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FOREWORD

Volume 1 of this study on the effect of long wav:s in the lower
Chesapeake Bay dealt particularly with the practical and engineering
aspects of this problem and was based in part on new theoretical in-
vestigations. These theoretical investigations are presented in this
Volume II as various appendices. Most of them are original contri-
butions to the science of hydrodynamics of long waves. They may
have other applications than those presented in Volume I of this study.

Volume 1II is made up of the following studies:

Appendix I: Long Waves Generated by Nuclear Explo-
sions. Types of Waves and Initial Decay in Deep Water. (Dr.

Basil Wilson)

Appendix II: Theoretical Considerations and Computations
for Water Waves produced by Exnlosion. (Dr. Larry Armijo

and Miss Mary Ann Noser)

Apperdix III: Surface Waves Generated by Disturbance on

Sea Bed in Constant Depth Open Sea. (Dr. J. A. Hendrickson)

Appendix 1V: The Principle of Superposition and Theory

of Cauchy-Poisson.(Dr. B. Le Mehaute)

Appendix V: The Shoaling, Damping, Breaking and Run-
up of Long Waves over the Continental Shelf. On Saturated

and Nonsaturated Breakers, (Dr. B. Le Mehaute)

iii



Appendix VI: The Wave Run-up by the Method of Charac-

teristics. (Dr. B. Le Mehaute. Dr. J. Freeman was

scientific advisor and Mr, R, Grewal did the numerical com-

putations.)

Appendix VII: Two-Dimensional Nonlinear Wave Motion

in an Estuary. (Drs. J. C. Freeman and Larry Armijo and

Miss Mary Ann Noser)

iv
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ABSTRACT

This volume assembles a number of theoretical studies rele-

vant to the field of hydrodynamics of long waves. They are:

Literature survey on theoretical and experimental informa-
tion on the problem of cylindrical waves generated by a local

disturbance, with application.

Application of the theory of Kranzer and Keller.on cylind‘rical

waves generated by explosion to three magnitudes oprower.

Theoretical study of cylindrical waves generated by a cylin-’

drical upthrust on the sea bottom..

The principle of superposition is applied to the Cauchy-
Poisson solution for determining the cylindrical wave motion

due to a finite sea surface disturbance.

Wave deformation on a very genile slope, wave damping by
bottom friction. Saturated and nonsaturated breakers. A

survey on experimental data on the wave run-up.

A method of characteristics is presented for analyzing the
wave deformation over a gentle slope, wave breaking, spilling

breakers, bore, and run-up on a dry bed.

A numeri~al procedure for calculating the penetr‘ation of a bore

and nonlinear long wave into estuaries is given and applied in

the case of a bore.

Xv
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APPENDIX I

LONG WAVES GENERATED BY NUCLEAR EXPLOSIONS

TYPE OF WAVES AND INITIAL DECAY

IN DEEP WATER

By

Basil W, Wilson



1. INTRODUCTION

The literature on the effects of surface and sub-surface distur-
bances of water both theoretical and experimental is quite extensive
and this tentative survey of available results makes no claim to being
exhaustive. Satisfactory treatment of the initial conditions prevailing
in a thermo-nuclear underwater explosion has not yet been achieved,
to the writer's knowledge, in any theoretical analysis or laboratory
experiment. Both mathematical and experimental models remain
relatively crude, though they can nonetheless provide useful guide-
lines to the natural behavior of the archetype event. The hydrody-
namical difficulties of achieving an effective theoretical simulation
of the explosion are considerable, though progress in this direction
undoubtedly will come. In the end, however, the most reliable infor-
mation on the effects of nuclear explosions in water will be that
secured from actual prototype experiments. In this report an attempt
will be made to examine the problem of wave propagation from a
nuclear explosion in the deep ocean (water depth circa 16, 000 ft.) up
to the point that the waves encounter the submerged continental
slope of the nearest land mass. In accomplishing this, recourse is
made to such theoretical, laboratory and field studies of impulsive
water waves as it has been possible to analyze within the time avail-

able.

1-1



B

2. THEORIES OF RADIALLY SYMMETRIC DISPERSIVE WAVES

The great pioneering theoretical treatment of disturbances
in water résulting from initial elevations or depressions of lo-
calized extent came from Cauchy (1815) and Poisson (1816). Their
combined achievement, now made classic through the elegant pre-
sentation and extension of it by Lamb (1904), examined the effects
in water of infin‘ite depth of certain shapes of paraboloidal and
ellipsoidal depressions or elevations. Lamb -gene'ralized the solu-
tion in the two-dimensional case for both initial elevation and
initial impulse by making use of the Fourier integral ‘Th.eo:em '
and in the three-dimensional case by use of Neumann's (ln862) . :
Theorem. As our present interest lies x.'eally in ifhe' thlree'-dir'ne.h- -
sional problem, having cylindrical 'symrri‘etry, w'é 'shall give 'cmly." '
passing consideration to two- dimensional sclutions.

Within .the limits of the assuﬁption c;f a.concentrated point
impulse or elevation applied to.the sufface.,' Lamb deri;res an é;cact
hydrodynamical solution. The solution of the fre;a surface, in the -
form of an infinite series (Lamb, 1932, fZSS), has, however,
rather limited physical significance because the input energy is
implanted on an area of infinitely small extent. Kelvin's method
of stationary phase (1887), applied by Lamb, nevertheless serves
to show that at large d.istances from the source the wave forms 7,

(initial elevation) and 7; (initial impulse) will be given by

I-2



Qq k )

(1) Ne = — coskr
y ﬁ'w'l’
. -1g k

(i) Ne = o7 sinkr

ﬁ~1r'p'g'r > (1-1)
i) k= gt?/4s?
(iv) o = gt/2r )

wherein Qo and Io are respectively the concentrated elevation and
impulsive pressure at the point source per unit area, . r is radial
di.sta.nce from the source, t is variable @ime and p and g ha.vé
their usual meaﬁings of fl;.lid density and gravitational acceleration.

The period 'T' of,thése waves, if t > T, is

2w : '41"rr

T=2 — = “(I-2
c gt ( )
and their wave lengtH A , provided r>> )\ , is -
grr? ‘ -
x = g’-r— = 2 (1-3)
k gt
making the wave velocity c,
A r
cs —=— = 2 — = 2V (1-4)
T t

or twice the group velocity, V.
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Since the wave length and period of the waves at considerable
distance from the source tend to change very slowly with result that
r/t (the group velocity) varies only gradually, Eqs. (I-1) tend to show
that wave amplitude will decline approximately as r-l.

Terazawa (1915) applied Lamb's methods to the case of an
initial disturbance spread over a finite extent of the free surface in
infinitely deep water, and likewise found the amplitude decay to be
proportional to r~ l. Terazawa also investigated the effect of an
impulsive explosion at a finite depth h below the surface and found
the initial amplitude of the wave disturbance at surface zero to be

proportional to n-3/2

The same result is deduced by Lamb (1922)
for a rather different model of explosion in which an abrupt pressure
rise is followed immediately by a gradual fall. If the initial pressure
rise is more gradual the amplitude of surface elevation tends to vary
as h™%.

The high frequency of occurrence of tsunami-generating earth-
quakes off the Japanese islands has led Japanese scientists to pay con-
siderable attention to the problems of waves generated by impulsive
movements of the sea bed and ocean surface. Prominent among
authors who have contributed to analyses of these problems have been
Sano and Hasegawa, Syono, Homma, Nakamura, Sezawa and Kanai,
Takahasi, Ic.hiye, Matzawa, Miyoshi and Unoki and Nakano.

We shall commence by considering briefly the remarkable
series of papers of Unoki and Nakano (1953, (i), (ii), (iii) ), which

extend the work of LLamb and Terazawa for a surface disturbance or

impulse of finite amount spread over a finite area in deep water and

I-4



compare the results with observed waves from a volcanic explosion.
For the case where the initial elevation is a uniform piston-like rise
Q of the surface over a circle of radius R at the origin, the wave

disturbance is described by
e x LZAR B (o) cosikn) (1-5)

provided r>» R, this being the asymptotic solution of the problem
using Kelvin's powerful method of stationary phase. In Eq. (I-5) pu
is a coefficient of '"virtual viscosity' or friction coefficient in the ex-
ponential time decay arising from the assumption that friction from
eddy viscosity is proportional to fluid velocity; Jl is a Bessel
function of the first order which modulates the last cosine term.

The equivalent result for a piston-like impulse of uniform
amount 1 imposed on the surface over a circle of radius R at the

origin is

vV2 vy2 IR p.'

M - qu

J, (kR)sin (kr) (1-6)
again under the condition r >» R.

In both Egs. (I-5) and (I-6), since the group velocity V (=r/t)
changes only alowly for large values of r, wave amplitude decay,
discounting the exponential decay with time, is proportional to r'l.
The system c;f waves that arise in these two instances have beats
whose modes are determined by zero values of thc Bessel functions

Jl (kR).

I-5



Unoki and Nakano successfully applied these results to the case
of the Myojinsho reef submarine volcanic explosions and concluded
that the wave system described by Eq. (I-6) best fitted the observa-
tional data. The volcanic explosions (which have been described as
not dissimilar to small nuclear explosions) thus accorded reasonably
well with the mathematical model of a uniform cylindrical surface im-
pulse. The authors estimated the energy of the ekplusionq as being

from 3 to 8 x 1019

ergs (about the equal of a 1 kiloton nuclear 'blést).
and concluded that most of the energy went inﬁc; wave formation.
From a comparison of observations with theo'i'y, they concluded that -
R had the value 2.2 km. |

In some cases the volcanic explosions g;ve 'r.i-se to wa\;e trains
which showed no beat effects. Unoki and Nakano expl‘ai'nl this on fh_q
basis that the initiating impulsé was sofngtimes,px‘ob_ably of Caus;ian
form. Thus by assuming the instantaneous imj)t:xlse to have the form
. . '2.‘ : . .
I{r)=1,e 4nr2 ' (1-7)

These authors shcw that the resulting asymptotic approximation to

the wave form, ‘qi , for r > R is

2 _.2 2
_2v2 IokoR® pt ~(KR)

N >~ PQ' sin(kr) (1-8)

In this case there is an absence of beating and wave amplitude merely

decays monotonicly.
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We may note that Unoki and Nakano also elaborated the two-
dimensional case of wave disturbances originating from finite source
disturbances and showed that wave amplitude decay in deep water in
these circumstances, remote from the source,.ia proportional to
x'l/z, where x in this case defines the horizontal distance. Both
Jeffreys and Jefireys (1956 Edn., p. 517) and Eckart (1948, p. 409),
however, independently show that for this two-dimensional case the
wave amplitude near the front' of the train, where group velocity
ap;;roaches the value \/ng. d being the water depth, declines as
r-l/J. so that the fl;ont of the wave train beQAmea in-crea.uir.xgly more
pfc;minent with iapse g;f tir.ne and distance in the'diaperaion of ti’xé
ay.ste'm. Eckart'.s golution_showa that this wa\é front is ‘an 'an..m.pli:tude. -
m_odulatior"n of a sinusoid#l c'arrief system. of waves \'vho;e.w'aYe.léngtl.\
is infinite (at 1east' for the usual as.t'mn‘ned-ir;c‘:‘om'presaible wat"ex.'
~medium). Effectiye wav.e; length near the ti'ront'of the .1:1;ain is thus - .
' dict.ated by the modes of the fnod\ilating Airy.' integral, wh.ile, towards -
the rear the sinusoidal can;ier waves increasiﬁgly aisgme'dofnit;mce
in defining the wave léngth.

Reverting again to the three-dimensional problem, we find that
Kranzer and Keller (1959), again confining attention to initial surface

elevation or impulse, but introducing the influences of water depth,

d, and finite areal disturbance, derive for the case of initial elevation

e = _dr(k \Pe (kd)cos (kr—o t) , (1-9)



e+ g

where Q(k) is the Hankel transform of the function Q(r) describing
the initial elevation as a function of r and “’e(kd) is a continuous
function of kd which varies in value from about ; when kd is less
than w/10 (shallow water) to an asymptotic value | ~/2kd) when
kd> 7 .(deep water).

For the comparable case of initial impulse Kranzer and

Keller's result is

7, ~ k1 (k) ¥; (kd) sin (kr ~ot) (1-10)
pr/gd

in which T(k) is the Hankel transform of the function I(r) describing
the initial impulse as a function of r and \lli(kd) is a continuous
function of kd which approaches the value unity for kd < 7/10
(shallow water) and becomes asymptotic to the value «/ET& when

kd > 7 (deep water).

Kranzer and Keller's derivations are the asymptotic solutions
of the surface disturbance problems, applicable only for large values
of kr which justify the use of Kelvin's method of stationary phase.
They follow the transform techniques applied first, apparently, by
Sneddon (1951), and elaborated by Stoker (1957). The Hankel trans-

forms Q(k) and T(k) are defined as
- [
(i) G (ki= [Q(r Jo(kridr
! (-]

(I-11)

(i) T00= [ T(r dg (ke ar

1-8
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inwhich J_ isa Bessel function of zero order.
In Eqs. (I-9) and (I-10) a distinction has now to be recognized
in the values of k and o over those given by Eqs. (I-1 iii) and

(I-1iv). Here k is defined by the root of an equation:

¢ (kd) = r /(1 /g d) (I-12)
while o is given by
o - gk tanh (kd) (1-13)

The function ¢ (kd) varies between asymptotic values of 1 for
kd< w/10 {(shallow water) and 1/(2 \/l:i) for l‘<d> ¥ (deep water).
Thus for the deep water case with ¢ (kd) = 1/(2 \/I:l), k and o
assume the values specified in Eq. (I-1).

If in (I-9) we introduce the deep water value we o~ \/ikd, and
take Q{r) =Q for 0 < r < Rwith Q(r) = 0 for r > R, then we
obtain exactly the same amplitude result as Unoki and Nakano in

Eq. (I-5), from the special property (in this case) that
-«
Jatokr dg (k) ar = R, (kR), (1-14)
o

the only difference residing in the absence of the friction term e~ Kt

In like manner the amplitude terms of Eq. (I-10) reduce identically to

those of Eq. (I-6) when the deep water value \Pi = J/2kd is taken along

with the special case I(r)=1 for 0 < r< R and I{r)=0 for r > R.
Again for the special tase treated by Unoki and Nakano in Eq.

(I-7) we find that Kranzer and Keller's generalized solution applied to

I1-9
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deep water ( \pi = 2 kd) gives identically the same amplitude re-
sult as Eq. (I-8) (e Bt excepted) in virtue of the fact that the Hankel

transform of (I-7) is
I(k)= 2 2 _-(kR)
& IoR (] (I- 15)

If now we apply Eqs. (I-9) and (I-10) to shallow water, for which
kd < m/10 and Y, = 1 = ¢, the wave disturbances at a long
distance from the source for the cases of piston-like surface eleva- .

tion Q and impulse I applied at the origin overa radius R, become,

respectively:
g mex ot ™ costhr-gn - )
(i) = %%%B) sip(klr'—a-')

Dependence of N UPOR depth is thus as - dfl and ﬁi as .d-'llz;
dependence on distance in both cases is as r-l.
All this discussion of the three-dimensional form of the Cauchy-

Poisson- Lamb problem suggests that wave amplitude decay at distances

1

remote from the source is proportional to r . We might infer, how-

ever, from analogy to the two-dimensional problem of Jeffreys and
Eckart, that wave amplitude near the head of the wave train will

follow another law. As pointed out by Munk (1952) this in fact con-
5/6

forms to r~ The reason for this is given by Takahasi (1961)



who points out that the method of stationary phase is no longer
valid in the neighborhood of the wave front. For there the third

term in the Taylor expansion of (kr - o t) (cf. Lamb, f 241) is

2

indeterminate because d o /dk2 is zero, in virtue of the fact that

do/dki(=z x/t = "/g-d) is a constant. Takahasi shows that wave
-5/6

height at the front is proportional to r for the case of waves
resulting from a pinton-like upthrust of the sea-bed over a radius
R. Since the behavior of dispersive waves at a large distance from

| the source is practically independent of the nature of the source dis-

-5/6

turbance, the r law may be consldered to prevail in general at

the front of the wave train and the r’ -1 la.w in the main body of the

- waves, Takah381 (1961) has demonstrated experxmentally that the

: r.s/6 amphtude decay law does in fact prevaxl at the leading crest

and trough of wave tr.anns generated by the sudden uptht'uat of a
circular porti.ono‘f sea-bed in shallow w'atex;

" In all the theoretu:al results presented above, the nature of the '
wave disturbance near the source is undefmed because of the mathe-
matical dtfftcultxes of describing the'fluld motlons near the moving
boundaries. Theoretically 'oomplete solutions have, however, been
obtained by Lamb (1932, f 238, 239) in series form for the rather
hypothetical cases of concentrated elevation and impulsive pressure
within the limits of linear theory. Recently, the near-source dis-
turbances generated by various forms of sea-bed movement which
could simulate earthquake displacements, have been examined in a

number of mathematical treatments by Takahasi, Ichiye, Honda,

I-11
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Nakamura, Keller and others. Many of these are two-dimensional
in scope and are therefore not of direct interest or application to this
study, In other respects, however, it is doubtful whether anv of
their models can be considered to simulate an underwater nuclear
explosion to a degree which could justify reliance on the mathemati-
cal prediction of the wave forms generated near the source. More
satisfactory mathematical models of underwater explosions have been
developed by Penny (1950), Kirkwood and Seeger (1950) and Fuchs
(1952), but in one way or another these are rather poor approxima-
tions to the nuclear underwater burst near its source, some of the
features of which have been illustrated by Snay (1957) and discussed
by Cole (1948) and by Lane and Green (1956).

We note in passing that the theoretical result cbtained by
Hendrickson (see Appendix III) for a piston-like upthrust of the
bottom gives a wave-amplitude decay law proportional to r-l. The
result is quite similar to that of Takahasi (1961) for large values of
kr in which the method of stationary phase is applicable for deriving
an asymptotic solution.

In regard to the input data supplied to this project from the
analysis of Kaplan, Wallace and Goodale (1962) (Fig. 1), a question
really needing investigation is whether the application of the asymp-
totic solution of Kranzer and Keller (1959), as given in Eq. (I-9),
is valid at the relatively small values of kr pertaining when r is

only 20 miles from surface zero, and whether full reliance can

therefore be placed on the results of such an application.
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3. EXPERIMENTS ON DISPERSIVE WAVE BEHAVIOR

In Fig. I-1 are assembled such results of observations on ex-
plosion waves as are readily available in "Effects of Nuclear Weapons"
(Glasstone, 1957, 1962) from the underwater nuclear explosion tests
in the Pacific,

Shot BAKER of a 20 Kiloton nuclear charge at Bikini in 1946,
in a water depth approximafing 200 feet, set up trains of waves whose
maximum height, H, at various distances shows a decay propor-
tional to r'l to a distance of about 1 mile from surface zero (Fig.I-1)
and a decay thereafter proportional to r5/6,

In Fig. 1-1 we also plot the standard results for a 1 kiloton
nuclear underwater burst as presented in "Effects of Nuclear Weapons."
The earlier version of this publication (Glasstone, 1957) suggests a
decay law of wave height proportional to x'-l in a water depth of 85 ft.
The 1962 version on the other hand gives the decay law as r~5/6
over a range of distance r from 1 to 100 miles. For explosions in
deep water { > 400 ft,) the decay law conforms to r'l.

An attempt has been made in Fig, I-2 to represent the Bikini
field data in a dimensionless plot for comparision with certain labora-
tory experiments of Johnson and Bermel (1949). Crest elevation,
above still water, of the maximum waves, as a ratio of the diameter
Dc of the crater or cylinder of the burst at the surface, has been
plotted against dimensionless distance r/d, in which d is the
water depth. In Fig. I-2 the first part of the BAKER test resuits

(for r/d < 35), no longer subscribes to
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because T in the initial stages of the wave propagation in shal-
low water was in general greater than half the wave height H. It
was necessary to infer the appropriate value of Mo from Fig.
1-3 which was originally compiled by Reid and Bretschneider (1953)
and subsequently modified slightly by Rechtin, Steele and Scales
(1957), by Bretschneider (1958) and currently by the present writer.
For this application it was necessary to know the wave period T,
which was calculated from Eq. (I-13) in terms of the known dis-
tance r and elapsed time t. We may point out here that Unoki and
Nakano (1953, i, ii, iii) had demonstrated the accuracy of this for-
mula (Eq. (I-2), for deep water)in their analysis of the v;)lcanic
explosions of the Myojinsho reef.

The slope of the latter part of the curve representing the

BAKER test in Fig. I-2 accords with the decay law r >/®

because
the waves for r/d > 35 are largely oscillatory with 1;°/H ~ 0.5,
The field experiments of Van Dorn (1961), related to nuclear under-
water explosions in the Pacific in 1956, show that relative wave

amplitude declines as (r/d)'s/b

over a range of values of the latter
parameter from 100 to 1000, Although the standard of reference of
relative amplitude is not given by Van Dorn, it seems reasonable

to infer from his results that the BAKER test results of Fig. I-2
which extend to about r/d = 100 could be projected at the same slope

-5/6

(aQr ) as far as r/d = 1000. The validity of this step, however,
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may be open to question, on grounds that different values of d/ Dc
(alternatively d/ \ ) are involved.

The experiments of Johnson and Bermel (1949) measured the
characteristics of waves generated impulsively by horizontal cir-
cular discs falling vertically from different heights into still water.
The data of their Fig. I-3 has been recalculated and adapted to the
requirements of our Fig. 1-2. Although individual test results show
considerable variability there is a remarkable overall parallelism
with the Bikini data e en to the extent of an indicated slope change
at r/d & 35. For values of r/d < 35 particular test results show
higher than average and some lower than average rates. The fact
that initial decay rates greater than r'l were found in particular
instances lends emphasis to the need for knowing more about the
special conditions that may lead to energy dissipation which could
detract from the energy available for wave formation.

Generally speaking, the experirnental results on wave ampli-
tude decay satisfactorily confirm the theoretical predictions of
Section 2. The experiments tend to show that in a dispersive system
of linear waves, with beat characteristics, the decay law r"l
prevails until the distance becomes sufficiently great to give greater
prominence to the front of the wave train and render invalid the theo-
retical approximation of stationary phase, thus causing the decay law

5/6  The transition is probably

to change to one proportional to r
gradual even though the experiments suggest quite a sharp change

at r/d =~ 35,
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4. TYPES OF WAVES IN INPULSIVELY GENERATED SYSTEMS

The data of Figs. I-1 and 1I-2 all pertain to long waves in
shallow water. In Eqs. (I-9) and (I-10) we have already noted that
the Fourier transforms O and T and the functions {, and y,
are dependent on kd, or alternatively, d/\, the relative depth
referred to wave length. In consequence, the type of wave that will
result from any _g'iven initihting disturbance will Be a function of the

relative depth d/\ . Eqs. {I-9) and (I-10) show however that the

‘carrier waves at a grea't'distan‘c.e from the'éoux;éé (large kr) are

' cimi)'l.y l'i.;’}'lll;)idal. T};is pbvic.aua.ly- is not ‘nec.essarily true in general
. of the ‘wével‘n'ea'r.tl‘\e a.ou';'ce.' " To im're:s;ig.ate this a-éecf we have

) iecour;e to. Fié. 'I‘-4j:(fa.dap.te¢.i. from Wilson (1962) ). This portrays

‘the area of existence of'waye.s'of .differenf types in a plot of H/ Xo

versus  d/ X,Q, in whicﬁ .Xo is the' eq'uivilent deep-water wave

i lénﬁth of any g.i.vei\ wave type. Waves are theoretically unable to

exist outside of the shaded areas, which are bounded by the break-

ing wave crite'ria_of McCowan (lohg wﬁves) and Michell {short waves),

and an intermediate limit largely defined by experiment and inter-
polation; Sho;t waves are normally defined as those for which the
relative depth d/\ (=d/ Xo) > 0.5. Long waves are usually
interpreted as those for which d/X < 0.05 (d/A < 0.015).

