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ABSTRACT

Different forms of correlated atomic wave func-

tions and their implications on the integrals occurring

in calculations of variational solution to Schrtdinger's

equation are brieflp discussed. A scheme for computing

the integral

is described and applied to the case • r4J



I. INTRODUCTION

In atomic and molecular theory several variational solu-

tions to the Schroadinger equation have been obtained for a vari-

ety of small system using trial wave functions of a varying degree

of copleaity. The different methods of calculating variational

solutions are comoonly classified according to the analytical form1)
of trial wave function used. The method of so-called correlated

wave functions, i.e. functions that depend explicit)y on the inter-

electronic distances rn & . j was first introduced by

2)
Ryllersas. The method has later been used in numerous applications

on small system, pre'dooinantly two-electron systems. One of the

1) P.O. Ldedin, Adv. Chm Phys. 2 , 207 (Interecience Publ. L

Prigoginegd. New York, 1959)

2) Z.A. Hylleraas, Z. Phys. 54 , 347 (1929)

merits of the method is that it gives good results and yet can

give wave functions in an attractively condensed form. It seems

to be fairly difficult, however, to generalize the method to

system with more than two electrons. One of the main obstacles is

that considerable difficulties are met in calculating the integrals

with several interelectronic distances in the integrand. Recently

some progress has bean made in generalising the method of correlated

3)
wave functions to many electron atoms, but still an accurate calcu-

lation of the integrals containing functions of . seems to be

an unsolved problem in its full generality.



2,

4;8)
Several different methods have been suggested how to

3) L. SBass, Phys. Rev. 126 , 169 (1962)

4) H.M. Jams end A.S. Coolidge, Phys. Rev. 49 688 (1936)

5) V. Pock, M. Vesselov and H. P•etrashen, J. Explo. Theoret. Phys.

(USSR), 10 , 723 (1940)

6ýiP. Walsh and S. lerevits, Phys. Rev. 115 , 1206 (1959)

7) L. Seass, J.C.P. 35 , 1072, (1961)

8) J.L. Calais and P.O. Lfvdin , J. Hol. Spec. 8, 203 (1962)

calculate ouch integrals and the purpose of this note is to

describe a simple scheme for computing certain atomic Integrals

that have an explicit dependence of inter-electronic distances in

the integrand.
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II. FORMULATION OF THE PROBLEM

Without using carefully designed forms of the correlated

wave functions we would have to evaluate integrals of a consid-

erable complexity. But if we e.g. use trial wove functions of the

form

where the analytical form of I and i are restricted to certain

important simple cases, it is possible to make progress in the

calculations of the occurring integrals. I my be an antisymme-

trixod product of suitably chosen spin orbitals or a superposition

of such products, and t a nodeless function, symsietrical with

respect to permutations of the electronic coordinates.l))

9) L. Redei and P.O. Ldvdin, Phys. Rev. 114 , 752 ( 1952)

is here a combined space-spin variable, such that

is the position vector of the electron ý with respect to the nucleus

and a spin variable. Slightly more general trial functions of the

se type have also been suggested with I not necessarily a function

of all the interelectronic distances.3)

( 2 ) Z a A ( r , % -r 1 . ; 7 , . , --Y ) , t I ) e ) . .ý 4 )
where MA aend A is the antisysmetriser in N-particle space.

The correlation factor t has often been chosen as a polynomial of

r, a end r with suitable adjustable parameters, but also other

simple analytical forms have been used. 6 s' 1 0
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10) P. Walsh and S. Barowttz, Phys. Rev. 119 , 1274 (1960)

If we keep in mind all these and other common restrictions

on the correlated wave functions used so far in atomic calculation

it may be general enough to start out by treating an integral of the

form

This may factorize into integrals of lower dimensions where the

integration variables are coupled through the interelectronic dis-

tances. The simplest non-trivial form of such a factor would be

K OtI) " I) t c , w,,g, b

(4)

where we have used the orbital form MV)\A QA) explicitly.

Here yu s a spherical harmonic as defined e.g. in Edmonds' book. 1 l)

11) A.R. Edmonds, "Angular Momentum in Quantum Mechanics", (Princeton

University Press, 1957)

If we now expand a product of spherical harmonics according

to the formula
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where M a vn -1 , we can write s a sun of integrals

(6) t

For instance K'(oo,) 410o, CoJo0o1, elo)41o) will
become a linear combination of I0:: and *L.51

Here Aeq ) e YoC'(r.1~ )
and MA )A,-, a M&- 1 V n- .

