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FOREWORD

Volume I of this study on the effect of long wavy s in the lower

Chesapeake Bay dealt particularly with the practical and engineering

aspects of this problem and was based in part on new theoretical in-

vestigations. These theoretical investigations are presented in this

Volume II as various appendices. Most of them are original contri-

butions to the science of hydrodynamics of long waves. They may

have other applications than those presented in Volume I of this study.

Volume II in made up of the following studies:

Appendix I: Long Waves Generated by Nuclear Explo-

sions. Types of Waves and Initial Decay in Deep Water. (Dr.

Basil Wilson)

Appendix II: Theoretical Considerations and Computations

for Water Waves produced by Explosion. (Dr. Larry Armijo

and Miss Mary Ann Noser)

Apperdix III: Surface Waves Generated by Disturbance on

Sea Bed in Constant Depth Open Sea. (Dr. J. A. Hendrickson)

Appendix IV: The Principle of Superposition and Theory

of Cauchy-Poisson.(Dr. B. Le Mehaute)

Appendix V: The Shoaling, Damping, Breaking and Run-

up of Long Waves over the Continental Shelf. On Saturated

and Nonsaturated Breakers. (Dr. B. Le Mehaute)

iii



Appendix VI: The Wave Run9 up by the Method of Charac-

teristics. (Dr. B. Le Mehaute. Dr. J. Freeman was

scientific advisor and Mr. R. Grewal did the numerical com-

putations. )

Appendix VII: Two-Dimensional Nonlinear Wave Motion

in an Estuary. (Drs. J. C. Freeman and Larry Armijo and

Miss Mary Ann Noser)

iv
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ABSTRACT

This volume assembles a number of theoretical studies rele-

vant to the field of hydrodynamics of long waves. They are:

1. Literature survey on theoretical and experimental informa-

tion on the problem of cylindrical waves generated by a local

disturbance, with application.

2. Application of the theory of Kranzer and Keller on cylindrical

waves generated by explosion to three magnitudes of power.

3. Theoretical study of cylindrical waves generated by'a cylin-

drical upthrust on the sea bottom..

4. The principle of superposition is applied to the Cauchy-

Poisson solution for determining the cylindrical wave motion

due to a finite sea surface disturbance.

5. Wave deformation on a very gentle slope, wave damping by

bottom friction. Saturated and nonsaturated breakers. A

survey on experimental data on the wave run-up.

6. A method of characteristics is presented for analyzing the

wave deformation over a gentle slope, wave breaking, spilling

breakers, bore, and run-up on e. dry bed.

7. A numeri-!al procedure for calculating the penetration of a bore

and nonlinear long wave into estuaries is given and applied in

the case of a bore.

xv
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LONG WAVES GENERATED BY NUCLEAR EXPLOSIONS

TYPE OF WAVES AND INITIAL DECAY

IN DEEP WATER

By

Basil W. Wilson

!i.

ab



1. INTRODUCTION

The literature on the effects of surface and sub-surface distur-

bances of water both theoretical and experimental is quite extensive

and this tentative survey of available results makes no claim to being

exhaustive. Satisfactory treatment of the initial conditions prevailing

in a thermo-nuclear underwater explosion has not yet been achieved,

to the writer's knowledge, in any theoretical analysis or laboratory

experiment. Both mathematical and experimental models remain

relatively crude, though they can nonetheless provide useful guide-

lines to the natural behavior of the archetype event. The hydrody-

namical difficulties of achieving an effective theoretical simulation

of the explosion are considerable, though progress in this direction

undoubtedly will come. In the end, however, the most reliable infor-

mation on the effects of nuclear explosions in water will be that

secured from actual prototype experiments. In this report an attempt

will be made to examine the problem' of wave propagation from a

nuclear explosion in the deep ocean (water depth circa 16, 000 ft.) up

to the point that the waves encounter the submerged continental

slope of the nearest land mass. In accomplishing this, recourse is

made to such theoretical, laboratory and field studies of impulsive

water waves as it has been possible to analyze within the time avail-

able.
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2. THEORIES OF RADIALLY SYMMETRIC DISPERSIVE WAVES

The great pioneering theoretical treatment of disturbances

in water resulting from initial elevations or depressions of lo-

calized extent came from Cauchy (1815) and Poisson (1816). Their

combined achievement, now made classic through the elegant pre-

sentation and extension of it by Lamb (1904), examined the effects

in water of infinite depth of certain shapes of paraboloidal and

ellipsoidal depressions or elevations. Lamb generalized the solu-

tion in the two-dimensional case for both initial elevation and

initial impulse by making use of the Fourier Integral Theorem

and in the three-dimensional case by use of Neumann's (1862)

Theorem. As our present interest lies really in :the three-dimen-

sional problem, having cylindrical symmetry, we shall give only

passing consideration to two-dimensional solutions.

Within the limits of the assumption of a concentrated point

impulse or elevation applied to the surface, Lamb derives an exact

hydrodynamical solution. The solution of the free surface, in the'

form of an infinite series (Lamb, 1932, #255), has, however,

rather limited physical significance because the input energy is

implanted on an area of infinitely small extent. Kelvin's method

of st~ationary phase (1887), applied by Lamb, nevertheless serves

to show that at large distances from the source the wave forms 7y

(initial elevation) and 17) (initial impulse) will be given by

1-2



Q0 k
•' coskt

(11)

(ii) -1 0 k sinkr

(iii) k gt 2 /4r 2

(iv) • g t 2 r

wherein Q and I are respectively the concentrated elevation ando 0

impulsive pressure at the point source per unit area,. r is radial

distance from the source, t is variable time and p and g have

their usual meanings of fluid density and gravitational acceleration.

" The period T of these waves, if .t >> T, -is

27r 4wrT 2w - w(1-2)
0' gt

and their wave length ) , provided r >> X , is

2w 8r r
- t =2 (1-3)k gt2

making the wave velocity c,

X rXr = 2 r 2V (1-4)T t

or twice the group velocity, V.
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Since the wave length and period of the waves at considerable

distance from the source tend to change very slowly with result that

r/t (the group velocity) varies only gradually, Eqs. (I-I) tend to show

-I
that wave amplitude will decline approximately as r.

Terazawa (1915) applied Lamb's methods to the casc of an

initial disturbance spread over a finite extent of the free surface in

infinitely deep water, and likewise found the amplitude decay to be

proportional to r l. Terazawa also investigated the effect of an

impulsive explosion at a finite depth h below the surface and found

the initial amplitude of the wave disturbance at surface zero to be

proportional to h 3 / 2  The same result is deduced by Lamb (1922)

for a rather different model of explosion in which an abrupt pressure

rise is followed immediately by a gradual fall. If the initial pressure

rise is more gradual the amplitude of surface elevation tends to vary
-2

as h

The high frequency of occurrence of tsunami-generating earth-

quakes off the Japanese islands has led Japanese scientists to pay con-

siderable attention to the problems of waves generated by impulsive

movements of the sea bed and ocean surface. Prominent among

authors who have contributed to analyses of these problems have been

Sano and Hasegawa, Syono, Homma, Nakamura, Sezawa and Kanai,

Takahasi, Ichiye, Matzawa, Miyoshi and Unoki and Nakano.

We shall commence by considering briefly the remarkable

series of papers of Unoki and Nakano (1953, (i), (ii), (iii) ), which

extend the work of Lamb and Terazawa for a surface disturbance or

impulse of finite amount spread over a finite area in deep water and

1-4



compare the results with observed waves from a volcanic explosion.

For the case where the initial elevation is a uniform piston-like rise

Q of the surface over a circle of radius R at the origin, the wave

disturbance is described by

.~ IT 0R -Att
"1e-" Q! r e J, (kR) cos (kr) (-5)

provided r 1 R, this being the asymptotic solution of the problem

using Kelvin's powerful method of stationary phase. In Eq. (1-5) A

is a coefficient of "virtual viscosity" or friction coefficient in the ex-

ponential time decay arising from the assumption that friction from

eddy viscosity is proportional to fluid velocity; JI is a Bessel

function of the first order which modulates the last cosine term.

The equivalent result for a piston-like impulse of uniform

amount I imposed on the surface over a circle of radius R at the

origin is

7i '•IoR e tJ, (kR)sin (kr) (1-6)pgr

again under the condition r >o R.

In both Eqs. (1-5) and (1-6), since the group velocity V (=r/t)

changes only slowly for large values of r, wave amplitude decay,
-I

discounting the exponential decay with time, is proportional to r

The system of waves that arise in these two instances have beats

whose modes are determined by zero values of tho Bessel functions

J1 (kR).

1-5



Unoki and Nakano successfully applied these results to the case

of the Myojinsho reef submarine volcanic explosions and concluded

that the wave system described by Eq. (1-6) best fitted the observa-

tional data. The volcanic explosions (which have been described as

not dissimilar to small nuclear explosions) thus accorded reasonably

well with the mathematical model of a uniform cylindrical surface im-

pulse. The authors estimated the energy of the explosions as being

from 3 to 8 x 10 ergs (about the equal of a I kiloton nuclear blast),

and concluded that most of the energy went into wave formation.

From a comparison of observations with theory, they concluded that

R had the value 2.2 km.

In some cases the volcanic explosions gave rise to wave trains

which showed no beat effects. Unoki and Nakano explain this on the

basis that the initiating impulse was sometimes, probably of Gaussian

form. Thus by assuming the instantaneous impulse to have the form

r2.
I (r): I, e" 4(-7)

These authors shcw that the resulting asymptotic approximation to

the wave form, ?y , for r >> R is

2-fi- 2 o/2 2k°'R2 'te -(kR)2 sIn NO
pgr

In this case there is an absence of beating and wave amplitude merely

decays monotonicly.
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We may note that Unoki and Nakano also elaborated the two-

dimensional case of wave disturbances originating from finite source

disturbances and showed that wave amplitude decay in deep water in

these circumstances, remote from the source, is proportional to
-1/2

x , where x in this case defines the horizontal distance. Both

Jeffreys and Jeffreys (1956 Edn., p. 517) and Eckart (1948, p. 409),

however, independently show that for this two-dimensional case the

wave amplitude near the front of the train, where group velocity

approaches the value /gd, d being the water depth, declines as

-1/3inraigyme
r- , so that the front of the wave train becomes increasingly more

prominent with lapse of time and distance in the dispersion of the

system. Eckart's solution shows that this wave front is an amplitude

modulation of a sinusoidal carrier system of waves. whose wave length

"is infinite (at least for the usual assumed incompressible water

medium). Effective wave length near the front of the train is thus

dictated by the modes of the modulating Airy integral, while towards

the rear the sinusoidal carrier waves increasingly assume dominance

in defining the wave length.

Reverting again to the three-dimensional problem, we find that

Kranzer and Keller (1959), again confining attention to initial surface

elevation or impulse, but introducing the influences of water depth,

d, and finite areal disturbance, derive for the case of initial elevation

71e =Qr• e (kd) cos (kr-a,-) (1-9)
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where I(k) is the Hankel transform of the function Q(r) describing

the initial elevation as a function of r and *e(kd) is a continuous

function of kd which varies in value from about I when kd is less

than ir/l0 (shallow water) to an asymptotic value ( VZkd) when

kd > 7r (deep water).

For the comparable case of initial impulse Kranzer and

Keller's result is

,/ '- p---- NiO (kd) sin (kr-art) (1-10)

in which r(k) is the Hankel transform of the function I(r) describing

the initial impulse as a function of r and 4/i(kd) is a continuous

function of kd which approaches the value unity for kd < Tr/10

(shallow water) and becomes asymptotic to the value % when

kd > 7r (deep water).

Kranzer and Keller's derivations are the asymptotic solutions

of the surface disturbance problems, applicable only for large values

of kr which justify the use of Kelvin's method of stationary phase.

They follow the transform techniques applied first, apparently, by

Sneddon (1951) and elaborated by Stoker (1957). The Hankel trans-

forms O(k) and T(k) are defined as

(i) Q (k)= O (r)r Jo(kr)dr

(I--l)

(ii) J0) I(lrO (krldr

1-8



in which J is a Bessel function of zero order.

In Eqs. (1-9) and (1-10) a distinction has now to be recognized

in the values of k and a over those given by Eqs. (1-1 iii) and

(I-I iv). Here k is defined by the root of an equation:

*(kg-d• U-12)

while a is given by

ao • gk tanh (kd) (N-13)

The function * (kd) varies between asymptotic values of 1 for

kd< 11/10 (shallow water) and I/(2 -./i) for kd > ir (deep water).

Thus for the deep water case with # (kd) = I/(2 v/•), k and V

assume the values specified in Eq. (I- 1).

If in (1-9) we introduce the deep water value *e -= Vkd, and

take Q(r)= Q for 0 < r < Rwith Q(r)= 0 for r >. R, then we

obtain exactly the same amplitude result as Unoki and Nakano in

Eq. (1-5). from the special property (in this case) that

Q(r) kr Jo (kr) a QRJ, (kR), (1-14)

the only difference residing in the absence of the friction term e" 1t.

In like manner the amplitude terms of Eq. (1-10) reduce identically to

those of Eq. (1-6) when the deep water value *i = .2d is taken along

with the special case 1(r) = I for 0< r < R and 1(r) = 0 for r >, R.

Again for the special c'ase treated by Unoki and Nakano in Eq.

(1-7) we find that Kranser ar.d Keller's generalized solution applied to

1-9



deep water ( ki= %/-) gives identically the same amplitude re-

sult as Eq. (1-8) (e" t excepted) in virtue of the fact that the Hankel

transform' of (I-7) is

"I(k) 2 10 R' e-(kR) (C-15)

If now we apply Eqs. (1-9) and (I-10) to shallow water, for which

kd < V7/10 and *e- 1 n! *i, the wave disturbances at a long

distance from the source for the cases of piston-like surface eleva-

tion 0 and impulse I applied at the origin over a radius R, become,

respectively:

_)R J1(kR)

. sin (kr- o t)

Dependence of 'e upon depth is thus as dl and as d
-I

dependence on distance in both cases is as r

All this discussion of the three-dimensional form of the Cauchy-

Poisson-Lamb problem suggests that wave amplitude decay at distances

remote from the source is proportional to r". We might infer, how-

ever, from analogy to the two-dimensional problem of Jeffreys and

Eckart, that wave amplitude near the head of the wave train will

follow another law. As pointed out by Munk (1952) this in fact con-

forms to r"5/6, The reason for this is given by Takahasi (1961)
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who points out that the method of stationary phase is no longer

valid in the neighborhood of the wave front. For there the third

term in the Taylor expansion of (kr - oY t) (cf. Lamb, / 241) Is

indeterminate because d 2 a /dk2 is zero, in virtue of the fact that

d o'/dk(= r/t = Vgd) is a constant. Takahasi shows that wave

height at the front is pioportional to r-5/ 6 for the case of waves

resulting from a piston-like upthrust of the sea-bed over a radius

R. Since the behavior of dispersive waves at a large distance from

the source is practically independent of the nature of the source dis-

turbance, the r-5/6 law may be considered to prevail in general at

the front of the wave train and the r- law in the Main body of the

waves. Takahasi (1961) has demonstrated experimentally that the

-5/6r anplitude decay law doe's in fact prevail at the leading crest

and trough of wave trains generated by the sudden upthrust of a

circular portion Of sea-bed in shallow water.

In all the theoretital results presented above, the nature of the

wave disturbance near the source is undefined because of the mathe-

matical difficulties of describing the fluid motions near the moving

boundaries. Theoretically complete solutions have, however, been

obtained by Lamb (1932, / 238, 239) in series form for the rather

hypothetical cases of concentrated elevation and impulsive pressure

within the limits of linear theory. Recently, the near-source dis-

turbances generated by various forms of sea-bed movement which

could simulate earthquake displacements, have been examined in a

number of mathematical treatments by Takahasi, Ichiye, Honda,
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Nakamura, Keller and others. Many of these are two-dimensional

in scope and are therefore not of direct interest or application to this

study. In other respects, however, it is doubtful whether any of

their models can be considered to simulate an 'underwater nuclear

explosion to a degree which could justify reliance on the mathemati-

cal prediction of the wave forms generated near the source. More

satisfactory mathematical models of underwater explosions have been

developed by Penny (1950), Kirkwood and Seeger (1950) and Fuchs

(1952), but in one way or another these are rather poor approxima-

tions to the nuclear underwater burst near its source, some of the

features of which have been illustrated by Snay (1957) and discussed

by Cole (1948) and by Lane and Green (1956).

We note in passing that the theoretical result obtained by

Hendrickson (see Appendix III) for a piston-like upthrust of the

bottom gives a wave-amplitude decay law proportional to r" . The

result is quite similar to that of Takahasi (1961) for large values of

kr in which the method of stationary phase is applicable for deriving

an asymptotic solution.

In regard to the input data supplied to this project from the

analysis of Kaplan, Wallace and Goodale (1962) (Fig. 1), a question

really needing investigation is whether the application of the asymp-

totic solution of Kranzer and Keller (1959), as given in Eq. (1-9),

is valid at the relatively small values of kr pertaining when r is

only 20 miles from surface zero, and whether full reliance can

therefore be placed on the results of such an application.
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3. EXPERIMENTS ON DISPERSIVE WAVE BEHAVIOR

In Fig. I-I are assembled such results of observations on ex-

plosion waves as are readily available in "Effects of Nuclear Weapons"

(Glasstone, 1957, 1962) from the underwater nuclear explosion tests

in the Pacific.

Shot BAKER of a 20 Kiloton nuclear charge at Bikini in 1946,

in a water depth approximating 200 feet, set up trains of waves whose

maximum height, H, at various distances shows a decay propor-

tional to r - to a distance of about I mile from surface zero (Fig.I-l)

-5/6and a decay thereafter proportional to r"

In Fig. I-I we also plot the standard results for a I kiloton

nuclear underwater burst as presented in "Effects of Nuclear Weapons."

The earlier version of this publication (Glasstone, 1957) suggests a

decay law of wave height proportional to r in a water depth of 85 ft.

The 1962 version on the other hand gives the decay law as r

over a range of distance r from I to 100 miles. For explosions in

deep water ( > 400 ft.) the decay law conforms to r"

An attempt has been made in Fig. 1-2 to represent the Bikini

field data in a dimensionless plot for comparision with certain labora-

tory experiments of Johnson and Bermel (1949). Crest elevation,

above still water, of the maximum waves, as a ratio of the diameter

Dc of the crater or cylinder of the burst at the surface, has been

plotted against dimensionless distance r/d, in which d is the

water depth. In Fig. 1-2 the first part of the BAKER test results

(for r/d < 35), no longer subscribes to
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because in the initial stages of the wave propagation in shal-

low water was in general greater than half the wave height H. It

was necessary to infer the appropriate value of 1O from Fig.

1-3 which was originally compiled by Reid and Bretschneider (1953)

and subsequently modified slightly by Rechtin, Steele and Scales

(1957), by Bretschneider (1958) and currently by the present writer.

For this application it was necessary to know the wave period T,

which was calculated from Eq. (1-13) in terms of the known dis-

tance r and elapsed time t. We may point out here that Unoki and

Nakano (1953, 1, ii, iii) had demonstrated the accuracy of this for-

mula (Eq. (1-2), for deep water) in their analysis of the volcanic

explosions of the Myojinsho reef.

The slope of the latter part of the curve representing the
BAKER test in Fig. 1-2 accords with the decay law r because

the waves for r/d > 35 are largely oscillatory with no /H n: 0. 5.

The field experiments of Van Dorn (1961), related to nuclear under-

water explosions in the Pacific in 1956, show that relative wave

amplitude declines as (r/d)"5/6 over a range of values of the latter

parameter from 100 to 1000, Although the standard of reference of

relative amplitude is not given by Van Dorn, it seems reasonable

to infer from his results that the BAKER test results of Fig. 1-2

which extend to about r/d = 100 could be projected at the same slope

r 5/6) as far as r/d = 1000. The validity of this step, however,
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may be open to question, on grounds that different values of d/D C

(alternatively d/ X ) are involved.

The experiments of Johnson and Bermel (1949) measured the

characteristics of waves generated impulsively by horizontal cir-

cular discs falling vertically from different heights into still water.

The data of their Fig. 1-3 has been recalculated and adapted to the

requirements of our Fig. '1-2. Although individual test results show

considerable variability there is a remarkable overall parallelism

with the Bikini data e'. en to the extent of an indicated slope change

at r/d ! 35. For values of r/d < 35 particular test results show

higher than average and some lower than average rates. The fact
-I

that initial decay rates greater than r were found in particular

instances lends emphasis to the need for knowing more about the

special conditions that may lead to energy dissipation which could

detract from the energy available for wave formation.

Generally speaking, the experimental results on wave ampli-

tude decay satisfactorily confirm the theoretical predictions of

Section 2. The experiments tend to show that in a dispersive system
-l

of linear waves, with beat characteristics, the decay law r

prevails until the distance becomes sufficiently great to give greater

prominence to the front of the wave train and render invalid the theo-

retical approximation of stationary phase, thus causing the decay law

-5/6to change to one proportional to r" . The transition is probably

gradual even though the experiments suggest quite a sharp change

at r/d = 35.
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4. TYPES OF WAVES IN INPULSIVELY GENERATED SYSTEMS

The data of Figs. I-1 and 1-2 all pertain to long waves in

shallow water. In Eqs. (1-9) and (1-10) we have already noted that

the Fourier transforms " and T and the functions *e and *i

are dependent on kd. or alternatively, d/X , the relative depth

referred to wave length. In-consequence, the type of wave that will

result from any given initiating disturbance will be a function of the

relative depth d/I . Eqs. (1-9) and (1-10) show however that the

carrier waves at a great distance from the source (large kr) are

simply sinusoidal. This obviously. is not necessarily true in general

of the waves near.the source. To investigate this aspect we have

Srecourse to Fig. 1-4 (adapted from Wilson (1962)). This portrays

the area of existence of waves of different types in a-plot of H/ X
0

versus d/ )•, in which X oi's the equivalent deep-water wave

length of any given wave :type. Waves are theoretically unable to

exist outside of the shaded areas, which are bounded by the break-

ing wave criteria of McCowan (long waves) and Michell (short waves),

and an intermediate limit largely defined by experiment and inter-

polation. Short waves are normally defined as those for which the

relative depth d/)X (=d/ X) > 0.5. Long waves are usually

interpreted as those for which d/ X < 0. 05 (d/,\ < 0. 015).
0

In Fig. 1-4 a set of isolines of the dimensionless parameter

( X2 /d 3 ), in which 10 is wave crest elevation above still water

level, is shown crossing the diagram in diagonal fashion. The signi-

ficance of this parameter has been stressed by Ursell (1953) who
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points out that linear wave theory, such as that of Airy, is normally

applicable only if ( i Io X ) / < I and H/ 0 is also small.