In Fig. I-4 a set of isolines of the dimensionless parameter
( Mo k2/d3), in which 1;6 is wave crest elevation above still water
level, is shown crossing the diagram in diagonal fashion. The signi-

ficance of this parameter has been stressed by Ursell (1953) who
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points out that linear wave theory, such as that of Airy, is normally
applicable only if ( % )\Z/ds) << 1 and H/ xo is also small.

Ursell's analysis showed that long waves are inevitably non-
permanent when ( M )\Z/d3) >> 1. The crests of such waves ad-
vance more rapidly than the troughs and finally reach a condition of
instability which manifests itaelf in breaking or bore-formation.
Ursell was disposed to consider that the solitary wave of permanent
type could exist at or near M A Z/cl3) = 1. The present writer,
however, has compiled evidence (Wilson, 1962) to show that the
most favored range for the existence of solitary waves is in the belt
shown hatched, or more broadly, between isolines of ( L XZ/d3)
from 10 to 35. In the zone of ( Mo XZ/d3) from 1 to 10 cnoidal
waves of permanent type are possible, which overlap permanent waves
derived from Stokes theory of second or higher orders. Beyond
{ N led3) > 35,waves are likely to be non-permanent,

Since dispersive waves are composite of the interference effect
of a broad spectrum of frequency components, the relevance of
Fig. I-4 may at first seem questionable, as Fig. I-4 really has ap-
plication to uniform wave trains. However, the theory of Cauchy-
Poisson- Lamb, as elaborated by Unoki and Nakano and by Kranzer
and Keller, clearly shows that the resultant type of wave ir a disper-
sive wave train has all the characteristics of an equivalent wave in
a non-dispersive system at any particular moment of its existence,
before influences of distantes and time bring about change. Conse-
quently it is of importance to recognize the type of wave likely to

exist in a dispersive system, particularly in regions close to the source
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where available theories are difficult to evaluate,

Here we resort to a consideration of the experiments of Prins
(1956, 1958) who generated waves in a laboratory flume from sud-
denly released initial elevations or depressions of finite extent in
water of constant depth. The initial waves, near the source, gen-

erated under different eonditions of water depth d, height of

‘elevation and length of initial elevation, have been plotted in Fig.

I-4," each plotted point referring to a different test. Prins gave .
valuable information on the type of wa\}e initiated, shown in the

legend of Fig. 1 -4, It is therefore of considerable interest to find

.that his types he thhm specxﬁc belts of the parameter ( Mo Xz/d )

. and that the occurrence of smgle sohtary ‘waves (followed usually

by a tralhng tram of small oacillatory waves) agreea remarkably

' ~well wx_th the zone of existence for solitary waves that we have

already specified.. For '( s )\.Z/ds) > 40 Priﬁ_s found waves of
"comple.x-‘solita'ry" type, and under conditions which brought the

leading wave characteristics close to the McCowan limiting criteria,

. the wave was inevitably a type of bore.

Also shown plotted in Fig. I-4 are some experimental results
of Wiegel (1955), who generated waves under laboratory conditions
by causing submerged block masses to slide down slopes of varying
steepness, thereby simulating submarine landsliding in earthquakes.
Most of these waves were of oscillatory character and plot in a
region of Fig. I-4 which would identify them as Stokes waves.

The experimental results of Johnson and Bermel (1949) have

1-.22



also been plotted in Fig. I-4 on the assumption that the effective
initial wavelength A\ of the primary wave near the source was
four times the radius of the circular plate dropped on the water sur-
face. The data are found to fall in a zone which would classify the
waves as breaking complex solitary or single solitary waves.
Finally, the initial waves of the nuclear underwater explo-
sion test BAKER has been located in Fig. 1-4 by determining the
applicable values of !-I/T2 and d/T2 and this plotted point is
: _.'found to lig in the unstable (breaking) complex-solitary or single-
politary'z;ne for which. (7 o Xz/d3) is from about 30 to 40. The
BAKER test result accords remarkably well with Johnson and Bermel's
- léboratbry- data wﬁich'u}ere qcaled to produce results approximately
eéui'va.le‘nt to th'e. field explosion of 1946. That the initial waves from
. the BAKER test were actually of ‘solitary type is confirmed by the

_ Io'llo'v‘v'_ing quotation from Glasstone (1962):

“Obse'rvations of the properties of the waves indicated that

. the first .\&.'ave behaved differently from succeeding ones in
thaf it was apparently a long solitary wave generated directly
by the exélosion, receiving its initial energy from the high
velocity outward motion of the water accompanying the ex-

pansion of the gas bubble. "

Assuming that the primary wave form near the explosion source
in a nuclear underwater burst is solitary or complex-solitary, as
suggested by Fig. I-4, the extent to which the wave form will change

will obviously be dictated by the prevailing value of | Mo kz/ds) in
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which each of the variables of this parameter is a function of r, the
radial distance of progression. If the depth is constant the parameter
will depend only on the product -qo(r) [)\(r) ] 2. Since no(r) is

a decaying function, and A(r) an increasing function, of the distance
r, the value of the product will be dictated by whichever of these
variables prevails. If the product should remain constant, Fig. I-4
shows that wave form will remain unchanged. Thus the wave could
propagate as a distended and flattened solitary wave. If the product
declined in value, the wave form would become cnoidal and even-
tually oscillatory. On the other hand, if it increased in value, the
wave form would become complex and unstable, finally leading to
bore formation. Since depth is seldom constant in wave propagation,
this variable (d) obviously will have a powerful influence on the
value of the parameter ( 1)0 )\Z/d3) and hence on the ultimate wave
form. As the depth decreases towards the coast the parameter must
inevitably increase and cause the wave form to assume the unstable
shape that finally leads to bore or breaker.

The nature of the decay of Mo with distance r has already
received considerable attention in Sections 2 and 3 of this appendix.
There remains to consider how the wave length A and period T
of the waves are modified by the dispersion.

Before leaying this section it may be noted that the input data
originally supplied to this project gave the maximum wave height at
r = 20 miles as 17 0= H/2 = 388 ft. (calculated from Kranzer-Keller

theory for d = 18,000 ft,), with a corresponding period T = 1.2
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minutes. This gives us H/T® = 0.15 and d/T? = 3.47 (ft. /sec.’
units). When this point is located in Fig. I-4 {not actually shown)
it falls in ; region which would not seem to justify the use of
linear theory (the premise upon which Kranzer-Keller, Unoki-
Nakano, and Cauchy-Poisson-Lamb theories are all founded).
About the highest value that H/T2 could have, in order not to
violate the necessary conditions of linear theory, would be 0.042
(cf. Wilson, 1962, Fig. 28). This is an additional reason, per-
haps, beyond that expressed earlier, for questioning the use of

Kranzer-Keller theory in derivation of the input data.

5. INCREASE OF WAVE PERIOD WITH DISPERSION

From Eq. {I-9) it is clear that a wave crest will be encoun-

tered whenever cos(kr - o t) = 1. This will happen whenever

(i) kr-ct=2 27m . .
(1-17)
(ii) m=0,1,2,3,... .
Eq. (I-17 i) may be written in the form
kr(l-f-%)sthrm (1-18
and since by definition
(i) cz=A/T=0o/k
(1-19)
ii =1¢=
(ii) v aK r/t,
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V being the group velocity, or rate of progression of the wave

groups, Eq. (I-18) is adaptable to the form

c 2mm
kd(1-=)= * -
-9 = T {1-20)
We have already noted that waves genex'ated from an initial distur-
bance, although composite of a spectrum of frequencies, tend through
interference effects to assume momentarily.thé form of waves of
non-dispersive typé, subject to the same conditions under which the

latter can exist. Thus, as the linear the':ory of Kranzer-Keller

.pfedict.s.
: . 1
' . 3
o e e _
| ' B ' Ceen
(ii) T V=ﬂ%. [,+ - 2kd

sin h 2kd

Since V in general is less than c, we must take the negative sign

with the right hand side of (I-20). Eq. (I-20) thus transforms to

kd [sinh 2kd-2kd]__2_1r_rn_ (1-22)

sinh2kd+2kdJ) ~ (r/d)

Van Dorn (1961) has evaluated the function of (kd) forming the left

hand side of Eq. I-22), It is sufficient to note here the two extremes

of its values.

First, for deep water conditions (kd > 7 ), (I-22) becomes

1-26



o —

kd = 2T (1-23)

and since for the same conditions c2 =g/k or o = \/gi from
Eq. (I-13), elimination of k in (I-22) in favor of o (=2 #/T)

yields

T\/- ,\/-2_7’ .5. (I-24)

Eq. (I-24) shows that the period of those waves for which d/ \ > 7,
which would inevitably include most of the trailing waves in the dis-
persive system and possibly the bulk of the waves if the depth is
great and the explosion small, will increase as the square root of

1/2).

For the opposite extreme the function (kd) of Eq. (I-22)

the distance (r

assumes the asymptotic value of [ (kd)3/3] /[1+ (kd)Z/B] when
kd < /10, applicable to shallow water conditions. In this case

then Eq. (I-22) reduces to

(kd) ~ 2mm .
3 (/) (1-25)

For this condition Eq. (I-13) yields o % = gdk® so that (I-25) re-

duces to the form
!
2 3 3
VRS SNCA -26
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and the inference is that wave period increases as the cube root of
the distance (r1/3) when depth conditions are such that d/\ < 1/20.
‘This result agrees with Van Dorn (1961) and accords with the two-
dimensional theory of Eckart (1948, p. 409).

In Eqs. {i- 24) and (I-26) an anomaly arises for m = § at the
front of the wave train for which the wave period and wave length
are theoretically infinite, for here from Eq. {I-171i), (kr-oct)=0

or

(i) c-a/k=r/¢=-g-% Vv

(1-27)

(ii) c=./gd

The anomaly is implicit in the Kranzer-Keller theory since Eq. (I-27)
is in agreement with (I-12), provided ¢ (kd) =1 with kd = 0. It
brings to focus the statement made earlier in reference to Eckart's
{1948) solution of a two-dimensional dispersive wave system, that

the modulating factor apparently becomes the criterion determining

the wave length. It is of interest to quote Eckart in this regard:

"The situation near this front is very peculiar. It may be
described as a carrier wave which is amplitude modulated.
However, contrary to the customary case, the carrier has a
longer (infinitely longer!) wave length than the modulation,
Consequently, the empirically determined ''wave length'
bears no relation whatever to the spectrum of the disturbance.
Such wave fronts are of considerable importance as they con-

stitute the seismic sea waves, commonly called 'tidal waves'."
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To resolve this problem we shall attempt an approximate
analysis based on Eq. (I-16i), which gives the wave form for
shallow water conditions (applicable to the wave front) for a
piston-like surface elevation Q applied over a radius R at the
origin. If, in conformity with Eckart, the modulator, Jl(kR)/kd
in this case, becomes conditional in prescribing the effective
wave length and period at the front of the dispersive system,
then it can be seen that for small values of kR the above term
approximates to .

J . (kR) 2 4 | . o

so that, approximately
~ 1 d 1/2 o
kR =~ 4 [7 "R‘_‘\I’_]. Lo (1-29)
if \ represents the function Jl(kR)/kd.
Crests of the carrier waves near the front, hoWeVer, occur

whenever cos(kr - o t) = 1, so that the same condition (1-25)

prevails as before, giving

3(r7d)

1/3
kd =[2 7 _m ] (1-30)°

On multiplying Eqs. (I-29) and (I-30) and noting that K = O'Z/gd
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for small values of kd, as pertain to the wave front, we find

Tf ( )1/6 (7)3/4[11_\1,]1/4()1/6

(1I-31)

The series approximation, Eq. (I-28), is vaiid so long as
kR is less than about 2.0 and since the Bedse:l function Jl(kR)
reaches its first maximum value at’ kk = 1.84, it may be con-
cludea that; Eq. (1-51) 18 éertinen't for values of m (= 1, 2, 3....) '
up to the maxxmum waves in the fu'st group so long as kd < 1/20,

For kR = 20 -Eq. (I 29) gwes
resulting inanmpl 1catxon of Eq (I 31) to ,
5\ 1/6 [\ /e ( \1/6 o
T = (‘“) S e € R )

If the p-th wave is the highest in the first beat then its period

will be given approximately by Eq. (I-32) for m = p.

The general picture we gain of iricre:.sé of wave periéd
with distance on dispersion from the source is now as follows:
first, the size of the initial waves set up by an underwater explo-
sion or other disturbance is a function of the magnitude of the
disturbance, R. Wave length and period would appear to increase

1/6

very slowly with distance according to r with long waves some
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distance behind the front the period increase would conform to

rl/3 and with short waves near the rear of the train, or in other-

wise exceptionally deep water, the period increase would follow

the law rl /2.

6. EXPERIMENTAL EVIDENCE FOR WAVE PERIOD INCREASE,

In a classic paper on the subject of wave period increase,
Munk (1947) had indicated that the wave period of tsunamis must
bear some relationship to the original disturbance, because of an
indeterminateness of the function in the general solution of the

governing differential equation:

o
—
(4
—

!

=0 (1-34)

[~ 4
-
[+ 4
b

+V

This is patent from the data drawn from his paper and plotted in
Fig. 1-5, which relates the dimensionless quantities T +g/d and
r/d. Clearly the tsunamis of April 1, 1946 (Aleutian Trench),

April 13, 1923 (Kamchatka), and November 10, 1922 (Chile), obey
different laws of period increase with distance, as also the tsunami
originating from the submarine volcanic eruption at Myojinsho Reef,
on March 11, 1953 (Unoki and Nakano, 1953).

For the tsunami of April 1, 1946, we have extracted from the
data given by Munk, the periods of the waves 20 mins. behind the
wave front, as recorded at Valparaiso, Matarani, La Jolla and
Honolulu. Also assembled in Fig. I-5 are period data for the leading

waves obtained from Takahasi's (1961) model experiments on a
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. snm1lar1ty here that the experlmental perlod- change law ( 1

piston-like upheaval of sea bed and from Van Dorn's (1961) mea-
surements of underwater nuclear explosion waves from Bikini Atoll,
as measured at Ailinginae, Eniwetok, Wake and Johnston Islands

in the Pacific. It is quite fortuitous that all these last mentioned
data are in virtual alignment in Fig. I-5, suggesting that from a
dimensional standpoint the source disturbances in each case must
have been quite similar. Wha.t is of specxal interest is that for
small values of r/d Takahasi's  data show T d rl/6, .in agree-
ment with Eq. (I-33) while Van Dorn's and Mupk's data conform

1/4. What is further of extraordinary

1/6 1/4

almost exactly to alaw T « r
to r ' occursat r/d = 35,"

interest is fhé.t the change from r
suggesting some parallel with the height- change law of Fig. I-2.
We may recall too that the expenmental he1ght-change law { ct r l)
for small r/d was in accordance with the predlctxon of the

theoretlcal statlonary phase asymptotxc approxlmatlon and note the
1/6;
/6

" for small r/d is also in accord with the theoretical statipnary-

phase asymptotic approximati,o'nl(Eq‘ (1-33)').. Beyond r/d 2 35,

the heiéht change law ( G;S/F’) . exhibited the invalidity of the approx-
imation. It seems evident therefore that the same invalidity is res-
ponsible for the period-change law following a new pattern (rl/4).
Data from the two-dimensional experiments of Prins (1956, 1958)

have not been invoked in Fig. 1-5, as they would be inappropriate.

Eq. (I-33) can be expressed alternatively as
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(i) T
(I-35)
| !
. ~ (12756 R,Z
(ii) K (—3—-5-) { d )

It is of interest to compare the theoretical value of K given by
(I- 35 ii) with the value K (= 8.2), found from Fig. I-5 as appli-

cable to Takahasi's experiments. For this purpose we take p = 1

‘for the first wave and insert’ R = 6 ins, ~d =1.875 ins, the dimen-

sions of piston ‘radiup and water dépth respectively in the model
experiments. Eq. (I-35 i.i) then yieldé_ K=17.03 which is of the

correct order of magnitude ' Sinc'e R shoﬁid really be the radius

of the mltxal surface dxsturbance whnch probably exceeded 6 ins.,

~the congruency could probably be 1mproved Eqs (I-33) or (i-35)

thus- appear to be a rehable predlctlon of xmtlal wave penod
increase. |

| F-‘rom'the alignment of the Aprii ‘l.' 1946 tsunami and the 1956
REDWING nuclear explo;ion data with that of ;I‘aka.hasi's (Fig. 1-5),
we .co'nclude that the same R/d value of about .> 2 prevailed. For
the tsunami this would imply an initial radius of surface disturbance
R 2 52,200 ft. (d >~ 16,320 ft.) or 8.60 n. mi. Interpreting this
as related to an earthquake fault-length of 19.2 n, mi. or 35.6 km,
the equivalent earthq;xake magnitude would be about 7, 40 {cf. Wilson,
1962 (Fig.8) ), whereas the actual earthquake magnitude was in

fact 7.4. For the REDWING explosion series, the implication is
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that if the waves had emanated from an explosion, unobstructed
- by atolls or reefs, the bubble crater diameter DC {= 2R) would
have been 6.4d, or about 6 times the water depth, For d = 200 ft,

Dc would thus have been of the order of 1280 ft.

7. CALCULATION OF DESIGN WAVE HEIGHT AND PERIOD

AT THE CONTINENTAL SLOPE

Despite any reservations made regarding the input design
data, we proceed to use them in conjunction with the laws of height
and period change with radial distance of dispersion, justified in
this appendix, in determining the wave height and period that would
prevail at the continental slope off Chesapeake Bay.

The law of maximum wave height change, following the dis-

cussions of Sections 2 and 3, may be generalized as

%f = a, (g) (1-36)
in which n is a numerical exponent and a_ the corresponding pro-
portionality constant. It is convenient to write this in the form

Y=a, X" {I-37)
where

(i) Y=m,/0,
(1-38)

(ii) X=r/d
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In order to apply Eq. (I-36) derived for constant depth, to conditions
under which the depth is a function of r, namely d = d(r), it is
necessary to integrate  d7,/dr as a function from which X has
been eliminated, (cf. Wilson, 1961). Thus by differentiating Eq.
(I-37), regarding d as constant, and eliminating X in favor of Y by

use of (I-37), we arrive at the expressions

\ dn, 0O, _,
(i) rrih a0 Y

" (I-39)
(ii) Y's -na..'* Y'!r

The law of period increase, following the discussions of Sections 5

and 6, rnay be generalized in a similar way as

w& = B (5" (1-40)

with m a numerical exponent and Bm the corresponding constant

of proportionality. Writing this as

z:8 x" (1-41)
in which
N ¢!
(i) 2=T d
(I1-42)
(ii) X=zr/d
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we may follow the same general procedure as for wave height.in

deriving

- -1 .
(1) qI. ot ]z 2
{(I-43)

(i) | z'=m3f zm"-H

In case III, the given data prescribes a half-wave amplitude

7, = 388 ft. at r = 20 miles resulting from a bubble crater dia-
meter D_ A=-A- 20,800 ft. For an assumed point of detonation at
latitl;;:le 35° 30’ , longitude 650.27', *_ off the east coast the wafef '
‘ _"d.epth profiles along great circle paths directed towards Chesapéake
ar;d New York Bays a.r'e as. shown in Fig. I-6, with depth at the de-
tonation point d & 15,500 ft. The léading wave period is given as

1
No. 5) as 'I‘4 = 1.2 mins.

T, = 2..75 thins. énd th'é.t of the highést wave (crest No.' 4 or trough
With this information we find n,/D_ = 1.87 x 1072 and

Tl g/d =3.87 at r/d=6.77. These points are located on Figs.

I-2 and I-5 and design curves have been constructed through them

parallel to the theoretical empirical relationships found to correspond

with observations, The same indicated change of slope at r/d = 35

has been adopted in both cases.

* This location was the first originally prescribed for the project but
was later amended to one closer to the shore (see Chapter V - Vol.. I
Part B). The calculation here given is left unchanged, however,
on grounds that general deductions are still pertinent.
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Applicable values of n, a. m, Bm’ now readily
evaluated from the design curves of Figs. I-2 and I-5 are recorded

in Table 1-1.

TABLE I-1
DESIGN CONSTANTS GOVERNING WAVE HEIGHT AND PERIOD

r'Relati‘ve Distance Wave Height Decay Wave Period Increase
r/d n o a_ m Bm
<35 1 0.127 1/6 2.90
>35 5/6 0.0734 1/4 2.12
o

Eqs. (I-39) and (I-43) have been used in conjunction with the
parameters of Table I-1 in a stepwise numerical integration pro-
cedure for computing Mo and T over the (full-line) depth profile
shown in Fig. I-6, carried as far as the foot of the continental
slope. The results of the calculations are portrayed in Fig. I-7.

The highest wave, without regard to its position in the wave
groups, will decline from an initial elevation 7= 388 ft. at
r=19n mi. to m_=17.3ft. at r =428 n. mi. from the origin.
Over this distance the water depth decreases from 15, 420 ft. to
7800 ft. Maximum water depth of 17, 760 ft. is encountered at the
intermediate distance r = 155.5 n. mi. The further history of

wave height has not been pursued beyond r = 428 n. mi. because
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of the complications of reflection at the continental slope, which
require separate study (as given in Chapter 1V, Part B, Vol. I).

Over the same wave path the period of the leading wave,

T 165 secs. at r=19n, mi. is found to increase to

1

T,

fourth wave in the leading grdup of waves follows the same laws

192 secs. at r = 428 n. mi. On the assumption that the

of period increase as the actual wave front, its period of

T4 = 72 secs. at r =19 n. mi. is found to increase to .81 secs.

at r = 428 n. mi. The legitimacy of this calculation may be opén
to question as the governing law may be more in accord with

Eq. (1-26). For the initial values of d = 15; 500 ft. atr =19 n, mi.
thle latter equation gi;res T4 = 70.5 secs. fo;j m = 3 "(the fourth
wave) which is in surprising agreement with’ T4 = 72 secs. of the
given data. Since Eq. (I-26) is valid only for con'stantA d, we

must take a mean vaiue of depth over the distance to esti.m’ate T4‘
at r = 428 n. mi. .For d = 15, 000 ft. :then, T4‘ is found to be .
197 secs. at r = 428 n. mi. on fhis basis. This value exceeds the
computed value of Tl = 192 secs. and is therefore not likely to be

correct. The inference must be that Eq. (I-26) is only applicable

much further back in the body of the waves for larger values of m.

8. CONCLUSIONS

On the basis of the arguments evolved in this appendix, and
on the assumption that a nuclear explosion with a bubble crater

diameter Dc = 20, 800 ft. produces maximum waves of a height
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m, = 388 ft. above still water at a distance of r = 20 miles from
surface zero in a water depth of 15, 420 ft., it is found that over
the shelving depth to the base of the ;ontinental shelf (d & 7800 ft.)
the maximum waves will have decreased to 1}0 = 17.3 ft. at
r = 428 n. mi. The period of the leading wave (which will be of
much lower height) will approximate 192 secs. (3.2 mins.), but
the period of the highest wave will very likely be in the neighbor-
hood of 80 secs. at this distance.

At a radius of 300 n. mi. from surface zero (d = 10, 000 ft.)
Fig. I-7 shows that the probable maximum height above still water
of the highest wave will be about Mo = 25 ft. and its corresponding
period about T = 78 secs., which is in very good agreement with
what has been found in Appendix II.

