) is discarded. The causality condition

is required for all arather than for Just those for which z > 0.

A Green's function G(r-o,,w) may readily be found which is finite

everywhere except at a point r (assuming e > 0), and which conforms

to causality in the sense described above. We may choose the normaliza-

tion of the Green's function such that it satisfies the equation.

2 22 27.7G + (P /1 )G = -46(r-r )/(Ci u). (3.1)

It is clear that this equation is formally equivalent to that for the

Green's function eikR/R for the scalar Helmhltz equation. One need

only replace Cx, Oy, and 4z by x', y', and z' to cast it in a form

identical to that given by Morse and Feshbach. (14) Thus we may write

G(r-,•w) = R,- 1 ei(3/•)RI' (3.2)

where

R1 [ 02 x -Xo)2  + _2 (y -yo)2 + •z.z) ]

The requirement of causality may be satisfied by a suitable

definition of the phases of 0, p, and R' in the complex w-plane.

The branch lines for these quantities are taken as extending vertically

downwards from their respective branch points--all of which lie slightly

below the real axis. One requires that the phases of P, 1k, and R' be

continuous everywhere except at their branch lines and that, for

Im(w) > 0, their phases approach the phase of w as jHj approaches

infinity. Thus, in the limit of e - 0, the phase of 0, p, or R' is

0 for w lying on the real axis to the right of the branch point lying

on the positive real axis. Between the two branch points the phase
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is E/2 and, to the left of the branch point on the negative real

axis, the phase is n. Thus the phase of the expression PR'/P

which appears in the exponent in (3.2) has the following behavior

on the real axis:

ph(PR'/,) = 0 ,,, > (3.4a)
=t/2 A < w < (3.4b)

= 0 Alcos 01< w < A (5.4c)
= ,(/2 IwI < A Icos 61 (5.4d)

= -A < w < -Alcos e0 (3.4e)
-X/12 - < w < -A (3.4f)
7 W• < -(3.4g)

where

cos 9 = (Z-Z )/Ir-ro ! (3.5)

That the Green's function G(r-row) may be considered as

describing the spatial dependence of P for a small source located

at r may be readily seen if one makes use of Green's theorem.0

One may show in general that

P( r, w) = J IP(r ) 7 G(r-r)
POA -0 ý^o &10

-G(r-r ) 7 P(ro)I- n dS (3.6)
A-0 0-0 A no ýO 0

where the integration is carried over the surface of a small sphere

enclosing the source (ro denoting the position vector of points on

the surface and n denoting the outward-poinLing normal) and r is

outside the surface. Then one may show, in a manner similar to that

outlined by Weston,(15) that if the radius of the source is

sufficiently small, the expression (3.6) becomes approximately

P(rw) - - 2 G(r-,r,) 7O P(row)" n dSn (3"7)
A- A^ .. o - ,.O,w 0do (o
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The approximation (3.7) is invalid if either R' or u is zero.

In the limit of e = 0 this will be the case if w = A or w = A cos 0.

However, we expect that the deviation of the actual pressure field

p(r,,t) from the approximate field which would be calculated by taking

the inverse transform of (3.7) should be small if the source is small

and if its spectrum is not sharply peaked at these frequencies. With

these reservations, we shall accept the product G(rQ:o,w)e-z/2 as

describing the spatial dependence of the Fourier transform of the

pressure field.

The acceptance of (_.7) makes it possible to describe the field

if the gradient of the pressure is known over the surface of a small

sphere enclosing the source. If one were instead to consider his

input data as consisting of the recording p1 (t) of the pressure vs.

time at some point r close to the source, the quantity PFw) would

be given by

G(r-r w) z l/2
P(r,w) = G(6r-Zr° ) p1 ) e (1.8)

where Il(w) is the transform of pl(t).

The Green's function G(r-o,,w) has some interesting features

which should be noted. As indicated in equations (3.4), it corresponds

to a propagating wave only if jwj > * or Alcos 01<I1w< A. Thus there

are two distinct pass bands, the width of the lower band depending

on the angle 9. If one is directly above or below the source, 0 will

be zero or A and the lower band will have zero width--in accordance

with the results derived by Lamb(I) for the vertical propagation of

plane waves in the atmosphere.

