UNCLASSIFIED

o 405 441

DEFENSE DOCUMENTATION CENTER

FOR
SCIENTIFIC AND TECHNICAL INFORMATION

CAMERON STATION, ALEXANDRIA. VIRGINIA

.

UNCLASSIFIED




NOTICE: When government or other drawlngs, specl-
fications or other data are used for sny purpose
other than in connection with a definitely related
government procurement operation, the U. S.
Government thereby incurs no responsibility, nor any
obligstion whatsoever; and the fact that the Govern-
ment may have formulated, furnished, or in any way
supplied the said drawings, specifications, or other
data is not to be regarded by implication or other-
wlse as in any manner licensing the holder or any
other person or corporation, or conveylng any rights
or permission to manufacture, use or sell any
patented invention that may in any way be related
thereto.




CYAS e

ASTIA DOCUMENT NO: AD )
CONTRACT AF 61(052)-351 TN No. 91 ARL 63.y7

o~
#
-
Jo)
>
H

TECHNICAL NOTE

ON THE CALCULATION OF SOME ATOMIC INTEGRALS

CONTAINING FUNCTIONS O)F Fyge Ty AND g

by

Yngve Ohrn and Jan Nordling

Quantum Chemistry Group
For Research in Atomic, Molecular and Solid-State Theory
Uppsala University, Uppsala, Sweden

November 30, 1962

Tho rosearch reported in this document
hus bouvn sponsored in part by the
AERONAUTICAL RESEARCI LABNORATORY, OAR,
THROUGH THE EUROPEAN OFFICFE, AFROSPACE RESEARCH,
UNITED STATES AIR FORCE,

4

405 441



ASTIA DOCUMENT NO: AD
CONTRACT AF 61(052)-351 TN No. 91

TECHNICAL NOTE

ON THE CALCULATION OF SOME ATOMIC INTEGRALS

-'-

CONTAINING FUNCTIONS OF r AND r

12° Y13 23

by

Yngve Uhrn and Jan Nordling

Quantum Chemistry Group
For Research in Atomic, Molecular and Solid-Stite Theory
Uppsala University, Uppsala, Sweden

This work was concluded while the

authors were members of the Quan-

tum Theory Project at the Univer-
sity of Florida

November 30, 1962

The research Teported in this document
. has been sponsored in part by the
AERONAUTICAL RESEARCH LABORATORY, OAR,
THROUGH THE EUROIFPEAN OFFICE, AEROSPACE RESEARCH,
UNITED STATES AIR FORCE.



ABSTRACT

Different forms of correlated atomic wave func-
tions and their implications on the integrals occurring
in calculations of variational solution to Schrddinger's
equation are briefly discussed. A scheme for computing
the integral

S *.(f.) '*;Lt‘) %‘ (=)  ( (r) 7..('») % (n) u”')

is described and applied to the case ?-.(rq)- r‘;‘
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1. INTRODUCTION

In atomic and wolecular theory several variational solu-
tions to the Schroedinger equation have been ebtained for a vari-
ety of small systems using trial wave functions of a varying degree
of complexity. The different methods of calculating variational
solutions are commonly classified according to the analytical form
of trial wave function uud.l')rba method of so-called correlated
wave functions, i.e. functions that depend explicit}y on the inter-
elactronic distances V.‘) = ‘ ‘j - r | was first introduced by

2
Hyllaun.)m setthod has later been used in mumerous applications

on small systems, predominantly two-electron systems. One of the

1) P,O, Lowdin, Adv. Chem Phys. 2 , 207 (Interscience Publ. L
Prigogine,Bd, New York, 1959)

2) E.A. Hylleraas, Z. Phys. 54 , 347 (1929)

merits of the method is that it gives good results and yet can

give wave functions in an attractively condensed form. It seems

to be fairly difficult, however, to generalize the mathcd to
systems with more than two electrons. One of the main obstacles is
that considerable difficulties are met in calculating the integrals
with several interelectronic distances in the integrand. Recently
some progress has been made in generalising the method of correlated

3
wave functions to many electron ar.om.) but still an accurate calcu-

lation of the integrals containing functions of \""} seems to he

an unsolved problem in its full generality.