Ursell's analysis showed that long waves are inevitably non-

permanent when ( 7o X 2 /d 3 ) >> 1. The crests of such waves ad-

vance more rapidly than the troughs and finally reach a condition of

instability which manifests itself in breaking or bore-formation.

Ursell was disposed to consider that the solitary wave of permanent

type could exist at or near ( 71o X 7/d 3 ) = 1. The present writer,

however, has compiled evidence (Wilson, 1962) to show that the

most favored range for the existence of solitary waves is in the belt

shown hatched, or more broadly, between isolines of ( Xo X2/d )

from 10 to 35. In the zone of ( no X 2/d 3) from I to 10 cnoidal

waves of permanent type are possible, which overlap permanent waves

derived from Stokes theory of second or higher orders. Beyond

(o 0X2/d3) > 35, waves are likely to be non-permanent.

Since dispersive waves are composite of the interference effect

of a broad spectrum of frequency components, the relevance of

Fig. 1-4 may at first seem questionable, as Fig. 1-4 really has ap-

plication to uniform wave trains. However, the theory of Cauchy-

Poisson-Lamb, as elaborated by Unoki and Nakano and by Kranzer

and Keller, clearly shows that the resultant type of wave in a disper-

sive wave train has all the characteristics of an equivalent wave in

Sa non-dispersive system at any particular moment of its existence,

before influences of distances and time bring about change. Conse-

quently it is of importance to recognize the type of wave likely to

exist in a dispersive system, particularly in regions close to the source
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where available theories are difficult to evaluate.

Here we resort to a consideration of the experiments of Prins

(1956, 1958) who generated waves in a laboratory flume from sud-

denly released initial elevations or depressions of finite extent in

water of constant depth. The initial waves, near the source, gen-

erated under different conditions of water depth d, height of

elevation and length of initial elevation, have been plotted in Fig.

1-4, each plotted point referring to a different test. Prins gave

valuable information on the type of wave initiated, shown in the

* legend of Fig. 1-4." It is therefore of considerable interest to find

2 3
that his types lie within specific belts of the parameter ( X)o X /d

and that the occurrenc-e of single solitary waves (followed usually

by a trailing train of small oscillatory Waves) agrees remarkably

well with the zone of existence for solitary waves that we have

2 3
already specified. For ( 7oXd ) > 40 Prins found waves of

"complex-solitary" type, and under conditions which brought the

leading wave characteristics close to the McCowan limiting crite?.'ia,

the wave was inevitably a type of bore.

Also shown plotted in Fig. 1-4 are some experimental results

of Wiegel (1955), who generated waves under laboratory conditions

by causing submerged block masses to slide down slopes of varying

steepness, thereby simulating submarine landsliding in earthquakes..

Most of these waves were of oscillatory character and plot in a

region of Fig. 1-4 which would.identify them as Stokes waves.

The experimental results of Johnson and Bermel (1949) have
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also been plotted in Fig. 1-4 on the assumption that the effective

initial wavelength X of the primary wave near the source wa3

four times the radius of the circular plate dropped on the water sur-

face. The data are found to fall in a zone which would classify the

waves as breaking complex solitary or single solitary waves.

Finally, the initial waves of the nuclear underwater explo-

sion test BAKER has been located in Fig. 1-4 by determining the

applicable values of H/T2 and d/T2 and this plotted point is

found to lie in the unstable (breaking) complex-solitary or single-

solitary zone for which. ()o X2./d 3 ) is from about 30 to 40. The

BAKER test result accords remarkably well with Johnson and Bermel's

"" laboratory data which were scaled to produce results approximately

equivalent to the field explosion of 1946. That the initial waves from

* 'the BAKER test were actually of solitary type is confirmed by the

following quotation from Glasstone (1962):

"Observations of the properties of the waves indicated that

the first wave behaved differently from succeeding ones in

that it was apparently a long solitary wave generated directly

by the explosion, receiving its initial energy from the high

velocity outward motion of the water accompanying the ex-

pansion of the gas bubble. "

Assuming that the primary wave form near the explosion source

in a nuclear underwater burst is solitary or complex-solitary, as

suggested by Fig. 1-4, the extent to which the wave form will change

will obviously be dictated by the prevailing value of ( o X2/d 3) in
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which each of the variables of this parameter is a function of r, the

radial distance of progression. If the depth is constant the parameter

will depend only on the prodiuct 770 (r) [X(r)] 2 Since 71 (r) is

a decaying function, and X(r) an increasing function, of the distance

r, the value of the product will be dictated by whichever of these

variables prevails. If the product should remain constant, Fig. 1-4

shows that wave form will remain unchanged. Thus the wave could

propagate as a distended and flattened solitary wave. If the product

declined in value, the wave form would become cnoidal and even-

tually oscillatory. On the other hand, if it increased in value, the

wave form would become complex and unstable, finally leading to

bore formation. Since depth is seldom constant in wave propagation,

this variable (d) obviously will have a powerful influence on the

value of the parameter ( o X 2/d 3) and hence on the ultimate wave

form. As the depth decreases towards the coast the parameter must

inevitably increase and cause the wave form to assume the unstable

shape that finally leads to bore or breaker.

The nature of the decay of iro with distance r has already

received considerable attention in Sections 2 and 3 of this appendix.

There remains to consider how the wave length X and period T

of the waves are modified by the dispersion.

Before leaving this section it may be noted that the input data

originally supplied to this project gave the maximum wave height at

r = 20 miles as q o = H/2 = 388 ft. (calculated from Kranzer-Keller

theory for d = 18, 000 ft.), with a corresponding period T = 1. 2
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minutes. This gives us H/T : 0.15 and d/T 2 = 3.447 (ft. /sec. 2

units). When this point is located in Fig. 1-4 (not actually shown)

it falls in a region which would not seem to justify the use of

linear theory (the premise upon which Kranzer-Keller, Unoki-

Nakano, and Cauchy-Poisson- Lamb theories are all founded).

About the highest value that H/T2 could have, in order not to

violate the necessary conditions of linear theory, would be 0. 042

(cf. Wilson, 1962, Fig. 28). This is an additional reason, per-

haps, beyond that expressed earlier, for questioning the use of

Kranzer-Keller theory in derivation of the input data.

5. INCREASE OF WAVE PERIOD WITH DISPERSION

From Eq. (1-9) it is clear that a wave crest will be encoun-

tered whenever cos(kr - o t) = 1. This will happen whenever

(i) kr-o-t t 2irm

(1-17)

(ii) m 0, 1, 2, 3,...

Eq. (1-17 i) may be written in the form

k r0- t)-.. 2 7rm (1-18

and since by definition

Mi c= X,/T -=o'/k

(U-19)

(ii) V d-7 r/t,
dk



V being the group velocity, or rate of progression of the wave

groups, Eq. (I- 18) is adaptable to the form,

kd(I - ") ÷ -i!MT(-0
- (r/d) (X-JO)

We have already noted that waves generated from an initial distur-

bance, although composite of a spectrum of frequencies, tend through

interference effects to assume momentarily the form of waves of

non-dispersive type, subject to the same conditions under which the

latter can exist. Thus, as the linear theory of Kranzer- Keller

predicts

(I) c A~ [tonh k]

(ii)V=.--.2 sin h 2kdJ

Since V in general is less than c, we must take the negative sign

with the right hand side of (1-20). Eq. (I-20) thus transforms to

d [sinh 2kd-2kd] 2m
[si "h2kd+2kdl -_ (r/d)

Van Dorn (1961) has evaluated the function of (kd) forming the left

hand side of Eq. I-Z2), It is sufficient to note here the two extremes

of its values.

First, for deep water conditions (kd > 7r ), (I-Z2) becomes
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k d - -- d (t- 23)

and since for the same conditions c 2  g/k or a- =vgk from

Eq. (1-13), elimination of k in (1-22) in favor of a- ( = 2 7r/T)

yields

2Vr d (1-24)

Eq. (1-24) shows that the period of those waves for which d/ > I

which would inevitably include most of the trailing waves in the dis-

persive system and possibly the bulk of the waves if the depth is

great and the explosion small, will increase as the square root of

the distance (r/).

For the opposite extreme the function (kd) of Eq. (1-22)

assumes the asymptotic value of [ (kd) 3/3] /[ I + (kd) 2/31 when

kd < 7r/10, applicable to shallow water conditions. In this case

then Eq. (1-22) reduces to

3

3 (r/d)

For this condition Eq. (1-13) yields , = gdk so that (1-25) re-

duces to the form

(4T2)13 (r') (1-26)
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and the inference is that wave period increases as the cube root of

the distance (r /3) when depth conditions are such that d/k < 1/20.

This result agrees with Van Dorn (1961) and accords with the two-

dimensional theory of Eckart (1948, p. 409).

In Eqs. ,1-24) and (1-26) an anomaly arises for m = 0 at the

front of the wave train for which the wave period and wave length

are theoretically infinite, for here from Eq. (1- 17 i), (kr - o" t) = 0

or

do--
(i) C x ok tr/1 I - V

(1-27)

(ii) C d

The anomaly is implicit in the Kranzer-Keller theory since Eq. (1-27)

is in agreement with (I- 12), provided S (kd) = I with kd = 0. It

brings to focus the statement made earlier in reference to Eckart's

(1948) solution of a two-dimensional dispersive wave system, that

the modulating factor apparently becomes the criterion determining

the wave length. It is of interest to quote Eckart in this regard:

"The situation near this front iE very peculiar. It may be

described as a carrier wave which is amplitude modulated.

However, contrary to the customary case, the carrier has a

longer (infinitely longer! ) wave length than the modulation.

Consequently, the empirically determined "wave length"

bears no relation whatever to the spectrum of the disturbance.

Such wave fronts are of considerable importance as they con-

stitute the seismic sea waves, commonly called 'tidal waves'."
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To resolve this problem we shall attempt an approximate

analysis based on Eq. (I- 16i), which gives the wave form for

shallow water conditions (applicable to the wave front) for a

piston-like surface elevation 0 applied over a radius R at the

origin. If, in conformity with Eckart, the modulator, J 1 (kR)/kd

in this case, becomes conditional in prescribing the effective

wave length and period at the front of the dispersive system,

then it can be seen that for small values of kR the above term

approximates to

JI(kR) R -(kR) + (kR) 4 (Z-28)

so that, approximately

kR[4 1 d 1]I/2 (/-29)

if %F represents the function Jl(kR)/kd.

Crests of the carrier waves near the front, however, occur

whenever cos(kr - a t) = 1, so that the same condition (1-25)

prevails as before, giving

kd = [217 ] (1-30)'

2 2
On multiplying Eqs. (1-29) and (1-30) and noting that k = o/gd
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for small values of kd, as pertain to the wave front, we find

T/ (3 r( /4 [R 1 /4 (r)l1/6

(1-31)

The series approximation, Eq. (1-28), is valid so long as

kR is less than about 2. 0 and since the Bessel function Jl(kR)

reaches its first maximum value at kR = 1. 84, it may be con-

cluded that Eq. (1-31) is pertinent for values of m 1= 1, 2, 3 ... )

up to the maximum waves in the -first group so long as kd < 1/20.

For kR = 2.0, Eq. (1-29) -gives

R '1-32)

resulting in a simplification of Eq. (1-31) to

- ( i 15 ) 1/6 1/ r ( ) /6Ti m (.1 -33)

If the p-th wave is the highest in the first beat then its period

will be given approximately by Eq. (1-32) for m = p.

The general picture we gain of increz.se of wave period

with distance on dispersion from the source iR now as follows:

first, the size of the initial waves set up by an underwater explo-

sion or other disturbance is a function of the magnitude of the

disturbance, R. Wave length and period would appear to increase

very slowly with distance according to r1/6 with long waves some
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distance behind the front the period increase would conform to

1/3r and with short waves near the rear of the train, or in other-

wise exceptionally deep water, the period increase would follow

the law r1/2

6. EXPERIMENTAL EVIDENCE FOR WAVE PERIOD INCREASE

In a classic paper on the subject of wave period increase,

Munk (1947) had indicated that the wave period of tsunamis must

bear some relationship to the original disturbance, because of an

indeterminateness of the function in the general solution of the

governing differential equation:

bT+V T(134)b-' t x b X I 4

This is patent from the data drawn from his paper and plotted in

Fig. 1-5, which relates the dimensionless quantities T vg and

r/d. Clearly the tsunamis of April 1, 1946 (Aleutian Trench),

April 13, 19Z3 (Kamchatka), and November 10, 1922 (Chile), obey

different laws of period increase with distance, as also the tsunami

originating from the submarine volcanic eruption at Myojinsho Reef,

on March 11, 1953 (Unoki and Nakano, 1953).

For the tsunami of April 1, 1946, we have extracted from the

data given by Munk, the periods of the waves 20 mins. behind the

wave front, as recorded at Valparaiso, Matarani, La Jolla and

Honolulu. Also assembled in Fig. 1-5 are period data for the leading

waves obtained from Takahasi's (1961) model experiments on a

1-31



I000

LEGEND
5 LEADING WAVES FROM PISTON UPTHRUST OF SEA-lED8 ! 0 (MODEL EXPERIMENTS) (TAKAHASHI, 1611 -

LEADING WAVES FROM UNDERWATER NUCLEAR EXPLOSIONS
"* (OPERATION REDWING) BIKINI ATOLL. PACIFIC, 1956

[VAN DORN, 1901]
2. wI WAVES 20 MINUTES BEHIND FRONT, TSUNAMI OF APRIL I,2 19IS46, ALEUTIAN TRENCH, PACIFIC [MUNK 1947]

A { LEADING WAVE FROM TSUNAMI OF APRIL 13, 123,

KAMCHATKA PENINSULA, PACIFIC [ MUNK 104
100 LT[AOING WAVE FROM TSUNAMI OF NOV. 10, 1922, -

,,- ATACAMA, CHILE, PACIFIC (MUNK 1947] A 1/40 • t [ LEADINO WAVES FROM SUBMARINE VOLCANIC ERUPTION, or -
& MYOJINSHO REEF, JAPAN, MAR.11, 1953 [UNOKI S NAKANO, 1953]

U) 5

ILI2z 0
2

W INPUT DSNIGF N DT

1 2 5 10 2 5 100 2 5 1,000 2 5 10,000
RADIAL DISTANCE RELATIVE TO MEAN WATER DEPTH, r/d

FIGURE 1-5

PERIOD OF THE LEADING WAVE IN A DISPERSIVE, IMPULSIVELY

GENERATED SYSTEM AS A FUNCTION OF RADIAL DISTANCE FROM

THE ORIGIN

I-3Z



piston-like upheaval of sea bed and from Van Dorn's (1961) mea-

£ surements of underwater nuclear explosion waves from Bikini Atoll,

as measured at Ailinginae, Eniwetok, Wake and Johnston Islands

in the Pacific. It is quite fortuitous that all these last mentioned

data are in virtual alignment in Fig. 1-5, suggesting that from a

dimensional standpoint the source disturbances in each case must

have been quite similar. What is of special interest is that for

small values of r/d Takahasi's data show T OC rI 6 , in agree-

ment with Eq. (1-33) while Van Dorn's and Munk's data conform

1/4almost exactly to a law T • rI. What is further of extraordinary
chagefr 1/6 1/4

interest is that the change from r to r occurs at r/d = 35,

suggesting some parallel with the height-change law of Fig. 1-2.

We may recall too that the experimental height-change law ( a r")

for small r/d was in accordance with the 'prediction of the

theoretical stationary-phase asymptotic approximation and note the

similarity here that the experimental period-change law ( CC r

for small r/d is also in accord with the theoretical stationary-

phase asymptotic approximati.on (Eq. (1-33)). Beyond r/d = 35,

the height change law ( C r5/6) exhibited the invalidity of the approx-

imation. It seems evident therefore that the same invalidity is res-

ponsible for the period-change law following a new pattern (r /).

Data from the two-dimensional experiments of Prins (1956, 1958)

have not been invoked in Fig. 1-5, as they would be inappropriate.

Eq. (1-33) can be expressed alternatively as
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(i) Ti K

(1-35)

(ii) KfI-!.~2 (Rd)-35

3 P d

It is of interest to compare the theoretical value of K given by

(1-35 ii) with the value K (= 8.2), found from Fig. I-5 as appli-

cable to Takahasi's experiments. For this purpose we take p = 1

for the first wave- and insert• R= 6 ins, d 1.875 ins, the dimen-

sions -of piston radius and water depth respectively in the model

experiments. Eq. (1-35 ii) then yields K = 7.03 which is of the

correct- order of magnitude. Since R should really be the radius

of the initial surface disturbance which probably exceeded 6 ins.

.-the congruency could probably be-improved. Eqs. (1-33) or (1-35)

thus'appear to be a reliable prediction of initial wave period

increase.

From the alignment of the April 1, 1946 tsunami and the 1956

REDWING nuclear explosion data with that of Takahasi's (Fig. 1-5),

we conclude that the same R/d Value of about S. 2 prevailed. For

the tsunami this would imply an initial radius of surface disturbance

R = 52, 200 ft. (d t_ 16, 320 ft. ) or 8. 60 n. mi. Interpreting this

as related to an earthquake fault-length of 19.2 n. mi. or 35.6 kin,

the equivalent earthquake magnitude would be about 7. 40 (cf. Wilson,

1962 (Fig. 8) ), whereas the actual earthquake magnitude was in

fact 7.4. For the REDWING explosion series, the implication is
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that if the waves had emanated from an explosion, unobstructed

by atolls or reefs, the bubble crater diameter D (= ZR) wouldc

have been 6.4d, or about 6 times the water depth. For d W ZOO ft,

D would thus have been of the order of 1280 ft.
c

7. CALCULATION OF DESIGN WAVE HEIGHT AND PERIOD

AT THE CONTINENTAL SLOPE

Despite any reservations made regarding the input design

data, we proceed to use them in conjunction with the laws of height

and period change with radial distance of dispersion, justified in

this appendix, in determining the wave height and period that would

prevail at the continental slope off Chesapeake Bay.

The law of maximum wave height change, following the dis-

cussions of Sections 2 and 3, may be generalized as

= (• 1-36)

in which n is a numerical exponent and a the corresponding pro-

portionality constant. It is convenient to write this in the form

Y = a. X-9 (1-37)

where

(i) Y: o /D,

(1-38)

(ii) X r r/d
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In order to apply Eq. (I-36) derived for constant depth, to conditions

under which the depth is a function of r, namely d = d(r), it is

necessary to integrate d,7o/dr as a function from which X has

been eliminated, (cf. Wilson, 1961). Thus by differentiating Eq.

(1-37), regarding d as constant, and eliminating X in favor of Y by

use of (U-37), we arrive at the expressions

(i) din* Do
dr d (r)

(1-39)

(ii) a -na"i Y

The law of period increase, following the discussions of Sections 5

and 6, may be generalized in a similar way as

TV /3 (..) (1-40)

with m a numerical exponent and Om the corresponding constant

of proportionality. Writing this as

Z - )mx m  (1-41)

in which

(i) Z T

(I-42)

(ii) X r/d
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we may follow the same general procedure as for wave height in

deriving

dr

(1-43)

(ii) Z'-mB3 z

In case III, the given data prescribes a half-wave amplitude

1o0= 388 ft. at r = 20 miles resulting from a bubble crater dia-

meter D = 20, 800 ft. For an assumed point of detonation at

latitude 35 30', longitude 65 271, off the east coast the water

depth profiles along great circle. paths directed towards Chesapeake

and New York Bays are as shown in Fig. 1-6, with depth at the de-

tonation point d -- 15, 500 ft. The leading wave period is given as

T = 2.75 rnins. and that of the highest wave (crest No. 4 or trough

No. 5) as = 1.2 mins.

-2
With this information we find, no/Dc 1.87 x 10 and

T 1  /g/ = 3.87 at r/d = 6.77. These points are located on Figs.

1-2 and I-5 and design curves have been constructed through them

parallel to the theoretical empirical relationships found to correspond

with observations. The same indicated change of slope at r/d = 35

has been adopted in both cases.

This location was the first originally prescribed for the project but
was later amended to one closer to the shore (see Chapter V - Vol. I
Part B). The calculation here given is left unchanged, however,
on grounds that general deductions are still pertinent.
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Applicable values of n, a0, m, • now readily

evaluated from the design curves of Figs. 1-2 and 1-5 are recorded

in Table I-I.

TABLE I- 1

DESIGN CONSTANTS GOVERNING WAVE HEIGHT AND PERIOD

Relative Distance Wave Height Decay Wave Period Increase

r/d n an m M

<35 1 0.127 1/6 2.90

>35 5/6 0.0734 1/4 2.12

Eqs. (1-39) and (1-43) have been used in conjunction with the

parameters of Table I- I in a stepwise numerical integration pro-

cedure for computing no and T over the (full-line) depth profile

shown in Fig. 1-6, carried as far as the foot of the continental

slope. The results of the calculations are portrayed in Fig. 1-7.

The highest wave, without regard to its position in the wave

groups, will decline from an initial elevation no = 388 ft. at

r = 19 n. mi. to 7io = 17.3 ft. at r = 428 n. mi. from the origin.

Over this distance the water depth decreases from 15, 420 ft. to

7800 ft. Maximum water depth of 17, 760 ft. is encountered at the

intermediate distance r - 155. 5 n. mi. The further history of

wave height has not been pursued beyond r = 428 n. mi. because
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of the complications of reflection at the continental slope, which

require separate study (as given in Chapter IV, Part B, Vol. I).

Over the same wave path the period of the leading wave,

T= 165 secs. at r = 19 n. mi. is found to increase to

T= 192 secs. at r = 428 n. mi. On the assumption that the

fourth wave in the leading group of waves follows the same laws

of period increase as the actual wave front, its period of

T4 = 72 secs. at r = 19 n. mi. is found to increase to 81 secs.

at r = 428 n. mi. The legitimacy of this calculation may be open

to question as the governing law may be more in accord with

Eq. (1-26). For the initial values of d = 15, 500 ft. at r = 19 n. mi.

the latter equation gives T4 = 70.5 secs. for m = 3 (the fourth

wave) which is in surprising agreement with T4 = 72 secs. of the

given data. Since Eq. (1-26) is valid only for constant d, we

must take a mean value of depth over the distance to estimate T4

at r = 428 n. mi. For d = 15, 000 ft. then, T 4 is found to be

197 secs. at r = 428 n. mi. on this basis. This value exceeds the

computed value of TI = 192 secs. and is therefore not likely to be

correct. The inference must be that Eq. (1-26) is only applicable

much further back in the body of the waves for larger values of m.