A question as yet unanswered is whether the Kranzer-Keller
theory and the asymptotic solution which it invokes is legitimately

applicable to a system of high waves which, in the initial stages at

least, are likely to be extremely non-linear. However, an encouraging

aspect of this query is that experimental results of wave height and
period-change, even for comparatively small values of r/d, do con-
firm the theoretical predictions based on the asymptotic solutions of
the linearized theory. Since the Kranzer-Keller theory is merely

an adaptation of the more fundamental Cauchy-Poisson-Lamb linear
theory which conceives the emergent waves as the sum of an infinite
number of small amplitude waves distributed over a continuous spec-

trum of frequencies, there is the possibility that the aggregate
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outcome of its legitimate linear processes, applied to the spectral
elements, is a very close approximation (if not an exact solution)
to the characteristics of large waves, which as entities must other-

wise be considered as obeying non-linear laws.
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1IST OF SYMBOLS
¥CR APPENDIX ]

phase velocity of water waves
water depth

diameter of bubble crater at the water surface in
underwater explosions

universal constant (2.718...)

acceleration due to gravity

depth below the surface of an underwater explosion
wave height, crest to trough

uniform impulse (per unit area) over source area

function describing the initial impulse as a function
of r

Hankel transform of I(r) (Eqs. (I-11))

concentrated impulse at the point source (per unit area)
Bessel function of zero order

Bessel function of first order

wave number (= 2m )

A

constant of proportionality, function of R/d, (Eqs.
(I-36 ii)

(1) numerical exponent; (2) corresponding subscript
(1) numerical exponent; (2) corresponding subscript

integer number representing the wave with greatest
height counted from the front of the train

vertical surface elevation over a circle of radius R

initial surface elevation as a function of r
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Q (k)

Hankel transform of Q (r), (Eqs. I-11))

initial surface elevation of point source disturbance
at the origin (per unit area)

variable horizontal radial distance in cylindrical
symmetry

radius of a cylindrically symmetrical surface or
bottom disturbance

variable time
wave period

period of the initial or leading wave in a dispersive
system

group velocity of water waves
charge-weight of nuclear explosion

that part of the total energy W which is responsible
for the generation of waves

variable horizontal distance
dimensionless variable, (Eq. (I-43 ii))
dimensionless variable (Eq. I-39 i) )

differential coefficient of Y with respect to X
(Eq. 1-40ii))

dimensionless variable (Eq. (I-43 i) )

differential coefficient of Z with respect to X,
(Eq. (I-44 ii))

constant of proportionality, (Eq. (I-38) )
constant of proportionality, (Eq. (I-42) )
elevation of wave surface above still water level
maximum value of 7 atthe wave crest

value of m deriving from an initial elevation over
a limited source region
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value of 7 deriving from an initial impulse applied
over a limited source region

wave length of a wave in water of any depth
deep-water wave length of any given wave type
wave length of the leading wave in a dispersive system

coefficient of virtual viscosity (sec. -1 units), (Eq.

(1-5) )

universal constant (3,14159...)
mass density of (sea) water
angular frequency ( = 2 w/T)

function of (kd) in Kranzer-Keller theory, common to
cases of initial elevation and initial impulse

function of kd in Kranzer-Keller theory, case of
initial elevation

function of kd in Kranzer-Keller theory, case of
initial impulse

function of kR and kd (Eq. (I-28))
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THEORETICAL CONSIDERATIONS AND COMPU TATIONS

FOR WATER WAVES PRODUCED BY EXPLOSIONS

By
Larry Armijo
and

Mary Ann Noser



1. INTRODUCTION

A critical literature survey on the various theories for
studying gravity waves generated by underwater explosion has
been given in Appendix I. It is recalled that a description of the
motion of the free surface of a body of water of constant depth
following an arbitrary initial distribution of impulse applied to the
surface, or an initial elevation or depression of the surface of
arbitrary shape, is given by the Kranzer-Keller theory (1955) for
the radially symmetric case. Kaplan, Wallace and Goodale (1962)
have carried out computations of the Kranzer-Keller equations for
three cases of initial paraboloidal depressions of the surface for
a point on the surface twenty miles from the center of the initial
disturbance. These results have been presented in Fig. 1 (Vol. I)
of this report. The primary object of this appendix is to present
a similar set of computations for the same three cases considered
by Kaplan, Wallace and Goodale, but at a point on the surface 300
miles from the center of the initial disturbance. For the cases
under consideration, certain theoretical results have been obtained

by the authors and these results are also presented.

2. PRINCIPAL EQUATIONS

The displacement 7) (r, t) of the free surface is given by

nint) = Ei'ﬁ B cos [2# (% - -)‘L)] (11-1)

11-1
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where

_ i
s+ e ® () [-9%]
and o = -2—1’—h-
A

A = wave length

T = wave period

h = fluid depth

R = effective radius of disturbance

r = distance from center of disturbance

7o = depth of disturbance at r = 0

t = time

(11-2)

The function E{s) is the Hankel transform of the function E(r),

the initial paraboloidal depression, which is assumed to be of the

form
Ar?- 7, O<r <Y,
E(r) =
o, ysr,
where
A = _‘%'Qa_

See Figure II-2.

It follows that

E(s) = - 3;-:!9- Jp (ys)

II-3

(11-3)

(I1-4)

(I1-5)
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where Jz(x) is the Bessel function order 2.

The function ¢(o) is given by

[ o \t
$(o) = L (ﬁ—,-f-' nh )% + ( )‘ c20 (-6
. 2 2{(cosh a')% sinho/ '
The function ¢(0) is a positive monotone decreasing function of
o and lim ¢(o) =1, i.e. ¢lo) =1.
O ~e0
The parameter ¢ is related to the quantities r and t by

the equation

$(0) s ——— t 2 L (11-7)

Jah t Jah

so that

- r — -

where ¢ 1 is the inverse of ¢ and g is the gravitational ac-
celeration constant.

The period T is given by the equation

2w

«/% o tanh o (1-9)

The effective radius R is related to the quantity ¥y by the equation

T =

Y
JZ

It follows from (I1-2), (II-.5) and (II-10) that

R = (I1-10)

II-5
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where

!
= -0 Bo) )7
¢@) [v‘ﬁ'(a')]

For convenience, we have defined

= B .- 20y, (Ze)e)
ro? h

and

r

= t_r
cen=zr(t-f). 12 g

so that by (II-1), (1I-13) and (II-14)

n (r,) = 8*(r,0) cos 8*(r,1)

(I1-11)

(I1-12)

(1I1-13)

(1I-14)

(11-15)

*
The quantity B (r, t) therefore represents the displacement

*
of the amplitude of the wave envelope. The quantity 0 (r, t) given

by (II-14) may be shown to be a monotone increasing function of

r

= Moreover, tim 8 (r,t) = O and
q

——
AW

t for t 2

I1-6

lim 8 (r,}) = oo'
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The times of arrival of crests and troughs are given by the solu-

tions tm of the equations

8 (r,ty) = nw, n =12, . (11-16)

3. APPROXIMATIONS

Following the example set by Kaplan, Wallace and Goodale,
we have replaced the functions ¢(o) and ¢(o) inthe above
equations by their asymptotic expressions — and ﬁc ,

2 Vo
respectively, for values ¢ 2 4 . The parameter g may be
eliminated from the preceding equations and the following simplifi-

cations occur:

" 842 Mo r yot? 4r
)3 = e t > = 1I-17
B (' ) qtz 2 ( 4'2 )' Jq—h ( 1 )
and (I1-18)
» gt? 4wr 8wr? 4r
s = = t > '7=

The times of arrival tn of crests and troughs may be computed

from the equations -

th * /i%ﬂ for positive integers n2 Tﬁ{' (11-19)

The following theoretical results have been noted by the

*
authors of this report. The zeros of B (r, t) occur at the times

*
t gilven by

11-7
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where _x)': is the kth positive zero of J,(x).

*
If -9,- > 1.739, the maximum values of ]B (r, t)' occur at

ok
the times t Kk given by

qr2x"
" . —7,—0-'1- (11-21)

where __)_cl‘("* is the kth positive zero of Jl(x) - x J.(x).

To compute the first two packets of waves, we have made use

of the values

[ £33
k Xy X
1 5.136 2.300
2 8.417 6.541

The restriction % > 1.739, is satisfied for Cases I and

II considered by Kaplan, Wallace and Goodale, For their Case III,
% =1.731 and the restriction is very nearly satisfied. Eq. (1I-20)
follows from (1I-13), and Eq. (I1I-21) follows from (1I-17), which
follows the asymptqtic expressions for ¢(0) and é(o)

It should be emphasized that the value t’;* = /4f2X“| *
is the time of arrival of the maximum value of the r 9

absolute value of the amplitude of the wave envelope., This maximum

11-8
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value is equal to | B*(r, t;‘)' . The value t;* will be very

nearly equal to the time of arrival of the highest crest and the
»

value lB*(r. t *)l will be very nearly equal to the displace-

ment of the highest crest.

4. DESCRIPTION OF COMPUTATIONS

In calculating the displacement 7) (r, t), it is first necessary
to compute the functions ¢(g) and ¢(o) . A table of these
functions has been prepared, using a Bendix G-15 computer, with
o incremented by 0.01 in the interval from 0 to 4, in order to
simplify any future hand computations. These results are found in
Table I1-4. Also, the following numerical values were used to

compute 1) (r, t) and B*(r. t):

r = 300 miles = 1,584,000 feet

-4
]

18, 000 feet

1.1592 x 10° ft. /min. %

These computations were carried out for the following three cases

Dimensions of Initial Displacement
Depth Radius
(feet) (feet)
Case ] 3,380 4, 440
Case II ' 6,010 7, 900
Case 1II 7,920 10, 400
TABLE II-1

1-9



The time to at which disturbances begin at a distance r

from the center of the initial depression is the same for all three

[T I——

cases and is given by

to = = 3467 min.

Joh

. , # *
! The times of arrival t and tZ of the first two zeros of the dis-

»
placement of the wave envelope B (r, t} were computed from Eq.

(II-20) and are listed in Table II-2.

: Times of Arrival of the First Two Zeros of
the Displacement of the Wave Envelope
k t; {min.)
Case | 1 316.4
i
2 405.0
Case II 1 237.2
2 303.6
Case 111 1 206.7
2 264.6
TABLE 11-2

Ak sl
The times of arrival tl and t2 of the first two maxima

of the absolute value of the displacement of the wave envelope
8%, ol - 5%, ™)
B (r, t)| as well as the maximum values B (r, tl 1IN

% s ek
l B (r, t, )l , and the periods and wave lengths at times t

1I-10
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and t, were computed from Eqs. (1I-21) and (II-17), and are

listed below.

Times of Arrival of the First Two Maxima of the

Absolute Value of the Displacement of the Wave

Envelope and the Corresponding Maximum Values,
Periods, and Wave Lengths ‘

Case k g B*(r, t:"‘) T A

{min) (feet) {min) (feet)

1 1 211.7 4,826 0.811 12, 140
2 357.0 1.270 0.481 4,270

11 1 158.7 15, 268 1.082 21, 600
2 267.6 4,018 0. 642 7, 600

11 1 138.3(7?) 26, 488(?) 1,242 28, 440
2 233.3 6.971 0.736 10, 010

TABLE 11-3

The values followed by (?) are doubtful because the restriction
L)' 2 1.739 is not satisfied.

In the range 34.67 €< t < 138.01, which corresponds to
the range 0 € 0 < 4, the values of the displacement of the wave
envelope B*(r, t) were computed from Eq. (II-13) using the Bendix
G-15 computer. For values 138.01 < t £ t;. the values of

*
B {r, t) were computed by hand using Eq. (II-17). *

% The tables of the Bessel Functions of the First Kind of Orders 2

and 3 by the Staff of the Computation Laboratory, published in Cam-
bridge by the Harvard Press, were used in these computations.

1-11
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TABLE lI-4
o

.01
0.02
0.03
0.06
0.05

Q.06
0.07
0.08
0.09
0.10

0.11
0.12
0.13
O.14
0.15

0.16
0.17
0.18
0.19
0.20

0.21
0.22
0.23
0.24
0.25

0.26
0.27
0.28
0.29
0.30

0,31
0.32
0.33
0.34
0.35

0.36
0.37
0.38
0.39
0,40

¢ (o)

+«9999500
«9998000
« 9995502
9992006
« 9987516

9982034
9975563
9968107
«9959672
«9950262

«9939884
«9928543
«9916247
«9903004
«9888821

«9873708
«9857673
«9840727
«9822880
«9804142

«9784525
«9764040
«9742700
«9720518
« 9697506

« 96736177
e 9649046
« 9623627
«9597435
«9570483

«9542786
«9514365
+9485229
«9455397
«9424884

«9393708
«9361884
«9329430
9296362
¢9262699

11-12

THE FUNCTIONS ¢(o) AND £ (o)

€ (o)

1.0000277
1.0001111
1.,0002500
1.0004444
1. 0006944

1.0010000
1.0013612
1.0017779
1.0022503
1.0027782

1.0033617
1.0040009
1.0046957
1. 0054462
1.0062523

1.0071141
1.0080317
1.0090049
1.0100339
1.0111186

1.0122592
1.0134556
1.0147078
1.0160158
1.0173798

1.0187997
1.0202756
1.0218075
1.0233954
1.0250395

1.0267396
1.0284959
1.0303084
1.0321771
1.0341022

1.0360836
1.0381214
1.,0402157
1.0423665
1. 0445739



O.41
0462
0.43
0.44
0.49

0.46
0.47
0.48
0.49
0.50

0.51
0.52
0.93
0.54
0.59%

0.56
0.57
0.58
0.59
0.60

0.61
0.62
0.63
0.64
0.65

0.66
0.67
0.68
0.69
0.70

0.71
0.72
0.73
0.74
0.73

0.76
0.77
0.78
0.79
0.80

TABLE 1l-4 (continued)

¢ (o)

09228456
«9193691
«9158302
09122427
+9086042

90491695
«9011815
+8974008
«8935762
« 8897095

+8858000
+8818600
«8778800
«8738600
«86908100

+8657200
+8616100
«8574700
+8533000
«8491100

+ 8448900
8406500
8363900
8321200
8278200

8235100
8191900
+8148500
8105100
+8061500

.8017900
« 7974100
«7930300
« 7886500
« 7842700

+ 7798800
« 7755000
«7711100
« 7667300
7623500

1I-13

€ (o)

1.0468379
1.0491586
1.0515361
1.0539704
1.0564617

1.0590099
1.0616151
1.0646277S
1.0669972
1.0697741

1.0726000
1.0755000
1.07084000
1.0815000
1.0845000

1.0876000
1.0908000
1.0941000
1.0974000
1.1007000

1.1041000
1.1076000
1.1111000
1.1147000
1.1184000

1.1221000
1.1258000
1.1297000
1.1336000
1.1375000

1.1415000
1.1456000
1.1497000
1.1539000
1.1581000

1.1624000
1.1668000

" 1.1712000

11757000
1.1803000
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0.81
0.82
0.83
0.84
0.85

0.86
0.87
0.88
0.89
0.90

0.91
0.92
0.93
0.94
0.95

0.96
0.97
0.98
0.99
1.00

1.01
1.02
1.03
1.04
1.05

1.06
1.07
1.08
1.09
1.10

1.11
1.12
lel13
1.14
1.15

1.16
1.17
1.18
1.19
1.20

TABLE I1-4 (continued)

¢ (o)

«7579700
« 7536000
7492400
+» 7448800
« 7405300

« 7362000
«7318700
« 7275500
«1232500
« 7189600

« 7146900
«7104200
«7061800
«7019500
«6977400

6935500
«6893700
6852200
«6810800
«6769700

«6728700
« 6688000
26647500
«6607300
+6567200

«6527400
«6487900
«6448600
«6409500
«6370700

6332100
+6293900
+6255800
«6218100

«6180600

«6143400
«6106400
«6069700
+6033300
5997200

11-14

§ (o)

1. 1849000
1.1895000
1.1943000
1.1991000
1.2039000

1. 2088000
1. 2138000
1. 2189000
1.2240000
1.2291000

1.2344000
1.2397000
1.2450000
1. 2504000
1.2559000

1.2615000
1.2671000
1.2728000
1.2785000
1.2643000

1.2902000
1.2961000
1.3021000
13082000
1.3144000

1. 3206000
1.3268000
1. 3332000
1.3396000
1.3460000

1. 3526000
1.3592000
1.3658000
1.3726000
1. 3794000

1.3863000
1. 3932000
1.4002000
1.4073000
1. 4144000



1.21
.22
1.23
1.24
1.25

1.26
1.27
1.28
1.29
1.30

1.31
1.32
1.33
1.34
1.35

1.36
1.37
1.38
1.39
1.40

1.41
1.42
1.43
1.44
1e45

1.46
1.47
1.48
1.49
1.50

1.51
1.52
1.53
1.54
1.55

1.56
1.57
1.58
1.59
1.60

TABLE 11-4 (continued)

¢ (o)

«5961400
«5925900
+5890600
+5855600
«5820900

3786500
«5752400
«5718600
+5685000
+5651800

«5618800
«5586200
+«5553800
«5521700
«5489900

+ 5458400
«5427200
«5396200
5365600
5335200

+5305100
«5275400
«5245900
«5216600
«5187700

+5159000
«5130600
+5102600
«5074700
+5047200

«5019900
+4992900

e4966200

+%939700
+4913500

«4887600
«4861900
«4836500
+4811400
«4T786500

11-15

¢ (o)

1.4217000
1.4290000
1.4363000
1.4437000
1.4512000

1.4588000

. 14664000

1.4741000
1.4819000
1.4898000

1.4977000
1.5057000
1.5138000
1.5219000
1.5301000

1.5384000
1.5467000
1.5552000
1.5637000
1.5722000

1.5809000
1.5696000
1.5984000
1.6072000
1.6162000

1.6252000
1.6343000
1.6434000
1.6526000
1.6619000

1.6713000
1.6808000
1.6903000
1.6999000
1.7096000

1.7193000
1.7291000
1.7390000
1.7490000
1.7591000



1.61
1.62
1.63
l.04
1.65

1.66
1.67
1.68
1.69
1.70

1.71
1.72
l1.73
l.74
1.75

l.76
1.77
1.78
1.79
1.80

1.81
1.82
1.83
1.84
1.85

1.86
1.87
1.88
1.89
1.90

1.91
1.92
1.93
l1.94
1.95

1.96
1.97
1.98
1.99
2.00

TABLE II-4 (continued)

¢ (o)

761900
«HT3T500
«&T13400
04689600
04665900

«46426C0
4619500
¢4596600
4573900
«#551500

«4529400
«4507400
+4485800
4464300
4443100

4422000
«4401300
«4380700
«4360400
«4340200

«%320300
+43C0600
4281100
04261900
4242800

«4223900
4205300
4186800
24168600
«4150500

4132600
«4114900
4097400
«4080100
«4063000

+ 4046100
4029400
«4012800
«3996400
«3980200

11-16

¢ (o)

1. 7692000
1. 7794000
1. TR96000
1.8G00000
1.8104000

1.8209000
1.8315000
1,8421000
1.8528000
1.8636000

1.8745000
1.8854000
1.8964000
1.9075000
1.9187000

1.9299000
1.9412000
1.9526000
1.9641000
1.9756000

1.9872000
1.9989000
2.0106000
2.0225000
2.0344000

2.0463000
2.0584000
2.0705000
2.0827000
2.0949000

2.1073000
2.1197000
2.1322000
241447000
2.1573000

2.1700000
2.1828000
2.1956000
202085000
2.2214000



2.01
2,02
2.03
2.04
2.05

2.06
2,07
2.08
2.09
2.10

2.11
2.12
2,13
2.14
2.15

2.16
2.17
2.18
2.19
2.20

2.21
2.22
2023
224
2.29%

2.26
2.27
2.28
2.29
2.30

2.31
2.32
2033
2434
2.35

236
2037
2.38
2.39
2.40

TABLE 11-4 (continued)

¢ (o)

3964100
« 3948300
«3932500
«3917000
«3901600

+3886400
«3871400
«3856500
36841800
«3827200

»3812800
«3798500
«3784400
«3770400
+3756600

3742900
«3729400
«3716000
«3702800
«3689700

«3676700
«3663900
«3651100
3638600
3626100

3613800
«3601600
+3589600
«3577600
+3565800

3554100
+3542500
«3531000
«3519700
«3508500

«3497300
3486300
«3475400
«3464600
«3453900

11-17

¢ (o)

2.2345000
202476000
2.2608000
2.2740000
2.2873000

2.3007000
203141000
2.3276000
2.3412000
203548000

2.3685000
203823000
203961000
2.4100000
2. 4240000

2. 4380000
2.4521000
2. 4663000
2.4805000
2. 4947000

2.5091000
2.5235000
2.5379000
2.5524000
2.5670000

2.5816000
2.5963000
2.6111000
206259000
2, 6407000

2.6556000
2.6706000
2.6856000
2.7007000
2. 7156000

2.7310000
2. 7462000
2.7615000
2.7768000

2.7922000
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2.%41
2.42
2.43
2.4%4
2,45

2,46
2.47
2,48
2.49
2.50

2.51
2+52
2.53
254
2.55

2.56
2.57
2.58
2.59
2.60

2.61
2.62
2.63
2.64
2.65

2.66
2.67
2.68
2.69
2.70

2.71
2.72
2.73
2.74
2.75

2,76
2,77
2.78
2.79
2.80

TABLE 11-4 (continued)

¢ (o)

+ 3443400
«2432900
+ 3422500
3412200
«3402100

«3392000
«3382000
3372200
«3362400
«3352700

«3343100
«3333600
«3324200
¢ 3314900
«3305600

« 3296500
3287400
«3278400
«3269500
+«3260700

«3252000
«3243400
3234800
«3226300
«3217900

« 3209500
«3201300
«3193100
«3185000
«3177000

«3169000
«3161100
«3153300
3145500
+3137800

«3130200
+3122600
«3115100
»3107700
« 3100300

11-18

¢ (o)

"+ 2.8076000

2.8231000
2.8386000
2.8542000
2.8698000

2. 8855000
2.9012000
2.9170000
2.9328000
2.9486000

2.9645000
209804000
2.9964000
3.0124000
3.0285000

3.0446000
3,0607000
3.0769000
3.0931000
3.1093000

3.1256000
3.1419000
3.1583000
3.1746000
3.1910000

3,2075000
3.2240000
3.2405000
3.2570000
3.2736000

3.2902000
3.3068000
3.3235000
3.3401000
3.3568000

3.3736000
3,3903000
3.4071000
3.4239000
3,4407000



2.81
2.82
2.83
2.84
2.895

2.86
2,87
2.88
2.89
290

2.91
2.92
2.93
2.94
2.95

296
297

2,98

299
3.00

3.01
3.02
3.03
3.04
3.05

3.06
3.07
3.08
3.09
3.10

3.11
3.12
3.13
3.14
3.15

3.16
3.17
3.18
3.19
3.20

TABLE ll-4 (continued)

¢ (o)

+3093000
+3085800
«3070600
«3071500
«3064400

«3057400
+3050500
«3043600
+3036800
«3030000

«3023300
«3016700
«3010000
«30G3500
«2997000

2990500
«2984100
2977800
«2971500
02965300

2959100
2952900
«2946800
2940700
2934700

2928800
«2922800
«2917000
+2911200
«2905400

2899600
«2893900
«2888300
«2882600
«2877100

«2871500
«2866000
«2860600
«2855200
« 2849800

11-19

¢ (o)

3.4576000
3,4745000
3.4913000
3.5082000
3.5252000

3.5421000
3.5591000
3.5761000
3.5931000
3.6101000

3.6271000
3.6442000
3.6612000
3.6783000
3.6954000

3,7125000
3.7296000
3.7467000
3.7638000
3.7810000

3.7981000
3.8153000
3.8324000
3.8496000
3.8668000

3.68840000
3.9012000
3.9184000
3.9356000
3.9528000

3,.9700000
3.9872000
4.0044000
4.0216000
4.0386000

4.0560000
4.0733000
4.0905000
4.1077000
4.1249000



3.21
3,22
3.23
3.24
3.25

3.26
3.27
3.28
3.29
3.30

3.31
3,32
3.33
3.34
3.35

3.36
3.37
3.38
3.39
3.40

3,41
3.42
3.43
3,44
3.“5

3.46
3."7
3.48
3.49
3.50

3.51
3.52
3.53
3e54
3.55

3.56
3.57
3.58

3.59 .