One may derive a phase velocity and a group velocity for

frequencies lying in the two pass bands. These velocities (in units

of c and letting e = 0) are given by

v = w*/(PC) (3.9)P
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and

v~ PC&(W3.10)9 d [ýL+A2 i- 2)Sin 2 8

where

C = R'l1r-.oI = - A2cos2e] • (3.11)

Thus the phase and group velocities will depend on the angle e in

addition to the frequency w. The phase velocity represents the

apparent direction with which wave crests move in the radial

direction from the source, while the group velocity corresponds to

the average velocity with which a signal of frequency W will have

apparently traveled from the source to an observer along a radial

line from the source. One may readily show from (3.9) that the

phase velocity decreases monotonically from - to 0 as w increases

from Alcos e8 to A and that it decreases monotonically from - to 1

as w increases from T to -. Similarly, one may show that the group

velocity is zero at w - Alcos 91 and at w - A and that it is positive

and less than 1 for intermediate frequencies. The group velocity

increases monotonically from 0 to 1 as the frequency increases from

½to -. In Fig. 1 we plot v and v vs. w for e = 600 .p g
In the frequency bands for which 0 <Iw <Alcos 81 or A <Iw < 4,

there is no propagation and the Green's function decreases exponentially

with increasing radial distance. The coefficient of attenuation may

be taken as

a- -i~l. • (3.12)

The parameter a is (*)Icos el at w - 0 and decreases monotonically

to zero as w increases from 0 to Alcos e0. As w increases from A to

, a decreases monotonically from - to 0. In Fig. 2 we plot a vs. w

for 8 - 60 0 .
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The factor of 1/R' in the Green's function (3.2) will cause the

Green's function to be singular in the limit of e a 0 if IjwI < A and

Icos e! = Ijw/A. It is at such angles, however, that the approximation

(3.7) ceases to be valid. Nevertheless, we may expect that the

Fourier transform of the pressure field computed via (3.6) for a

small source will be large at such frequencies, if not singular.
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IV. FOIUAL SOLUTION WHEN SOUTFCZ IS ABOVE A FLAT GROUND

Let us assume that the source is located at a distance h (in units

of H) above the ground. The coordinate system is chosen such that the

origin lies on the ground directly below the source.

To find the spatial dependence of the field corresponding to a

given frequency, one looks for a Green' s function Gh, QlW) which

satisfies (3.1) with r a e h, which satisfies the boundary condition

(2.15) at z - 0, and which satisfies the causality requirement for all

r for which z > 0.

The method of finding such a Green's function is well-known.

One expresses Gh as a Fourier-Bessel transform,

oh(•,w) - f..• Ha(kr) Z(k,w,z) kdk , ( 4 .. )

where Ho(kr) is the Hankel function of the first kind (defined such

that its branch line extends vertically downwards in the complex

k-plane), and r represents the radial distance in cylindrical coor-

dinates. A differential equation for the quantity Z(k,w,z) together

with sufficient boundary conditions may be obtained from the required

properties of Gh. In this manner, one may obtain the following

expression for Z(kw,z):

Z~k,,,-- - [i I-h ,,'-h •2

Z(kwz) -I e [i9z-hi + .*iz+hj _2 ei*lz+hI] , (4.2)
B +1#

where

[i -[2 _ &k2k2 /01] (4-3)
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The phase of * is chosen such that, if k is real, * has no branch

line in the upper half of the complex w-plane and such that the phase

of 4 approaches the phase of w as Iwj approaches infinity if Im(w) > o.

(This will insure that Gh conforms to causality in the sense previously

described.)

The phase requirements on 4 in the w-plane enable one to derive

the phase of # for all real k for any given real w. In general, for

e not identically zero, one may specify the phase of # uniquely for

all real k and real w by requiring the phase of * to be between 0 and

x. The specification may be extended to include complex values of k

by placing branch lines in the k-plane and requiring that the phase

of * be continuous everywhere except at these branch lines. For a > 0,

the placing of these branch lines is restricted by the fact that no

branch line may cross the real axis, since, in this case, the phase

must be continuous along the real axis. The simplest placing is to

take the branch lines as extending vertically upwards from branch

points lying above the real axis and vertically downwards from those

lying below the real axis. One may readily show that the branch

points of # in the k-plane lie in the first and third quadrants if

w > 0 and in the second and fourth quadrants if w < 0. Thus, in the

limit of e - 0, branch lines extend upwards from branch points lying

on the positive real axis and downwards from branch points lying on

the negative real axis if w > 0, while the converse is true if w < 0.