8. CONCLUSIONS

On the basis of the arguments evolved in this appendix, and

on the assumption that a nuclear explosion with a bubble crater

diameter Dc = 20, 800 ft. produces maximum waves of a height
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= 388 ft. above still water at a dia'tance of r = 20 miles from

surface zero in a water depth of 15, 420 ft., it is found that over

the shelving depth to the base of the continental shelf (d C- 7800 ft.)

the maximum waves will have decreased to ,o = 17.3 ft. at

r = 428 n. mi. The period of the leading wave (which will be of

much lower height) will approximate 192 secs. (3.2 mini.), but

the period of the highest wave will very likely be in the neighbor-

hood of 80 secs. at this distance.

At a radius of 300 n. mi. from surface sero (d 2 10, 000 ft.)

Fig. 1-7 show. that the probable maximum height above still water

of the highest wave will be about no = 25 ft. and its corresponding

period about T = 78 secs., which is in very good agreement with

what has been found in Appendix II.

A question as yet unanswered is whether the Kranzer-Keller

theory and the asymptotic solution which it invokes is legitimately

applicable to a system of high waves which, in the initial stages at

least, are likely to be extremely non-linear. However, an encouraging

aspect of this query is that experimental results of wave height and

period-change, even for comparatively small values of r/d, do con-

firm the theoretical predictions based on the asymptotic solutions of

the linearized theory. Since the Kranzer-Keller theory is merely

an adaptation of the more fundamental Cauchy-Poisson-Lamb linear

theory which conceives the emergent waves as the sum of an infinite

number of small amplitude waves distributed over a continuous spec-

trum of frequencies, there is the possibility that the aggregate
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outcome of its legitimate linear processes, applied to the spectral

elements, is a very close approximation (if not an exact solution)

to the characteristics of large waves, which as entities must other-

wise be considered as obeying non-linear laws.
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UIST OF SYMBOLS

F'CP APPENDIX I

c phase velocity of water waves

d water depth

D diameter of bubble crater at the water surface in
c underwater explosions

e universal constant (2. 718...)

g acceleration due to gravity

h depth below the surface of an underwater explosion

H wave height, crest to trough

I uniform impulse (per unit area) over source area

I (r) function describing the initial impulse as a function
of r

T (k) Hankel transform of I (r) (Eqs. (I-Il)

1 0 concentrated impulse at the point source (per unit area)

J Bessel function of zero order0

JI Bessel function of first order

k wave number (= -)

K constant of proportionality, function of R/d, (Eqs.
(1- 36 ii)

m (1) numerical exponent; (2) corresponding subscript

n (1) numerical exponent; (2) corresponding subscript

p integer number representing the wave with greatest
height counted from the front of the train

Q vertical surface elevation over a circle of radius R

O (r) initial surface elevation as a function of r
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"1 (k) Hankel transform of Q (r), (Eqs. I-Il) )

Qo initial surface elevation of point source disturbance
at the origin (per unit area)

r variable horizontal radial distance in cylindrical
symmetry

R radius of a cylindrically symmetrical surface or
bottom disturbance

t variable time

T wave period

T. period of the initial or leading wave in a dispersive
1 system

V group velocity of water waves

W charge-weight of nuclear explosion

W that part of the total energy W which is responsible
for the generation of waves

x variable horizontal distance

X dimensionless variable, (Eq. (1-43 ii) )

Y dimensionless variable (Eq. 1-39 i)

Y1 differential coefficient of Y with respect to X
(Eq. 1-40 ii) )

Z dimensionless variable (Eq. (1-43 i) )

ZI differential coefficient of Z with respect to X,
(Eq. (1-44 ii) )

an constant of proportionality, (Eq. (1-38) )

Rm constant of proportionality, (Eq. (1-42))

n7 elevation of wave surface above still water level

170 maximum value of 7 at the wave crest

lie value of q, deriving from an initial elevation over
a limited source region
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7 }|value of ni deriving from an initial impulse applied
over a limited source region

X wave length of a wave in water of any depth

X0 deep-water wave length of any given wave type

x wave length of the leading wave in a dispersive system

1A coefficient of virtual viscosity (sec. units), (Eq.
(1-5)

V universal constant (3. 14159...)

p mass density of (sea) water

Cr angular frequency ( = 2 w/T)

Sfunction of (kd) in K ranzer-Keller theory, com m on to
cases of initial elevation and initial impulse

*0 function of kd in Kranzer-Keller theory, case of
initial elevation

*i function of kd in Kranzer-Keller theory, case of
initial impulse

'I' function of kR and kd (Eq. (1-28)
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1. INTRODUCTION

A critical literature survey on the various theories for

studying gravity waves generated by underwater explosion has

been given in Appendix I. It is recalled that a description of the

motion of the free surface of a body of water of constant depth

following an arbitrary initial distribution of impulse applied to the

surface, or an initial elevation or depression of the surface of

arbitrary shape, is given by the Kranzer-Keller theory (1955) for

the radially symmetric case. Kaplan, Wallace and Goodale (1962)

have carried out computations of the Kranzer-Keller equations for

three cases of initial paraboloidal depressions of the surface for

a point on the surface twenty miles from the center of the initial

disturbance. These results have been presented in Fig. 1 (Vol. I)

of this report. The primary object of this appendix is to present

a similar set of computations for the same three cases considered

by Kaplan, Wallace and Goodale, but at a point on the surface 300

miles from the center of the initial disturbance. For the cases

under consideration, certain theoretical results have been obtained

by the authors and these results are also presented.

2. PRINCIPAL EQUATIONS

The displacement I? (r, t) of the free surface is given by

7 7 (r,t) - -0R B Cos [2w ( -t)] (II)
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where

B( 4b (I-2r)

and (T = 27h

X = wave length

T = wave period

h = fluid depth

R = effective radius of disturbance

r = distance from center of disturbance

71]0 = depth of disturbance at r = 0

t z time

The function E(s) is the Hankel transform of the function E(r),

the initial paraboloidal depression, which is assumed to be of the

form

[Ar 2r7o,0 < r 5 Y,

E(r) = (11-3)
O, y<: r,

where

A z -1o (11-4)

See Figure 11-2.

It follows that

217E(9) J -s)-
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where 32(x) is the Bessel function order 2.

The function. *(ar) is given by

ton h ,ar (11-6)
-47n 2(cosh 0f ( - -

The function #(oa) is a positive monotone decreasing function of

ar and lira *c(o) 1 1, i.e. #(o) = I.
o.-. 0

The parameter ao is related to the quantities r and t by

the equation

#(r) rt r (II-?)
ýAW t fh

so that

where " is the inverse of # and g is the gravitational ac-

celeration constant.

The period T is given by the equation

• ~2w

T- 2n ar (11-9)
a - t an h a

The effective radius R is related to the quantity " by the equation

R x Y (II- 10)

It follows from (II-Z), (11-5) and (II-10) that
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B 2- 2I "h J(-)c (a) (Il-il)

where

•(o-) _=(o ) 1 (-

For convenience, we have defined

S70 R B 27 0 h (_ " (a) (cr raro- 2

and

8(r,t)- 27 (4r, 0 _ (II-14)

so that by (II- I), (II- 13) and (II- 14)

71 (rt) = B'(r,t) cos 8*(r,t) (11-15)

The quantity B (r, t) therefore represents the displacement

of the amplitude of the wave envelope. The quantity 9 *(r, t) given

by (11-14) may be shown to be a monotone increasing function of

t for t _> r Moreover, lim 8 (r,t) 0 and Jrn a (r,t) co

r - A"-
tAgh
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The times of arrival of create and troughs are given by the solu-

tions tm of the equations

9 (r,ttn) - nr, n 1,,2,.. (11-16)

3. APPROXIMATIONS

Following the example set by Kaplan, Wallace and Goodale,

we have replaced the functions *(cr) and C((a) in the above

equations by their asymptotic expressions I and V2o '

respectively, for values o" > 4 . The parameter 0- may be

eliminated from the preceding equations and the following simplifi-

cations occur:

8/ (r,t)7' 0 r _ J2 t V 4r(11W 4t r2• ] t _>vr-h-(I-

and (II- 18)
92gt 4rr 8.r r 4rS•~~~(r~t)- "z-r T -0- -' X• '",t > -:

4r *iF9 gt '

The times of arrival t of crests and troughs may be computed
m

from the e_-atio -

tn / 4 ýrrn 4 r19

t g for positive integers n 2! (-19)

The following theoretical results have been noted by the

authors of this report. The zeros of B *(r, t) occur at the times

tk given by
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t (11-20)

where j- i s the kth positive zero of J (x).

If .b. > 1. 739. the maximum values of I B*(r, t) occur at

the times t k given by

/4;~' (11-21t[ = / yg

where x** is the kth positive zero of J?(x) - x J 3 (x).

To compute the first two packets of waves, we have made use

of the values

k Xk k

1 5. 136 2.300

2 8. 417 6.541

The restriction h > 1.739, is satisfied for Cases I and

II considered by Kaplan, Wallace and Goodale. For their Case III,

h. 1.731 and the restriction is very nearly satisfied. Eq. (11-20)

follows from (11-13), and Eq. (II- 21) follows from (11-17), which

follows the asymptotic expressions for *(a) and C(o)

It should be emphasized that the value t I r / x

is the time of arrival of the maximum value of the Y g

absolute value of the amplitude of the wave envelope. This maximum
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value i equal to B*(r, t I The value t* will be very

nearly equal to the time of arrival of the highest crest and the

value B*(r, t*)I will be very nearly equal to the displace-

ment of the highest crest.

4. DESCRIPTION OF COMPUTATIONS

In calculating the displacement 71 (r, t), it is first necessary

to compute the functions *) and C(a) A table of these

functions has been prepared, using a Bendix G- 15 computer, with

w incremented by 0. 01 in the interval from 0 to 4, in order to

simplify any future hand computations. These results are found in

Table U1-4. Also, the following numerical values were used to

compute 11 (r, t) and B (r, t):

r - 300 miles = 1, 584, 000 feet

h z 18,000 feet

g = 1. 1592 x 105 ft./min. 2

These computations were carried out for the following three cases

Dimensions of Initial Displacement

Depth Radius
(feet) (feet)

Case I 3,380 4,440

Case II 6,010 7,900

Case III 7, 920 10,400

TABLE -1 I
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The time to at which disturbances begin at a distance r

f rom the center of the initial depression is the same for all three

cases and is given by

to r 34.67 min.
ýgh

The times of arrival t and t of the first two zeros of the dis-

placement of the wave envelope B (r, t) were computed from Eq.

(11-20) and are listed in Table 11-2.

Times of Arrival of the First Two Zeros of

the Displacement of the Wave Envelope

k kt (min.

Case 1 1 316.4

2 405.0

Case 11 1 237.2

2 303.6

Case 111 1 206.7

1 2 1 264. 6 _j

TABLE 11-2

The times of arrival t I and t 2 of the first two maxima

of the absolute value of the displacement of the wave envelope

B (r, t) I as well as the maximum values I B (r, t I **) I ,

B*(r, t**) and the periods and wave lengths at times t
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and t2 were computed from Eqs. (11-21) and (U- 17), and are

listed below.

Times of Arrival of the First Two Maxima of the

Absolute Value of the Displacement of the Wave

Envelope and the Corresponding Maximum Values,

Periods, and Wave Lengths

Case k **B*(r, t T

_ _(mrin) (feet) (min) (feet)

1 1 211.7 4.826 0.811 12, 140

2 357.0 1.270 0.481 4, 270

II 1 158.7 15. 268 1.'082 21,600

2 267.6 4.018 0.642 7,600

I1 1 138.3(?) 26, 488(?) 1,242 28,440

2 233.3 6.971 0.736 10,010

TABLE 11-3

The values followed by (?) are doubtful because the restriction
h-h > 1.739 is not satisfied.

In the range 34. 67 < t < 138. 01, which corresponds to

the range 0 < 05 < 4, the values of the displacement of the wave

envelope B *(r, t) were computed from Eq. (11- 13) using the Bendix

G-15 computer. For values 138.01 < t 5 t*, the values of* o*

B *r, t) were computed by hand using Eq. (11- 17).

* The tables of the Bessel Functions of the First Kind of Orders 2
and 3 by the Staff of the Computation Laboratory, published in Cam-
bridge by the Harvard Press, were used in these computations.
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TABLE 11-4 THE FUNCTIONS *()AND C(.)

0.01 .9999500 1.0000277
0.02 .9998000 1.0001111
0.03 .9995502 1.0002500
0.04 ,9992006 1.0004444
0.05 *9987516 1.0006944

0.06 .9982034 1.0010000
0.07 .9975563 1.0013612
0.08 .9968107 1.0017779
0.09 .9959672 1.0022503
0.10 .9950262 1.0027782

0.11 .9939884 1.0033617
0.12 .9928543 1.0040009
0.13 .9916247 1.0046951
0.14 .9903004 1.0054462
0.15 .9888d21 1.0062523

0.16 .9873708 1.0071141
0.17 .9857673 1.0080317
0.18 .9840727 1.0090049
0.19 .9822880 1.0100339
0.20 .9804142 1.0111186

0.21 .9784525 1.0122592
0.22 .9764040 1.0134556
0.23 .9742700 1.0147078
0.24 .9720518 1.0160158
0.25 .9697506 1.0173798

0.26 .9673677 1.0187997
0.27 .9649046 1.0202756
0.28 .9623627 1.0218075
0.29 .9597435 1.0233954
0.30 .9570483 1.0250395

0.31 .9542788 190267396
0.32 .9514365 1.0284959
0.33 .9485229 1.0303084
0.34 .9455397 1.0321771
0.35 .9424884 1.0341022

0.36 .9393708 1.0360836
0.37 .9361884 1.0381214
0.38 .9329430 1.0402157
0.39 .9296362 1.0423665
0,40 .9262699 1.0445739
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TABLE 11-4 (continued)

0.61 e9228496 100468379
0.42 ,9193651 1.0491586
0.43 ,9158302 1,0515361
0.44 .9122427 1.0539704
0.45 .9086042 1.0564617

0*46 o9049165 1.0590099
0047 ,9011815 1.0616151
0948 .8974006 1.0642775
0.49 .8935762 1.0669972
0.50 .8897095 1.0697741

0.51 .8658000 1.0726000
0.52 ,8618600 1,0755000
0053 .8776800 1.0784000
0.54 .8738600 1,0815000
0.55 s9696100 1,0845000

0.56 .8657200 1.0876000
0057 .8616100 1,0908000
0056 .8574700 1.0941000
0059 .8533000 1.0974000
0.60 .8491100 1.1007000

0.61 .8448900 1,1041000
O.62 .8406500 1.1076000
0.63 .8363900 1.1111000
0.64 .8321200 101147000
0.65 .8278200 1.1184000

0.66 .8235100 1.1221000
0.67 .8191900 1.1258000
0,68 ,8148500 1.1297000
0.69 .8105100 1.1336000
0.70 .8061500 1,1375000

0.71 .8017900 1.1415000

0.72 o7974100 1.1456000
0.73 07930300 1,1497000
0.74 .7886500 1.1539000
0.75 ,7842700 1.1581000

0.76 .7798800 1.1624000
0.77 07755000 101668000
0*78 .7711100 1.1712000
0.19 .7667300 1.17510(0
0.60 .7623500 1,1803000
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TABLE U-4 (continued)

c061 07579700 1.1849000
0.02 .7536000 161895000
0*83 :7492400 1:1943000S0,04 o7446800 101991000

0085 o7405300 1.2039000

0086 .7362000 1.2088000
0.87 .7318700 1.2138000
0088 o7275500 102189000
0.89 .7232500 1.2240000
0.90 .7189600 1.2291000

0091 o7146900 1.2344000
0.92 .7104200 1.2397000
0.93 07061800 1.2450000
0094 o7019500 1.2504000
0.95 .6977400 1.2559000

0.96 06935500 1.2615000
0.97 .6893700 1.2671000
0098 *6652200 1.2728000
0099 06810800 1.2785000
1.00 .6769700 102843000

1001 .6728700 102902000
1.02 .6668000 1.2961000

1o03 06647500 1.3021000
1004 o6607300 103082000
1005 .6567200 103144000

1.06 06527400 1.3206000
1007 .6487900 1.3268000
1008 .6448600 1.3332000
1.09 .6409500 1.3396000
1.10 .6370700 1.3460000

1.11 o6332100 1.3526000
1.12 o6293900 1.3592000
1.13 .6255800 1.3658000
1.14 .6218100 1.3726000
1015 o6180600 1.3794000

1.16 o6143400 103863000
1.17 o6106400 1.3932000
1.18 06069700 1.4002000
1.19 .6033300 1.4073000
120 o5997200 1.4144000
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TABLE 1-4 (continued)

1.21 e5961400 1.4217000
1.22 .5925900 1.4290000
1.23 05890600 1.4363000
1.24 .5855600 1.4437000
1.25 .5820900 1.4512000

1.26 .5786500 1.4588000
1.27 .5752400 1.4664000
1.28 05718600 1.4741000
1.29 .5685000 1.4819000
1.30 .5651800 1,4898000

1.31 e5618800 1.4977000
1.32 95586200 1.5057000
1.33 ,5553800 1.5138000
1.34 .5521700 1.5219000
1.35 .5489900 1,5301000

1.36 .5458400 1.5384000
1.37 .5427200 1.5467000
1.38 .5396200 195552000
1.39 .5365600 1.5637000
1.40 95335200 1.5722000

1.41 .5305100 195809000
1942 ,5275400 1.5896000
1.43 .5245900 1.5984000
1.44 ,5216600 1.6072000
1945 05187700 1.6162000

1.46 ,5159000 1.6252000
1.47 e5130600 106343000
1.48 e5102600 1.6434000
1,49 ,5074700 1.6526000
1.50 .5047200 1.6619000

1.51 .5019900 1.6713000
1.52 ,4992900 1.6808000
1.53 04966200 1.6903000
1.54 *4939700 1,6999000
1.55 ,4913500 1,7096000

1.56 .48687600 1,7193000
1.57 .4861900 1.7291000
1058 .4836500 1.7390000
1.59 ,4811400 107490000
1.60 .4786500 1,7591000
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TABLE 11-4 (continued)

# (0') f (01

1.61 o4761900 1.7692000
1.62 ,4737bUO 1.7794000
1.63 .471341,0 1.77960000

1.64 .4689600 1.8000000
1.65 .4665900 1.8104000

1.66 .46426C0 1.8209000
1.67 .4619500 1.8315000
1.68 *4596600 1.8421000
1.69 .4573900 1.8528000
1.70 .4551500 1.8636000

1.71 .4529400 1.8745000
1.72 .4507400 1.8854000
1.73 .4485800 1.8964000
1.74 .4464300 1.9075000
1.75 .4443100 1.9187000

1.76 .4422000 1.9299000
1.77 .4401300 1,9412000
1.78 .4380700 1.9526000
1.79 .4360400 1.9641000
1.80 .4340200 1.9756000

1.81 .4320300 1.9872000
1.82 .43C0600 1.9989000
1.83 .4281100 2.0106000
1.84 .4261900 2.0225000
1.85 .4242800 2.0344000

1.86 .4223900 2.0463000
1.87 .4205300 2.0584000
1.88 .4186800 2.0705000
1.89 .4168600 2.0827000
1.90 .4150500 2.0949000

1.91 .4132600 2.1073000
1.92 .4114900 2.1197000
1.93 .4097400 2.1322000
1.94 .4080100 2.1447000
1.95 s4063000 2.1573000

1.96 .4046100 2.1700000
1.97 .4029400 2.1828000
1.98 .4012800 2.1956000
1.99 .3996400 2.2085000
2.00 .3980200 2.2214000
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TABLE U-4 (continued)

a # (a f (0)

2.01 .3964100 2.2345000
2.02 .3948300 2,2476000
2.03 .3932500 2.2608000
2.04 .3917000 2.2740000
2.05 .3901600 2.2873000

2.06 .3886400 2.3007000
2.07 .3871400 2.3141000
2.U8 o3856500 2.3276000
2.09 .3841800 Z.3412000
2.10 .3827200 2.3548000

2.11 .3812800 2.3685000
2.12 .3798500 2.3823000
2.13 .3784400 2.3961000
2.14 .3770400 2.4100000
2.15 .3756600 2.4240000

2.16 .3742900 2.4380000
2.17 .3729400 2e4521000
2.18 .3716000 2.4663000
2.19 .3702800 2.4805000
2.20 .3689700 2.4947000

2.21 .3676700 2,5091000
2.22 .3663900 2.5235000
2.23 a3651100 2.5379000
2.24 .3638600 2.5524000
2.25 .3626100 2.5670000

2,26 .3613800 2.5816000
2.27 .3601600 2.5963000
2.28 .3589600 296111000
2.29 .3577600 2.6259000
2.30 .3565800 2.6407000

2.31 .3554100 2.6556000
2.32 .3542500 2.6706000
2.33 .3531000 2.6856000
2.34 .3519700 2.7007000
2e35 .3508500 2.7156000

2e36 .3497300 2.7310000
2.37 .3486300 2.7462000
2s38 .3475400 2.7615000
2.39 .3464600 2.7768000
2.40 o3453900 2.7922000
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TABLE 11-4 (continued)

17 (a)(a)

2.41 .3443400 2.8076000
2.42 .3432900 2.8231000
2.43 .3422500 2,8386000
2.44 .3412200 2.8542000
2.45 .3402100 2.8698000

2.46 .3392000 2.8855000
2.47 .3382000 2.9012000
2.48 .3372200 2.9170000
2.49 .3362400 2.9328000
2.50 .3352700 2o9486000

2.51 .3343100 2,9645000
2v52 .3333600 2.9804000
2.53 .3324200 2.9964000
2.54 .3314900 3.0124000
2.55 .3305600 3.0285000

2.56 .3296500 3.0446000
2.57 .3287400 3.0607000
2.58 .3278400 3,0769000
2.59 .3269500 3.0931000
2.60 .3260700 3.1093000

2.61 .3252000 3.1256000
2.62 .3243400 3.1419000
2.63 .3234800 3.1583000
2.64 .3226300 3.1746000
2.65 .3217900 3.1910000

2.66 .3209500 3.2075000
2.67 .3201300 3.2240000
2.68 .3193100 3.2405000
2.69 .3185000 3.2570000
2.70 .3177000 3.2736000

2,71 .3169000 3.2902000
2.72 .3161100 3.3068000
2.73 .3153300 3.3235000
2e74 .3145500 3.3401000
2.75 .3137800 3.3568000