The Wigner 3-j symbol& are defined in reference 11. Further we can

write
1 2 )

12) P.O. Levdin, "A Theoretical Investigation into Some Properties

of Ionic Crystals", Thesis, Uppsala, 1948 (Alaqvist and

Wiksell).

+ Compare formula (4.6.5) in reference 11, and specific

formulas in reference 15.
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whr4 C . J) to tshe Lagendre
polynomial of depee IV and

Equation (7) together with the addition theorem,

4 f l - -

then give

I 4A~n.

where

and
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AIL

Ke

,,. C. 1',. Yn.•,
(lOb) -

By change of integration variable where-....a L ere

C.OJ1; .a l~ , we get from equation (8)

aq

Depending on the analytic form of the functions __

we can now proceed in different ways. We can e.g. calculate the

~(~r ri by using the "Q-polynoniAls" of L&wdin. 3 Ti

13) P.O. Lývdin, Adv. in Phys. 5 ,1 (1956); "Quantum Theory of

Cohesive Properties of Solids." p.98

means that we can use the well-known explicit expression for the

Legendre polynomials and write

Here t) Is a homogeneous polynomial in and 'VA.
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of degree (ý--) . Recursion formulaes for the , 4 are given in

reference 13. The expressions we got for I in this

way my be tedious and lengthy to work with but are in principle

not complicated.

To be specific we have chosen to treatin the following, the

case when in e•pressions (1) and (2) is a polynomial in V4

and . Without loss of generality we can then choose the functions

Sj in the integrals (3) and (4) to simply be the powers of the

Interelectronic distances. From equations (11) and (10a) we get

U,. %) X. ,(13) JF (r

'c R

where . It is now in general necessary

to distinguish between the regions I> Y'and 11 r This splits U.41t nto

six integrals with different order relations between the integration

variables, i.e. -

U %P0P' T 4r

(14)

+ 
11ag
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Here

for
(15b 'F-lx 1)- z

~~ o

where 9 I integer part of and

(l5c) T (X >1) for

Equation (15c) shove that if one of ) , and 'v is an even

number, one of the three infinite summations in equation (10) is

reduced to a sum over a finite number of terms.

In order to proceed further with calculation of L.1• b, ''

we have to be more specific about the form of the radial part of

the orbitals. We are in the following going to limit the discussion

to orbitals of the form

(16) MO)-Pk ..cv

where M•O.• is an integer. This allows us to Include in our treat-

mnt radial parts expressed as hydrogen-like functions, Laguerre

1) 14)
functionsaland linear combinations of Slater or Dirichlet functions.

14) 0.0. Sill, Rep. on Progr. in Phys. Vol XXII (1959) p.11
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In thee cases the from equation (14) that ye want

to calculate would be auperpositions of the Uwt we get

from using the specific form in equation (16) as radial parts.

We now turn to the problem of calculating in coefficients

-54, Otj441f)defined in equation (l0b). Here we hove to in-

tegrate over products of three spherical harmonics. In order to

get a non-vanishing contribution from an integral

it is well known that the following relations have to be fulfilled

VA'sMX+,+ ,3 ,++÷,2 (M.oo),2 ..

-t43.~t1 a ~ and -Lt, 1j 4.

These restrictions give among other things that

(1, X-,4- X-

%i.l (2 Y I"(.
I2L

and that .44q4,m 4
V#I , 1 cr) 0 if 4 +4.&4v+O

or I•+ +7. + I'-o'I+•...) . ) • Schveinlert 5 )has given

useful explicit formulas for expanding products of spherical harmonics

of the same argument in spherical harmonics. Formulas of that type are

feasable to use in calculation of the integrals in (17).

15) H.C. Schweindler, Quarterly Progress Report, M.I.T., Solid

State and Molecular Theory Group, January 15 (1954) p.51
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III. FORMULAS FOR CALCULATION

In the numerical evaluation we have extensively used a

set of three auxiliary functions 4 )defined as

(18) (b) V (W[. 1ij) eT kx r4
@04

00

We will first discuss the "spherically symnetric case" T a @

This we hope will show the min idea of the method and the general-

ization to other cases is straightforward. in equation

(lOb) will then reduce to

This together with the restriction on the form of orbitals used, as

expressed in equation (16) gives

*0

(20)IV

where Uj) 1 1(,• ) is defined as in equation (13) with.(X)- K

43'~an ~ )e_ ?_ .It should be noted that we

have not normalized the orbitals.