The specification of the phase of # as outlined above reduces

to the following for c - 0 and real k:

1. For I•W >f,

Ph(*) - Ph(w) Jkl < jpw/ýij (4.4a)
x k/2 Jl >• Iw/pI (4.4b)

2. For j> jwl > A,

Ph(q) - x/2 all k (4-5)

3. For jwj < A,

Ph(*) - x/2 Ikl < low/ikl (4.6a)
a x + Ph(w) I•I > j•I•p (4.6b)
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The relation given by (4.6b) should particularly be noted. More
naive considerations might lead one to believe that the phase of ,i

is either equal to the phase of w or to A/2 for real k.

For a > 0, the integration in (4.1) may be taken as proceeding

along the real axis. The poles of Z(kw,z) will lie off the axis--

specifically, at the points

k = t (w + i/2) (4.7)

for sufficiently small e. If e = 0, the poles will lie on the real

axis, and the contour must pass below the pole on the positive real

axis and above that on the negative real axis if w > 0. If w < 0,

the converse is true.

Let us now note that the free-space Green's function G(r-phw)

given by (3.2) may also be expanded in the form (4.1). The appropriate

expression for Z(k,w,z) may be readily shown to be

I e ii*z'hi (4.8)

in a manner similar to that outlined above. Thus, with the decompo-

sition of Z indicated by (4.2), our Green's function Gh appears as a

sum of three terms:

Gh(r,w) = G(r-Azh,w) + G(r~4zh,w) + I(r,z+h,w). (4.9)

The first term represents the free-space Green' s function for a

source located at = e h, while the second term represents the

free-space Green's function for the image source. The third term

is given by the integral

I(r,z+h,w) _ B 2 e rt--- H (kr) kdk
(. 1(B0(4.10)



This term is present as a direct result of the fact that 6P/az is not

identically zero at the surface of the earth.

We may regard the product

ez/2 G(h(.,w)

as describing the spatial dependence of the pressure field from a

harmonic source or as describing the spatial dependence of the

Fourier transform of the field. This follows from Eqn. (3.8).
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V. THE FIELD BELW THE SOUBTE

The fictional parameter c is of no further use to us and will

henceforth be set to zero. Also, since

Gh(r, -w) . - G(Xw) (5.1)

for real w, we shall limit ourselves to positive w.

Since * is even in k, the integral in (4.10) my also be taken

in the form

I(r,z+h,w) 2B 2 e i J(kr) kdk (5.2)W o #(B2÷,

with the contour passing below the pole at k a w. This form is most

convenient for studying the field at small r. If we take r - 0, the

Bessel function becomes 1 and the variable of integration W' be

changed to

a - - (B2+i,)(zeh)

to give

Z(0,z+h,w) - (2B2/p) e•B 2 (z+h) T (e'S/s) ds ,
-s

0

with

s . (B2 + iP)(z~h) , (5.1)

and the contour passing below the pole at a - 0. The integral in

(5.3) is the exponential integral of complex argument and has been

tabulated by the National Bureau of Standards.(1E) If I8oi is very

large, the integral is very nearly -exp(s 0)/s° and we have
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.2 eif(Z~h).(.)
-2B -I(o,•÷h,w,) -,(23÷iiz•) 5

P(B2ij3 (-.,h)

If, on the other hand, iso0 is small,

""O? B 2 (Z+h) (2 ) e2 }
-(O,-÷hW) • loge J_(D±A)(z+h)e,5T72

(s.6)

with the branch cut for the logarithm on the positive iim•inary axis.

We note that when (5.4) is applicable the ratio of I to

G(rlzjh,w) at r - 0 is

_22 (5.7)

B 2+ !A

This ratio is vanishingly small for large frequencies, but my be

very large If w is close to A. If (5.6) is applicable, the ratio

is

22(z+h) loge -(B2 +iA)(z+h)e'TT , (5.8)

which is singular for w - A.

Let us now consider (5.2) when r is not identically zero. If

w <A and

r < (z+h)tan 0c (

where

tan 0c [(A/w) 2 - 1]_ , (5.0)
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the contour in (5.2) may be deformed to the negative imaginary axis.

With an appropriate change of variable, (5.2) then becomes

CO - 1j ( z+h)
I(rz+hw) I f(.) Io(ýr) e Fdg (5.11)

W 0

"where I (ýr) is the Bessel function of imaginary argument,

1

1*1 = [P2+ (IP/W) 12]

and

2B
2

1*1( 1*1-Br)

is a positive real function of •. It is immediately clear that the

magnitude of (5.11) increases with increasing r and decreasing z+h.