2.76 .3130200 3.3736000
2.77 .3122600 303903000
2.78 .3115100 3.4071000
2.79 .3107700 3.4239000
2.80 .3100300 3,4407000
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TABLE U-4 (continued)

2.81 93093000 3o4576000
2082 .3085800 3.4745000
2.83 03070600 3o4913000
2.84 .3071500 3e5082000
2.85 .3064400 3.5252000

2s86 .3057400 3U5421000
2.87 .3050500 3.5591000
2.88 .3043600 3,5761000
2.89 .3036800 3.5931000
2.90 .3030000 3.6101000

2.91 .3023300 3.6271000
2.92 .3016700 3.6442000
2.93 .3010000 3e6612000
2.94 .3003500 3.6783000
2,95 .2997000 3.6954000

2.96 .2990500 3.7125000
2.97 .2984100 3.7296000
2.98 ,2977800 3.7467000
2.99 .2971500 3.7638000
3000 .2965300 3.7810000

3.01 .2959100 3.7981000
3.02 .2952900 3.8153000
3903 .2946800 3.8324000
3.04 o2940700 3o8496000
3.05 .2934700 3.8668000

3.06 *2928800 3.8840000
3007 .2922800 3.9012000
3.08 *2917000 3.9184000
3.09 .2911200 3.9356000
3010 .2905400 3.9528000

3.11 .2899600 3.9700000
3,12 .2893900 3.9872000
3.13 .2888300 4.0044000
3.14 .2882600 4.0216000
3915 .2877100 4.0388000

3.16 .2871500 4.0560000
3.17 .2866000 4.0733000
3.18 .2860600 4.0905000
3.19 o2855200 4.1077000
3.,20 92849800 4.1249000

1-19



TABLE 11-4 (continued)

3.21 .2884400 4.3313000

3.22 .2839100 4.1594000

3.23 92833900 4.1366000
3.24 .2828700 491938000
3,25 ,2823500 4,2110000

3.26 .2818300 4.2282000
3.27 .2813200 4.2454000
3.28 .2808100 4.2626000
3,29 28075400 4 12798000
3.30 .2798600 4.2969000

3.31 .2793000 4.3141000
3o32 .2788100 4.3313000
3.33 .2783200 4.3454000
3.34 .2778300 4.3656000
3.35 .2773400 4.3828000

3.36 .2768600 473999000
3.37 .2763800 4.4170000
3.38 .2759100 4.4342000
3.39 .2754300 464513000
3.40 .2749600 4.4684000

3.51 .2745000 464855000
3.42 .2740300 4.6526000
3.43 .2735100 4.5197000
3.44 .2731100 4.5367000
3.45 .2726600 4.5538000

3.46 .2722100 4.5708000
3.47 .2717600 4.5879000

3.48 .2713600 4.6049000
3.49 .2708700 4.6219000
3.50 .2704300 4o6389000

3.59 .2699900 4.6559000
3.62 .2695500 4.6729000
3o53 ,2691200 4o6899000
3.S4 .2686900 4.7068000

3.55 o2682600 4.7238000

3o56 o2678300 4,7407000

3,57 o2674100 4o7576000

3.58 o2669900 4o7745000

3.59 92665700 4o7914000

3.60 o2661600 4,8082000
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TABLE 1-4 (continued)

3.61 o2657400 4.8251000
3.62 .2653300 4o8420000

a 3.63 92649200 4.8588000
3.64 e2645200 4,8756000
3.65 ,2641100 4.8924000

a

3.66 e2637100 4.9092000
3.67 .2633100 4.9260000
3,68 s2629200 4o9427000
3969 .2625200 4.9595000
3.70 .2621300 4.9762000

3.71 e2617400 4o9929000
3.72 .2613500 5.0096000
3.73 ,2609600 5,0263000
3074 .2605800 5,0429000
3.75 .2602000 5.0596000

3.76 .2598200 5,0762000
3.77 .2594400 5.0928000
3.78 .2590600 5.1094000
3.79 .2586900 5.1260000
3.80 .2583200 5.1425000

3.81 .2579500 5.1591000
3.82 .2575800 5.1756000
3.83 .2572100 5.1921000
3.84 92568500 5.2086000
3.85 .2564800 5.2251000

3.86 .2561200 5.2416000
3.87 ,2557600 5.2580000
3.88 .2554100 5.2745000
3.89 ,2550500 5.2909000
3.90 .2547000 5.3073000

3.91 .2543500 5.3236000
3.92 .2540000 5.3400000
3.93 .2536500 5.3563000
3o94 .2533000 5.3727000
3.95 .2529600 5.3890000

3.96 .2526100 S,4053000
3o97 .2522700 5.4216000
3.98 .2519300 504378000
3.99 ,2515900 5.4541000
4.00 .2512600 5*4703000
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These results are displayed in Figs. 11-3, 11-4 and 11-5.

In the range 34.67 < t < 138.01, the values of the dim-

placement of the free surface 7? (r, t) have also been computed

from Eq. (11-I) using the Bendix G-15 computer. However, be-

cause of their bulk and the fact that they do not have the general

interest of Table 11-4, these results have not been presented in

this report. Also, only the wave envelopes B (r, t) and wave

period distribution are used for practical purposes. The values

of 71 (r, t) have been plotted only for Case I in Fig. 11-6 as a

sample of the obtained results. Similar graphs for Cases II and

III may eventually be obtained from the performed computations.

Fig. 11-6 is very difficult to plot because of the large number of

crests and troughs (56 crests and 55 troughs). A more accurate

plot of Fig. 11-6 could be obtained by increasing the number of en-

tries in the performed computations. This would require about

four times as many computations, i.e. a, would have to be

incremented by 0. 0025 in the interval from 0 to 4.

The values of 71 (r, t) for t > 138.01 have not been com-

puted. However, the times of arrival of the crests and troughs

may be computed using Eq. (11-19) for positive integers m > 113.

While the times of arrival of crests and troughs are the same for

all three cases, it should be noted that a crest in Case I may cor-

respond to a trough in Case II, and vice-versa. For example, the

time of arrival t4 0 0 = 26Z. 07 minutes corresponds to a trough in

Case 1, a crest in Case II, and a crest in Case III. The question

I1-Z2
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of whether a given time of arrival tn corresponds to a crest or

a trough is settled by means of the following rule:

For positive integers n, the times of arrival tn represent

1 troughs for n even and t :5 tn < t1 ;

0 1

Z° crests for n odd and t < t < t0 -- n

30 troughs for n even and tI * tn < t

40 crests for n even and t1 < t < t;.
n
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LIST OF SYMBOLS

APPENDIX II

r Distance from the center of disturbance

x Wave length

T Wave period

h Depth

77 Free surface elevation above still water level

R Effective radius of disturbance

770 Depth of disturbance at r = 0

t Time variable
a, 2 7r h

M(S) Hankel transform of function E(r)
710

A r
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APPENDIX III

SURFACE WAVES GENERATED BY DISTURBANCE ON SEA

BED IN CONSTANT-DEPTH OPEN SEA

by

J. A. Hendrickson



I. INTRODUCTION

Even though the sea bed disturbance may, in actuality, be

of a complex nature, it is reasonable to assume that the surface

waves generated by the disturbance, at distances far removed from

the source, will approximate those created by an equivalent source.

We will assume equivalence on the basis of input energy and geo-

metrical similitude. Since the actual source (nuclear explosion

at sea bed) is three-dimensional in nature, we will aswume an equi-

valent source in the form of a cylindrical upthrust of the sea bed.

The time dependency of this upthrust will be assumed to be ex-

ponential in nature, with an extremely rapid time decay. This

appears to approximate the energy dissipation of actual nuclear

blasts. Finally, in order to complete the equivalence between our

assumed model and the actual disturbance source, one can match

the appropriate fraction of the nuclear blast energy to the energy

input of our assumed source.

2. DESCRIPTION AND SOLUTION OF PROBLEM

Fig. III-l shows the coordinate system and nomenclature

appropriate to the assumed disturbance.

We assume the source is described as follows:

• = g(t) f(r)
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where - St
g(t) • l -e•

f (r ) • } r re
0 r > ro

and f(r) B Bfr) 2, r r ro

The field equation of the potential function 4 is assumed

to be of the time independent form

22 2b
---- "I 4 .- 0 (III-2)

Sr r b r b z

while the boundary conditions appropriate to our problem may be

written as follows:

"at z 0

(111-3)

and
+at z = d

Since we are dealing with a semi-infinite media, we must include

all possible frequencies and wave lengths in the spectra of

generated surface waves. Hence, it may be shown that the appro-

priate bounded solution to Eq. (111-2) may be written as

(11-4)

J= fOlur) A(u, o-) sinhuz + B(u,o-) cosh uz cos oat du do-
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It is easily shown that the boundary condition at z d is

satisfied provided

a 2 sinh ud -ug cosh ud

B~u~i A~~o-) ug sinh ud - ocashO Ud(1-5

From Eq. (I1I- 1)

* Bse St r < r.

t 0 r t r0

It may be easily demonstrated from the Fourier-Bessel

theory that . may equivalently be expressed as
t

2
2 2s Brýl cos oat do-

7 t 2 oj 2 s2 {J (ur.) JO(ur) du (111-6)

0

However, from Eq. (111-4), it is easily seen that

zis I cos a t do- { uA(u,a-) J.,(ur) duzIz = 0 II7

Hence, using the first of Eqs. (111-3) and Eqs. (111-6) and (111-7),

it is seen that the coefficient A(u, o- ) is given by the relation

2s2 B r. J, (u r.)
A (u,a) 2 2r u (a+ s)

111-4



Thus, using the last of Eqs. (111-3) and Eqs. (111-4), (111-5)

and (111-8), we obtain, after some simplification and rearranging

(111-9)

2s2 B r. J Wur) Jo.(ur) Nra cos a t do-
- r cosh ud (T2 + s2 ) ug tanh ud - a

If we let x = ud, and integrate Eq. (111-9) with respect to

time, we obtain
(m-10)

2r
2s Br* Jl(x .) JM(x )dx a- sin at dcr

7rd cosh x (a-+ se) 1 -0 x tonhX]

It may easily be shown that the second integral in Eq. (111-10)

has the solution
(rn-1)

rsin at do- 7 JCos [-x tonh xT exp -st)

{(a +S2)o2 x j Lah s + x tonh x t

We are interested in the solution to Eq. (III- 10) for the case

t > 0, S ) > I Since the integral of Eq. (111-10) is extremely

convergent with x, we may substitute Eq. (III-1l) into Eq. (III- 10)

and use the fact that s > > I with the approximate result
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SJ(x-,&) (x) CosOlt tanh x dx

(r(II- 1d )

Cosh x

If we write

W Tr. B-- 7rd (rBI-13)

ww
where Pw density of fluid, we may rewrite Eq. (111-12) as

follows: r: r
- Jl (-!&X) J. (xK) cos (-L fx tanh x )dx

2K ! L)Id d
d cos x

where W and

2 Pw P 

r

Since we are ultimately interested in the asymptotic expan-
r

sion of q for -T > > 1, we note from Eq. (111-14) that the

integrand vanishes as x 0- . Hence the only contributions occur
r

when x > 0. Thus we assume that -T- x is large enough for the

following asymptotic expansion to be valid:

J, ('-' x) sts Cos ('-" X- )(I-5

d -rTV d 4 (111-15)

Using the relation

cos a cos b -- cos (a+b) + cos (a--b)
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we may write

0 x cos rI~ tn

S{os -L(x+ 0./1 tanh x 11-6

2 ,o, d

+ cos I.L (x. -8/x -tonh x _-r

Using Eqs. (III- 15) and (III- 16) with Eq. (III- 17), we obtain

the following approximate integral form for the surface profile
r

valid for > > 1:

(M--i7)

oo

JAX 2Kr ) Os L + -thxr)+ cos r(x-Ov/x iioii xM-~)}dx
I IC d 4r IT4

d/ 7-'J•J coshx
.0X

Since 1>> 1, it is clear that the contribution of the term

cos N(x +e84 t-nh x - 7r d in Eq. (111-17) may be ignored since
d ____ 4 r

a slight change in x causes the integrand to rapidly oscillate from

positive to negative values in such a fashion that the net integral

is approximately zero. The remaining term, however, possesses

stationary points (dependent on 9) and will hence contribute a

finite value to the total integral.

Hence we may write Eq. (III- 17) as follows:
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where J (.•a x) sech x
i(x) d

and OW (x) Vx-6 x tonh x d
4r

Eq. (111-18) is of such a form that the method of "stationary

phase" may be used to obtain a satisfactory solution. Although the

method will not be described herein, the results will be used in

solving Eq. (111-18) and the details of the method may be found in

Stoker (1957).b

Given an integral of the form I(K) {4 (Ck) e kS6(f) dC

where k > > I while 4r (C, k) is not a rapidly oscillating

function of the variable • Then the value of I (k) may be

written as follows:

2--, 1/2 exp i)(k + 0/(2-) (111-19)I (k) • (arl k)(k 4 ka) a)•
rkj "(ar) I K iIk(r+4f+0-) (11)

where the sum is taken over the zeros ar of 4)!(,) in the
region a_ < b atwhich #"(r) #0 The sign of the

* Stoker, J. J. (1957), "Water Waves," Pure and Applied Mathe-
matics, Vol. IV, p. 181.
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quantity " /4 in Eq. (111-19) is taken to be the same as the sign

of "(Or) Hence, using Eq. (111-18) we desi'e the solution to

the relation

W 5I ttnh x + x sechp 0 (IXI-20)

2 x tanh-x

Let ar be the r roots of Eq. (111-20). Hence

2 2 t1 1o2n a1
tonh +r + ar sech2  (11I-21)

It may be shown that

(m-zz)

I(or onh Or +[a. :hs 2 a -] 2 2 sech r (I-ar tanh ar)

2, t r),(artonh r3/ (artonh Or)

and it is to be noted that *" (ar) ) 0 , and that there is but

one solution Or to Eq. (111-21) for a given value of 0 ; 1.

Note that the value B = I corresponds to the arrival of a surface

disturbance propagating with a phase velocity of value ,/gd

Finally, using Eq. (111-14) we find, for r - > 1, the

asymptotic behavior of 71 to be the following:
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I
r J) A(111-23)

77 K (glad(l d)(rCos( -L" f (ad) +(-)-/

where 2 sech, a_
.r I

and f (ar) =9 -./a r tonh ar -ar

It may easily be shown that Eq. (111-23) has its maximum at

0 = 1 and that the peak amplitude (M. W. L. to crest elevation) is

given by the expression

-= (1III-24)

The interesting thing to note from Eq. (11-Z4). remembering

Wthat K = - x cst, is that the peak surface disturbance is only
d

dependent on the source energy (W), the water depth (d), and

the ratio of radial position to water depth (j-). Also the amplitude

is inversely proportional to the radial position (in contrast to the

inverse cube root of position for a two-dimensional source).
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Because of the rapid convergence of the integral (see Eq.

(III- 15) ) it is to be expected that the surface disturbance is rela-
r

tively insensitive to the ratio 0(radius of surface disturbance

to water depth) for values of ro < 1. (This is so due to the
ro J, q •"X)relative independence on C of the function )e

77 d

Fig. 111-2 shows the relation - vs e as obtained from
Eq. (111-23) for r = 10 and -- < 1. Also shown in Fig I1I-2

r

is the value of the integral of Eq. (111-14) vs. e for 1 = 10 and
ro 1

S-= 4Z obtained by numerical integration.

It may be seen that the agreement between the asymptotic

approximate solution and the numerical solution is not too good for

the first positive peak. However, the agreement on the first

negative peak is quite good (10% error). Also, the agreement on

the absolute maximum value of the integral is quite good.

It is felt that better agreement would be obtained for larger

values of 7- since such a case would improve the asymptotic

approximations.

Finally, Figs. 111-3 and 111-4 show the results of the asymptotic
r
r0 1 rintegration for 1T 7 and T 100 and 300 respectively.
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LIST OF SYMBOLS

APPENDIX III

r Horizontal distance from the origin

z Vertical coordinates (z = 0 at the bottom)

* Height of the bottom disturbance as function of time

t Time

a Coefficient of decay of the bottom disturbance with
respect to time

r° 0Radius of the original disturbance

B Final height of the bottom disturbance when time tends
to infinity

Velocity potential function

d Depth (mid-water level: z = d)
2w

u Space frequency. Dimensionally equal to 2 7r where
L is length

r Time frequency. Dimensionally equal to 2 where
T is an interval of time

Pw Density of fluid

g Gravity acceleration

W Energy of the original disturbance
W ro2B

Coefficient = W =2 w Pw gd3 2d

e Dimensionless time - .-
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A PPENDIX IV

THE PRINCIPLE OF SUPERPOSITION AND

THE THEORY OF CAUCHY-POISSON

By

B. Le M'haute



1. FOREWORD

The author has received some comments on the validity of the

following calculations. Some consider this new approach as exact and

powerful as the theories based on the principle of the stationary phase.

At the opposite, some others consider this approach as invalid. What-

ever its exactness, this work has been included in this report. The

author already indicates some limits of validity of his calculations. It

will be the subject of further investigation and up to other investigators

to give the pros and cons of this new theory. It is pointed out that if

this theory is found to be valid in some respects, it may become a power-

ful way of solving many related problems. It has been seen in Appendix I

that the wave motion due to a disturbance of infinitesimal dimensions has

been investigated by Cauchy-Poisson. In this appendix the principle of

superposition is applied in order to calculate the wave motion due to a

disturbance of finite dimension. It is demonstrated that:

a. The elevation becomes instantaneously infinite at the

edge of the initial disturbance, whatever the intensity, the area and the

shape of this disturbance. So, the splash phenomenon is demonstrated

and explained.

b. Far from the impulse the wave pattern does not de-

pend upon the area and shape of the impulse, but as a first approxima-

tion its amplitude is proportional to the total value of its intensity.

The wave motion caused by some particular simple shape of an

initial disturbance of finite dimensions is calculated.

IV-I



Then, a discussion gives the limits of validity and the physical

meaning of the presented mathematical construction based on the prin-

ciple of superposition and the theory of Cauchy-Poisson.

2. INTRODUCTION

The theory of waves produced by an impulse or an initial local

disturbance on a free surface has been investigated, particularly by

Cauchy-Poisson in the case of a three-dimensional motion, and by Lamb*

in the case of a two-dimensional motion. (In the following, the notations

of Lamb are used). In both cases, the solutions have been obtained by

neglecting the convective inertia and friction forces, thus the theory is

linear and valid for slow motion.

The calculations can be carried out by application of the Fourier

double integral:

(x): fdk f(d) cos k(X-a) da

for a two-dimensional motion, or

)") J.( k d) f(a)Jo(ka) ada

for a three-dimensional motion.

It has been assumed that the initial disturbance or initial impulse

is confined to the immediate neighborhood of the origin so that f( a

vanishes for all but infinitesimal values for a . (See Fig. IV-I)

That is:

f(a)da : f(a)da: I

* Lamb, H. (1932 Edn.) Hydrodynamics. Cambridge Univ. Press, Eng.
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in the case of a two-dimensional motion, and

f 1(a) 2wa da f tld)2wada * I

in the case of a three-dimensional motion where a 1 is always an

infinitesimal.
f (a)

-a, a,

FIGURE IV- I

DEFINITION OF AN ELEMENTARY

FREE SURFACE DISTURBANCE

From this assumption, it has to be noted that since the integral

has a finite value equal to unity and since a I is an infinitesimal,

f ( a ) must be infinity. This assumption is in complete contradiction

with the assumption of linear theory which requires the motion to be very

slow and even infinitesimal in order to be exact.

Later on, other studies were made to investigate the wave motion

due to a disturbance of finite dimensions. These were also based on the

assumption of linear theory and on the use of the Fourier integral. In

this case the initial disturbance was not assumed to be confined to the

immediate neighborhood of the origin, but instead, it was assumed to

be distributed on a given range.
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Hence, the later theories were more realistic and more in

accordance with physical phenomena. Unfortunately, the difficulty

in the evaluation of the Fourier integral limited the initial disturbance

f( a ) to relatively simple form.

In this appendix an attempt has been made to find a more gen-

eral method for application to more complicated forms of initial die-

turbance including those varying with time. It is the results of these

investigations which are presented here.

This method is based on the principle of superposition and the

theory of Cauchy-Poisson. Indeed, since this theory is linear, the

principle of superposition is theoretically valid and the wave motion

caused at a given time and at a given location by a definite disturbance

varying with time should be the sum of wave motions due to infinitesi-

mally small disturbances occurring at various initial times to.

Here a quotation of Lamb is worth recalling:

"In any practical case, however, the initial elevation
is distributed over a band of finite breadth; we will denote
this breadth by 1. The disturbance at any point P is made
up of parts due to the various elements, da , say, of the
breadth 1; these are to be calculated by the preceding for-
mulae, and integrated over the breadth of the band. In the
result,the mathematical infinity and other perplexing pe-
culiarities, which we meet with in the case of a concentra-
ted line-source, disappear. It would be easy to write down
the requisite formulae, but, as they are not very tractable,
and contain nothing not implied in the preceding statement,
they may be passed over."
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3. GENERAL PROCESS OF CALCULATION

It in recalled that the solutions for the elevation as a function

of time t and distance from the origin( X or w ) are, in the case

of a two-dimensional motion

2 X .5 EI FRI (IV 1

and in the case of a three-dimensional motion

From the assumption that the motion is linear, it is evident

that if the integral of initial elevation (or impulse) has a value A in-

stead of unity:

f (a) da -A

or

'ff(a)2wada - A

,I and • are given by the above formulas (IV-l) and (IV-Z) re-

spectively multiplied by A.

These two expressions may be written as

A (I.!3 (IV- 3)
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and

A ., 3. 2 n ,,,..,

S(4n +2)1(IV-4)

Now, consider the cases where the initial disturbance is

located at a point x = X, in the case of a two-dimensional motion

(See Fig. IV-Z), and at a point Z = p.e' in the case of a three-

dimensional motion (See Fig. IV-3). Z is a complex number.

f (a)

X X

i FIGURE IV-2

NOTATION FOR TWO-DIMENSIONAL DISTURBANCE

FIGURE IV-3

NOTATION FOR THRUE-DIMENSIONAL DISTURBANCE
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The above formulas (IV-1) and (IV-2) are valid provided x

and w are replaced by X - X , wr-peo respectively. The

argument for w is taken to be zero by reason of symmetry.

A similar change of origin of time may also be inserted by re-

placing t by (t- t) involving an initial perturbance at time t . In-

serting these values and assuming that A depends upon the location

X, or ( p,9 ) and time tI, one obtains:

2 n.