4-8
Several different msthods have been suggested ho% to

3) L, Ssass, Phys. Rev. 126 , 169 (1962)

4) H.M, James and A,S. Coclidge, Phys. Rev. 49 688 (1936)

5) V. Fock, M. Vesselov and M. Petraghen, J. Explo. Theoret. Phys.
(USSR), 10 , 723 (1940)

63, P. Walsh and 8. Borewits, Phys. Rev. 115 , 1206 (1959)

7) L. Ssass, J.C.P. 35 , 1072, (1961)

8) J.L. Calais and P.0. Lowdin , J. Mol. Spec. 8, 203 (1962)

calculate such integrals and the purpose of this note is to

describe a simple scheme for computing certain atomic integrals

that have an explicit dependence of inter-electronic distances in

the integrand.



II. PORMULATION OF THR PROBLEM

Without using carefully designed forms of the correlated
wvave functions we would have to evaluate integrals of a consid-
erable complexity. But if we e.g. use trial wave functions of the
form
m 4000 s T e D, Xy, %)
vhere the analytical form of Z andé are restricted to certain
important simple cases, it is possible to make progress in the
calculations of the occurring integrals. §uy be an antisymme-
trized product of suitably chosen spin orbitals or & superposition
of such products, and ? a nodeless function, symmetrical with

13,9

respect to permutations of the electronic coordinates.

9) L. Redei and P,0. LOwdin, Phys. Rev. 114 , 752 ( 1952)

K.‘.{n,(ﬁ} is here a combined space-spin variable, such that l"“
is the position vector of the electron 1 with respect to the nucleus
and ¥‘ 4 spin variable. Slightly more general trial functions of the
same type have also been suggested with 3 not necessarily a function

3)

of all the interelectronic distances.

) é ﬁt (%, 1 1Y% m—ln) é(a”'” ""‘))

where 24n&N cndA is the antilyu.tr:lur 1n N-particle space.

The correlation factor ? has often been chosen as a polynomial of

\2’\‘.“ and ¥} *‘ with suitable adjustable paramaters, but also other

simple analytical forme have been used. 6),10)



10) P. Walsh and S. Borowitz, Phys. Rev. 119 , 1274 (1960)

If we keep in mind all these and other common restrictions
on the correlated wave functions used so far in atomic calculation

it may be general enough to start out by treating an integral of the

form
©) j fdr,‘%dn“"{"‘r“\ %‘(m 1“(‘:"' H %“(‘:ﬂ”")u”)

This may factorize into integrals of lower dimensions where the
integration variables are coupled through the interelectronic dis-

tances. The simplest non-trivial form of such a factor would be

Katm, blmy, cdom | d by e bome, § Liw,) <
* ® ' * L3 »* »
(4) 5 a,(mX.m'('Hr (G)X,m(f') C“?’X,mﬁf’)

AL € DV F 0 (3) 4050900, 05 )

where we have used the orbital form Y(r) \A\.&r\*) explicitly.

11
Here Xwil a spherical harmonic as defined e.g. in Edmonds' book. )

11) A.R, Edmonds, “Angular Momentum in Quantum Mechanics", (Princeton

University Press, 1957)

1f we now expand & product of spherical harmonics according

to the formula



» ",
%n'”\ Y’-"mq = (.‘ ) >{. -,

-’-

i {}1&*!)(1&,*0(2m)} ({;{g ‘:)(t;‘z;) %m

1Al o )

vhere Ls 11 - m , We can write K as a sum of integrsls

v - %

1 Lit =(41t) J%.(\ﬂ%,,\r;){s(rb) \/M"%’L”X,}.B)

©

. “%(‘ ﬁz. n)aa 5(‘1’“’)

For instance K((LOO 10 C.IO|A«00 elo #‘0 will

000 ®00 000 [-X-X 3
become & linear combinatéon of 1..., I,u )I‘u and I .

nere R0 d ) g req) € (rr}(r) imf,(w)%m |
and em -, Uem -m y Y= -m
The Wigner 3-j symbols are defined in reference 11. Further we can

vritau)

12) P.0. Lowdin, "A Theoretical Investigation into Soms Properties

of Ionic Crystals", Thesis, Uppeala, 1948 (Almqvist and
Wiksell).