The 4au tegrals I (W fu nctions. I n rr) can now be expressed

in the auxiliary functions A , \/ and \o/ We have e.g.
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(21a) [ ]

,. %La. , d a

and

(22) ( .*41)(22) ' • ('• 1II t* 2& V' 1 " a) .W•(rc• •1L1a's't" , sr", &)

Both (21s) and (21b) represent Muy Integrals of interest in

atomic theory. In particular (21a) for and XjlAfiS)replaced by I

can be used for calculating the ordinary two-electron repulsion inte-

grals for spherically syumetric functions. The integral In equation

(22) is the simplest of the Ii 1( T & r )'A that requires an

infinite sum of Wi. In connection with (21a) and (21b) we should
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also note the triviaL but useful relations like

For certain restrictions on the form of the correlated wave
S16)

function used) the most complicated Integrals bound to occur would be

possible to express as linear combinations of I I

16) L. Ssass, Quarterly Progress teport M.I.T. Solid State and

Molecular Theory Group, July15, 1962

To show how such an integral can be calculated we are in

section V and in the Appendix discussing in particular

"e w ( Fz• i - Wb , - , )). w ,r ,

-2,0

uZs) ( 'm1'.zcaS~ ~42

- (k.~' (4~ )~tw ~I L.2k I ,*2Z k~.W .j44.aIj '?' b-k~)
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-I (24. (k ' tW(Orý F4 42, or),).2k'(pW 5-240

+ ~,

All these formulas do not tell very much about the method

unless we also describe how to calculate the k'6, V,• , and W'/,

and Investigate the convergence of the infinite sums. This will be

done in sections IV and V.

If at least onoof A , - and I in equation (lOb) is different

from zero we will get more complex situations. For example 1Y0,

ii *l give B,1~ (00 '0114+1 and-B (00! 10110) z 4<

as the only nonvanishing coefficients. It is, however, also for a gen-

eral , a straight forward procedure to express it in terms of

A',%,V'Aand 'A, by going back to formula (14). This means that al-

though we in sections IV and V are practically treating the spherically

symmtric case, J , methods and results from there are with very

few exceptions directly applicable to the general case .1.
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IV. COMPUTATIONAL SCHENE

in calculating a particular W (Kf t • k we

have to distinguish between two cases, •t-•O and tLQ.

1. Whent!-•O the calculation is set up in three steps.

(i) First we form a table of all k ,t/,lt• ) for

.j+ tI...+/+• j ti A, using the relation

where A¢o+t+i lO and n

(ii) From this table we can then construct a table of

Vt•o+ý 14,10 for -k=1,14,.,, I+t,
using the formula

(25) V( V 1I ~t oy~~l~

which in valid for aOand 4+-tc` 0

(iii) The final step is now to use the V% to calculate

the W (/P()f'yI j , ) i)A)of interes t. Thisa can be done wi th the

recurrence relation

for A' from Au . (26) i not valid unless 40 ,and

+w
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2. In the integrals that are expressed as infinite sums like

those in equations (22) and (23) we need in addition to calculate

VV(cdtp I I I) for -At (0. Thisa can not conveniently be done with

(24)-(26), partly because it is a tedious procedure to find all the

'starting values- " ,* IJ-I and W(9Mj4I 1 -1) that are

necessary, and partly due to the fact that these recurrence relations

viii in this case not be numerically stable, i.e. loss of significant

figures is bound to occur. in this case (CC0) we use the formula

(27) W Odý JIV). - Z !r!l'~ 'e,*1

where for r- M r4

(28) x

and for •AMI.

(29) Ifiltf.t. .),(.)V.tp. 11 , A •. 71 11"T'
M and J are in principle infinite, but in actual calculations

they are of course assigned finite values. In order to avoid very

large and very mll quantities these formula* have been combined to

the following computational scheme:

M

where w.J"

an dTI
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with ~ ~tM~)~and

N+ý +k*) +1*lt+~

)(~~ a ~nd y, I

and t 1+). 4 t-) w ith ~I
k.btS

For calculationsa of V (gý I+I1+Mtt,A) a computational

scheme may be derived from (28)

where wihAP
+ M + 1 S
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V. CONVRMNCR E OPETIES

Jý ) The scheme for calculation. of Wwith 44 0

defined in (30) includes three infinite sums and the rate of conver-

gence for each of them is essential.

In actual calculations , A and V will be of roughly the

same order of magnitude and we will limit our discussions of the

convergence properties to this case.

The factors containing r or q in the recursion formulas for

X• Ir•and •, converge to unity and the latter may be approximated

as follows

obviously the convergence for and S~is faster than for

and consequently Ž.Ar- in (30) is the critical part.