A(X,t,) -'P (_)n F g(t-t,) 1 ] 1

r( (x) 1.3.5...(4n. *) 2(x-X)
nuo

and

A(pet) O ")"I. 3""2nn + 1)]2 ag(tt) 2 ] 2n.,

W(W _P6 (4n *2)1 W I
nuo

From the assumption that the theory is linear, the principle

'of superposition may be applied, and it is deduced that the free surface

is obtained by a uiuperposition of all the perturbances created at differ-

ent places and at different times. In the following t I will be taken

equal to zero.

In particular, one can imagine that there is a perturbance

AMX at any place - R ftX 4R

A(p*d at anyplace 0 < p:4R
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such that

A(X) * f(Xf ) dX

Jp - a,

f~,# • j f(p,G) el# dp

In that case f(X) and f( p,8) do not need to be infinite to

produce finite wave and consequently A may be infinitesimally small,

since it is now the product of a finite value and an infinitesimally

small area. However, the total values

Sf(X) dX and f (pJ) dO dp

R "

in which R has a finite value, have a finite value and involve a finite

amount of energy, which is the total energy of the initial perturbance.

Now at a given time t and at a given place x or ( wap0 ) the

wave motion will be according to the principle of superposition, the

sum of all the elementary wave motions caused by the various places

X or (p,G ).

Hence, i? and C are given by the following integrals whfere

x and t are considered as constant and X or ( p, ) as variable:

R fiX) (_l)n gt 2  2nI

7(x-X) 1.3. ..(4n.I) 2(x-X) dX

ff 2 w f(p 86) 1P1 3 .. 2n - ) ]2 tU]nI d8 dp
S2 (W-pse)•2 (4n + 2)1

-0 n Vo
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or rearranging:

,r# • .3... ( n~l (x _-x) 2f #2

nxo

2v uo (4n+ )1 00 (W-ýO2.. 3

Without any more calculation, it may be seen that when x or

w is large with respect to the maximum values for X or p that is

R, such that X and p may be neglected in the expressions (x- X)

and ( w - pg16 ), the obtained formulas for q and C are the

same as formulas (IV-l) and (IV-2) above provided the second term

is multiplied by

SrFRF 2W

R and J0 -0

respectively; that is, by the total value of the initial disturbance.

This means that far from the initial disturbance the wave pattern does

not depend upon the shape and stretch of the disturbance, and the ele-

vation is linearly correlated with the total impulse or disturbance.

This result is consistent with the above remark on the multiplication

factor A. But in that case, this multiplication factor is the sum of

all the infinitesimal local values A (X) or A ( p,G ).
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Moreover, it may be noticed that when x and W approach

R, then il and C tend to infinity (except when t = 0), since the

numerator has a finite value, whatever the shape for f(x) and

f( p,G ). This is in accordance with the well known fact that when

a circular plate falls into water, the free surface suddenly rises very

high in the shape of a duke's crown at the edge of the plate.

Later, the validity of such a theory will be discussed. Now

some specific simple cases are calculated.

4. THE ANALYSIS OF SOME SPECIFIC CASES

First the case of a two-dimensional motion caused by a uniform

disturbance is analyzed. In this case f(X) is a constant: say f(X)= b

(See Fig. IV-4).

f(X)dX f(X)dX - 2RO

Then:
Go IR

( Zgt 2 j2n. dX 2

-R R

FIGURE IV-4

MATHEMATICAL MODEL DISTURBANCE
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The following general integral 4 permits the direct establishment

of the complete series:

(XdX -i -.In(x.X)2R 2 (XR)2n.I (X÷R)-R.

Finally:

t 7 1.3. ..(4n ÷nl) 1 L (X-Rln' - (X÷R)I' I
or developing

2 " [ x-R X+R 3.5 2 (X.R) 3  (X°R) 3

It in verified that when x- R. --.- except when t = 0.

On the other hand, when x tends to be large with respect to R

it is found after a number of simplifications:

110773.. ( 4nI)n 2 n 1

which is formula (IV-3) in which 2 Rb has taken the place of A;

only the elevation depends upon the value of the disturbance, but the

wave pattern is identical.

Now considering the base of an impulse in the form of parabola;

f(X) I b- oX"
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Then

d7() (x-x)e'""

L 3--A 717) 2-)91(X -X)he0

The general integral value In is found to be

I. fR (b )dX' e
I -R (X.X) 2n. * 2 I)(x.X)2,. 0 )

_ _- R
x xb - a (.2n - (x~ -X 2 ( X

It may also be seen that when X - ; R , In and • tend to in-

finity. Similarly, after a number of computations (neglecting R2

before x 2 ), it is found that when X2 >>R 2

aR3

(2n - I)X ""'

Inserting this value In , the Eq. (IV-3) for tj is recognized pro-

vided A is replaced by MR- )

It may be verfied that this is the total value of the initial

disturbance given by the integral:

aR 3f(XMdX (b -oX"ldR- 2(bR -3)

fR 1 R
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The case of an initial disturbance in the form of a cylinder

may also be easily analyzed by calculating the integral

_f fv de dp

0 0 ( ID 1)24103

The result is obtained in the form of a recurrence formula, the number

of terms increasing with the value for .

The length of the obtained formulas does not justify writing them

down in this appendix since they contain nothing not already implied in

the previous formulas.

5. DISCUSSION OF THE VALIDITY OF THIS PROCESS OF

CALCULATION

Now it is time to question the validity of such a theory as It has

been developed for the Cauchy-Poisson theory. Does this mathematical

model have a physical significance?

First of all, it is recalled that the Cauchy-Poisson wave motion

involves an infinite amount of energy. As previously mentioned, this

paradox is explained by saying that the initial disturbance, being in-

finitesimally small in width, must have an infinite amplitude for its

total area to be finite. It has been noted previously that this statement

is in complete disagreement with the fact that the theory is based on

the assumption that the motion is infinitesimal everywhere, including

the origin. Moreover, as also previously mentioned, the fact that the

initial disturbance is exerted instantaneously involves an infinite power
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during an infinitesimal time interval. This power causes an infinite

velocity at origin which is again incompatible with the assumption of

linear theory.

The case of an initial disturbance of finite dimension, as it has

been analyzed in this paper, also contains a paradox: as it has been

explained, the value for f(X) does not need to be infinite to create a

wave pattern of finite dimensions. Even this statement permits the

principle of superposition to be theoretically valid as a first approxima-

tion. It would not be valid if f(X) was infinite. However, it is found

that the amount of wave energy produced by an initial disturbance of

finite energy is infinite, and in particular that the elevation at the edge

of the disturbance tends to infinity.

In the case where the initial disturbance is distributed over a

finite breadth, we again quote Lambs "the mathematical infinity (for

f(a) ) and other perplexing peculiarities, which we meet with in the

case of a concentrated line-source, disappear." Indeed they should

divappear; however, they do not disappear. Hence theme considerations

have led the author to maintain that the Cauchy-Poisson theory is a

pure mathematical construction which can represent only a limited

amount of physical facts. It must be recafled here that frictional

effects are neglected. The infinite amplitude of the initial disturbance

and its infinite power are not compatible with the assumption that an

infinitesimal motion is linear, thus, problem presents a singularity

at the origin. This limits the validity of the theory and does not per-

mit strict application of the principle of superposition.
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However, a number of results do have a physical significance.

These are: (1) far from the origin the wave motion does not depend

upon the width and shape of the initial disturbance. Its amplitude,

under the assumption that the wave motion is small, is proportional

to the total value of the impulse; (2) the value for the elevation at the

edge of the initial impulse, which is zero at time zero, tends at once

to infinity at time t = e , despite the fact that the initial impulse

has a limited energy. Indeed, it is necessary to keep in mind the fact

that this limited energy is theoretically exerted instantaneously, that

it involves an infinite power. But since the amount of available energy

is finite, this instantaneous rise of water must last a very short time.

In fact, this is observed when a body is thrown into water. Water

rises very high at the edge of the body, then falls down and is followed

by small oscillations about the still-water level. It is evident that the

friction forces also have a definite influence in causing this damping.

6. CONCLUSION

To conclude this discussion, the present theory based on the

principle of superposition permits an explanation of the splash of water

caused by a disturbance of finits dimensions.

Incompatibility between the linearization and the infinite power

at the origin, and friction forces, limit its validity for describing the

true physical situation. Moreover, it has always been assumed that

the initial disturbance acts instantaneously. In the case of a disturbance

of finite dimension, the inertia of the involved mass also has an effect.
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It has been seen in Appendix I that other theories exist which seem to

give fairly good agreement with physical facts but their validity is

limited to the large values for x and w respectively. These do not

explain the splash phenomenon as has been attempted in this paper.

These other theories, based on the use of the Fourier integral

in which f( a ) is not confined to the neighborhood of the origin,

could probably be generalized as indicated in this paper for a disturb-

ance of any shape which could also be a function of space and time.

Their investigation may also be of particular interest for calculating

the long waves due to a traveling atmospheric perturbance varying with

time.
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LIST OF SYMBOLS

APPENDIX IV

x Horizontal coordinate in a two-dimensional motion

W Horizontal coordinates in a three-dimensional motion

(complex number)

a Horizontal spread of an original disturbance

f(a) Function characterizing the original disturbance

Free surface elevation in a two-dimensional motion

Free surface elevation in a three-dimensional motion

A Value for the initial total impulse

t Time

n Integer index

X Coordinate for an elementary initial elevation into a two-
dimensional motion

(p,8 ) Cylindrical coordinates for an elementary initial elevation
into a three-dimensional motion ( p : modulus, e argument)

Z ie (complex number)

R Horizontal spread for the original disturbance

b Height of the original disturbance

IV- 17



APPENDIX V

THE SHOALING, DAMPING, BREAKING AND RUN-UP

OF LONG WAVES OVER THE CONTINENTAL SHELF

ON SATURATED AND NONSATURATED BREAKERS

by

B. Le Mehaut4



S 1. INTRODUCTION

In this appendix the problems associated with a wave traveling

over the continental shelf are analyzed.

First a choice must be made from among all existing theories

of waves traveling over gentle slopes in order to select the most con-

venient theory for application to this problem. It ie shown that in most

cases the waves appear as a succession of solitary waves and from ex-

isting experimental data it is demonstrated that no reliable theory exists.

Wave damping due to bottom friction is analyzed and a formula

is proposed which takes into account bottom friction and shoaling effects.

The very important tistinction between saturated and nonsatu-

rated breakers is introduced. This study is of major importance in

this report because the demonstration of the natural protection afforded

by the continental shelf relies on this theory.

Finally a brief literature survey of previous work done on the

wave run-up due to long waves is given.

2. THE CHOICE OF THEORIES

It is most important to be aware of the most convenient existing

theories for treating the problem of wave motion on the continental shelf.

These wave motions of interest are characterized by:

a. Their period T ranges from 50 to 200 seconds.

b. Their wave height H ranges from 0 to 150 feet.

c. The depth d is smaller than 600, and most often

smaller than 100 feet.
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A first indication of the essential wave characteristics is obtained

from the graph presented in Fig. 1-4 of Appendix I. It is seen that the

most significant factors areand where is the wave

length in deep water, or alternatively, simply ?0 X 2 d 3  i.e.

Io TZg d- 2 with X = T V./g where 1o is the elevation of

the wave crest above the still water level. Knowing H , 970 can be

calculated from Fig. 1-3 of Appendix I. Then it is easily seen that the

value to be considered for to is almost the same as the value for
d

H. When = is very small, the smallest value which occurs in this
T 2 2

study for 9 To g d 2 is 17H over the continental shelf. Hence it

is seen that the waves over the continental shelf can be considered as a

succession of solitary waves and the solitary wave theory should be a

sound basis for preliminary analysis of the phenomena involved. Later

it will be seen that this statement may require some reservations and

that many refinements will be necessary. The cnoidal wave theory has

been shown to often be a better representation for the wave motion in

veky shallow water. (See Wiegel (1960).)

3. ON THE SHOALING EFFE'CT

a. Hydrodynamic Solutions

A number of theoretical studies have been carried out in recent

years on the problems of water waves on a slope. In particular, signif-

icant contributions have been made by Miche (1944), Stoker (1947),

Biesel (1952), Peters (1952), Roseau (1952), Keller (1958), Carrier and

Greenspan (1958) and Williams (1959).
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Solutions have been obtained by direct integration of the momen-

tum equation and continuity relationships for various boundary condi-

tions, including that of an inclined sea bottom. Some of these theories

aza solutions of linear equations valid for short waves. Hence they

cannot be applied to the present problem because of the relative impor-

tance of nonlinear terms (convective inertia). An interesting nonlinear

solution for long waves has been developed by Carrier and Greenspan.

But the vertical acceleration, which is important for near-breaking

waves (see Appendix VI), and the damping due to bottom friction have

been neglected. Also, the solutions would not hold true for breaking

inception.

A theoretical solution for the present problem has also been

obtained by Kishi (1962). The most important results of this study

are reproduced in this report. Kishi starts from the basic long wave

equations in the usual symbols:
b u bu b 1)

Momentum: . + u------ = - g
bt b x b x

Continuity: b . b[u(d+ i] x ]bt-'- bx=

with c = [g (d + 1 )] 1/2 and, assuming that

U a 2 /gd [-./I+- -1] (V-I1)

it is found that for two locations along the wave path (I and 2) and

with •?o 0 H:

d ___ I~ Id (V_ 2)
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which permits the calculation of H2 as a function of d 2 from the know-

ledge of HI and dI . It is interesting to note that when H/d it small,H 2 dl• 1/4
the classical Green's law in found: H d

Although this theory may be quite useful, it must be pointed out

that the derivation of Eq. (V-Z) is based on the assumption (V-I). Some

doubts can be expressed as to the validity of (V-I). Also, in practice the

use of (V-2) would involve trial and error computation of H. in terms of

HI , d, and d. . Because of these two objections, Eq. (V-2) is not

further used but has been mentioned as a possible approach for further

investigation.

Also, it will be seen in the following appendix that the vertical

acceleration, neglected by Kishi, takes on great importance over a gentle

slope such as encountered on the continental shelf. In fact, it is the key

for explaining the paradox of long waves indicated by many authors. This

paradox -- the Earnshaw paradox (1845) -- is that the long wave theory

gives rise to a bore, whatever the wave height even over a horizontal

bottom. In fact, it is known that some tsunami waves over a steep slope,

as on the Pacific coast, never break. The sea level varies gently with

time only.

b. The Energy Method

The second method consists of assuming that the wave motion on

a sloping bottom is the same as on a horizontal bottom. Then when the

wave motion has been so determined, it is assumed that the rate of

transmitted energy is constant.
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The great advantage of this method is its simplicity, permitting

an estimation of the damping due to friction.

This method works particularly well on a nearly-horizontal

plane as is encountered, for example, on the continental shelf of the

Atlantic coast where the slope is between 2/10, 000 and 5/10,000. Near

the shoreline the slope becomes steeper, ending with a 1/15 slope on

the beach. In this area the wave motion can no longer be considered

as similar to the motion on a horizontal plane. The wave profile loses

its symmetrical shape. Also a part of the wave energy is reflected in

such a way that the assumption on the transmission of wave energy is

not fully satisfied. It is then necessary to apply an analytical or

numerical method. Despite these limitations, the energy method is a

reasonable preliminary guide for studying wave motion over the con-

tinental shelf.

When applied to the solitary wave theory, the principle of con-

servation of rate of transmitted energy gives

EVb= 8 H 3 / 2 d 3/2 V b = constant

where H is the wave height

V is the wave celerity = ,/•g (d +H)

b is the distance between orthogonals, proportional to the radial

distance R in the case of circular waves over concentric

bottom contours.

Then between two points (1) and (Q) at radial distances RI and R 2

H d +H RI R
r a da RH2 d2 R
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c. Experimental Facts

Experiment shows that due to partial reflection over a slope,

the exponent 4/3 in (V-3) is generally too high (Ippen and Kulin (1954)).

It can only be considered as a limit when the slope tends to zero. The

following graphs, based on experimental results, give the value for

n as a function of the slope (Fig. V- 1). It is then seen that over the

continental shelf, the following law, where n = 1, is more realistic:

2

HI d2 R2  (V-4)

It must be noted that such a law will also be in accordance with

the assumption that the transmitted energy is a constant: E b = constant.

This assumption is far more reasonable that E V b = constant because

this latter law implies that the energy of the wave increases when the

celerity decreases, which is not physically reasonable.

Also, according to some experimental results presented in Fig.

V-2, i. seems that the law of variation of wave height with the depth

follows the solitary wave theory as presented in Eq. (V-3) only in a

narrow range near the breaking depth db (,lunl (1949) ). According
d

to these experiments, when " is larger than 1. 4, the Airy law

applies despite the fact that il )X2 d-3 is much larger than the

required value presented in Appendix I, i.e. 0.01. The Airy law is

based on the assumption that the rate of transmitted energy of a periodic

gravity wave, given by the linear theory, is a constant, i. e. HZ V b =

constant, where V is the group velocity.

Applied to long waves (V = v/I ), the well-known Green's law

is obtained: H2  'd b.ŽJ)

d2  b2
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A modification of Green's law is suggested to take account of the

nonlinear effect as follows:

H .d,+ H,• b..,

HI d2+) ) (V-5)

As a general conclusion, despite the fact that the wave motion

over the continental shelf is represented fairly well by a solitary wave,

experiments show that the shoaling effect given from the solitary wave

theory cannot be applied blindly. The shoaling effect is certainly very

dependent upon the slope and the Airy theory seems to be much more in
d

accordance with fact when d > 1.4.

It must be noted that it is the essential characteristic of a solitary

wave to travel without deformation on a horizontal bottom. Hence these

discrepancies are not surprising. The real law can only be given by a

genieral application of the method of characteristics with very small inter-

vals with the use of a digital computer. This problem will be considered

in another appendix.

4. THE DAMPING EFFECT DUE TO BOTTOM FRICTION

Most of the theoretical studies on wave damping have been carried

out for periodic waves: Boussinesq (1877), Hough (1877), Basset (1888),

Lamb (1932), Keulegan (1948), Biesel (1949), Putnam and Johnson (1949),

Miche (1954), Reid and Bretschneider (1954), among others.

As in the case of the analysis of a wave on a sloped bottom, two

methods exist to attack the problem. The first method -- the analytical

method -- consists of solving directly the basic differential equations --

momentum, continuity -- taking a friction term into account. Theoretically,
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this method presents the advantage of giving not only the damping, but

also the deformation of wave motion due to friction forces (and convective

inertia). This is important for very long waves in shallow water such

as tidal waves in an estuary. This method is essential for studying the

transformation of the wave into a tidal bore.

For the problem under study the second method, the energy method,

is simpler and will be as accurate for the wave over the continental shelf

before breaking. It consists also o the determination of the wave motion

independently of the friction forces over a horizontal bottom. As a con-

sequence, the wave profile is symmetrical. This approximation is valid

because the decay of wave amplitude over a wave length is small and the

slope is very gentle.

The damping effect is then simply defined as a decay in wave height

calculated from energy considerations: the loss of energy over a given

wave length is equal to the variation of wave energy. This could be ex-

pressed in two ways: the first is particularly convenient for periodic

waves: d(P b) ; b D

d x (V-6)

where P is the power per unit width or energy propagated per unit time

through a vertical area of depth d and unit width:

P:~ p g(± 1
2 2 2Lihr

where H is the wave height, V the wave celerity ( /gd, d the depth,

L the wave length (T v/g), x is the distance measured along the wave

ray in the direction of propagation of the wave, b is the distance between

wave orthogonals of two wave rays. Hence, for long waves:
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In the present case b is proportional to R, i.e. the distance from the

original disturbance; hence b can be replaced by R in Eq. (V-5).

Df is the average amount of energy dissipated per unit area at the bottom

per unit time. It can be calculated theoretically when the flow is laminar,

but it has been shown that the flow is turbulent when (Collins (1961)

H 2wrdH > 1. 08 sinh
VrT

or H > 1. 2 V in ft. -sec. units for long waves. This condition is

always verified in the present case. Hence Df will instead be:

L. T

Df C~ -T TU adt dx (V-B8)

where u B is the bottom velocity and 1 the shearing stress. Here

for a coefficient of friction f,

r-- p f u BuI I (V-9)

and according to the Airy theory applied to long waves:

u - U (x,t) H cos (kt-mx) (V-10)

2w ZW 2 _"
where k = and m

T fg

Then, introducing these values it is found that

Df 2 14pfH (04  (V-il1)

and inserting (V-7) and (V-I) into (V-6):

(H 2 RVId fH3 Rdl (V12)
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Dividing by H2R•/d, integrating over a small interval x. - x, = Ax = AR

and replacing eRax by I - ax, it is found:

SH2 3 H, •)2 (M)4 2

2 d2 )[ di (V-13)

which permits step-by-step calculation of H. When f = 0, the classical

Green law is easily recognized.

This formula will have to be inverted if one wants to evaluate the

deep water wave height as a function of the shallow water wave heights. In

particular the negative sign in the expression between brackets becomes

positive.

Fur the solitary wave theory it is more exact to apply the same type

of calculation to the transmitted energy rather than to the power. Then,

d(EVb) b dE (V-14)
dx dt

The energy of a solitary wave is
E z-8 pgH2 di (V-15)

and V = "jg (d + H), where H is the maximum height above the still water

level of the solitary wave, and d the depth. (In this case 7O = H)

The rate of loss of energy due to bottom friction is:

By inserting the classical relationships u8 n u = V -T- and 7 =

H ,13H) / lI x-VtZ where a = ( -a"d V and ? isCosh a T vC d

the free surface elevation above the still water level, it is found that
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-dT .7 P f V V-17)
'-•Cos htý a

By use of the Gudermannian of a it is found that the integral

has a value 16/15. Hence, finally

E 32 3 2 f H V
dt d(V-18)

After insertion of these values and since b is proportional to

R, after integration it is found that

I+H dR f H AR
H H(~L.r~ I~(~ [FI 2 (V-19)

Z2 22 d

This formula also permits step-by-step calculation of H.

It is seen that the loss of energy in a solitary wave height H is

* "more important than in a periodic wave of the same wave height.

When f = 0 and the motion is two-dimensional, the classical law

H, 2  2 2 2IH
is easily recognized. Now the problem is how to determine the friction

factor f in Eq. (V-13) and (V-20).

In the case of viscous flow, the periodic motion in the boundary

layer on a smooth plane is relatively well known. The thickness of the

boundary layer 8 is proportional to /vT, that is, it increases with

the period.