It is also clear that the phase of I will not depend on r or z.

Let us note that the latter property is shared by GrMezh)

if w < A and (5.9) is satisfied, and that it also holds for G(r-e h)

if r < Iz-hltan 9c. We may accordingly conclude that

S = i(G 7G* - 7 G) (5.12)
h-% h h -%h

is zero everywhere above and below the source within a cone of apex
angle e with the apex at the source.

C

The quantity S introduced above gives the spatial dependence of

the acoustic intensity for a harmonic source. (This may be seen by

taking the product of the pressure, as given by (2.16), and the

complex conjugate of the particle velocity, whose transform is given

by (2.13), and then integrating over time.) Thus we may conclude that,

for w < A, there is no energy propagation in the cone of apex angle ec.

Let us now consider (5.2) in the case where w is between A and½.

In this case we may consider the integral as being a sum of its

principal value plus an integral around a small semicircle passing
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below the pole. The latter may be evaluated by the method of residues.

The contribution to I from the principal value of the integral will be

a real number as # has a phase of 1/2 along the real axis. Thus the

imaginary part of I will be given by the contribution from the pole:

2EB2 -B (z+h)

Im(I) = - e Jo(-r) (5.13)

This also gives the imaginary part of Gh (r,w)

The quantity I(r,z+h,w) is related to the Green's function

G(K+4eh,w) by the equation

(a/az + B2) I 2B2 (G.14)

as may be seen from an examination of (4.10). This equation is useful

if one seeks to derive an expression for the acoustic intensity S.

The z-component of S may be found directly from (5.12) if one uses

the above relation and the fact taat the two Green's functions are

real. In this manner, one obtains

2 f 2 2
S = -(2/p2) IMr(I)1( -B2)G(r+e h,W)+ ( + B )G(r+gzh,w)j•

(5.15)

The r-component may be found if one uses the fact that the divergence

of S is zero. Thus

r

Sr = -(l/r) f (,Sl/az) rdr. (5.16)
0

After some algebraic manipulations and an integration by parts, this

becomes
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Sruc -(2/w 2) {Im(I) _r + G(r-o h

- [G(r+e-h) + G(r-ezh)] A- im(I)/

.r

+(4B 2 P 2/r) jr Im(I) (B 2  a ~)G(S+,gzh) rdr . (5.17)
0 T

From (5.15) and (5.17) it is clear that the intensity near the

source is of the form

S jB2 (,r-.Vh) e
2 B

S= - L 2r 2 + &2(~)1/
L -J

which represents a flow of energy radially outward from the source.
2 2

However, since t W2 , the flow is not spherically symmetric.

More energy flows out vertically than horizontally. We also note

that as much energy flows out in the upward direction as flows out

in the downward direction.

One interesting feature of our expressions for S is that SS~z
is proportional to the Bessel function Jo(wr). Whenever r is such

that wr is a root of the Bessel function, S will be zero and theZ

energy flow will be horizontal for all points on the cylinder of

radius r.

In the limit of large r the intensity is entirely in the

horizontal direction and is given by the last term of (5.17):

S = (8nB4/P3) e-B2(z+h)r'l Jo(wr)(B2 - a/az)G(r+ezh,w) rdr
•o

(5.19)

This indicates that the intensity decreases inversely with r at

large distances.
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The nature of the transition from (5.18) to (5.19) is best

illustrated by means of a numerical example. We choose ,s n .48

and h - 5.0. (In conventional units h would be approximately 40 km.)

The results of the calculation are given in Fig. 3. There we show

the typical paths along which energy would flow away from the source.

(These lines may be considered as being the sound rays.) The figure

also shows the variation of the magnitude of the intensity with

distance. The downward bending of the rays in the region above the

source is reminiscent of a water fountain and reminds us that we are

considering a problem in which the earth's gravity is important.
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VI. APPLICATION OF THE METHOD OF STEEPEST DESCENTS

The case when wr is large is best studied within the context

of the method of steepest descents. If one follows the rationale of

this method, the Hankel function in (4.10) is replaced by its asymp-

totic expression and the contour is deformed to one which passes

through the saddle point of

eikri*(z+h) (6.1)

and which goes along the path for which this quantity decreases most

rapidly with increasing distance from the saddle point.