3.60

TABLE I1-4 (continued)

¢ (o)

< 2864400
+2839100
2833900
2828700
2823500

«»2818300
22813200
2808100
«2803000
2798000

«2793000
22788100
«2783200
2778300
«2773400

2768600
«2763800
«2759100
«2754300
22749600

«2745000
«2740300
«2735700
2731100
02726600

2722100
+2717600
2713100
2708700
2704300

2699900
«2695500
2691200
«2686900
«2682600

2678300
22674100
2669900
«2665700
02661600

11-20

¢ (o)

4.1421000
4.1594000
4.1766000
4.1938000
4.2110000

4.2282000
4,2454000
4.2626000
4.2798000
4.2969000

4.3141000
4.3313000
4.3484000
4.,3656000
4.,3828000

4,3999000
4.4170000
4.4342000
4.4513000
4,4684000

4,4855000
4.5026000
4.5197000
4.5367000
4,5538000

4.5708000
4,5879000
4.604900C
4.6219000
4,6389000

4,6559000
4.6729000
4.6899000
4.7068000
4.7238000

4. 7407000
4,7576000
4. 7745000
407914000
4,8082000



-

3.61
3.62
3.6)
3.64
3.6%

3,66
3.67
3.608
3.69
3,70

3.71
3.72
3.73
3.74
3.75

3.76
3.77
3.78
3.79
3.80

3.81
3.082
3.83
3.84
3.85

3.86
3.87
3.88
3.89
3.90

3.91
3.92
3.93
3.94
3.95

3.96
3.97
3.98
3.99
4.00

TABLE ll-4 (continued)

¢ (o)

« 2657400
«2653300
«2649200
2645200
«2641100

2637100
2633100
«2629200
2625200
2621300

2617400
2613500
«2609600
«2605800
«2602000

«2598200
«2594400
2590600
«2586900
«2583200

«2579500
«2575800
2572100
2568500
2564800

«2561200
2557600
2554100
«2550500
«2547000

«2543500
«2540000
«2536500
«2533000
«2529600

«2526100
2522700
«2519300
+2%15900
«2512600

n-21

¢ (o)

4.8251000
4,8420000
4.8588000
4.8756000
4.8924000

4.9092000
4.9260000
409427000
4.9595000
%.9762000

449929000
5.0096000
5.0263000
5.0429000
5.0596000

5.0762000
5.0928000
5.1094000
5.1260000
5.1425000

5.1591000
5.1756000
5.1921000
5.2086000
5.2251000

5.2416000
5.2580000
5.2745000
5.2909000
5.3073000

543236000
5.3400000
5.3563000
5.3727000
5.3890000

5.4053000
5.4216000
5.4378000
5.4541000
5.4703000
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These results are displayed in Figs. 1I-3, II-4 and II-5,

In the range 34.67 < t < 138.01, the values of the dis-
placement of the free surface 7) (r, t) have also been computed
from Eq. (II-1) using the Bendix G-15 computer. However, be-
cause of their bulk and t};e fact that they do not have the éeneral
interest of Table 11-4, these results have not been presented in
this report. Also, only the wave envelopes B*(r. t) and wave
period distribution are used for practical purposes. The values
of M (r, t) have been plotted only for Case I in Fig. 1I-6 as a
sample of the obtained results. Similar graphs for Cases II and
III may eventually be obtained from the performed computations.
Fig. 1I-6 is very difficult to plot because of the large number of
crests and troughs (56 crests and 55 troughs). A more accurate
plot of Fig. II-6 could be obtained by increasing the number of en-
tries in the performed computations. This would require about
four times as many computations, i.e. o would have to be
incremented by 0. 0025 in the interval from 0 to 4.

The values of 7) (r, t) for t > 138.01 have not been com-
puted. However, the times of arrival of the crests and troughs
may be computed using Eq. (II-19) for positive integers m > 113.
While the times of arrival of crests and troughs are the same for
all three cases, it should be noted. that a crest in Case I may cor-
respond to a trough in Case II, and vice-versa. For example, the
time of arrival ty00 ° 262.07 minutes corresponds to a trough in

Case I, a crest in Case II, and a crest in Case III. The question

I-22
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FIGURE 1I-4

WAVE ENVELOPE AND WAVE PERIOD VERSUS TIME

FOR CASE II (r

= 300 NAUTICAL MILES)
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FIGURE II-5
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CASE III (r = 300 NAUTICAL MILES)
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of wheither a given time of arrival t corresponds to a crest or
a trough is settled by means of the following rule:

For positive integers n, the times of arrival t, Tepresent

—
(-]

‘ *
troughs for n even and t, St <ty

»
2° crests for n odd and t, St < ty

* *
3° troughe for n even and t, <t < ty;

L *®
4° crests for n even and tl < tn < tz.

1-27
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LIST OF SYMBOLS
APPENDIX 11

Distance from the cénter of disturbance
Wave length

Wave period

Depth

Free surface elevation above still water level
Effective radius of disturbance

Depth of disturbance at r =0

Time variable

2T h
A

Hankel transform of function E(r)

7o
7
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APPENDIX III

SURFACE WAVES GENERATED BY DISTURBANCE ON SEA
BED IN CONSTANT-DEPTH OPEN SEA

by

J. A. Hendrickson



1. INTRODUCTION

Even though the sea bed disturbance may, in actuality, be
of a complex nature, it is reasonable to assurne that the surface
waves generated by the disturbance, at distances far removed from
the source, will approximate those created by an equivalent source.
We will assume equivalence on the basis of input energy and geo-
metrical similitude. Since the actual source (nuclear explosion
at sea bed) is three-dimensional in nature, we will asoume an equi-
valent source in the form of a cylindrical upthrust of the sea bed.
The time dependency of this upthrust will be assumed to be ex-
ponential in nature, with an extremely rapid time decay. This
appears to approximate the energy dissipation of actual nuclear
blasts. Finally, in order to complete the equivalence between our
assumed model and the actual disturbance source, one can match
the appropriate fraction of the nuclear blast energy to the energy

input of our assumed source.

2. DESCRIPTION AND SOLUTION OF PROBLEM

Fig. III-1 shows the coordinate system and nomenclaturc
appropriate to the assumed disturbance.

We assume the source is described as follows:

(I11-1)
7%*= gt f(n)

111-1
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where - st

git) = | -e
B8 r < ro
tHe) 0} r>roe
and f(r) = —Z—'Af 2 re

The field equation of the potential function ¢ is assumed

to be of the time independent form

+ L 0 (1m1-2)

while the boundary conditions appropriate to our problem may be

written as follows:
*»
= at z =0
171 ¢z

(1I1-3)
and

+¢ =0
9T

¢ =

4

at 2 = d

Since we are dealing with a semi-infinite media, we must include
all possible frequencies and wave lengths in the spectra of
generated surface waves. Hence, it may be shown that the appro-

priate bounded solution to Eq. (III-2) may be written as

(111-4)

¢ = J J Jo (ur) [A(u,c) sinhuz + B(u,o) cosh uz]cosot du do

1nI-3
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It is easily shown that the boundary condition at z = d is

satisfied provided

o—z sinh ud -~ ug cosh ud
B (u,0) = Alu,0) 3

(111-5)

ug sinh ud - &~ cosh ud
From Eq. (III-1)
~-st
* Bse r<r,
n t =
0 r>r,

It may be easily demonstrated from the Fourier-Bessel

theory that 7 * may equivalently be expressed as
t

(- -] o0

»* 2¢ Br, cos ot do J (ue) J(or) d (11-6)
= ur,) J,(ur} du -
K t ” o + s v

However, from Eq. (Il1-4), it is easily seen that

- -] oo

4; . cos ot do uA(u,o) dolurldu gy )

-] -]
Hence, using the first of Eqs. (111-3) and Eqs, (III-6) and (III-7),

it is seen that the coefficient A(u, o ) is given by the relation

(111-8)

11I-4
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Thus, using the last of Eqs. (III-3) and Eqs. (III-4), (III-5)
and (III-8), we obtain, after some simplification and rearranging

(111-9)
a© (-]
2s% 8 (A J, (ury) J, (ur) o? cos ot do
LR = - du r =
2 cosh ud (o2 +5%) [ug tonh ud - Uz]

If we let x = ud, and integrate Eq. (III-9) with respect to

time, we obtain

(111-10)
oo a0
2s?Br, J (x %') J,(x{l-)dx o sin ot do
m* - 2. 2 2 nl
nd cosh «x (c"+s") [a—-g—xtonh x]
-] o

It may easily be shown that the second integral in Eq. (III-10)

has the solution
(11-11)

9'2 Ve
o sin ot do " cos [3— x tanh x] — exp (~st)

(o + &) [o-z— % x tanh x] 2 o+ Ly tanh x

d
[-]
We are interested in the solution to Eq. (III-10) for the case
t > 0, s> >| . Since the integral of Eq. (IlI-10) is extremely
convergent with x, we may substitute Eq. (III-11) into Eq. (III-10) .

and use the fact that 8 > > | with the approximate result

11-5
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[ . ' 2 Ve
J,(x%) J,(x%) cos [%'— x tanh xl dx

cosh x

n=8(9) (111-12)

If we write
W= e B Py 94d (111-13)

where Pw = density of fluid, we may rewrite Eq. (III-12) as

follows:

2k (h)—l J.(-’J‘x)d.({’-x) cos (—; 6./x tanh x ) dx
mn* d = g d

cosh x (I1I-14)

where K = w S and 9 - J‘r m'
2w P, qgd
Since we are ultimately interested in the asymptotic expan-
sion of 7 for -5— > > 1, we note from Eq. (IlI-14) that the
integrand vanishes as x — 0. Hence the only contributions occur

when x > 0. Thus we assume that %— x is large enough for the

following asymptotic expansion to be valid:

r r
J.(.‘Tx)ﬁ,/'zrax cos(-d-x-'z') (III-15)

Using the relation

c0sS 0 cos b = —'é- [cos(o+b) + cos (o-—b)]

I11-6



we may write

[cos é- (x-g-:-’- ][cos (%9,/)& tanh x]
=%— {cos -& (x+8/xtanh x — g—g) (I11- 16)

+ cos -dL (x-8./x tanhx ~— -}?—)}

Using Eqs. (11I-15) and (I1II-16) with Eq. (1II-17), we obtain
the following approximate integral form for the surface profile

valid for -5— >SS 1

(I1-17)

NZK(“).,'\/-]-- J,(x%){cos-&(x+8\/x tanhx _%%H' cos-ﬁ-(x-— V/x 'onhx-—%'g)}dx
n d'VZwr
Jx cosh x

Since %—)) 1, it is clear that the contribution of the term

cos -&(x +9JTm—nF'7 - "Tg- ) in Eq. (11I-17) may be ignored since
a slight change in x causes the integrand to rapidly oscillate from
positive to negative values in such a fashion that the net integral
is approximately zero. The remaining term, however, possesses
stationary points (dependent on 8) and will hence contribute a
finite value to the total integral.

Hence we may write Eq. (III-17) as follows:

7% 2K (27, /5L Ry w(x)exp (151 (x)x (111- 18)

IXI-7
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where J, (-'g-x) sech «x
Y (x) =
Q/ X

d
an $ix) =x-8./x tanh x —-%—?—

Eq. (III-18) is of such a form that the method of ''stationary
phase' may be used to obtain a satisfactory solution. Although the
method will not be described herein, the results will be used in
solving Eq. (III-18) and the details of the method may be found in
Stoker (1957).” b

Given an integral of the form [({K) = 4’(6.” eik¢(€) d¢

a
where k > > | while 1 (€, k) is not a rapidly oscillating
function of the variable § Then the value of (k) may be

written as follows:

2w v . = |
1 =F e k) (=) exp Si(kpla) F F) ¢ +0()  (u1-19)
r k| ¢ e
where the sum is taken over the zeros a, of ¢' (&) in the
region ag £ b at which ¢"( a)#0 The sign of the

% Stoker, J. J. (1957), "Water Waves,'" Pure and Applied Mathe-
matics, Vol. IV, p. 181.
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quantity w /4 in Eq. (III-19) is taken to be the same as the sign
of ¢"‘(cr) . Hence, using Eq. (III-18) we desire the solution to

the relation

2
¢'(x)-|--g-['ﬂ%,ﬁ_§£°—h—"]-o (I11- 20)
X

Let a, be the r roots of Eq. (III-20). Hence

. 2 /a Tonh a,
tonh a, + a, sech? a, (H1-21)
It may be shown that
(111-22)

" 6 Bonh a+a sech’ "LI : 2sech’ a
()= —<- 4 -~ L |- tanh
¢ e 2 2(a, tonh a,) {(a, tanh a,.)m( % tonh ;)

and it is to be noted that ¢" {@,) > O . and that there is but
one solution a, to Eq. (III-21) for a given value of © 2 1.
Note that the value 8 = 1| corresponds to the arrival of a surface
disturbance propagating with a phase velocity of value /Ed_ .
Finally, using Eq. (1II-14) we find, for -3- >> 1, the

asymptotic behavior of to be the following:
n g

I11-9
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- b -3/2
72K (5) Yoy g ) gla,) cos( 5t (a,)) +0(f) (I11-23)

where 2 sech a,

and fla,) = 8 /a, tonh a, - qa,

It may easily be shown that Eq. (III-23) has its maximum at
@ = 1 and that the peak amplitude (M. W, L. to crest elevation) is

given by the expression
r,-! (111-24)

The interesting thing to note from Eq. (1lI-24), remembering
that K = d% x cst, is that the peak surface disturbance is only
dependent on the source energy (W), the water depth (d), and
the ratio of radial position to water depth (%—). Also the amplitude

is inversely proportional to the radial position (in contrast to the

inverse cube root of position for a two-dimensional source).

III-10



Because of the rapid convergence of the integral (see Eq.
(I1I-15) ) it is to be expected that the surface disturbance is rela-
r
tively insensitive to the ratio -ag (radius of surface disturbance

to water depth) for values of -rag < 1. (This is so due to the

1
r J X
relative independence on '32 of the function ! (ir ) ).
[

d
Fig. I11-2 shows the relation —nr vs © as obtained from

Eq. (111-23) for -5— = 10 and %9 < 1. Also shown in Fig[ 111-2
is the value of the integral of Eq. (IlI-14) vs, 6 for -5— = 10 and
%9 = %— obtained by numerical integration.

It may be seen that the agreement between the asymptotic
approximate solution and the numerical solution is not too good for
the first positive peak. However, the agreement on the first
negative peak is quite good (10% error). Also, the agreement on
the absolute maximum value of the integral is quite good.

It is felt that better agreement would be obtained for larger

values of i— since such a case would improve the asymptotic

approximations,

Finally, Figs. III-3 and III-4 show the results of the asymptotic

r
integration for —a?- =% and —:r = 100 and 300 respectively.

Ii-11



0t

=p/x ‘1t = p/°1 YOI M
ADYIANT JO STONVEUNILSIA aId VAS ¥VINDYID OL INd ITIIOYd ASVIUNS

Z2-TI TINDIA

ol -

80"~

90" -

20"~

e0°

0 -

80°

/Io_.o

T e et AR A & -

N b

111-12

G e e i e ke o 0 e O i



n/K

o1 0

.008

.006 }-

004

.002

-.002

-.004

-. 008

-.008

-.010

e

.40

FIGURE I11-3
SURFACE PROFILE ro/d = 1/2, r/d = 100
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LIST OF SYMBOLS
APPENDIX III

Horizontal distance from the origin

Vertical coordinates (z = 0 at the bottom)

Height of the bottom disturbance as function of time
Time

Coefficient of decay of the bottom disturbance with
respect to time

Radius of the original disturbance

Final height of the bottom disturbance when time tends
to infinity

Velocity potential function
Depth (mid-water level: z = d)

Space frequency. Dimensionally equal to Eg— where
L is length

Time frequency. Dimensionally equal to _2'%'—‘ where
T is an interval of time

Density of fluid
Gravity acceleration

Energy of the original disturbance

r B

Coefficient = w T = 3

2 Pw gd 2d
Dimensionless time — gd
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A PPENDIX 1V

THE PRINCIPLE OF SUPERPOSITION AND

THE THEORY OF CAUCHY-POISSON

By

B. Le Méhauté



1. FOREWORD

The author has received some comments on the validity of the
following calculations. Some consider this new approach as exact and
powerful as the theories based on the principle of the stationary phase.
At the opposite, some others consider this approach as invalid. What-
ever its exactness, this work has been included in this report. The
author already indicates some limits of validity of his calculations. It
will be the subject of further investigation and up to other investigators
to give the pros and cons of this new theory. It is pointed out that if
this theory is found to be valid in some respects, it may become a power-
ful way of solving many related problems. It has been seen in Appendix I
that the wave motion due to a disturbance of infinitesimal dimensions has
been investigated by Cauchy-Poisson. In this appendix the principle of
superposition is applied in order to calculate the wave motion due to a
disturbance of finite dimension. It is demonstrated that:

a. The elevation becomes instantaneously infinite at the
edge of the initial disturbance, whatever the intensity, the area and the
shape of this disturbance. So, the splash phenomenon is demonstrated
and explained.

b. Far from the impulse the wave pattern does not de-
pend upon the area and shape of the impulse, but as a first approxima-
tion its amplitude is proportional to the total value of its intensity.

The wave motion caused by some particular simple shape of an

initial disturbance of finite dimensions is calculated.

1v-1
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Then, a discussion gives the limits of validity and the physical
meaning of the presented mathematical construction based on the prin-

ciple of superposition and the theory of Cauchy-Poisson.

2. INTRODUCTION

The theory of waves produced by an impulse or an initial local
disturbance on a free surface has been investigated, particularly by
Cauchy-Poisson in the case of a three-dimensional motion, and by Lamb*
in the case of a two-dimensional motion. (In the following, the notations
of Lamb are used). In both cases, the solutions have been obtained by
neglecting the convective inertia and friction forces, thus the theory is
linear and valid for slow motion.

The calculations can be carried out by application of the Fourier

double integral:

f(x) = 7',-] dk[ f(d) cos k(x-a) da

for a two-dimensional motion, or

f(w) =[ Jo(kw) k dkf f(a) Jo(ka) ad a

for a three-dimensional motion.
It has been assumed that the initial disturbance or initial impulse
is confined to the immediate neighborhood of the origin so that £( q )

vanishes for all but infinitesimal values for a . (See Fig. 1V-1)

oo a,
f f(a)da =f f(a)da = |
- -a,

That is:

* Lamb, H. (1932 Edn.) Hydrodynamics. Cambridge Univ. Press,Eng.
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in the case of a two-dimensional motion, and

] a,
f f(a) 2va da =[ f(d)2wada = |

in the case of a three-dimensional motion where a 1 is always an

infinitesimal.
f(a)

FIGURE 1V-1
DEFINITION OF AN ELEMENTARY
FREE SURFACE DISTURBANCE

From this assumption, it has to be noted that since the integral
has a finite value equal to unity and since ¢ 1 is an infinitesimal,

f( a ) must be infinity, This assumption is in complete contradiction
with the assumption of linear theory which requires the motion to be very
slow and even infinitesimal in order to be exact.

Later on, other studies were made to investigate the wave motion
due to a disturbance of finite dimensions, These were also based on the
assumption of linear theory and on the use of the Fourier integral. In
this case the initial disturbance was not assumed to be confined to the
immediate neighborhood of the origin, but instead, it was assumed to

be distributed on a given range,

I1v-3



Hence, the later theories were more realistic and more in
accordance with physical phenomena. Unfortunately, the difficulty
in the evaluation of the Fourier integral limited the initial disturbance
fl @ ) to relatively simple form.

In this appendix an attempt has been made to find a more gen-
eral method for application to more complicated forms of initial dis-
turbance including those varying with time, It is the results of these
investigations which are presented here,

This method is based on the principle of superposition and the
theory of Cauchy-Poisson. Indeed, since this theory is linear, the
principle of superposition is theoretically valid and the wave motion
caused at a given time and at a given location by a definite disturbance
varying with time should be the sum of wave motions due to infinitesi-
mally small disturbances occurring at various initial times t,

Here a quotation of Lamb is worth recalling:

"In any practical case, however, the initial elevation
is distributed over a band of finite breadth; we will denote

this breadth by 1. The disturbance at any point P is made

up of parts due to the various elements, da , say, of the

breadth 1; these are to be calculated by the preceding for-
mulae, and integrated over the breadth of the band. In the
result,the mathematical infinity and other perplexing pe-
culiarities, which we meet with in the case of a concentra-
ted line-source, disappear. It would be easy to write down
the requisite formulae, but, as they are not very tractable,

and contain nothing not implied in the preceding statement,
they may be passed over.'"
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3. .GENERAL PROCESS OF CALCULATION

It is recalled that the solutiona for the elevation as a function
of time t and distance from the origin{ X or w ) are, in the case

of a two~-dimensional motion

i t2 t2)3 tels
v B ds () ()] ov
and in the case of a three-dimensional motion

c,#a[g%g_%%_z(ﬂg)s.....]... (Iv-2)

From the assumption that the motion is linear, it is evident

that if the integral of initial elevation (or impulse) has a value A in-

f f(a) da= A

f f(a)2wada = A

m and { are given by the above formulas (IV-1) and (IV-2) re-

stead of unity:

or

spectively multiplied by A,

These two expressions may be written as

A ; (-l)n t2\2n.
nt X Z 357 @nD %'x)"' (1V-3)
N=0
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and

(4n + 2) 1

= ]38 :
. -2—1%;!-2 (~1) “[l. .5...(2n *‘)]- ‘ %"_E)Znol (1V-4)
. n*o
Now, consider the cases where the initial disturbance is
located at a point x = X, in the case of a two-dimensional motion

(See Fig. IV-2), and ata point Z = p.m in the case of a three-

dimensional motion (See Fig, 1V-3). Z is a complex number.

j f(a)

p— X e X

FIGURE 1V-2
NOTATION FOR TWO-DIMENSIONAL DISTURBANCE

@ -

FIGURE 1V-3
NOTATION FOR THREE-DIMENSIONAL DISTURBANCE
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The above formulas (IV-1) and (IV-2) are valid provided x
and o are replaced by x.X , .-po" respectively. The
argument for @ is taken to be zero by reason of symmetry.

A similar change of origin of time may also be inserted by re-
placing t by (t-t l) involving an initial perturbance at time t. In-
serting these values and assuming that A depends upon the location

X, or ( p, 8 )and time t,, one obtaine:

A N 0" ot-2 12"
K- Z l.3.5,..(4n.U'[ 2(x-X) ]
ns=o

and

2
;- :::,_8;:!) Z (-l)"([l;‘s..g?. ) [ :(::%;_] 2ne!
n=o0
From the assumption that the theory is linear, the principle
‘'of superposition may be applied, and it is deduced that the free surface
is obtained by a superposition of all the perturbances created at differ-
ent places and at different times. In the following t will be taken

equal to zero.