+ Compare formula (4.6.5) in reference 11, and specific

formulas in reference 15.



m (*‘ b L, % (r;,rilz ) P (us\r

vhere ‘l.r‘.' +\'i -Z\‘l’jcoi\n‘) " is the Legendre
polynomial of degree " and

® w__&\:‘,rlg;) dnsl h (% )P(cosﬁt)smq‘d

Equation (7) together with the addition theorem,

- " * |
()] E(cosﬂ})(=4ﬂ-(2n*l)lz Xm(‘g;ﬁ)%m(‘r;f?;)

ne-n
then give
tuw ) )
(10) ]‘.4“, Z P %1|1M1V).L|*£§3~)‘}3,ﬂz)
T odam |
where

-l
U dggaqsls {(zwl)(zul)um-ﬂ)}

H% )f(m{,( SLACHATRE ALY

x %1 %,519) v A dg dy

(10e)

X

oN—8

i

and



B, wlwlm-z Z T am™

..i T-- T ot

2 21 *
® gm\r'&v: 5 (J'\P.X,él ) >1/!$”>{/‘, (l)
(o) - ’
*
xew d jaw POVAIED
: s
. Ssmﬁ Mj&ﬂ){__fn JACIATD
By chlngc of integration variable '01 & —»R‘ » where
‘“J !" +Jr ,» we get from equation (8)
g L 2 o2
24+ | rert-R;
an oc& ey sz ﬂ %.vua.,\a( A )
1-x) t

Dopending on the amlytical form of the functions % (B)
we can now proceed in different ways. We can e.g. calculate the

|3 by using the "Q-polynomials® of ngdin.n)'rhta
$) t

13) P.0. Lowdin, Adv. in Phys. 5 ,1 (1956); "Quantum Theory of

Cohesive Properties of Solids.” p.98

means that we can use the well-known explicit expression for the

Legendre polynomials and write '1'-"\"

N 2541
2 m,r*l?{.,) = (2% l)(u;m 5 Qc.,(ﬁ r) S S/r(:? |%, 48
Here Qi;( ") is a homogeneous polynomial in r‘\' md. \?; ¢



of degres t-S) . Recursion formulas for the @4 are given in
reference £3. The expressions we get for %&(V;,Yi‘ Itv;) in this
way my be tedious and lengthy to work with but are in principle
not complicated.

To be specific we have chosen to treat,in the following, the
case when ? in expressioas (1) snd (2) is a polynomial in I} "?
and i"q . Without loss of generality we can then choose the functions

%; in the integrals (3) and (4) to simply be the powers of the

interelectronic distances. From equations (l1l) and (10a) we get

U&!(:,r',o) s z-'JaoU; no\r;jd.t; %,(r: )fl(r;)i (r)

3 nen s+ o
@ XJR AR | FXJR 4
In-n LA 33
1 *7
vtenrto R ; Sh: GIE‘( “m ‘4’2
vhere x‘-r‘ b‘i . It 18 now in general neceuary

to distinguish between the regions I:)\';and Y.< r{. This splits Uuiénto

six integrals with different order relations between the integration

variables, i.e. ”» ]
U, D)2 {Hm] *‘W’h u)ﬁ“&”"ﬁjvﬂr (2>4)dady de
.". 1
*J%.(a)j '(x)iis( ) x>ia)"F (2>x) F (1>*&)J.zob<¢l«3

(14) x

K ya)'F(x 2 ( (4 >!)J,da dz

+
S o
- .
= E
e g, ol
du ”»
- Py
- —
\——— ad S8
—'*p E 4 -
A-'ﬂ #_'1

A‘»‘).F (2 >X\-'F ('\a >l)¢\a&lax

*T.wh.wb.uﬁ ooy



9.

[} '] L

+ J i‘u)J ‘i‘(x)j 1“2){"(1 >x )ErpQZﬂ:w(*a >2) d\a:'bcclr } )

Here

.| I' - i _ :
(15) E("’l“’,‘}*‘(“*‘) '*“"“(‘3)'3);;'&5:‘&’]
for "(il)

am Fop-d I (1) 00
is0

vhere [—{-i—‘-] t integer part of i{i , and

(15¢) ““(xxz):O for Lamel

-1 JFS IS 4
(154) T';‘_}D‘a) a (20+]) .z_-% X

Equation (15c) shows that if one of X , rc. and ¥ is an even
number, one of the three infinite summations in equation (10) is
reduced to & sum over a finite number of terms,

In order to proceed further with calculation of lexi‘i'r' )
we have to be more specific about the form of the radial part of
the orbitals. We are in the following going to limit the discussion
to orbitals of the form
(16) e s expd-ar) "
where 20 1s an integer. This allows us to include in our treat-
ment radial parts expressed as hydrogen-like functions, Laguerre

) 14)

ft.mc:t::l.mu_'1 and linear combinations of Slater or Dirichlet functions.