The saddle point is located at

k - ks = t sine (6.2)

where

tan e - r/(z+h) , (6.3)

S(2 .A2cos2e)½ (6.4)

and 8 is between 0 and 42. The path of steepest descents is given by

k (ai/1) (kR'kE )(kR'IkI) tan 9, w> (6.5a)

a (w/p~)(k~ R + Q 2, > w > A (6.5b)

( )(kM "Iks)6(kR "E) tan e, A > w > A coo e (6.5c)(k M -k R)i(ký, -5,1
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and

kR = 0 , 0 < w <A cos e , (6.5d)

where

kE K•/(4 sin e)I , (6.6a)

Q = !€W cos (, 6.6b)

k•N Ikis - Q (6 .6c)

kM - Iksl + Q, (6.6d)

and kR and kI denote the real and imaginary parts of k, and, in ( 6 .5c),
kR is understood to be between kN and kM. If we let

kB= I3/P,

represent the distance of the branch points from the origin, then it

is readily verified that ke> k> Iksl for w > A, Iksl > k for

> w > A, and kM> Iksl > kB > kE > kN > 0 forA > w > A cos e.
In Fig. 4 we show sketches of the path of steepest descents for the

various ranges of w.

The deformation of the contour in (4.10) to the path of steepest
descents is valid for w > j only if k,> w, and is valid for

A cos e < w < A only if E< w. If this is not true, one must add

the residue from the pole at k - w to the integral ISD along the

path of steepest descents to obtain (4.10). This residue is
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I -i e-B2(z+h) H (mr) ( 6 .7a)IRes aB

ow e i~l(2B'2 /1)[2jl/(wr)1* e-B2(z+h) eiwr (6.7b)

The condition k > w for w > j is equivalent to w > wl(0),

while the condition kE< w for A cos 9 < w < A is equivalent to

W < W (0), where
COB29±+2, 22

(2 cs2 OW 2 + A 2 Cs2  - A 2) 2 +A2( 4 - A )sin 2e28
cos - 4

(6.8)
(It is readily seen that w increases monotonically from j to

while w2 decreases monotonically from A to 0 as e goes from 0 to n/2.)

The integral (4.10) is thus

I(r,z + h,w) = ISD + U(A,9) IRes (6.9)

where U(w,S) is 1 for ,•(e) > w > Y2(8) and is otherwise zero.

The integral along the path of steepest descents may be evaluated

approximately in the usual manner, giving

I [SD . [(w,9) - 1] G(r+ezh,w) , (6.10)

where

T(,) i(/) cos e -B2 (6.11)i(pj3/C) cos 0 +B 2

It is clear that 11" is 1 if w >-j or A cos 9 < w < A and that T is

real and less than -1 if j > w > A. Also, T is real and greater than

1 if w < A cos 0. In Fig. 5, we plot the phase and magnitude of T

versus w for several representative values of 8.
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With the approximation (6.10), the field Gh(r,z,w) becomes

Gh(r,z,w) = G(r-ezh,w) + ?G(r+e h,w) + U 1 (6.12)

The three terms in this equation may be conveniently labelled as a

direct wave, a reflected wave, and a surface wave, respectively.

The parameter r thus corresponds to a reflection coefficient.

Let us now study the behavior of (6.12) for given w and h vs.

r for z = 0. In this event the two Green's functions are equal.

Also, if w > i or w < A, the presence of the factor U in (6.12)

implies that the surface wave will not be present unless

r > r0 = I1/(B 2w)Ih . (6.13)

It need scarcely be pointed out that this parameter r has no0

physical significance. It is unlikely that the field should change

abruptly at r = r . Furthermore, at this value of r, the surface0

wave may be of insignificant value compared to the sum of the direct

and reflected waves if the conditions for the validity of the

approximation (6.10) are satisfied. Nevertheless, the theory does

give us a natural small distance cut-off for the surface wave.

This indicates that Eqn. (6.12) will be qualitatively correct for

all r for frequencies in these two bands if the height of the source

is sufficiently large.

As r increases from r, the relative contribution of the surface

wave to Gh will increase. This follows for two reasons. First, the

surface wave falls off more slowly with r than the direct and reflected

waves. Secondly, the direct and reflected waves will tend to cancel

each other at large r.