In particular, one can imagine that there is a perturbance

A(X) at any place -R € X<R

Alp,@ at any place {



1 s st 4

such that
Xeq, '
A(X) :[ f(X) dX
X-a,

P+Q
P

~a,

In that case f(X) and f( p,8) do not need to be infinite to
produce finite wave and consequently A may be infinitesimally small,
since it is now the product of a finite value and an infinitesimally

small area. However, the total values

R R 2n
f f(X) dX and f j t(p,8) d8 dp
-R o (o]

in which R has a finite value, have a finite value and involve a finite
amount of energy, which is the total energy of the initial perturbance.

Now at a given time t and at a given place x or ( w,0 ) the
wave motion will be according to the principle of superposition, the
sum of all the elementary wave motions caused by the various places
X or ( p,8 ).

Hence, n and [ are given by the following integrals where
x and t are considered as constantand X or( p,8 ) as variable:

. 0\ ) ofz__]z""
K [R T(x-X) Z I.3...@n+1) [ 2(x-X) X

n=o

‘- Rr2r  «,.0 Z )" |3....(2n.|)] [ g2 ]’-""d“
2 (w-po (4n + 2)} "’-'P"r P
¢ Jo Jo n=

IvV-8
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or rearranging:

[ ]
= 4 -n" (O'Z)Zn.a KX dX
v 1.3....(4n+1) C T x-X)2 2

n*0
Rr2
I i (ERCIN b " 11p6)d0 dp
2w (4n+2)! (w-pef)2"*3
n=*o 0 o

Without any more calculation, it may be seen that when x or
@ is large with respect to the maximum values for X or p thatis
R, such that X and p may be neglected in the expressions (x- X)
and ( w- pe'® ), the obtained formulas for % and [ are the
same as formulas (IV-1) and (IV-2) above provided the second term

is multiplied by

R R 2w
f f(X) dX f j f(p,0)d8 dp
-R and o “o

respectively; that is, by the total value of the initial disturbance.
This means that far from the initial disturbance the wave pattern does
not depend upon the shape and stretch of the disturbance, and the ele-
vation is linearly correlated with the total impulse or disturbance.
This result is consistent with the above remark on the multiplication
factor A. But in that case, this multiplication factor is the sum of

all the infinitesimal local values A (X) or A ( p,80 ).

1v-9



Moreover, it may be noticed that when x and @ approach
R, then 7 and [ tend to infinity (except when t = 0), since the
numerator has a finite value, whatever the shape for f(x) and
f( p,8 ). This is in accordance with the well known fact that when
a circular plate falls into water, the free surface suddenly rises very
high in the shape of a duke's crown at the edge of the plate.

Later, the validity of such a theory will be discussed., Now

some specific simple cases are calculated.

4. THE ANALYSIS OF SOME SPECIFIC CASES

First the case of a two-dimensional motion caused by a uniform

disturbance is analyzed. In this case £(X) is a constant: say £(X)=b

- R
f £(X) dX [ #(X)dX = 2Rb
» R

(See Fig. IV-4),

Then:

. _b_ (') g'Z 2n. |
Tt w) s (4no|) )"'"

(x-X
n=o

} £(X)

Zaz

<

-R R

o

FIGURE 1v-4
MATHEMATICAL MODEL DISTURBANCE
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The following general integral [, permits the direct establishment

of the complete series:

-R
L . aX_ . 1 L
n o (x_x)Zn 2 2n + | (X_R)zn ol (X+R)2""

. b __(;ﬂ“__._(o'“"".l ! 1
TEw ), I3 @ |2 20T TR T T R

n=o0

or developing

pe 2O v f_ o [eRPa 0,
4 2 X-R X+R 3512 3| x-p)3 (X.R)3
It is verified that when X—=F+FR.nN— o except when t = 0.

On the other hand, when xz tends to be large with respect to RZ.

it is found after a number of simplifications:

o - 2RO )" OF)“"
X 1.3.. (4n+1) 2

n=o

which is formula (IV-3) in which 2Rb has taken the place of A;
only the elevation depends upon the value of the disturbance, but the

wave pattern is identical.

Now considering the base of an impulse in the form of parabola;

#(X) = b - aX®

IV-11
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Then

s @ t* e [ (b ox® ax
¥ 1.3, @nel) —(;f;(-,ﬁ'o'i‘

n=o

The general integral value [, is found to be

R s
L j' (b-aX )dX® { }
q 0™ (2n. mx-x;"' !

(x-X) 2 (x_X)
- 29 * -
x{b o[x (2n + 1) CTe n
‘ -R
It may also be seen that when X—<3FR , I and 9 tend toin-

finity., Similarly, after a number of computations (neglecting Rz

before xz), it is found that when x2 > R?

3
2(bR - 1'3—)

(2n ’”xZnH

Inserting this value [, , the Eq. (IV-3) for % is recognized pro-
3
vided A is replaced by Z(bR-'ﬂg—)
It may be verifiad that this is the total value of the initial

disturbance given by the integral:

R R
aR®
[ f(X)dX -[ (b-aX )dR 2(bR - ——)
-R “-R
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The case of an initial disturbance in the form of a cylinder
may also be easily analyzed by calculating the integral

R r2»
I .ff dé dp
ih2n.3
o Jo (@-pe'?)<"

The result is obtained in the form of a recurrence formula, the number

of terms increasing with the value for 79
The length of the obtained formulas does not justify writing them
down in this appendix since they contain nothing not already implied in

the previous fcrmulas,

5. DISCUSSION OF THE VALIDITY OF THIS PROCESS OF
CALCULATION ‘

Now it is time to question the validity of such a theory as it has
been developed for the Cauchy-Poisson theory. Does this mathematical
model have a physical significance?

First of all, it is recalled that the Cauchy-Poisson wave motion
involves an infinite amount of energy. As previously mentioned, this
paradox is explained by saying that the initial disturbance, being in-
finitesimally small in width, must have an infinite amplitude for its
total area to be finite. It has been noted previously that this statement
is in complete disagreement with the fact that the theory is based on
the assumption that the motion is infinitesimal everywhere, including
the origin. Moreover, as also previously mentioned, the fact that the

initial disturbance is exerted instantaneously involves an infinite power

1v-13



during an infinitesimal time interval. This power causes an infinite
velocity at origin which is again incompatible with the assumption of
linear theory.

The case of an initial disturbance of finite dimension, as it has
been analyzed in this paper, also contains a paradox: as it has been
explained, the value for f(X) does not need to be infinite to create a
wave pattern of finite dimensions. Even this statement permits the
principle of superposition to be theoretically valid as a first approxima-
tion. It would not be valid if £f(X) was infinite. However, it is found
that the amount of wave energy produced by an initial disturbance of
finite energy is infinite, and in particular that the elevation at the edge
of the disturbance tends to infinity.

In the case where the initial disturbance is distributed over a
finite breadth, we again quote Lambs ''the mathematical infinity (for
f(a) ) and other perplexing peculiarities, which we meet with in the
case of a concentrated line-source, disappear.' Indeed they should
divappear; however, they do not disappear. Hence these considerations
have led the author to maintain that the Cauchy-Poisson theory is a
pure mathematical construction which can represent only a limited
amount of physical facts. It must be recalled here that frictional
effects are neglected. The infinite amplitude of the initial disturbance
and its infinite power are not compatible with the assumption that an
infinitesimal motion is linear, thus, problem presents a singularity
at the origin. This limits the validity of the theory and does not per-

mit strict application of the principle of superposition,

1V-14



However, a number of results do have a physical significance.
These are: (1) far from the origin the wave motion does not depend
upon the width and shape of the initial disturbance. Its amplitude,
under the assumption that the wave motion is small, is proportional
to the total value of the impulse; (2) the value for the elevation at the
edge of the initial impulse, which is zero at time zero, tends at once
to infinity at time t = ¢ , despite the fact that the initial impulse
has a limited energy. Indeed, it is necessary to keep in mind the fact
that this limited energy is theoretically exerted instantaneously, that
it involves an infinite power. But since the amount of available energy
is finite, this instantaneous rise of water must last a very short time,
In fact, this is observed when a body is thrown into water. Water
rises very high at the edge of the body, then falls down and is followed
by small oscillations about the still-water level. It is evident that the

friction forces also have a definite influence in causing this damping.

6. CONCLUSION

To conclude this discussion, the present theory based on the
principle of superposition permits an explanation of the splash of water
caused by a disturbance of finit2 dimensions,

Incompatibility between the linearization and the infinite power
at the origin, and friction forces, limit its validity for describing the
true physical situation. Moreover, it has always been assumed that
the initial disturbance acts instantaneously, In the case of a disturbance

of finite dimension, the inertia of the involved mass also has an effect.
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It has been seen in Appendix I that other theories exist which seem to
give fairly good agreement with physical facts but their validity is
limited to the large values for x and w respectively. These do not
explain the splash phenomenon as has been attempted in this paper.
These other theories, based on the use of the Fourier integral
in which £{ a ) is not confined to the neighborhood of the origin,
could probably be generalized as indicated in this paper for a disturb-
ance of any shape which could also be a function of space and time.
Their investigation may also be of particular interest for calculating

the long waves due to a traveling atmospheric perturbance varying with

time.
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LIST OF SYMBOLS

APPENDIX IV

x Horizontal coordinate in a two-dimensional motion

w Horizontal coordinates in a three-dimensional motion
(complex number)

a Horizontal spread of an original disturbance

f(a) Function characterizing the original disturbance

n Free surface elevation in a two-dimensional motion

4 Free surface elevation in a three-dimensional motion
A Value for the initial total impulse

t Time

n Integer index

X Coordinate for an elementary initial elevation into a two-

dimensional motion

( p,8 ) Cylindrical coordinates for an elementary initial elevation
into a three-dimensional motion ( p : modulus, @ :argument)

ge 6 (complex number)
R Horizontal spread for the original disturbance

Height of the original disturbance
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APPENDIX V

THE SHOALING, DAMPING, BREAKING AND RUN-UP

OF LONG WAVES OVER THE CONTINENTAL SHELF

ON SATURATED AND NONSATURATED BREAKERS

by
B. Le Méhauté
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l. INTRODUCTION

In this appendix the problems associated with a wave traveling
over the continental shelf are analyzed.
First a choice must be made from among all existing theories
of waves traveling over gentle slopes in order to select the most con-
venient theory for application to this problem. It is shown that in most
cases the waves appear as a succession of solitary waves and from ex-
isting experimental data it is demonstrated that no reliable theory exists.
Wave damping due to bottom friction is analyzed and a formula
is proposed which takes into account bottom friction and shoaling effects.
The very important listinction between saturated and nonsatu-
rated breakers is introduced. This study is of major importance in
this report because the demonstration of the natural protection afforded
by the continental shelf relies on this theory.
Finally a brief literature survey of previous work done on the

wave run-up due to long waves is given,

2. THE CHOICE OF THEORIES

It is most important to be aware of the most convenient existing
theories for treating the problem of wave motion on the continental shelf,
These wave motions of interest are characterized by:

a. Their period T ranges from 50 to 200 seconds.

b. Their wave height H ranges from 0 to 150 feet.

c. The depth d is smaller than 600, and most often
smaller than 100 feet.

V-1
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A first indication of the sssential wave characteristics is obtained

from the graph presented in Fig. 1-4 of Appendix I, It is seen that the

most significant factors are i and —I%— where XA, is the wave
0 (/]
length in deep water, or alternatively, simply Mo A2am3 e,

2 -2
7, T gd

with X = T ./gd where 7, is the elevation of
the wave crest above the still water level, Knowing H , n, can be
calculated from Fig. I-3 of Appendix I, Then it is easily seen that the
value to be considered for 7 is almost the same as the value for
H. When -&— is very small, the smallest value which occurs in this
study for 7 T2 g d_2 is 17H over the continental shelf, Hence it
is seen that the waves over the continental shelf can be considered as a
succession of aofitary waves and the solitary wave theory shouid be a
sound basis for preliminary analysis of the phenomena involved. Later
it will be seen that this statement may require some reservations and
that many refinements will be necessary. The cnoidal wave theory has

been shown to often be a better representation for the wave motion in

veiy shallow water. (See Wiegel (1960).)

3. ON THE SHOALING EFFECT

a. Hydrodynamic Solutions

A number of theoretical studies have been carried out in recent
years on the problems of water waves on a slope. In particular, signif-
icant contributions have been made by Miche (1944), Stoker (1947),
Biesel (1952), Peters (1952), Roseau (1952), Keller (1958), Carrier and

Greenspan (1958) and Williams (1959).
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Solutions have been obtained by direct integration of the momen-
tum equation and continuity relationships for various boundary condi-
tions, including that of an inclined sea bottom. Some of these theories
ars solutions of linear equations valid for short waves. Hence they
cannot be applied to the present problem because of the relative impor-
tance of nonlinear terms (convective inertia). An interesting nonlinear
solution for long waves has been developed by Carrier and Greenspan.
But the vertical acceleration, which is important for near-breaking
waves (see Appendix VI), and the damping due to bottom friction have
been neglected. Also, the solutions would not hold true for breaking
inception.

A theoretical solution for the present problem has also been
obtained by Kishi (1962). The most important results of this study
are reproduced in this report. Kishi starts from the basic long wave

equations in the usual symbols:

Momentum: bbr + u :‘; = -g b;’x
. > [+ )]
Continuity: Y + > X 0

with ¢ = [g (d+ 7 )] 1/2 and, assuming that

usz./ed [ﬂ-l], (V-1)

it is found that for two locations along the wave path (1 and 2) and

with 7, & H:

i 3

(v-2)

d [|+-;1'1 i—l s[n+’--g-: ]'i -1

' [|+-'-::]i—| 61+ -%!z]* -



which permits the calculation of H, as a function of clz from the know-

ledge of H, and d, . It is interesting to note that when/ H/d is small,
H d 1/4
the classical Green's law is found: H_Z___ = (1-1——) .
1 2

Although this theory may be quite useful, it must be pointed out
that the derivation of Eq. (V-2) is based on the assumption (V-1), Some
doubts can be expressed as to the validity of (V-1). Also, in practice the
use of (V-2) would involve trial and error computation of H2 in terms of
Hl . dl and d2 . Because of these two objections, Eq. (V-2) is not
further used but has been mentioned as a possible approach for further
investigation.

Also, it w.ill be seen in the following appendix that the vertical
acceleration, neglected by Kishi, takes on great importance over a gentle
slope such as encountered on the continental shelf. In fact, it is the key
for explaining the paradox of long waves indicated by many authors. This
paradox -- the Earnshaw paradox (1845) -- is that the long wave theory
gives rise to a bore, whatever the wave height even over a horizontal
bottom, In fact, it is known that some tsunami waves over a steep slope,
as on the Pacific coast, never break. The sea level varies gently with

time only.

b. The Energy Method

The second method consists of assuming that the wave motion on
a sloping bottom is the same as on a horizontal bottom. Then when the
wave motion has been so determined, it is assumed that the rate of

transmitted encrgy is constant.



The great advantage of this method is its simplicity, permitting
an estimation of the damping due to friction.

This method works particularly well on a nearly-horizontal
plane as is encountered, for example, on the continental shelf of the
Atlantic coast where the slope is between 2/10, 000 and 5/10,000. Near
the shoreline the slope becomes steeper, ending with a 1/15 slope on
the beach. In this area the wave motion can no longer be considered
as similar to the motion on a horizontal plane. The wave profile loses
its symmetrical shape. Also a part of the wave energy is reflected in
such a way that the assumption on the transmission of wave energy is
not fully satisfied. It is then necessary to apply an analytical or
numerical method. Despite these limitations, the energy method is a
reasonable preliminary guide for studying wave motion over the con- -
tinental shelf.

When applied to the solitary wave theory, the principle of con-

servation of rate of transmitted energy gives

Evb: 2 32
3.3

where H is the wave height

V is the wave celerity = /g (d + H)

b is the distance between orthogonals, proportional to the radial

3/2

d V b = constant

distance R in the case of circular waves over concentric
bottom contours.

Then between two points (1) and (2) at radial distances R1 and R2

H, d+H % 4 r 8§ 4 3R %
—t g ) -y (=) > (=L s -
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c. Experimental Facts

. Experiment shows that due to partial reflection over a slope,
the exponent 4/3 in (V-3) is generally too high (Ippen and Kulin (1954) ).
It can only be considered as a limit when the slope tends to zero. The
following graphs, based on experimental results, give the value for
n as a function of the slope (Fig. V-1). It is then seen that over the
continental shelf, the following law, where n = 1, is more realistic:
2

H d R, 3
=
-‘H (—Ldz) (—LRz)

: (V-4)

It must be noted that such a law will also be in accordance with
the assumption that the transmitted energy is a constant: E b = constant.
This assumption is far more reasonable that E V b = constant because
this latter law implies that the energy of the wave increases when the.
celerity decreases, which is not physically reasonable.

Also, according to some experimental results presented in Fig.
V-2, i. seems that the law of variation of wave height with the depth
follows the solitary wave theory as presented in Eq. (V-3) only in a
narrow range near the breaking depth d_ (Munk (1949) ). According
to these experiments, when _g; is larger than 1.4, the Airy law

2 d~3 is much laryger than the

applies despite the fact that %% A
required value presented in Appendix I, i.e. 0.01l. The Airy law is
based on the assumption that the rate of transmitted energy of a periodic
gravity wave, given by the linear theory, ie a constant, i.e. H?‘ Vb=

constant, where V is the group velocity.

Applied to long waves (V = ./gd ), the well-known Green's law

| |
He (83 by
'F"' (dz) ‘bz)

is obtained:
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A modification of Green's law is suggested to take account of the

nonlinear effect as follows:

[} [}
H d+H 3 .El!
Hp . (4t H .
m, - lagn, (B, (V-5)

As a general conclusion, despite the fact that the wave motion
over the continental shelf is represented fairly well by a solitary wave,
experiments show that the shoaling effect given from the solitary wave
theory cannot be applied blindly. The shoaling effect is certainly very
dependent upon the slope and the Airy theory seerns to be much more in
accordance with fact when —J;;d_ > 1.4.

1t must be noted that it is the essential characteristic of a solitary
wave to travel without deformation on a horizontal bottom. Hence these
discrepancies are not surprising. The real law can only be given by a
general application of the method of characteristics with very small inter-
vals with the use of a digital computer. This problem will be considered

in another appendix,

4, THE DAMPING EFFECT DUE TO BOTTOM FRICTION

Most of the theoretical studies on wave damping have been carried
out for periodic waves: Boussinésq (1877), Hough (1877), Basset (1888),
Lamb (1932), Keulegan (1948), Biesel (1949), Putnam and Johnson (1949),
Miche (1954), Reid and Bretschneider (1954), among others.

As in the case of the analysis of a wave on a sloped bottom, two
methods exist to attack the problem. The first method -- the analytical

method -- consists of solving directly the basic differential equations --

momentum, continuity -- taking a friction term into account. Theoretically,

V-9
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this method presents the advantage of giving not only the damping, but
also the deformation of wave motion due to friction forces (and convective
inertia), This is important for very long waves in shallow water such

as tidal waves in an estuary, This method is essential for studying the
transformation of the wave into a tidal bore.

For the problem under study the second method, the energy method,
is simpler and will be as accurate for the wave over the continental shelf
before breaking. It consists also of the determination of the wave motion
independently of the friction forces over a horizontal bottom. As a con-
sequence, the wave profile is symmetrical. This approximation is valid
because the decay of wave amplitude over a wave length is small and the
slope is very gentle.

The damping effect is then simply defined as a decay in wave height
calculated from energy considerations: the loss of energy over a given
wave length is equal to the variation of wave energy. This could be ex-
pressed in two ways: the first is particularly convenient for periodic
waves: dPb) , _ bD,

(V-6)
where P is the power per unit width or energy propagated per unit time

through a vertical area of depth d and unit width:

2 4mrd
=4 H y — L
P=5p9(3) Z|'* 374
smh—L—

where H is the wave height, V the wave celerity ( ./gd), d the depth,

L the wave length (T ./gd), x is the distance measured along the wave

‘ ray in the direction of propagation of the wave, b is the distance between

wave orthogonals of two wave rays. Hence, for long waves:

vV-10
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In the present case b is proportional to R, i.e. the distance from the
original disturbance; hence b can be replaced by R in Eq. (V-5).

Df is the average amount of energy dissipated per unit area at the bottom
per unit time. It can be calculated theoretically when the flow is laminar,

but it has been shown that the flow is turbulent when (Collins (1961) )

H . 2w d
T > 1.08 sinh T

or H > 1.2 »\/-%-.- in ft. -sec. units for long waves. This condition is
always verified in the present case, Hence Df will instead be:
I

L
4 % 4 r4
D, * t/; [ rudr o (V-8)

where up is the bottom velocity and T the shearing stress., Here

for a coefficient of friction f,

t=pfu jug | (V-9)

and according to the Airy theory applied to long waves:

ug = u (x,t1) =% ,\/-;I cos (kt-mx) (V-10)

2w 2w 2w
where k = and m = =
T L
T ./gd

Then, introducing these values it is found that

3
D, * _é..s“; pfH (%)% (V-11)

and inserting (V-7) and (V-11) into (V-6):

: 3
2 _4 3 -7 (V-12)
S W RVar-2 v Rd
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Dividing by H?R '\/;. integrating over a small interval x, - x, = Ax = AR

X

and replacing e 2 by 1 - ax, it is found:

R.Z d 4 H, AR
Hes MR} () "_3%‘4?— (V-13)
|

which permits step-by-step calculation of H., When f = 0, the classical
Green law is easily recognized.

This formula will have to be inverted if one wants to evaluate the
deep water wave height as a function of the shallow water wave heights., In
particular the negative sign in the expression between brackets becomes
positive,

For the solitary wave theory it is more exact to apply the same type

of calculation to the transmitted energy rather than to the power. Then,

d(EVb) _ _, dE .
T bd' (V-14)

The energy of a solitary wave is
2
8 2 %
E-= gH® d (V-15)
3’
and V = '\/g (d + H), where H is the maximum height above the still water

level of the solitary wave, and d the depth. (In this case Mo = H)

The rate of loss of energy due to bottom friction is:

o0
%%—:f ruadx (V-16)
- 0
By inserting the classical relationships ug = u=V %’— and 7 =
— ,\/3 Hy Y2« _wve
cosh” a Where @ = q (T) —g— ad 7 s

the free surface elevation above the still water level, it is found that
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By use of the Gudermannian of a it is found that the integral

has a value 16/15. Hence, finally i
de . _32 H™ V

§f
15/3 P Kk (V-18)
After insertion of these values and since b is proportional to

R, after integration it is found that
d+H,§d| '3.!% g T H AR
(@ R) @& [E—r] v
1

This formula also permits step-by-step calculation of H,
It is seen that the loss of energy in a solitary wave height H is
more important than in a periodic wave of the same wave height.
When f = 0 and the motion is two-dimensional, the classical law
3

¢ )(‘;’;:) = (2 (V-20)

is easily recognized. Now the problem is how to determine the friction
factor f in Eq. (V-13) and (V-20).

In the case of viscous flow, the periodic motion in the boundary
layer on a smooth plane is relatively well known. The thickness of the
boundary layer S is proportional to ~/v—T. that is, it increases with
the period.

In the case of turbulent flow, it is known that &8 also increases

with T. The exact increase of 8 is unknown. In the case of long

V=13



waves over a shallow bottom it is reasonable to admit that all velocity
distribution along a vertical at a given time is very similar to that of
a steady flow. In a word, unsteady motion appears as a succession of
steady flows insofar as the friction effect is concerned. Then f can
be expressed as a function of the Chezy coefficient Ch » which can be

expressed as a function of the Manning coefficient n:

q n2 n2
t2z "9——75 77146 T (ft-sec. units)
h (.486) d3 a3 (v-21)

The choice of n is delicate; however it can tentatively be con-
sidered as equal to 0.02, which is usually given for a bottom composed
of gravel. But, it may be expected to range between 0,015 and 0.025 due
to the dual uncertainty of the bottom roughness and the application of the
Manning formula to unsteady motion. In relatively deep water the depth
d in formula (V-21) should rather be replaced by the thickness of the
turbulent boundary layer 8 . Unfortunately, it has been seen that 8 also
is unknown.