14) G.G. RHall, Rep. on Progr. in Phys. Vol XXII (1959) p.l1




10.

In these cases the Uum from equation (14) that we want
to calculate would be superpositions of the U‘u”(‘k,r', V) we get
from using the spacific form in equation (16) as radial parts,
We now turn to the problem 6f calculating in coefficients
B_ké:d-\i“liv) defined in equation (l0b). Here we have to in-
tegrate over products of three spherical harmonics. In order to

get & non-vanishing contribution from an integral

J.MQ'H‘J Yo Yom Yim,

it is well known that the following relations have to be fulfilled

mam am, {‘+{z+£‘=2n (n=0,1,2,...)

Aot 243 L-4) e detad

These restrictions give among other things that

% min{i,«b",m-v}
BH(::#\W\&*) = (4%) }:
§e mac{- % - 1£-8) - (mew)}

1Y

T
(n x] m«rdﬂag% (‘)>/(” %4( )
”

.J : WL‘NLI“:LX (z)yu) Y(z)

A t Imgee s

[ ot 2 ﬁ\\ng?zxwm
and that B, (4‘4‘:‘,“\1,),0 1tf demrngo

:

"t

or hed +é $2n ’ (n=0,1,2... ) . Schweinler!3has given

useful explicit formulas for expanding products of spherical harmonics

of the same argument in spherical harmonics. Formulas of that type are

feasable to use in calculation of the integrals in (17).

15) H.C. Schweindler, Quarterly Progress Report, M.I.T., Solid
State and Molecular Theory Group, January 15 (1954) p.51
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II1. FORMULAS FOR CALCULATION

In the numerical evaluation we have extensively used a

set of three auxiliary functions®)defined as
(2) A(-‘li)=re'”x"dx
as  ® VEplmn). Se x“&vs ymdy
() W(“'/B'M'Q'M‘j ’*J»S ”‘ha A%Se 2%de

[N X7

We will first discuss the “spherically symmetric case" “ 00
This we hope will show the main idea of the method and the general-
ization to other cases is straightforward. E){L " in equation

(10b) will then reduce to

an B (00|00|00)=g‘¢$ (24 1),

b

This together with the restriction on the form of orbitals used, as

expressed in equation (16) gives

(20) I(“./S,Z{I(qsl M) z (24s1) U L2 p)

- %
where U‘u‘k() l“ V) is defined as in equation (13) with {,(X)s e x©
’s‘(z): a"zaa’ and * ()= e,x 2_ . It should be noted that we
have not normalized the orbitals.

The ‘ntegrals I (w ,/'A'X \Gq s ‘ A r\v‘) can now be expressed

in the auxiliary functions A , \V/ and W/ . We have e.g.
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Tuepylpgslnoo)=Atle) (reay”
aw py]

x g‘:ﬂ [V(.c/q»‘uuz» quvz-h) +V({\ "l‘rl'“ ‘N)«‘l‘lt)J

» [af_ H
I(w/sxlﬂslxr.o):{(:nz)((uz)}-[_'_]h J ?,.".)(i; )

{s0 s0
i
[W("/’ﬂ‘r 29202 qeaed-2i ""'f‘"&’ *WS»« flgrars s Praedeling, seaep-23)
(21b) "'W(l/""‘”""'l"‘”"z"f'“ )Y 4-(»-2» -).‘ Y+ Wik WT""’”‘P soarpe- ’1 % 2,05 2\)
*Wq;xu(l qeaedi, ooz, rozu.r.-ze-li)' w (X‘ﬂ $o2edf, prasfe-Tjedi g e2ed2 ;2.

-

and

I(upxlcqs\ -1-1- \)*,___ (M«l)
(22) [w(d/sx | r+z¢2+.,qﬂ)s-z-k) - W('uxlqu*za.,ra) s-24)
sw(ypx lesaezt qu ,p-ak) ¢ W plprarak, sa1,q-24)
+w(Nathqznk, 841, T"““ + W (wslsnm&,\m,q-z{)].