Actually %,is zero for i infinite, and (30) may be replaced

by

M

The number of multiplications (or divisions) needed to calcu-

late W/ by (30) and by (33) is respectively

(34) IntI01s'4Vj and Wv uM,
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Rather than giving an extensive theoretical treatment U the

convergence properties 'of W , we have chosen to exemplify its

behavior by calculating W v itw1p -i ) - for ,som typical values

for.j u J) "As seen from formulas (27) and (31) the choize of

) = (011-1) .represents some of the worst convergence prop-

erties possible. In table I we have tabulated the number of signi-

ficant decimal figures A, of W , calculated by (30), as a function

of M and f . Table II shows the number of signiftcant figures d'

as a function of M , when W is calculated by (33).

From (34) and Tables I and II algorithms may ýu derived for

the choice of H and 4 . In principle one could even give M and

as explicit functionis of the ar3umnts 4(, p ~J*1.t~ and the desired
number of significant figures d.

I ,ýýI I i- I) As an exampale of the behavior ofW\J with

negativ. . , we have chooen to treat 1* f. or (A

The explicit formula for calculation of the integral is given in

(23), but to simplify the discussiou we rewrite this equation as

(35)

where K is in principle infinite, and the definition& of]) and1\

are obvious.

For each of the fourteenW4appearing in b1• , we have

the relation

(36)js t- u
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When k is large enough all the V& will have -40 and

W. in (30) will be approximately constent. Further ij.k

is obviously independent of -k, so even under the sumstion over

-• the variation in'IVvill be represented by the factor (14l)-|

and this variation is very small for large . In fact this is

the main variation for each of the VV The approximate constancy

of the /A, shows that the-ab behave like (4 , and this givesw

a good estimation of the convergence properties of
Act
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Table I

The number of significant ttgures, (ML W)in , , in-I

calculated by (30).

a) K./'2.,.b) Kj!,/u, 1,P4

10 20 30 40 50 60 5 10 15 20

- - - -- - -N:

10 4 5 5 5 5 5 5 4 5 5 5

20 6 8 10 10 10 10 10 7 9 9 9
30 8 10 11 13 15 15 15 10 12 13 13

40 10 11 13 15 15 15 20 12 15 15 15

50 11 13 15 15 15 15

60 13 15 15 15 15 15

M N 30I 40 60 80 100 20 40 60 80 100

20 4 6 7 9 11 20 3 4 4 4 4

40 6 7 9 11 12 40 5 7 7 8 8

60 7 9 11 12 14 60 7 8 10 11 11

80 9 11 12 14 15 80 8 10 12 13 15

100 11 12 14 15 15 100 10 12 13 15 15

We have chosen to carry 16 decimal figures (Fortran double precision)

in our calculations, because in combining the 11A to matrix elements,

necessary in the variational calculation, cancellation of significant

figures will occur in some cases (e.g. when the radial parts of the

orbitals are Laguerre functions).
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Table II

The number of significant figures G ),in W 11,-I

calculated by (33).

M (4,1,1) (1,4,1) (2,2,2) (1.1,4)

5 0 0 1 2

10 0 1 2 5

15 1 2 3 7

20 1 2 4 10

25 2 3 5 12

30 2 3 6 15

40 3 4 8

50 4 5 10

60 5 6 11

70 6 6 13

80 7 7 15

100 8 9

120 10 11

140 12 12

160 13 14

180 14 14

200 14 14
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&miwZx

As an eample we will discuss the integral* produced by a

correlated wave function for a three electron atomic problem. An

adequate trial wae function for a doublet state can be written

where ~A'2) C1 ( t

and ~ ()a k (r,)bta)

After integration over the spin variables the average value

of the Hamiltonian becomes

where pit is the permutation operation that interchanges the electron

coordinates 2 and 3. For an S-state we may choose the space functions

(A2) 3-Apr
and 3e

The only part of the Hamiltonian, that involves calculation

of an integral with )~tA., and Y all +0~

is.L.

The evaluation of
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K- > ~~tj (2 4,1-Z0Q.200 1-10 ) 4kC1 (2.,ZA,,ZL 0 0 11-1 6)

(A3) + 0i0z1zz1,z 0o oz-z- I o). P+ (,a I•0A1,-,Z a . D-O)

where

Z- 1 ( 20L,z . loogLfoo o )+ zcJz& z., Iloozll oo)

will serve to demunstrate the convergence of the infinite series in

(23) for calculation of I (1P, I[I S i.I ) .and also the imor-

tance of this term in the average value. For the Li-atom 04.S.4,

S- 1.4 and C-0., would give a fair approximstion4  to the ground

state wave function.