A characteristic distance r1 may be defined as that value of r

for which

I1 + Tj IG(r+e h,w)l
Res 0. /Az
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For values of r greater than rI the surface wave will be dominant,

while the converse will be true if r < r1. For w > i or w < A this

parameter may be shown to be approximately

[122L'41 h2 e h]1/, (6.14)

provided this expression is much greater than 2 h/(B2 )

or kulh/w. (These criteria will be met if h is large.) In the high

frequency limit, r1 is proportional to w, while, in the low frequency

limit, it is proportional to ,- .

If A < w < J, Eqn. (6.12) gives no small distance cut-off to the

surface wave. Although the expression is not valid for r identically

zero, we expect it to be approximately valid for any r for which

wr > 1, assuming h is large. This is confirmed by Fig. 4, which

shows a surface wave present for almost all points on the ground

except directly below the source. For r = 0, the field may be found

by use of (5.3). In the limit of large h, (5.5) is applicable and

we find

G(0,0,w) 213 e'ljlh
B 2i (6.15)

It is interesting that this has sign opposite to that of the free

space Green's function.
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VII. DISCUSSION AND CONCLUSIONS

The explicit solution, Eqn. (5.2), for the case when the

presence of the ground is ignored, represents the correct solution

of the problem originally considered by Sretenskii.(11) The method

of deriving this solution (i.e., of proceeding from the equations of

hydrodynamics in a linearized form, then seeking a Green's function

conforming to causality, and finally using Green' s theorem to find

the field in the limit of an infinitesimal source) appears to be

the zmost consistent approach, and it is gratifying that our solution

has such a relatively simple form. The prediction of the two non-

propagating frequency bands is perhaps the most interesting consequence

of our theory. It appears difficult to give a simple qualitative

explanation for the presence of these bands. We may mention, however,

that the frequency w - A is Bruntts(17) resonant frequency for the

isothermal atmosphere. The frequency w = * is also a characteristic

frequency for the isothermal atmosphere and appears in Lamb's(l)

theory as the dividing point between propagation and attenuation of

vertically propagating plane waves.

When the presence of the ground was incorporated into the theory,

the solution to the problem became more complicated. Although it

could be given in integral form, the term I(r,z+h,w) could not be

evaluated exactly. We were able, however, to derive an explicit

expression for the case r - 0, enabling one to compute the field

anywhere on the vertical line passing through the source. We were

also able to give the solution in the limit when the method of

steepest descents was applicable. This led to a representation of

the solution as a sum of a direct wave, a reflected wave (with

reflection coefficient (6.11)), and a surface wave. The surface wave

is, of course, the counterpart of the gravity modes discovered in

other models of the atmosphere.

For an understanding of the nature of the field when w < J, the

study of the acoustic intensity S was useful. We found that S was

zero if w < A everywhere above and below the source within a cone of

apex angle ec. This was Just what might have been expected after
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considering the free-space problem.

The field for frequencies in the band A < w < j has some

interesting properties which were brought out by our theory.

In the free-space problem, no propagation would take place and

S would be everywhere zero. However, the presence of the ground

permitted the existence of a propagating surface wave. We were

able to derive relatively simple expressions for the intensity

above the ground. A numerical example (Fig. 3) showed that the

energy flowing out of the source had an overwhelming tendency to

concentrate in the lower layers of the atmosphere.

For arbitrary frequencies and at sufficiently large distances,

the field near the ground would be entirely given by the surface

wave. However, for high frequencies or very low frequencies, the

surface wave would not predominate unless the distance were very

large.
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Angular frequency in units of C/H

Fig. 1. -- Phase velocity V P and group velocity V G (units of C)
versus w (units of C/H)for free-space propagation

from a point source along a line masking an angle of

600 with the vertical.
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Fig. 2. -- Attenuation coefficient a~ (units of H1 ) versus
* (units of C/H) for free-space propagation from

a point source along a line masking an angle of
600 with the vertical.
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Fig. 4. -- Sketches of the complex K-plane showing relative location

of branch lines, poles, and path of steepest descents for

various ranges of the angular frequency w. (The saddle

point Is denoted by K S.)
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Fig. 4. -- Sketches of the complex K-plane shoving relative location

of branch lines, poles, and path of steepest descents for

various ranges of the angular frequency w. (The saddle

point is denoted by K.S)
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Fig. 5. -- Magnitude and phase of the reflection coefficient T versus

frequency for e - 0o, 30P, 60O, and 900.
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