Both (21s) and (21b) represent many integrals of interest in
atomic theory. In particular (2la) fof Ae-1 and A("W)npllccd by |
can be used for calculating the ordinary two-electron repulsion inte-
grals for spherically symmetric functions. The integral in equation
(22) 1s the simplest of the 1“[:“@43 I)‘rv) A that requires an
infinite sum of Vbs In connection with (2la) and (21b) we should
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also note the trivial but useful relations like

]_(un\sqs\xrv‘)-]_(/ux\“tslkvr) a.%.0,

For certain restrictions on the form of the correlated wave

© 16
function used, lho most complicated integrals bound to occur would be
R yvyvs
ssible to express as linea onbimtionsofl o (u S -1
poss press as linear ¢ J“‘ Fh"qq\v)

16) 1. Szasz, Quarterly Progress Report M,I,T., Solid State and

Molecular Theory Group, Julyl5, 1962

To show how such an integral can be calculated we are in

section V and in the Appendix discussing in particular

Lo (apylpastv i) -
TFLW R e 3) s Wlpapiqu,prs oo Wigpalsih,gunp)

.W(u‘,ﬂr." s41.9) +\;/(P Yu\%dc ,s~3.‘>)4\v(¥ w,g\sﬂt,r'sq)]

> (2ka)? {_(2:'“5)-1 {W(“‘f Yipreszk, oat, 3'2“)‘“’(’ Kylgrezk, pes, s-2kc)

| £Y]

W (Xf w\sw.zk’,?n, P'zk)"'/(‘yﬁ\ prhe2i, 301 19-2k)
(23)
W (pyulgeaedh o3, potic)owyup | seuzi, m.a'zu)}

-(1‘(05)" (‘Zk" )-' {W(&f} K \rvholk,;r V522 k,)ow(rwxh,“,zm.?ﬂ '5,2_2“‘)
W(yf K| sedelio, ?'5'P’1'2 k}oW(u"s‘ ?..u.zk. o3, ?-2.\9)

Wip ylqenzie, so1,pra-2k)w(yuplse2ezic, pes, Y-zu)}
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- (lkd)“(lk-.)-l {W(xra | pouszie, g3, 5-2\(,)*\&/(#“{\?0102‘0.?05, s-24)

+ W(XP“ \'“"zk"""“"l‘zk)’w(“lﬁ‘ peHeak, sel ‘lvtz -2k)
7 Yya |crz~2k. ‘.«3,|>'2-2lc)~\!/(x°‘f\s~lo~ 2o, pel, g 2-2 k.)}

+ (-1t {w (“f“ pe2eZic,qped, 0022 lo)*w(rua\cgozozk,, pe3,542-2k)

+ w(x/u] 54242K,q¢ ) poh-2 k.).w(qf]f»z«w, 3+3,q+2-2k)

oW (Isb« K| qoz+2k, 50, ?do-zk.)ow('uflsoz’zb, Pos,crz-lk.)}] i

All these formulas do not tell very much about the method
unless we also describe how to calculate the A4, V'A , and W4
and investigate the convergence of the infinite sums. This will be
done¢ in sections IV and V,

1f at least oeof 4 , 1+ and Q in equation (10b) is different
from zero we will get more complex situations. For example L0 »
A i:l give Bkk(“oﬁ"o “o)'&*l and 'Bkk({g?;ho“o): L
as the only nonvanishing coefficients. It is, however, also for a gen-
eral I::: , @ straight forward procedure to express it in terms of
Aa, V., and W'y, by going back to formula (14). This means that al-
though we in sections IV and V are practically treating the spherically
symmetric case, I“o , methods and results from there are with very

CX N _ &n'*
few exceptions directly applicable to the general case L&;i .
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IV, COMPUTATIONAL SCHEME

In calculating a particular W(NPK \‘ia ‘k) , we
have to distinguish between two cases, 520 and bheo.
1. when420 the celculation is set up in three steps.