In Table III we 1istb• and the first fifteenbjkin the

infinite sum, that appears in the definition (35) and (23) for

1t 4.k+4CIL1, l1t1-i- . The observed convergence for the

series is actually better than for .--- and it is justified to

conclude that the remainder in general is

-Al. K* I
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which in our maole.. uans that we have eight significant figures in

The VPA appearing in echb'k were ealculated by (30) with

MaIJO, which mcording to Table I gives eleven or twelve signi-

ficent figurac, ead as no appreciable ocellations occur in the

formation of eah tktts does not influence the accuracy of I I.

Table i4. lists the integralsl and we like to point out

the the above meationed integral I (IA,04+4Ct 10 o 1 1) me) y de-

finitely not be neglected in the calidhation of the average value.
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Table III

Dk# for k = 0, 1, 2, ... 12, as defined by (23) and (35) for the

integralI (S. 72, 4.26, 4.26 0o 1 I I i -1).*

DO 0 0.358 027 6958 " 105

DI , 0.004 9134950 • 10-5

D2 a 0.000 046 7536 * 10"5

D3 = 0.000 002 9199 * 10.5

D4 = 0.000 000 3819 • 10"S

D5 = 0.000 000 0759 " 10.5

D6 = 0.000 000 0199 " 10.5

D7 = 0.000000 0063 ' 10.5

D8 = 0.000 000 0023 - 10.5

D 9 = 0.000 000 0010 , 10.5

DI 0 = 0.000 000 0004 * 10-5

D11= 0.000 000 0002 * 10-5

D12 = 0.000 000 0001 1 10t5

and consequently

1(5.72, 4.26, 4.26 1 0 1 1 1 1 1 -1) = 0.362 991 35.0"5•

Errata

Formulas (23).and (35) for calculation of (ooo•aP" Ipqul 11-1)
are not correct. The term

should be deleted and the summation i . replaced by Z . The

correct formula@ were used for the catclations reported g Tables III

aad IV.



Table IV

Integrals I(cL, , ,rip q, 9I)X, ýL, v) appearing in forz-la (A3).

a P y pqs X. ILv I

2.8 5.72 5.72 200 -1 0 0 1.084 350 60810.'5

5.72 5.72 2.8 002 1 -1 0 0.819 094 061.10"5

5.72 5.72 2.8 002 2 -1 0 0.774 239 416'10.5

4.26 4.26 5.72 110 -1 0 0 0.346 281 001"10"5

4.26 4.26 5.72 110 -I 1 0 0.343 730 385"10.5

5.72 4.26 4.26 011 1 1 -1 0.362 991 353 10'5

5.72 5.72 2.8 002 0 0 0 1.592 593 371"10. 5

5.72 5.72 2.8 002 1 0 0 1.218 111 188"10"5

5.72 5.72 2.8 002 2 0 0 1.168 218 522.10"5

5.72 4.26 4.26 011 0 0 0 0.354 705 251.10"5

5.72 4.26 4.26 011 1 0 0 0.387786480"10"5

5.72 4.26 4.26 011 I 1 0 0.433 603 504"10.5

= 1. 930 928 02 • 10.5

K -L-V : 0.58709036('23 ).



Ccn JQ p 04 Ps 00M~

x~C' 0 1- . . f" (

til o2irA 0~ 0

0~~ ~ 'O0 0Q
0 fl, -J~

0 zo- > nI 0 0'O
a cnA'3r 0 cCZ :3 C Q

W 0 Z5 w , 0

0 (b cc 0 04. 3ý~0 ~
ti Q O- m zl 0 >

oz C: t 0 0 Z* C"-- 00 0 ~
En0 0 > n 0II

0-~ ~0'Q .15 "
00 0 >P- 00

00)

0 > ot' z K >
4 5 .. 1 r. w z 0 -I p

0 v00 > 0$ 0 >'

cn < ( (

SD 0 > o 0 >

~z m 0

0 P! 10 a,0 10 0
w 0* -t

111 CL 0
0~ ~ 00bN1 04P ~

'A 0< Q 0 0r.

00 0 C: > 8 0

"0' z 0' 41b

0- rn

P. CE~-~ ~ ~ 0p U 0
0 ~ 0 :3 0t1

C) 0 Q
U'N U

Ot 0.. 0A-C