In the case of turbulent flow, it is known that 8 also increases

with T. The exact increase of 8 is unknown. In the case of long
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waves over a shallow bottom it is reasonable to admit that all velocity

distribution along a vertical at a given time is very similar to that of

a steady flow. In a word, unsteady motion appears as a succession of

steady flows insofar as the friction effect is concerned. Then f can

be expressed as a function of the Chezy coefficient Ch , which can be

expressed as a function of the Manning coefficient n:

f = -L = n 2 2 1.

2;--1 = 14.6 (ft-sec. units)(1.486) d' d3  (V-21)

The choice of n is delicate; however it can tentatively be con-

sidered as equal to 0.02, which is usually given for a bottom composed

of gravel. But, it may be expected to range between 0.015 and 0.025 due

to the dual uncertainty of the bottom roughness and the application of the

Manning formula to unsteady motion. In relatively deep water the depth

d in formula (V-Z1) should rather be replaced by the thickness of the

turbulent boundary layer 8 . Unfortunately, it has been seen that 8 also

is unknown.

However, it must be mentioned that the tidal problem in an estuary

has been studied satisfactorily by use of the Chezy (or Manning) coefficient.

All other factors being equal, only a slightly different value for Ch has

been found for a decelerated flow than for an accelerated flow.

5. ON THE BREAKING INCEPTION AND NONSATURATED BREAKERS

It is commonly admitted that breakers on a beach can be separated

into spilling breakers on a very flat slope and plunging breakers on a

steeper slope. Plunging breakers are sometimes called surging breakers
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on a very steep slope. The separation of breakers into categories

is based on visual observations rather than on any hydrodynamical

criterion. However, the essential hydrodynamical characteristics of

these breakers will be reviewed; then a theory for nonsaturated

breakers developed (Le Mehaute (1962) ).

The profile of a spilling breaker remains, for the most part,

almost symmetrical and the wave breaks by curling over slightly at

the crest (Fig. V-3). As long as the foam of the breaker is small by

comparison with the "bulk" water, which happens on a very gentle

slope, the wave presents roughly the main characteristics of a solitary

wave, even after breaking inception. But, due to the spilling breaker,

a given amount of energy is dissipated in such a way that the wave

crest follows the breaking index curve defined by H = 0. 78 d. Then

the spilling breaker is transformed into a bore when the slope be-

comes steeper. When the slope is steep before breaking inception,

the wave profile first loses its symmetrical shape, then a plunging

breaking wave generates a bore directly.

In the following an attempt is made to investigate analytically

these described phenomena. As before, two methods exist. The first

method, the energy method, is only approximate but gives a great

amount of information from relatively simple calculations. The

* second method, the analytical method, is more accurate but requires

tedious computations for each particular case.

It will be seen that the second method is an application of the

method of characteristics and requires some refinements for analyzing

the surf zone and calculating the wave run-up. This will be presented

in Appendix VI.
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In the energy method the rate at which the energy is lost due to

__ dE
bottom friction is t and to spilling breakers is - . Hence:

A5

bX bd+'Ft'1. (Vs22)

dE
is given by Eq. (V-18) as

b

d t [b . -13V H2V 3  (V-18A)

The rate of loss of energy due to a spilling breaker is very similar

to that of a tidal bore (which is a shock wave). In the case of a shock wave

it is known that (See Fig. V-3) (Stoker (1957)):

dE (h - h
t = Pg 4h, h2  (V-23)

where h1 and h2 are the depths before and after the front of the bore,

respectively, and Q is the discharge due to the moving bore. It must be

remembered that the above formula is baicd on the assumption that the

vertical distribution of the horizontal velocity u is uniform.

In the case under study the spilling breaker is due to the fact that

the horizontal velocity at the crest becomes greater than the wave celerity

V . By analogy (see Fig. V-3) h2 = d + H andhI = d + 8Hwhere /8

is always smaller than unity and can be zero at the limit. The vertical

velocity distribution, and consequently the discharge, is directly related

to the average horizontal velocity. Hence the discharge could be written:

On (d+H)u2 -(d+ 3H)u 1  V€- [d+H-0 (d+P3H)]

Inserting these values into Eq. (V-23) and defining B as follows:
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3 34d

(V-[4)

B will be called the "breaking coefficient." The breaking coefficient B

is the ratio of the rate of energy dissipated by the spilling breaker to the

rate of energy which could be dissipated by a bore of front height equal

to the height of the solitary wave which generated it. B = 0 corresponds

to no breaking ( / = 1). A small value for B corresponds to a little

spilling breaking near the crest ( / close to unity); i.e. a partial breaking

or a nonsaturated breaker. It is difficult to ascertain the maximum value

for B by the energy method. However, it is certain that B cannot be

larger than unity (/3 = 0). Then total breaking occurs and the breaker

becomes a saturated breaker or fully developed bore. Further consid-

eration will be given to the physical meaning of B later.

Now, by introducing equalities (V-15), (V-18A) and (V-24) into

Eq. (V-22), it is found that

3 3T h..~fL 2 V V 41d" I T"Vd]" + BV H-J (V-25)
d d

which gives after division by H 3 2 d 3 / 2 V, integration over a small in-

terval Ax=x 2 -xI , and since e-ax ax:

_5

d_ V ,2 f H,_,Ax v2 B Hit I X
H2 = H-)(() L I 1i (V-26)

gd 1 2  d 2

When all friction effects are neglected (f = 0) and there is no breaking

(B = 0), the classical law
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"d (V-27)

I 22 2

is easily recognized. It has already been pointed out that such a law

is not too well verified experimentally (see Fig. V- 1 and V-2).

Despite these limitations the physical interpretation of this

study will be based on Eqs. (V-25) and (V-26) because the spilling

breaker effect tends to replace the variation of wave height by a simple

law expressed as H = 0. 78 d, even though Eq. (V-27) is not verified

experimentally. When H < 0. 78 d, there is no breaking and the

breaking coefficient B = 0. Then V [ g (d + H)] 1/2 More-

over, assuming H is small by comparison with d,

4

2 d 1-2

This equation has already been found (c. f. V-19).

When Hb = 0.78 db, there is inception of breaking and the break-

ing coefficient B becomes greater than zero. In the case of a small

spilling breaker, V retains its value V = [g (d + H)] I Then,

replacing these values for H and V in Eq. (V-25),

S(d 7  1.= 1. + 0.B07 B d 5 1 2
g

d
i.e. the slope S = z- (d) = 0.01 f + 0. O B or within the known limits:

0 B =50S-O. 5f < I (V-Z9)

It is seen that the breaking coefficient B increases with the slope:

the steeper the slope, the greater the rate at which the energy is dis-

sipated by the spilling breaker.
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It may occur that due to bottom friction B always retains a zero

value despite the shoaling when S < 0.01 f as is easily seen from Eq.

(V-29). This result can also be found directly from Eq. (V-25) by re-

placing H by 0.78d and equating B to zero.

Inserting the value (V-21) for f , a criterion for damping without

breaking is proposed: S < 14.6n- 2

100 di

i.e. with the Manning coefficient n = 0.02: (d in feet)

6.10
(V-•30)

On the other hand, it has been seen that B cannot exceed unity.

& This happens when S = 0.02 + 0.01 f - 0.02. When S = 0.02, then

the breaker is "saturated." Fig. V-4 illustrates these considerations.

Now a complete physical interpretation can be drawn from the pre-

5 1/3
vious considerations. If the slope is always smaller than 6.10. I d

then the wave height is completely damped by bottom friction. There is

no breaking and no run-up. This occurrence is very rare.

On a steeper riupep there is a maximum amount of wave energy

that a solitary wave can transmit towards the shoreline over a given depth.

This maximum energy is reached when H = 0. 78 d. If the amount oi

energy passing through a given plane tends to be larger than this maximum

value, a spilling breaker will dissipate the difference. This occurs on

a relatively gentle slope and such a condition represents a nonsaturated

breaker, in which case the wave height is directly related only to the depth.

The run-up is negligible.
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It in seen, also, that there is a limiting amount of energy which

could be dissipated by a breaker over a given length. Hence, when the

slope becomes steeper and steeper, the regulating effect of the spilling

breaker reaches its limit when B = 1. Then the breaking index curve

is surpassed by the height of the bore front. There is run-up. The words

"saturated" and "nonsaturated" breakers are now defined, explained and

justified.

A very important conclusion is also drawn: on a beach having

its curvature upwards, the maximum possible wave run-up is given by

the wave which breaks at a depth where the slope is equal to 0.02. It is

known that if db is the depth over that slope, the corresponding wave

heigh' is Hb = 0.78 db. Any wave having a greater height breaks sooner,

dissipating its energy following the breaking index curve up to the plane

where the slope becomes larger than 0.02.

In fact the theoretical value 0.02 for the critical slope (corre-

sponding to B = 1) may b~e replaced by a more factual and conservative

value 0.01 . The exact determination of this value requires further in-

vestigation by tbe method of characteristics as given in Appendix VII.

The results of this section are summarized in Fig. V-5 by three

typical cases. It must be noted that the run-up in cases I and II is the

same despite the different deep water wave heights.

A very important conclusion can be drawn from this study. Since

the continental shelf has a very gentle slope averaging 4/10,000, it acts

as a natural protection. The breaking coefficient B keeps a very small

value most of the time. The breaker is far from being saturated. The
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maximum wave destruction depends upon the depth where the slope is near

0.01 and the depth at this slope is less than 30 feet. Hence the maximum

possible destruction is due to a wave height based on H = 0.78 d or 0.78

x 30 = 23 feet. Also, the maximum possible wave entering the Chesapeake

Bay is also directly given by the very simple rule H = 0.78 d. This wave

is a gentle spilling breaker in the shape of a limit solitary wave.

6. A LITERATURE SURVEY ON THE WAVE RUN-UP OF LONG WAVES

No theories exist for calculating the wave run-up on a slope prior

to this study. Appendix VI of this report establishes a theory for this

purpose. Some experimental information on this phenomenon does exist.

Unfortunately, these experiments were carried out on slopes which were

too steep for application of the results to the problem under study. However,

the results do give some information on the general trend. This information

will be applied to the problem under consideration. It must be noted, how-

ever, that this application requires some extrapolation and is, therefore,

subject to possible error.

It was found by Kaplan (1955) that on a slope of 1/30

-. 316R L= .m-=0. 381 (H) (V-31)
L

where R is the vertical run-up above the still water level, and H and L

are the wave height and wave length at the toe of the slope. (See Fig. V-6)

On a slope of 1/60, he found that

R U-.315
"0.206 (H (V-3)
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The interesting fact emerging from these tests is that the value

Rof ,ff does not depend upon the depth at the toe of the slope. Theme

Hlaws were verified for values of -r- ranging from 8 x 10.2 to

2 x 10"3. They were also proposed for extrapolation for smaller

values of H

Some recent experiments on a slope of 1/30 by Kishi (1962)
-3 H -3 R

for 7 x 10.3 < H < 2 x I0 3 gave smaller values for R
R ,

namely -- = 2. But this could be due to the fact that Kishi worked

to a very small scale for which scale effects may not be negligible.

Some experiments have also been carried out by J. V. Hall and

G. M. Watts (1953) on the run-up of a solitary wave. They give:

0.67 H 0.35
R 0.67 H 1' (V-33)

0 0

for any slope between 50 and IZ . However, on reworking the data

Rprovided by Hall and Watts, it is found that - is close to 3 on a

slope 5° and 100.

From this scattered information, combined with the previous

theory on nonsaturated breakers and the results obtained in the

following appendix, it can be tentatively concluded that for an average

slope as usually encountered,

R 2.5

Tib

Hb being the wave height (0. 78 d) at a depth d where the slope is

0.02.
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LIST OF SYMBOLS

APPENDIX V

d Water depth

X6 Wave length in deep water

X or L Wave length in shallow water

T Wave period

Elevation of wave surface above still water level

Maximum value of at the wave crest

H Wave height

u Horizontal velocity

x Horizontal coordinates

E Wave Energy

V Wave celerity for a long wave in shallow water

b Distance between two orthogonals

R Radial distance from the original disturbance
Also Vertical wave run-up

Sub b Related to breaking characteristics

n Exponent for variation of wave height with depth vs.
bottom slope

S Bottom slope

P Wave power per unit width

Df Amount of energy dissipated by bottom friction per unit area

T Shearing stress per unit area

uB Bottom velocity
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hZ Depth on the high side of the bore

h I Depth on the low side of the bore

Q Discharge due to the moving bore

f Friction coefficient =

C h

Gravity accele ration

Ch Chezy coefficient

n Manning coefficient

Coefficient characterizing the height of the front of
a spilling breaker

B Breaking coefficient: ratio of the energy dissipated by
a spilling breaker and the energy which can be dissipated
by a bore of same height
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APPENDIX VI

THE WAVE RUN-UP

BY THE METHOD OF CHARACTERISTICS

By

B. Le Mehaute



1. INTRODUCTION

This appendix presents the results of theoretical investigations

on the wave run-up which have been carried out by the method of

characteristics.

This powerful method has been of great use in many scientific

fields. It has been in common use in hydraulics for studying flood

routing and tidal waves in estuaries. It is also used for studying

water hammer in pipe lines, and has been introduced in meteorology

by Freeman (1951).

It seems that Stoker (1957) was the first to propose the applica-

tion of the method of characteristics to the problem of a wave breaking

on a beach. However, he did not study the problem of the run-up on

a dry bed. Hence this particular problem has been solved in this report.

The various topics of investigation are:

a. Establishment of the basic equations of the motion prior

to wave breaking. It is shown that the vertical acceleration, usually

neglected, has an important effect. The corresponding correction term

is given.

b. The basic principle of the method of characteristics is

recalled. Dimensionless parameters are introduced.

c. The input and limit of the waves are defined by a limit

solitary wave where the slope becomes steeper than a given value

such as 0. 02. It is assumed that such a wave on a more gentle slope

follows the breaking index curve as demonstrated in the previous appendix.
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d. The problem of nonsaturated breaker inception is

discussed.

e. The method for studying nonsaturated breaker propagation,

and bore propagation, is given.

f. The particular problem of the bore reaching the shore-

line is theoretically analyzed when the bottom friction is neglected.

g. The run-up on a dry bed with bottom friction is also

theoretically analyzed in various cases corresponding to various simpli-

fying assumptions. Then the links between the motion over a dry bed

and the bore reaching the shoreline with bottom friction are established.

( h. Finally, an application of the method is carried out and

suggestions foi' further investigations are given.

2. THE BASIC EQUATIONS AND ASSUMPTIONS

t The ciasical equation for long waves in shallow water neglects

the vertical component of velocity, vertical acceleration and the

bottom friction forces. They are: (see Fig. VI-I for notation)

Momentum: b-- + U bu -g (Vi- l)bbtb

Continuity: '9 + bu(d + 1) 0 (VI-2Zb t b x
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I

FIGURE VI- I

NOTATION

It is recalled that these equations are based on the assumption that the

distribution of horizontal velocity u is uniform. Hence u is the

average velocity in a cross section.

It has already been pointed out by Stoker and others that the method

of characteristics, as previously applied, gives a wave profile much

more unsymmetrical than usually observed at sea or in a wave flume.

This limitation on the validity of the theory is of small importance on a

comparatively steep slope, but becomes very important on a gentle slope

such as is usually encountered over the Atlantic continental shelf.

The theory of nonsaturated breakers (LeM~haut6 1962) presented

in the previous appendix, which is based on the assumption that the wave
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profile is symmetrical, certainly given a better approximation on a

very gentle slope. For example, at the limit, if the study of the

propagation of a solitary wave over a horizontal bottom is treated

by the method of characteristics, the wave profile becomes rapidly

unsymmetrical (Fig. VI-2). A bore appears even if the starting wave

is not a limit solitary wave. (H/d < 0. 78). However, it is well

known by direct integration and experiments that a solitary wave over

a horizontal bottom travels without deformation, the wave profile always

being symmetrical (see McCowan (1891) and Munk (1949) ). This fact

proves some deficiencies in the method of characteristics as previously

used. Ursell and Birkhoff (1949) present this as a paradox, the Earnshaw

paradox (1845), also encountered in gas dynarics. Birkhoff even states

that nobody knows the explanation. Stoker (1957), Laitone (1961) and

others also discuss the problems of steady state in long waves. Stoker

states that the steady state can be reached provided the theories are

carried out at a high order of approximation (p. 342). Briefly, the ex-

planation of this paradox and this deficiency of the method of character-

istics applied to long waves are due to the fact that the vertical accelera-

tion and path curvature effects (particularly important at the crest of a

near-breaking wave) are neglected and consequently the pressure distri-

bution is assumed to be hydrostatic. The solitary wave theory takes

account of this path curvature effect by assuming that the vertical velocity

is linearly distributed from the bottom to the free surface:

d + z dt d + z
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Then it it found that the correcting term to be inserted on the right

side of the momentum Eq. (VI-l) is:

_d + 17 b3 V-)

A similar term can also be added to take into account the influence

of the slope of the sea bottom on the path curvatures. The length

of the equation which is thus obtained is such that its insertion for

practical computation is not justified. Moreover, the corresponding

error is very small for two reasons:

1. On a steep slope, the slope has an effect on the path

curvature, but it will be seen that the total path curvature effect

is small by comparison with the term - gS which appears in the

momentum equation (S is the slope).

2. On a gentle slope the total path curvature effect is of

great importance, but the correction to the path curvature effect

caused by the bottom slope becomes negligible as long as the slope

of the free surface is large by comparison with the bottom slope.

This is always the case for a near-breaking wave close to the crest

and at some distance from the crest, the path curvature is unimportant.

To conclude this discussion, the proposed correction term Eq. (VI-3)

can be considered as a sufficient approximation -- but also as a neces-

sary correction -- for a wave traveling on a very gentle slope. It is

pointed out that when the bottom slope tends to zero, the solitary wave

theory is more exact. Consequently, the theory previously presented

in Appendix V can be considered as the limit case, obtained by a

direct integration where the path curvature effect is taken into account.

VI-6



It has been pointed out that the bottom friction forces have been

neglected in the previous momentum Eq. (VI-1). If, as already

assumed in Appendix V. the shearing stress at the bottom is

quadratic and the wave motion appears as a succession of steady

flows then the Chezy formula gives for the friction term F:

F C h a (d+')

(d + q ) being the hydraulic radius in this case.

It can be seen that by taking "reasonable" values for Ch the

bottom friction effect is also relatively negligible when the slope is

larger than 1/10, but becomes very important on a very gentle slope,

as does the path curvature effect. However, it will be seen that

the friction term is particularly important when the bore reaches

the shoreline and for the run-up computations on a dry bed, whatever

the slope.

These two necessary correction terms show the importance of

the notion of nonsaturated breakers introduced in Appendix V for

calculating the maximum possible wave run-up. Since nonsaturated

breakers follow the breaking index curve, it is sufficient to start

the computations by the method of characteristics from a limiting

solitary wave on a slope where the breaker tends to be saturated:

S z 0.02 or S = 0.01 for safety. This consideration should

permit elimination of a tremendous amount of calculation in studying

the wave traveling over the continental shelf because it would require

--taking account of the path curvature term and bottom friction terms.
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It will be seen that the method of characteristics accumulates

errors. Hence the necessary simplifying hypothesis which has been

assumed to perform the calculation in the energy method in Appendix

V does not give a greater error than does the more theoretically

exact method of characteristics when the calculations have to be

performed over a long distance.

Finally, it is pointed out that the basic momentum and continuity

Eq. (VI-1) and (VI-2) assumed that the vertical velocity distribution

was uniform. Actually the velocity distribution of a near-breaking

wave does not satisfy this assumption. As already pointed out, for

a spilling breaker the velocity near the crest becomes larger than

the wave celerity. Because of this phenomenon, a loss of energy

is not taken into account by the method of characteristics. The

solution may consist of imposing, for example, a maximum value to

the wave height: H = 0. 78 d. This correction may have some

importance if the method of characteristics is begun on a very gentle

slope. But since we already know that the breaking index curve is

followed, this correction is unnecessary when we start the method

of characteristics on a slope steeper than the critical slope 0. 02.

Then the spilling breaker generates a bore very quickly and the

correction due to non-uniform velocity distribution is negligible.

The basic starting equations will finally become:

bu bu g b7? _ g ulul d +. b3"9 (VI-4)
t + x u ? - - h(d + 1) 3 Ot bx

S+ bud+1 0 (V-)
bt 

bx
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3. THE BASC PRINCIPLE OF CALCULATION OF THE METHOD
OF CHARACTERISTICS

Now some elementary transformations must be performed.

Dimensionless terms are also introduced.

First it is seen that the wave motion is completely defined as

a function of time and space by the elevation -9 (x, t) and horizontal

velocity u(x, t). It will be more convenient to define the wave

motion by two terms u (x, t) and c (x, t), which are both dimen-

sionally equivalent to velocities, the definition of c being:

The definition for c is arbitrary and can be modified in an attempt

to eliminate the path curvature term in the calculations. For example,

c can be taken to be

C= [9(d+ )(1+ . 4(d +")]t

But such a definition for c also requires the neglect of a few terms.

In the present phase of this study the value c = [g (d +•)] I/2

will be used. However, it is interesting to note this possibility in

view of further investigations. Another way of defining c will also

be obtained by assuming that a solitary wave must travel without

deformation over a horizontal bottom.

From Eq. (VI-6) it is deduced that

2c bc-. g " + g (VI-7)

be be be
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Hence

iIbc bdC
bK 2 c- 9 -g-5 - 2 C + gS

Also

gugul g2  (u/'
Ch2 (d +) Ch2  C2

and from the continuity equation:

bu(d+ -) + b(d +q) _0

bx b t

5K + St _____________ ________(VI-8)

d+ (d + = d+'9 b3 [u(d+'7)] c2  b3 (ucZ)

t3 btxb 3 bx 2 bt 3g bx'bt

Inserting these relationships into the momentun Eq. (VI-4) gives:

Sgz 2 L)2 c2 qru 2 ( I9
bu _I2C . G - gS- (VI

st bx b XVI-h

In the following the right-hand side of Eq. (VI-9) will be called

G* even if friction and path curvature terms are neglected. The

continuity Eq.(VI-8), in terms of u and c, also becomes:

Muc) + C2bx b =
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+u + c + • 0 (VI-lO)

Adding and subtracting successively Eq. (VI-9) and (VI-10) given

( u+ 2 c) + (u +C) b(u + 2c) -G,(I1)

b (u-2c) +(u-c) (u-2c) a G*

It is seen that theme expressions are the total differential with respect

dx
to time of (u + Zc) and (u - Zc) provided •- = u + c and
dxd- = u - c respectively. Hence,

d dx (u + Zc) = GO alongaline Zcr= u + c

d dx(u + Zc) = G* alongaline Tr U - C

Before explaining the mathematical process based on this

equation, it is particularly convenient when performing the calculations --

and also in order to give more generality to the obtained results -- to

use dimensionless terms. For this purpose, let C* = d where

dI is an arbitrary length. It is most convenient to let dI equal the

depth at the point where the calculation of the method of characteristics

will begin. This depth could be chosen as the depth where the slope

Is 0.01, i.e. where the breaker tends to become saturated and where

the input can be taken to be a limit solitary wave. Then inserting the

relationships:
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x XdI X = X

x~dd

c =C*C C c
C*

the above Eq. (VI- 11) and (VI- 12) (where G* is expressed as given

in Eq. VI-9) ) become, after some elementary calculations:

C2 b 3 20)

2 ~3 bT 2b× o

-(U T-20 i G S -s g~ ('UýbTbCh \ C2  b3(UC.. (VI- 13)

3 6X 2Tb

dXalong ' = U + C. Now the principle of calculation based on this

set of equations can be explained.