(1) Pirst we form a table of all Atprin) for

n,.—*,**l'“, *,}*{, , using the relation

(24) 'A\(‘“/’*Xl“’)" n,A(t(f/wxlo)A\(wlualn-l)

where A(ﬂffs*Xlo ) = (Nf/\'\’X)—' and n 21,

(11) From this table we can then construct a table of

V(x,/sq !4,&) for ’k=1,3+|) . aqv'

using the formula
(25) V(ot,/&»«&”,&)es,hx)"{A(w/hz \‘*-»&)-r&\/(u,/smf,{‘.;}}

which is valid for :530 and ;;okeo,

(111) The final step is now to use the V4 to caleulate
the W/( d,/,'x \ -,1, .?,_&) of interest. This can be done with the

recurrence relation

a9 ww/slg\i%i)=x"{v<u.p+x\1.1u)+wwﬂH,‘,,x-.)
for 2 from 0 do b . (26) 1is not valid unlnl‘zo ,:‘4»3_.\.0 , and

*'1+1\ >-1 .
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(X X}
2. In the integrals I,, , that are expressed as infinite sums like
those in equations (22) and (23) we meed in addition to calculate
W(&PX H 1 -!4) for 2 €0 . This cen not conveniently be done with
(24)-(26), partly because it is a tedious procedure to find all the
wgtarting values" V(K,/S*K\ ‘;' ! ) _and W(.{(bx \11 -|) that are
necessary, and partly due to the fact that these recurrence relations
will in this case not be numerically stable, i.e. loss of significant
figures 1is bound to occur. In this case (h < 0) we use the formula
27 W (& 4 —E——L b
(27) (py 1{q4)- (‘ A Vg y 14eqepe )
vhere for =M
. I* I
V L8/ y = ' b (x k2 4 1%
(28) ( P,Yl“*‘%ﬁ-M,“{&) %__ ﬁr—{”} [ A fM—H 14»%. M)

zi

and for ‘*‘M","'l

@9) Vi (| epe )= "ll“t‘" {(.u/,)\/m/a, ) H'TI‘*H‘)* A oy ]1«14«\["

M and N are in principle infinite, but {n actual calculations
they are of course assigned finite values. In order to avoid very
large and very amall quantities these formulas have been combined to

the following computational scheme:

(30) Wl«p‘l*ak)-w.{x.é‘x +§l*‘ar}

Alrepori$+gebet)
where W° ‘**”h‘" +‘) )

an [ K2 M-1 Hn\'({*p&vn)' Ay o
d X. {».,#f ) (1,3*4‘”)”1 1‘"4)' x X - ,.:L”‘S.
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L xep)  (fegedeMe) o .
with S,, (!(7{#‘) (141,,,“9) "Sv-l nd Sou\}

X - % . 4
xl“' wep) (,)

( g dop) (u+ )
(?‘fl r,r' {Zr o h(r"na))ar‘ } ieh A] =0
e . X (fegehep) 5 )
d i‘{" tetepry ] (i r) r\ vith Z = |,

For calculations of V{x+ ’K\*,a,M,L) a computational

Xr_‘ "and XO' ')

scheme may be derived from (28)
N

(31) V(M(S,U‘*Qa-\»"\ ‘L.)’

where V.= LS H"‘L*M' 9) 'V o With A~ o A(u«}quJ\m)

* (u»/&p g e wf/s') ’
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V. CONVERGENCE PROPERTIES

W (ﬂﬁx | {1-!\ ), The scheme for calculation: of W with %<0,

defined in (30) includes three infinite sums and the rate of conver-
gence for esch of them is essential.

In actual calculations ¥, /'3 and rwlll be of roughly the
same order of magnitude and we will limit our discussions of the
convergence properties to this case.

The factors conuiningr. or ¥ in the recursion formulas for
x"', ‘h‘ and S g + converge to unity and the latter may be approximated

ag follows

(32) Atl"x r (:: *‘)
S )

Obviously the convergence for X, and Svil faster than for ‘ar,
)

\a.
v

r
and consequently z )& in (30) is the critical part.
p:2 ©*
Actually X‘is zero for M i{nfinite, and (30) may be replaced
by
™M
(33) W(V{\Xl‘*z&)ﬂwoz.)zr'

=2

The number of multiplications (or divisions) needed to calcu-

late W/ by (30) and by (33) is respectively

(34) m,\:IOH-vsﬂ and WM« bM,
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Rather than giving an extensive theoretical treatment 6f the
convergence properties ‘of W , Wwe have chosen to exemplify its
behavior by calculating W (« /SX \oo- 1) for some typical values
for. (N. ‘X) . As seean from formulas (27) and (31) the choice of
(1.‘.‘(‘) = (010)-1) represents some of the worst convergence prop-
erties possible. In table I we have tabulated the number of signi-
ficant decimal figures & of W , calculsted by (30), as a function
of M and N Table II shows the nvmbar of significant figures d!'
as a function of M , when W 1is calculated by (33).