However, it must be mentioned that the tidal problem in an estuary
has been studied satisfactorily by use of the Chezy (or Manning) coefficient,
All other factors being equal, only a slightly different value for Ch has

been found for a decelerated flow than for an accelerated flow.

5. ON THE BREAKING INCEPTION AND NONSATURATED BREAKERS

It is commonly admitted that breakers on a beach can be separated
into spilling breakers on a very flat slope and plunging breakers on a

steeper slope. Plunging breakers are sometimes called surging breakers

V-14



on a very steep slope. The scparation of breakers into categories

is based on visual observations rather than on any hydrodynamical
criterion. However, the essential hydrodynamical characteristics of
these breakers will be reviewed; then a theory for nonsaturated
breakers developed (Le Mehaute (1962) ).

The profile of a spilling breaker remains, for the most part,
almost symmetrical and the wave breaks by curling over slightly at
the crest (Fig. V-3). As long as the foam of the breaker is small by
comparison with the 'bulk'' water, which happens on a very gentle
slope, the wave presents roughly the main characteristics of a solitary
wave, even after breaking inception. But, due to the spilling breaker,
a given amount of energy is dissipated in such a way that the wave
crest follows the breaking index curve defined by H=0.78 d. Then
the spilling breaker is transformed into a bore when the slope be-
comes steeper. When the slope is steep before breaking inception,
the wave profile first loses its symmetrical shape, then a plunging
breaking wave generates a bore directly.

In the following an attempt is made to investigate analytically
these described phenomena. As before, two methods exist. The first
method, the energy method, is only approximate but gives a great
amount of information from relatively simple calculations. The
second method, the analytical method, is more accurate but requires
tedious computations for each particular case.

It will be seen that the second method is an application of the
method of characteristics and requires some refinements for analyzing
the surf zone and calculating the wave run-up. This will be presented

in Appendix VI,
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In the energy method the rate at which the energy is lost due to

bottom friction is 9= | and to spilling breakers is i‘-lil . Hence:
at at !,

.4_%‘9.). : '[%%"b + g’tﬁ |s] (v-22)

dE | is given by Eq. (V-18) as

dt
i :
H

15/3 P T‘ -18
dt'b s d (V-18A)

The rate of loss of energy due to a spilling breaker is very similar
to that of a tidal bore (which is a shock wave). In the case of a shock wave

it is known that (See Fig. V-3) (Stoker (1957) ):

ge  th-n)’
ar " PeQgE T, (v-23)

where h1 and h2 are the depths before and after the front of the bore,
respectively, and Q is the discharge due to the moving bore. It must be
remembered that the above formula is bascd on the assumption that the
vertical distribution of the horizontal velocity u is uniform.

In the case under study the spilling breaker is due to the fact that
the horizontal velocity at the crest becomes greater than the wave celerity

V . Byanalogy (see Fig. V-3) h, =d+H andh, = d+ BHwhere

1
is always smaller than unity and can be zero at the limit. The vertical

velocity distribution, and consequently the discharge, is directly related

to the average horizontal velocity. Hence the discharge could be written:

Q= (d+H)u, = (d+ BH)u, =+ VE [d4H-B81d+BH)]

Inserting these values into Eq, (V-23) and defining B as follows:
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9&|- pov -H-[d+H-B(d+BH"] 3[d+AI(d + BH) Pqefa_

(V-24)

B will be called the '"breaking coefficient.’” The breaking coefficient B
is the ratio of the rate of energy dissipated by the spilling breaker to the
rate of energy which could be dissipated by a bore of front height equal
to the height of the solitary wave which generated it. B = 0 corresponds
to no breaking ( 8 =1). A small value for B corresponds to a little
spilling breaking near the crest ( 8 close to unity); i.e. a partial breaking
or a nonsaturated breaker. It is difficult to ascertain the maximum value
for B by the energy method. However, it is certain that B cannot be
larger than unity ( 8 = 0). Then total breaking occurs and the breaker
becomes a saturated breaker or fully developed bore. Further consid-
eration will be given to the physical meaning of B later,

Now, by introducing equalities (V-15), (V-18A) and (V-24) into

Eq. (V=-22), it is found that

k-
2 4
d . H 342 BVH
&I[” d V] [3'9_% 32 ¢ ] (v-25)
which gives after division by l-~l3/2d312 V, integration over a small in-
terval Ax = x, -x, , and since e™* ] .ax
s
2 2
d. V3 g fH VAx 5 BH Ax
M@ Er PRS- —r—] v

When all friction effects are neglected (f = 0) and there is no breaking

(B = 0), the classical law
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is easily recognized. It has already been pointed out that such a law
is not too well verified experimentally (see Fig. V-1 and V-2).

Despite these limitations the physical interpretation of this
study will be based on Eqs. (V-25) and (V-26) because the spilling
breaker effect tends to replace the variation of wave height by a simple
law expressed as H = 0.78 d, even though Eq. (V-27) is not verified

experimentally. When H < 0.78 d, there is no breaking and the

breaking coefficient B = 0. Then V = [g (d + H)] 1/2. More-
over, assuming H is small by comparison with d,
4
d3 fH, Ax
H, = H'(alz) [I—%—dz— (V-28)
1-2

This equation has already been found (c.f. V-19).

When Hb =0.78 db, there is inception of breaking and the break-
~ing coefficient B becomes greater than zero. In ihe case of a small
spilling breaker, V retains its value V = [g (d + H)] 1/2. Then,

replacing these values for H and V in Eq. (V-25),

L @2y L g8l /2

B
i.e. the slope S = d (d) = 0.01f 4+ 0.02 B or within the known limits:
p dx

+ 0.07 Bds

O £ B=505-05¢f<1| (v-29)

It is seen that the breaking coefficient B increases with the slope:
the steeper the slope, the greater the rate at which the energy is dis-

sipated by the spilling breaker.



It may occur that due to bottom friction B always retains a zero
value despite the shoaling when S < 0.01f as is easily seen from Eq.
(V-29). This result can also be found directly from Eq. (V-25) by re- ©
placing H by 0,78d and equating B to zero.

Inserting the value (V-21) for f, a criterion for damping without

breaking is proposed: s < 14.6n°

100 dJA

i.e. with the Manning coefficient n = 0,02: (d in feet)
-5
S«< 'G'JT&L (V-30)
d

On the other hand, it has been seen that B cannot exceed unity.
This happens when S =0,02+0,01f = 0,02, When S =0.02, then
the breaker is ''saturated.” Fig. V-4 illustrates these considerations.

Now a complete physical interpretation can be drawn from the pre-
vious considerations. If the slope is always smaller than 6.10'5 / dl/ 3 ,
then the wave height is completely damped by bottom friction. There is
no breaking and no run-up, This occurrence is very rare.

On a steeper sivpe there is a maximum amount of wave energy
that a solitary wave can transmit towards the shoreline over a given depth.
This maximum energy is reached when H =0.78 d. If the amount orf
energy passing through a given plane tends to be larger than this maximum
value, a spilling breaker will dissipate the difference. This occurs on
a relatively gentle slope and such a condition represents a nonsaturated

breaker, in which case the wave height is directly related only to the depth.

The run-up is negligible.
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It is seen, also, that there is a limiting amount of energy which
could be dissipated by a breaker over a given length, Hence, when the
slope becomes steeper and steeper, the regulating effect of the spilling
breaker reaches its limit when B = 1. Then the breaking index curve
is surpassed by the height of the bore front. There is run-up. The words
"gaturated' and '"nonsaturated'' breakers are now defined, explained and
justified,

A very important conclusion is also drawn: on a beach having
its curvature upwards, the maximum possible wave run-up is given by
the wave which breaks at a depth where the slope is equal to ¢.02. It is
known that if db is the depth over that slope, the corresponding wave
heigh: is Hb = 0,78 db' Any wave having a greater height breaks sooner,

dissipating its energy following the breaking index curve up to the plane

. where the slope becomes larger than 0,02,

In fact the theoretical value 0.02 for the critical slope (corre-

sponding to B = 1) may be replaced by a more factual and conservative

value 0.01 . The exact determination of this value requires further in-
vestigation by the method of characteristics as given in Appendix VII.
The results of this section are summarized in Fig. V-5 by three

typical cases, It must be noted that the run-up in cases I and II is the
same despite the different deep water wave heights.

. A very important conclusion can be drawn from this study. Since
the continental shelf has a very gentle slope averaging 4/10,000, it acts
as a natural protection. The breaking coefficient B keeps a very small

value most of the time. The breaker is far from being saturated. The
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maximum wave destruction depends upon the depth where the slope is near
0.01 and the depth at this slope is less than 30 feet. Hence the maximum
possible destruction is due to a wave height based on H=0,78d or 0,78
x 30 = 23 feet. Also, the maximum possible wave entering the Chesapeake
Bay is also directly given by the very simple rule H =0.78 d. This wave

is a gentle spilling breaker in the shape of a limit solitary wave.

6. A LITERATURE SURVEY ON THE WAVE RUN-UP OF LONG WAVES

No theories exist for calculating the wave run-up on a slope prior
to this study. Appendix VI of this report establishes a theory for this
purpose. Some experimental information on this phenomenon does exist.
Unfortunately, these experiments were carried out on slopes which were
too steep for application of the results to the problem under study. However,
the results do give some information on the general trend. This information
will be applied to the problem under consideration. It must be noted, how-
ever, that this application requires some extrapolation and is, therefore,
subject to possible error.

It was found by Kaplan (1955) that on a slope of 1/30

R H - . 316
H 0.38|(f) (V-31)

where R is the vertical run-up above the still water level, and H and L
are the wave height and wave length at the toe of the slope. (See Fig. V-6)

On a slope of 1/60, he found that

~-.31%
% = 0.206 (%) (V-32)
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The interesting fact emerging from these tests is that the value

of -g— does not depend upon the depth at the toe of the slope. These

laws were verified for values of -IE- ranging from 8 x lO'2 to

2 x 10'3. They were also proposed for extrapolation for smaller

values of -IE— .

Some recent experiments on a slope of 1/30 by Kishi (1962)

for 7x10°° < -I_l-['- < 2x103 gave smaller values for -g—,

namely % Z 2. But this could be due to the fact that Kishi worked
to a very small scale for which scale effects may not be negligible.

Some experiments have also been carried out by J. V, Hall and

G. M. Watts (1953) on the run-up of a solitary wave. They give:

0.35
R ) 0.67 H 1.9(S)
il (S) (3‘)

(v-33)

for any slope between 5° and 12°. However, on reworking the data
provided by Hall and Watts, it is found that —g— is close to 3 on a
slope 5° and 10°.

From this scattered information, combined with the previous
theory on nonsaturated breakers and the results obtained in the
following appendix, it can be tentatively concluded that for an average

slope as usually encountered,

R
ﬁ_g 2.5
b

H, being the wave height (0.78 d) at a depth d where the élope is

0.02.
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LIST OF SYMBOLS

APPENDIX V

d Water depth

Ao Wave length in deep water

A orL Wave length in shallow water

T Wave period

/] Elevation of wave surface above still water level

7, Maximum value of 7 at the wave crest

H Wave height

u Horizontal velocity

x Horizontal coordinates

E Wave Energy

v Wave celerity for a long wave in shallow water

b Distance between two orthogonals

R Radial distance from the original disturbance
Also Vertical wave run-up

Sub b Related to breaking characteristics

n Exponent for variation of wave height with depth vs,
bottom slope

S Bottom slope

P Wave power per unit width

Df Amount of energy dissipated by bottom friction per unit area

T Shearing stress per unit area

up Bottom velocity

vV-29
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1/2
. ﬁ (H, x -Vt
T q -d
Depth on the high side of the bore
Depth on the low side of the bore

Discharge due to the moving bore

Friction coefficient = -Lz-—

Ch
Gravity acceleration
Chezy coefficient
Manning coefficient

Coefficient characterizing the height of the front of
a spilling breaker

Breaking coefficient: ratio of the energy dissipated by

a spilling breaker and the enargy which can be dissipated
by a bore of same height
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1. INTRODUCTION

This appendix presents the results of theoretical investigations
on the wave run-up which have been carried out by the method of
characteristics.

This powerful method has been of great use in many scientific
fields. It has been in common use in hydraulics for studying flood
routing and tidal waves in estuaries. It is also used for studying
water hammer in pipe lines, and has been introduced in meteorology
by Freeman (1951).

It seems that Stoker (1957) was the first to propose the applica-
tion of the method of characteristics to the problem of a wave breaking
on a beach. However, he did not study the problem of the run-up on
a dry bed. Hence this particular problem has been solved in this report.

The various topics of investigation are:

a. Establishment of the basic equations of the motion prior
to wave breaking. It is shown that the vertical acceleration, usually
neglected, has an important effect. The corresponding correction term
is given.

b. The basic principle of the method of characteristics is
recalled, Dimensionless parameters are introduced.

c. The input and limit of the waves are defined by a limit
solitary wave where the slope becomes steeper than a given value
such as 0.02, It is assumed that such a wave on a more gentle slope

follows the breaking index curve as demonstrated in the previous appendix.

Vi-1
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d. The problem of nonsaturated breaker inception is
discussed.

e. The method for studying nonsaturated breaker propagation,
and bore propagation, is given.

f. The particular problem of the bore reaching the shore-
line is theoretically analyzed when the bottom friction is‘neglected.

g The run-up on a dry bed with bottom friction is also
theoretically analyzed in various cases corresponding to various simpli-
fying assumptions. Then the links between the motion over a dry bed
and the bore reaching the shoreline with bottom friction are established.

h. Finally, an application of the method is carried out and

suggestions for further investigations are given,

2. THE BASIC EQUATIONS AND ASSUMPTIONS

The classical equation for long waves in shallow water neglects
the vertical component of velocity, vertical acceleration and the

bottom friction forces. They are: (see Fig., VI-1 for notation)

: du 2u . _g21
Momentum: > + u X - 9 5 X (Vi-1)
Continuity: —b—;l + Mg’—f—m— = 0 (VI-2)

VI-2



b 4
u n O/
—
\/ X
d
FIGURE VI-1
NOTATION

It is recalled that these equations are based on the assumption that the
distribution of horizontai velocity u is uniform. Hence u is the
average velocity in a cross section,

It has already been pointed out by Stoker and others that the method
of characteristics, as previously applied, gives a wave profile much
more unsymmetrical than usually observed at sea or in a2 wave flume.
This limitation on the validity of the theory is of small importance on a
comparatively steep slope, but becomes very important on a gentle slope
such as is usually encountered over the Atlantic continental shelf,

The theory of nonsaturated breakers (Le'Méhauté 1962) presented

in the previous appendix, which is based on the assumption that the wave
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profile is symmetrical, certainly gives a better approximation on a

very gentle slope. For example, at the limit, if the study of the
propagation of a solitary wave over a horizontal bottom is treated

by the method of characteristics, the wave profile becomes rapidly
unsymmetrical (Fig. VI-2). A hore appears even if the starting wave

is not a limit solitary wave, (H/d < 0.78). However, it is well

known by direct integration and experiments that a solitary wave over

a horizontal bottom travels without deformation, the wave profile always
being symmetrical (see McCowan (1891) and Munk (1949) ). This fact
proves some deficiencies in the method of characteristics as previously
used, Ursell and Birkhoff (1949) present this as a paradox, the Earnshaw
paradox (1845), also encountered in gas dynamics. Birkhoff even states
that r.zobody knows thé explanation. Stoker (1957), Laitone (1961) and
others also discuss the problems of steady state in long waves. Stoker
states that the steady state can be reached provided the theoriee are
carried out at a high order of approximation (p. 342). Briefly, the ex-
planation of this paradox and this deficiency of the method of character-
istics applied to long waves are due to the fact that the vertical accelera-
tion and path curvature effects (particularly important at the crest of a
near-breaking wave) are neglected and consequently th? pressure distri-
bution is assumed to be hydrostatic. The solitary wave theory takes
account of this path curvature effect by assuming that the vertical velocity

is linearly distributed from the bottom to the free surface:
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Then it is found that the correcting term to be inserted on the right

side of the momentum Eq. (VI-1) is:

-4+ ] (V1-3)
3 2% by

A similar term can also be added to take into account the influence
of the slope of the sea bottom on the path curvatures., The length
of the equation which is thus obtained is such that its insertion for
practical computation is not justified, Moreover, the corresponding
error is very small for two reasons:
1, On a steep slope, the slope has an effect on the path
curvature, but it will be seen that the total path curvature effect
is small by comparison with the term -gS which appears in the
momentum equation (S is the slope).
2. On a gentle slope the total path curvature effect is of
great importance, but the correction to the path curvature effect
caused by the bottom slope becomes negligible as long as the slope
of the free surface is large by comparison with the bottom slope.
This is always the case for a near-breaking wave close to the crest
and at some distance from the crest, the path curvature is unimportant,
To conclude this discussion, the proposed correction term Eq. (VI-3)
can be considered as a sufficient approximation -- but also as a neces-
sary correction -- for a wave traveling on a very gentle slope. 1t is
pointed out that when the bottom slope tends to zero, the solitary wave
theory is more exact. Consequently, the theory previously presented
in Appendix V can be considered as the limit case, obtained by a

direct integration where the path curvature effect is taken into account.

VI-6
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It has been pointed out that the bottom friction forces have been
neglected in the previous momentum Eq. (VI-1). If, as already |
assumed in Appendix V, the shearing stress at the bottom is
quadratic and the wave motion appears as a succession of steady
flows then the Chezy formula gives for the friction term F:

R | ujuj
' Chi (d + 1)

(d + 7 ) being the hydraulic radius in this case.

It can be seen that by taking ''reasonable' values for Ch the
bottom friction effect is also relatively negligible when the slope is
larger than 1/10, but becomes very important on a very gentle slope,
as does the path curvature effect. However, it will be seen that
the friction term is particularly important when the bore reaches
;.he shoreline and for the run-up computations on a dry bed, whatever
the slope.

These two necessary correction terms show the importance of
the notion of nonsaturated breakers introduced in Appendix V for
calculating the maximum possible wave run-up. Since nonsaturated
breakers follow the breaking index curve, it is sufficient to start
the computations by the method of characteristics from a limiting
solitary wave on a slope where the breaker tends to be saturated:

S = 0,02 or 8 = 0,01 for safety. This consideration should
permit elimination of a tremendous amount of calculation in studying
the wave traveling over the continental shelf because it would require

_taking account of the path curvature term and bottom friction terms.
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It will be seeon that the method of characteristics accumulates
errors, Hence the necessary simplifying hypothesis which has been
assumed to perform the calculation in the energy method in Appendix
V does not give a greater error than does the more theoretically
exact method of characteristics when the calculations have to be
performed over a long distance,

Finally, it is pointed out that the basic momentum and continuity
Eq. (VI-1) and (VI-2) assumed that the vertical velocity distribution
was uniform. Actually the velocity distribution of a near-breaking
wave does not satisfy this assumption. As already pointed out, for
a spilling breaker the velocity near the crest becomes larger than
the wave celerity. Because of this phenomenon, a loss of energy
is not taken into account by the method of characteristics, The
solution may consist of imposing, for example, a maximum value to
the wave height: H = 0.78d. This correction may have some
importance if the method of characteristics is begun on a very gentle
slope. But since we already know that the breaking index curve is
followed, this correction is unnecessary when we start the method
of characteristics on a slope steeper than the critical slope 0.02.
Then the spilling breaker generates a bore very quickly and the
correction due to non-uniform velocity distribution is negligible.

The basic starting equations will finally become:

du du ] ulul d+n _®7

— — R - - - Vi-4

at " ox 9% 79 Chi(d + M) 3 atfex vi-4)
27 4 249 . (VI-5)
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3. _THE BASIC PRINCIPLE OF CALCULATION OF THE METHOD
OF CHARACTERISTICS

Now some elementary transformations must be performed.
Dimensionless terms are also introduced,

First it is seen that the wave motion is completely defined as
a function of time and space by the elevation 9 (x, t) and horizontal
velocity u(x, t}. It will be more convenient to define the wave
motion by two terms u (x, t) and c (x, t), which are both dimen-

sionally equivalent to velocities, the definition of ¢ being:
¢ = [gld+m]t (V1-6)

The definition for c is arbitrary and can be modified in an attempt
to eliminate the path curvature term in the calculations, For example,
c can be taken to be

c = [o(dwp) (|+ .;'_(i_t.;’.L)]{’

g >t

But such a definition for c¢ also requires the neglect of a few terms,
In the present phase of this study the value ¢ = [ gld+n )] 1/2
will be used. However, it is interesting to note this possibility in
view of further investigations. Another way of defining ¢ will also
be obtained by assuming that a solitary wave must travel without

deformation over a horizontal bottom,

From Eq.(VI-6) it is deduced that

be , g3, 404
2c de QT:’;'.‘G Oe (Vi-7)
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Hence

d dC dd ¢
9 3% " 2¢3% -9 Fr * 2c3%
Also
gujul . 9 (u¥
B (c)

Cr2(d + ) Cphe

and from the continuity equation:

dbud+7) , dld+m) o
dx >t

d+7 »(d+7m) . _d+n » [ud+m] .

CZ

3 5%y x 3 >x2yt

3¢

(VI-8)

Inserting these relationships into the momentun Eq.(VI-4) gives:

Ag_.g.uﬂ’.-}c.é.gg = 06
>t X > X

»

Chz

g% (u)?
()

cz
+—3—6§

2
(V1-9)
2yt

In the following the right-hand side of Eq.(VI-9) will be called

G, even if friction and path curvature terms are neglected. The

continuity Eq.(VI-8), in terms of u and c,

dluc?) , dc? |
OX% + ot 0

VI-10
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i. e,

»2c¢ d2¢

.ST+u-s-;-+c-%%-o (VI-10)

Adding and subtracting successively Eq.(VI-9) and (VI-10) gives

-fr(u+2c)+(u+c) -8"—,‘(u+20) = Gy (Vi-11)
® (- 2¢) ) 2 (u-200 = G Vi-12
5 W- c)+(u-c ox u-2c - (VI-12)

It is seen that these expressions are the total differential with respect

to time of (u + 2c) and (u - 2c) provided g{f = u + ¢ and

%— = u - c respectively, Hence,
g;(u+2c)=0* along a line g—:‘-=u+c
d u + 2¢) = G, al line X -
T\ c) = G, alonga e r

Before explaining the mathematical process based on this
equation, it is particularly convenient when performing the calculations --
and also inorder to give more generality to the obtained results -- to
use dimensionless terms. For this purpose, let C, = gdl where
d, is an arbitrary length, It is most convenient to let dl equal the
depth at the point where the calculation of the method of characteristics
will begin, This depth could be chosen as the depth where the slope
is 0,01, i.e. where the breaker tends to become saturated and where

the input can be taken to be a limit solitary wave., Then inserting the

relationships:

Vi-11
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the above Eq.(VI-11) and (VI-12) (where G, is expressed as given

in Eq. VI-9) ) become, after some elementary calculations:

R ko H
-d-T—(UJTZC)-G=-S——é—2- (?) 1
h . c? »uc? (VI-13)
3 T

along '3)1(" = U ¥ C. Now the principle of calculation based on this
set of equations can be explained.