It is seen that G = g G. Knowing U, C, and G at two

points (1) and (2) in a T-X diagram (see Fig. VI-3), namely UI,

CI, GC, U2 , C2, GZ, U and C can be calculated at a third point

(3), U 3 and C 3 by the following processes. A line of slope
1 .1

is drawn from point (1) and a line of slope U2 . C2

from point (Z). Point (3) is defined by the intersection of these two

lines. Then from Eq.(VI-13) we know that:
1 dT

(U + ZC) = GI ATI 3  along the line =1 1-3UI + CI
1 1 T

A (U - ZC) = G2 AT 2 3  along the line 1 dT
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Hence,

t:U3 + C:3 = uI + Zci + 0I ATI
1 2

U 2C +Gz ATz!,U3 - .C3 =7 - 7.2 2 2- ~ 3

and

UI + UZ
U 3 = -U + C I - + GI TI-z + G2  AT 2 -3

C1 +Cz AT (vi- 14)

UI U CI + C G T - 0C3 = 4 1- 1 1+ GI TI2- T.3

which permits calculation of U3 and C Repeating this process of

calculation for each point of the T - X diagram permits calculation

of the complete wave evolution as a function of space and time.

AT 3 AT1  UCUt- C22-- 3 1- _T 3 U,+C,

T

2

x

FIGURE VI-3

BASIC PRINCIPLE OF THE METHOD OF CHARACTERISTICS
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The calculation of G in tedious but not difficult. The friction

term UA -- is often small and can usually be neglected

near breaking inception. But, it becomes important when the wave

reaches the shoreline and is essential for the run-up on a dry bed.

On the other hand, the curvature term, while being important near

breaking inception, becomes negligible for the run-up on a dry bed.

Both of these terms must be compared quantitatively with (-S).

I 2 3

AiT

FIGURE VI-4

CALCULATION OF CURVATURE TERM

The calculation of the curvature term is complex. Moreover, it is

effectively negligible when the slope is greater than 1/ 10. It can be

evaluated from the knowledge of U and C at six points on the T-X
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diagram (see Fig. VI-3A) by the formula:

,.b 5(,c:c) . [uIc,' - 2u, c; + u~:- u4 c4
b X=bT AXe AT U 1 M I+UC 4C

+2U.C 5 ' - U.C:]

The evaluation of these points generally requires a great amount

of interpolation; hence, despite the fact that it is theoretically

possible and despite its importance, it may be theoretically unrealis-

tic to take this term into account even on a gentle slope, unless the

calculations are done by a computer.

These considerations again demonstrate the importance of

* the study presented in the previous appendix on saturated and non-

saturated breakers. Since we know from these computations that a

nonsaturated breaker remains roughly symmetrical in shape and

follows the breaking index curve, a great number of computations are

saved by taking the input on a slope of 0. 01 as has already beenF
pointed out.

4. THE INPUT DEFINITION AND WAVE "LIMITS"

As already pointed out, the maximum possible wave run-up can

)e determined when the input is defined by a limit solitary wave

*ihere the slope tends to become steeper. According to the classical

solitary wave theory (see Munk (1949)) C and U can be obtained

respectively from the following equations
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H where 7 .i.\ .Y
ýo-s hp a V \d/ d

(VI- 15)

U I V - and V x [g(d + H)IT
d

from which U and C at time T = 0 can easily be determined.

However, it in recalled that u as given by this expression is an

approximate velocity. It is more exact to define an input by the

average velocity V,(X) = 1 9 ulXz) dz

whe re

I.+cos M coshM X
u(x,z) = N d and N and M are given by

(cos M - + cosh M-x

N 2 sin [M (I+i 2 H andH- tani [M (,+ J-)

Possible input definitions expressed as a function of X at

T = 0 are represented in Fig. VI-5. They are limit solitary waves

over a horizontal bottom. They aie supposed to represent

spilling breakers over a very gentle slope, reaching a steeper slope.

They must be expressed by dimensionless parameters U and C

as functions of X and T.
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It is known that the solitary wave has no theoretical horizontal

limits. However, in practice U 21 0 and C is very close to

unity over a length of X = 10. The friction and curvature terms also

tend to zero. Hence this can be considered as defining the limit of

the wave. The location of the complete limits of the wave in the

T-X diagram and the corresponding value for C can be calculated

by exact integration in the case where S is a constant.

At the limit dT = I 1 because U =0.

Hence, -7a- = -because: c=

i. e.

/ ddT '
k' -sx[I - sx] J

For example, in the first case presented in Fig. VI-4, the shoreward

limit is defined by the equation:

T f' dX I( X1/21(I- 7
"d(ISX) 1 2  SSX)

since X = 0 for T - 0 . The seaward limit is defined by the following

two functions: (1) on the horizontal bed (X < 0)

T (d, N/2 ~
d \d,/ T L + X (V-18)

L being the "wave length" (L = 10)

VI- 18



(2) on the slope, it is easily seen that

T=aL +• I - (I - SX)I] (VI-l,9)

Along theme limits, U = 0 and C =(d 1)/2 = (I- SX)I/ (V1-2O)

A number of calculations can be eliminated by considering that

the slope does not have any influence on the wave motion as long

as the characteristic U - C (of slope = . =

coming from the point X = 0, T = 0 does not cross a characteristic

U + C. Hence, the input can be taken along this characteristic

(U - C) (line AB on Fig. VI-5)) by a simple projection of the values

of U and C from AD to AB. Even projecting them to AE will

introduce only a very small error because the effect of the slope on

the wave motion remains small as long as the wave elements do not

encroach on the slope.

T

• E

-I0 "5 •

0 A

FIGURE VI-6
WAVE LIMITS AND INPUT DEFINITION
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Ul C U2 +.Ct 3- C3

FIGURE VI-7

BORE INCEPTION

5. BORE INCEPTION AND CALCULATIONS

Now the very important phenomenon of the bore inception is

analyzed.

When the two characteristics (U + C) cross each other (point 4 on

Fig. VI-7)), then two sets of values for U and C are obtained at

point 4, namely Uu , C 4 Ud and Cd 4 from the equations:

U u + 2C u = U1 I + CI + G A T 1-4

S(VI-21)

U - ZCu U3 - 2C3 + GA T3 4

and I Ud+ 2Cd = Uz+ 2C 2 + G A T2- 4  (VI-ZZ)

Ud- 2Cd = U3 - ZC 3 + G AT 3 -4
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Pbysically this means that the wave profile is vertical at that

point. There is bore inception Ud and Cd characterising the value

of U and C just in front of the boreand Uu and CU justatthotop

of the front of the bore.

dXThen there is a discontinuity in the T-X diagram. Th. classical

method no longer applies along a line which crosses the line W a

(W = w / 4gd1, w being the speed of the bore).

Before studying the bore equations, some further considerations

on the bore inception must be given.

It can easily be seen that all the (U + C) characteristics on the

front side of the wave converge, while all characteristics on the back

side of the wave diverge. Hence the bore inception on the T-X diagram

depends upon the chosen interval A X for the inpt definition.

The smaller the interval, the sooner the bore appears. In fact, since

input is a limit solitary wave, it is normal that the bore begins as soon

as the effect of the slope is felt, i. e. at the intersection of the

characteristics (U - C) coming from T a O, X = 0. But the loss

of energy due to a small spillingbreaker near the crest it negligible

as long as the initial interval & X for two characteristics (U + C)

is small.

Along a line crossing the W line, the momentum and continuity

equations are those of a shock wave, i. e. from elementary hydraulics.

(See Fig. VI-8).
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FIGURE VI-8

BORE NOTATION

(d+) (d+

Pg z Pg g ---- d p(d+ -1)d(ud- Uu)(w- Ud)

uu(d+17)u = w [(d+ q)u- (d+9)d ] + Ud(d+¶)d (VI-24)

i.e. after inserting the dimensionless notation Uu , Ud Cu Cd W

4 4Cu4 ~Cd4 ~ Cd2 (w- Ud) (Uu- Ud) (VI-25)

UuCu2 - Udd d W(Cu - Cd ) (VI-26)

from which it is found that the dimensionless velocity of the bore W is:

I'.2



d + U1 (VI-Z7)

Then a W lin, from the bore inception must be drawn in the T-X
dX

diagram with a slope such as _X = W. It must be noted that

this line is between the line of slope Uu + Cu and Ud + Cd

(see Fig. VI-9). But W also varies as a function of X . Hence it

must be computed step by step
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First it must be noted that U and C can always be calculated

by the classical process on the low side of the bore, i. e. in front

of the bore because W is always greater than (U + C) on that side (see

Fig. VI-10). But point (3) of Fig. VI-10, calculated from points

(1) and (2), does not necessarily coincide with any point of the W line.

Hence Ud and Cd just in front of the bore must be determined either

by interpolation between (2) and (3) along the line (U 2 - C 2 ). (see Fig.

VI-l I) or by extrapolation from (2) to (3) along a line (U 3 - C 3 )

(see Fig. VI-12).

This work is greatly simplified when the W line crosses the

"limit" of the wave (defined by Eq. (VI-17) because then the bore

travels on still water with

U = 0

Cd (I - SX) (VI-28)

Now three other unknowns remain: namely Uup Cut and the

W values for the following step. Hence three equations are necessary.

These three equations are given by the continuity and momentum

for the bore and have been already expressed in (VI-25) and (VI-26).

Another equation is given from the classical relationship

d (U+ 2C) = GdT

applied along the (U 0 + CO) line on the high side of the bore and

which crosses the W line at the point to be determined. (See Fig.

VI-13).
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T

FIGURE VI- 13

ON THE HIGH SIDE OF THE BORE

I For this purpose the determination of the values U0 and C0 of

I point (0) can be done theoretically on the (U 1 - C1 ) line by inter-

polating the U aind C values between (1) and (3). Then

(u,+ zcu) 3 " U0+ 3 C0+ G • T0 . (VI-29)

In practice points (0) and (1) are so close to each other that the values

for U0 and C 0 can sometimes be taken as Uu and Cl.

Then Eq. (VI-29) is replaced by:
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Now Uu, Ce and W can be determined from Eqs. (VI-35), (VI-z6),

and (VZ-Z9) or (VI-30).

0. The solution of this system is given by the following set of equtions:

Y I + ZY x-K (VI-31)
7Z lyT [I ZY U K

where
CY u

rd

(uO + 2C0) .U+ A
K d d O -T ('11-32)

Uo0 +c 0 2 (Uu+ zCu) step before (VI-33)

The function K = f(Y) has been drawn for a range of possible values

| *for Y. Then Y is determined graphically from the enclosed curve

Fig. VI-14. If Eq. (VI-31) is mathematically solved, then six values

for Y can be found, but only one has a physical significance. ThisI C
value can easily be known since Y = C always varies slowly along

the W line.

When Cu is calculated, then Uu is easily obtained from

Eq. (VI-30). Then W can be calculated for the following interval by

formula (VI-27).
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A4 -

shoreline ios aalysed+ This problems has already given rise to a *WWer

of interesting otudises of a mathemtical nature: Whitham (195), KeUer,

at. &l. (1960), Ho and Meyer (1962). The following calculatimo. are

developed from a different &p"roach but give similar results. A

careful comparison of these various studies has not been e.sidor*d as

being within the *op* of this study because of the rather academic

nature of the research. It will be seen in the following section that

for practical purposes the bottom friction forces completely change

the results presented in this section.

Consider the bore formula:

WaC u C U + C d-
r-. dd (VI-34)

It is seen that Cd -' 0 near the shoreline, and at the same time

d (Cd) d
dX• dX""-

Hence the variations of W and also Uu and C. must be expected

to be very large near the shoreline. The step-by-step process. of

* calculation based on the assumption of slow variations is no Sonfer

Svalid as the shoreline is approached.

From formula (VI-34), it is seen that when Cd 0, W can

have any velve depending upon the value for Ca . tn fact, it Me ben
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found by Freeman that W can never exceed U + CU . Indeed the

wave elements which yi old up their energy to the bore arrive at a

speed U + C. The dissipation of energy due to the bore caomes

Cu to decrease in such a way that the speed of the bore W also

decreases to a value Uu + Cu after which more energy is provided

from behind the bore. Hence the Freeman limit W < U + CU U

shows that W is finite if U and Cu are finite. It can easily be

seen from characteristic equation along any characteristic

(u + XCu) = (U + 2C) + GA T = Cot (VI-35)

that Uu and Cft can never be infinity. (They are both positive).

Moreover, consider the relationship (VI-34) in which W

is finite and Cd - 0. It is seen that this can be achieved only if
Cu

both Cu -W 0 and Cu -- . Hence Cd must be an infinitesimal

of higher order than Cu . The Eq. (VI-35) becomes, at the shoreline:

u = U S = U + ZC + GAT (VI-36)

This means that the bore (or shock wave) disappears at the

shoreline and that the potential energy (function of Cu ) is suddenly

completely transformed into kinetic energy (function of Uu ). More-

over, by continuity it must be expected that

W -- Uu (vI-37)

which is in agreement with the Freeman limit. It is seen also that the

Freeman limit is reached only at the shoreline where
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W aUu + C Uw I

Hance at the shoreline the characteristic equation can be written:

7 I SdX

d:(U. + ZCu) -S dT S- "X (V-38)
U

or

d (u+ ZCu) + d(CdZ) =0 (VIo-39)
Uu Cu

Letting a T and P = - Eqs. (VI-34)
7d

and (VI-37) give:

r [('1-40)

Dividing (,(-38) by C inserting a and • , and the value for a

given by (VI-40), then expressing a as a function of 9 and Cd

as a function of S and X , it is found that:

d -i )d + I S - + ('(-41)

J is always larger than unity (and even tends to infinity) hence, the

denominator of the left hand term is positive. Hence Eq. (VI-41)

implies that d - o0 , since = u already tends

to infinity for W to be finite, d S must also tend to infinity but at

a higher rate. Consequently, since --- 00, then d-U

also -- - 00 but at a much greater rate.

Moreover, from the characteristic Eq. (VI-38), it is seen that

since -- - O, + 00 . Accordingly + (a
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To sum up these results, near the shoreline if the bottome

friction forces are neglected:

U .0d (Ud) 0Ud --- ad%- O

0 d) ( ODCd 0dX

d (C
C -- 0 Uu dX

Cd

W U: finite dW d (UU)U fd --- "X-

The bore disappears at the shoreline and is replaced by a

""1rarefaction wave" which appears as an edge of water climbing over

a dry bed.

Uu at the shoreline (called Us in the following) can then be

approximated very simply. Since it is known that C at the shore-
dU

line tends to zero and that dX W "U + Cu, U can be given by:
=u u A

Us = (Uu + 2 Cu) 4 G A T (VI-42)

In practice the values Uu and Cu can be taken from the step prior

to the quick variations of W, U and C For example, the point

dWcould be chosen where g = 0. In practice, also, the rate of

variation which follows is so quick that if G A T is taken to be

-S A T, it is found to be negligible in Eq. (VI-42) and this equation

may be taken quite simply as Us = Uu + ZCu. This equation
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explains the sudden increase of water velocity near the shoreline

when the shock wave or bore disappears.

7. THE WAVE RUN-UP CALCULATION ON A DRY BED

At the extreme edge of water C = 0 , because 1 = -d.

Hence, the characteristic equations is simply:

dU - GdT along dX = U (VI-43)

Hence d (U. = sdX and neglecting the friction forces:

UZ U 2

= -r- -six-x ) (VI-44)

where X is the shoreline coordinate.8

The vertical run-up can be calculated directly in the case

where it is the first wave element which has the most energy

2 2
R = (X X) S = ua a=

How•ver, the following wave elements usually overtake the first

one, so increasing the run-up and generating a "roll-wave." The

exact calculation of the run-up is then difficult because at the front

of the wave: U + C = U - C . This difficulty is automatically

solved if the friction forces are taken into account as follows;

It is seen that if at the front of the wave C -- 0 , the friction

term f + tends to infinity. Hence the edge of water is

cut short and the leading front appears as an almost vertical wall

of water which has the physical appearance of a bore. Then, the

basic equation for the leading wave element is:
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d(U+ ZC) -S+f (U d (VI-46)

For reason of similitude, there exists between U and C a

lineatr relationship: U = A C. The value of A depends upon the

friction coefficient. This value can be determined by anology with

a boundary layer problem. If, more simply, one assumes that at

the front of the wave aUl particles have the same velocity u , the

convective inertia is zero. Also, the local inertia pbu is

negligible by comparison with the pressure gradient and friction

term. Hence by equating pressure, gravity, to bottom friction

Sforces, it gives'Fig.. Vl-15.

t-(d+ [~d+?j - - = 0 (VI-47)

FIGURE VI- IS

WAVE FRONT ON A DRY BED
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Also, the slope S is small. Hence, by integrating Eq. (VI-47)

(d')'a" ( % ' ) u

Xb being the coordinate at the extreme front of water. It is seen

that the front of water is in the form of a parabola.

Also, for reason of similitude, the length of the front of water

2 zXb " xI), is proportional to u such as ( % X 1 ) = Bu

Hence C4 =2 f B U 4 and A = (Z f B) 1 / 4

An adaptation from a work of Keulegan (1949) gives A = 1/2.

Whatever the value for A E Eq. (VI-45) can be written

(I+A)(I+ZA) • (•) +(- + = 0 (VI-48)

which gives for U:

U2  X-XU 2 U n f1 X'X n

-S+ (A+V-49)

The leading front characteristic is determined graphically step by

dX
step, by the intersection of the curve - = U where U is

given by the Eq. (VI-49) and the (U + C) characteristics catching

up the leading front. The value of U at the intersection is

determined along this characteristic (U + C ) from the equation:

(U0 +ZCo) -(1+ZA)U + GAT ('v-50)

The wave front becomes increasingly insensitive to the following

dX
wave elements. The maximum run-up is found when - -0 0,

for all characteristics ( U + C ).
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Now the problem of the bore near the shoreline with bottom

friction can be solved. It has been seen that when Cd -0, O,
dC

Cu ,00 W -- U, and M - - In fact such limits

are unrealistic because they are obtained by neglecting the bottom

friction, which is never negligible near the shoreline. Hence, in

practice the theoretical curves shown in Fig. VI- 16 should be

replaced by more factual curves. These factual curves are obtained

by considering the relationship which exists between U and C

at the front of the run-up on a dry bed. This relationship has been

previously established and depends upon the friction coefficient f.

Hence, as soon as the relationship U =.a. AC is verified, the motion
u u

must be considered as a motion on a dry bed. The bore theory is

no longer valid.

Us THEORETICAL

I\

CW THEORETICAU

Xmoro

NO BOTTOM FRICTION
WITH BOTTOM FRICTION

FIGURE VI- 16

BORE CHARACTERISTICS
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6. APPLICATION

The method described in the previous section has been partly

applied by R. S. Orewal over a beach of constant 1/10 slope, corres-

ponding to one of the highest beach slopes. Since it was the purpose of

this study to find a method of computation for the run-up, such a

steep slope was chosen because it permitted investigation of all the

various theoretical aspects of the problem with less calculation than

a more gentle slope. Also, since the path curvature is very tedious

to calculate and does not present any theoretical difficulties, it can

justifiably be neglected for a slope of 1/10. The bottom friction term

is also negligible except near the shoreline.

For sufficient accuracy, at least four characteristic numbers

are necessary to perform the calculations because errors accumulate

rapidly.

The input definition has been calculated as indicated in section 4.

The results are presented in Table Vl-I for 0 > X > 5 . They are

symmetrical around X = -5 for -5 > X > -10

TABLE VI- I

INPUT DEFINITIONS

X 0 -o.F -1.0 -1.5 -2.0 -2.5

U 0.0133 0.0227 0.0360 0.0633 0.0864 0.1191

C 1.000 1.000 1.000 1.005 1.015 1.029

X -3.0 -3.5 -4.0 -4.5 -5.0

U 0.1801 0.2598 0.3535 0.4771 0.6032

C 1.063 1.118 1.204 1.300 1.334
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The corresponding results are presented in Fig. VI-17. Fig. VI-18

is an enlarged portion of Fig. VI-17 near the shoreline. Fig. VI-19

represents the successive wave profiles obtained from Fig. VI-17

and VI- 18.

Because such results have a definite value, the values of W

U and C for all the points are given in Tables VI-2 and VI-3 and

Figures VI-ZO and VI-21 give the values of Ud , Cd I Uu Cu

W and I as functions of X and T respectively.

Now the run-up can be calculated from the following set of

equations. Since G A T is small, Us and Cs at the shoreline are

obtained from

U + 2C =U + 2Cs a u u

Taking the last obtained values for U u and Cu at X - 9.52

(the shoreline is at X = 10 ), one obtains:

U8 + 2 C = 1.223 + 2 (.635) = 2.493

And from the relationship Us A 6 where A is arbitrarily chosen

as 0. 34 for example, it is found that Us = 1. 568, and Cs = 0. 466.

The application of the method presented in section 7 has not been

performed quantitatively because it was beyond the scope of the present

project. The Fig. VI-ZZ gives a qualitative aspect of the characteristic

method over a dry bed. Some quick calculations seem to show that

2. 82. In fact the final result depends upon the value for A.
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U, THEORETICAL:
(NO BOTTOM FRICTION)

- SPILLING BREAKER FULLY OEVELOPED BORE -(RAREFACTION WAVE)-

2.0 UOTO RITIN

S.