Fram (34) and Tables I and II algorivhms may be derived for
the choice of M and N . In principle one could aven zive M and fJ
as explicit functions of the sarguments K,/s)x, i,a,-l,«. and the desired

number of significant figures d.

1(%{:6 lwq S lll-l) As an example of the behavior of W with

nogltivo‘(‘\. » we have chogen to treat 1:6,0, for (X,r,,\})z(l,!‘- ).

The explicit formula for calculation of the integral is given in

(23), but te simplify the discussion we r‘c'write this aquation as
-

@ Twpylegs|ii-1) =D, +;.D&

vhere K is tn principle infinite, and the definitions of.b andD

are obvious.

For each of the fourteenWiappearing in b‘k , we have

the relation

(36) »{*1.4.- g e



200

when K 1s large enough all the W4 will have 4<0 and
W, in (30) will be approximately constant. Further *{v&a-w&.
is obviously independent of X » 80 even under the summation over
4¢ the variation inV/.will be represented by the factor (‘4])-‘
and this variation is very small for large 4 In fact this is
the main variation for each of the W'A | The approximate constancy
of the W'A, shows that theb,k behave like 'k'l' . :nd this gives

(4
a good estimation of the convergence properties of 2 D-k
ey
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Table I
The number of significant figures, &(M)N) in WW,/&)‘\'0,0;I)
calculated by (30). -

&) K,pY2,2,2 ®) w,py=l1,4
Tn N |

10 20 30 40 50 60 5 J10 J15 §20
M X
10 4 3 5 5 5 5 5 4 5 5 5
20 6 8 10 10 10 10§ 10 Y 9 9 9
30 8 10 11 13 15 15} |15 10 §12 |13 | 13
40 10 11 13 15 15 15§ ]20 12 |15 f15 } 15

30 11 13 13 15 15 15

c) oo,/g(: 14,1 § KB =411
S| 2 |40 Jeo |80 |100 S 20 J40 |60 | 80 [ 100
20 sl e 7] 9] 11| J2 slafael a] &
40 6| 7] 9| 12] [ s 7] 7] s s
60 79z ] 1] |eo 7 slwolu] n
80 9 (11 f12 |14 | 15] |e0 8 {10 frzf 13| 15
100 1 12 e J1s | 15| oo 1012 Jus] 5] 15

We have chosen to carry 16 decimal figures (Fortran double precision)
in our calculations, because in combining the 1A to matrix elements,
necessary in the variational calculation, cancellation of significent
figures will occur in some cases (e.g. when the radial parts of the

orbitals are Lagewerre functions).
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Table II )

The number of significant figures &(M), in W(u,/s)xlo,o,-i)

calculated by (33).

W(a,m) (1,4,1)} 2,2,2) | (1,1,4)
5 0 0 ! 2
10 0 1 2 ]
15 1 2 3 !
2 ) 2 4 10
25 2 3 5 12
30 2 3 6 15
40 3 4 8
50 4 5 10
60 5 6 11
70 6 6 13
80 7 U D
100 8 9
120 10 11
140 12 12
160 13 14
180 14 14

200 14 14
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APPENDIX

As un exsmple we will discuss the integrals produced by a
correlated wave function for a three electron atomic problem. An

adequate trisl wave function for a doublet state can be written
(A1) {éu,z,s):ﬁﬁh(\.z)és(&

vhera QSA(n,z)-@A(\:,m{xm/s(z)-/s(\mlz.)}

and 5\5(5) = éb(r,)uts)

After integration over the spin variables the average value
of the Hamiltonian bécomss
CHY,, - (B0 HU-B)| B0 dy08))
E 02| 0-Ry) B 2) B (3)

where F?b is the permutation operation that interchanges the electron

coordinates 2 and 3. For an S-state we may choose the space functfons

- Galver
$ 0.2) €W (e

(A2) b
and éb('S) =€ ? r;