It is seen that G, = gG. Knowing U, C, and G attwo
points (1) and (2) ina T-X diagram (see Fig.VI-3), namely Ul’
Cl, Gl’ UZ’ CZ’ C'Z' U and C can be calculated at a third point

(3), U3 and C3 by the following processes. A line of slope

1 : . X 1
Ul—+—c—l— is drawn from point (1) and a line of slope -U-;—_—t-z—

from point (2). Point (3) is defined by the intersection of these two

lines, Then from Eq.(VI-13) we know that:

1 dT

A(U + 2C) = G, AT, ; along the line T = ™
. 1 dT

A(U - ZC) = Gz AT2_3 810118 the line -U;—_—C-z— = ax-

Vi-12



Hence,

U, + 2C; + G, ATl-z

a
w
+
n
O
w
]

1

u, - 2¢, = U, - 2C, + G, A'rz_3

. 3 3
and
U+,
U, = —y5— + C| - C, + G, T2 * GZAT2_3
(VI-14)
U, -U c, +C
_ 2 1 2
Cy=—1 t— G Ty, -G AT, 5

which permits calculation of 03 and C3. Repeating this process of
calculation for each point of the T - X diagram permits calculation

of the complete wave evolution as a function of space and time,

. }

I
at, . |41

i T

’ R IS Y A ——

¢

| ____1

| o
FIGURE VI-3

BASIC PRINCIPLE OF THE METHOD OF CHARACTERISTICS

Vi-13




o e —————————— T

et L TG DS 2 P e s -« |

e ey o s e o

The calculation of G is tedious but not difficult, The friction

2
term c—:z— (—-g-—) is often small and can usually be neglected

near breaking inception. But, it becomes important when the wave
reaches the shoreline and is essential for the run-up on a dry bed.

On the other hand, the curvature term, while being important near
breaking inception, becomes negligible for the run-up on a dry bed.

Both of these terms must be compared quantitatively with (-S).

4 |
a1

FIGURE VI-4
CALCULATION OF CURVATURE TERM

The calculation of the curvature term is complex. Moreover, it is
effectively negligible when the slope is greater than 1/10, It can be

evaluated from the knowledge of U and C at six points on the T-X

Vi-14
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diagram (see Fig. VI-3A) by the formuls:

»3 ] | 2 2 . 2 2
e - Cs -
—b-)‘(%%-_l),- AXTAT [U| Ci =~ 2UpCs + U3Cs - UqsCy

+2U,CF - UCq ]

The evaluation of these points generally requires a great amount
of interpolation; hence, despite the fact that it is theoretically
possible and despite its importance, it may be theoretically unrealis-
tic to take this term into account even on a gentie slope, unless the
calculations are done by a computer.

These considerations again demonstrate the importance of
the study presented in the previous ap;;endix on saturated and non-
saturated breakers, Since we know from these computations that a
nonsaturated breaker remains roughly symmetrical in shape and
follows the breaking index curve, a great number of computations are
saved by taking the input on a slope of 0.01 as has already been

pointed out.

14

4, THE INPUT DEFINITION AND WAVE "LIMITS"

As already pointed out, the maximum possible wave run-up can
sbe determined when the input is defined by a limit solitary wave
@here the slope tends to become steeper, According to the classical

solitary wave theory (see Munk (1949)) C and U can be obtained

respactively from the following equations
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(VI-15)
1
u = vV 2L and V = [9(d+H)]7
from which U and C attime T = 0 can easily be determined.

However, it is recalled that u as given by this expression is an

approximate velocity. It is more exact to define an input by the

1’
average velocity ulx) = 3 l = j-d u(x,z) dz
where
I.+cosM-5- coshM-E )
u(x,z) = N - and N and M are given by
(cos M % + cosh M 7)

N« £ sin [M (|+% l;-)] ana 4. N tant [M ('*%)]

Possible input definitions expressed as a function of X at
T = 0 are represented in Fig, VI-5, They are limit solitary waves
over a horizontal bottom. They are supposed to represent
spilling breakers over a very gentle slope, reaching a steeper slope.
They must be expressed by dimensionless parameters U and C

as functions of X and T.
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It is known that the solitary wave has no theoretical horizontal
limits. However, in practice U 2 0and C is very close to
unity over a length of X = 10, The friction and curvature terms also
tend to zero. Hence this can be considered as defining the limit of
the wave., The location of the complete limits of the wave in the
T-X diagram and the corresponding value for C can be calculated

by exact integration in the case where S is a constant,

Atthe limit —3— = -y—f—p = —— because U= 0.

1/2
o ar_ _ S ("1 )
ence, —yo— = < = \—q because: c¢=./gd
m=20
i.e.
dT ( 4 Ve
- ) . 1
X d, - 5% [ -sx] Y4

For example, in the first case presented in Fig. VI-4, the shoreward

limit is defined by the equation:

 [—9X __ .2 || _(-sx“
T f(l-SX)Vz 3 [u { SX)Z] (VI-17)

since X =0 for T=0., The seaward limit is defined by the following

two functions: (1) on the horizontal bed (X < 0)
' d /2
%{--CL=(-3"—) 1, T=L+X (VI-18)

L being the ''"wave length" (L = 10)

vi-18
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(2) on the slope, it is easily seen that
T=L+§ [l - (1 -sx)”"] (VI-19)

. a \ 1/2

Along these limits, U = 0 and C = (?T) = {1 - SX) {(V1-20)

A number of calculations can be eliminated by considering that
the siope does not have any influence on the wave motion as long
as the characteristic U - C (of slope U—}—-c- = —_-é— = 1)
coining from the point X =0, T =0 does not cross a characteristic
U + C. Hence, the input can be taken along this characteristic
(U - C) (line AB onFig., VI-5)) by a simple projection of the values
of U and C from AD to AB. Even projecting them to AE will
introduce only a very small error because the effect of the slope on
the wave motion remains small as long as the wave elements do not

encroach on the slope,

FIGURE VI-6
WAVE LIMITS AND INPUT DEFINITION
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FIGURE VI-7
BORE INCEPTION

5. BORE INCEPTION AND CALCULATIONS

Now the very important phenomenon of the bore inception is
analyzed,

When the two characteristics (U + C) cross each other {(point 4 on
Fig. VI-7)), then two sets of values for U and C are obtained at

point 4, namely U_, C‘1 » Uy

and C from the equations:
4 Y4 d

4 4

Uu+ ZCu U1+ZC1+GAT1-4
(VI-21)
L Uu~ ZCu-- U3- ZC3+ GA '1‘3_4
and
U,+2C,= U, +2C,+GAT
d d 2 2 2-4
(V1-22)
Ud' ZCd= U3-ZC3+GA T3-4
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Physically this means that the wave profile is vertical at that
polnt. . There is bore inception U, and C, characterising the value
of U and C just in front of the bore and U and C‘l just at the top
of the front of the bore.

Then there is a discontinuity in the T-X diagram., The classical

method no longer applies along a line which crosses the line W = -%.’r‘-

W = w/ V_g-c_l-{. w being the speed of the bore).

Before studying the bore equations, some further considerations
on the bore inception must be given.

It can easily be seen that all the (U + C) characteristics on the
front side of the wave converge, while all characteristics on the back
side of the wave diverge., Hence the bore inception on the T-X diagram
depends upon the chosen interval A X for the inpvt definition.
The smaller the interval, the sooner the bore appears, ln fact, since
input is a limit solitary wave, it is normal that the bore begins as soon
as the effect of the slope is felt, i.e. at the intersection of the
characteristics (U - C) coming from T =0, X = 0, But the loss
of energy due to a small spilling breaker near the crest is negligible
as long as the initial interval A X for two characteristics (U + C)
is small.

Along a line crossing the W line, the momentum and continuity

equations are those of a shock wave, i, e. from elementary hydraulics.

(See Fig. V1-8).
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FIGURE Vl1-8
BORE NOTATION

2 2
(d+ 7) (d+7)
PE T_u. - PE _—z—i = P(d+ ﬂ)d(ud- uu) (w- ud)

uu(‘”l",)u Vv [(d+")u - (d+”)d ] + ud(d""")d (VI-24)
i. e. after inserting the dimensionless notation Uu » Ud ’ (.‘,u » Cd » W
ct-cyt = 2cf(w SATURLA (V1-25)

cZ

2 2 .2
v,c’-v,c =w(c’-c,) (V1-26)

from which it is found that the dimensionleas velocity of the bore W is:
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c, | ¢2+cy 12
Wyt | e 4 (vi-27)
d

Thena W line from the bore inception must be drawn in the T-X
diagram with a slope such as _%'Jf‘_ = W. It must be noted. that
this line is between the line of slope Uu + Cu and U d + C d

(see Fig. VI-9). But W alsc varies as a functionof X . Hence it

must be computed step by step
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First it must be noted that U anc? C can always be calculated
by the classical process on the low side of the bore, i.e. in front
of the bore because W is always greater than (U + C) on that side (see
Fig. VI-10). But point (3) of Fig. VI-10, calculated from points
(1) and (2), does not necessarily coincide with any point of the W line,
Hence U d and C d just in front of the bore must be determined either
by interpolation between (2) and (3) along the line (Uz - Cz)_ (see Fig.
VI-11) or by extrapolation from (2) to (3) along a line (IJ3 - C3)
(see Fig. VI-12).

This work is greatly simplified when the W line crosses the
"limit'' of the wave (defined by Eq. {V1-17) because then the bore

travels on still water with

1/2 1/2
Cy = (-3—) = (1-5X) (V1-28)

Now three other unknowns remain: namely Uu , Cu » and the
W values for the following step. Hence three equations are necessary.
These three equations are given by the continuity and momentum
for the bore and have been already expressed in (VI-25) and (VI-26).

Another equation is given from the classical relationship

d (U+ 2C) = GdT
applied along the (U + Cyo) lijne on the high side of the bore and
which crosses the W line at the point to be determined. (See Fig.
Vi-13), |
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FIGURE VI-13
ON THE HIGH SIDE OF THE BORE

For this purpose the determination of the values Uo and C0 of
point (0) can be done theoretically on the (Ul - Cl) line by inter-
polating the U and C values between (1) and (2). Then

+GAaT, (V1-29)

(Uu+ zcu)3 = Uj+2C,

In practice points (0) and (1) are so close to each other that the values

for Uo and Co can sometimes be taken as U‘1 and C“ .

1 1

Then Eq. (VI-29) is replaced by:

(Uu+ zc“)3 = (Uu+ zc“)l + G AT, , (V1-30)
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Now U _, C“ and W can be determined from Eqs. (V1-25), (V1-26),

u
and (V1-29) or (V1-30).
. The solution of this system is given by the following set of equations:
. 4
X -} +2Y = K (V1-31)
2Y I 1+Y l ]

where

c\l
Y =
T
. - (Up* 2Cy) - U +GA Ty, (V1-32)
T
d
Up#2C, & (U, +2C ) o) pesore (VI-33)

The function K = £f(Y) has been drawn for a range of possible values

for Y. Then Y is determined graphically from the enclosed curve

Fig. V1-14, If Eq. (VI-31) is mathematically solved, then six values
for Y can be found, but only one has a physical significance. This
Cc
value can easily be known since Y = —i—— always varies slowly along
d
the W line.

When C‘l is calculated, then U u is easily obtained from
Eq. (VI-30). Then W can be calculated for the foilowing interval by
formula (VI-27).
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of interesting studies of & mathematical nature: Whitham (1958), Keller,
ot. al. (1960), Ho and Meyer (1962). The following calcnhﬂoal are .
developed from a different approach but give similar results, A
careful comparison of these various studies has not been considered as
being within the scope of this study because of the rather academic
nature of the research, It will be seen in the following section that
for pnct;cd. purposes the bottom friction forces completely change
the results presented in this section.

. Consider the bore formula:

- < (V1-34)

It is seen that C a 0 near the shoreline, and at the same time

d(Cy . da [ vT—Bx%]
X aX

Hence the variations of Wl and also U, and C,, must be expected

-— - 00

to be very large near the shoreline. The step-by-step process. of
calculation based on the assumption of slow variations is no longer
- valid 2w the shoreline is approached,
From formula (VI-34), it is seen that when C, = 0, W can
have m value depending upon the value for C . In ﬁct, ithas m "
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found by Freeman that W can never excesd U + C . Indeed the
wave elements which yield up their energy to the bore arriveat s
speed U + C., The dissipation of energy due to the bore causes

C, to decrease in such a way that the speed of .the bore W also
decreases to a value U + Cu " after which more energy is provided
from behind the bore. Hence the Freeman limit W < Uu + C“
shows that W is finite if Uu and C‘1 are finite. It can easily be

seen from characteristic equation along any characteristic

(Uu+ ) = (u+2c) + GA T = Cst (VI-35)

that Uu and Cn can never be infinity, (They are both positive).
Moreover, consider the relationship (VI-34) in which W

is finite and C a=— 0. It is seen that this can be achieved only if

both Cu — 0 and tj“— — 00 . Hence cd must be an infiniteaimal

of higher order than C_ . The Eq. (VI-35) becomes, at the shoreline:

Uu = US = U+2C + GAT (VI-36)

This means that the bore (or shock wave) disappears at the
shoreline and that the potential energy (function of Cu ) is suddenly
completely transformed into kinetic energy (function of U"1 ). More-

over, by continuity it must be expected that

W - U (Vi-37)

which is in agreement with the Freeman limit. It is seen also that the

Freeman limit is reached only at the shoreline where
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We—U+C = U =0,

Hence at the shoreline the characteristic equation can be written:

a(u,+2c) = -8ar = - Eﬁ‘-’i (V1-38)
: u
orY
U, 4 (U,+2C,) + d(Cdz) =0 (VI-39)
U c
Letting @ = —puo and B = —w— Eqs. (VI-34
‘ T T, B (V34
and (VI-37) give:
W .4 = B[l+ﬁz]”z
C: 2 (VI-40)

Dividing (VI1-38) by C:dz , inserting @ and B , and the value for a
given by (VI-40), then expressing a as a functionof B and Cd

as a function of S and X , it is found that:

sz ] [, (122)2 , ,

p[-l-lzez]llz [(-‘-#)1124-1]-2 T-

B is always larger than unity (and even tends to infinity) hence, the

denominator of the left hand term is positive., Hence Eq. (VI-41)

dB -
implies that B - 0 , since B = T“_ already tends

d
to infinity for W to be finite, d 8 must also tend to infinity but at

C C
a higher rate. Consequently, since -%rg- ~ - 0, then %—‘-‘l

also - - 0 but ata much greater rate,

Moreover, from the characteristic Eq., (VI-38), it is seen that

c v | aw
nlnce-g&-‘-‘l- -—m.ﬁa*‘l-.q.'w + Accordingly 3o — 4+ ® °
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To sum up these results, near the shoreline if the bottom

friction forces are neglected:

d(Ud)
Ug = 0 —3Ix— =0
d(Cd)
Cg—~0 —3x— — - ®
d(C)
C,— 0 —ax— "~ ®
Cll
c diz—
u d
T, T 9% - o
d (U )
W —U_: finite —g’——- - g o

The bore disappears at the shoreline and is replaced by a
"rarefaction wave'' which appears as an edge of water climbing over
a dry bed,

Uu at the shoreline (called U' in the following) can then be
approximated very simply. Since it is known that Cu at the shore-
line tends to zero and that -%’T(- = W = Uu + Cu' Us can be given by:

- " GAT - .
U, = (U, +2C)+GAT (VI-42)

In practice the values Uu and C“ can be taken from the step prior
to the quick variations of W, Uu and Cu' For example, the point
could be chosen where —g;’— = 0. In practice, also, the rate of
variation which follows is so quick that if G A T is taken to be

-S A T, it is found to be negligible in Eq. (VI-42) and this equation

may be taken quite simply as U' = Uu + ZCu. This equation
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explains the sudden increase of water velocity near the shoreline

when the shock wave or bore disappears.

1. THE WAVE RUN-UP CALCULATION ON A DRY BED

At the extreme edge of water C = 0 , because n = -d.

Hence, the characteristic equations is simply:

dU = GdT along g = U (VI-43)

2
Hence d (—g—-) = -8 dX and neglecting the friction forces:
2 U

2
Pz_ = -3 - S(X-X) (VI-44)

where X is the shoreline coordinate.
The vertical run-up can be calculated directly in the case

where it is the first wave element which has the most energy

2 2
R = - _8 - Us
B (R %) S - g vi-ts

However, the following wave elements usually overtake the first

‘one, 80 increasing the run-up and generating a "'roll-wave." The

exact calculation of the run-up is then difficult hecause at the front
of the wave: U + C = U - C ., This difficulty is automatically
solved if the friction forces are taken into account as follows;

It is seen that if at the front of the wave C —= 0 , the friction
term f (—g—)z tends to infinity., Hence the edge of water is
cut short and the leading front appears as an almost vertical wall
of water which has the physical appearance of a bore. Then, the

basic equation for the leading wave element is:
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2
d(U+2C) = = [s+f(§) ] Tre (VI-46)

For reason of similitude, there exists between U and C a
lineear relationship: U = A C. The value of A depends upon the
friction coefficient. This value can be determined by anology with
a boundary layer problem. If, more simply, one assumes that at
the front of the wave all particles have the same velocity u , the
convective inertia is zero. Also, the local inertia p _%!'_ is
negligible by comparison with the pressure gradient and friction
term. Hence by equating pressure, gravity, to bottom friction

forces, it gives Fig. VI-15,

(d+n) [—“-‘3—';—11 - S] --fg w? = 0 (V1-47)

FIGURE VI-15
WAVE FRONT ON A DRY BED
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Also, the slope S is small., Hence, by integrating Eq. (VI-47)

(d+n)? = -5:- (= - ) u?

X, being the coordinate at the extreme front of water. It is seen
that the front of water is in the form of a parabola.

Also, for reason of similitude, the length of the front of water

( Xy, = % ), is proportional to uz such as ( X = X, ) = Buz.

2¢BU? and A = (2£B)}/4

Hence C4
An adaptation from a work of Keulegan (1949) gives A = 1/2,

Whatever the value for A , Eq. (V1-45) can be written

a (u? i
u+aya+2a) 5 (%) + 7 +8) =0 (VI-48)

which gives for U:

2
vl U

f X-X,
._z_=_z.-[s+z-z] HEFVIAERTY] (V1-49)
The leading front characteristic is determined graphically step by
step, by the intersection of the curve -g.rx— = U where Uis
given by the Eq. (VI-49) and the (U + C) characteristics catching
up the leading front, The value of U at the intersection is

determined along this characteristic (U + C) from the equation:

(Uo+ zco) = (1+42A)U + GAT (V1-50)

The wave front becomes increasingly insensitive to the fsllowing
wave elements. The maximum run-up is found when %’.{.— - 0,

for all characteristics ( U + C),
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Now the problem of the bore near the shoreline with bottom
friction can be solved. It has been seen that when C, —- 0,

d
dc
C, = 0. W — U, and —df—"“‘ o - In fact such limits

u
are unrealistic because they are obtained by neglecting the bottom
friction, which is never negligible near the shoreline. Hence, in
practice the theoretical curves shown in Fig. VI-16 should be

replaced by more factual curves. These factual curves are obtained
by considering the relationship which exists between U and C

at the front of the run-up on a dry bed. This relationship has been

previously established and depends upon the friction coefficient f,

Hence, as soon as the relationship Uu o ACu is verified, the motion

must be considéred as a motion on a dry bed. The bore theory is
no lor;ger valid.

| Us THEORETICAL

BREAKING INCEPTION

Cs THEORETICA!

e NO BOTTOM FRICTION
——— WITH BOTTOM FRICTION

FIGURE VI-16
BORE CHARACTERISTICS

V1-36



S,

8. APPLICATION

The method described in the previous section has been partly
applied by R. 8. Grewal over a beach of constant 1/10 slope, corres-
ponding to one of the highest beach slopes. Since it was the purpose of
this study to find a method of computation for the run-up, such a
steep slope was chosen because it permitted investigation of all the
various theoretical aspects of the problem with less calculation than
a more gentle slope. Also, since the path curvature is very tedious
to calculate and does not present any theoretical difficulties, it can
justifiably be neglected for a slope of 1/10. The bottom friction term
is also negligible except near the shoreline,

For sufficient accuracy, at least four characteristic numbers
are necessary to perform the calculations because errors accumulate
rapidly,

The input definition has been calculated as indicated in section 4.
The results are presented in Table Vi-1for 0 > X > 5 ., Theyare
symmetrical around X = -5 for -5 > X > -10 .

TABLE VI-1
INPUT DEFINITIONS

X 0 -0.5 -1.0 -1.5 -2.0 ~-2.5
uU. 0.0133 0. 0227 0.0360 .0.0633 0.0864 0.1191

C 1.000 1.000 1.000 1.005 1.015 1.029
X -30 -3.5 ~-4.0 -4.5 -5.0

U 0.1801 0.2598 0.3535 0.4771 0.6032
C 1.063 1.118 1.204 1.300 1.334
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The corresponding results are presented in Fig. VI-17. Fig, VI-18
is an enlarged portion of Fig. VI-17 near the shoreline. Fig. VI-19
represents the successive wave profiles obtained froin Fig. VI-17
and VI-18,

Because such results have a definite value, the values of W ,
U and C for all the points are given in Tables VI-2 and VI-3 and
Figures VI-20 and VI-21 give the values of Ud . Cd , Uu , Cu ,
W and 7 as functions of X and T respectively.

Now ti:e run-up can be calculated from the following set of
equations. Since G A T is small, U_ and C_ at the shoreline are
obtained from

u +2¢, =10, + ZCu
Taking the last obtained values for Uu and Cu at X - 9,52

(the shoreline is at X = 10 ), one obtains:

Uu + 2¢C
8

s 1,223 + 2 (.635) = 2,493

And from the relationship U, A Cs where A is arbitrarily chosen
as 0.34 for example, it is found that U_ = 1.568, and Cs = 0. 466.

The application of the method presented in section 7 has not been
performed quantitatively because it was beyond the scope of the present
project. The Fig. VI-22 gives a qualitative aspect of the characteristic
method over a dry bed. Some quick calculations seem to show that

% = 2,82. In fact the final result dependes upon the value for A.
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APPLICATION OF THE METHOD OF CHARACTERISTICS OVER A 1/10 BOTTOM SLOPE

FIGURE VI-17
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Uy THEORETICAL :
(NG BOTTOM FRICTION)

po—reoeeaee SPILLING BREAKER ————fw— FULLY DEVELOPED BORE (RAREFACTION WAVE)~——ani

2.0

Uy ¢Cy
—

f
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(WITH BOTTOM FRICTION)

\

LT

-2-0_-_/
o \
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\
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o 3 4 [} [ ] 10

C, THEORETICAL:
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FIGURE VI-20
BORE CHARACTERISTICS VERSUS DISTANCE
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It sesms that the value for A is bctwun‘ the value proposed
by Keulegan, namely A = 0.5, and the value chosen in this example,
A = 0,34

9. CONCLUSION

A theoretical method has been developed for computing the wave

run-up. The various steps of computation have been described,

" namely:

a. Input definition for possible maximum run-up

b. Wave deformation on a slope

c. Wave breaking inception

d. Bore traveling within the "limits" of the wave (U, # 0).

e. Bore traveling outside the "'limits'' of the wave (Uugy = 0.

f. Bore reaching the shoreline without bottom friction

g Bore reaching the shoreline with bottom friction

h. The run-up on a dry bed with bottom friction, including
the determination of the shape and height of the wave {ront,

It can therefore be said that a great step forward has been made
in a field which, despite its importance, has had a relatively small
number of theoretical studies. Most previous studies on wave run-up
have been mainly limited to experimental studies on rather steep slopes
in laboratories. Previous theoretical studies on the climb of a bore
on a beach mainly covered topics ¢ and f above. Practical considera-
tions have shown that the béttom friction modified the theoretical

results obtained in{ .
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Despite the present achievements, the problem deserves further
investigation and refinement. A computer program has to be developed
for analyzing rapidly and accurately the cases of waves traveling on
various slopes. The friction coefficients can be determined by
correlating the present theories with some experimental results.