I, N
U , FACTUAL:

I. (WITH BOTTOM FRICTION)

C. THEORETICAL:

I (NO BOTTOM FRICTION)

Ox0 2 4 6 a 10

FIGURE VI-Z0

BORE CHARACTERISTICS VERSUS DISTANCE
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VI49
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FIGURE VI-ZZ

QUALITATIVE ASPECT OF THE METHOD OF CHAR-

ACTERISTICS FOR STUDYING SURGE OVER A DRY BED
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It soems that the value for A is between the value proposed

by Keulegan, namely A a 0.5, and the value chosen in this example,

A a 0.34

"9. CONCLUSION

A theoretical method has been developed for computing the wave

run-up. The various steps of computation have been described,

"namely:

a. Input definition for possible maximum run-up

b.. Wave deformation on a slope

c, Wave breaking inception

d. Bore traveling within the "limits" of the wave (Ud g 0).

e. B'ore traveling outside the "limits" of the wave (Ud = 0).

f. Bore reaching the shoreline without bottom friction

g. Bore reaching the shoreline with bottom friction

h. The run-up on a dry bed with bottom friction, including

the determination of the shape and height of the wave front.

It can therefore be said that a great step forward has been made

in afield which, despite its importance, has had a relatively small

number of theoretical studies. Most previous studies on wave run-up

have been mainly limited to experimental studies on rather steep slopes

in laboratories. Previous theoretical studies on the climb of a bore

on a beach mainly covered topics e and f above. Practical considera-

tions have shown that the bottom friction modified the theoretical

results obtained in f.
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Despite the present achievements, the problem deserves further

investigation and refinement. A computer program has to be developed

for analysing rapidly and accurately the cases of waves traveling on

various slopes. The friction coefficients can be determined by

correlating the present theories with some experimental results.

Then other cases can be investigated rapidly.

Finally the theory of run-up on a dry bed can be refined by

further analytical and experimental investigation.

Among other topies to be investigated prior to writing the

computer program is the choice of interval and characteristic numbers

as a function of the error. Also a numerical method can be work out

to calculate U *and C for given values of X and T defining a fixed

rectangular net as it has been proposed by Stoker for flood routing.

This process will permit the path curvature term to be taken into

account more easily.
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LIST OF SYMBOLS

APPENDIX VI

x Horizontal coordinate positive towards the shoreline

z Vertical coordinate positive upwards (Mid-water level
z = 0)

t Time

d Depth (bottom: z = -d)

9 Vertical distance from the free surface to the mid-water
level.

u Horizontal water velocity

w Vertical water velocity

g Gravity acceleration

Ch Chezy coefficient

f Friction coefficient :

2 Z 3 2
=, -gS - b uc

* -3g b xbt

S Bottom slope

dI Depth at the origin

X d : Dimensionless horizontal distance

t
T- : Dimensionless time

Su1 :Dimensionless horizontal velocity

Cc7 : Dimensionless velocity for wave elements
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O g GS : Dimensionless coxrecting term for characteristics

H Wave height of a solitary wave

V Solitary wave velocity ( (d + H)

Subu Related to the high side of the bore

Subd Related to the low side of the bore

Subs Related to the shoreline

Subb Related to the front of the wave

w Bore velocity

wW : - Dimensionless bore velocity

Cy -- U

d
(U 0 + 2C) U d + G T

U
Ua = d

C
C u

d

R Vertical Run-up

R
= -a- : Dimensionless vertical run-up

A Coefficient for the wave front

B Coefficient characterizing the length of the wave front.
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I

1. INTRODUCTION

The analysis of two-dimensional waves in an estuary has re-

suited in two studies:

a. The nonlinear motion of a single finite wave. This has

yielded some new developments in wave analysis.

b. The presentation of a finite difference scheme, suit-

able for numerical machine computation, that allows

for evaluation of two-dimensional wave motion by the

method of wave derivatives. Although other approaches

may exist, this was selected as the best and most

economical computation method for the wave problem

6 ,at hand.

2. NONLINEAR MOTION OF A THIN WAVE THROUGH A BAY

A moving wave is not a general two-dimensional disturbance

over a 40 mile square. Indeed, even a wave with a period of a

hundred seconds influences only about a mile and most indications

are that the wave passes over an area in a finite time and leaves

the given area relatively undisturbed after passage. This implies

that the wave is a relatively thin long disturbance moving through

a bay that is certainly undisturbed ahead of it and probably undis-

turbed behind it. Thus, a solitary wave may be regarded as a

disturbance influencing only a narrow strip at any given time.
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"at hand.

2. NONLINEAR MOTION OF A THIN WAVE THROUGH A BAY

A moving wave is not a general two-dimensional disturbance

over a 40 mile square. Indeed, even a wave with a period of a

hundred seconds influences only about a mile and most indications

are that the wave passes over an area in a finite time and leaves

the given area relatively undisturbed after passage. This implies

that tha wave is a relatively thin long disturbance moving through

a bay that is certainly undisturbed ahead of it and probably undis-

turbed behind it. Thus, a solitary wave may be regarded as a

disturbance influencing only a narrow strip at any given time.
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We write the equations of motion in shallow water in the following

form:

h+ u huv~-2

T +U b. + bV +2c - 2c0 b---CE (VIl- 1)
bt"bx- by by by

In order to discuss the problem of leaving the fluid undisturbed, we

consider a one-dimensional problem.
bc0

hu + u "- +2 C : = 2c -. 0- E.
bt bx bX OX

S2 (b- + U .+ C 0(VII-Z)

bC°_dxd(u-2cL dCtEaln -=u+c

This give us dt 2 Ca along x- u

which is the way we follow the wave

i ~~~d(u-2c) = C0 x-E

d2c -E.bC along _dxL .dt b dt u-

The wave moves along the x axis with a speed of the order of c so
dx

that u - c moves through the wave with a speed of the order

dx
of -2c. Thi.- means that the line -a--- u - c is almost parallel

to the x axis and we can consider d(u - Zc) _ dt d( u - Ic)
If we neglect friction, d( u-Zc) Co bCo Since

dxu - c b Sic
Co ,-I and dx = dx (u- c ) is almostu-c ai F

parallel to t = zero,

d ( u- Zc) b (u -Zc) = b(-Z Co)
dx b x b x
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This tells us that a good approximatsun is

(u - 2c) (x. t) = -2 Co (x).

This approximation includes as a result that the water is

undisturbed after the last characteristic -- dx u+c passes
u~t = Co pse

a point. Note that this says u - c = Co " T so that CO
-CO - --

S+ U

The thin wave and the observed fac:t that most of the motion and

wave height changes occur along a normal to the wavr Rhlggq-ts the

desirability of a system in which a normal to the wave is used as a

coordinate system and in which the largest fluid motions are parallel
bu 6,7 bc

to the wave so that v 77 y &v can be considered

to the first order only, u and c will be considered to higher order.

Since changes in the y-direction in the ordinary flow would

move through the wave much faster than along it (See '.'ig. ."-. i1

it i5 assumed that the chief contribution to v would be the tirning

of the wave front as you move parallel to it.
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C

FIGURE VII- I

BASIC PRINCIPLE OF CALCULATION

If the wave travels from A to B, a disturbance at A could

have only affected the wave in the shaded area and that only while the

wave travels to C . The shaded area is determined completely

by condition between D and B in the time it takes to travel from

D to B . These considerations lead to the approximation that

v(Y-yo) = u(y-yo) G(y-y)o
or (U sin(0-8,) in extreme cases).

The term C in Eq. VII-I can then be written C (u9)

We will ultimately find that W (the speed of a forward advancing

bore) will control our wave and that

-V 0- V a f (Ub .C6 #Cob)

which we will show later.
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This leaves us with the following equation for the motion of a

wave with a leading bore moving through a shallow bay in a coordinate

system with x normal to the wave.

bu 2c -c: kii Uulu

bc bc -X by

Ss, f;V •(ucb.c.) V a f( C * C S( ,Xt)

Xb 'Yb 9tb are coordinates of a leading bore.

This give us

* I-t(u+2c)-2c.L*~-"-c-(U8)- g UUf~
bx b

along d u+c

We are also given as an approximation that

u-2c--2c0
or

u = 2 (c -c.)

So we have
- k g3 (c-c0) Ic-ceI

-t(4 c - 2 c,) •-2C o b -'-c C - , (c -c o)G - 4 k4 C C ) IC _ .

along

dt 3C-2c,

This can be written

( 2co 15 b 3kg-/3 (cco)cc
2 (-3c-2Co)bQ- 3 CO 39

dt +4Co) bx - by C

VI-5



along d" 0 3C - 2cO Note that:
dt Nt ht
3c- 2) t 2CO and (3c-2c )-co

(C -2C.*2C. and c-co,

are handy equations to use with this differential expression.

We can rewrite this expression setting Cu 3C-2C* so that

15 5 c 10 c+4% 5 3

. €-co j2

4. c2/3 C + 2Co )2/3

The resulting statement of the problem is as follows:

Cd¢ 5 bco (T -co) b (_o
T-" - €+ Tco) bx 3 i y (-O

k9-,/3 (c-co) I' C6 (c

3 ( C t2cO )2/3I 3
along d.. =2 €

dt

It is obvious from the structure of this set of equations that if

a system in which we have large values of 9 following on smnaller

values, that the larger values will overtake the smaller and a jump

(or a bore) will form. Thus we are most interested in the wave with

a leading bore.

We calculate the conditions at and the speed of this bore with

the equations of conservation of mass and of momentum. Consider

the bore as stationary with the fluid moving through it at speed -V.
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'lb
-V+u -Vd db

FIGURE VII-Z

BORE NOTATION

Continuity of mass tells us -V db 9 (-V + u) (db+ 'rb).

From our previonsly given equations, we find

2Z(c
VCo. -V+2(c -c.) c, V L= -CZ

V (c-c.) 2c (c-co),

or the speed of the bore V 2c

We express this in terms of c:

C +"-TCo; C+C " IS + 3 C"

21+ 22 (VII- 3)

vS 9 1C. +2 c)
j+~

It is inherent in the physics of the problem that e - V -> 0 . If

C -- V • 0 or nearly so and there is an indication C0  changes so

that < 0 then we must adjust e so that d(¢-V).O.

(This usually occurs with decreasing Co .) From Eq. (VII-3),

Cb > W except for Cb Ce . There is a following value

of e < ¢b for which we can 3ay ts V. This value of C will
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be moving at the same speed as the bore and the values between it

and the bore will be trapped unless the bore slows down.

Over a large part of the course of a wave, you might expect

SSUcb . We write:

C2 +5¢co 4c -cc

3 co €+5c 0

and get as an approximation:

We are now in a position to compute the wave and the bore.

d¢ dco 3 - CO
+e 5 dtcn b (C -Co)

dt 4x 3~+-0 ~-.--~ by ec
kg-1/ 3  (C-c) IC-Col

3 (c + 2c )2/3I 3
In order to speed up computation, we now make two assumptions.

One is that we can recognize when ( C -Co ) is negative or positive

so that we can simplify the last term in the.equation; the other and

less justified assumption is that ( C -- Cý ) has a weak dependence on y

so that the second term can be written

Co b8 (C-Co)t b8
(-co) -y- - 6 by

We now set d- b (C -Co)

andwehave I dC _ 3 d'Co -a dt 4 dt dt

c0 (c- 9) b - (2/3 -V3co(€c-.) by (6-_ b +2(3)1kg ]
byc-8+2C 0 )2
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be moving at the same speed as the bore and the values between it

and the bore will be trapped unless the bore slows down.

Over a large part of the course of a wave, you might expect

€ $c. . We write:

-2- C +5cc 4c-o 0
V + +c+5o+ Co

v ... +2 C 0 4c0 -c
S3- 0- c+5c0

and get as an approximation:

We are now in a position to compute the wave and the bore.

de 5 dc o  3-bc _ TC0 b
dt 4o "3 3e-cob

kg"1/ 3  ( -C.) IC-Col
3 (c + 2% )2/3

3
In order to speed up computation, we now make two assumptions.

One is that we can recognize when ( s-C- ) is negative or positive

so that we can simplify the last term in the equation; the other and

less justified assumption is that ( C -CO ) has a weak dependence on y

so that the second term can be written

Co b8 (€ Co)2 b8

We now set dt b -

and we have dcc I dc,-

Co(C-Co) b8 (s-c0 )2 [k8 2(3) kg
6 by 6- b €+2coW2/3

VrI-8
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Also we recall:
a 2 2 4 cob - eb

Thus we can see that the total computation can be done in terms of

€ 1 ,Co and MY .

Thus a set of nomograms is indicated. These should give:

a. €-Co

b. ce (c'C,)
6

(C - Col 2

6
2 -1j

2(3)3 kg
d. (C + 2c0)I

I4C.,.

e. •- -4-c•co+j- V

f. yO

Some of these quantities should be expressed as numbers and

others should be shown as the distance traveled in a time increment.

The nomogram used for computation is included in Fig. VII-1.

A sample approximate computaLion for Chesapeake Bay is included

in Fig. VII-2.

3. USE OF THE NOMOGRAM

This nomogram is designed to compute the travel of a wave at

speed e on the Coast and Geodetic chart No. C & GS 70-A for

Chesapeake Bay near Norfolk. The travel is for 500 seconds. The
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I value of Co is indicated by the depth d on the chart and it is

assumed that values of € are written on the chart. The wave

front traveling at speed V is the basis of Fig. VII-Z. This to

very much like a wave refraction diagram.

The use of this theory and nomogram should yield interesting

results on two dimensional wave travel. The next section gives a

more general development.
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FIGURE VII-4

LEADING EDGE OF THE BORE POSITIONS EVERY 333 SECONDS IN
THE LOWER CHESAPEAKE BAY
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4. A NUMERICAL PROCEDURE FOR OBTAINING AN APPROXIMATE

SOLUTION FOR THE TWO-DIMENSIONAL TIME WATER WAVE
PROBLEM

The following is an approximate method for following the progress

of a solitary wave through an estuary or bay. The method suggested

is a slight modification of "1 The Method of Wave Derivatives, " proposed

by Freeman and Baer (1957) . The notation used here is very much

the same as that used in the above reference except that variable depth

and friction effects are taken into account while Coriolis and wind effects

are ignored. The difference equations are stated in terms of a fixed

space grid, but only those portions of the grid in which the effects

of a solitary wave will be noticeable are used in the computation.

The entire procedure is motivated by physical considerations and
the need to obtain reasonable results in a limited amount of time.

Consequently, the procedure is not presented with an appropriate

analysis of stability. We apologize in advance for the rather glaring

lack of mathematical rigor in this discussion.

Let D be a bounded domain in the first quadrant of the x, y

plane. Let D be a domain contained in D such that the distance

from any point P in D to the boundary of D is greater than some

fixed number o- > 0.

* Freeman, John C., Jr. and Ledolph Baer. "The Method of Wave
Derivatives." Transactions, American Geophysical Union,
Vol. 38, No. 4, August 1957, pp. 483-494.
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x

FtGURE VUI-5

NOTATION FOR A NUMERICAL PROCEDURE

FOR NONLINEAR LONG WAVES

Let (xi, y.) be a square grid on the x, y plane of mesh width 8,
J

i. e. K1 :8

0 1. jsOI2.

We are concerned with the system of partial differential

equations

rt b U~ +b~y bc bd""t " g "S"E- E,

b+ +b+ b-g - E, (x,y) D, t >0, (v--4)
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where u and v are the x and y components of the fluid velocity,

d(x, y) is the depth of the basin represented by the domain D from

4. a given reference level (e. g. sea level), c is the wave velocity, i. e.

C :S 'ýAgh(VII -5)

where

h( x,y,t)- d(x~y) +9 (x'yt)

t7 (x, y. t) being the displacement of the free surface relative to

the reference level. The quantities E. and E are, respectively,

the x and y components of the internal friction forces per unit

mass. These are assumed to be of the forms

?o-/3 +v

Ex= kg /3  (VU-6)

E kO-u/3 v u2 +v 2
Ey •c 2/3

The values u(x, y, 0), v(x, y, 0), d(x, y) and (x, y, 0) are

assumed to be known in D. The domain De or equivalently, the

quantity or , is to be determined so that the quantity h is bounded

away from zero. For example, if an upper bound
M = supji (x,y~t)I

(x,y)e D

0S tS ST

is known, then the domain e could be determined by the requirement

that if (x, y) D, then

d(x,y)-M> 6>0,
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where a is some pre-assigned positive number.

By the methods of (I! , the system VII- 1 may be replaced

by the system

Do Al D2 A2  b
+f wv- x 2gb2g-d- 2Ex,

dt at bx

D_ 3+ D4A4 2 gbd 2E (VI-7)
dt dt 92 x x

D, A, D3 A3  2g ( bd + - )- 2(E +E ).
dt dt bx by ) y

+ 2g D( b( - --- )-2(E +E '
dt dt bx by x y

where

D, b ( C)_ý_+ V C b'--2 b +(u +c) b + (vc) b

dt bt bx by (VU-8)

Sb +I-u-c) - + (v-c) -•
Sb

dt bt

and

A a u +v+2c,

A2 a u-v +2c,
(vII-9)

A3 " u+v--2c,

A4  U--V2c,

The operators dt are called "wave derivatives" and the

meotod is a generalization of the familiar method of characteristics
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for the one dimensional time dependent problem.

We will have u3e for the following results obtained in Freeman

and Baer

(A- + A3) +(A 2 + A4)
4

(A, + A )- (A2 + A4)V • (VII-IO)

4(AA+ A2)-(A 3+ A4 )2C= 4

Ae(A, + A + (A,-+ A•) - (A3+ A4)'

(A2 + A4) (AI+ A2 )-(A 3+ A4 )
A2- 2 + 4

(A, + A3) ( A2- 4 ) , (VI- l1l)SA3= 3 4

A4 = (A 2 + A4) (A,+ A 2)- (A 3 + A4)

2 4

We will replace the system (VII-8) by a system of difference

equations and will define subregions R(n A t), n = 0, 1, ... ,M,

M A t = T, of the domain D* in which our computations will take

place.

"The region R(0) will be defined by our initial conditions which

will describe a solitary wave. We will assume that for points (x, y)

outside of or on the boundary of the region R(O),

Su (x,y,O) v (x,y,O) a 0

S(X,y,O) •0
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FIGURE VII-6
NOTATION FOR A NUMERICAL PROCEDURE

FOR NONLINEAR LONG WAVES

We define R(O) to be the set of all those points of our space grid

which are contained in R(O) . We define A( 0) to be all those

points of R(O) which are at a vertex of a square contained entirely

in R(O) Analagous definitions will be assumed for other regions

in the x, y plane.
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I
Lot P r (xi, yj) and let

V, (u'v,c) ( (u+c,v +C),

V2 (u,v,c) • (u +cv - c),
(ViU- 1z)

V3 (u,v,c) - (u- C, v - c),

V4 (uvc) • (u- c, v +c),

Also let

Vij V V(x IYj1O), (VII-13)

17~ ' (x i Y j,0),

for points (xi, y,) a I(N). For all other points of the lattice in

define all of theme quantities to be equal to zero. Extend the values

of ri', ,.V•S 'fl1  to all points of the piecewise rectangular region

determined by R (0) by linear interpolation. The extended functions

"u (t~Y),v(x,y},~'(x,y) will then be continuous on the piecewise

rectangular region determined by IN().

Define 0(&t) to be all those points of P of ) which satisfy

the requirements that the points

P1 ilX tuI...........,4, (VUI- 14)

are in the piecewise rectangular region determined by N(0). Define

I (At) to be the set of all points of R 1At) which are at the

vertex of a square contained entirely in D
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For those points Pit 4 R (At) we can solve the system of

difference equations

A;,+A3, r, *B - * 3 ,~ , W)+

~ c,, ,}] , c +,,,p 1
A1 I A a+2 ([)+-2E1 I ;',A +9 (P,

III1 31 P~iI

3 *4

w nhe r Pe

11-2E~~~b ("IAP, Il (.

al4 ' 2X bd (1

bd ( (P*3)

/•q=20 "by'

(v1]-16)

)A, U( 1  v, -) +A c, ,

"2 f.E. (

Aý~ ~ ~~1 U511 3 +2~j6 (,-O, )V

and the quantities A (P are t continuous extensions of +A

the piecewise rectanul~uar region determinedl by R (0) . The quantities "'I

~,,,,"', ndl •,•, •',,, may now be respectively ,deterrine,,l ro,,i

SEqs. (Vili-l0) and (VII-l l) and all ofthese can bo extended by linear inter-

polation to function. 'I"(P),•'=P),•(p), 7j (p), '7• p), ' (p), ',(p)

continuous on Ihe piecewise rectangular reg[ion determined by R° (At)
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The general algorithm for continuing our computations is now

obvious, but we will state it for- the sake of completeness.

Assume that the quantities 'I have been

found for points in the region R 'Akt0 and have been extended by
0 

I
linear interpolation to the functions ~Uk(P),....... .. A 41l(P) continuous

on the piecewise rectangular region determined by R (kAt) , For

points Pi of D* which are not in R MAtO , the values -u'...

are to be obtained by setting U =" V AJ gIt zQ" Define RA(k+,)&t)

to be all those points P of D* which satisfy the requirements that

the points

1Paf P ~V (ti' V' Ch A tI=1- 4 VI 7

I

are in the piecewise rectangular region determined by R (k A t)

Define R((k+ ) At) to be the set of all those points of A((k+0)At)

which are at a vertex of a square contained entirely in D*.

For those points P.. .R (k + })At) we can solve the system

of--difference equations

P..,0 1 + , k+[ I ~k "2
A,l + A2g " At [ -2E.(u c,) +, (PA ) +A 2 (P2),

pk,,+ ,,~k+, It ~ k ~ ] + ( + _I "t 1 4)
A,+A4 At -2E .u, 3 • A 4  ,I

311 4jj LiAP 4 (VII- 18)

w + 1 -- k +i A t 'i It ' #

AllJ + A311 2 A t ( ij- - 2 { U. Vi, c 1)

, u, ,i Xj~ I i '

It + j, ) + Wk( a4)
-ECI CUJ + i (PIV 4 4
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I
The quantities ..I.. 4kJ can now be determined

from Eq. (VII-lO)and Eq. (VII-11) and all of these can be extended

by linear interpolation to functions 'u÷' (P) A.., A4  (P) continuous

on the piecewise rectangular region determined by R((k+,)A t)

The algorithm is now completely defined and the computations are

iterated M times until the final time M At= T is obtained,
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LIST OF SYMBOLS

x, y horizontal coordinates

u particle velocity along the x- axis

v Particle velocity along the y-axis

t time variable

c v/g T(d ÷1 )

g gravity acceleration

d water depth

17 free surface elevation around the still water level

h d+7

Ex friction force component in the x direction

E friction force component in the y directionY

0 angle of a nearby it vector with the u vector
with which we are working

V bore velocity

sub b relative to the bore characteristics

h friction cocfficient

€ 3c-2co

e preassigned positive number

Di, Dt wave derivatives operator

A u v,; 2c

n integer

D domain

R subregion of domain D
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