The only part of the Hamiltonian, that involves calculation

of an integral 1“!‘«‘«? 5\)«rv‘) with X ) 'A« and ¥V all $0

is _L.
2

The evaluation of
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<L{3>M, —-{1(a4,28,20 2001-100) +2c T (20,28, 24102 1-1 o)

“9 +c l(20,20,24|00212-10) - L (ack,avdh,2a]110]-100)

_2eTtarkact 261 10)-110)- L2 as b arblon | 1-1 )}

where

6= 1(2e,20,24]002]000) + 2 1 (24,24 24]002]100)
4+ ¢102a,24,26002(200) - T(24,a44,a+ b011]000)

-2c] (2 we by ar blon]100) - € 1(2a, avk,artonfiio)

will serve to demonstrate the convergence of the infinite series in
(23) for calculation of I(N[S‘ l*«q s ' 1 - \) _and alsoc the impor-
tance of this term in the average value. For the Li-atom 4°2.5¢ ,
A:14 and C:0.34 would give a fair apptoximtionl') to the ground
state wave function.

In Table III we listb. and the first fifteen bk in the
infinite sum, that appears in the definition (35) and (23) for
1(2("&-»"“* LlO\\lH'l) . The o:urved convergence for the
series is actually better than for Z Q(.,-A and it 1s justified to

=i
conclude that the remainder in gemeral is

"
M D, ¢ :\5- KDy
e Kx )
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which in our exsample means that we have eight significant figures in
3.
The W'A appearing in eachD, were ealculated by (30) with
M=Ne 40, which according to Teble I gives eleven or twelve signi-
ficant figures, and as no appreciable cancellations occur in the
formation of each D_tthic does mot influsace the accuracy of 1 .
Table IV, lists the 1ntosullI and we like to point out
the ths above msntioned integral T2 ,a*lo,atloh)l Ill l-l)-y de-

finitely not be neglected in the calcialation of the average value,
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Table III

Dk.

o
1

and consequently

1(5.72, 4.26, 4.26 | 011 ]| 11 -1)=0.362 991 35-10"

Errata

0.358 027 6958
0.004 913 4950
0.000 046 7536
0.000 002 9199

0.000 000 3819 -

0.000 000 0759 -

0.000 000 0199
0.000 000 0063

0.000 000 0023 -

0.000 000 0010
0.000 000 0004

0.000 000 0002 -

0.000 000 0001

1075

5
5

10~

10~
5

L
8
1073
-5
-5

10”7
10~
10”

10
10

1073

10°5

1072

1073

5

fork=0, 1, 2, ... 12, as defined by (23) and (35) for the
integral I(5.72, 4.26, 4.26 | 011 ] 11 -1)."

.

Formulas (23).and (35) for calculation of Igg:(oﬂ'r Ipgs|11-1)
are not correct. The term

D= %[ W(w!s (I pre.qe ,:.)J-W(f"xlﬂ*‘hf”-s)* W(y{“\’”"»‘r"l’)

4.“/(“,“5";4&; $+1,4) ow(rx% Iqek, 5+8,p) ¢w(wa|3~k.P03,1)}

oo
should be deleted and the summation . replaced by 2.

The

correct formulas were used for the c;rc'\'xhﬁon! reported i‘ﬁ“Tahlel m

apd IV.



Table IV

Integrals I(a,PB,r|P.q, 8|\, v) appearing in formula (A3).

a p Y pgs S TR 1

2.8 5.72 572 | 200 | -1 0 o | 1.084 350 608107
572 5.72 2.8 | 002 | 1-1 0| 0.819094 061.107°
5.72 5.72 2.8 | 00z | 2-1 0o | 0.774239 416107
4.26 4.26 572 | 110 | -1 0 o | 0.346 281 001-107°
4.26 4.26 572 | 110 | -1 1 o | 0.343730385-107
5.72 4.26 4.26 | o011 ! 1-1 | 0.362 991353107
5.72 5.72 2.8 | 002 | ©0 0 0 | 1.592593371.107
5.72 5.72 2.8 02| 1 00 | 1.218111 188107
5.72 5.72 2.8 02| 200 1.168 218 522-107>
5.72 4.26 4.26 | 011 | o0 o o | 0.354 705251107
5.72 4.26 4.26 | on 1 0 0| o0.387786480:107°
5.72 4.26 4.26 | on 1 10| 0.433603 504107
A s 1.93092802- 1070

<_1_> = 0.587 090 36

AV
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