Then other cases can be investigated rapidly.

Finally the theory of run-up on a dry bed can be refined by
further analytical and experimental investigation,

Among other topies to be investigated prior to writing the
computer program is the choice of interval and characteristic numbers
as a function of the error. Also a numerical method can be work out
to calculate U ‘and C for given values of X and T defining a fixed
rectangular net as it has been proposed by Stoker for flood routing.
This process will permit the path curvature term to be taken into

account more easily,
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LIST OF SYMBOLS
APPENDIX VI
Horizontal coordinate positive towards the shoreline

Vertical coordinate positive upwards (Mid-water level
z = 0)

Time
Depth (bottom: z = -d)

Vertical distance from the free surface to the mid-water
level.

Horizontal water velocity

Vertical water velocity

Naicsan)

Gravity acceleration

Chezy coefficient

Friction coefficient = C-sz—

h
2 2 2 3 2
oo (S et

Bottom slope
Jgd 1

Depth at the origin

_ax___ : Dimensionless horizontal distance

1

Ve

e A Dimensionless time
1

x%;—.- : Dimensionless horizontal velocity
1

7Ef : Dimensionless velocity for wave elements
1
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Sub
Sub

Sub
Sub,

o

"

ol o

g G, : Dimensionless co:recting term for characteristics

Wave height of a solitary wave

Solitary wave velocity ( /g (d+ H) )
Related to the high side of the bore

Related to the low side of the bore

Related to the shoreline
Related to the front of the wave

Bore velocity

w

"3

Cu

cd
(UO+ZC)-Ud+GAT
(o]

: Dimensionless bore velocity

d

Vertical Run-up

—31-:— : Dimensionless vertical run-up

Coefficient g- for the wave front

Coefficient characterizing the length of the wave front.
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1. INTRODUCTION

The analysis of two-dimensional waves in an estuary has re-

sulted in two studies:

a. The nonlinear motion of a single finite wave. This has

yielded some new developments in wave analysis.

b. The presentation of a finite difference scheme, suit-
able for numerical machine computation, that allows
for evaluation of two-dimensional wave motion by the
method of wave derivatives. Although other approaches
may exist, this was selected as the best and most
economical computation method for the wave problem

at hand.

2. NONLINEAR MOTION OF A THIN WAVE THROUGH A BAY

A moving wave is not a general two-dimensional disturbance
over a 40 mile square. Indeed, even a wave with a period of a
hundred seconds influences only about a mile and most indications
are that the wave passes over an area in a finite tirne and leaves
the given area relatively undisturbed after passage., This implies
that the wave is a relatively thin long disturbance moving through
a bay that is certainly undisturbed ahead of it and probably undis-
turbed behind it. Thus, a solitary wave may be regarded as a

disturbance influencing only a narrow strip at any given time.
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We write the squations of motion in shallow water in the following

form:

Busu Rusy %e-+2c Rea2¢, gt

é—— -b_! LS _LCQ_ |
bt bx+" >y +2¢ by 2¢C, 5y E (VII-1)

2 (g5 +uls+v g%)+c(g% + %EYL)

In order to discuss the problem of leaving the fluid undisturbed, we

consider a one-dimensional problem.

é—4-u§— +2c-b— 2c

obx X
by, (VI1-2)
2(%%4'0%)4'(:“ 0
TI >C
This give us gjyd_'Z_CL 2Co -S-"L-E, along -g—"‘=u+c

which is the way we follow the wave

d(U;ZC) -+2C°%£‘E along %1:-=u-c

The wave moves along the x axis with a speed of the order of c so
that _%xi___ = u - ¢ moves through the wave with a speed of the order

of -2c. Thix means that the line —%—:‘—- = u - ¢ s almost parallel
d{u - 2¢) dt d(u - 2c)

to the x axis and we can consider T il I
d( u-2¢) _ Co dCo
1f we neglect friction, .7 * S e 5% Since
Co ~—) and dx = dx = {u - ¢ ) is almost
u-c¢c dt dt

parallel to t = zero,

d (u- 2¢) = dfu -2¢) d(-2 Co)
dx d X ® X
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This teils us that a good approximation is
(u-2c) (x, t) = -2 Co (x).

This approximation includes as a result that the water is

undisturbed after the last characteristic -—-gti— = u+c passes
a point, Note that this says u-¢ = Co - —"21—- so that Co m
-Co - —3—

u
~-1 + o Tor- N

The thin wave and the ohserved fact that most of the motion and
wave height changes occur along a normal to the wave sngaests the
dcsirability of a system in which a normal to the wave is used as a
coordinate system and in which the largest fluid motions are parallel

du o7 dc

to the wave 8o that vy 5y 5y v DY can be considered

to the first order only, u and c will be considered to higher order.
Since changes in the y-direction in the ordinary flow would

move through the wave much faster than along it (See l"ig. 'l-1)

it is assumed that the chief contribution to v would be the tnrning

of the wave front as you move parallel to it,
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FIGURE VII-1
BASIC PRINCIPLE OF CALCULATION

If the wave travels from A to B, a disturbance at A could
have only affected the wave in the shaded area and that only while the
wave travels to C . The shaded area is determined completely
by condition between D and B in the time it takes to travel from

D to B . These considerations lead to the approximation that

viy-yg) = uly -y)) 8(y -y,
or (u sin(8-6) in extreme cases).
The term ¢ g-yt in Eq. VII-1 can then be written ¢ %(ue) .
We will ultimately find that W (the speed of a forward advancing
bore) will control our wave and that .
%gtg;—’ A AR ALNTNTIN

which we will show later,
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This leaves us with the following equation for the motion of a
wave with a leading bore moving through a shallow bay in a coordinate
system with x normal to the wave,

>y g£+ %—c :pc 26 _k;;%ulul
AR TREAE TN ;

235 +uBE 4+ vEE) + o R+ ¢ - ()0

%g, g!t'v N (ub'cb°cob) H C“l Co(xboybo'b)

X, +¥Ypt, are coordinates of a leading bore.
This give us

(u+2c) 2c,: -c-—( - ulul

along €& - 3¢

n.ln.
-y
]

We are also given as an approximation that

u-2c=-2c¢,

or
us= Z(C-CQ)
So we have -4
kg® (c-cp) |e-c,|
ai(4c 2¢,)=2¢c, 5—’ cs—Z(c-co)B 4 3
along ¢
9. 3c-2,

This can be written

3c-2 /3 (p- -
d (36 2¢0) s(_%_“%o)%?_%g__g_(c_%)e_ 3kg™3 (c-co)fe-gg]

dt c 273

oy
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along %:— s 3¢ ~2¢ Note that:

3c-2¢o) + 2 3c~-2co) -
o 26 ;o)‘ € gnd c-cos (3¢ ;o)co

are handy equations to use with this differential expression,

We can rewrite this expression setting ¢* 3¢ —-2c, so that

L "%"C +4c, ® —%—c—'io-c°+4c°--%_c+%co

2. cCs= -%- +¢,
3 (c-co) |c—c°|-(
4

3 c+2¢o
c ( 3

€—Co )2
3

/3
)

The resulting statement of the problem is as follows:

¢
de . 5 3 do (2 7%) » _
Tt Fe) 5 3 By 6 (c-c)
_ kg3 (€-co) |€~Co]
3 € t+2¢q ,2/3
(—5)
along dx
at ¢

It is obvious from the structure of this set of equations that if
a system in which we havé large values of € following on smaller
values, that the larger values will overtake the smaller and a jump
{or a'bore) will form. Thus we are most interested in the wave with
a leading bore.

We calculate the conditions at and the speed of this bore with
the equations of conservation of mass and of momentum., Consider

the bore as stationary with the fluid moving through it at speed -V,

VIil-6
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FIGURE VII-2
BORE NOTATION

Continuity of mass tells us -V db =(-V+u) (db+ 1’5)'

From our previonsly given equations, we find

Vci- [-v+2(c-c.)] 2 V= %::(_c_-!_c_,l = -a-c-z-z

c® -co) c+cS
vict-c?) =2 ¢? (c-cy)

2
or the speed of the bore V = %&E—-
(]

We express this in terms of ¢:

c=-§-+-§-c, ; C+cy = % + % Co
(VIil-3)
2(§ §°) _§_(¢+2c)2

*0'3C 500

It is inherent in the physics of the problemthat ¢ -V 20 , If
c—-VvVs0 or nearly so and there is an indication ¢, changes so

that 13%! <0 then we must adjust ¢ so that die-VEO.

(This usually occurs with decreasing €o .) From Eq. (VII-3),

€, > W exceptfor cC,* c,. There is a following value

of ec<g, for which we can 3ay ¢=V. This valueof ¢ will

Vii-7



be moving at the same speed as the bore and the values between it
and the bore will be trapped unless the bore slows down.

Over a large part of the course of a wave, you might expect

¢ ®¢g . We write: ‘ .
2 -
2 [ e +5¢cc 4cq —CC
v g[S+ ]
. 2 2 4c,-¢
V= 3¢+ 3 % —J-—-—‘+5c°

and get as an approximation:

; V”%""%%

We are now in a position to compute the wave and the bore.

¢
de 5 d 3 dc, T %
kg™¥3  (e—co) le=c,l

3 (c+§& )2/3

In order to speed up computation, we now make two assumptions.

One is that we can recognize when ( €—-C, ) is negative or positive

so that we can simplify the last term in the equation; the other and

less justified assumption is that ( € —¢, ) has a weak dependenceon y

so that the second term can be written .

S .28 _ (¢=co)® 8
d' . > >
We now set a ) + (¢ —co) >
: ‘ '
and we have de 1 deg 3 d o +

dat - 4 dt 2 " dt

i
2

3

2/3 .y
Cof{€-Co) 28 (:-:5,)2 58 ., 2(3) kg
6 oy - [Sy + (c+2c,)2/3 ]

vii-8



be moving at the same speed as the bore and the values between it
and the bore will be trapped unless the bore slows down,

Over a large part of the course of a wave, you might expect

¢ ®g . We write: | 2+5cc 4c2_cc

v [+ ]

vV = 2 2 4cg-c

3¢t TC ¢+5¢,

and get as an approximation:

2
ve Se+-4c
We are now in a position to compute the wave and the bore.

¢
de 5 dcg 3 ¥  TT% »

WT-T——M +5¢ ™ 3 o 6 (e-c,)
kg3 {e—co) le—col
3 (c+32& )213

In order to speed up computation, we now make two assumptions.
One is that we can recognize when ( ¢—~C, ) is negative or positive
so that we can simplify the last term in the equation; the other and
less justified assumption is that ( € —Cy ) has a weak dependence on y

8o that the second term can be written

S .38 _ (e=c)® »8
s (e-¢co) By 6 by

We now set

and we have de | dcq 3 d'ec +

Cole-Co) 58 _ (€—co)? [_b_e_ 2(3)2,3kq"’3
6 ¥ dY * (c+2¢y)?/?

viI-8



Also we recall:
. 2 2 4cop — €

Thus we can see that the total computation can be done in terms of

¢ ,C and %e .

Thus a set of nomograms is indicated. These should give:

a. e¢-c,

b, Sle-gl
3

(c-c‘,)2

6

i -4
3
d 2(3)" kg

(e + 2¢,)
4c,-¢

(. %8
vy

Some of these quantities should be expressed as numbers and
others should be shown as the distance traveled in a time increment,

The nomogram used for computation is included in Fig. VII-1.
A sample approximate computalion for Chesapeake Bay is included

in Fig. VII-2.

3. USE OF THE NOMOGRAM

This nomogram is designed to compute the travel of a wave at
speed c on the Coast and Geodetic chart No. C & GS 70-A for

Chesapeake Bay near Norfolk. The travel is for 500 seconds. The

Vii-9
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value of .C ° is indicated by the depth f! on the chart and it is
assumed that values of ¢ are written on the chart., The wave
front traveling at speed V is the basis of Fig, VII-2, This is
very much like a wave refraction diagram.

The use of this theory and nomogram should yield interesting
results on two dimensional wave travel. The next section gives a

more general development.
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LINE CROSSES THIO

TRAVEL FOR 300 SECONDS

\\I’N SPEED MOICATED BY Cq

-/
-

Line.

-
b

——

e

pd 4
10 4
p Y %~ ™ fR
P
(1] = el / ‘/ ‘/
— ¢ d P (1) /‘R
3 / // : ]
° 80 4
3 ( so [y -4
e § -0 7 41 L !
A |
20 -s 40 T
¥, .ol | -+ -8
“] -;/4 ~ ! J /‘
© 1 0 T H 4.8
82 4 -x p/ / ] | I
W] A - f —

7 A e
¥ !_.__—-———-:] | : ! 40 30 20 ° (]
$ ;.3‘::___\!_7 | ! 1 | -AC W 500 SECONDS
0 lo —/ }0 | : : : : MATCH A:'CI 70 CURVATURE

\ | } : i 1 : : WAVES
« ¢ ~ 4
* ° ?uoi i zS; soi .0 E 80 co:’ 70 €,
240 8 3 Y e .

To find (-A €) enter nomogram with € and Co

1) Follow solid line to intercept on axis 96/ dy = 0.
2) Follow dashed line to find slope.
3) Draw line in (-AC, 86/8y ) plane.
4) Match arcs to find 99/ 3y.
5) Read (-AC}.
FIGURE VII-3
NOMOGRAPH FOR TWO-DIMENSIONAL NONLINEAR LONG WAVES
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FIGURE VII-4

vii-12

LEADING EDGE OF THE BORE POSITIONS EVERY 333 SECONDS IN

THE LOWER CHESAPEAKE BAY
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4. A NUMERICAL PROCEDURE FOR OBTAINING AN APPROXIMATE
SOLUTION FOR THE TWO-DIMENSIONAL TIME WATER WAVE
PROBLEM

The following is an approximate method f;n- following the progress
of a solitary wave through an estuary or bay. The method suggested
is a slight modification of ' The Method of Wave Derivatives,' proposed
by Frelema.n and Baer (1957)* . The notation used here is very much
the same as that used in the above reference except that variable dqptﬁ
and friction effects are taken into account while Coriolis and wind effects
are ignored. The difference equations are stated in terms of a fixed
space grid, but only those portions of the grid .in which the effects
of a solitary wave will be noticeable are used in the computation,
The entire procedure is motivated by physical considerations and
the need to obtain reasonable results in a limited amount of time,
Consequently, the procedure is not presented with an appropriate
analysis of stability. We apologize in advance for the rather glaring
lack of mathematical rigor in this discuasion,

Let D be a bounded domain in the first quadrant of the x, y
plane. Let D"I be a domain contained in D such that the distance
from any point P in D* to the boundary of D is greater than some

fixed number o > 0.

* Freeman, John C., Jr. and Ledolph Baer, ''The Method of Wave
Derivatives.'" Transactions, American Geophysical Union,
Vol. 38, No. 4, August 1957, pp, 483-494,
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FIGURE VII-5

NOTATION FOR A NUMERICAL PROCEDURE

FOR NONLINEAR LONG WAVES

Let (xi. yj) be a square grid on the x, y plane of mesh width 8,

i, e. X, 8!
i,j=0,1,2,....
i 81

We are concerned with the system of partial differential

equations
4

g—$+ug-;! +v%¥+2c%§=g%%-

0 bv dv d¢c bd
<-b-¥ +vby+2c *95y - Ey
2 (28 +u8S + z"’)«rc(? b"

§

Vil-14
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where u and v are the x and y components of the fluid velocity,
d{x, y) is the depih of the basin represented by the domain D from

a given reference level (e.g. ses level), c is the wave velocity, i.e.

c =,/37; (V11-5)

where

h{ x!yO') ® d(X,Y) +" ( X,y,')

7 (x, y, t) being the displacement of the free surface relative to
the reference level., The quantities E: and E, are, respectively,
the x and y components of the internal friction forces per unit

mass, These are assumed to be of the forms

E. = — '
X ce/3 (VII-6)
kg3 v/ v+ v2
Ey* o273

The values u(x,y,0), v(x,y,0), d(x,y) and (x,y,0) are
assumed to be known in D. The domain D or equivalently, the
quantity o , is to be determined so that the quantity h is bounded
away from zero. For example, if an upper bound

M= sw|nix,y]
(x,y)eD
O<$tsT
is known, then the domain D* could be determined by the requirement

*
that if (x, y) €« D , then

dix,y)—M>e>0,
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S T AR RS PN NS s )

where ¢ is some pre-assigned positive number,
By the methods of [1] , the system VII-1 may be replaced

by the system

D, A, D; A, dod
at ar T 29 5 2%y «
Ds Ay D4 As | od
a T a 9 3x ~2&¢ (vi-7)
LY D; As bd bg_
a T a 95—+ -2 (Ex+Ey)'
D, A De Ay
202, 4" bd _ b ,_
ar t g =2l o oy Z(Ex"'ey)' /
where
Dl b \
—d'—-' > +(u+c) — +(V+C)'s—"
D
-—z- = -——- ’
D - -] -}
=2 s 2 — - ,
D > ) d J
4 . 2 _ —-c) 2.
T s~ + (v c) > +(v+c) By '
and
A * u+t+v+2c, 1
Az=* u-v +2c,
q (VII-9)
- Ag®* u+v-2c,
- Ag® u—v-2¢, /
Dy
The operators 3t are called "wave derivatives'" and the

method is a generalization of the familiar method of characteristics

Vil-16
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for the one dimensional time dependent problem.
We will have uae for the following results obtained in Freeman

and Baer

A+ A)+(A+ A
u-(J_;a“( 2+ AY

R A,);(A2+ Ag

A+ A)-(As+ A)
= % '

2¢

- (Ag +4A;_) + (A|+ Az) ’4(A3+ A‘) , 3

A,

Azs (Aa+ AQ) + (A| + A2)~4(A3+ A‘) ,

2
(A| + As) (A|+ Az)— (A3+ A‘)
Ayr =3 - 3
. (Az+ A,) (A,"’ Az)-(A§+ AA)‘
A,: 2 3 ! J

We will replace the system (VII-8) by a system of difference
equations and will define subregions R(n At), n = 0, 1, ..., M,
MAt = T, of the domain D* in which our computations will take

place.
The region R(0) will be defined by our initial conditions which

will describe a solitary wave. We will assume that for points (x, y)
outside of or on the boundary of the region R(0),

ul(x,y,0) = v(x,y,0) = O

7(x,y,0)=0

Vii-17
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FIGURE VII-6
NOTATION FOR A NUMERICAL PROCEDURE
FOR NONLINEAR LONG WAVES

We define R(0) to be the set of all those points of our space grid
which are contained in R(0) . We define i( 0) to be all those
points of R{0) which are at a vertex of a square contained entirely

in R(0) . Analagous definitions will be assumed for other regions

in the x, y plane.

ViIi-18
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Let Pij ] (xi. yj) and let

V, (yv,c) s (u+c,v +c),

V, (y,v,¢) 2 {u+c,v-c),

) (VII-12)
Vyluve) = (u~c,v-c),
V, {u,v,c) = (u~c,v+¢c), ,
Also let
?1',‘; *ulx,,y,,0)
Vit vix,,y,,0), 1 (VII-13)

'7; * ’)(X..v,.o’.

for points (xi. yj) ¢ l’{(O). For all other points of the lattice in D*,
define all of these quantities to be equal to zero. Extend the values

”, ", 'ﬁu . to all points of the piecewise rectangular region
determined by I’{ (0) by linear interpolation. The extended functions
W x,y), Vo(x,y), ;'(x.y) will then be continuous on the piecewise

rectangular region determined by I{(O).

Define R(At) to be all those points of P, of b‘ which satisfy

ij
the requirements that the points
4 o ~re
Py = Py (U Ve 180 Lar. ..., 4, (VII-14)

are in the piecewise rectangular region determined by l’!' (0). Define
R* (A1) to be the set of all points of R (A1) which are at the

L]
vertex of a square contained entirely in D
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*
For those points P «R"(Af) we can solve the system of

difference equattons

Ayt A'au ["u 2E, ﬁl’ 'V '° ’] +A, (P H-'K e
Xéu*"\;u- ’[“u ~2E, (" 'V '¢ )] +‘K. (P )+'K:(P" )
' ' r~e fvg ~vo ~g Vo (V'II-IS)
A“,+A3” At [(a +B )= 2{E‘(u'-v“vcu)-i-Ey(u“fvun 5
}] +A (P, )+A3(P, b
Aa'”+ a4 ° = Ot [(a” B")"Z{E (u ,v »c) E("
}]’r 2 (P) )+'K, Py )
where
1 Ox
bd(P")
Bytes —
Apy =0y #vy + 28 (Vil-16)
>
AZU l V' +2CU 1]
e e e r~e
ASH= u"+v"—2c” '
Ay = Ul vy =25 )
and the quantities 'K;( P) are the continuous extensions of 7\‘;" to

the piecewise rectangular region determined by R0). The quantitics ’U;‘,

VY 'i;‘l" , and 'K"”,'K'm,'xw, i) MAY now be reapectively determined from

- Eqs. (VI1-10) and (V1l-11) and all of these can be extended by linear inter-

polation to functions W(P),V(P) 3 P), K (P), Ky (P), Ky (P), R (P)

]

continuous on lhe plecewise rectangular region determined by R"A1)

Vil-20
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The general algorithm for continuing our computations is now
obvious, but we will state it forr the nsake of completeness.

Assume that the quantities 7;':"........ 'K:“ have been

' "
found for points in the region R (kAt) and have been extended by

linear interpolation to the functions Ts",'l(P),. periaraans A:”(P) continuous

on the piecewise rectangular region determined by R‘(lAf) ,» For

points Pi of D* which are not in R"(kA1) , the values u" '14.,
are to be obtained by setting u” =V:‘, ~:; 20 . Define R((k+f)A ')

to be all those points Pij of D* which satisfy the requirements that

the points
P"l1= Py Vg (u”.v,l ,c,, YAt, L=],... 4, (VII-17)

2
are in the piecewise rectangular region determined by R(k At)
® .
Define R((IH-I) Af) to be the set of all those points of R((k+l) Af)
which are at a vertex of a square contained entirely in D*,

*
For those points Pij «R (k + 1)At) we can solve the system

of difference equations
k¥ ~k"" F ~R Aok ~k 2

PRI T I ) [ ~k Ak Ak

sk ~ R .
Tyr+ Ky = 01[ay -26,(8,. %, , c,,)]+A, (P,,*’) +%, (3,

A”, +Az A' B'l -2 {E (UU ' V“ ' C”)

+g, @,V T T} (eah + R (prY,

R4l b R

Kztf" 'K:;l * A'[(“u' B,,)-Z {Eu (G, "’u-?u)
~R oR

“Ey (U vy °u)}] +%; (P.‘}z) + K4 ‘Pﬁ"
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The quantities 'B:'J". P .A:rj' can now be determined

from Eq.(VII-10)and Eq. (V1I-11) and all of these can be extended
~Ar4) ~(k+1)
by linear interpolation to functions u (P} ,...,A, (P) continuous
5
on the piecewise rectangular region determined by R ((k+|) A ')
The algorithm is now completely defined and the computations are

iterated M times until the final time M Atz T ig obtained,

Vil-22
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LIST OF SYMBOLS

horizontal coordinates

particle velocity along the x-axis
Particle velocity along the y-axis
time variable

vg(d+7m)

gravity accelet;ation

water depth

free surface elevation around the still water level

d+7
JS&a
friction force component in the x direction
friction force component in the y direction

angle of a nearby u vector with the u vector
with which we are working

bore velocity

relative to the bore characteristics
friction cocfficient |
3c-2c¢,

preassigned positive number

wave derivatives operator

u ¥ v¥ 2c

integer

domain

*
subregion of domain D
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